WorldWideScience

Sample records for high definition raman

  1. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  2. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  3. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  4. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  5. Preventing Raman Lasing in High-Q WGM Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  6. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  7. High Fidelity Raman Chemical Imaging of Materials

    Science.gov (United States)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers

  8. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  9. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  10. Raman spectroscopic studies on CeVO4 at high pressures

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Wani, B.N.

    2011-01-01

    Raman scattering investigations of CeVO 4 at high pressures is reported. Polycrystalline CeVO 4 was prepared by solid state reaction of CeO 2 and V 2 O 5 . High pressure Raman spectroscopic measurements were carried out as per experimental details given

  11. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  12. Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging.

    Science.gov (United States)

    Bao, Zhouzhou; Zhang, Yuqing; Tan, Ziyang; Yin, Xia; Di, Wen; Ye, Jian

    2018-05-01

    The sentinel lymph node (SLN) biopsy is gaining in popularity as a procedure to investigate the lymphatic metastasis of malignant tumors. The commonly used techniques to identify the SLNs in clinical practice are blue dyes-guided visualization, radioisotope-based detection and near-infrared fluorescence imaging. However, all these methods have not been found to perfectly fit the clinical criteria with issues such as short retention time in SLN, poor spatial resolution, autofluorescence, low photostability and high cost. In this study, we have reported a new type of nanoprobes, named, gap-enhanced Raman tags (GERTs) for the SLN Raman imaging. With the advantageous features including unique "fingerprint" Raman signal, strong Raman enhancement, high photostability, good biocompatibility and extra-long retention time, we have demonstrated that GERTs are greatly favorable for high-contrast and deep SLN Raman imaging, which meanwhile reveals the dynamic migration behavior of the probes entering the SLN. In addition, a quantitative volumetric Raman imaging (qVRI) data-processing method is employed to acquire a high-resolution 3-dimensional (3D) margin of SLN as well as the content variation of GERTs in the SLN. Moreover, SLN detection could be realized via a cost-effective commercial portable Raman scanner. Therefore, GERTs hold the great potential to be translated in clinical application for accurate and intraoperative location of the SLN. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  14. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  15. Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers

    Science.gov (United States)

    2017-08-09

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0043 TR-2017-0043 CONTROLLING STIMULATED BRILLOUIN/RAMAN SCATTERING IN HIGH POWER FIBER LASERS Cody Mart Ben...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research addressed suppression of stimulated Brillouin/Raman scattering in high power fiber lasers

  16. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M M [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A; Jovanovic, M

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  17. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  18. Phonon-induced anomalous Raman spectra in undoped high-Tc cuprates

    International Nuclear Information System (INIS)

    Lee, J.D.; Min, B.I.

    1997-01-01

    In order to describe a shoulder peak structure near 4J in the magnon Raman spectra of undoped high-T c cuprates, we have explored the phonon contribution to the Raman spectra. Incorporating the magnon-phonon Hamiltonian in the spin-wave theory, we have evaluated the two-magnon Raman spectral function originating from the lowest-order magnon-phonon-magnon scattering. It is found that phonons induce a shoulder peak near 4J besides the dominant two-magnon peak near 3J, in agreement with experiments. (orig.)

  19. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  20. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  1. High pressure Raman scattering study on the phase stability of LuVO4

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Sakuntala, T.; Achary, S.N.; Tyagi, A.K.

    2009-01-01

    High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate LuVO 4 upto 26 GPa. Changes in the Raman spectrum around 8 GPa across the reported zircon to scheelite transition are investigated in detail and compared with those observed in other vanadates. Co-existence of the zircon and scheelite phases is observed over a pressure range of about 8-13 GPa. The zircon to scheelite transition is irreversible upon pressure release. Subtle changes are observed in the Raman spectrum above 16 GPa which could be related to scheelite ↔ fergusonite transition. Pressure dependencies of the Raman active modes in the zircon and the scheelite phases are reported. - Graphical abstract: Study of scheelite-fergusonite transition in RVO 4 by Raman spectroscopy is rare. Here we report Raman spectroscopic investigations of LuVO 4 at high pressure to obtain insight into nature of post-scheelite phases.

  2. Raman spectroscopy on simple molecular systems at very high density

    International Nuclear Information System (INIS)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs

  3. High-pressure Raman investigation of the semiconductor antimony oxide

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Aihui; Cao, Lihua [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130012 Changchun (China); Wan, Chunming [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Ma, Yanmei [Department of Agronomy, Jilin University, 130062 Changchun (China)

    2011-05-15

    The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb{sub 2}O{sub 3}) has been investigated by Raman spectroscopy techniques in a diamond anvil cell up to 20 GPa at room temperature. New peaks in the external lattice mode range emerged at a pressure above 8.6-15 GPa, suggesting that the structural phase transition occurred. The pressure dependence of Raman frequencies was obtained. The band at 139 cm{sup -1} (assigned to group mode) has a pressure dependence of -0.475 cm{sup -1}/GPa and reveals significant softening at high pressure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. High-Resolution Infrared and Raman Spectra of the Polycrystalline Sinomenine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Dong

    2016-01-01

    Full Text Available High-resolution infrared and Raman spectra of the polycrystalline sinomenine (SM hydrochloride have been measured to work out its whole really existing vibrational spectral bands. Except for the hydroxyl stretching modes and IR active bands less than 400 cm−1, most normal modes (about 34 are both IR and Raman active. In addition, 8 Raman bands less than 400 cm−1 are tentatively assigned, for the first time to our knowledge, to stretching/bending modes of the aromatic-ring−methoxyls and (SMH+–Cl− ions, respectively.

  5. Raman spectroscopic studies of the polymorphism in ZrO2 at high pressures

    International Nuclear Information System (INIS)

    Arashi, H.; Ishigame, M.

    1982-01-01

    The Raman spectra of ZrO 2 at high pressures are measured at room temperature using a diamondanvil pressure-cell. Two kinds of pressure transmitting medium, methanol and NaCl, are used to see the effect of stress components on the phase transformation. The pressure of phase transformation shows a considerable difference between the two media. In the case of methanol, a phase transformation is observed at 3.5 GPa, while in the case of NaCl, at 5.4 GPa. In the high-pressure phase, 19 Raman bands are observed. This number of bands far exceeds that which is expected for the tetragonal phase, D/sub 4h/ 15 in space group. From the relation between the number of Raman bands and the crystal structure, it is more reasonable to consider that the high-pressure phase belongs to a orthorhombic system. The space group of the high-pressure phase is discussed on the basis of the observed number of Raman bands. (author)

  6. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  7. Normal state Raman spectra of high-Tc cuprates

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2003-01-01

    We present a microscopic theory to explain Raman spectra of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green function technique of Zubarev at zero wave vector and finite (room) temperature limit. Parameter dependence of Raman active phonon frequencies are studied by varying model parameters of the system i.e. the position of f-level (ε f ), the effective electron-phonon coupling strength (g), the staggered magnetic field (h 1 ), and the hybridization parameter (v). The four Raman active peaks (P 1 to P 4 ) represent the electronic states of the atomic sub-systems of the cuprate systems. They show up as phonon excitations due to the coupling of the phonon to the electrons and the anti-ferromagnetic gap. (author)

  8. High-Definition Medicine.

    Science.gov (United States)

    Torkamani, Ali; Andersen, Kristian G; Steinhubl, Steven R; Topol, Eric J

    2017-08-24

    The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution-what we refer to as high-definition medicine. Our ability to assess human health in high definition is enabled, in part, by advances in DNA sequencing, physiological and environmental monitoring, advanced imaging, and behavioral tracking. Our ability to understand and act upon these observations at equally high precision is driven by advances in genome editing, cellular reprogramming, tissue engineering, and information technologies, especially artificial intelligence. In this review, we will examine the core disciplines that enable high-definition medicine and project how these technologies will alter the future of medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    Science.gov (United States)

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  10. In Situ Raman Study of Liquid Water at High Pressure.

    Science.gov (United States)

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  11. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

    Science.gov (United States)

    Daniel, Isabelle; Gillet, Philippe; Poe, Brent T.; McMillan, Paul F.

    1995-03-01

    We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560 590 cm-1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm-1 reflects also some rearrangement of the Si-O-Al network.

  12. Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Jamal Ahmad; Park, Hyeonsuk [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of); Park, So-Yeon [Interdisciplinary Program in Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-08-15

    Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylene polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these

  13. High-pressure measuring cell for Raman spectroscopic studies of natural gas

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    A system for obtaining Raman spectra of gases at high pressure has been constructed. In order to ensure that a natural gas sample is totally representative, a high-pressure gas-measuring cell has been developed, built up by stainless steel fittings and a sapphire tube. The design and construction...... of this cell are described. A perfect pressure seal has been demonstrated up to 15.0 MPaA (MPa absolute). The cell has been successfully used to obtain Raman spectra of natural gas samples. Some of these spectra are presented and assigned. The most remarkable observation in the spectra is that it is possible...... to detect hydrogen sulfide at concentrations of 1-3 mg H2S/Nm(3). An attempt to make a quantitative analysis of natural gas by the so-called "ratio method" is presented. In addition to this, the relative normalized differential Raman scattering cross sections for ethane and i-butane molecules at 8.0 MPa...

  14. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  15. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  16. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  17. Feasibility Study of Using High-Temperature Raman Spectroscopy for On-Line Monitoring and Product Control of the Glass Vitrification Process

    International Nuclear Information System (INIS)

    Windisch, C.F. Jr.; Piepel, G.F.; Li, H.; Elliott, M.L.; Su, Y.

    1999-01-01

    A pulse-gating Raman spectroscopy setup was developed in this project. The setup was capable of performing in-situ high-temperature Raman measurements for glasses at temperatures as high as 1412 C. In the literature, high-temperature Raman measurements have only been performed on thin films of glass to minimize black-body radiation effects. The pulse-gating Raman setup allows making high-temperature measurements for bulk melts while effectively minimizing black-body radiation effects. A good correlation was found between certain Raman characteristic parameters and glass melt temperature for sodium silicate glasses measured in this project. Comparisons were made between the high-temperature Raman data from this study and literature data. The results suggest that an optimization of the pulse-gating Raman setup is necessary to further improve data quality (i.e., to obtain data with a higher signal-to-noise ratio). An W confocal Raman microspectrometer with continuous wave laser excitation using a 325 nm excitation line was evaluated selectively using a transparent silicate glass ad a deep-colored high-level waste glass in a bulk quantity. The data were successfully collected at temperatures as high as approximately 1500 C. The results demonstrated that the UV excitation line can be used for high-temperature Raman measurements of molten glasses without black-body radiation interference from the melt for both transparent and deep-color glasses. Further studies are needed to select the best laser system that can be used to develop high-temperature Raman glass databases

  18. Raman studies of hexagonal MoO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Zhang, J.W.; Ding, Z.J. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, L. [Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Z.P. [The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    The transition-metal oxide MoO{sub 3} is an important semiconductor and has various technological applications in catalysts, electrochromic and photochromic devices, gas sensors, and battery electrodes. In this study, the hexagonal MoO{sub 3} prepared by a hydrothermal method is in morphology of microrod with diameter of 0.8-1.2 {mu}m and length of 2.0-4.3 {mu}m. Its structural stability was investigated by an in situ Raman scattering method in a diamond anvil cell up to 28.7 GPa at room temperature. The new Raman peak around 1000 cm{sup -1} implies that a phase transition from hexagonal to amorphous starts at 5.6 GPa, and the evolution of the Raman spectra indicates that the structural transition is completed at about 13.2 GPa. After releasing pressure to ambient condition, the Raman spectrum pattern of the high pressure phase was retained, revealing that the phase transition is irreversible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  20. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  1. Pre-History Of The Concepts Underlying Stimulated Raman Adiabatic Passage (STIRAP)

    International Nuclear Information System (INIS)

    Shore, B.W.

    2013-01-01

    This tutorial review discusses some of the work that preceded development, twenty-five years ago, of the stimulated Raman adiabatic passage (STIRAP) technique, now widely used in the controlled coherent dynamics of three-state systems, noting how the use of time-dependent adiabatically-evolving population-trapping dark states made possible the robust and highly-efficient population transfer between quantum states that first popularized STIRAP. Preceding the history discussion is a tutorial definition of STIRAP and its necessary and sufficient ingredients — understanding that has led to applications well beyond those of the original quantum systems. This review also discusses the relationship between STIRAP and two related procedures: chirped Raman adiabatic passage (RCAP or CHIRAP) and electromagnetically induced transparency (EIT) with slow and captured light. It concludes with a brief discussion of ways in which contemporary STIRAP has extended the original concept and enlarged the definition, beyond that of simple quantum systems to classical macroscopic devices. Appendices offer further details. The presentation emphasizes theory but with illustrations of experimental results. (author)

  2. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  3. Combining Raman Microprobe and XPS to Study High Temperature Oxidation of Metals

    International Nuclear Information System (INIS)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2011-01-01

    Raman microprobe spectroscopy was applied in studies of high-temperature air oxidation of a ferritic alloy (HT-9) in the absence and presence of zirconia coatings with the objective of evaluating the technique as a way to quickly screen candidate cladding materials and actinide-based mixed oxide fuel mixtures for advanced nuclear reactors. When oxidation was relatively uniform, Raman spectra collected using microscope optics with low spatial resolution were found to be similar to those collected with conventional Raman spectroscopy. These spectra could be used to identify major oxide corrosion products and follow changes in the composition of the oxides due to heating. However, when the oxidation films were comprised of multiple layers of varying composition, or with layers containing metallic phases, techniques with higher depth resolution and sensitivity to zero-valence metals were necessary. The requirements were met by combining Raman microprobe using different optical configurations and x-ray photoelectron spectroscopy.

  4. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  5. Raman lidar for remote control explosives in the subway

    Science.gov (United States)

    Grishkanich, Aleksandr; Redka, Dmitriy; Vasiliev, Sergey; Tishkov, Victor; Zhevlakov, Aleksandr

    2017-10-01

    Laser sensing can serve as a highly effective method of searching and monitoring of explosives in the subway. The first method is essence consists in definition the explosives concentration by excitation and registration ramans shifts at wavelength of λ = 0.261 - 0.532 μm at laser sounding. Preliminary results of investigation show the real possibility to register of 2,4,6-trinitrophenylmethylnitramine with concentration on surface at level of 108÷109 cm-3 on a safe distance 50 m from the object.

  6. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  7. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.

    Science.gov (United States)

    Bennett, Chris J; Brotton, Stephen J; Jones, Brant M; Misra, Anupam K; Sharma, Shiv K; Kaiser, Ralf I

    2013-06-18

    We discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample. Thin films of carbon dioxide (CO2) ices of 10 to 396 nm thickness were prepared and characterized using both Fourier transform infrared (FT-IR) spectroscopy and HeNe interference techniques. The ν+ and ν- Fermi resonance bands of CO2 ices were observed by Raman spectroscopy at 1385 and 1278 cm(-1), respectively, and the band areas showed a linear dependence on ice thickness. Preliminary irradiation experiments are conducted on a 450 nm thick sample of CO2 ice using energetic electrons. Both carbon monoxide (CO) and the infrared inactive molecular oxygen (O2) products are readily detected from their characteristic Raman bands at 2145 and 1545 cm(-1), respectively. Detection limits of 4 ± 3 and 6 ± 4 monolayers of CO and O2 were derived, demonstrating the unique power to detect newly formed molecules in irradiated ices in situ. The setup is universally applicable to the detection of low-abundance species, since no Raman signal enhancement is required, demonstrating Raman spectroscopy as a reliable alternative, or complement, to FT-IR spectroscopy in space science applications.

  8. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.

    Science.gov (United States)

    Chen, Jinyang; Zheng, Haifei; Xiao, Wansheng; Zeng, Yishan

    2003-10-01

    A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.

  9. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, A.; Huang, Zhiwei

    2012-03-01

    Raman spectroscopy is a unique analytical probe for molecular vibration and is capable of providing specific spectroscopic fingerprints of molecular compositions and structures of biological tissues. The aim of this study is to improve the classification accuracy of cervical precancer by characterizing the variations in the normal high wavenumber (HW - 2800-3700cm-1) Raman spectra arising from the menopausal status of the cervix. A rapidacquisition near-infrared (NIR) Raman spectroscopic system was used for in vivo tissue Raman measurements at 785 nm excitation. Individual HW Raman spectrum was measured with a 5s exposure time from both normal and precancer tissue sites of 15 patients recruited. The acquired Raman spectra were stratified based on the menopausal status of the cervix before the data analysis. Significant differences were noticed in Raman intensities of prominent band at 2924 cm-1 (CH3 stretching of proteins) and the broad water Raman band (in the 3100-3700 cm-1 range) with a peak at 3390 cm-1 in normal and dysplasia cervical tissue sites. Multivariate diagnostic decision algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) was utilized to successfully differentiate the normal and precancer cervical tissue sites. By considering the variations in the Raman spectra of normal cervix due to the hormonal or menopausal status of women, the diagnostic accuracy was improved from 71 to 91%. By incorporating these variations prior to tissue classification, we can significantly improve the accuracy of cervical precancer detection using HW Raman spectroscopy.

  10. An in situ Raman spectroscopy system for long-term corrosion experiments in high temperature water up to 673 K

    International Nuclear Information System (INIS)

    Domae, Masafumi; Tani, Jun-ichi; Fujiwara, Kazutoshi; Katsumura, Yosuke

    2006-01-01

    A Raman spectroscopy system has been developed, in order to identify oxides formed on the surfaces of metals and steels in high temperature water up to 673 K. A supercritical water loop system including a Raman cell was installed. The design of the loop system is up to 673 K and 40 MPa. The Raman cell has a diamond window without window-to-metal packing. Raman spectrum of alumina plate was measured at room temperature, at 523 and at 673 K under pressure of 25 MPa. A long-term measurement was also performed at 523 K and 25 MPa for 117.5 h. In all cases intense Raman peaks attributed to alumina were observed. Raman spectrum of anatase particles in suspension was measured at 673 K and 25 MPa. The results show that the Raman spectroscopy system developed in the present study works well not only for plate sample but also for suspension. Raman spectra observed for titanium plate in high temperature water of 673 K and 25 MPa show growth of several Raman peaks with time up to 257 h. The peaks disappeared after cooled down to room temperature. The experimental results have demonstrated importance of in situ Raman spectroscopy. (author)

  11. Electronic Raman scattering in Bi2Sr2CaCu2O8=δ

    International Nuclear Information System (INIS)

    Quilty, J.W.; Trodahl, H.J.; Pooke, D.

    1996-01-01

    Full text: High-T c superconductors exhibit a definite Electronic Raman Scattering (ERS) continuum, which most materials do not. Typically, the continuum is relatively flat in the normal state, while below T c the ERS spectrum shows reduced scattering at the lowest Raman shifts and a peak close to the superconducting gap energy. The behaviour below T c is due to the breaking of Cooper pairs and reflects the superconducting density of states, hence revealing the superconducting gap. Through an appropriate choice of incident and scattered polarisation vectors, the electronic Raman continuum of high-T c superconductors may also be used to reveal information on the symmetry of the superconducting gap. Previous studies of the electronic continuum show that a broad peak associated with the superconducting gap forms in the continuum below T c in these materials, when compared to the normal-state. We report temperature and polarisation dependent ERS measurements on differently-doped Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals, within a temperature range of 300 K to 10 K

  12. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa

    Directory of Open Access Journals (Sweden)

    JianJun Jiang

    2016-03-01

    Full Text Available The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC, to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E 2 g 1 ,A1g, and 2LA(M. Over our experimental temperature and pressure range (300–600 K and 1 atm−18.5 GPa, the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3–4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  13. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa)

    Science.gov (United States)

    Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai

    2016-03-01

    The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  14. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    Science.gov (United States)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  15. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  16. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  17. Confocal Raman microspectroscopy

    International Nuclear Information System (INIS)

    Puppels, G.J.

    1991-01-01

    Raman spectroscopy is a technique that provides detailed structural information about molecules studied. In the field of molecular biophysics it has been extensively used for characterization of nucleic acids and proteins and for investigation of interactions between these molecules. It was felt that this technique would have great potential if it could be applied for in situ study of these molecules and their interactions, at the level of single living cell or a chromosome. To make this possible a highly sensitive confocal Raman microspectrometer (CRM) was developed. The instrument is described in detail in this thesis. It incorporates a number of recent technological developments. First, it employs a liquid nitrogen cooled CCD-camera. This type of detector, first used in astronomy, is the ultimate detector for Raman spectroscopy because it combines high quantum efficiency light detection with photon-noise limited operation. Second, an important factor in obtaining a high signal throughput of the spectrometer was the development of a new type of Raman notch filter. In the third place, the confocal detection principle was applied in the CRM. This limits the effective measuring volume to 3 . (author). 279 refs., 48 figs., 11 tabs

  18. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  19. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  20. Raman Spectroscopy with simple optic components; Espectrometria Raman con componentes opticos simples

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula [Direccion de Investigacion y Desarrollo, Instituto Peruano de Energia Nuclear, Lima (Peru)

    2014-07-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  1. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2012-07-17

    Raman spectroscopy is a vibrational spectroscopic technique capable of nondestructively probing endogenous biomolecules and their changes associated with dysplastic transformation in the tissue. The main objectives of this study are (i) to develop a simultaneous fingerprint (FP) and high-wavenumber (HW) confocal Raman spectroscopy and (ii) to investigate its diagnostic utility for improving in vivo diagnosis of cervical precancer (dysplasia). We have successfully developed an integrated FP/HW confocal Raman diagnostic system with a ball-lens Raman probe for simultaneous acquistion of FP/HW Raman signals of the cervix in vivo within 1 s. A total of 476 in vivo FP/HW Raman spectra (356 normal and 120 precancer) are acquired from 44 patients at clinical colposcopy. The distinctive Raman spectral differences between normal and dysplastic cervical tissue are observed at ~854, 937, 1001, 1095, 1253, 1313, 1445, 1654, 2946, and 3400 cm(-1) mainly related to proteins, lipids, glycogen, nucleic acids and water content in tissue. Multivariate diagnostic algorithms developed based on partial least-squares-discriminant analysis (PLS-DA) together with the leave-one-patient-out, cross-validation yield the diagnostic sensitivities of 84.2%, 76.7%, and 85.0%, respectively; specificities of 78.9%, 73.3%, and 81.7%, respectively; and overall diagnostic accuracies of 80.3%, 74.2%, and 82.6%, respectively, using FP, HW, and integrated FP/HW Raman spectroscopic techniques for in vivo diagnosis of cervical precancer. Receiver operating characteristic (ROC) analysis further confirms the best performance of the integrated FP/HW confocal Raman technique, compared to FP or HW Raman spectroscopy alone. This work demonstrates, for the first time, that the simultaneous FP/HW confocal Raman spectroscopy has the potential to be a clinically powerful tool for improving early diagnosis and detection of cervical precancer in vivo during clinical colposcopic examination.

  2. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  3. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yurui [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 41296 (Sweden); Zhang, Zhenglong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); School of Physics and Information Technology, Shaanxi Normal University, 710062 Xi’an (China); Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Sun, Mengtao, E-mail: mtsun@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China)

    2016-03-15

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10{sup −7} Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  4. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  5. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  6. Advances in Raman spectroscopy for the diagnosis of Alzheimer's disease

    Science.gov (United States)

    Sudworth, Caroline D.; Archer, John K. J.; Black, Richard A.; Mann, David

    2006-02-01

    Within the next 50 years Alzheimer's disease is expected to affect 100 million people worldwide. The progressive decline in the mental health of the patient is caused by severe brain atrophy generated by the breakdown and aggregation of proteins, resulting in β-amyloid plaques and neurofibrillary tangles. The greatest challenge to Alzheimer's disease lies in the pursuit of an early and definitive diagnosis, in order that suitable treatment can be administered. At the present time, definitive diagnosis is restricted to post-mortem examination. Alzheimer's disease also remains without a long-term cure. This research demonstrates the potential role of Raman spectroscopy, combined with principle components analysis (PCA), as a diagnostic method. Analyses of ethically approved ex vivo post-mortem brain tissues (originating from frontal and occipital lobes) from control (3 normal elderly subjects and 3 Huntingdon's disease subjects) and Alzheimer's disease (12 subjects) brain sections, and a further set of 12 blinded samples are presented. Spectra originating from these tissues are highly reproducible, and initial results indicate a vital difference in protein content and conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Further examination of these spectra using PCA allows for the separation of control from diseased tissues. The validation of the PCA models using blinded samples also displays promise for the identification of Alzheimer's disease, in conjunction with secondary information regarding other brain diseases and dementias. These results provide a route for Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.

  7. High definition versus standard definition white light endoscopy for detecting dysplasia in patients with Barrett's esophagus.

    Science.gov (United States)

    Sami, S S; Subramanian, V; Butt, W M; Bejkar, G; Coleman, J; Mannath, J; Ragunath, K

    2015-01-01

    High-definition endoscopy systems provide superior image resolution. The aim of this study was to assess the utility of high definition compared with standard definition endoscopy system for detecting dysplastic lesions in patients with Barrett's esophagus. A retrospective cohort study of patients with non-dysplastic Barrett's esophagus undergoing routine surveillance was performed. Data were retrieved from the central hospital electronic database. Procedures performed for non-surveillance indications, Barrett's esophagus Prague C0M1 classification with no specialized intestinal metaplasia on histology, patients diagnosed with any dysplasia or cancer on index endoscopy, and procedures using advanced imaging techniques were excluded. Logistic regression models were constructed to estimate adjusted odds ratios and 95% confidence intervals comparing outcomes with standard definition and high-definition systems. The high definition was superior to standard definition system in targeted detection of all dysplastic lesions (odds ratio 3.27, 95% confidence interval 1.27-8.40) as well as overall dysplasia detected on both random and target biopsies (odds ratio 2.36, 95% confidence interval 1.50-3.72). More non-dysplastic lesions were detected with the high-definition system (odds ratio 1.16, 95% confidence interval 1.01-1.33). There was no difference between high definition and standard definition endoscopy in the overall (random and target) high-grade dysplasia or cancers detected (odds ratio 0.93, 95% confidence interval 0.83-1.04). Trainee endoscopists, number of biopsies taken, and male sex were all significantly associated with a higher yield for dysplastic lesions. The use of the high-definition endoscopy system is associated with better targeted detection of any dysplasia during routine Barrett's esophagus surveillance. However, high-definition endoscopy cannot replace random biopsies at present time. © 2014 International Society for Diseases of the Esophagus.

  8. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M. [CEA, DAM, Le RIPAULT, F-37620 Monts (France); Resseguier, T. de [Institut P' , UPR CNRS 3346, ENSMA, Université de Poitiers, F-86961 Futuroscope, Chasseneuil (France)

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  9. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  10. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  11. High-pressure raman study on single crystalline methane hydrate surrounded by methane in a diamond anvil cell

    International Nuclear Information System (INIS)

    Ohno, Y; Sasaki, S; Kume, T; Shimizu, H

    2008-01-01

    High-pressure Raman measurements have been performed for single crystalline methane hydrate (MH) surrounded by fluid or solid methane in a diamond anvil cell. We successfully obtained the pure O-H stretching and lattice vibration spectra in MH-sI and MH-II phases. In these Raman spectra, there is no Raman band from water or ice-VI. The observed pressure of phase transformation from MH-sI to MH-II is 0.9 GPa, which is the same result as methane hydrate surrounded by water

  12. High wavenumber Raman spectroscopic characterization of normal and oral cancer using blood plasma

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Suresh Kumar, Murugesan; Singaravelu, Ganesan

    2017-02-01

    Blood plasma possesses the biomolecules released from cells/tissues after metabolism and reflects the pathological conditions of the subjects. The analysis of biofluids for disease diagnosis becomes very attractive in the diagnosis of cancers due to the ease in the collection of samples, easy to transport, multiple sampling for regular screening of the disease and being less invasive to the patients. Hence, the intention of this study was to apply near-infrared (NIR) Raman spectroscopy in the high wavenumber (HW) region (2500-3400 cm-1) for the diagnosis of oral malignancy using blood plasma. From the Raman spectra it is observed that the biomolecules protein and lipid played a major role in the discrimination between groups. The diagnostic algorithms based on principal components analysis coupled with linear discriminant analysis (PCA-LDA) with the leave-one-patient-out cross-validation method on HW Raman spectra yielded a promising results in the identification of oral malignancy. The details of results will be discussed.

  13. High Density Periodic Metal Nanopyramids for Surface Enhanced Raman Spectroscopy

    NARCIS (Netherlands)

    Jin, Mingliang

    2012-01-01

    The work presented in this thesis is focused on two areas. First, a new type of nanotextured noble-metal surface has been developed. The new nanotextured surface is demonstrated to enhance inelastic (Raman) scattering, called surface enhanced Raman scattering (SERS), from molecules adsorbed on the

  14. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    Science.gov (United States)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  15. High-pressure Raman spectra and DFT calculations of L-tyrosine hydrochloride crystal

    Science.gov (United States)

    dos Santos, C. A. A. S. S.; Carvalho, J. O.; da Silva Filho, J. G.; Rodrigues, J. L.; Lima, R. J. C.; Pinheiro, G. S.; Freire, P. T. C.; Façanha Filho, P. F.

    2018-02-01

    High-pressure Raman spectra of L-tyrosine hydrochloride crystal were obtained from 1.0 atm to 7.0 GPa in the 90-1800 cm-1 spectral region. At atmospheric pressure, the Raman spectrum was obtained in the 50-3200 cm-1 spectral range and the assignment of the normal modes based on density functional theory calculations was provided. We found good correspondence between the calculated and the observed intramolecular geometry parameters. This confirms the correct assignment of the normal modes, since it was crucial to understand the meaning of the changes observed in particular Raman active modes. Here we show that bands associated with internal modes undergo slight modifications during compression. However, an inversion of the relative intensity of bands around 125 cm-1 as well as a change of slope dω/dP from 1.0 to 1.5 GPa was understood as a conformational change involving a torsion of the L-tyrosine molecule. As a consequence, it is possible to conclude that the crystal remained in the same monoclinic structure in the 1 atm-7.0 GPa interval, although conformational change of the molecule was verified. A comparison of our results with other selected studies provided insights about the role of the amino acid side chain on the arrangement of hydrogen bonds. Finally, when the pressure was released back to 1 atm, the Raman spectrum was recovered and no hysteresis was observed.

  16. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  17. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang Guangchen; Feng Shiwei; Li Jingwan; Guo Chunsheng; Zhao Yan

    2012-01-01

    Channel temperature determinations of AlGaN/GaN high electron mobility transistors (HEMTs) by high spectral resolution micro-Raman spectroscopy are proposed. The temperature dependence of the E2 phonon frequency of GaN material is calibrated by using a JYT-64000 micro-Raman system. By using the Lorentz fitting method, the measurement uncertainty for the Raman phonon frequency of ±0.035 cm −1 is achieved, corresponding to a temperature accuracy of ±3.2 °C for GaN material, which is the highest temperature resolution in the published works. The thermal resistance of the tested AlGaN/GaN HEMT sample is 22.8 °C/W, which is in reasonably good agreement with a three dimensional heat conduction simulation. The difference among the channel temperatures obtained by micro-Raman spectroscopy, the pulsed electrical method and the infrared image method are also investigated quantificationally. (semiconductor devices)

  18. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings

    Science.gov (United States)

    Heck, Maximilian; Bock, Victor; Krämer, Ria G.; Richter, Daniel; Goebel, Thorsten A.; Matzdorf, Christian; Liem, Andreas; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan

    2018-02-01

    The average output power of fiber lasers have been scaled deep into the kW regime within the recent years. However a further scaling is limited due to nonlinear effects like stimulated Raman scattering (SRS). Using the special characteristics of femtosecond laser pulse written transmission fiber gratings, it is possible to realize a notch filter that mitigates efficiently this negative effect by coupling the Raman wavelength from the core into the cladding of the fiber. To the best of our knowledge, we realized for the first time highly efficient gratings in large mode area (LMA) fibers with cladding diameters up to 400 μm. The resonances show strong attenuation at design wavelength and simultaneously low out of band losses. A high power fiber amplifier with an implemented passive fiber grating is shown and its performance is carefully investigated.

  19. Difference Raman spectroscopy of DNA molecules

    International Nuclear Information System (INIS)

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  20. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  1. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources

    Science.gov (United States)

    István, Krisztina; Keresztury, Gábor; Szép, Andrea

    2003-06-01

    A comparative study of the feasibility and efficiency of Raman spectroscopic detection of thin layer chromatography (TLC) spots of some weak Raman scatterers (essential amino acids, namely, glycine and L-forms of alanine, serine, valine, proline, hydroxyproline, and phenylalanine) was carried out using four different visible and near-infrared (NIR) laser radiations with wavelengths of 532, 633, 785, and 1064 nm. Three types of commercial TLC plates were tested and the possibility of inducing surface enhanced Raman scattering (SERS) by means of Ag-sol was also investigated. The spectra obtained from spotted analytes adsorbed on TLC plates were of very different quality strongly depending on the excitation wavelength, the wetness of the samples, and the compounds examined. The best results were obtained with the simple silica TLC plate, and it has been established that the longest wavelength (lowest energy) NIR excitation of a Nd:YAG laser is definitely more suitable for generating normal Raman scattering of analyte spots than any of the visible radiations. Concerning SERS with application of Ag-sol to the TLC spots, 1-3 orders of magnitude enhancement was observed with wet samples, the greatest with the 532 nm radiation and gradually smaller with the longer wavelength excitations. It is shown, however, that due to severe adsorption-induced spectral distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of the SERS spectra obtained with the dispersive Raman microscope operating in the visible region were superior to the best NIR normal FT-Raman spectra, as far as sample identification is concerned.

  2. High-pressure Raman investigations of phase transformations in pentaerythritol (C(CH sub 2 OH) sub 4)

    CERN Document Server

    Bhattacharya, T

    2002-01-01

    Our high-pressure Raman scattering experiments on pentaerythritol (C(CH sub 2 OH) sub 4) show that this compound undergoes at least three phase transformations up to 25 GPa. Splitting of various modes at approx 6.3, approx 8.2 and 10 GPa suggests that these phase transformations result in lowering of crystalline symmetry. A very small discontinuous change in slope of most of the Raman-active modes is observed at 0.3 GPa. However, no other signature of a phase transition was observed at this pressure. The observed correlation of the pressures for the onset of the two phase transformations with the limiting values of the distances between various non-bonded atoms in the parent phase suggests that the molecular rearrangements across the phase transformations are not very drastic. In addition, our earlier Fourier transform infrared and present Raman investigations indicate that high-pressure compression leads to increase in strength of the hydrogen bond present in this compound.

  3. Phonon populations by nanosecond-pulsed Raman scattering in Si

    International Nuclear Information System (INIS)

    Compaan, A.; Lee, M.C.; Trott, G.J.

    1985-01-01

    Since the first time-resolved Raman studies of phonon populations under pulsed-laser-annealing conditions, a number of cw Raman studies have been performed which provide a much improved basis for interpreting the pulsed Raman data. Here we present new pulsed Raman results and interpret them with reference to temperature-dependent resonance effects, high-carrier-density effects, phonon anharmonicity, and laser-induced strain effects. The pulsed Raman data: Stokes to anti-Stokes ratios, shift and shape of the first-order peak, and second-order spectra: indicate the existence of a phase in which the Raman signal disappears followed by a rapidly cooling solid which begins within 300 K of the 1685 K normal melting temperature of Si. We identify a major difficulty in pulsed Raman studies in Si to be the decrease in Raman intensity at high temperatures

  4. Raman characterization of high temperature materials using an imaging detector

    International Nuclear Information System (INIS)

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs

  5. Raman Spectra of Nanodiamonds: New Treatment Procedure Directed for Improved Raman Signal Marker Detection

    Directory of Open Access Journals (Sweden)

    Raoul R. Nigmatullin

    2013-01-01

    Full Text Available Detonation nanodiamonds (NDs have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425–575°C aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling.

  6. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; hide

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  7. Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    Stimulated Raman scattering (SRS) has been subject to much attention within the field of fiber lasers and amplifiers as it provides an extended wavelength coverage in comparison to rare-earth based devices. Motivated by the projected capacity crunch [1], different approaches are being explored...... demonstrate a monolithic RM Raman fiber laser (RFL), which acts as a pump for a Raman amplifier (RA) at 1810 nm. The lasing wavelength of a RFL, thus also for a RA, can in principle be designed arbitrarily within the entire wavelength range from the Erbium band up to the Thulium/Holmium band...... of OFS PM Raman fiber, with an estimated propagation loss of 0.42/0.46/1.3 dB/km at 1564/1679/1810 nm. The Raman gain coefficient was measured to be gR=2.66/2.35 W-1km-1 at 1679/1810 nm. The laser curve of the RFL is depicted in Fig. 1b, with a slope efficiency of 67 %. The high slope efficiency...

  8. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  9. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  10. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  11. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  12. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    Science.gov (United States)

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  13. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  14. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  15. Characterization of Few-Layer 1T' MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering.

    Science.gov (United States)

    Beams, Ryan; Cancado, Luiz Gustavo; Krylyuk, Sergiy; Kalish, Irina; Kalanyan, Berc; Singh, Arunima K; Choudhary, Kamal; Bruma, Alina; Vora, Patrick M; Tavazza, Francesca; Davydov, Albert V; Stranick, Stephan J

    2016-10-05

    We study the crystal symmetry of few-layer 1T' MoTe 2 using the polarization dependence of the second harmonic generation (SHG) and Raman scattering. Bulk 1T' MoTe 2 is known to be inversion symmetric; however, we find that the inversion symmetry is broken for finite crystals with even numbers of layers, resulting in strong SHG comparable to other transition metal dichalcogenides. Group theory analysis of the polarization dependence of the Raman signals allows for the definitive assignment of all the Raman modes in 1T' MoTe 2 and clears up a discrepancy in the literature. The Raman results were also compared with density-functional theory simulations and are in excellent agreement in the layer-depenent variations of the Raman modes. The experimental measurements also determine the relationship between the crystal axes and the polarization-dependence of the SHG and Raman scattering, which now allows the anisotropy of polarized SHG or Raman signal to independently determine the crystal orientation.

  16. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  17. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Huang, Zhiwei

    2015-08-01

    This work aims to evaluate clinical value of a fiber-optic Raman spectroscopy technique developed for in vivo diagnosis of esophageal squamous cell carcinoma (ESCC) during clinical endoscopy. We have developed a rapid fiber-optic Raman endoscopic system capable of simultaneously acquiring both fingerprint (FP)(800-1800 cm-1) and high-wavenumber (HW)(2800-3600 cm-1) Raman spectra from esophageal tissue in vivo. A total of 1172 in vivo FP/HW Raman spectra were acquired from 48 esophageal patients undergoing endoscopic examination. The total Raman dataset was split into two parts: 80% for training; while 20% for testing. Partial least squares-discriminant analysis (PLS-DA) and leave-one patient-out, cross validation (LOPCV) were implemented on training dataset to develop diagnostic algorithms for tissue classification. PLS-DA-LOPCV shows that simultaneous FP/HW Raman spectroscopy on training dataset provides a diagnostic sensitivity of 97.0% and specificity of 97.4% for ESCC classification. Further, the diagnostic algorithm applied to the independent testing dataset based on simultaneous FP/HW Raman technique gives a predictive diagnostic sensitivity of 92.7% and specificity of 93.6% for ESCC identification, which is superior to either FP or HW Raman technique alone. This work demonstrates that the simultaneous FP/HW fiber-optic Raman spectroscopy technique improves real-time in vivo diagnosis of esophageal neoplasia at endoscopy.

  18. Micro-raman and tip-enhanced raman spectroscopy of carbon allotropes

    NARCIS (Netherlands)

    Hoffmann, G.G.; With, de G.; Loos, J.

    2008-01-01

    Raman spectroscopic data are obtained on various carbon allotropes like diamond, amorphous carbon, graphite, graphene and single wall carbon nanotubes by micro-Raman spectroscopy, tip-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy imaging, and the potentials of these techniques for

  19. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  20. Electron enhanced Raman scattering and its applications in solution chemistry

    International Nuclear Information System (INIS)

    Yui, Hiroharu

    2007-01-01

    The present review describes a new enhancement technique for Raman scattering in aqueous solutions. Raman scattering spectroscopy has an inherent ability to distinguish between molecules with great similarity and provides useful information on local physical and chemical environments at their functional groups' level. Since the Raman scattering signals from water molecules are quite weak, Raman spectroscopy has great advantage for detection or discrimination of a trace amount of analytes in aqueous environments. However, Raman scattering cross-sections are inherently small and it generally requires high power excitation and long acquisition times to obtain high-quality Raman spectra. These conditions create disadvantages for the analyses for living cells and real-time monitoring for environmental analyses. Here, I describe a new Raman enhancement technique, namely electron enhanced Raman scattering (EERS)', where artificially generated electrons additionally affect the polarizability of target molecular systems and enhance their inherent Raman cross-section. Principles of the EERS and its applications to aqueous solution are presented. (author)

  1. High Definition Video Streaming Using H.264 Video Compression

    OpenAIRE

    Bechqito, Yassine

    2009-01-01

    This thesis presents high definition video streaming using H.264 codec implementation. The experiment carried out in this study was done for an offline streaming video but a model for live high definition streaming is introduced, as well. Prior to the actual experiment, this study describes digital media streaming. Also, the different technologies involved in video streaming are covered. These include streaming architecture and a brief overview on H.264 codec as well as high definition t...

  2. Raman Spectroscopy with simple optic components

    International Nuclear Information System (INIS)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula

    2014-01-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  3. Development of a tunable femtosecond stimulated raman apparatus and its application to beta-carotene.

    Science.gov (United States)

    Shim, Sangdeok; Mathies, Richard A

    2008-04-17

    We have developed a tunable femtosecond stimulated Raman spectroscopy (FSRS) apparatus and used it to perform time-resolved resonance Raman experiments with Raman excitation, the resonant S1 state modes are enhanced by a factor of approximately 200 compared with 800 nm FSRS experiments. The improved signal-to-noise ratios facilitate the measurement of definitive time constants for beta-carotene dynamics including the 180 fs appearance of the S1 vibrational features due to direct internal conversion from S2 and their characteristic 9 ps decay to S0. By tuning the FSRS system to 590 nm Raman excitation, we are able to selectively enhance vibrational features of the hot ground state S hot 0 and monitor its approximately 5 ps cooling dynamics. This tunable FSRS system is valuable because it facilitates the direct observation of structural changes of selected resonantly enhanced states and intermediates during photochemical and photobiological reactions.

  4. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  5. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  6. Comparison of in situ ionizing radiation effects on Raman and photoluminescence intensity of high OH, low OH silica, and fluoride core fibers

    Science.gov (United States)

    Bilodeau, T. G.; Ewing, K. J.; Nau, G. M.; Aggarwal, I. D.

    1995-06-01

    An in situ study of the effects of ionizing radiation on the strength of the Raman and photoluminescence signal of high OH, low OH, and fluoride core fibers has been performed with 514.5 nm laser excitation. The fibers were irradiated with a 60Co source at a constant dose rate of 560 rads/h. The high OH fiber displayed a much slower decay of the fiber Raman intensity than the other two fibers during irradiation. The fluoride fiber exhibited the quickest decline in Raman signal with the intensity dropping by a factor of 1000 in less than 20 min. The Raman intensity of the low OH silica fiber recovered to greater than 90% of its pre-irradiation value after a post-irradiation photoanneal with 488 nm laser light. The silica fibers displayed an increase in intensity of a broad photoluminescence feature centered at 650 nm. However the fiber photoluminescence intensity remained much weaker than the Raman intensity throughout the irradiations.

  7. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  8. Raman Microscopic Analysis of Internal Stress in Boron-Doped Diamond

    Directory of Open Access Journals (Sweden)

    Kevin E. Bennet

    2015-05-01

    Full Text Available Analysis of the induced stress on undoped and boron-doped diamond (BDD thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.

  9. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  10. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  11. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  12. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  13. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    Science.gov (United States)

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  14. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  15. Combining surface enhanced Raman scattering (SERS) and high-performance thin-layer chromatography (HPTLC)

    Science.gov (United States)

    Koglin, E.

    A new method for preparing SERS active surfaces using silver colloidal spheres deposited on HPTLC plates, used for thin-layer chromatography, is discussed in detail. The sensitivity of these activated HPTLC plates is so high that in-situ vibrational investigations of chromatogram spots are possible at the nanogram level. The HPTLC/SERS spectra of purine, benzoic acid and 1-nitro-pyrene adsorbed on silver colloidal activated silica gel plates are measured in the nanogram region. In addition we also report in this paper on the results of a feasibility study performed to evaluate the analytical potential of micro-Raman spectroscopy (triple monochromator, multichannel detection system) in SERS/HPTLC spot characterization. It permits the acquisition of Raman spectra from HPTLC spots down to 1 μm in size or other forms of microsamples approaching the picogram level in mass.

  16. Depth profiling by Raman spectroscopy of high-energy ion irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Zhang, Yanwen; Liu, Shiyi; Zhao, Ziqiang, E-mail: zqzhao@pku.edu.cn

    2014-01-15

    Single crystals of 6H–SiC were irradiated at room temperature with 20 MeV carbon ions at fluences of 1.5 × 10{sup 15} and 6.0 × 10{sup 15} cm{sup −2}. Raman measurements were performed to study irradiation induced damage and the in-depth damage profile of SiC. A clear change of damage from the surface down to the stopping region of carbon ions as simulated by SRIM is exhibited. The affected area as detected by Raman is in good agreement with SRIM predictions while a little shallower dpa profile is observed. The partial disorder defined in the present work as a function of depth is demonstrated. A shift of the position of the TO peak towards lower wavenumbers with in-depth damage and then to higher wavenumbers beyond the most damaged region indicates that tensile strain due to defects has a backward V-curve distribution. The damaged layer is subjected to a compressive in-plane stress associated with the out-of-plane strain and the magnitude of this stress also has a backward V-curve depth profile. The evolution of line width of the TO peak with depth clearly shows the density of defects reaches the higher level at the most damaged region. The Raman spectroscopy scanning technique is proved to be a powerful tool for profiling of crystal damage induced by high-energy ion implantation.

  17. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  18. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  19. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  20. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    Science.gov (United States)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  1. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    Science.gov (United States)

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  2. Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology

    Science.gov (United States)

    Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable

  3. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    International Nuclear Information System (INIS)

    Yang, Shanshan; Zhang, Zhaochun; Zhao, Jun; Zheng, Houli

    2014-01-01

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution

  4. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure

    Science.gov (United States)

    Li, M.; Zheng, H.; Duan, T.

    2006-05-01

    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  5. Detection of laser damage by Raman microscopy

    International Nuclear Information System (INIS)

    Fauchet, P.M.; Campbell, I.H.; Adar, F.

    1988-01-01

    The authors demonstrate that Raman miroscopy is a sensitive and quantitative tool to detect and characterize laser-induced damage in solids. After damage is induced with single or multiple high power laser pulses, a Raman microprobe maps the surface of the sample with one micron spatial resolution. By performing accurate measurements of the Stokes line, the authors have been able to measure stress, strain and crystallinity in various samples which had been exposed to high intensity pulses. These results are compared to those obtained using conventional tools such as Nomarski microscopy. Major advantages of Raman microscopy include sensitivity to subtle structural modifications and the fact that it gives quantitative measurements

  6. Characterisation of Oil-Gas Mixtures by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    . The present project deals with development of a technique for quick analysis of oil-gas mixtures. The main emphasis is laid on characterisation of gas phases in equilibrium with oil at high pressures and high temperatures by Raman spectroscopy. The Raman technique has a great potential of being useful, due...

  7. Raman active high energy excitations in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Buhot, Jonathan [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); High Field Magnet Laboratory (HFML - EMFL), Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); Piekarz, Przemysław [Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakòw (Poland); Lapertot, Gérard [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Aoki, Dai [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Méasson, Marie-Aude, E-mail: marie-aude.measson@univ-paris-diderot.fr [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France)

    2017-02-01

    We have performed Raman scattering measurements on URu{sub 2}Si{sub 2} single crystals on a large energy range up to ∼1300 cm{sup −1} and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the E{sub g} symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A{sub 1g} symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.

  8. Development of a Raman spectrometer to study surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Biswas, Nandita; Chadha, Ridhima; Kapoor, Sudhir; Sarkar, Sisir K.; Mukherjee, Tulsi

    2011-02-01

    Raman spectroscopy is an important tool, which provides enormous information on the vibrational and structural details of materials. This understanding is not only interesting due to its fundamental importance, but also of considerable importance in optoelectronics and device applications of these materials in nanotechnology. In this report, we begin with a brief introduction on the Raman effect and various Raman scattering techniques, followed by a detailed discussion on the development of an instrument with home-built collection optics attachment. This Raman system consists of a pulsed laser excitation source, a sample compartment, collection optics to collect the scattered light, a notch filter to reject the intense laser light, a monochromator to disperse the scattered light and a detector to detect the Raman signal. After calibrating the Raman spectrometer with standard solvents, we present our results on Surface-Enhanced Raman Scattering (SERS) investigations on three different kinds of chemical systems. (author)

  9. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  10. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  11. A pseudo-Voigt component model for high-resolution recovery of constituent spectra in Raman spectroscopy

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Schmidt, Mikkel Nørgaard; Rindzevicius, Tomas

    2017-01-01

    Raman spectroscopy is a well-known analytical technique for identifying and analyzing chemical species. Since Raman scattering is a weak effect, surface-enhanced Raman spectroscopy (SERS) is often employed to amplify the signal. SERS signal surface mapping is a common method for detecting trace...... to directly and reliably identify the Raman modes, with overall performance similar to the state of the art non-negative matrix factorization approach. However, the model provides better interpretation and is a step towards enabling the use of SERS in detection of trace amounts of molecules in real-life...

  12. Raman fiber distributed feedback lasers.

    Science.gov (United States)

    Westbrook, Paul S; Abedin, Kazi S; Nicholson, Jeffrey W; Kremp, Tristan; Porque, Jerome

    2011-08-01

    We demonstrate fiber distributed feedback (DFB) lasers using Raman gain in two germanosilicate fibers. Our DFB cavities were 124 mm uniform fiber Bragg gratings with a π phase shift offset from the grating center. Our pump was at 1480 nm and the DFB lasers operated on a single longitudinal mode near 1584 nm. In a commercial Raman gain fiber, the maximum output power, linewidth, and threshold were 150 mW, 7.5 MHz, and 39 W, respectively. In a commercial highly nonlinear fiber, these figures improved to 350 mW, 4 MHz, and 4.3 W, respectively. In both lasers, more than 75% of pump power was transmitted, allowing for the possibility of substantial amplification in subsequent Raman gain fiber. © 2011 Optical Society of America

  13. Schwinger–Keldysh canonical formalism for electronic Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuehua, E-mail: suyh@ytu.edu.cn

    2016-03-01

    Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in instrumentation to investigate the strong electronic correlations in matter. However, theoretical study of the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh canonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-resonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant response. All the other responses are dominated by the single-particle excitations and are strongly suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.

  14. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  15. Polarized Raman scattering of single ZnO nanorod

    International Nuclear Information System (INIS)

    Yu, J. L.; Lai, Y. F.; Wang, Y. Z.; Cheng, S. Y.; Chen, Y. H.

    2014-01-01

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A 1 (TO), E 1 (TO), and E 2 high in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A 1 (TO) and E 1 (TO) phonon modes normalized to that of the E 2 high phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer

  16. Electronic Transport and Raman Spectroscopy Characterization in Ion-Implanted Highly Oriented Pyrolytic Graphite

    Science.gov (United States)

    de Jesus, R. F.; Turatti, A. M.; Camargo, B. C.; da Silva, R. R.; Kopelevich, Y.; Behar, M.; Balzaretti, N. M.; Gusmão, M. A.; Pureur, P.

    2018-02-01

    We report on Raman spectroscopy, temperature-dependent in-plane resistivity, and in-plane magnetoresistance experiments in highly oriented pyrolytic graphite (HOPG) implanted with As and Mn. A pristine sample was also studied for comparison. Two different fluences were applied, φ = 0.5× 10^{16} {ions}/{cm}2 and φ = 1.0× 10^{16} {ions}/{cm}2. The implantations were carried out with 20 keV ion energy at room temperature. The Raman spectroscopy results reveal the occurrence of drastic changes of the HOPG surface as a consequence of the damage caused by ionic implantation. For the higher dose, the complete amorphization limit is attained. The resistivity and magnetoresistance results were obtained placing electrical contacts on the irradiated sample surface. Owing to the strong anisotropy of HOPG, the electrical current propagates mostly near the implanted surface. Shubnikov-de Haas (SdH) oscillations were observed in the magnetoresistance at low temperatures. These results allow the extraction of the fundamental SdH frequencies and the carriers' effective masses. In general, the resistivity and magnetoresistance results are consistent with those obtained from Raman measurements. However, one must consider that the electrical conduction in our samples occurs as in a parallel association of a largely resistive thin sheet at the surface strongly modified by disorder with a thicker layer where damage produced by implantation is less severe. The SdH oscillations do not hint to significant changes in the carrier density of HOPG.

  17. Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Zeng, Haishan; Kalia, Sunil; Lui, Harvey

    2017-02-01

    Background: Raman spectroscopy is a non-invasive optical technique which can measure molecular vibrational modes within tissue. A large-scale clinical study (n = 518) has demonstrated that real-time Raman spectroscopy could distinguish malignant from benign skin lesions with good diagnostic accuracy; this was validated by a follow-up independent study (n = 127). Objective: Most of the previous diagnostic algorithms have typically been based on analyzing the full band of the Raman spectra, either in the fingerprint or high wavenumber regions. Our objective in this presentation is to explore wavenumber selection based analysis in Raman spectroscopy for skin cancer diagnosis. Methods: A wavenumber selection algorithm was implemented using variably-sized wavenumber windows, which were determined by the correlation coefficient between wavenumbers. Wavenumber windows were chosen based on accumulated frequency from leave-one-out cross-validated stepwise regression or least and shrinkage selection operator (LASSO). The diagnostic algorithms were then generated from the selected wavenumber windows using multivariate statistical analyses, including principal component and general discriminant analysis (PC-GDA) and partial least squares (PLS). A total cohort of 645 confirmed lesions from 573 patients encompassing skin cancers, precancers and benign skin lesions were included. Lesion measurements were divided into training cohort (n = 518) and testing cohort (n = 127) according to the measurement time. Result: The area under the receiver operating characteristic curve (ROC) improved from 0.861-0.891 to 0.891-0.911 and the diagnostic specificity for sensitivity levels of 0.99-0.90 increased respectively from 0.17-0.65 to 0.20-0.75 by selecting specific wavenumber windows for analysis. Conclusion: Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity at high sensitivity levels.

  18. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    Science.gov (United States)

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  19. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  20. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  1. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  2. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  3. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    Science.gov (United States)

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

  4. Single crystal growth, characterization and high-pressure Raman spectroscopy of impurity-free magnesite (MgCO3)

    Science.gov (United States)

    Liang, Wen; Li, Zeming; Yin, Yuan; Li, Rui; Chen, Lin; He, Yu; Dong, Haini; Dai, Lidong; Li, Heping

    2018-05-01

    The understanding of the physical and chemical properties of magnesite (MgCO3) under deep-mantle conditions is highly important to capture the essence of deep-carbon storage in Earth's interior. To develop standard rating scales, the impurity-free magnesite single crystal, paying particular attention to the case of avoiding adverse impacts of Ca2+, Fe2+, and Mn2+ impurities in natural magnesite, is undoubtedly necessary for all research of magnesite, including crystalline structural phase transitions, anisotropic elasticity and conductivity, and equation of state (EoS). Thus, a high-quality single crystal of impurity-free magnesite was grown successfully for the first time using the self-flux method under high pressure-temperature conditions. The size of the magnesite single crystal, observed in a plane-polarized microscope, exceeds 200 μm, and the crystal exhibits a rhombohedral structure to cleave along the (101) plane. In addition, its composition of Mg0.999 ± 0.001CO3 was quantified through electron probing analysis. The structural property was investigated by means of single crystal X-ray diffraction and the unit cell dimensions obtained in the rhombohedral symmetry of the R\\bar {3}c space group are a = 4.6255 (3) and c = 14.987 (2), and the final R = 0.0243 for 718 reflections. High-pressure Raman spectroscopy of the magnesite single crystal was performed up to 27 GPa at ambient temperature. All Raman active bands, ν i, without any splitting increased almost linearly with increasing pressure. In combination with the high-pressure Raman results {{d/ν _i}}{{{d}P}} and the bulk modulus K T (103 GPa) reported from magnesite EoS studies, the mode Grüneisen parameters (1.49, 1.40, 0.26, and 0.27) of each vibration ( T, L, ν 4, and ν 1) were calculated.

  5. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  6. Pulse compression by Raman induced cavity dumping

    International Nuclear Information System (INIS)

    De Rougemont, F.; Xian, D.K.; Frey, R.; Pradere, F.

    1985-01-01

    High efficiency pulse compression using Raman induced cavity dumping has been studied theoretically and experimentally. Through stimulated Raman scattering the electromagnetic energy at a primary frequency is down-converted and extracted from a storage cavity containing the Raman medium. Energy storage may be achieved either at the laser frequency by using a laser medium inside the storage cavity, or performed at a new frequency obtained through an intracavity nonlinear process. The storage cavity may be dumped passively through stimulated Raman scattering either in an oscillator or in an amplifier. All these cases have been studied by using a ruby laser as the pump source and compressed hydrogen as the Raman scatter. Results differ slightly accordingly to the technique used, but pulse shortenings higher than 10 and quantum efficiencies higher than 80% were obtained. This method could also be used with large power lasers of any wavelength from the ultraviolet to the farinfrared spectral region

  7. Identification of Raman peaks of high-Tc cuprates in normal state through density of states

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2007-01-01

    We present a microscopic theory to explain and identify the Raman spectral peaks of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green's function technique of Zubarev at zero wave vector and finite (room) temperature limit. The four Raman active peaks (P 1 -P 4 ) representing the electronic states of the atomic sub-systems of the cuprate system are identified by the calculated quasi-particle energy bands and electron density of states (DOS). The effect of interactions on these peaks are also explained

  8. Structural studies of WO3-TeO2 glasses by high-Q-neutron diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Khanna, A.; Kaur, A.; Krishna, P.S.R.; Shinde, A.B.

    2013-01-01

    Glasses from the system: xWO 3 -(100-x)TeO 2 (x=15, 20 and 25 mol %) were prepared by melt quenching technique and characterized by density, UV-visible absorption spectroscopy, Differential Scanning Calorimetry (DSC), Raman spectroscopy and high-Q neutron diffraction measurements. Glass density and glass transition temperature increased with increase in WO 3 concentration, Raman spectroscopy indicated the conversion of TeO 4 units into TeO 3 units with increase in WO 3 content. The increase in glass transition temperature with the incorporation of WO 3 was attributed to the increase in average bond strength of the glass network since the bond dissociation energy of W-O bonds (672 kJ/mol) is significantly higher than that of Te-O bonds (376 kJ/mol). UV-visible studies found a very strong optical absorption band due to W 6+ ions, just below the absorption edge. High-Q neutron diffraction measurements were performed on glasses and radial distribution function analyses revealed changes in W-O and Te-O correlations in the glass network. The findings about changes in glass structure from neutron diffraction studies were consistent with structural information obtained from Raman spectroscopy and structure-property correlations were made. (author)

  9. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    Science.gov (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Picture-Quality Optimization for the High Definition TV Broadcast Chain

    NARCIS (Netherlands)

    Dimou, A.; Van der Vleuten, R.J.; De Haan, G.

    2007-01-01

    The High Definition scene is constantly changing. The arrival of Full HD flat panel displays, the constant improvement of the AVC encoder, and the trend towards 1920x1080 progressive broadcasting have changed the balances of the High Definition broadcasting chain. It is, therefore, required to

  11. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  12. Production of high temperature superconductors and characteristics by infrared and Raman spectroscopy

    International Nuclear Information System (INIS)

    Thomsen, C.

    1991-01-01

    This final report, which is partly kept short, is concerned with electron/phonon interaction and the determination of the band gap in high temperature superconductors (YBa 2 Cu 3 O 7 ). The final report is divided into four parts, which reflect the individual working groups: 1. Raman spectroscopy, 2. IR spectroscopy (reflection measurements, isotope effect, superconducting energy gap, behaviour of infrared active phonons), 3. Magnetic field measurements, and 4. Theory (initial calculation of the metal/isolator transfer in BaBiO 3 ). (MM) [de

  13. High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions

    International Nuclear Information System (INIS)

    Jayaraman, A.; Kourouklis, G.A.; Cooper, A.S.; Espinosa, G.P.

    1990-01-01

    High-pressure Raman scattering and optical absorption studies have been carried out on lead pyroniobate (Pb 2 Nb 2 O 7 ) up to 33 GPa, using a gasketed diamond anvil cell. The Raman study reveals the occurrence of two, possibly three, pressure-induced phase changes; a rather subtle change is indicated near 4.5 GPa. The transition near 13 GPa is attributed to a structural transition from the rhombohedral to the cubic pyrochlore structure. The third phase change occurs near 20 GPa. From the broad Raman feature that is observed at about 800 cm -1 , it is concluded that the system turns amorphous at pressures above 20 GPa. The amorphous phase recrystallizes to the original rhombohedral phase, on release of pressure. The broad Raman peaks of the recrystallized phase indicate a high degree of disorder in the material. Lead pyroniobate turns deep red near 30 GPa, from light yellow at ambient pressure. Semi quantitative absorption measurements show that the energy gap shifts red at a rate of 30 meV/GPa. This shift is attributed to the downward motion of the 5d (es) conduction band of Pb

  14. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  15. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  16. Raman spectroscopy for highly accurate estimation of the age of refrigerated porcine muscle

    Science.gov (United States)

    Timinis, Constantinos; Pitris, Costas

    2016-03-01

    The high water content of meat, combined with all the nutrients it contains, make it vulnerable to spoilage at all stages of production and storage even when refrigerated at 5 °C. A non-destructive and in situ tool for meat sample testing, which could provide an accurate indication of the storage time of meat, would be very useful for the control of meat quality as well as for consumer safety. The proposed solution is based on Raman spectroscopy which is non-invasive and can be applied in situ. For the purposes of this project, 42 meat samples from 14 animals were obtained and three Raman spectra per sample were collected every two days for two weeks. The spectra were subsequently processed and the sample age was calculated using a set of linear differential equations. In addition, the samples were classified in categories corresponding to the age in 2-day steps (i.e., 0, 2, 4, 6, 8, 10, 12 or 14 days old), using linear discriminant analysis and cross-validation. Contrary to other studies, where the samples were simply grouped into two categories (higher or lower quality, suitable or unsuitable for human consumption, etc.), in this study, the age was predicted with a mean error of ~ 1 day (20%) or classified, in 2-day steps, with 100% accuracy. Although Raman spectroscopy has been used in the past for the analysis of meat samples, the proposed methodology has resulted in a prediction of the sample age far more accurately than any report in the literature.

  17. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J; Sadeghi, Nader

    2010-01-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n e ) and electron temperature (T e ). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T e = 0.9 ± 0.3 eV and n e = (6 ± 3)·10 13 cm -3 , in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T g ) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T g values obtained by optical emission spectroscopy.

  18. Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures.

    Science.gov (United States)

    Li, Mingwang; Qiu, Yuanyuan; Fan, Chenchen; Cui, Kai; Zhang, Yongming; Xiao, Zeyu

    2018-05-01

    Raman imaging yields high specificity and sensitivity when compared to other imaging modalities, mainly due to its fingerprint signature. However, intrinsic Raman signals are weak, thus limiting medical applications of Raman imaging. By adsorbing Raman molecules onto specific nanostructures such as noble metals, Raman signals can be significantly enhanced, termed surface-enhanced Raman scattering (SERS). Recent years have witnessed great interest in the development of SERS nanoprobes for Raman imaging. Rationally designed SERS nanoprobes have greatly enhanced Raman signals by several orders of magnitude, thus showing great potential for biomedical applications. In this review we elaborate on recent progress in design strategies with emphasis on material properties, modifying factors, and structural parameters.

  19. In situ identification of high-performance thin-layer chromatography spots by fourier transform surface-enhanced Raman scattering

    Science.gov (United States)

    Koglin, Eckhardt; Kramer, Hella; Sawatski, Juergen; Lehner, Carolin; Hellman, Janice L.

    1994-01-01

    FT-SERS has been used to identify samples supported on high-performance thin-layer chromatography plates. The TLC plates were sprayed with colloidal silver solutions which resulted in enhancement of the FT-Raman scattering of these biologically and environmentally important compounds.

  20. Non-invasive analysis of hormonal variations and effect of postmenopausal Vagifem treatment on women using in vivo high wavenumber confocal Raman spectroscopy.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2013-07-21

    This study aims to evaluate the feasibility of applying high wavenumber (HW) confocal Raman spectroscopy for non-invasive assessment of menopause-related hormonal changes in the cervix as well as for determining the effect of Vagifem(®) treatment on postmenopausal women with atrophic cervix. A rapid HW confocal Raman spectroscopy system coupled with a ball lens fiber-optic Raman probe was utilized for in vivo cervical tissue Raman measurements at 785 nm excitation. A total of 164 in vivo HW Raman spectra (premenopausal (n = 104), postmenopausal-prevagifem (n = 34), postmenopausal-postvagifem (n = 26)) were measured from the normal cervix of 26 patients undergoing colposcopy. We established the biochemical basis of premenopausal, postmenopausal-prevagifem and postmenopausal-postvagifem cervix using semiquantitative biomolecular modeling derived from Raman-active biochemicals (i.e., lipids, proteins and water) that play a critical role in HW Raman spectral changes associated with the menopausal process. The diagnostic algorithms developed based on partial least squares-discriminant analysis (PLS-DA) together with leave-one patient-out, cross-validation yielded the diagnostic sensitivities of 88.5%, 91.2% and 88.5%, and specificities of 91.7%, 90.8% and 99.3%, respectively, for non-invasive in vivo discrimination among premenopausal, postmenopausal-prevagifem and postmenopausal-postvagifem cervix. This work demonstrates for the first time that HW confocal Raman spectroscopy in conjunction with biomolecular modeling can be a powerful diagnostic tool for identifying hormone/menopause-related variations in the native squamous epithelium of normal cervix, as well as for assessing the effect of Vagifem treatment on postmenopausal atrophic cervix in vivo during clinical colposcopic inspections.

  1. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  2. High Definition Colonoscopy Combined with i-SCAN Imaging Technology Is Superior in the Detection of Adenomas and Advanced Lesions Compared to High Definition Colonoscopy Alone.

    Science.gov (United States)

    Bowman, Erik A; Pfau, Patrick R; Mitra, Arnab; Reichelderfer, Mark; Gopal, Deepak V; Hall, Benjamin S; Benson, Mark E

    2015-01-01

    Background. Improved detection of adenomatous polyps using i-SCAN has mixed results in small studies. Utility of i-SCAN as a primary surveillance modality for colorectal cancer screening during colonoscopy is uncertain. Aim. Comparing high definition white light endoscopy (HDWLE) to i-SCAN in their ability to detect adenomas during colonoscopy. Methods. Prospective cohort study of 1936 average risk patients who had a screening colonoscopy at an ambulatory procedure center. Patients underwent colonoscopy with high definition white light endoscopy withdrawal versus i-SCAN withdrawal during endoscopic screening exam. Primary outcome measurement was adenoma detection rate for i-SCAN versus high definition white light endoscopy. Secondary measurements included polyp size, pathology, and morphology. Results. 1007 patients underwent colonoscopy with i-SCAN and 929 with HDWLE. 618 adenomas were detected in the i-SCAN group compared to 402 in the HDWLE group (p definition white light endoscopy.

  3. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars......-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient...

  4. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.

    2014-09-17

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  5. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.; Ruseckas, J.; Mekys, A.; Ekers, Aigars; Bezuglov, N.; Juzeliūnas, G.

    2014-01-01

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  6. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  7. Compact Raman Spectrometer For In-Situ Planetary Chemistry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we demonstrate a new Raman imaging sensor based on a compact, CCD-mounted spectrometer. This enables high sensitivity and specificity for UV-Raman...

  8. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  9. Synchrotron radiation resonance Raman spectroscopy (SR3S)

    International Nuclear Information System (INIS)

    Hester, R.E.

    1979-01-01

    The use of normal Raman spectroscopy and resonance Raman spectroscopy to study the structure of molecular species and the nature of their chemical bonds is discussed. The availability of a fully tunable radiation source (the Synchrotron Radiation Source) extending into the ultraviolet raises the possibility of using synchrotron radiation resonance Raman spectroscopy as a sensitive and specific analytical probe. The pulsed nature of the SRS beam may be exploited for time-resolved resonance Raman spectroscopy and its high degree of polarization could be very helpful in the interpretation of spectra. The possibilities are considered under the headings: intensity requirements and comparison with other sources; some applications (e.g. structure of proteins; study of iron-porphyrin unit; study of chlorophylls). (U.K.)

  10. Raman spectroscopy adds complementary detail to the high-resolution x-ray crystal structure of photosynthetic PsbP from Spinacia oleracea.

    Directory of Open Access Journals (Sweden)

    Vladimir Kopecky

    Full Text Available Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR exploits an intermediate phase that, although nominally "dry," has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein.

  11. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure.

    Science.gov (United States)

    Suzuki, Yoshiharu; Tominaga, Yasunori

    2010-10-28

    We have made high density amorphous ice (HDA) by the pressure-induced amorphization of hexagonal ice at 77 K and measured the volume change on isobaric heating in a pressure range between 0.1 and 1.5 GPa. The volume of HDA on heating below ∼0.35 GPa increases, while the volume of HDA on heating above ∼0.35 GPa decreases. The polarized OH-stretching Raman spectra of the relaxed HDAs are compared with that of the unannealed HDA. The relaxed HDAs are prepared at 0.2 GPa at 130 K and 1.5 GPa at 160 K. It is found that the relatively strong totally symmetric OH-stretching vibration mode around 3100 cm(-1) exists in the depolarized reduced Raman spectrum χ(VH)(") of the unannealed HDA and that its intensity rapidly decreases by relaxation. The χ(VH)(") profiles of the relaxed HDA are similar to those of liquid water. These results indicate that the HDA reaches a nearly equilibrium state by annealing and the intrinsic state of HDA relates to a liquid state. The pressure-volume curve of the relaxed HDA at 140 K seems to be smooth in the pressure range below 1.5 GPa.

  12. High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe

    Science.gov (United States)

    Chou, I.-Ming; Pasteris, J.D.; Seitz, J.C.

    1990-01-01

    Three methods have been used to produce high-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe (LRM): synthetic fluid-inclusion, sealed fused-quartz-tube, and high-pressure-cell methods. Because quantitative interpretation of a Raman spectrum of mixed-volatile fluid inclusions requires accurate knowledge of pressure- and composition-sensitive Raman scattering efficiencies or quantification factors for each species, calibrations of these parameters for mixtures of volatiles of known composition and pressure are necessary. Two advantages of the synthetic fluid-inclusion method are that the inclusions can be used readily in complementary microthermometry (MT) studies and that they have sizes and optical properties like those in natural samples. Some disadvantages are that producing H2O-free volatile mixtures is difficult, the composition may vary from one inclusion to another, the exact composition and density of the inclusions are difficult to obtain, and the experimental procedures are complicated. The primary advantage of the method using sealed fused-quartz tubes is its simplicity. Some disadvantages are that exact compositions for complex volatile mixtures are difficult to predict, densities can be approximated only, and complementary MT studies on the tubes are difficult to conduct. The advantages of the high-pressure-cell method are that specific, known compositions of volatile mixtures can be produced and that their pressures can be varied easily and are monitored during calibration. Some disadvantages are that complementary MT analysis is impossible, and the setup is bulky. Among the three methods for the calibration of an LRM, the high-pressure-cell method is the most reliable and convenient for control of composition and total pressure. We have used the high-pressure cell to obtain preliminary data on 1. (1) the ratio of the Raman quantification factors for CH4 and N2 in an equimolar CH4N2 mixture and 2. (2) the

  13. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  14. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    Science.gov (United States)

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  15. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    Science.gov (United States)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  16. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  17. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  18. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  19. Raman laser amplification in preformed and ionizing plasmas

    International Nuclear Information System (INIS)

    Clark, D S; Fisch, N J

    2004-01-01

    The recently proposed backward Raman laser amplification scheme utilizes the stimulated Raman backscattering in plasma of a long pumping laser pulse to amplify a short, frequency downshifted seed pulse. The output intensity for this scheme is limited by the development of forward Raman scattering (FRS) or modulational instabilities of the highly amplified seed. Theoretically, focused output intensities as high as 1025 W/cm 2 and pulse lengths of less than 100 fs could be accessible by this technique for 1 (micro)m lasers--an improvement of 10 4 -10 5 in focused intensity over current techniques. Simulations with the particle-in-cell (PIC) code Zohar are presented which investigate the effects of FRS and modulational instabilities and of Langmuir wave breaking on the output intensity for Raman amplification. Using the intense seed pulse to photoionize the plasma simultaneous with its amplification (and hence avoid plasmas-based instabilities of the pump) is also investigated by PIC simulations. It is shown that both approaches can access focused intensities in the 1025 W/cm 2 range

  20. High-definition velocity-space tomography of fast-ion dynamics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Jacobsen, A.S.

    2016-01-01

    Velocity-space tomography of the fast-ion distribution function in a fusion plasma is usually a photon-starved tomography method due to limited optical access and signal-to-noise ratio of fast-ion Dα (FIDA) spectroscopy as well as the strive for high-resolution images. In high-definition tomography...... information to reconstruct where in velocity space the measurements and the simulation disagree. This alternative approach is demonstrated for four-view as well as for two-view FIDA measurements. The high-definition tomography tools allow us to study fast ions in sawtoothing plasmas and the formation of NBI...

  1. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    International Nuclear Information System (INIS)

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-01-01

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  2. Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiumei; Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Gao, Shoubao; Liu, Hanping; Qiu, Hengwei; Li, Zhen; Liu, Huilan; Li, Zhenhua; Li, Hongsheng

    2015-10-01

    We present a graphene/silver-copper nanoparticle hybrid system (G/SCNPs) to be used as a high-performance surface-enhanced Raman scattering (SERS) substrate. The silver-copper nanoparticles wrapped by a monolayer graphene layer are directly synthesized on SiO2/Si substrate by chemical vapor deposition in a mixture of methane and hydrogen. The G/SCNPs shows excellent SERS enhancement activity and high reproducibility. The minimum detected concentration of R6G is as low as 10-10 M and the calibration curve shows a good linear response from 10-6 to 10-10 M. The date fluctuations from 20 positions of one SERS substrate are less than 8% and from 20 different substrates are less than 10%. The high reproducibility of the enhanced Raman signals could be due to the presence of an ultrathin graphene layer and uniform morphology of silver-copper nanoparticles. The use of G/SCNPs for detection of nucleosides extracted from human urine demonstrates great potential for the practical applications on a variety of detection in medicine and biotechnology field.

  3. Very High-Risk Localized Prostate Cancer: Outcomes Following Definitive Radiation

    International Nuclear Information System (INIS)

    Narang, Amol K.; Gergis, Carol; Robertson, Scott P.; He, Pei; Ram, Ashwin N.; McNutt, Todd R.; Griffith, Emily; DeWeese, Theodore A.; Honig, Stephanie; Singh, Harleen; Song, Danny Y.; Tran, Phuoc T.; DeWeese, Theodore L.

    2016-01-01

    Purpose: Existing definitions of high-risk prostate cancer consist of men who experience significant heterogeneity in outcomes. As such, criteria that identify a subpopulation of National Comprehensive Cancer Network (NCCN) high-risk prostate cancer patients who are at very high risk (VHR) for poor survival outcomes following prostatectomy were recently developed at our institution and include the presence of any of the following disease characteristics: multiple NCCN high-risk factors, primary Gleason pattern 5 disease and/or ≥5 biopsy cores with Gleason sums of 8 to 10. Whether these criteria also apply to men undergoing definitive radiation is unclear, as is the optimal treatment regimen in these patients. Methods and Materials: All men consecutively treated with definitive radiation by a single provider from 1993 to 2006 and who fulfilled criteria for NCCN high-risk disease were identified (n=288), including 99 patients (34%) with VHR disease. Multivariate-adjusted competing risk regression models were constructed to assess associations between the VHR definition and biochemical failure (BF), distant metastasis (DM), and prostate cancer–specific mortality (PCSM). Multivariate-adjusted Cox regression analysis assessed the association of the VHR definition with overall mortality (OM). Cumulative incidences of failure endpoints were compared between VHR men and other NCCN high-risk men. Results: Men with VHR disease compared to other NCCN high-risk men experienced a higher 10-year incidence of BF (54.0% vs 35.4%, respectively, P<.001), DM (34.9% vs 13.4%, respectively, P<.001), PCSM (18.5% vs 5.9%, respectively, P<.001), and OM (36.4% vs 27.0%, respectively, P=.04). VHR men with a detectable prostate-specific antigen (PSA) concentration at the end of radiation (EOR) remained at high risk of 10-year PCSM compared to VHR men with an undetectable EOR PSA (31.0% vs 13.7%, respectively, P=.05). Conclusions: NCCN high-risk prostate cancer patients who meet VHR

  4. High-definition television evaluation for remote handling task performance

    International Nuclear Information System (INIS)

    Fujita, Y.; Omori, E.; Hayashi, S.; Draper, J.V.; Herndon, J.N.

    1986-01-01

    In a plant that employs remote handling techniques for equipment maintenance, operators perform maintenance tasks primarily by using the information from television systems. The efficiency of the television system has a significant impact on remote maintenance task performance. High-definition television (HDTV) transmits a video image with more than twice the number of horizontal scan lines as standard-resolution television (1125 for HDTV to 525 for standard-resolution NTSC television). The added scan lines dramatically improve the resolution of images on the HDTV monitors. This paper describes experiments designed to evaluate the impact of HDTV on the performance of typical remote tasks. The experiments described in this paper compared the performance of four operators using HDTV with their performance while using other television systems. The experiments included four television systems: (a) high-definition color television, (b) high-definition monochromatic television, (c) standard-resolution monochromatic television, and (d) standard-resolution stereoscopic monochromatic television

  5. Rheo-optical Raman study of microscopic deformation in high-density polyethylene under hot drawing

    OpenAIRE

    Kida, Takumitsu; Hiejima, Yusuke; Nitta, Koh-hei

    2015-01-01

    In situ observation of the microscopic structural changes in high-density polyethylene during hot drawing was performed by incorporating a temperature-controlled tensile machine into a Raman spectroscopy apparatus. It was found that the load sharing and molecular orientation during elongation drastically changed at 50°C. The microscopic stress of the crystalline chains decreased with increasing temperature and diminished around 50°C. Moreover, the orientation of the crystalline chains was gre...

  6. Raman study of electronic excitations in MgB2 with application of high magnetic field

    International Nuclear Information System (INIS)

    Machtoub, L.; Takano, Y.; Kito, H.

    2006-01-01

    We present the first results of Raman scattering with application of magnetic field on magnesium diboride (MgB 2 ). In this work, we have investigated the magnetic field dependence of the 72 meV (E 2g mode) and the pair-breaking peak around 100 cm -1 which corresponds to σ-band gap. Intensity enhancement of Raman features around 800 cm -1 accompanied with broadening in the line shape of E 2g mode has been observed in some polycrystalline samples at 0 GPa. Results are compared with previous Raman study under hydrostatic pressure

  7. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  8. [Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].

    Science.gov (United States)

    Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin

    2018-02-01

    To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.

  9. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng

    2015-01-01

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH) 4 nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18. • Ag 2 O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH) 4 nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag 2 O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH) 4 NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO 2 NBAs, which is much less active

  10. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  11. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.

    Science.gov (United States)

    Gray, Steven R; Peretti, Steven W; Lamb, H Henry

    2013-06-01

    In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2)  = 0.998, percent error = 2.5%) and ethanol (R(2)  = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.

  12. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  13. Transmission electron microscopy and Raman characterization of copper (I) oxide microspheres composed of nanoparticles

    International Nuclear Information System (INIS)

    Wang Wenzhong; Tu Ya; Wang Lijuan; Liang Yujie; Shi Honglong

    2013-01-01

    Highlights: ► Raman spectroscopy of copper (I) oxide microspheres were investigated. ► Infrared active mode is greatly activated in Raman scattering spectrum. ► Infrared active mode shows up in Raman spectrum of copper (I) oxide microspheres. ► The defects existed in spheres could be responsible for the observed Raman property. - Abstract: The high-resolution transmission electron microscope and Raman spectroscopy were used to investigate the microstructures and Raman scattering property of copper (I) oxide microspheres composed of nanoparticles. High-resolution transmission electron microscope images indicate that the copper (I) oxide microspheres are composed of nanoparticles with random growth direction, indicating that there are many defects in microspheres. The Raman spectrum shows that infrared active mode, which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is activated and shows up in Raman scattering spectrum. On the basis of investigations of the microstructure features of copper (I) oxide microspheres, we attribute the appearance of IR active mode in Raman scattering spectrum to the breakdown of the symmetry of the lattice due to the presence of defects in the prepared copper (I) oxide microspheres as observed in HRTEM images.

  14. Determining Gender by Raman Spectroscopy of a Bloodstain.

    Science.gov (United States)

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2017-02-07

    The development of novel methods for forensic science is a constantly growing area of modern analytical chemistry. Raman spectroscopy is one of a few analytical techniques capable of nondestructive and nearly instantaneous analysis of a wide variety of forensic evidence, including body fluid stains, at the scene of a crime. In this proof-of-concept study, Raman microspectroscopy was utilized for gender identification based on dry bloodstains. Raman spectra were acquired in mapping mode from multiple spots on a bloodstain to account for intrinsic sample heterogeneity. The obtained Raman spectroscopic data showed highly similar spectroscopic features for female and male blood samples. Nevertheless, support vector machines (SVM) and artificial neuron network (ANN) statistical methods applied to the spectroscopic data allowed for differentiating between male and female bloodstains with high confidence. More specifically, the statistical approach based on a genetic algorithm (GA) coupled with an ANN classification showed approximately 98% gender differentiation accuracy for individual bloodstains. These results demonstrate the great potential of the developed method for forensic applications, although more work is needed for method validation. When this method is fully developed, a portable Raman instrument could be used for the infield identification of traces of body fluids and to obtain phenotypic information about the donor, including gender and race, as well as for the analysis of a variety of other types of forensic evidence.

  15. Differentiation of molecular chain entanglement structure through laser Raman spectrum measurement of High strength PET fibers under stress

    Science.gov (United States)

    Go, D.; Takarada, W.; Kikutani, T.

    2017-10-01

    The aim of this study was to investigate the mechanism for the improvement of mechanical properties of poly(ethylene terephthalate) (PET) fibers based on the concept of controlling the state of molecular entanglement. For this purpose, five different PET fibers were prepared through either the conventional melt spinning and drawing/annealing process or the high-speed melt spinning process. In both cases, the melt spinning process was designed so as to realize different Deborah number conditions. The prepared fibers were subjected to the laser Raman spectroscopy measurement and the characteristics of the scattering peak at around 1616 cm-1, which corresponds to the C-C/C=C stretching mode of the aromatic ring in the main chain, were investigated in detail. It was revealed that the fibers drawn and annealed after the melt spinning process of lower Deborah number showed higher tensile strength as well as lower value of full width at half maximum (FWHM) in the laser Raman spectrum. Narrow FWHM was considered to represent the homogeneous state of entanglement structure, which may lead to the higher strength and toughness of fibers because individual molecular chains tend to bare similar level of tensile stress when the fiber is stretched. In case of high-speed spun fibers prepared with a high Deborah number condition, the FWHM was narrow presumably because much lower tensile stress in comparison with the drawing/annealing process was applied when the fiber structure was developed, however the value increased significantly upon applying tensile load to the fibers during the laser Raman spectrum measurement. From these results, it was concluded that the Laser Raman spectroscopy could differentiate molecular chain entanglement structure of various fiber samples, in that low FWHM, which corresponds to either homogeneous state of molecular entanglement or lower level of mean residual stress, and small increase of FWTH upon applying tensile stress are considered to be the key

  16. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    Science.gov (United States)

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  17. Blink and You Miss It-Catching Fleeting Catalytic Intermediates by High-Speed 785 nm NIR Raman Spectroscopy

    NARCIS (Netherlands)

    Unjaroen, Duenpen; Browne, Wesley R.; Illy, Elizabeth

    It is only in the last two decades that Raman spectros-copy has begun to realize its potential as an almost universally applicable analytical technique from materials and life sciences applications to point of care analysis. This is primarily thanks to the availability of compact laser sources, high

  18. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  19. Pump Side-scattering in Ultra-powerful Backward Raman Amplifiers

    International Nuclear Information System (INIS)

    Solodov, A.A.; Malkin, V.M.; Fisch, N.J.

    2004-01-01

    Extremely large laser power might be obtained by compressing laser pulses through backward Raman amplification (BRA) in plasmas. Premature Raman backscattering of a laser pump by plasma noise might be suppressed by an appropriate detuning of the Raman resonance, even as the desired amplification of the seed persists with a high efficiency. In this paper, we analyze side-scattering of laser pumps by plasma noise in backward Raman amplifiers. Though its growth rate is smaller than that of backscattering, the side-scattering can nevertheless be dangerous, because of a longer path of side-scattered pulses in plasmas and because of an angular dependence of the Raman resonance detuning. We show that side-scattering of laser pumps by plasma noise in BRA might be suppressed to a tolerable level at all angles by an appropriate combination of two detuning mechanisms associated with plasma density gradient and pump chirp

  20. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    Science.gov (United States)

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  3. Raman Spectroscopy of Microbial Pigments

    Science.gov (United States)

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  4. High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Liu, X. R.; Hong, S. M., E-mail: hpswjtu@gmail.com, E-mail: smhong@home.swjtu.edu.cn [Laboratory of High Pressure Physics, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Wang, Z. G. [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Zhu, H. Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Peng, J. P. [School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-07-07

    The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0–2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se from the sound velocity characteristics using the Birch–Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ∼250 cm{sup −1} experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0–2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.

  5. Structural characterization of indium oxide nanostructures: a Raman analysis

    International Nuclear Information System (INIS)

    Berengue, Olivia M; Rodrigues, Ariano D; Chiquito, Adenilson J; Dalmaschio, Cleocir J; Leite, Edson R; Lanfredi, Alexandre J C

    2010-01-01

    In this work we report on structural and Raman spectroscopy measurements of pure and Sn-doped In 2 O 3 nanowires. Both samples were found to be cubic and high quality single crystals. Raman analysis was performed to obtain the phonon modes of the nanowires and to confirm the compositional and structural information given by structural characterization. Cubic-like phonon modes were detected in both samples and their distinct phase was evidenced by the presence of tin doping. As a consequence, disorder effects were detected evidenced by the break of the Raman selection rules.

  6. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  7. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    Science.gov (United States)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  8. Raman spectroscopy an intensity approach

    CERN Document Server

    Guozhen, Wu

    2017-01-01

    This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a com...

  9. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    was obtained by Raman amplification of a distributed feedback diode laser in a variably strained polarization- maintaining fiber with a record-high...Calia, D.B., “50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fiber amplifiers...AFRL-RD-PS- TP-2016-0009 AFRL-RD-PS- TP-2016-0009 INVESTIGATIONS OF A DUAL SEEDED 1178 NM RAMAN LASER SYSTEM Leanne Henry, et al. 14 January

  10. Micro-Raman scattering in ZnTe thin films

    International Nuclear Information System (INIS)

    Larramendi, E. M.; Gutierrez Z-B, K.; Hernandez, E.; Melo, O. de; Berth, G.; Wiedemeier, V.; Lischka, K; Schikora, D.; Woggon, U.

    2008-01-01

    In this work we present micro-raman measurements on ZnTe thin films grown by isothermal closed space sublimation on GaAs(001) substrates in helium and nitrogen atmospheres. Micro-raman spectra were recorded at room temperature using the backscattering geometry (illuminated spot: 3 μm2, 0.3 cm-1 of resolution and the line 532 nm of a DPSSL as power excitation). Up to four order LO-phonon replicas and no peak from TO phonon were observed in the micro-raman spectra as evidence of the epitaxial character and good quality of the films (the TO mode is forbidden according to the selection rules for backscattering along [001] of this heterostructure). The micro-raman spectra also revealed two features at low energy, which have been assigned incorrectly in recent works. We demonstrate that these raman peaks can be associated to the presence of few monolayers of crystalline tellurium or its oxides on the surface of the films. These features were not observed in micro-raman spectra of as grown ZnTe films terminated in a Zn surface. However, they were detected after a prolonged exposure of the samples to air. In addition, it is shown that this effect is accelerated under a high power laser excitation (laser annealing) as used in conventional micro-Raman measurement setups. Preliminary results that suggest the inclusion of nitrogen in ZnTe structure are also shown. (Full text)

  11. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology

    Science.gov (United States)

    2012-10-01

    hydroxyapatite ; 1073cm-1, carbonate from carbonate apatite; 1442cm-1, cholesterol and cholesterol esters. 17 Table 1. Tentative assignment and Raman peak...allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and... hydroxyapatite are located within the vessel wall. Similarly, Fig. 5 maps the Raman intensity of the peak at 1073cm-1, which is indicative of

  12. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  13. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  14. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  15. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion

    DEFF Research Database (Denmark)

    Hakonen, Aron; Rindzevicius, Tomas; Schmidt, Michael Stenbæk

    2016-01-01

    Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here...... adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field....

  16. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  17. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  18. Remote Raman microimaging using an AOTF and a spatially coherent microfiber optical probe

    International Nuclear Information System (INIS)

    Trey Skinner, H.; Cooney, T.F.; Sharma, S.K.; Angel, S.M.

    1996-01-01

    A fiber-optic Raman microimaging probe is described that is suitable for acquiring high-spatial-resolution Raman images in sampling situations with no clear line of sight. A high-power near-infrared diode laser combined with an acousto-optic tunable filter and a spatially coherent optical fiber bundle allow fluorescence-free Raman images of remotely located samples to be acquired at distances up to several meters. The feasibility of this technique is demonstrated with Raman images of (1) a pellet containing a mixture of a highly scattering sample, bis-methylstyrylbenzene (BMSB), KCl, and graphite, and (2) a partially graphitized diamond. These images clearly show phase boundaries over an area of approximately 0.1 mm 2 with ∼4-μm resolution. copyright 1996 Society for Applied Spectroscopy

  19. Corrosion product characterisation by fibre optic raman spectroscopy

    International Nuclear Information System (INIS)

    Guzonas, D.A.; Rochefort, P.A.; Turner, C.W.

    1998-01-01

    Fibre optic Raman spectroscopy has been used to characterise secondary-side deposits removed from CANDU steam generators. The deposits examined were in the form of powders, millimetre-sized flakes, and deposits on the surfaces of pulled steam generator tubes. The compositions of the deposits obtained using Raman spectroscopy are similar to the compositions obtained using other ex-situ analytical techniques. A semi-quantitative estimate of amounts of the major components can be obtained from the spectra. It was noted that the signal-to-noise ratio of the Raman spectra decreased as the amount of magnetite in the deposit increased, as a result of absorption of the laser light by the magnetite. The conversion of magnetite to hematite by the laser beam was observed when high laser powers were used. The Raman spectra of larger flake samples clearly illustrate the inhomogeneous nature of the deposits. (author)

  20. High pressure study of nanostructured Cu2Sb by X-ray Diffraction, Extended X-ray Absorption fine structure and Raman measurements

    International Nuclear Information System (INIS)

    Souza, Sergio Michielon de; Triches, Daniela Menegon; Lima, Joao Cardoso de; Polian, Alain

    2016-01-01

    Full text: Nanostructured tetragonal Cu 2 Sb was prepared by mechanical alloying and its stability was studied as a function of pressure using synchrotron X-ray diffraction (XRD) Extended X-Ray Absorption Fine Structure (EXAFS) and Raman spectroscopy. The high pressure XRD data were collected at 0.6, 1.1, 2.2, 3.4, 5.0, 7.1, 8.0, 9.9, 14.8, 18.7, 23.2, 29.3 and 40.6 GPa in the ELETTRA synchrotron (Italy) with λ = 0.68881 Å. The high pressure EXAFS measurements were carried out in the Soleil synchrotron (France) in 0.6, 1.8, 3.0, 4.5, 6.1, 8.0, 10.3, 12.7, 15.5, 18.0, 19.0, 20.0, 22.1, 23.9, 26.3 and 29.4 GPa and the high pressure Raman spectroscopy in the Institut de Mineralogie et de Physique des Milieux Condenses (France) collected at 0.1, 1.6, 3.7, 6.7, 11.2, 15.1, 19.4, 24.5, 30.8, 36.3, 41.3 and 44.5 GPa. The results show high structural and optical phase stability. The moduli bulk and its derivatives were obtained by using the Birch-Murnaghan equation of states to the XRD and EXAFS results. The evolution of the Raman modes and the bulk moduli were used to obtain the Grueneisen parameters. (author)

  1. Application of Raman spectroscopy for cancer diagnosis

    International Nuclear Information System (INIS)

    Krishnakumar, N.

    2011-01-01

    Cancer is the second leading causes of death next to heart diseases, Half of all cancer cases occur in developing countries. The conventional histopathology is usually the most trustable gold standard for pre-cancer and cancer diagnosis. However, the applicability of this method is more or less restricted because of the requirement of removing human tissues and the difficulty of real time diagnosis. Recently, there has been increased interest in 'optical biopsy' system using tissue spectroscopy to establish the pathological changes. Among optical based methods, Raman spectroscopy is a unique vibrational spectroscopic technique capable of probing biomolecular structures and conformation of tissues, and has excelled in the early detection of pre-cancer and cancer in the number of organs with high diagnostic specificity. Raman spectroscopy offers certain distinct advantages over than other optical diagnostic techniques such as high spatial resolution, use of less harmful NIR radiation, less or no sample preparation, no influence of water bands which facilitates in vivo/in situ measurements. This makes Raman spectroscopy also very useful for biomedical applications. Several research groups have demonstrated the efficacy of this technique in biomedical applications. The background and principle of these techniques will be discussed with some examples and discussions on how Raman spectroscopy can act as a promising technique for rapid in vivo diagnosis and detection of various cancers at the molecular level. (author)

  2. Summary report of FY 1995 Raman spectroscopy technology development

    International Nuclear Information System (INIS)

    Douglas, J.G.

    1995-11-01

    US DOE is sponsoring development of remote, fiber-optic Raman spectroscopy for rapid chemical characterization of Hanford high-level radioactive tank waste. Deployment targets for this technology are analytical hot cells and, via the Light-Duty Utility Arm and cone penetrometer, the waste tanks themselves. Perceived benefits of fiber-optic Raman spectroscopy are (1) rapid generation of tank-waste safety-related data, (2) reduced personnel exposure to highly radioactive waste, (3) reduced tank-waste sampling and analysis costs, and (4) reduced radioactive analytical waste. This document presents the results from the investigation of two dispersive, transmission-grating Raman systems and four fiber-optic Raman probe designs with non-radioactive tank waste simulants. One Raman system used a 532-nm, 400 mW, solid-state laser; the other used a 785-nm, 500 mW, solid-state diode laser. We found (1) the transmission-grating systems had better wavelength stability than previously tried Czerny-Turner-Based systems and (2) the 785-nm system's specie detection limits in the spectral fingerprint regiion were at least as good as those for the 532-nm system. Based on these results, and the fact that some tank wastes luminesce with 514.5nm excitation, we selected the 785-nm system for hot-cell use. Of the four probes tested, three had a ''six-around-on'' fiber probe design; the fourth probe was a one-fiber-in-one-fiber-out, diffuse-relectance design. Comparison of the four probes' signal-to-noise rations, rations, transmission/collection efficiencies, and probe-silica Raman backgrounds showed that the best probe for use with Hanford-Site tank waste should (1) be filtered as close to the probe tip as possible to reduce the probe-silica Raman background and (2) have multiple collection fibers. The responses of all the probes tested showed a strong dependence on probe-sample distance, and the presence of a probe window appeared to increase the probe's silica Raman background

  3. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Abramczyk, H.; Placek, I.; Brozek-Pluska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-01-01

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population

  4. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  5. Raman analysis of gold on WSe2 single crystal film

    International Nuclear Information System (INIS)

    Mukherjee, Bablu; Sun Leong, Wei; Li, Yida; Thong, John T L; Gong, Hao; Sun, Linfeng; Xiang Shen, Ze; Simsek, Ergun

    2015-01-01

    Synthesis and characterization of high-quality single-crystal tungsten diselenide (WSe 2 ) films on a highly insulating substrate is presented. We demonstrate for the first time that the presence of gold (Au) nanoparticles in the basal plane of a WSe 2 film can enhance its Raman scattering intensity. The experimentally observed enhancement ratio in the Raman signal correlates well with the simulated electric field intensity using both three-dimensional electromagnetic software and theoretical calculation considering layered medium coupled-dipole approximation (LM-CDA). This work serves as a guideline for the use of Au nanoparticles on WSe 2 single-crystal thin films for surface enhanced Raman scattering (SERS) applications in the future. (paper)

  6. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  7. Raman spectra of ordinary and deuterated liquid ammonias; Spectres Raman des ammoniacs ordinaire et deuteries liquides

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Leicknam, J P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, direction des materiaux et des combustibles nucleaires, departement de physico-chimie, service des isotopes stables, service de spectrometrie de masse

    1968-12-01

    The three deuterated ammonia molecules, as well as ordinary ammonia, have been examined in the liquid state by Raman spectroscopy using a high-pressure cell described elsewhere. This work thus completes the infrared spectrometry studies. We have examined the NH and ND valency absorption regions. The polarization measurements and isotope effect considerations make it possible to confirm most of the attributions recently proposed for interpreting the infrared spectra of the four isotopic molecules: the apparent disagreement between the NH{sub 3} and ND{sub 3} spectra obtained in this region by infrared and Raman spectroscopy is discussed: by the first technique the number of bands in the spectra corresponds well to the theoretically expected number, and the relative intensities conform more or less to expectations; the Raman spectra however have a strong supplementary band in the same region, produced by a Fermi resonance; it is possible to explain, from theoretical considerations, why this resonance appears so easily in the Raman spectrum, whereas it is detected in the infrared only by a very detailed analysis of the effects of solvents on the ammonia. (authors) [French] Les trois ammoniacs deuteries, ainsi que l'ammoniac ordinaire, sont examines a l'etat liquide par spectrometrie Raman, a l'aide d'une cuve haute pression decrite par ailleurs. Ce travail complete donc les etudes effectuees par spectrometrie infra-rouge. Nous avons examine les regions d'absorption de valence NH et ND. Les mesures de polarisation et des considerations sur les effets isotopiques permettent de confirmer la plupart des attributions proposees recemment pour interpreter les spectres infra-rouges des quatre molecules isotopiques: on discute egalement l'apparent desaccord entre les spectres de NH{sub 3} et de ND{sub 3} obtenus dans cette region par infra-rouge et Raman: par la premiere technique le nombre de bandes relevees sur les spectres correspond bien au nombre theoriquement attendu et

  8. Brief historical perspective on the definition of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Szluha, A.T.; Gablin, K.A.; Croff, A.G.

    1985-03-01

    This report constitutes a historical perspective on the definition of HLW with emphasis on the US situation. The major HLW definitions are summarized chronologically, including a categorization of the considerations (e.g., waste source, heat generation rate, radiological effects) forming the bases of the definitions. High-level waste (HLW) definitions are then discussed in terms of these considerations. A brief discussion of the institutional aspects of HLW regulation and management are presented. An appendix to the report constitutes an annotated, chronological bibliography that formed the basis of the perspective

  9. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: towards the high detection limit and Raman quantitative measurements.

    Science.gov (United States)

    Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O

    2017-08-07

    A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.

  10. Raman probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    The Raman probe is deployed in high-level waste tanks with the cone penetrometer (CPT). These technologies are engineered and optimized to work together. All of the hardware is radiation hardened, designed for and tested in the high-radiation, highly caustic chemical environment of US Department of Energy's (DOE's) waste storage tanks. When deployed in tanks, the system is useful for rapidly assessing the species and concentrations of organic-bearing tank wastes. The CPT was originally developed for geological and groundwater applications, with sensors that measure physical parameters such as soil moisture, temperature, and pH. When deployed, it is hydraulically forced directly into the ground rather than using boring techniques utilized by rotary drilling systems. There is a separate Innovative Technology Summary Report for the CPT, so this report will focus on the changes made specifically to support the Raman probe. The most significant changes involve adapting the Raman probe for in-tank and subsurface field use and developing meaningful real-time data analysis. Testing of the complete LLNL system was conducted in a hot cell in the 222-S Laboratory at the Hanford site in summer 1997. Both instruments were tested in situ on solvent-contaminated soils (TCE and PCE) at the Savannah River Site in February and June 1998. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned

  11. The role of three-dimensional high-definition laparoscopic surgery for gynaecology.

    Science.gov (United States)

    Usta, Taner A; Gundogdu, Elif C

    2015-08-01

    This article reviews the potential benefits and disadvantages of new three-dimensional (3D) high-definition laparoscopic surgery for gynaecology. With the new-generation 3D high-definition laparoscopic vision systems (LVSs), operation time and learning period are reduced and procedural error margin is decreased. New-generation 3D high-definition LVSs enable to reduce operation time both for novice and experienced surgeons. Headache, eye fatigue or nausea reported with first-generation systems are not different than two-dimensional (2D) LVSs. The system's being more expensive, having the obligation to wear glasses, big and heavy camera probe in some of the devices are accounted for negative aspects of the system that need to be improved. Depth loss in tissues in 2D LVSs and associated adverse events can be eliminated with 3D high-definition LVSs. By virtue of faster learning curve, shorter operation time, reduced error margin and lack of side-effects reported by surgeons with first-generation systems, 3D LVSs seem to be a strong competition to classical laparoscopic imaging systems. Thanks to technological advancements, using lighter and smaller cameras and monitors without glasses is in the near future.

  12. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  13. Raman scattering diagnostics of YBa2Cu3Ox high temperature superconducting films

    International Nuclear Information System (INIS)

    Bagratashvili, V.N.; Burimov, V.N.; Denisov, V.N.

    1988-01-01

    Superconducting YBa 2 Cu 3 O x films produced by laser spraying of ceramic material are investigated by light Raman scattering (LCS). It is shown that using LCS it is possible to obtain data on phase composition and prevailing film orientation and to find optical conditions for their synthesis. The LCS method feature consists in a possibility of non-destructive remote control and high space resolution (several microns). Experimental results have shown that the best parameters (the highest T c and the narrowest Δ T c interval) are typical of films with prevailing orientation of 0 xy crystallite plane parallel to the surface

  14. Evolution of magnetic and superconducting fluctuations with doping of high-Tc superconductors. An electronic Raman scattering study

    International Nuclear Information System (INIS)

    Blumberg, G.

    1998-01-01

    For YBa 2 Cu 3 O 6+δ and Bi 2 Sr 2 CaCu 2 O 3±δ superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T c the system exhibits a sharp Raman resonance of B 1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T c produces a global SC state

  15. Identification of Raman peaks of high-T{sub c} cuprates in normal state through density of states

    Energy Technology Data Exchange (ETDEWEB)

    Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Auto.), Balasore 756 001 (India)]. E-mail: bishoyi@iopb.res.in; Rout, G.C. [Condensed Matter Physics Group, Govt. Science College, Chatrapur 761 020, Orissa (India); Behera, S.N. [Physics Enclave, H.I.G.-23/1, Housing Board Phase-I, Chandrasekharpur, Bhubaneswar 7510016 (India)

    2007-05-31

    We present a microscopic theory to explain and identify the Raman spectral peaks of high-T{sub c} cuprates R{sub 2-x}M{sub x}CuO{sub 4} in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green's function technique of Zubarev at zero wave vector and finite (room) temperature limit. The four Raman active peaks (P{sub 1}-P{sub 4}) representing the electronic states of the atomic sub-systems of the cuprate system are identified by the calculated quasi-particle energy bands and electron density of states (DOS). The effect of interactions on these peaks are also explained.

  16. Tip-enhanced Raman mapping with top-illumination AFM.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  17. Tip-enhanced Raman mapping with top-illumination AFM

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K L Andrew; Kazarian, Sergei G, E-mail: s.kazarian@imperial.ac.uk [Department of Chemical Engineering, Imperial College London, SW7 2AZ (United Kingdom)

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of {approx} 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  18. Tip-enhanced Raman mapping with top-illumination AFM

    International Nuclear Information System (INIS)

    Chan, K L Andrew; Kazarian, Sergei G

    2011-01-01

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  19. The comparison of high and standard definition computed ...

    African Journals Online (AJOL)

    The comparison of high and standard definition computed tomography techniques regarding coronary artery imaging. A Aykut, D Bumin, Y Omer, K Mustafa, C Meltem, C Orhan, U Nisa, O Hikmet, D Hakan, K Mert ...

  20. Resonant two-magnon Raman scattering in parent compounds of high-Tc superconductors

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Frenkel, D.M.

    1995-01-01

    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-T c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin-density-wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ω i both for ω i much-lt U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its dominators (i.e., a triple resonanc). We study this diagram in detail and show taht the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles

  1. Raman spectral signatures of cervical exfoliated cells from liquid-based cytology samples

    Science.gov (United States)

    Kearney, Padraig; Traynor, Damien; Bonnier, Franck; Lyng, Fiona M.; O'Leary, John J.; Martin, Cara M.

    2017-10-01

    It is widely accepted that cervical screening has significantly reduced the incidence of cervical cancer worldwide. The primary screening test for cervical cancer is the Papanicolaou (Pap) test, which has extremely variable specificity and sensitivity. There is an unmet clinical need for methods to aid clinicians in the early detection of cervical precancer. Raman spectroscopy is a label-free objective method that can provide a biochemical fingerprint of a given sample. Compared with studies on infrared spectroscopy, relatively few Raman spectroscopy studies have been carried out to date on cervical cytology. The aim of this study was to define the Raman spectral signatures of cervical exfoliated cells present in liquid-based cytology Pap test specimens and to compare the signature of high-grade dysplastic cells to each of the normal cell types. Raman spectra were recorded from single exfoliated cells and subjected to multivariate statistical analysis. The study demonstrated that Raman spectroscopy can identify biochemical signatures associated with the most common cell types seen in liquid-based cytology samples; superficial, intermediate, and parabasal cells. In addition, biochemical changes associated with high-grade dysplasia could be identified suggesting that Raman spectroscopy could be used to aid current cervical screening tests.

  2. High-Pressure Raman Scattering in the Layered Antiferromagnet NiPS_3

    Science.gov (United States)

    Rosenblum, S.; Merlin, R.; Francis, A. H.

    1996-03-01

    We report on two-magnon and vibrational Raman scattering from NiPS3 for pressures up to 30 GPa and temperatures between 110 and 300 K. NiPS3 is an S=1, two-dimensional antiferromagnet with TN = 150 K. It is the only known S=1 compound with a relative two-magnon linewidth comparable in magnitude to that of the parent compounds of the high temperature superconductors.(Rosenblum et al., Phys. Rev. B 49), 4352 (1994) In the cuprates, this anomalous linewidth is well described by phonon-magnon coupling.(Knoll et al.), Phys. Rev.B 42, 4842 (1990).^,(Nori et al., Phys. Rev. Lett. 75), 553 (1995). Here, we will look at the measured Grüneisen parameters of the vibrational and magnetic excitations and relate them to the magnetostrictive model.

  3. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    Science.gov (United States)

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  4. Raman spectroscopy for grading of live osteosarcoma cells.

    Science.gov (United States)

    Chiang, Yi-Hung; Wu, Stewart H; Kuo, Yi-Chun; Chen, How-Foo; Chiou, Arthur; Lee, Oscar K

    2015-04-18

    Osteosarcoma is the most common primary malignant bone tumor, and the grading of osteosarcoma cells relies on traditional histopathology and molecular biology methods, which require RNA extraction, protein isolation and immunohistological staining. All these methods require cell isolation, lysis or fixation, which is time-consuming and requires certain amount of tumor specimen. In this study, we report the use of Raman spectroscopy for grading of malignant osteosarcoma cells. We demonstrate that, based on the detection of differential production of mineral species, Raman spectroscopy can be used as a live cell analyzer to accurately assess the grades of osteosarcoma cells by evaluating their mineralization levels. Mineralization level was assessed by measuring amount of hydroxyapatite (HA), which is highly expressed in mature osteoblasts, but not in poorly differentiated osteosarcoma cell or mesenchymal stem cells, the putative cell-of-origin of osteosarcoma. We found that under Raman spectroscopy, the level of HA production was high in MG-63 cells, which are low-grade. Moreover, hydroxyapatite production was low in high-grade osteosarcoma cells such as 143B and SaOS2 cells (p Raman spectroscopy for the measurement of HA production by the protocol reported in this study may serve as a useful tool to rapidly and accurately assess the degree of malignancy in osteosarcoma cells in a label-free manner. Such application may shorten the period of pathological diagnosis and may benefit patients who are inflicted with osteosarcoma.

  5. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  6. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  7. Raman spectroscopic analysis of oral squamous cell carcinoma and oral dysplasia in the high-wavenumber region

    Science.gov (United States)

    Carvalho, Luis Felipe C. S.; Bonnier, Franck; O'Callaghan, Kate; O'Sullivan, Jeff; Flint, Stephen; Neto, Lazaro P. M.; Soto, Cláudio A. T.; dos Santos, Laurita; Martin, Airton A.; Byrne, Hugh J.; Lyng, Fiona M.

    2015-06-01

    Raman spectroscopy can provide a molecular-level signature of the biochemical composition and structure of cells with excellent spatial resolution and could be useful to monitor changes in composition for early stage and non-invasive cancer diagnosis, both ex-vivo and in vivo. In particular, the fingerprint spectral region (400-1,800 cm-1) has been shown to be very promising for optical biopsy purposes. However, limitations to discrimination of dysplastic and inflammatory processes based on the fingerprint region still persist. In addition, the Raman spectral signal of dysplastic cells is one important source of misdiagnosis of normal versus pathological tissues. The high wavenumber region (2,800-3,600 cm-1) provides more specific information based on N-H, O-H and C-H vibrations and can be used to identify the subtle changes which could be important for discrimination of samples. In this study, we demonstrate the potential of the highwavenumber spectral region by collecting Raman spectra of nucleoli, nucleus and cytoplasm from oral epithelial cancer (SCC-4) and dysplastic (DOK) cell lines and from normal oral epithelial primary cells, in vitro, which were then analyzed by area under the curve as a method to discriminate the spectra. In this region, we will show the discriminatory potential of the CH vibrational modes of nucleic acids, proteins and lipids. This technique demonstrated more efficient discrimination than the fingerprint region when we compared the cell cultures.

  8. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  9. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  10. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  11. Raman Spectral Band Oscillations in Large Graphene Bubbles

    Science.gov (United States)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  12. Raman scattering of type-I clathrate compounds

    International Nuclear Information System (INIS)

    Takasu, Y.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Avila, M.A.; Takabatake, T.

    2006-01-01

    Lattice dynamical properties of the type-I clathrate compounds of A 8 Ga 16 Ge 30 (A=Eu, Sr, Ba) have been investigated by Raman scattering. We are successful in the assignment of the observed Raman active phonons to proper symmetry and are able to separate the guest atom origin modes from framework origin modes for the first time experimentally. From the measurements of temperature dependence of the guest origin peaks, we also demonstrate the difference of the behavior of the guest atom at high temperature and low temperature

  13. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  14. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  15. Diamond micro-Raman thermometers for accurate gate temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Roland B.; Pomeroy, James W.; Kuball, Martin [Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-05-26

    Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

  16. Diamond micro-Raman thermometers for accurate gate temperature measurements

    International Nuclear Information System (INIS)

    Simon, Roland B.; Pomeroy, James W.; Kuball, Martin

    2014-01-01

    Determining the peak channel temperature in AlGaN/GaN high electron mobility transistors and other devices with high accuracy is an important and challenging issue. A surface-sensitive thermometric technique is demonstrated, utilizing Raman thermography and diamond microparticles to measure the gate temperature. This technique enhances peak channel temperature estimation, especially when it is applied in combination with standard micro-Raman thermography. Its application to other metal-covered areas of devices, such as field plates is demonstrated. Furthermore, this technique can be readily applied to other material/device systems.

  17. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    Science.gov (United States)

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  18. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  19. Raman Spectroscopy of Carbon Dust Samples from NSTX

    International Nuclear Information System (INIS)

    Raitses, Y.; Skinner, C.H.; Jiang, F.; Duffy, T.S.

    2008-01-01

    The Raman spectrum of dust particles exposed to the NSTX plasma is different from the spectrum of unexposed particles scraped from an unused graphite tile. For the unexposed particles, the high energy G-mode peak (Raman shift ∼1580 cm -1 ) is much stronger than the defect-induced D-mode peak (Raman shift ∼1350 cm -1 ), a pattern that is consistent with Raman spectrum for commercial graphite materials. For dust particles exposed to the plasma, the ratio of G-mode to D-mode peaks is lower and becomes even less than 1. The Raman measurements indicate that the production of carbon dust particles in NSTX involves modifications of the physical and chemical structure of the original graphite material. These modifications are shown to be similar to those measured for carbon deposits from atmospheric pressure helium arc discharge with an ablating anode electrode made from a graphite tile material. We also demonstrate experimentally that heating to 2000-2700 K alone can not explain the observed structural modifications indicating that they must be due to higher temperatures needed for graphite vaporization, which is followed either by condensation or some plasma-induced processes leading to the formation of more disordered forms of carbon material than the original graphite.

  20. Differentiating the growth phases of single bacteria using Raman spectroscopy

    Science.gov (United States)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  1. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    weak Raman signal, which facilitates identification in chemi- cal and biological systems. Recently, single-molecule Raman scattering has enhanced the detection sensitivity limit of ... was working on the molecular diffraction of light, which ulti-.

  2. High-pressure effects in hydrofullerene C60H36 studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Meletov, K.P.; Rossijskaya Akademiya Nauk, Chernogolovka; Tsilika, I.; Assimopoulos, S.; Kourouklis, G.A.; Ves, S.; Bashkin, I.O.; Kulakov, V.I.; Khasanov, S.S.

    2001-01-01

    The effect of hydrostatic pressure on the Raman spectrum of hydrofullerene C 60 H 36 , at room temperature has been investigated up to 12 GPa. The samples were synthesized by means of high-pressure hydrogenation. The pressure dependence of the phonon frequencies exhibits two reversible changes one at ∝0.6 GPa and another one at ∝6 GPa. The first may be probably related to a phase transition from the initial orientationally disordered bcc structure to an orientationally ordered one. The second one, at ∝6 GPa, is probably driven by pressure-induced bonding of hydrogen to a carbon atom of a neighboring hydrofullerene cage. (orig.)

  3. Raman selection rules and tensor elements for PMN-0.3PT single crystal

    International Nuclear Information System (INIS)

    Ge, Wanyin; Zhu, Wenliang; Pezzotti, Giuseppe

    2009-01-01

    Selection rules were put forward theoretically and Raman tensor elements experimentally determined for PMN-0.3PT single-crystal. Such a body of information was then employed to evaluate local domain orientation in a relaxor-based PMN-0.3PT material by means of polarized microprobe Raman spectroscopy. The dependence of Raman spectra upon crystal rotation under different polarized probe configurations was experimentally confirmed by collecting the intensity variation of selected Raman modes on Euler's angle rotation in a poled single-crystal. The periodicity of relative Raman intensity of selected Raman bands revealed symmetry properties. Upon exploiting such properties and with the knowledge of the Raman tensor elements from the A g and E g vibrational modes, a viable path becomes available to determine domain texture in relaxor-based PMN-PT materials with high spatial resolution. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    Science.gov (United States)

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Towards eye-safe standoff Raman imaging systems

    Science.gov (United States)

    Glimtoft, Martin; Bââth, Petra; Saari, Heikki; Mäkynen, Jussi; Näsilä, Antti; Östmark, Henric

    2014-05-01

    Standoff Raman imaging systems have shown the ability to detect single explosives particles. However, in many cases, the laser intensities needed restrict the applications where they can be safely used. A new generation imaging Raman system has been developed based on a 355 nm UV laser that, in addition to eye safety, allows discrete and invisible measurements. Non-dangerous exposure levels for the eye are several orders of magnitude higher in UVA than in the visible range that previously has been used. The UV Raman system has been built based on an UV Fabry-Perot Interferometer (UV-FPI) developed by VTT. The design allows for precise selection of Raman shifts in combination with high out-of-band blocking. The stable operation of the UV-FPI module under varying environmental conditions is arranged by controlling the temperature of the module and using a closed loop control of the FPI air gap based on capacitive measurement. The system presented consists of a 3rd harmonics Nd:YAG laser with 1.5 W average output at 1000 Hz, a 200 mm Schmidt-Cassegrain telescope, UV-FPI filter and an ICCD camera for signal gating and detection. The design principal leads to a Raman spectrum in each image pixel. The system is designed for field use and easy manoeuvring. Preliminary results show that in measurements of <60 s on 10 m distance, single AN particles of <300 μm diameter can be identified.

  6. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2016-06-23

    This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancing in vivo diagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800-1800 cm(-1)) and high-wavenumber (HW) (i.e., 2800-3600 cm(-1)) Raman spectra from gastric tissue in vivo at endoscopy. A total of 5792 high-quality in vivo FP/HW Raman spectra (normal (n = 5160); dysplasia (n = 155), and adenocarcinoma (n = 477)) were acquired in real-time from 441 tissue sites (normal (n = 396); dysplasia (n = 11), and adenocarcinoma (n = 34)) of 191 gastric patients (normal (n = 172); dysplasia (n = 6), and adenocarcinoma (n = 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancing in vivo diagnosis of gastric

  7. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  8. The Raman spectrum of nano-structured onion-like fullerenes

    International Nuclear Information System (INIS)

    Wang Xiaomin; Xu Bingshe; Liu Xuguang; Jia Husheng; Hideki, Ichinose

    2005-01-01

    Onion-like fullerenes (OLFs) have been studied by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. With a precise control of current, high-quality OLFs with few defects are found on the redeposit rod on the cathode. The size of OLFs is found to be in the range of 15-40 nm. Metal particles are useful support crystal to realize the synthesis of high-quality OLFs. Raman spectra of OLFs show high degree of graphitization. Compared with that of highly oriented prolific graphite (HOPG), the strain of graphene planes due to curvature and uneven distribution of the diameter of OLFs has been estimated analytically and is used to account for the downward shift of the G peak

  9. Application of Raman Microspectroscopic and Raman imaging techniques for cell biological studies

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Bakker schut, T.C.; Bakker Schut, T.C.; Sijtsema, N.M.; Grond, M.; Grond, M.; Maraboeuf, F.; de Grauw, C.J.; de Grauw, C.J.; Figdor, Carl; Greve, Jan

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  10. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    Science.gov (United States)

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  11. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  12. DETERMINATION OF PERCHLORATE IN SOME FERTILIZERS AND PLANT TISSUE BY RAMAN SPECTROSCOPY

    Science.gov (United States)

    We have successfully used Raman spectroscopy for the direct qualitative and quantitative analysis of perchlorate in fertilizer extracts without the need for chromatographic separation. This approach is attractive because Raman is not hindered by the presence of water or of high ...

  13. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media.

    Science.gov (United States)

    Konugolu Venkata Sekar, S; Mosca, S; Tannert, S; Valentini, G; Martelli, F; Binzoni, T; Prokazov, Y; Turbin, E; Zuschratter, W; Erdmann, R; Pifferi, A

    2018-05-01

    We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.

  14. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  15. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies.

    Science.gov (United States)

    Ishigaki, Mika; Meksiarun, Phiranuphon; Kitahama, Yasutaka; Zhang, Leilei; Hashimoto, Hideki; Genkawa, Takuma; Ozaki, Yukihiro

    2017-08-31

    The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν 1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν 1 Raman band against the S 0 → S 2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.

  16. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    Science.gov (United States)

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  17. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  18. High-definition television evaluation for remote handling task performance

    International Nuclear Information System (INIS)

    Fujita, Y.; Omori, E.; Hayashi, S.; Draper, J.V.; Herndon, J.N.

    1986-01-01

    This paper describes experiments designed to evaluate the impact of HDTV on the performance of typical remote tasks. The experiments described in this paper compared the performance of four operators using HDTV with their performance while using other television systems. The experiments included four television systems: (1) high-definition color television, (2) high-definition monochromatic television, (3) standard-resolution monochromatic television, and (4) standard-resolution stereoscopic monochromatic television. The stereo system accomplished stereoscopy by displaying two cross-polarized images, one reflected by a half-silvered mirror and one seen through the mirror. Observers wore a pair of glasses with cross-polarized lenses so that the left eye received only the view from the left camera and the right eye received only the view from the right camera

  19. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  20. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    Science.gov (United States)

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  1. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    International Nuclear Information System (INIS)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs

  2. Mixture analysis with laser raman spctroscopy

    International Nuclear Information System (INIS)

    Kim, M.S.; Bark, G.M.

    1981-01-01

    Trace amount of methyl orange was determined in colored medium by resonance Raman spectrometry. Without major modification of a commercial laser Raman spectrometer, the resonance Raman active molecule could be determined satisfactorily in 10sup(-5)M range when the background fluorescence was more than 20 times stronger than the signal. Use of fluorescence quenching agent was found helpful to improve the Raman signal. Suggestions for the improvement of analytical method is presented. (Author)

  3. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  4. The potential use of Raman spectroscopy for the diagnosis of Alzheimer's disease

    Science.gov (United States)

    Sudworth, Caroline D.; Archer, John K. J.; Mann, David

    2005-09-01

    Alzheimer's disease currently affects over 800,000 people in the UK, and this figure is set to exceed 1.5 million by 2050. The disease causes a severe breakdown of the brain, resulting in the progressive decline in the mental health of the patient. It also remains without a long-term cure. A definitive diagnosis of the disease can only be gained at post-mortem, whilst other technologies are limited to monitoring the physical breakdown of the brain. The early identification of the chemicals responsible for the disease, and their structure, is therefore essential for improved diagnosis, treatment and care. This research demonstrates the use of Raman spectroscopy, and principle components analysis, as a method for the diagnosis, and examination of, the specific proteins responsible for Alzheimer's disease. Analyses of ethically approved ex vivo brain tissues from normal elderly (n=3), Alzheimer's disease (n=12) and Huntingdon's disease (n=3) brain sections (from the frontal and occipital lobes) are presented. Subsequently, a further 12 blinded individual samples were examined and the preliminary results are presented. Spectra originating from these tissues are highly reproducible, and results indicate a vital difference in protein content and protein conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Principle components analysis has been shown to differentiate normal elderly tissues from diseased tissues. These results show great promise for the early identification of Alzheimer's disease, and secondary information regarding other brain diseases and dementias. These results demonstrate the potential use of Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.

  5. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Directory of Open Access Journals (Sweden)

    Chae-Ryon Kong

    2011-09-01

    Full Text Available Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC converts the wide angular range of scattered photons (numerical aperture (NA of 1.0 from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22. A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  6. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    Science.gov (United States)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  7. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Science.gov (United States)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  8. High temperature phase transition by Raman scattering in SmAlO3

    International Nuclear Information System (INIS)

    Alain, P.; Piriou, B.

    1975-01-01

    Data on the Raman phonon spectra are summarized. Experimental procedure is given. Frequencies and damping coefficients are reported. In spite of coloration and blackbody radiation from the sample, experiments were carried out up to 1,500K [fr

  9. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  10. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems.

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    by means of fiber components. Assuming the possibility to use a fiber laser with a fundamental radiation at 1064nm, in-fiber efficient second harmonic generation is achieved by optically poling the core of the waveguide delivering the excitation light to the sample. In this way, Raman spectroscopy...... in the visible range can be performed. The simultaneous delivery of the excitation light and collection of the Raman signal from the sample are achieved by means of a doubleclad fiber, whose core and inner cladding act as \\independent" transmission channels. A double-clad fiber coupler allows for the recovery...... of the collected Raman scattering from the inner-cladding region of the double-clad fiber, thus replacing the bulk dichroic component normally used to demultiplex the pump and Raman signal. A tunable Rayleigh-rejection filter based on a liquid filled-photonic bandgap fiber is also demonstrated in this work...

  12. Raman amplification in optical communication systems

    DEFF Research Database (Denmark)

    Kjær, Rasmus

    2008-01-01

    Fiber Raman amplifiers are investigated with the purpose of identifying new applications and limitations for their use in optical communication systems. Three main topics are investigated, namely: New applications of dispersion compensating Raman amplifiers, the use Raman amplification to increase...... fiberbaserede Raman-forstærkere med henblik på at identificere både deres begrænsninger og nye anvendelsesmuligheder i optiske kommunikationssystemer. En numerisk forstærkermodel er blevet udviklet for bedre at forstå forstærkerens dynamik, dens gain- og støjbegrænsninger. Modellen bruges til at forudsige...... forstærkerens statiske og dynamiske egenskaber, og det eftervises at dens resultater er i god overensstemmelse med eksperimentelle forstærkermålinger. Dispersions-kompenserende fiber er på grund af sin store udbredelse og fiberens høje Raman gain effektivitet et meget velegnet Raman gain-medium. Tre nye...

  13. In-situ Raman spectroscopic study of aluminate speciation in H2O-KOH solutions at high pressures and temperatures

    Science.gov (United States)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2009-12-01

    The solubility of corundum in H2O is low even at high pressure and temperatures. Therefore, it is commonly assumed that alumina remains essentially immobile during fluid-rock interaction. However, field and experimental evidence suggests that alumina solubility is strongly enhanced in the presence of silica as well as in alkaline solutions. In order to understand what controls the alumina solubility and how it is enhanced as a function of fluid composition, we conducted Raman-spectroscopic study of Al speciation in aqueous fluids at high pressure and temperature. Experiments were carried out in an externally heated hydrothermal diamond-anvil cell equipped with low-fluorescence diamonds and iridium gaskets. Raman spectra were collected with a Horiba Jobin-Yvon Labram HR spectrometer using the 514 nm line of an argon laser for excitation. In a first series of experiments, the speciation of alumina was studied in a 1 M KOH solution in equilibrium with corundum up to 700 oC and ~1 GPa. The Raman spectra show a prominent band at 618 cm-1 interpreted to arise from Al-O stretching vibrations associated with the tetrahedral [Al(OH)4]1- species. At higher pressure and temperature, an additional vibrational mode appears in the spectra at 374 cm-1 (full width at half maximum ~ 20 cm-1). This feature is tentatively attributed to [(OH)3Al-O-Al(OH)3]2- (Moolenaar et al. 1970, Jour. Phys. Chem., 74, 3629-3636). No evidence for KAl(OH)4 was observed, consistent with piston cylinder experiments at 700 oC and 1 GPa (Wohlers & Manning, 2009, Chem. Geol., 262, 310). Upon cooling from high-pressure and high temperature, slow kinetics of corundum regrowth lead to oversaturation in the solutions, as evidenced by sharp peaks at 930 and 1066 cm-1 observed upon cooling. These features are probably due to colloidal aluminum hydroxide. The results provide the first evidence for aluminate polymerization at high pressure and temperature, and offer insights into the causes for enhancement of

  14. Estimating and suppressing background in Raman spectra with an artificial neural network

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur; Larsen, Jan; Philipsen, Peter Alshede

    2003-01-01

    In this report we address the problem of skin fluorescence in feature extraction from Raman spectra of skin lesions. We apply a highly automated neural network method for suppressing skin fluorescence from Raman spectrum of skin lesions before dimension reduction with principal components analysi...

  15. Raman spectroscopy in pharmaceutical product design

    DEFF Research Database (Denmark)

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-01-01

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from...... molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant...... application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed....

  16. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    Science.gov (United States)

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  17. High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame

    Science.gov (United States)

    Kojima, Jun; Fischer, David

    2013-01-01

    We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.

  18. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  19. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  20. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  1. Numerical modelling of passively Q-switched intracavity Raman lasers

    International Nuclear Information System (INIS)

    Ding Shuanghong; Zhang Xingyu; Wang Qingpu; Zhang Jun; Wang Shumei; Liu Yuru; Zhang Xuehui

    2007-01-01

    Assuming intracavity photon densities to be of Gaussian spatial distributions, the space-dependent rate equations of passively Q-switched intracavity Raman lasers are deduced for the first time for the pumping beams of Gaussian and top-head spatial distributions, respectively. The new rate equations are normalized and solved numerically to investigate the influences of the normalized initial population inversion density, normalized Raman gain coefficient, saturable absorber parameter, beam size ratio of pump to fundamental laser and loss ratio of the first Stokes to fundamental laser on the pulse parameters of the first Stokes. The results of the Gaussian and top-head pumpings show similar trends despite some discrepancies. The new theories and numerical results will help design passively Q-switched intracavity Raman lasers of high performance

  2. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    Science.gov (United States)

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  3. QSpec: online control and data analysis system for single-cell Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Lihui Ren

    2014-06-01

    Full Text Available Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS. Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.

  4. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    Science.gov (United States)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  5. Identification of color development potential of quartz by Raman spectroscopy

    International Nuclear Information System (INIS)

    Alkmim, Danielle G.; Lameiras, Fernando S.; Almeida, Frederico O.T.

    2013-01-01

    Colorless quartz is usually exposed to ionizing radiation (gamma rays or high energy electron beams) to acquire different colors for jewelry. Color development is due to the presence of traces of some elements such as aluminum, iron, hydrogen, lithium, or sodium. Most quartz crystals are extracted colorless from nature and it is necessary to separate those that can develop colors from those that cannot. Irradiation tests can be used to accomplish this separation, but they take a long time. Infrared signature of colorless quartz can also be used. However, infrared spectroscopy is quite expensive, especially when using portable devices. Raman spectroscopy is now available as an inexpensive and portable technique that could provide identification of the samples of colorless quartz still in the field, facilitating the prediction for their economic exploitation. In addition, Raman spectroscopy usually requires a minimum or no sample preparation. This paper presents an investigation of the feasibility of using Raman spectroscopy as a substitute for infrared spectroscopy to predict the potential for color development of quartz. A band at 3595 cm -1 in the Raman shift spectrum was observed only along the c axis of a prasiolite excited by a high power 514 nm laser. This band was not observed in quartz samples that do not develop color after irradiation. Further studies are required to identify the potential for color development by Raman spectroscopy of other types of colorless quartz. (author)

  6. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Inverse Raman effect: applications and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.

  8. Inverse Raman effect: applications and detection techniques

    International Nuclear Information System (INIS)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented

  9. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    Science.gov (United States)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  10. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.

    Science.gov (United States)

    Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina

    2017-10-12

    The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Detection of latent prints by Raman imaging

    Science.gov (United States)

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  12. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  13. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  14. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  15. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    Science.gov (United States)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  16. Raman scattering in air: four-dimensional analysis

    International Nuclear Information System (INIS)

    Lin, Y.; Kessler, T.J.; Lawrence, G.N.

    1994-01-01

    Inertial confinement fusion requires propagation of high-intensity, pulse-shaped IR and UV laser beams through long air paths. Such beams are subject to energy losses and decreased beam quality as a result by stimulated rotational Raman scattering (SRRS). In this paper we describe how quantum fluctuations, stimulated Raman amplification, diffraction propagation, and optical aberrations interact during the propagation of short, high-power laser pulses using a four-dimensional (4-D) model of the optical beams and the medium. The 4-D model has been incorporated into a general optical-propagation computer program that allows the entire optical system to be modeled and that is implemented on high-end personal computers, workstations, and supercomputers. The numerical model is used to illustrate important phenomena in the evolution of the optical beams. In addition, the OMEGA Upgrade laser system is used as a design case to illustrate the various considerations for inertial confinement fusion laser design

  17. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  18. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  19. Real time near-infrared Raman spectroscopy for the diagnosis of nasopharyngeal cancer.

    Science.gov (United States)

    Ming, Lim Chwee; Gangodu, Nagaraja Rao; Loh, Thomas; Zheng, Wei; Wang, Jianfeng; Lin, Kan; Zhiwei, Huang

    2017-07-25

    Near-infrared (NIR) Raman spectroscopy has been investigated as a tool to differentiate nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue in an ex-vivo setting. Recently, we have miniaturized the fiber-optic Raman probe to investigate its utility in real time in-vivo surveillance of NPC patients. A posterior probability model using partial linear square (PLS) mathematical technique was constructed to verify the sensitivity and specificity of Raman spectroscopy in diagnosing NPC from post-irradiated and normal tissue using a diagnostic algorithm from three significant latent variables. NIR-Raman signals of 135 sites were measured from 79 patients with either newly diagnosed NPC (N = 12), post irradiated nasopharynx (N = 37) and normal nasopharynx (N = 30). The mean Raman spectra peaks identified differences at several Raman peaks at 853 cm-1, 940 cm-1, 1078 cm-1, 1335 cm-1, 1554 cm-1, 2885 cm-1 and 2940 cm-1 in the three different nasopharyngeal conditions. The sensitivity and specificity of distinguishing Raman signatures among normal nasopharynx versus NPC and post-irradiated nasopharynx versus NPC were 91% and 95%; and 77% and 96% respectively. Real time near-infrared Raman spectroscopy has a high specificity in distinguishing malignant from normal nasopharyngeal tissue in vivo, and may be investigated as a novel non-invasive surveillance tool in patients with nasopharyngeal cancer.

  20. Near-infrared Raman spectroscopy using a diode laser and CCD detector for tissue diagnostics

    International Nuclear Information System (INIS)

    Gustafsson, U.

    1993-09-01

    This paper surveys the possibility to observe high-quality NIR Raman spectra of both fluorescent and non-fluorescent samples with the use of a diode laser, a fibre optic sample, a single spectrometer and a charge-coupled device (CCD) detector. A shifted excitation difference technique was implemented for removing the broad-band fluorescence emission from Raman spectra of the highly fluorescent samples. Raman spectra of 1.4-dioxane, toluene, rhodamine 6G, and HITCI in the 640 to 1840 cm -1 spectral region and 1.4-dioxane and toluene in the 400 to 3400 cm -1 spectral region have been recorded. The results open the field of sensitive tissue characterisation and the possibility of optical biopsy in vivo by using NIR Raman spectroscopy with fibre optic sampling, a single spectrometer, and a CCD detector

  1. Raman study of supported molybdenum disulfide single layers

    Science.gov (United States)

    Durrer, William; Manciu, Felicia; Afanasiev, Pavel; Berhault, Gilles; Chianelli, Russell

    2008-10-01

    Owing to the increasing demand for clean transportation fuels, highly dispersed single layer transition metal sulfides such as MoS2-based catalysts play an important role in catalytic processes for upgrading and removing sulfur from heavy petroleum feed. In its crystalline bulk form, MoS2 is chemically rather inactive due to a strong tendency to form highly stacked layers, but, when dispersed as single-layer nanoclusters on a support, the MoS2 becomes catalytically active in the hydrogenolysis of sulphur and nitrogen from organic compounds (hydrotreating catalysis). In the present studies alumina-supported MoS2 samples were analyzed by confocal Raman spectroscopy. Evidence of peaks at 152 cm-1, 234 cm-1, and 336 cm-1, normally not seen in the Raman spectrum of the standard bulk crystal, confirms the formation of single layers of MoS2. Furthermore, the presence of the 383 cm-1 Raman line suggests the trigonal prismatic coordination of the formed MoS2 single layers. Depending on the sample preparation method, a restacking of MoS2 layers is also observed, mainly for ex-thiomolybdate samples sulfided at 550 C.

  2. Applications of Raman spectroscopy to gemology.

    Science.gov (United States)

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  3. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  4. Development of cryo-cell for infrared Raman laser

    International Nuclear Information System (INIS)

    Harada, Tetsuro; Ohmori, Takao; Saito, Hideaki

    1984-01-01

    Laser isotope separation (LIS) for uranium enrichment is remarkable for its higher efficiency and cost effectiveness over the gaseous diffusion process. A prototype Raman Laser apparatus for uranium enrichment was developed and manufactured by IHI for the Institute of Physical and Chemical Research. This apparatus is capable of emitting tunable infrared Laser beam of a wave length from 13 μm to 17 μm from its multiple pass resonator by injecting a highly coherent CO 2 Laser beam into the para-hydrogen gas vessel (kept at 100 K) to induce Raman scattering. This paper describes the Laser oscillation mechanism and the structure of the multiple pass cell; it also discusses the technical aspects that are essential for a Raman Laser apparatus. Moreover, the cooling characteristics of the present apparatus are reported by analyzing the results of tests conducted in actual service thermal conditions. (author)

  5. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers

    International Nuclear Information System (INIS)

    Yano, Taka-aki; Yoshida, Keisuke; Hayashi, Tomohiro; Hara, Masahiko; Hayamizu, Yuhei; Ohuchi, Fumio

    2015-01-01

    We report spatially resolved vibrational analysis of mechanically exfoliated single-crystalline α-MoO 3 nanolayers. Raman scattering from α-MoO 3 was enhanced predominantly at the outside edges of the nanolayers. The enhanced Raman scattering at the edges was attributed primarily to the enhanced resonant Raman effect caused by a high density of oxygen vacancies localized at the edges. The localized vacancy sites corresponded to a non-stoichiometric phase of MoO 3 , which would provide reactive sites with high catalytic activity. (paper)

  6. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  7. Raman spectra of lignin model compounds

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla

    2005-01-01

    To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of lignins’ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...

  8. Revealing New Structural Insights from Surfactant Micelles through DLS, Microrheology and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Samiul Amin

    2015-06-01

    Full Text Available The correlation between molecular changes and microstructural evolution of rheological properties has been demonstrated for the first time in a mixed anionic/zwitterionic surfactant-based wormlike micellar system. Utilizing a novel combination of DLS-microrheology and Raman Spectroscopy, the effect of electrostatic screening on these properties of anionic (SLES and zwitterionic (CapB surfactant mixtures was studied by modulating the NaCl concentration. As Raman Spectroscopy delivers information about the molecular structure and DLS-microrheology characterizes viscoelastic properties, the combination of data delivered allows for a deeper understanding of the molecular changes underlying the viscoelastic ones. The high frequency viscoelastic response obtained through DLS-microrheology has shown the persistence of the Maxwell fluid response for low viscosity solutions at high NaCl concentrations. The intensity of the Raman band at 170 cm−1 exhibits very strong correlation with the viscosity variation. As this Raman band is assigned to hydrogen bonding, its variation with NaCl concentration additionally indicates differences in water structuring due to potential microstructural differences at low and high NaCl concentrations. The microstructural differences at low and high NaCl concentrations are further corroborated by persistence of a slow mode at the higher NaCl concentrations as seen through DLS measurements. The study illustrates the utility of the combined DLS, DLS-optical microrheology and Raman Spectroscopy in providing new molecular structural insights into the self-assembly process in complex fluids.

  9. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Larkin, Peter J; Dabros, Marta; Sarsfield, Beth; Chan, Eric; Carriere, James T; Smith, Brian C

    2014-01-01

    Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically, the fundamental molecular vibrations accessed using high-frequency Raman and MIR spectroscopy or the overtone and combination of bands in the NIR spectra are used to monitor the solid-state forms of active pharmaceutical ingredients (APIs). The local environmental sensitivity of the fundamental molecular vibrations provides an indirect probe of the long-range order in molecular crystals. However, low-frequency vibrational spectroscopy provides access to the lattice vibrations of molecular crystals and, hence, has the potential to more directly probe intermolecular interactions in the solid state. Recent advances in filter technology enable high-quality, low-frequency Raman spectra to be acquired using a single-stage spectrograph. This innovation enables the cost-effective collection of high-quality Raman spectra in the 200-10 cm(-1) region. In this study, we demonstrate the potential of low-frequency Raman spectroscopy for the polymorphic characterization of APIs. This approach provides several benefits over existing techniques, including ease of sampling and more intense, information-rich band structures that can potentially discriminate among crystalline forms. An improved understanding of the relationship between the crystalline structure and the low-frequency vibrational spectrum is needed for the more widespread use of the technique.

  10. Raman and DSC studies of fragility in tellurium-zinc oxide glass formers

    International Nuclear Information System (INIS)

    Stavrou, Elissaios; Kripotou, Sotiria; Raptis, Constantine; Turrell, Sylvia; Syassen, Karl

    2011-01-01

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out in four mixed (TeO 2 ) 1-x (ZnO) x (x = 0.1, 0.2, 0.3, 0.4) glasses at high temperatures (Raman and DSC through the glass transition) and high pressures (Raman) with the aim of determining the fragility of these glass forming oxides. Four different criteria, corresponding to four parameters, were applied to assess the fragility of the glasses. From the DSC studies, we have obtained the fragility parameter m which corresponds to the slopes of Arrhenius (lnQ vs. 1/T g , were Q is the heating rate) plots, and the glass transition width ΔT g . Also, from the low-frequency Raman scattering, and in particular the boson peak intensity of the glasses at T g , we have estimated the fragility ratio r R (T g ) = I min /I max whose value serves as another (empirical) fragility criterion. Finally, from high pressure Raman measurements on the glasses, we have estimated the Grueneisen parameter γ T for each glass, which constitutes the fourth fragility parameter adopted in this work. Considering the four parameters ΔT g , m, r (T g ) and γ T and the generally accepted (empirical) fragility criteria, we conclude that the mixed tellurium-zinc oxides constitute strong-to-intermediate glass formers (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Raman spectroscopy of white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. High-resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors.

    Science.gov (United States)

    Deckert-Gaudig, Tanja; Pichot, Vincent; Spitzer, Denis; Deckert, Volker

    2017-01-18

    The specific attributes of nanodiamonds have attracted increasing interest for electronics or biomedical applications. An efficient synthetic route towards nanodiamonds is via detonation of hexolite (i.e. a mixture of TNT [2,4,6-trinitrotoluene] and RDX [1,3,5-trinitro-1,3,5-triazine]). In particular, detonation of hexolite crystallized by spray flash evaporation (SFE) yields extremely small diamonds (<4 nm). To unravel the detonation mechanism, a structural characterization of the explosives is required but is challenging due to their thermal instability. We demonstrate a combination of conventional Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS) for resolving morphological and structural differences of differently prepared hexolite nanocomposites. The experiments allow for the first time a structural differentiation of individual TNT and RDX crystals and 15-20 nm sized core-shell structures, consequently providing a general approach to investigate the actual composition of mixtures on the nanometer scale. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    Science.gov (United States)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  14. Designing of Raman laser

    International Nuclear Information System (INIS)

    Zidan, M. D.; Al-Awad, F.; Alsous, M. B.

    2005-01-01

    In this work, we describe the design of the Raman laser pumped by Frequency doubled Nd-YAG laser (λ=532 nm) to generate new laser wavelengths by shifting the frequency of the Nd-YAG laser to Stokes region (λ 1 =683 nm, λ 2 =953.6 nm, λ 3 =1579.5 nm) and Antistokes region (λ ' 1 =435 nm, λ ' 2 =369.9 nm, λ ' 3=319.8 nm). Laser resonator has been designed to increase the laser gain. It consists of two mirrors, the back mirror transmits the pump laser beam (λ=532 nm) through the Raman tube and reflects all other generated Raman laser lines. Four special front mirrors were made to be used for the four laser lines λ 1 =683 nm, λ 2 =953.6 nm and λ ' 1 = 435 nm, λ ' 2 =369.9 nm. The output energy for the lines υ 1 s, υ 2 s, υ 1 as,υ 2 as was measured. The output energy of the Raman laser was characterized for different H 2 pressure inside the tube. (Author)

  15. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  16. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  17. Profilometry of thin films on rough substrates by Raman spectroscopy

    KAUST Repository

    Ledinský, Martin

    2016-12-06

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2.

  18. Profilometry of thin films on rough substrates by Raman spectroscopy

    KAUST Repository

    Ledinský , Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbü hler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf, Stefaan; Ballif  , Christophe; Fejfar, Antoní n

    2016-01-01

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2.

  19. Label-free imaging of mammalian cell nucleoli by Raman microspectroscopy.

    Science.gov (United States)

    Schulze, H Georg; Konorov, Stanislav O; Piret, James M; Blades, Michael W; Turner, Robin F B

    2013-06-21

    The nucleolus is a prominent subnuclear structure whose major function is the transcription and assembly of ribosome subunits. The size of the nucleolus varies with the cell cycle, proliferation rate and stress. Changes in nucleolar size, number, chemical composition, and shape can be used to characterize malignant cells. We used spontaneous Raman microscopy as a label-free technique to examine nucleolar spatial and chemical features. Raman images of the 1003 cm(-1) phenylalanine band revealed large, well-defined subnuclear protein structures in MFC-7 breast cancer cells. The 783 cm(-1) images showed that nucleic acids were similarly distributed, but varied more in intensity, forming observable high-intensity regions. High subnuclear RNA concentrations were observed within some of these regions as shown by 809 cm(-1) Raman band images. Principal component analyses of sub-images and library spectra validated the subnuclear presence of RNA. They also revealed that an actin-like protein covaried with DNA within the nucleolus, a combination that accounted for 64% or more of the spectral variance. Embryonic stem cells are another rapidly proliferating cell type, but their nucleoli were not as large or well defined. Estimating the size of the larger MCF-7 nucleolus was used to show the utility of Raman microscopy for morphometric analyses. It was concluded that imaging based on Raman microscopy provides a promising new method for the study of nucleolar function and organization, in the evaluation of drug and experimental effects on the nucleolus, and in clinical diagnostics and prognostics.

  20. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  1. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  2. Shot-Noise Limited Time-Encoded Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian Karpf

    2017-01-01

    Full Text Available Raman scattering, an inelastic scattering mechanism, provides information about molecular excitation energies and can be used to identify chemical compounds. Albeit being a powerful analysis tool, especially for label-free biomedical imaging with molecular contrast, it suffers from inherently low signal levels. This practical limitation can be overcome by nonlinear enhancement techniques like stimulated Raman scattering (SRS. In SRS, an additional light source stimulates the Raman scattering process. This can lead to orders of magnitude increase in signal levels and hence faster acquisition in biomedical imaging. However, achieving a broad spectral coverage in SRS is technically challenging and the signal is no longer background-free, as either stimulated Raman gain (SRG or loss (SRL is measured, turning a sensitivity limit into a dynamic range limit. Thus, the signal has to be isolated from the laser background light, requiring elaborate methods for minimizing detection noise. Here, we analyze the detection sensitivity of a shot-noise limited broadband stimulated time-encoded Raman (TICO-Raman system in detail. In time-encoded Raman, a wavelength-swept Fourier domain mode locking (FDML laser covers a broad range of Raman transition energies while allowing a dual-balanced detection for lowering the detection noise to the fundamental shot-noise limit.

  3. The research of data acquisition system for Raman spectrometer

    Science.gov (United States)

    Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo

    2011-11-01

    Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.

  4. Coherent control through near-resonant Raman transitions

    International Nuclear Information System (INIS)

    Dai Xingcan; Lerch, Eliza-Beth W.; Leone, Stephen R.

    2006-01-01

    The phase of an electronic wave function is shown to play an important role in coherent control experiments. By using a pulse shaping system with a femtosecond laser, we explore the phase relationships among resonant and off-resonant Raman transitions in Li 2 by measuring the phases of the resulting wave packets, or quantum beats. Specific pixels in a liquid-crystal spatial light modulator are used to isolate the resonant and off-resonant portions of the Raman transitions in Li 2 . The off-resonant Raman transitions have an approximately 90 degree sign phase shift with respect to the resonant Raman transition, and there is an approximately 180 degree sign phase shift between the blue-detuned and the red-detuned off-resonant Raman transitions. Calculations using second-order time-dependent perturbation theory for the electronic transitions agree with the experimental results for the laser pulse intensities used here. Interferences between the off-resonant Raman transitions as a function of detuning are used to demonstrate coherent control of the Raman quantum wave packet

  5. Raman Life Detection Instrument Development for Icy Worlds

    Science.gov (United States)

    Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.

    2017-01-01

    The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.

  6. Development and Application of Raman Microspectroscopic and Raman Imaging Techniques for Cell Biological Studies

    NARCIS (Netherlands)

    PUPPELS, G J; SCHUT, T C B; SIJTSEMA, N M; GROND, M; MARABOEUF, F; DEGRAUW, C G; FIGDOR, C G; GREVE, J

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  7. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  8. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    Science.gov (United States)

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.

  9. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  10. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  11. Diagnostic accuracy of high-definition CT coronary angiography in high-risk patients

    International Nuclear Information System (INIS)

    Iyengar, S.S.; Morgan-Hughes, G.; Ukoumunne, O.; Clayton, B.; Davies, E.J.; Nikolaou, V.; Hyde, C.J.; Shore, A.C.; Roobottom, C.A.

    2016-01-01

    Aim: To assess the diagnostic accuracy of computed tomography coronary angiography (CTCA) using a combination of high-definition CT (HD-CTCA) and high level of reader experience, with invasive coronary angiography (ICA) as the reference standard, in high-risk patients for the investigation of coronary artery disease (CAD). Materials and methods: Three hundred high-risk patients underwent HD-CTCA and ICA. Independent experts evaluated the images for the presence of significant CAD, defined primarily as the presence of moderate (≥50%) stenosis and secondarily as the presence of severe (≥70%) stenosis in at least one coronary segment, in a blinded fashion. HD-CTCA was compared to ICA as the reference standard. Results: No patients were excluded. Two hundred and six patients (69%) had moderate and 178 (59%) had severe stenosis in at least one vessel at ICA. The sensitivity, specificity, positive predictive value, and negative predictive value were 97.1%, 97.9%, 99% and 93.9% for moderate stenosis, and 98.9%, 93.4%, 95.7% and 98.3%, for severe stenosis, on a per-patient basis. Conclusion: The combination of HD-CTCA and experienced readers applied to a high-risk population, results in high diagnostic accuracy comparable to ICA. Modern generation CT systems in experienced hands might be considered for an expanded role. - Highlights: • Diagnostic accuracy of High-Definition CT Angiography (HD-CTCA) has been assessed. • Invasive Coronary angiography (ICA) is the reference standard. • Diagnostic accuracy of HD-CTCA is comparable to ICA. • Diagnostic accuracy is not affected by coronary calcium or stents. • HD-CTCA provides a non-invasive alternative in high-risk patients.

  12. Distributed Anemometry via High-Definition Fiber Optic Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna is developing a distributed anemometer that can directly measure flow field velocity profiles using high-definition fiber optic sensing (HD-FOS). The concept is...

  13. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  14. Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)

    Science.gov (United States)

    Suh, Yung Doug; Kim, Hyun Woo

    2017-08-01

    Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.

  15. Prospects for in vivo Raman spectroscopy

    International Nuclear Information System (INIS)

    Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S.

    2000-01-01

    Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed. (author)

  16. Raman Identification of Polymorphs in Pentacene Films

    Directory of Open Access Journals (Sweden)

    Alberto Girlando

    2016-04-01

    Full Text Available We use Raman spectroscopy to characterize thin films of pentacene grown on Si/SiO x by Supersonic Molecular Beam Deposition (SuMBD. We find that films up to a thickness of about 781 Å (∼ 52 monolayers all belong to the so-called thin-film (TF phase. The appearance with strong intensity of some lattice phonons suggests that the films are characterized by good intra-layer order. A comparison of the Raman spectra in the lattice and CH bending spectral regions of the TF polymorph with the corresponding ones of the high-temperature (HT and low-temperature (LT bulk pentacene polymorphs provides a quick and nondestructive method to identify the different phases.

  17. Relaxation oscillations in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kachen, G.I.; Lowdermilk, W.H.

    1977-01-01

    Light pulses created by stimulated Raman scattering having been found to exhibit a complex time dependence which resembles relaxation oscillations. A focused laser pulse generated both forward and backward Raman emissions which appeared as a series of pulses with durations much shorter than the incident laser pulse. Time dependence of the Raman emission was observed directly by use of a streak camera. The number of observed pulses increased with the intensity of the incident pulse, while separation of the pulses in time depended on the length of the focal region. Beam focusing was incorporated in the coupled wave equations for stimulated Raman scattering. These rate equations were then solved numerically, and the results are in good qualitative agreement with the experimental observations. The short Raman pulses are created by a process associated with depletion of the incident laser pulse. This process occurs under a broad range of conditions

  18. Optical Sensors based on Raman Effects

    DEFF Research Database (Denmark)

    Jernshøj, Kit Drescher

    Formålet med denne afhandling er at give en systematisk og uddybende videnskabelig diskussion af molekylær Raman spredning, som kan danne grundlag for udviklingen af molekylespecifikke optiske sensorer til on-site, ikke-destruktiv måling. Afhandlingen falder i tre dele, to teoriafsnit, hvor første...... del omhandler den tilgangelige molekylære information ved overfladeforstærket resonans Raman spredning (SERRS), samt hvordan adgangen til denne information kan optimeres. Anden del omhandler, hvordan det molekylære informationsindhold kan forøges ved at kombinere polariserede Raman og resonans Raman...... målinger på frie molekyler med multivariat analyse. I tredje og sidste del, som er et eksperimentelt afsnit, præsenteres og diskuteres overfladeforstærkede Raman målinger (SERS) på tre udvalgte pesticider. Afhandlingen indledes med en diskussion af teorien bag SERRS med speciel fokus på den molekylære...

  19. Raman micro-spectroscopy analysis of different sperm regions: a species comparison.

    Science.gov (United States)

    Amaral, S; Da Costa, R; Wübbeling, F; Redmann, K; Schlatt, S

    2018-04-01

    Is Raman micro-spectroscopy a valid approach to assess the biochemical hallmarks of sperm regions (head, midpiece and tail) in four different species? Non-invasive Raman micro-spectroscopy provides spectral patterns enabling the biochemical characterization of the three sperm regions in the four species, revealing however high similarities for each region among species. Raman micro-spectroscopy has been described as an innovative method to assess sperm features having the potential to be used as a non-invasive selection tool. However, except for nuclear DNA, the identification and assignment of spectral bands in Raman-profiles to the different sperm regions is scarce and controversial. Raman spectra from head, midpiece and tail of four different species were obtained. Sperm samples were collected and smeared on microscope slides. Air dried samples were subjected to Raman analysis using previously standardized procedures. Sperm samples from (i) two donors attending the infertility clinic at the Centre of Reproductive Medicine and Andrology; (ii) two C57BL/6 -TgN (ACTbEGFP) 1Osb adult mice; (iii) two adult Cynomolgus monkeys (Macaca fascicularis) and (iv) two sea urchins (Arbacia punctulata) were used to characterize and compare their spectral profiles. Differences and similarities were confirmed by principal component analysis (PCA). Several novel region-specific peaks were identified. The three regions could be differentiated by distinctive Raman patterns irrespective of the species. However, regardless of the specie, their main spectral pattern remains mostly unchanged. These results were corroborated by the PCA analysis and suggest that the basic constituents of spermatozoa are biochemically similar among species. Further research should be performed in live sperm to validate the detected spectral bands and their use as markers of distinctive regions. Raman peaks that have never been described in the sperm cell were detected. Particularly important are those that

  20. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy

    Science.gov (United States)

    Lin, Kan; Zheng, Wei; Lim, Chwee Ming; Huang, Zhiwei

    2016-01-01

    We assess the clinical utility of a unique simultaneous fingerprint (FP) (i.e., 800-1800 cm−1) and high-wavenumber (HW) (i.e., 2800-3600 cm−1) fiber-optic Raman spectroscopy for in vivo diagnosis of laryngeal cancer at endoscopy. A total of 2124 high-quality in vivo FP/HW Raman spectra (normal = 1321; cancer = 581) were acquired from 101 tissue sites (normal = 71; cancer = 30) of 60 patients (normal = 44; cancer = 16) undergoing routine endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous laryngeal tissue that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in the larynx. Partial least squares-discriminant analysis and leave-one tissue site-out, cross-validation were employed on the in vivo FP/HW tissue Raman spectra acquired, yielding a diagnostic accuracy of 91.1% (sensitivity: 93.3% (28/30); specificity: 90.1% (64/71)) for laryngeal cancer identification, which is superior to using either FP (accuracy: 86.1%; sensitivity: 86.7% (26/30); specificity: 85.9% (61/71)) or HW (accuracy: 84.2%; sensitivity: 76.7% (23/30); specificity: 87.3% (62/71)) Raman technique alone. Further receiver operating characteristic analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for laryngeal cancer diagnosis. We demonstrate for the first time that the simultaneous FP/HW Raman spectroscopy technique can be used for improving real-time in vivo diagnosis of laryngeal carcinoma during endoscopic examination. PMID:27699131

  1. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cavaignac, A.L.O. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Lima, R.J.C., E-mail: ricardo.lima.ufma@gmail.com [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Façanha Filho, P.F. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Moreno, A.J.D. [Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, MA 65700-000 (Brazil); Freire, P.T.C. [Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-760 (Brazil)

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  2. Frequency Comb Driven Raman Transitions in the THz Range: High Precision Isotope Shift Measurements in Ca+

    DEFF Research Database (Denmark)

    Meyer, Steffen

    2017-01-01

    and frequency resolved optical gating (FROG) are used, and the two frequency comb systems used for the experiments are thoroughly characterized, a Coherent Mira Ti:sapph oscillator and a MenloSystems fiber based frequency comb system. The potential of frequency comb driven Raman transitions is shown...... transition frequencies typically are on the order of a few THz. High precision measurements on these ions have many intriguing applications, for example the test of time-variations of fundamental constants, ultracold chemistry on the quantum level, and quantum information and computing, to name just a few...

  3. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    International Nuclear Information System (INIS)

    Cavaignac, A.L.O.; Lima, R.J.C.; Façanha Filho, P.F.; Moreno, A.J.D.; Freire, P.T.C.

    2016-01-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  4. High-definition video display based on the FPGA and THS8200

    Science.gov (United States)

    Qian, Jia; Sui, Xiubao

    2014-11-01

    This paper presents a high-definition video display solution based on the FPGA and THS8200. THS8200 is a video decoder chip launched by TI company, this chip has three 10-bit DAC channels which can capture video data in both 4:2:2 and 4:4:4 formats, and its data synchronization can be either through the dedicated synchronization signals HSYNC and VSYNC, or extracted from the embedded video stream synchronization information SAV / EAV code. In this paper, we will utilize the address and control signals generated by FPGA to access to the data-storage array, and then the FPGA generates the corresponding digital video signals YCbCr. These signals combined with the synchronization signals HSYNC and VSYNC that are also generated by the FPGA act as the input signals of THS8200. In order to meet the bandwidth requirements of the high-definition TV, we adopt video input in the 4:2:2 format over 2×10-bit interface. THS8200 is needed to be controlled by FPGA with I2C bus to set the internal registers, and as a result, it can generate the synchronous signal that is satisfied with the standard SMPTE and transfer the digital video signals YCbCr into analog video signals YPbPr. Hence, the composite analog output signals YPbPr are consist of image data signal and synchronous signal which are superimposed together inside the chip THS8200. The experimental research indicates that the method presented in this paper is a viable solution for high-definition video display, which conforms to the input requirements of the new high-definition display devices.

  5. Phase discrimination in CdSe structures by means of Raman scattering

    International Nuclear Information System (INIS)

    Cusco, R.; Artus, L.; Consonni, V.; Bellet-Amalric, E.; Andre, R.

    2017-01-01

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E 2 mode at 33 cm -1 unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Phase discrimination in CdSe structures by means of Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cusco, R.; Artus, L. [Institut Jaume Almera (ICTJA-CSIC), Consejo Superior de Investigaciones Cientificas, Lluis Sole i Sabaris s.n., 08028 Barcelona (Spain); Consonni, V. [Universite Grenoble Alpes and CNRS, LMGP, 38016 Grenoble (France); Bellet-Amalric, E. [Universite Grenoble Alpes and CEA, INAC-PHEILQS, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France); Andre, R. [Universite Grenoble Alpes and CNRS, Institut Neel, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France)

    2017-05-15

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E{sub 2} mode at 33 cm{sup -1} unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  8. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  9. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

    Science.gov (United States)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  10. Resonance effects in Raman scattering of quantum dots formed by the Langmuir-Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A G; Sveshnikova, L L; Duda, T A [Institute of Semiconductor Physics, Lavrentjev av.13, 630090, Novosibirsk (Russian Federation); Surovtsev, N V; Adichtchev, S V [Institute of Automation and Electrometry, Koptyug av.1, 630090, Novosibirsk (Russian Federation); Azhniuk, Yu M [Institute of Electron Physics, Universytetska Str. 21, 88017, Uzhhorod (Ukraine); Himcinschi, C [Institut fuer Theoretische Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596, Freiberg (Germany); Kehr, M; Zahn, D R T, E-mail: milekhin@thermo.isp.nsc.r [Semiconductor Physics, Chemnitz University of Technology, Chemnitz (Germany)

    2010-09-01

    The enhancement of Raman scattering by optical phonon modes in quantum dots was achieved in resonant and surface-enhanced Raman scattering experiments by approaching the laser energy to the energy of either the interband transitions or the localized surface plasmons in silver nanoclusters deposited onto the nanostructures. Resonant Raman scattering by TO, LO, and SO phonons as well as their overtones was observed for PbS, ZnS, and ZnO quantum dots while enhancement for LO and SO modes in CdS quantum dots with a factor of about 700 was measured in surface enhanced Raman scattering experiments. Multiple phonon Raman scattering observed up to 5th and 7th order for CdS and ZnO, respectively, confirms the high crystalline quality of the grown QDs.

  11. Assessment of argon ion laser dispersive Raman spectroscopy for hot cell applications

    International Nuclear Information System (INIS)

    Crawford, B.A.

    1995-01-01

    Characterization of high-level waste tank materials at Hanford is conducted to support safety assessments and waste treatment activities. Raman spectroscopy is expected to give chemical species information which may assist in defining layering in tank waste. This report describes the dispersive Raman system used in this year's investigation and the methology used to collect and evaluate data taken on tank waste samples. The current argon-ion Raman system was found not to be suitable for screening of tank cores, owing to silica interference, fluorescence interferences, and the extensive time required to collect and treat the data. Recommendations are given for further development

  12. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes.

    Science.gov (United States)

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  13. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    Directory of Open Access Journals (Sweden)

    Vitali Sikirzhytski

    2010-03-01

    Full Text Available Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  14. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  15. High Definition Television: A New Challenge for Telecommunication Policy.

    Science.gov (United States)

    Hongcharu, Boonchai

    The telecommunications industry has now entered the most critical period of evolution in television technology since the introduction of color television. The transition to high definition television (HDTV), with related technologies such as semiconductors and computers, would mean a multi-billion dollar business for the telecommunications…

  16. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  17. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Grégory; Ahlers, Berit; Pérez, Fernando Rull

    2007-12-01

    Among the different instruments that have been pre-selected to be on-board the Pasteur payload on ExoMars is the Raman/ laser induced breakdown spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman spectrometer/LIBS elegant bread-board (EBB). The instrument is based on a specially designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and power consumption are the main drivers of the instrument's design concept. In this paper, science objectives for the combined instrument are detailed. Background information on Raman spectroscopy and LIBS are presented, focussing on the synergy of these two techniques. In the last section, the instrument concept resulting from the assessment of the feasibility of the combined Raman/LIBS EBB is presented.

  18. Frequency-asymmetric gain profile in a seeded Raman amplifier

    International Nuclear Information System (INIS)

    Repasky, K.S.; Carlsten, J.L.

    1996-01-01

    This paper examines the effect of index guiding on Raman gain. The slowly varying Maxwell wave equation including both the real and imaginary parts of the Raman susceptibility for a seeded Raman amplifier is explored. Using a Gauss-Laguerre mode expansion for the Stokes field, the output Stokes energy is numerically studied as a function of gain and detuning from the Raman resonance. The calculations indicate that the real part of the Raman susceptibility causes the Raman medium to act as a lens when the Stokes seed is detuned from the Raman resonance. This focusing effect leads to higher peak Stokes energy when the Stokes seed is tuned to the blue side of the Raman resonance. Specifically for Raman scattering in H 2 with a pump laser at 532 nm and an input seed near 683 nm, the peak Stokes energy can shift by as much as 300 MHz from the Raman resonance. An experiment which confirms these predictions is also presented. copyright 1996 The American Physical Society

  19. Quantum statistics of stimulated Raman and hyper-Raman scattering by master equation approach

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1991-01-01

    A quantum theoretical density matrix formalism of stimulated Raman and hyper-Raman scattering using master equation approach is presented. The atomic system is described by two energy levels. The effects of upper level population and the cavity loss are incorporated. The photon statistics, coherence characteristics and the building up of the Stokes field are investigated. (author). 8 figs., 5 refs

  20. Raman Microscopy and Microspectroscopy of Biological Materials

    NARCIS (Netherlands)

    Sijtsema, N.M.; Otto, C.; Segers-Nolten, G.M.J.; Greve, J.; Merlin, Jean Claude; Turrell, Sylvia; Huvenne, Jean Pierre

    With a confocal Raman microspectrometer it is possible to collect Raman signal of a volume of only 1 µm3 Therefore, this technique offers the possibility to obtain information about the chemical composition of small cell structures like granules, without destroying the cell [1], This makes Raman

  1. Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses.

    Science.gov (United States)

    Rivero, Clara; Stegeman, Robert; Couzi, Michel; Talaga, David; Cardinal, Thierry; Richardson, Kathleen; Stegeman, George

    2005-06-13

    Disagreements on the Raman gain response of different tellurite-based glasses, measured at different wavelengths, have been recently reported in the literature. In order to resolve this controversy, a multi-wavelength Raman cross-section experiment was conducted on two different TeO2-based glass samples. The estimated Raman gain response of the material shows good agreement with the directly-measured Raman gain data at 1064 nm, after correction for the dispersion and wavelength-dependence of the Raman gain process.

  2. Raman technique application for rubber blends characterization

    Directory of Open Access Journals (Sweden)

    Smitthipong, W.

    2007-11-01

    Full Text Available Raman spectroscopy has been employed in a number of studies to examine the morphological changes in a variety of materials. It is a non-destructive analysis method and an equally useful method for the investigation of material structure. Recently, Raman spectroscopy has been developed to employ as an imaging instrumentation. Sample surface scanning in X- and Y-axis and sample depth (Z-axis can be carried out by modifying the focus of the laser beam from the Raman microscope. Therefore, three-dimensional images can be thus built by using special software. The surface and bulk properties of immiscible rubber blend were investigated by Raman spectroscopy. The results obtained by Raman spectroscopy were in good agreement with those of Scanning Electron Microscope (SEM. The combination of Raman spectrometry and SEM clearly elucidates the identification of phases between the dispersed phase and the matrix (continuous phase of the immiscible rubber blends.

  3. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  4. Raman Chair | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Raman Chair. The Raman Chair was instituted in 1972 by the Government of India to commemorate the memory of the founder of the Academy, Sir C. V. Raman. Eminent scientists are invited by the Council of the Academy to occupy the Chair, for periods of between six weeks and six months. Raman Professors who have ...

  5. Raman mapping of microcrystalline silicon thin films with high spatial resolution

    Czech Academy of Sciences Publication Activity Database

    Ledinský, Martin; Vetushka, Aliaksi; Stuchlík, Jiří; Fejfar, Antonín; Kočka, Jan

    2010-01-01

    Roč. 7, 3-4 (2010), s. 704-707 ISSN 1862-6351 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : Raman * atomic force microscopy * microcrystalline silicon Subject RIV: BM - Solid Matter Physics ; Magnetism http://www3.interscience.wiley.com/journal/123277609/abstract

  6. Novel strategies of Raman imaging for brain tumor research.

    Science.gov (United States)

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  7. Integration of Correlative Raman microscopy in a dual beam FIB-SEM J. of Raman Spectroscopy

    NARCIS (Netherlands)

    Timmermans, Frank Jan; Liszka, B.; Lenferink, Aufrid T.M.; van Wolferen, Hendricus A.G.M.; Otto, Cornelis

    2016-01-01

    We present an integrated confocal Raman microscope in a focused ion beam scanning electron microscope (FIB SEM). The integrated system enables correlative Raman and electron microscopic analysis combined with focused ion beam sample modification on the same sample location. This provides new

  8. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  9. Glioblastoma cells labeled by robust Raman tags for enhancing imaging contrast.

    Science.gov (United States)

    Huang, Li-Ching; Chang, Yung-Ching; Wu, Yi-Syuan; Sun, Wei-Lun; Liu, Chan-Chuan; Sze, Chun-I; Chen, Shiuan-Yeh

    2018-05-01

    Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and "broadcasts" stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.

  10. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications.

    Science.gov (United States)

    Jehlicka, J; Edwards, H G M; Culka, A

    2010-07-13

    Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.

  11. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    Science.gov (United States)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  12. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.

    Science.gov (United States)

    Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui

    2017-07-05

    DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.

  13. Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications

    International Nuclear Information System (INIS)

    Djaker, Nadia; Lenne, Pierre-Francois; Marguet, Didier; Colonna, Anne; Hadjur, Christophe; Rigneault, Herve

    2007-01-01

    Recent advances in laser physics have permitted the development of a new kind of microscopy based on stimulated Raman scattering. This new technique known as Coherent anti-Stokes Raman scattering (CARS) microscopy allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capabilities. We review recent advances in CARS microscopy, with applications to chemical and biological systems. We also present an application of CARS microscopy with high optical resolution and spectral selectivity, in resolving structures in surface ex vivo stratum corneum by looking at the CH 2 stretching vibrational band. A strong CARS signal is backscattered from an intense forward generated CARS signal in thick samples. This makes noninvasive imaging of deep structures possible, without labeling or chemical treatments

  14. Measurement of the human esophageal cancer in an early stage with Raman spectroscopy

    Science.gov (United States)

    Maeda, Yasuhiro; Ishigaki, Mika; Taketani, Akinori; Andriana, Bibin B.; Ishihara, Ryu; Sato, Hidetoshi

    2014-02-01

    The esophageal cancer has a tendency to transfer to another part of the body and the surgical operation itself sometimes gives high risk in vital function because many delicate organs exist near the esophagus. So the esophageal cancer is a disease with a high mortality. So, in order to lead a higher survival rate five years after the cancer's treatment, the investigation of the diagnosis methods or techniques of the cancer in an early stage and support the therapy are required. In this study, we performed the ex vivo experiments to obtain the Raman spectra from normal and early-stage tumor (stage-0) human esophageal sample by using Raman spectroscopy. The Raman spectra are collected by the homemade Raman spectrometer with the wavelength of 785 nm and Raman probe with 600-um-diameter. The principal component analysis (PCA) is performed after collection of spectra to recognize which materials changed in normal part and cancerous pert. After that, the linear discriminant analysis (LDA) is performed to predict the tissue type. The result of PCA indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by LDA which model is made by tryptophan bands.

  15. Imaging actinic keratosis by high-definition optical coherence tomography. Histomorphologic correlation

    DEFF Research Database (Denmark)

    Boone, Marc A L M; Norrenberg, Sarah; Jemec, Gregor B E

    2013-01-01

    With the continued development of non-invasive therapies for actinic keratosis such as PDT and immune therapies, the non-invasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography is a high-resolution imaging tool, with micrometre resolution in both...... transversal and axial directions, enable to visualize individual cells up to a depth of around 570 μm filling the imaging gap between conventional optical coherence tomography and reflectance confocal microscopy. We sought to determine the feasibility of detecting and grading of actinic keratosis...... by this technique using criteria defined for reflectance confocal microscopy compared to histology. In this pilot study, skin lesions of 17 patients with a histologically proven actinic keratosis were imaged by high-definition optical coherence tomography just before excision and images analysed qualitatively...

  16. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  17. Unraveling the Raman Enhancement Mechanism on 1T'-Phase ReS2 Nanosheets.

    Science.gov (United States)

    Miao, Peng; Qin, Jing-Kai; Shen, Yunfeng; Su, Huimin; Dai, Junfeng; Song, Bo; Du, Yunchen; Sun, Mengtao; Zhang, Wei; Wang, Hsing-Lin; Xu, Cheng-Yan; Xu, Ping

    2018-04-01

    2D transition metal dichalcogenides materials are explored as potential surface-enhanced Raman spectroscopy substrates. Herein, a systematic study of the Raman enhancement mechanism on distorted 1T (1T') rhenium disulfide (ReS 2 ) nanosheets is demonstrated. Combined Raman and photoluminescence studies with the introduction of an Al 2 O 3 dielectric layer unambiguously reveal that Raman enhancement on ReS 2 materials is from a charge transfer process rather than from an energy transfer process, and Raman enhancement is inversely proportional while the photoluminescence quenching effect is proportional to the layer number (thickness) of ReS 2 nanosheets. On monolayer ReS 2 film, a strong resonance-enhanced Raman scattering effect dependent on the laser excitation energy is detected, and a detection limit as low as 10 -9 m can be reached from the studied dye molecules such as rhodamine 6G and methylene blue. Such a high enhancement factor achieved through enhanced charge interaction between target molecule and substrate suggests that with careful consideration of the layer-number-dependent feature and excitation-energy-related resonance effect, ReS 2 is a promising Raman enhancement platform for sensing applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of an 8K ultra-high-definition television system in a case of laparoscopic gynecologic surgery.

    Science.gov (United States)

    Aoki, Yoichi; Matsuura, Masahiko; Chiba, Toshio; Yamashita, Hiromasa

    2017-09-01

    Various endoscopic devices have been developed for advanced minimally invasive surgery. We recently applied a new 8K ultra-high-definition television system during laparoscopic treatment of endometriosis. The procedure, which is described in detail, stands as the first reported application of an 8K ultra-high-definition system for laparoscopic gynecologic surgery. Comparison is made between depiction of the lesion by the new system and depiction by a full high-definition system. Improved diagnostic accuracy resulted from the increased image resolution, and we believe that this and other advantages will lead to widespread acceptance and further application of 8K ultra-high-definition systems in the field of gynecologic surgery.

  19. High-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Norrenberg, Sarah; Jemec, Gregor

    2013-01-01

    to those described for reflectance confocal microscopy but with the advantages not only to visualize individual cells up to a depth of 570 μm but also in both slice and en face mode. An adapted algorithmic method for pattern analysis of common inflammatory skin diseases could be proposed. This new......High-definition optical coherence tomography (HD-OCT) is a non-invasive technique for morphological investigation of tissue with cellular resolution filling the imaging gap between reflectance confocal microscopy and conventional optical coherence tomography. The aim of this study is first...... dermatitis. Additional studies to test the sensitivity and specificity of the proposed algorithm for pattern analysis are essential. The other categories of Ackerman's pattern recognition need to be evaluated. This study provides a set of morphological features generated by HD-OCT imaging very similar...

  20. Imaging with extrinsic Raman labels

    NARCIS (Netherlands)

    Sijtsema, N M; Duindam, J J; Puppels, G J; Otto, C; Greve, J

    1996-01-01

    In two separate examples we demonstrate the use of extrinsic Raman scattering probes for imaging of biological samples. First, the distribution of cholesterol in a rat eye Lens is determined with the use of the Raman scattered light from filipin, a molecule which binds specifically to cholesterol.

  1. Raman Mapping for the Investigation of Nano-phased Materials

    Science.gov (United States)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  2. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    International Nuclear Information System (INIS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N 2 , H 2 , CO 2 , O 2 , and CH 4 . Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location

  3. Molecular selectivity of graphene-enhanced Raman scattering.

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Song, Yi; Fang, Wenjing; Zhang, Jin; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-05-13

    Graphene-enhanced Raman scattering (GERS) is a recently discovered Raman enhancement phenomenon that uses graphene as the substrate for Raman enhancement and can produce clean and reproducible Raman signals of molecules with increased signal intensity. Compared to conventional Raman enhancement techniques, such as surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS), in which the Raman enhancement is essentially due to the electromagnetic mechanism, GERS mainly relies on a chemical mechanism and therefore shows unique molecular selectivity. In this paper, we report graphene-enhanced Raman scattering of a variety of different molecules with different molecular properties. We report a strong molecular selectivity for the GERS effect with enhancement factors varying by as much as 2 orders of magnitude for different molecules. Selection rules are discussed with reference to two main features of the molecule, namely its molecular energy levels and molecular structures. In particular, the enhancement factor involving molecular energy levels requires the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies to be within a suitable range with respect to graphene's Fermi level, and this enhancement effect can be explained by the time-dependent perturbation theory of Raman scattering. The enhancement factor involving the choice of molecular structures indicates that molecular symmetry and substituents similar to that of the graphene structure are found to be favorable for GERS enhancement. The effectiveness of these factors can be explained by group theory and the charge-transfer interaction between molecules and graphene. Both factors, involving the molecular energy levels and structural symmetry of the molecules, suggest that a remarkable GERS enhancement requires strong molecule-graphene coupling and thus effective charge transfer between the molecules and graphene. These conclusions are further

  4. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    Science.gov (United States)

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  5. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  6. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  7. Raman chemical imaging technology for food and agricultural applications

    Science.gov (United States)

    This paper presents Raman chemical imaging technology for inspecting food and agricultural products. The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. The main topics include Raman scattering principles, Raman spectroscopy measurem...

  8. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    International Nuclear Information System (INIS)

    Barbara, D.; Prawer, S.; Jamieson, D.N.

    1996-01-01

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, β-C 3 N 4 , is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs

  9. Water-Vapor Raman Lidar System Reaches Higher Altitude

    Science.gov (United States)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  10. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  11. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  12. Citrus fruits freshness assessment using Raman spectroscopy.

    Science.gov (United States)

    Nekvapil, Fran; Brezestean, Ioana; Barchewitz, Daniel; Glamuzina, Branko; Chiş, Vasile; Cintă Pinzaru, Simona

    2018-03-01

    The freshness of citrus fruits commonly available in the market was non-destructively assessed by Raman spectroscopy. Intact clementine, mandarin and tangerine species were characterised concerning their carotenoids skin Raman signalling in a time course from the moment they were acquired as fresh stock, supplying the market, to the physical degradation, when they were no longer attractive to consumers. The freshness was found to strongly correlate to the peel Raman signal collected from the same area of the intact fruits in a time course of a maximum of 20days. We have shown that the intensity of the carotenoid Raman signal is indeed a good indicator of fruit freshness and introduced a Raman coefficient of freshness (C Fresh ), whose time course is linearly decreasing, with different slope for different citrus groups. Additionally, we demonstrated that the freshness assessment could be achieved using a portable Raman instrument. The results could have a strong impact for consumer satisfaction and the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    Science.gov (United States)

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  14. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  15. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  16. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  17. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  18. Raman Spectra from Pesticides on the Surface of Fruits

    International Nuclear Information System (INIS)

    Zhang, P X; Zhou Xiaofang; Cheng, Andrew Y S; Fang Yan

    2006-01-01

    Raman spectra of several vegetables and fruits were studied by micro-Raman spectrometer (514.5 nm) and Near-infrared Fourier Transform Raman spectrometer (FTRaman). It is shown that at 514.5 nm excitation, most of the spectra are from that of carotene with some very strong fluorescence in some cases. While at 1064 nm wavelength excitation, the spectra from the different samples demonstrate different characteristic Raman spectra without fluorescence. We discuss the spectroscopic difference by the two excitation wavelengths, and the application of Raman spectra for detection of pesticides left on the surface of vegetables and fruits. Raman spectra of fruits and pesticides were successfully recorded, and using the FT-Raman spectra the pesticides left on the surface of the fruits can be detected conveniently

  19. Raman tensor elements of β-Ga2O3.

    Science.gov (United States)

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-11-03

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga 2 O 3 are investigated by experiment and theory. The low symmetry of β-Ga 2 O 3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga 2 O 3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations.

  20. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Michael [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Becker, Katja [Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen (Germany); Popp, Jürgen [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany)

    2015-09-24

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  1. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    International Nuclear Information System (INIS)

    Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten

    2015-01-01

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  2. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  3. All-in-fibre Rayleigh-rejection filter for raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, L.; Lund-Hansen, T.

    2012-01-01

    An in-line Rayleigh-rejection filter for Raman spectroscopy is demonstrated. The device is based on a solid-core photonic crystal fibre infiltrated with a high-index liquid. At room temperature, the filter exhibits a full width at half maximum bandwidth of 143 nm and an insertion loss of 0.3 d......B. A shift of 32 nm of the central wavelength is demonstrated by increasing the temperature from 22 to 70°C. FEM simulations of the spectra at different temperatures showed good agreement with experimental results. The device was successfully employed to perform Raman spectroscopy of a sample of cyclohexane...

  4. HPLC assisted Raman spectroscopic studies on bladder cancer

    Science.gov (United States)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  5. In vivo Raman spectroscopy of cervix cancers

    Science.gov (United States)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  6. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    International Nuclear Information System (INIS)

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  7. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  8. Raman spectroscopy as a tool for the characterization and classification of pollen; Raman-Spektroskopie als Werkzeug fuer die Charakterisierung und Klassifizierung von Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Franziska

    2010-09-20

    The chemical composition of pollen, the physiological containers that produce the male gametophytes of seed plants, has been a subject of research of plant physiologists, biochemists, and lately even material scientists for various reasons. The aim of this work was the analysis of whole pollen grains and pollen components by Raman Spectroscopy. These experiments were complemented by other techniques such as Enviromental Scanning Electron Microscopy (ESEM), High-Performance- Thin-Layer-Chromatography (HPTLC), Infrared Spectroscopy (IR) and Nuclear-Magnetic-Resonance Spectroscopy (NMR). As reported here, individual fresh pollen grains and their morphological constituents can be characterized and also classified in situ without prior preparation. Classification of pollen is based on their biochemical fingerprint revealed in their Raman spectrum. Raman spectroscopy is nondestructive and can be carried out with single pollen grains or fragments. It could be shown that the biochemical makeup of the pollen (as a part of the recognition/mating system) is altered during formation of a new biological species and that the species-specific chemical similarities and dissimilarities indeed reflect in the Raman spectral fingerprint. On the basis of the chemical information, unsupervised multivariate analysis consisting of hierarchical clustering revealed in most cases chemical similarities between species that were indicative of both phylogenetic relationship and matin behavior. Therefore experiments were conducted that gave the in situ Raman spectroscopic signatures ot the carotenoid molecules. As the data indicates, the in situ Raman spectra of the carotenoid molecules measured in single intact pollen grains provide in situ evidence of interspecies variations in pollen carotenoid content, structure, and/or assembly without prior purification. Results from HPTLC confirmed that carotenoid composition varied greatly between species and that the different in situ spectral

  9. Gold Nanoparticles as Probes for Nano-Raman Spectroscopy: Preliminary Experimental Results and Modeling

    Directory of Open Access Journals (Sweden)

    V. Le Nader

    2012-01-01

    Full Text Available This paper presents an effective Tip-Enhanced Raman Spectrometer (TERS in backscattering reflection configuration. It combines a tip-probe nanopositioning system with Raman spectroscope. Specific tips were processed by anchoring gold nanoparticles on the apex of tapered optical fibers, prepared by an improved chemical etching method. Hence, it is possible to expose a very small area of the sample (~20 nm2 to the very strong local electromagnetic field generated by the lightning rod effect. This experimental configuration was modelled and optimised using the finite element method, which takes into account electromagnetic effects as well as the plasmon resonance. Finally, TERS measurements on single-wall carbon nanotubes were successfully performed. These results confirm the high Raman scattering enhancement predicted by the modelling, induced by our new nano-Raman device.

  10. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning

    2006-01-01

    Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images...... are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges...... up to ∼200 m. Applications for optical tomography in highly scattering media such as water and human tissue are mentioned. © 2006 Optical Society of America....

  11. Laser Raman and resonance Raman spectroscopies of natural semiconductor mineral cinnabar, α-HgS, from various mines

    International Nuclear Information System (INIS)

    Gotoshia, Sergo V; Gotoshia, Lamara V

    2008-01-01

    Natural minerals α-HgS from various mines have been studied by laser Raman spectroscopy and resonance Raman spectroscopy. The crystals differ from each other in the content of selenium impurity, included in samples from some mines. Based on the Raman spectra and the factor-group analysis the classification of the first order phonons and then the comparison of the results with the results from other works were carried out. The Raman spectra analysis of minerals from various mines show the selenium impurity gap vibration at 203 cm -1 and 226 cm -1 frequencies, respectively. On the basis of statistical measurements of the Raman spectra one can conclude that impurity frequencies of α-HgS may be generally used for the identification of the mine. Resonance Raman scattering for pure minerals has been studied by a dye laser. Phonon resonance in the indirect semiconductor α-HgS is found to be far more intense than the indirect resonance detected until now in various semiconductors in the proximity of the first indirect band E g , for instance, in GaP. In our opinion, this may be conditioned by cinnabar band structure peculiarities. Low resonance has also been fixed in 'dirty' minerals at the spectral band frequency of 203 cm -1 characterizing gap vibration of isomorphic impurity Se in cinnabar

  12. Raman spectroscopic study of the oxidation state of Eu in molten LiCl-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung; Yun, Jong-Il [KAIST, Daejeon(Korea, Republic of)

    2016-10-15

    Spectroscopy can provide high reliability for the quantitative analysis of such system. The molar absorptivity of Eu(II) at 325 nm is reported as about 1645 M{sup -1}cm{sup -1}, which is too high to apply to higher concentration. A high-temperature Raman spectroscopy has been set and employed for analyzing the molecular structure and coordination complex and investigating the oxidation state of europium in molten LiCl-KCl. Europium can be present in divalent state while many other lanthanides exist in trivalent state. The thermodynamic properties of europium ions have been studied using electrochemical methods, spectroscopic methods, and EPR technique. Although there has been discrepancy of the reduced amount of europium in previous works, the majority of Eu(III) is thought to be reduced to Eu(II) in molten LiCl-KCl spontaneously at relatively low concentration (< 7.5 × 10{sup -4} M). Raman spectroscopy was employed to investigate the oxidation state of EuClx in LiCl-KCl at 500 .deg. C. The Raman scattering results suggest the majority of trivalent europium is reduced to divalent state with the composition change by vaporization. The Raman bands show highly asymmetric structure, quite different from regular octahedral structure.

  13. Field Raman spectrograph for environmental analysis

    International Nuclear Information System (INIS)

    Carrabba, M.M.

    1995-01-01

    The use of Raman Spectroscopy in the screening of soils, ground water, and surface waters for pollutants is described. A probe accessory for conducting surface enhanced Raman Spectroscopy is undergoing testing for dilute chlorinated solvents

  14. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    Science.gov (United States)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  15. Probing anisotropic magnetotransport in manganese perovskites using Raman spectroscopy

    International Nuclear Information System (INIS)

    Liu, H.L.; Yoon, S.; Cooper, S.L.; Cheong, S.; Han, P.D.; Payne, D.A.

    1998-01-01

    We report an electronic Raman scattering study of the colossal magnetoresistance (CMR) manganese perovskites as a function of temperature, magnetic field, symmetry, and doping. The low-frequency electronic Raman spectrum in the paramagnetic-insulating phase of these materials is characterized by a diffusive Raman-scattering response, while a nearly flat continuum response is observed in the ferromagnetic-metallic state. We found that the B 1g -symmetry electronic scattering intensity is significantly reduced with applied magnetic field near T C , in a manner reminiscent of the dc magnetoresistivity. The strongly field-dependent scattering rate in the B 1g channel appears to reflect the highly field-dependent mobility along the Mn-O bond direction expected in the double exchange mechanism. In addition, we observe a persistent field dependence in the B 1g electronic scattering response for T C , suggesting that the ferromagnetic phase is inhomogeneous, perhaps consisting of both metallic and insulating components. copyright 1998 The American Physical Society

  16. Abnormal anti-Stokes Raman emission as a coherent anti-Stokes Raman scattering-like process in disordered media

    International Nuclear Information System (INIS)

    Baltog, Ioan; Baibarac, Mihaela; Smaranda, Ion; Lefrant, Serge

    2011-01-01

    In this paper, we demonstrate that, by continuous single beam excitation, one can generate an abnormal anti-Stokes Raman emission (AASRE) whose properties are similar to a coherent anti-Stokes Raman scattering (CARS). The effect has been observed in materials which possess intrinsically nonlinear properties (LiNbO 3 and CdS), which have the electric susceptibility of third order different from zero, χ (3) ≠ 0, as well as in materials that become nonlinear under resonant optical excitation. In the latter case, we used poly-3,4-ethylendioxythiophene (PEDOT) in its undoped state deposited electrochemically on Au support. Raman studies corroborated with images of optical microscopy demonstrate that the production of AASRE is conditioned by the existence of a particular morphology of the sample able to ensure efficient transport of the light inside the sample through a multiple light scattering mechanism. In this context, it was found that LiNbO 3 and CdS in powder form as well as the PEDOT films layered on a rough Au substrate are suitable morphological forms. We explain AASRE as resulting from a wave-mixing mechanism of the incident laser light ω l with a Stokes-shifted Raman light ω S produced by a spontaneous Raman light scattering process, both strongly scattered inside the sample. As a CARS process, AASRE is conditioned by the achievement of phase-matching requirements, which makes the difference between the wave vectors of mixing light close to zero, Δk =/2k l - k S - k CARS /∼ 0. In condensed media, the small dispersion of the refractive index makes Δk ∼ 0 so that the formation of a favourable phase-matching geometry may be accomplished even at a crossing angle θ of travelling scattered light ω l and ω S . For tightly focused beams, the requirement of phase matching relaxes; it is no longer sensitive to the Raman shift, so that a wide intense anti-Stokes Raman spectrum is observed at an angle larger than the Stokes Raman spectrum.

  17. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    Science.gov (United States)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition

  18. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    International Nuclear Information System (INIS)

    Wood, Sebastian; Hollis, Joseph Razzell; Kim, Ji-Seon

    2017-01-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π -electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices. (topical review)

  19. Raman spectroscopy: in vivo quick response code of skin physiological status

    Science.gov (United States)

    Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette

    2014-11-01

    Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.

  20. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  1. In vivo confocal Raman spectroscopy of the human cornea.

    Science.gov (United States)

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  2. Determination of drug content in semisolid formulations by non-invasive spectroscopic methods: FTIR - ATR, - PAS, - Raman and PDS

    International Nuclear Information System (INIS)

    Gotter, B; Hein, J; Neubert, R H H; Faubel, W; Heissler, St

    2010-01-01

    This study elucidates the potential use of photothermal deflection spectroscopy (PDS), FTIR photoacoustic (FTIR-PAS), FT Raman, and FTIR-attenuated total reflection (FTIR-ATR) spectroscopy as analytical tools for investigating the drug content in semisolid formulations. Regarding the analytical parameters, this study demonstrates the photothermal beam deflection to be definitely comparable to well established spectroscopic methods for this purpose. The correlation coefficients range from 0.990 to 0.999. Likewise, repeatability and limit of detection are comparable.

  3. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  4. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.; Yang, Yang

    2012-01-01

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  5. Sensitivity of Raman spectroscopy to normal patient variability

    Science.gov (United States)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  6. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    Science.gov (United States)

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  7. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  8. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    Science.gov (United States)

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm -1 were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Alexis; Kliewer, Christopher J., E-mail: cjkliew@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  10. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    Science.gov (United States)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  11. Application of Raman spectroscopy to forensic fibre cases.

    Science.gov (United States)

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  12. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, D.; Prawer, S.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, {beta}-C{sub 3}N{sub 4}, is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs.

  13. Laser annealing effects of the Raman laser on nitrogen implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, D; Prawer, S; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Raman analysis is a popular method of investigating crystallite sizes, ordering and the types of bonds that exist in ion irradiated carbon materials, namely graphite, diamond and glassy carbon (G.C.). In particular Raman spectroscopy is used in determining the tetrahedral bonding required for the elusive and potentially important new material called carbon nitride. Carbon nitride, {beta}-C{sub 3}N{sub 4}, is predicted to exist in several forms. Forming the tetrahedral bond between C and N has proved troublesome bain of many experimenters. A proven method for synthesizing novel materials is ion implantation. Thus G.C. was implanted with N at low temperatures so that diffusion of the implanted N would be hindered. G.C. is a relatively hard, chemically inert, graphitic material. The opaque property of G.C. means that Raman spectroscopy will only give information about the structures that exist at the surface and near surface layers. It was decided, after observing conflicting Raman spectra at different laser powers, that an investigation of the laser annealing effects of the Raman laser on the N implanted G.C. was warranted. The results of the preliminary investigation of the effects of increasing the Raman laser power and determining a power density threshold for high dose N implanted G.C. are discussed. 4 refs., 4 figs.

  14. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  15. Pressure-induced crystallization and phase transformation of amorphous selenium: Raman spectroscopy and x-ray diffraction studies

    International Nuclear Information System (INIS)

    Yang Kaifeng; Cui Qiliang; Hou Yuanyuan; Liu Bingbing; Zhou Qiang; Hu Jingzhu; Mao, H-K; Zou Guangtian

    2007-01-01

    High-pressure Raman spectroscopy studies have been carried out on amorphous Se (a-Se) at room temperature in a diamond anvil cell with an 830 nm exciting line. Raman evidence for the pressure-induced crystallization of a-Se and the coexistence of the unknown high-pressure phase with the hexagonal phase is presented for the first time. Further experimental proof of high-pressure angle-dispersive x-ray diffraction studies for a-Se indicates that the unknown high-pressure phase is also a mixture phase of the tetragonal I4 1 /acd and Se IV structure. Our Raman and x-ray diffraction results suggest that hexagonal Se I undergoes a direct transition to triclinic Se III at about 19 GPa, which is in good agreement with the theoretical prediction

  16. Visualization and Non-Destructive Quantification of Inkjet-Printed Pharmaceuticals on Different Substrates Using Raman Spectroscopy and Raman Chemical Imaging

    DEFF Research Database (Denmark)

    Edinger, Magnus; Bar-Shalom, Daniel; Rantanen, Jukka

    2017-01-01

    and ethanol was developed. Inkjet printing technology was used to apply haloperidol ink onto three different substrates. Custom-made inorganic compacts and dry foam, as well as marketed paracetamol tablets were used as the substrates. RESULTS: Therapeutic personalized doses were printed by using one to ten...... printing rounds on the substrates. The haloperidol content in the finished dosage forms were determined by high-performance liquid chromatography (HPLC). The distribution of the haloperidol on the dosage forms were visualized using Raman chemical imaging combined with principal components analysis (PCA...... prediction was observed for the paracetamol tablets. It was not possible to quantify haloperidol on the dry foam due to the low and varying density of the substrate. CONCLUSIONS: Raman spectroscopy is a useful tool for visualization and quality control of inkjet printed personalized medicine....

  17. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...

  18. Multi-wavelength Brillouin Raman erbium-doped fiber laser generation in a linear cavity

    International Nuclear Information System (INIS)

    Shirazi, M R; Harun, S W; Ahmad, H

    2014-01-01

    A multi-wavelength Brillouin Raman erbium-doped fiber laser is proposed and demonstrated. The setup uses a 7.7 km dispersion compensating fiber simultaneously as the Brillouin and Raman nonlinear gain media and operates in conjunction with a 3 m erbium-doped fiber as the linear gain medium. At a Brillouin pump (BP) wavelength of 1530 nm, where Raman and erbium gains overlap each other, 34 Brillouin Stokes lines having line spacing of 0.075 nm are created by using a Raman pump power of only 24.1 dBm, an erbium pump power of about 22.1 dBm, and a BP power of 6.5 dBm in the proposed linear cavity. The system is highly efficient and is able to generate many comparable peak-power lines at a low pump power. (paper)

  19. Raman mapping study of the pigments in the dancheong of Korean traditional buildings

    Science.gov (United States)

    Ji, Jeong-Eun; Han, Kiok; Nam, Jiyeon; Kim, Seung; Kang, Dai-Ill; Park, Min-Jung; Lee, Han-Hyoung; Yang, In-Sang

    2017-04-01

    Korea experienced a tragic loss of most of the Sungnyemun building in an arson attack in 2008. Few scientific records of the pigments originally used in the Korean national treasure exist, thus, the restoration of Sungnyemun was a serious failure. Because the Raman spectroscopic method has the advantage of analyzing the pigment phases in a simple, nondestructive, and noncontact way, it is becoming more important in scientific research on the colors present in cultural assets. In this study, Raman mapping measurements of the pigments in several "dancheong" - color decorations of the surfaces of the wood structure of Korean buildings - samples from Bongjeongsa Geukrakjeon and Sunglimsa Bogwangjeon are presented. The distribution of the pigments, which is difficult to observe with the naked eye, can be found in detail through a high-resolution Raman mapping image. A change of Raman spectrum due to the powderization of some pigments in the colored layer is also observed. The powderization of the pigments is considered to be due to weathering. Our Raman study will be helpful for the preservation and restoration of cultural heritage in general.

  20. Raman spectra of human dentin mineral

    NARCIS (Netherlands)

    Tsuda, H; Ruben, J; Arends, J

    Human dentin mineral has been investigated by using micro-Raman spectroscopy. Fluorescence and thermal problems were largely avoided by preparing dentin samples by grinding and ultrasonic agitation in acetone. The Raman spectral features were consistent with those of impure hydroxyapatite containing

  1. Raman investigation of GaP–Si interfaces grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, A.; Cornet, C.; Boyer, S.; Nguyen Thanh, T.; Létoublon, A.; Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Moreac, A. [Institut de Physique de Rennes, UMR-CNRS n°6251, Université Rennes1, Campus de Beaulieu — 35042 Rennes cedex (France); Ponchet, A. [CEMES, UPR CNRS 8011, F-31055 Toulouse (France); Le Corre, A. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France)

    2013-08-31

    Raman spectroscopy was used to investigate the residual strain in thin GaP layers deposited on Si substrates by molecular beam epitaxy. Different growth conditions were used to obtain a clean GaP–Si interface, including migration enhanced epitaxy. The strain induced Raman shifts of the longitudinal and the transverse optical GaP lattice modes were analyzed. The effects of crystalline defects are discussed, supported by high resolution transmission electron microscopy and X-ray scattering studies. Finally, Raman Spectroscopy reveals the presence of disorder (or surface)-activated optical phonons. This result is discussed in the light of surface morphology analyses. - Highlights: ► GaP thin layers grown by molecular beam epitaxy on Si substrates. ► Strain-induced Raman shifts of the optical GaP modes are analyzed. ► Simulation of optical GaP modes by density functional perturbation theory. ► Comparison with X-ray diffraction and electron and scanning probe microscopy data.

  2. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    Science.gov (United States)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  3. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    Science.gov (United States)

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution

  4. In-SEM Raman microspectroscopy coupled with EDX - a case study of uranium reference particles

    International Nuclear Information System (INIS)

    Stefaniak, Elzbieta A.; Pointurier, Fabien; Marie, Olivier; Truyens, Jan; Aregbe, Yetunde

    2014-01-01

    Information about the molecular composition of airborne uranium-bearing particles may be useful as an additional tool for nuclear safeguards. In order to combine the detection of micrometer-sized particles with the analysis of their molecular forms, we used a hybrid system enabling Raman microanalysis in high vacuum inside a SEM chamber (SEM-SCA system). The first step involved an automatic scan of a sample to detect and save coordinates of uranium particles, along with X-ray microanalysis. In the second phase, the detected particles were relocated in a white light image and subjected to Raman microanalysis. The consecutive measurements by the two beams showed exceptional fragility of uranium particles, leading to their ultimate damage and change of uranium oxidation state. We used uranium reference particles prepared by hydrolysis of uranium hexafluoride to test the reliability of the Raman measurements inside the high vacuum. The results achieved by the hybrid system were verified by using a standalone Raman micro spectrometer. When deposited on exceptionally smooth substrates, uranyl fluoride particles smaller than 1000 nm could successfully be analyzed with the SEM-SCA system. (authors)

  5. Identification of cave minerals by Raman spectroscopy: new technology for non-destructive analysis

    Directory of Open Access Journals (Sweden)

    White William B.

    2006-07-01

    Full Text Available The usual tools are X-ray powder diffraction, the optical microscope, and the scanning electron microscope. X-ray diffraction gives a definitive fingerprint by which the mineral can be identified by comparison with a catalog of reference patterns. However, samples must be ground to powder and unstable hydrated minerals may decompose before analysis is complete. Raman spectroscopy also provides a fingerprint useful for mineral identification but with the additional advantage that some a-priori interpretation of the spectra is possible (distinguishing carbonates from sulfates, for example. Because excitation of the spectra is by means of a laser beam, it is possible to measure the spectra of samples in sealed glass containers, thus preserving unstable samples. Because laser beams can be focused, spectra can be obtained from individual grains. New technology has reduced the size of the instrument and also the sensitivity of the optical system to vibration and transport so that a portable instrument has become possible. The sampling probe is linked to the spectrometer by optical fibers so that large specimens can be examined without damage. Comparative spectra of common cave minerals demonstrate the value of Raman spectra as an identification technique.

  6. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  7. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    Science.gov (United States)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  8. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  9. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.

    Science.gov (United States)

    Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody

    2018-04-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.

  10. Compact, integrable, and long life time Raman multiline UV-Vis source based on hypocycloid core Kagome HC-PCF

    Science.gov (United States)

    Chafer, M.; Lekiefs, Q.; Gorse, A.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F.

    2017-02-01

    Raman-gas filled HC-PCF has proved to be an outstanding Raman-convertor, as illustrated by the generation of more than 5 octaves wide Raman comb using a hydrogen-filled Kagome HC-PCF pumped with high power picosecond-laser, or the generation of multiline Raman-source in the UV-Vis using a very compact system pumped with micro-chip laser. Whilst these demonstrations are promising, a principal challenge for the industrialization of such a Raman source is its lifetime as the H2 diffusion through silica is high enough to leak out from the fiber within only a few months. Here, we report on a HC-PCF based Raman multiline source with a very long life-span. The system consists of hydrogen filled ultra-low loss HC-PCF contained in highly sealed box, coined CombBox, and pumped with a 532 nm micro-chip laser. This combination is a turnkey multiline Raman-source with a "shoe box" size. The CombBox is a robust and compact component that can be integrated and pumped with any common pulsed laser. When pumped with a 32 mW average power and 1 ns frequency-doubled Nd:Yag microchip laser, this Raman-source generates 24 lines spanning from 355 to 745 nm, and a peak power density per line of 260 mW/nm for the strongest lines. Both the output power and the spectrum remained constant over its monitoring duration of more than six months. The spectrum of this multiline laser superimposes with no less than 17 absorption peaks of fluorescent dyes from the Alexa Fluor family used as biological markers.

  11. Ion implantation effects in single crystal Si investigated by Raman spectroscopy

    International Nuclear Information System (INIS)

    Harriman, T.A.; Lucca, D.A.; Lee, J.-K.; Klopfstein, M.J.; Herrmann, K.; Nastasi, M.

    2009-01-01

    A study of the effects of Ar ion implantation on the structural transformation of single crystal Si investigated by confocal Raman spectroscopy is presented. Implantation was performed at 77 K using 150 keV Ar ++ with fluences ranging from 2 x 10 13 to 1 x 10 15 ions/cm 2 . The Raman spectra showed a progression from crystalline to highly disordered structure with increasing fluence. The 520 cm -1 c-Si peak was seen to decrease in intensity, broaden and exhibit spectral shifts indicating an increase in lattice disorder and changes in the residual stress state. In addition, an amorphous Si band first appeared as a shoulder on the 520 cm -1 peak and then shifted to lower wavenumbers as a single broadband peak with a spectral center of 465 cm -1 . Additionally, the emergence of the a-Si TA phonon band and the decrease of the c-Si 2TA and 2TO phonon bands also indicated the same structural transition from crystalline to highly disordered. The Raman results were compared to those obtained by channeling RBS.

  12. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  13. Raman spectroscopy for forensic examination of β-ketophenethylamine "legal highs": reference and seized samples of cathinone derivatives.

    Science.gov (United States)

    Stewart, Samantha P; Bell, Steven E J; Fletcher, Nicholas C; Bouazzaoui, Samira; Ho, Yen Cheng; Speers, S James; Peters, K Laota

    2012-01-20

    Raman spectra of a representative range of β-ketophenethylamine (β-KP), the rapidly growing family of cathinone-related "legal high" recreational drugs, have been recorded. These spectra showed characteristic changes that were associated with the pattern of substitution on the aromatic rings, for example, the compounds carrying substituents at the 4- position could be distinguished from 3,4-methylenedioxy "ecstasy" derivatives. They also showed small but detectable changes with differences in substitution on the ethylamine substituent. These features allowed the β-KPs present in seized casework samples to be identified. The seized samples typically contained only small amounts of bulking agents, which meant that the band intensities of these components within averaged data were very small. In contrast, grid sampling normally gave at least some spectra which had a higher than average proportion of the bulking agent(s), which allowed them to also be identified. This study therefore demonstrates that Raman spectroscopy can be used both to provide a rapid, non-destructive technique for identification of this class of drugs in seized samples and to detect minor constituents, giving a composition profile which can be used for drugs intelligence work. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    Science.gov (United States)

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  15. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    Science.gov (United States)

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  16. In situ Raman mapping of art objects

    Science.gov (United States)

    Brondeel, Ph.; Moens, L.; Vandenabeele, P.

    2016-01-01

    Raman spectroscopy has grown to be one of the techniques of interest for the investigation of art objects. The approach has several advantageous properties, and the non-destructive character of the technique allowed it to be used for in situ investigations. However, compared with laboratory approaches, it would be useful to take advantage of the small spectral footprint of the technique, and use Raman spectroscopy to study the spatial distribution of different compounds. In this work, an in situ Raman mapping system is developed to be able to relate chemical information with its spatial distribution. Challenges for the development are discussed, including the need for stable positioning and proper data treatment. To avoid focusing problems, nineteenth century porcelain cards are used to test the system. This work focuses mainly on the post-processing of the large dataset which consists of four steps: (i) importing the data into the software; (ii) visualization of the dataset; (iii) extraction of the variables; and (iv) creation of a Raman image. It is shown that despite the challenging task of the development of the full in situ Raman mapping system, the first steps are very promising. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799424

  17. Time-lapse Raman imaging of osteoblast differentiation

    Science.gov (United States)

    Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-Da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi

    2015-07-01

    Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.

  18. Raman spectroscopy in nanomedicine: current status and future perspective.

    Science.gov (United States)

    Keating, Mark E; Byrne, Hugh J

    2013-08-01

    Raman spectroscopy is a branch of vibration spectroscopy that is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have significantly added to the range of applications, which now extend from medical diagnostics to exploring the interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has been successful in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques that specifically probe the nanoscale, namely surface- and tip-enhanced Raman spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman for investigation of nanoscale interactions will be described, and recent developments in coherent anti-Stokes Raman scattering will be explored, particularly its applications to biomedical and nanomedical fields.

  19. RAMAN THE MAN, HIS CONTRIBUTION AND HIS MESSAGE

    Indian Academy of Sciences (India)

    GV

    Since research careers did not exist back then, Raman decided to join the .... the sea is blue, Raman was constantly thinking about the quantum aspect ..... Referring to the many papers published by Raman in the Journal of ... After that, the creative period ceases abruptly, though scientific .... science of international quality.

  20. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng; Zhu, Yihan; Lin, Ming; Wang, Qingxiao; Zhao, Lan; Yang, Yang; Yao, Kexin; Han, Yu

    2013-01-01

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized

  1. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  2. Photon induced resonant Raman scattering in CdS

    International Nuclear Information System (INIS)

    Muzart, J.; Lluesma, E.G.; Arguello, C.A.; Leite, R.C.C.

    1975-01-01

    A novel aspect of resonant Raman scattering is observed in CdS by means of the ratio of Stokes to anti-Stokes intensities. With increasing temperature, as the forbidden band energy approaches a value that is twice the incident photon energy, (from a Nd-Yag-laser) a large enhancement of the above ratio is observed for both the LO and the 2LO phonon Raman intensities. The results indicate a resonance with the scattered photon. Resonance is only observed for high incident photon intensities. A possible explanation for the above observations is that flooding of the crystal with photons of energy hν induces states of energy hν displaced from the electronic bands by mixing of electronic and photon states

  3. High definition endoscopy with or without I-Scan increases the detection of celiac disease during routine endoscopy.

    Science.gov (United States)

    Penny, Hugo A; Mooney, Peter D; Burden, Mitchell; Patel, Nisha; Johnston, Alexander J; Wong, Simon H; Teare, Julian; Sanders, David S

    2016-06-01

    Celiac disease remains underdiagnosed at endoscopy. We aimed to assess the utility of I-Scan (virtual chromo-endoscopy) to improve sensitivity of endoscopy to detect markers of villous atrophy in this condition. Patients from 2 UK hospitals were studied in 3 groups. Group 1: standard high definition, white light endoscopy (WLE); Group 2: WLE plus I-Scan; Group 3: non-high definition control group. The presence of endoscopic markers was recorded. At least 4 duodenal biopsies were taken from all patients. Serology was performed concurrently and observations were compared with histology. 758 patients (62% female, mean age 52) were recruited (Group 1: 230; Group 2: 228; Group 3: 300). 135 (17.8%) new diagnoses of coeliac disease were made (21 Group 1; 24 Group 2; 89 Group 3). The sensitivity for detection of endoscopic markers of villous atrophy was significantly higher in both Group 1 (85.7%, p=0.0004) and Group 2 (75%, p=0.005) compared to non-high definition controls (41.6%). There was no significant difference between high definition only and I-Scan groups (p=0.47). In non-high definition endoscopy a missed diagnosis was associated with lesser degrees of villous atrophy (p=0.019) and low tTG titre (p=0.007). High definition endoscopy with or without I-Scan increases the detection of celiac disease during routine endoscopy. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. [A new peak detection algorithm of Raman spectra].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  5. Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy.

    Science.gov (United States)

    Klossek, A; Thierbach, S; Rancan, F; Vogt, A; Blume-Peytavi, U; Rühl, E

    2017-07-01

    Advanced Raman techniques, such as stimulated Raman spectroscopy (SRS), have become a valuable tool for investigations of distributions of substances in biological samples. However, these techniques lack spectral information and are therefore highly affected by cross-sensitivities, which are due to blended Raman bands. One typical example is the symmetric CH 2 stretching vibration of lipids, which is blended with the more intense Raman band of proteins. We report in this work an approach to reduce such cross-sensitivities by a factor of 8 in human skin samples. This is accomplished by careful spectral deconvolutions revealing the neat spectra of skin lipids. Extensive Raman studies combining the complementary advantages of fast mapping and scanning, i.e. SRS, as well as spectral information provided by spontaneous Raman spectroscopy, were performed on the same skin regions. In addition, an approach for correcting artifacts is reported, which are due to transmission and reflection geometries in Raman microscopy as well as scattering of radiation from rough and highly structured skin samples. As a result, these developments offer improved results obtained from label-free spectromicroscopy provided by Raman techniques. These yield substance specific information from spectral regimes in which blended bands dominate. This improvement is illustrated by studies on the asymmetric CH 2 stretching vibration of lipids, which was previously difficult to identify due to the strong background signal from proteins. The advantage of the correction procedures is demonstrated by higher spatial resolution permitting to perform more detailed investigations on lipids and their composition in skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Combining portable Raman probes with nanotubes for theranostic applications.

    Science.gov (United States)

    Bhirde, Ashwinkumar A; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A; Leapman, Richard D; Gutkind, J Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  7. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  8. Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping

    International Nuclear Information System (INIS)

    Depierreux, S.; Goyon, C.; Masson-Laborde, P.E.; Yahia, V.; Loisel, G.; Labaune, C.

    2014-01-01

    Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime. (authors)

  9. The hallmarks of breast cancer by Raman spectroscopy

    Science.gov (United States)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  10. Raman scattering in a Heisenberg S = 1/2 antiferromagnet on the anisotropic triangular lattice

    International Nuclear Information System (INIS)

    Perkins, Natalia; Brenig, Wolfram

    2009-01-01

    We investigate two-magnon Raman scattering from the S = 1/2 Heisenberg antiferromagnet on the triangular lattice (THAF), considering both isotropic and anisotropic exchange interactions. We find that the Raman intensity for the isotropic THAF is insensitive to the scattering geometry, while both the line profile and the intensity of the Raman response for the anisotropic THAF shows a strong dependence on the scattering geometry. For the isotropic case we present an analytical and numerical study of the Raman intensity including both the effect of renormalization of the one-magnon spectrum by 1 = S corrections and final-state magnonmagnon interactions. The bare Raman intensity displays two peaks related to one-magnon van-Hove singularities. We find that 1 = S self-energy corrections to the one-magnon spectrum strongly modify this intensity profile. The central Raman-peak is significantly enhanced due to plateaus in the magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral support narrows considerably. Additionally we investigate final-state interactions by solving the Bethe-Salpeter equation to O(1 = S). In contrast to collinear antiferromagnets, the non-collinear nature of the magnetic ground state leads to an irreducible magnon scattering which is retarded and non-separable already to lowest order. We show that final-state interactions lead to a rather broad Raman-continuum centered around approximately twice the 'roton'-energy.

  11. Field Raman Spectrograph for Environmental Analysis

    International Nuclear Information System (INIS)

    Sylvia, J.M.; Haas, J.W.; Spencer, K.M.; Carrabba, M.M.; Rauh, R.D.; Forney, R.W.; Johnston, T.M.

    1998-01-01

    The widespread contamination found across the US Department of Energy (DOE) complex has received considerable attention from the government and public alike. A massive site characterization and cleanup effort has been underway for several years and is expected to continue for several decades more. The scope of the cleanup effort ranges from soil excavation and treatment to complete dismantling and decontamination of whole buildings. To its credit, DOE has supported research and development of new technologies to speed up and reduce the cost of this effort. One area in particular has been the development of portable instrumentation that can be used to perform analytical measurements in the field. This approach provides timely data to decision makers and eliminates the expense, delays, and uncertainties of sample preservation, transport, storage, and laboratory analysis. In this program, we have developed and demonstrated in the field a transportable, high performance Raman spectrograph that can be used to detect and identify contaminants in a variety of scenarios. With no moving parts, the spectrograph is rugged and can perform many Raman measurements in situ with flexible fiber optic sampling probes. The instrument operates under computer control and a software package has been developed to collect and process spectral data. A collection of Raman spectra for 200 contaminants of DOE importance has been compiled in a searchable format to assist in the identification of unknown contaminants in the field

  12. Measured stimulated Raman gain in methane

    International Nuclear Information System (INIS)

    Lopert, R.B.

    1983-01-01

    This report is about the stimulated Raman effect in methane due to the nu 1 vibration. For various gas pressures between 150 torr and 30 atm, the Raman lineshape function was both experimentally measured and synthesized using a computer model. The stimulated Raman gain was measured by sending a pump laser beam provided by an argon-ion laser and a weak probe beam provided by a tunable dye laser through a cell of methane gas. The stimulated Raman effect caused some of the energy from the pump beam to be transferred to the probe beam. The intensity of the pump beam was low so the gain of the probe beam was on the order of parts per million. A two detector arrangement and a differential amplifier system that had a feedback loop to balance the detectors was constructed to measure the small gains. A detailed description of this detection system that was able to measure gains as small as 0.2 parts per million is provided

  13. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  14. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection.

    Science.gov (United States)

    Kong, Kenny; Kendall, Catherine; Stone, Nicholas; Notingher, Ioan

    2015-07-15

    Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Limitations of using Raman microscopy for the analysis of high-content-carbon-filled ethylene propylene diene monomer rubber

    DEFF Research Database (Denmark)

    Ghanbari-Siahkali, A.; Almdal, K.; Kingshott, P.

    2003-01-01

    The effects of laser irradiation on changes to the surface chemistry and structure of a commercially available ethylene propylene diene monomer (EPDM) rubber sample after Raman microscopy analysis was investigated. The Raman measurements were carried out with different levels of laser power...... on the sample, ranging from 4.55 mW to 0.09 mW. The surface of the EPDM was analyzed before and after laser exposure using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The techniques have surface probe depths of approximately less...... than or equal to10 nm and 1 mum, respectively. Both sets of analysis show that ingredients of the blended EPDM rubber "bloom" to the surface as a result of local heating that takes place due to the absorption of laser by carbon black during the Raman analysis. Scanning electron microscopy (SEM...

  16. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    Science.gov (United States)

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without

  17. Development of Raman spectrophotometer

    International Nuclear Information System (INIS)

    Adam, A.I.

    2008-05-01

    In this work, the Raman spectrophotometer HG.2S Jobin Yvon rebuilt and developed, the Raman setup provided as a gift for Neelian University from Amsterdam University. The main parts, which were replaced, include monochromator, an air-cooled photomultiplier tube RCA IP 28, log amplifier, hand scanning lab VIEW card for computer interfacing. The components assembled and the whole device was tested successfully. The developed setup was checked using some standard solutions, which showed perfect consistency with literature in the references and published papers. Solutions included hexane, cyclohexane, carbon tetrachloride, benzene and sodium sulfate.(Author)

  18. Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings.

    Science.gov (United States)

    Frano, Kristen A; Mayhew, Hannah E; Svoboda, Shelley A; Wustholz, Kristin L

    2014-12-21

    The analysis of paint cross-sections can reveal a remarkable amount of information about the layers and materials in a painting without visibly altering the artwork. Although a variety of analytical approaches are used to detect inorganic pigments as well as organic binders, proteins, and lipids in cross-sections, they do not provide for the unambiguous identification of natural, organic colorants. Here, we develop a novel combined surface-enhanced Raman scattering (SERS), light microscopy, and normal Raman scattering (NRS) approach for the identification of red organic and inorganic pigments in paint cross-sections obtained from historic 18th and 19th century oil paintings. In particular, Ag nanoparticles are directly applied to localized areas of paint cross-sections mounted in polyester resin for SERS analysis of the organic pigments. This combined extractionless non-hydrolysis SERS and NRS approach provides for the definitive identification of carmine lake, madder lake, and vermilion in multiple paint layers. To our knowledge, this study represents the first in situ identification of natural, organic pigments within paint cross-sections from oil paintings. Furthermore, the combination of SERS and normal Raman, with light microscopy provides conservators with a more comprehensive understanding of a painting from a single sample and without the need for sample pretreatment.

  19. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    Science.gov (United States)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  20. Direct transfer and Raman characterization of twisted graphene bilayer

    International Nuclear Information System (INIS)

    Othmen, R.; Arezki, H.; Boutchich, M.; Ajlani, H.; Oueslati, M.; Cavanna, A.; Madouri, A.

    2015-01-01

    Twisted bilayer graphene (tBLG) is constituted of a two-graphene layer with a mismatch angle θ between the two hexagonal structures. It has recently attracted much attention—thanks to its diverse electronic and optical properties. Here, we study the tBLG fabricated by the direct transfer of graphene monolayer prepared by chemical vapor deposition (CVD) onto another CVD graphene layer remaining attached to the copper foil. We show that high quality and homogeneous tBLG can be obtained by the direct transfer which prevents interface contamination. In this situation, the top graphene layer plays a supporting mechanical role to the bottom graphene layer as confirmed by optical microscopy, scanning electron microscopy, and Raman spectroscopy measurements. The effect of annealing tBLG was also investigated using micro-Raman spectroscopy. The Raman spectra exhibit a splitting of the G peak as well as a change in the 2D band shape indicating a possible decoupling of the two monolayers. We attribute these changes to the different interactions of the top and bottom layers with the substrate