WorldWideScience

Sample records for high critical electric

  1. Economic analysis of electric heating based on critical electricity price

    Science.gov (United States)

    Xie, Feng; Sun, Zhijie; Zhou, Xinnan; Fu, Chengran; Yang, Jie

    2018-06-01

    The State Grid Corporation of China proposes an alternative energy strategy, which will make electric heating an important task in the field of residential electricity consumption. This article takes this as the background, has made the detailed introduction to the inhabitant electric heating technology, and take the Zhangjiakou electric panels heating technology as an example, from the expense angle, has carried on the analysis to the electric panels heating economy. In the field of residential heating, electric panels operating costs less than gas boilers. After customers implying energy-saving behavior, electric panels operating cost is even lower than coal-fired boilers. The critical price is higher than the execution price, which indicates that the economic performance of the electric panels is significantly higher than that of the coal boiler.

  2. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  3. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  4. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  5. The changing Swiss electricity - Critical views

    International Nuclear Information System (INIS)

    Wilms, E.F.J.

    2001-01-01

    This book takes a critical look at developments in the Swiss electricity market and, in particular, criticises national, regional and local energy policy, which the author considers to be incoherent. The book first describes how the electricity market works, the main players involved and the daily problems that have to be solved. Then, the problems that could be caused by liberalisation, including the question of transit fees, the development of electricity prices for consumers, changes in the structure of the electricity business and third party access are discussed. The second part of the book examines legal aspects of proposed electricity market legislation and then presents 16 propositions covering energy policy, market regulation, unbundling not only of electricity generation, distribution and services but also of politics and business, the revision of proposed liberalisation legislation, taxation aspects as well as the national and international operation of the electricity grid. The book further examines three regional electricity utilities and the attempts to privatise them, which did not meet with the approval of the voting public, and discusses the suspicion cast on certain politicians, that they try to push through the particular interests of groups they are closely associated with. The book is also includes a bibliography and a list of useful addresses

  6. Electric field effect on the critical current of SNS-contact

    International Nuclear Information System (INIS)

    Rakhmanov, A.L.; Rozhkov, A.V.

    1995-01-01

    Electric field effect on the SNS-contact critical current is investigated in the Ginzburg-Landau theory approximation. It is shown that the electric field may cause a notable increase of the contact critical current especially if the sample temperature is close to the temperature of a superconducting transition of T sc normal layer. Electric field effect is increased with the reduction of film thickness, but it can strong enough for thick films as well at temperature close to T sc . 11 refs.; 4 figs

  7. Electric field obtained from an elliptic critical-state model for anisotropic type-II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C., E-mail: cromeros@ifuap.buap.mx; Hernández-Flores, O.A.

    2016-02-15

    Highlights: • An anisotropic critical state model that incorporates a non-zero electric field is proposed. • The critical current density is driven by the electric field. • To determinate the magnetic properties is not required a material law for the electric field magnitude. - Abstract: The conventional elliptic critical-state models (ECSM) establish that the electric field vector is zero when it flows a critical current density in a type-II superconductor. This proposal incorporates a finite electric field on the ECSM to study samples with anisotropic-current-carrying capacity. Our theoretical scheme has the advantage of being able to dispense of a material law which drives the electric field magnitude, however, it does not consider the magnetic history of the superconductor.

  8. Risk analysis of critical infrastructures emphasizing electricity supply and interdependencies

    International Nuclear Information System (INIS)

    Kjølle, G.H.; Utne, I.B.; Gjerde, O.

    2012-01-01

    Failures in critical infrastructures can cause major damage to society. Wide-area interruptions (blackouts) in the electricity supply system have severe impacts on societal critical functions and other critical infrastructures, but there is no agreed-upon framework on how to analyze and predict the reliability of electricity supply. Thus, there is a need for an approach to cross-sector risk analyses, which facilitates risk analysis of outages in the electricity supply system and enables investigation of cascading failures and consequences in other infrastructures. This paper presents such an approach, which includes contingency analysis (power flow) and reliability analysis of power systems, as well as use of a cascade diagram for investigating interdependencies. A case study was carried out together with the Emergency Preparedness Group in the city of Oslo, Norway and the network company Hafslund Nett. The case study results highlight the need for cross-sector analyses by showing that the total estimated societal costs are substantially higher when cascading effects and consequences to other infrastructures are taken into account compared to only considering the costs of electricity interruptions as seen by the network company. The approach is a promising starting point for cross-sector risk analysis of electricity supply interruptions and consequences for dependent infrastructures.

  9. Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid

    Science.gov (United States)

    Boston, Edwin J., Jr.

    The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.

  10. Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.

    2012-01-01

    The subject of this paper is the analysis of an electrical transmission system with the objective of identifying its most critical elements with respect to failures and attacks. The methodological approach undertaken is based on graph-theoretical (topological) network analysis. Four different perspectives of analysis are considered within the formalism of weighed networks, adding to the purely topological analysis of the system, the reliability and electrical characteristics of its components. In each phase of the analysis: i) a graph-theoretical representation is offered to highlight the structure of the most important system connections according to the particular characteristics examined (topological, reliability, electrical or electrical-reliability), ii) the classical degree index of a network node is extended to account for the different characteristics considered. The application of these concepts of analysis to an electrical transmission system of literature confirms the importance of different perspectives of analysis on such a critical infrastructure. - Highlights: ► We analyze a power system from topological, reliability and electrical perspectives. ► We rank critical components within a vulnerability assessment framework. ► We compute an extended degree to rank critical energy paths. ► We compare several analytical approaches and provide a table for choosing among them. ► We suggest network changes to increase the reliability of highly loaded energy paths.

  11. Correlation of Critical Temperatures and Electrical Properties in Titanium Films

    Science.gov (United States)

    Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M. L.; Pasca, E.; Ventura, G.

    Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.

  12. The electricity supply industry as a subject for public criticism

    International Nuclear Information System (INIS)

    Bartsch, R.

    1977-01-01

    The German electricity supply industry is becoming the subject for more public criticism although it has supplied the whole population and industry in recent years with electricity without limitations and at a favourable price. In spite of the satisfactory and exemplary achievements of this branch of the economy a wave of criticism has built up, caused by the increase in nuclear power station construction, and this is assuming greater proportions and includes wider fields. This situation requires a matching publicity campaign in a number of directions which must be preceded by comprehensive research into causes. It is urgently necessary to achieve a realisation of the basic questions in this branch of the economy in all those, engaged in electricity supply. Full information on the special physical characteristics of the electricity produced, with all the consequences which follow from these, must be supplied to the relevant groups in society both within and outside the economy and also to the mass media, together with continuous efforts to gain the trust of the public. (orig.) [de

  13. High critical magnetic field superconductor La3S4

    International Nuclear Information System (INIS)

    Westerholt, K.; Bach, H.; Wendemuth, R.; Methfessel, S.

    1979-01-01

    A report is presented on electrical conductivity, specific heat and magnetization measurements on La 3 S 4 single crystals. The results show that La 3 S 4 is a strong coupling superconductor with a BCS coherence length of 132 A. This extremely low value makes La 3 S 4 an intrinsic high critical magnetic field superconductor with a Landau-Ginsburg parameter of 20. For the temperature gradient of the upper critical magnetic field at the transition temperature values are found up to 35 kG/K. (author)

  14. A critical survey of agent-based wholesale electricity market models

    International Nuclear Information System (INIS)

    Weidlich, Anke; Veit, Daniel

    2008-01-01

    The complexity of electricity markets calls for rich and flexible modeling techniques that help to understand market dynamics and to derive advice for the design of appropriate regulatory frameworks. Agent-Based Computational Economics (ACE) is a fairly young research paradigm that offers methods for realistic electricity market modeling. A growing number of researchers have developed agent-based models for simulating electricity markets. The diversity of approaches makes it difficult to overview the field of ACE electricity research; this literature survey should guide the way through and describe the state-of-the-art of this research area. In a conclusive summary, shortcomings of existing approaches and open issues that should be addressed by ACE electricity researchers are critically discussed. (author)

  15. Electrical Insulation of 500-m High-Tc Superconducting Power Cable

    International Nuclear Information System (INIS)

    Takahashi, T; Ichikawa, M; Suzuki, H; Okamoto, T; Akita, S; Mukoyama, S; Yagi, M; Maruyama, S; Kimura, A

    2006-01-01

    Electrical insulation is one of the essential technologies for the electric power apparatus. Determination of testing voltages and design method of the electrical insulation layer are inextricably linked each other, and are critical to developing and realizing a cold dielectric (CD) type high-Tc superconducting (HTS) power cable. The authors had proposed the electrical insulation design method with concepts of partial discharge-free designs for ac voltage condition. This paper discusses the testing voltages for a 77 kV 1000 A HTS power cable with a length of 500 m, and describes results of various voltage withstand test. As a result, it is concluded that the proposed electrical insulation design method is appropriate for the HTS power cable

  16. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials.

    Science.gov (United States)

    Kim, Teun-Teun; Oh, Sang Soon; Kim, Hyeon-Don; Park, Hyun Sung; Hess, Ortwin; Min, Bumki; Zhang, Shuang

    2017-09-01

    Active control of polarization states of electromagnetic waves is highly desirable because of its diverse applications in information processing, telecommunications, and spectroscopy. However, despite the recent advances using artificial materials, most active polarization control schemes require optical stimuli necessitating complex optical setups. We experimentally demonstrate an alternative-direct electrical tuning of the polarization state of terahertz waves. Combining a chiral metamaterial with a gated single-layer sheet of graphene, we show that transmission of a terahertz wave with one circular polarization can be electrically controlled without affecting that of the other circular polarization, leading to large-intensity modulation depths (>99%) with a low gate voltage. This effective control of polarization is made possible by the full accessibility of three coupling regimes, that is, underdamped, critically damped, and overdamped regimes by electrical control of the graphene properties.

  17. Searching for superconductors with high critical temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C

    1977-08-18

    Critical temperature of superconductors can be and must be raised so that their range of application can be broadened. It was estimated that, in 3 to 5 years, superconductor electric generators might be used in nuclear submarines and/or other applications where the requirements of small volume and light weight are critical. The BCS theory was recapitulated. Possible methods of achieving higher critical temperature were proposed and discussed.

  18. Residential implementation of critical-peak pricing of electricity

    International Nuclear Information System (INIS)

    Herter, Karen

    2007-01-01

    This paper investigates how critical-peak pricing (CPP) affects households with different usage and income levels, with the goal of informing policy makers who are considering the implementation of CPP tariffs in the residential sector. Using a subset of data from the California Statewide Pricing Pilot of 2003-04, average load change during summer events, annual percent bill change, and post-experiment satisfaction ratings are calculated across six customer segments, categorized by historical usage and income levels. Findings show that high-use customers respond significantly more in kW reduction than do low-use customers, while low-use customers save significantly more in percentage reduction of annual electricity bills than do high-use customers-results that challenge the strategy of targeting only high-use customers for CPP tariffs. Across income levels, average load and bill changes were statistically indistinguishable, as were satisfaction rates-results that are compatible with a strategy of full-scale implementation of CPP rates in the residential sector. Finally, the high-use customers earning less than $50,000 annually were the most likely of the groups to see bill increases-about 5% saw bill increases of 10% or more-suggesting that any residential CPP implementation might consider targeting this customer group for increased energy efficiency efforts

  19. Identification and Ranking of Critical Assets within an Electrical Grid under Threat of Cyber Attack

    Science.gov (United States)

    Boyer, Blake R.

    This paper examines the ranking of critical assets within an electrical grid under threat of cyber attack.1 Critical to this analysis is the assumption of zero hour exploits namely, the threat of an immediate attack as soon as a vulnerability is discovered. Modeling shows that over time load fluctuations as well as other system variations will change the importance of each asset in the delivery of bulk power. As opposed to classic stability studies where risk can be shown to be greatest during high load periods, the zero hour exploit-cyber-risk assumes that vulnerabilities will be attacked as soon as they are discovered. The probability of attacks is made uniform over time to include any and all possible attacks. Examining the impact of an attack and how the grid reacts immediately following an attack will identify and determine the criticality of each asset. This work endeavors to fulfill the NERC Critical Infrastructure Protection Requirements CIP-001-1 through CIP-009-2, cyber security requirements for the reliable supply of bulk power to customers throughout North America. 1Critical assets will here refer to facilities, systems, and equipment, which, if destroyed, degraded, or otherwise rendered unavailable, would affect the reliability or operability of the Bulk Electric System, NERC Glossary of Terms Used in Reliability Standards, 2009

  20. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  1. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  2. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  3. Thermalhydraulic behavior of electrically heated rod during a critical heat flux transient

    International Nuclear Information System (INIS)

    Lima, Rita de Cassia Fernandes de; Carajilescov, Pedro

    1997-01-01

    In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed using electrically heated rods to simulate operational and accidental conditions of nuclear fuel rods. In the present work, a theoretical analysis of the drying and rewetting front propagation is performed during a critical heat flux experiment, starting with the application of slope of electrical power from steady state condition. After the occurrence of critical heat flux, the drying front propagation is predicted. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. Studies done with several values of coolant mass flow rate show that this variable has more influence on the drying front velocity than on the rewetting one. (author)

  4. An exploratory analysis of California residential customer response to critical peak pricing of electricity

    International Nuclear Information System (INIS)

    Herter, Karen; McAuliffe, Patrick; Rosenfeld, Arthur

    2007-01-01

    This paper summarizes the results from an exploratory analysis of residential customer response to a critical peak pricing (CPP) experiment in California, in which 15 times per year participating customers received high price signals dispatched by a local electricity distribution company. The high prices were about three times the on-peak price for the otherwise applicable time-of-use rate. Using hourly load data collected during the 15-month experiment, we find statistically significant load reduction for participants both with and without automated end-use control technologies. During 5-h critical peak periods, participants without control technology used up to 13% less energy than they did during normal peak periods. Participants equipped with programmable communicating thermostats used 25% and 41% less for 5 and 2h critical events, respectively. Thus, this paper offers convincing evidence that the residential sector can provide substantial contributions to retail demand response, which is considered a potential tool for mitigating market power, stabilizing wholesale market prices, managing system reliability, and maintaining system resource adequacy. (author)

  5. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  6. Transport measurements in superconductors: critical current of granular high TC ceramic superconductor samples

    International Nuclear Information System (INIS)

    Passos, W.A.C.

    2016-01-01

    This work presents a method to obtain critical current of granular superconductors. We have carried out transport measurements (ρxT curves and VxI curves) in a YBa_2Cu_3O_7_-_δ sample to determine critical current density of it. Some specimens reveal a 'semiconductor-like' behavior (electrical resistivity decreases with increasing temperatures above critical temperature T_c of material) competing with superconductor behavior. Due to high granular fraction of the sample, these competition is clearly noted in ρxT curves. Measurements carried out from 0 to 8500 Oe of applied field show the same behavior, and the critical current density of the samples is shown. (author)

  7. Time Lapse Electrical Resistivity to Connect Evapotranspiration and Groundwater Fluxes in the Critical Zone

    Science.gov (United States)

    Jarvis, S. K.; Harmon, R. E.; Barnard, H. R.; Randall, J.; Singha, K.

    2017-12-01

    The critical zone (CZ)—an open system extending from canopy top to the base of groundwater—is a highly dynamic and heterogeneous environment. In forested terrain, trees make up a large component of the CZ. This work aims to quantify the connection between vegetation and subsurface water storage at a hillslope scale within a forested watershed in the H.J. Andrews Experimental Forest, Oregon. To identify the mechanism(s) controlling the connection at the hillslope scale, we observe patterns in electrical conductivity using 2D-time lapse-DC resistivity. To compare inversions through time a representative error model was determined using L-curve criterion. Inverted data show high spatial variability in ground electrical conductivity and variation at both diel and seasonal timescales. These changes are most pronounced in areas corresponding to dense vegetation. The diel pattern in electrical conductivity is also observed in monitored sap flow sensors, water-level gauges, tensiometers, and sediment thermal probes. To quantify the temporal connection between these data over the course of the growing season a cross correlation analysis was conducted. Preliminary data show that over the course of the growing season transpiration becomes decoupled from both groundwater and soil moisture. Further decomposition of the inverted time lapse data will highlight spatial variability in electrical conductivity providing insight into the where, when, and how(s) of tree-modified subsurface storage.

  8. Thermalhydraulic behavior of electrically heated rods during critical heat flux transients

    International Nuclear Information System (INIS)

    Lima, Rita de Cassia Fernandes de

    1997-01-01

    In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed utilizing heated rods to simulate operational and accidental conditions of nuclear fuel rods, with special attention to the phenomenon of boiling crisis. The use of mechanisms which detect the abrupt temperature rise allows the electric power switch off. These facts prevent the test section from damage. During the critical heat flux phenomenon the axial heat conduction becomes very important. The study of the dryout and rewetting fronts yields the analysis, planning and following of critical heat flux experiments. These facts are important during the reflooding of nuclear cores at severe accidents. In the present work it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step or power slope from steady state condition. After the occurrence of critical heat flux, it is predicted the drying front propagation. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. In all these transients the coolant pressure is 13,5 MPa. For one of them, comparisons are done with a pressure of 8,00 MPa. Mass flow and enthalpy influences on the fronts velocities are also analysed. These results show that mass flow has more importance on the drying front velocities whereas the pressure alters strongly the rewetting ones. (author)

  9. Analysis of critical thinking ability in direct current electrical problems solving

    Science.gov (United States)

    Hartono; Sunarno, Widha; Sarwanto; Arya Nugraha, Dewanta

    2017-11-01

    This study concern on analyzing the ability of students in critical thinking skills on the subject matter of direct current electricity. Samples were taken using purposive random sampling consisted of 32 students of grade XI, Multimedia 1, SMK Negeri 3 Surakarta in academic year 2016/2017. This study used descriptive quantitative method. The data were collected using tests and interviews regarding the subject matter of direct current electricity. Based on the results, students are getting some difficulties in solving problem in indicator 4. The average of students’ correct answer is 62.8%.

  10. High-throughput electrical characterization for robust overlay lithography control

    Science.gov (United States)

    Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.

    2017-03-01

    Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.

  11. High-resolution stochastic integrated thermal–electrical domestic demand model

    International Nuclear Information System (INIS)

    McKenna, Eoghan; Thomson, Murray

    2016-01-01

    Highlights: • A major new version of CREST’s demand model is presented. • Simulates electrical and thermal domestic demands at high-resolution. • Integrated structure captures appropriate time-coincidence of variables. • Suitable for low-voltage network and urban energy analyses. • Open-source development in Excel VBA freely available for download. - Abstract: This paper describes the extension of CREST’s existing electrical domestic demand model into an integrated thermal–electrical demand model. The principle novelty of the model is its integrated structure such that the timing of thermal and electrical output variables are appropriately correlated. The model has been developed primarily for low-voltage network analysis and the model’s ability to account for demand diversity is of critical importance for this application. The model, however, can also serve as a basis for modelling domestic energy demands within the broader field of urban energy systems analysis. The new model includes the previously published components associated with electrical demand and generation (appliances, lighting, and photovoltaics) and integrates these with an updated occupancy model, a solar thermal collector model, and new thermal models including a low-order building thermal model, domestic hot water consumption, thermostat and timer controls and gas boilers. The paper reviews the state-of-the-art in high-resolution domestic demand modelling, describes the model, and compares its output with three independent validation datasets. The integrated model remains an open-source development in Excel VBA and is freely available to download for users to configure and extend, or to incorporate into other models.

  12. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity

    International Nuclear Information System (INIS)

    Roelich, Katy; Dawson, David A.; Purnell, Phil; Knoeri, Christof; Revell, Ruairi; Busch, Jonathan; Steinberger, Julia K.

    2014-01-01

    Highlights: • We present a method to analyse material criticality of infrastructure transitions. • Criticality is defined as the potential for, and exposure to, supply disruption. • Our method is dynamic reducing the probability of lock-in to at-risk technologies. • We show that supply disruption potential is reducing but exposure is increasing. - Abstract: Decarbonisation of existing infrastructure systems requires a dynamic roll-out of technology at an unprecedented scale. The potential disruption in supply of critical materials could endanger such a transition to low-carbon infrastructure and, by extension, compromise energy security more broadly because low carbon technologies are reliant on these materials in a way that fossil-fuelled energy infrastructure is not. Criticality is currently defined as the combination of the potential for supply disruption and the exposure of a system of interest to that disruption. We build on this definition and develop a dynamic approach to quantifying criticality, which monitors the change in criticality during the transition towards a low-carbon infrastructure goal. This allows us to assess the relative risk of different technology pathways to reach a particular goal and reduce the probability of being ‘locked in’ to currently attractive but potentially future-critical technologies. To demonstrate, we apply our method to criticality of the proposed UK electricity system transition, with a focus on neodymium. We anticipate that the supply disruption potential of neodymium will decrease by almost 30% by 2050; however, our results show the criticality of low carbon electricity production increases ninefold over this period, as a result of increasing exposure to neodymium-reliant technologies

  13. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    International Nuclear Information System (INIS)

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  14. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Julia A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wallace, Kelly E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kudo, Terence Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Eto, Joseph H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  15. D. C. electric field behavior of high lying states in atomic uranium

    International Nuclear Information System (INIS)

    Paisner, J.A.; Carlson, L.R.; Worden, E.F.; Johnson, S.A.; May, C.A.; Solarz, R.W.

    1976-01-01

    The effects of D. C. electric fields on high lying Rydberg and valence states in atomic uranium have been studied. Results of measurements of Stark shifts, lifetime lengthening via l-mixing, critical fields for ionization, barrier tunneling, and the appearance of zero-field parity forbidden transitions are presented for atomic uranium along with the observation of field induced autoionization of valence states. 3 figs

  16. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  17. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  18. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  19. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baldwin, S. [U.S. Dept. of Energy, Washington, DC (United States); DeMeo, E. [Renewable Energy Consulting, Chicago, IL (United States); Reilly, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, D. [Joint Inst. for Strategic Energy Analysis, Boulder, CO (United States); Porro, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meshek, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  1. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms

    International Nuclear Information System (INIS)

    Zio, E.; Golea, L.R.; Rocco S, C.M.

    2012-01-01

    In this paper, an analysis of the vulnerability of the Italian high-voltage (380 kV) electrical transmission network (HVIET) is carried out for the identification of the groups of links (or edges, or arcs) most critical considering the network structure and flow. Betweenness centrality and network connection efficiency variations are considered as measures of the importance of the network links. The search of the most critical ones is carried out within a multi-objective optimization problem aimed at the maximization of the importance of the groups and minimization of their dimension. The problem is solved using a genetic algorithm. The analysis is based only on information on the topology of the network and leads to the identification of the most important single component, couples of components, triplets and so forth. The comparison of the results obtained with those reported by previous analyses indicates that the proposed approach provides useful complementary information.

  2. Static Electricity as Part of Electromagnetic Environment on High-Voltage Electrical Substation

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2012-01-01

    Full Text Available Causes of occurrences electrostatic discharges (ESD on high-voltage electric substation were investigated and dependences values ESD’s on parameters interaction structures, humidity of air were found. Experimental research values ESD’s on high-voltage electric substation and in man-made conditions was fulfilled. Uncertainty measurement’s was taken into consideration by research results analyze. Matching with research of other authors was made. Danger ESD’s for electric devises was established.

  3. High thermal conductivity connector having high electrical isolation

    Science.gov (United States)

    Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  4. Evaluation of Electric Vehicle Charging Controllability for Provision of Time Critical Grid Services

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Marinelli, Mattia; Andersen, Peter Bach

    2016-01-01

    Replacement of conventional generation by more stochastic renewable generation sources leads to reduction of inertia and controllability in the power system. This introduces the need for more dynamic regulation services. These faster services could potentially be provided by the growing number...... of electric vehicles. EVs are a fast responding energy resource with high availability. This work evaluates and experimentally shows the limits of EV charging controllability with the focus on its suitability for providing ancillary grid services. Three different series produced EVs are tested....... The experimental testing is done by using charging current controllability of built-in AC charger to provide a primary frequency regulation service with very dynamic input frequency. The results show that most the controllability of most EVs is more than suitable for providing time critical grid services...

  5. Molecular dynamics in high electric fields

    International Nuclear Information System (INIS)

    Apostol, M.; Cune, L.C.

    2016-01-01

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  6. Critical infrastructure protection

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, F. [Canadian Electricity Association, Toronto, ON (Canada)

    2003-04-01

    The need to protect critical electrical infrastructure from terrorist attacks, or other physical damage, including weather related events, or the potential impact of computer viruses and other attacks on IT resources are discussed. Activities of the North American Electric Reliability Council (NERC) are highlighted which seek to safeguard the North American bulk electric power system principally through the Information Sharing and Analysis Sector (ES-ISAC). ES-ISAC serves the electricity sector by facilitating communication between electric sector participants, federal government and other critical infrastructure industries by disseminating threat indications, analyses and warnings, together with interpretations, to assist the industry in taking infrastructure protection actions. Attention is drawn to the numerous cyber incidents in recent years, which although resulted in no loss of service to electricity customers so far, in at least one instance (the January 25th SOL-Slammer worm incident) resulted in degradation of service in a number of sectors, including financial, transportation and telecommunication services. The increasing frequency of cyber-based attacks, coupled with the industry's growing dependence on e-commerce and electronic controls, are good reasons to believe that critical infrastructure protection (CIP) poses a serious challenge to the industry's risk management practices. The Canadian Electricity Association (CEA) is an active participant in ES-ISAC and works cooperatively with a range of partners, such as the Edison Electric Institute and the American Public Power Association to ensure coordination and effective protection program delivery for the electric power sector. The Early Warning System (EWS) developed by the CIP Working Group is one of the results of this cooperation. EWS uses the Internet, e-mail, web-enabled cell phones and Blackberry hand-held devices to deliver real-time threat information to members on a 24/7 basis. EWS

  7. Critical current measurements of high Tc superconductors in a scanning low temperature cryostat

    International Nuclear Information System (INIS)

    Telschow, K.L.; O'Brien, T.K.

    1991-01-01

    Maintaining uniformity of properties over long distances is one of the fabrication problems encountered with the new high T c superconductors. Uniform properties are crucial in long tapes or wires with high critical current since local nonuniformities can limit the current carrying capacity of the whole piece. Transport critical currents in high T c superconductors are conventionally measured with the contact 4-point probe DC current-voltage technique. This technique requires contact with the sample and and spatially averages over the region between the two voltage contacts. Two techniques have been used to infer the critical state model. The first uses the net magnetization of a suitably shaped sample in an external magnetic field. The second combines a DC magnetic field with AC induced currents to infer spatial flux profiles. The AC magnetization technique offers an advantage in that it is noncontacting; however, it also averages the measurement over a large area and requires that the sample be shaped and positioned such that it exhibits zero demagnetizing factor. This paper describes a measurement technique and a scanning cryostat assembly that are capable of determining local critical current in a tape or wire with high resolution and without any direct sample electrical contact. A small compensated coil was used to induce AC currents in slab-shaped samples. The coil was situated near the surface on one side of the slab. With this method, the AC probe can be used as a noncontacting dissipation probe, replacing the voltage probe in the 4-point contact method, when an externally driven transport current is used, or by itself as a local critical state generator and dissipation detector. The results are shown to be meaningful even when the internal magnetic field is not uniform due to shape demagnetizing effects. 10 refs., 5 figs

  8. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  9. Nucleation of superconductivity under rapid cycling of an electric field

    International Nuclear Information System (INIS)

    Bandyopadhyay, Malay

    2008-01-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2

  10. New approaches to provide ride-through for critical loads in electric power distribution systems

    Science.gov (United States)

    Montero-Hernandez, Oscar C.

    2001-07-01

    The extensive use of electronic circuits has enabled modernization, automation, miniaturization, high quality, low cost, and other achievements regarding electric loads in the last decades. However, modern electronic circuits and systems are extremely sensitive to disturbances from the electric power supply. In fact, the rate at which these disturbances happen is considerable as has been documented in recent years. In response to the power quality concerns presented previously, this dissertation is proposing new approaches to provide ride-through for critical loads during voltage disturbances with emphasis on voltage sags. In this dissertation, a new approach based on an AC-DC-AC system is proposed to provide ride-through for critical loads connected in buildings and/or an industrial system. In this approach, a three-phase IGBT inverter with a built in Dc-link voltage regulator is suitably controlled along with static by-pass switches to provide continuous power to critical loads. During a disturbance, the input utility source is disconnected and the power from the inverter is connected to the load. The remaining voltage in the AC supply is converted to DC and compensated before being applied to the inverter and the load. After detecting normal utility conditions, power from the utility is restored to the critical load. In order to achieve an extended ride-through capability a second approach is introduced. In this case, the Dc-link voltage regulator is performed by a DC-DC Buck-Boost converter. This new approach has the capability to mitigate voltage variations below and above the nominal value. In the third approach presented in this dissertation, a three-phase AC to AC boost converter is investigated. This converter provides a boosting action for the utility input voltages, right before they are applied to the load. The proposed Pulse Width Modulation (PWM) control strategy ensures independent control of each phase and compensates for both single-phase or poly

  11. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  12. Electrical characteristics of high density, high purity titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lupfer, D A [Electronics Laboratory, General Electric Company, Syracuse, NY (United States)

    1958-07-01

    This report is concerned with the electrical behaviour of cubic (Ba,Sr)TiO{sub 3} ceramics at very high values of the electric field. The work was undertaken to develop a dielectric system to be used in capacitors for the storage and discharge of electrical energy. Objectives for the finished system were to store large amounts of energy per unit volume, to release at least 75% of the energy in 0.2 x 10{sup -6} seconds, and to operate over a limited temperature range above 20 deg. C. The work is incomplete, but the results to date show that (Ba,Sr) TiO{sub 3} ceramics can store more electrical energy per unit volume than any other known dielectric system.

  13. A critical review of electric earthquake precursors

    Energy Technology Data Exchange (ETDEWEB)

    Tzanis, A. [Athens Univ., Athens (Italy). Dept. of Geophysics and Geothermy; Valliantos, F. [Technological Educational Institute of Crete, Chania (Greece)

    2001-04-01

    reliable electric field measurements, although improvements are still possible with new generation and smart measurement schemes facilitating noise suppression. It is increasingly apparent that simultaneous electric and magnetic measurements are indispensable and conducted in most new experiments. There is also an emerging trend towards multi-parametric, broadband observations that should provide far better data and constraints on the source processes. The physics of electrification mechanisms are beginning to clarify, as also is the potential of solid state effects: charge and current densities under controlled conditions are such, that if scaled up to the size of seismogenic zones, they would yield observable EEP. However, there are still many unknowns, requiring careful experimentation and theoretical development. Research is also directed towards decoding the physics of stress/strain changes that cause electrification, exploiting properties such as are the fractal nature of faulting and Self-Organised Critically (SOC). The first evidence of possible electromagnetic precursors due to a SOC system has been published recently. Modelling of the source processes from first principles is stepping up and certain classes of observed signals can now be predicted by theory, providing new and more rigorous means of data authentication; such models have also established the feasibility of long range EEP signals. Although progress is apparent, the knowledge is still grossly incomplete and EEP data are not indisputable, if tested with the full rigour of scientific verification methods. The new research philosophy requires time and vigilance before it begins to pay off, but it appears to have taken a more promising course.

  14. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  15. Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production

    International Nuclear Information System (INIS)

    PARMA JR, EDWARD J.; PICKARD, PAUL S.; SUO-ANTTILA, AHTI JORMA

    2003-01-01

    The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept

  16. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  17. Critical fields in high temperature superconductors

    International Nuclear Information System (INIS)

    Finnemore, D.K.

    1991-01-01

    An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary

  18. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  19. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  20. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    International Nuclear Information System (INIS)

    Pilan, N.; Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G.; Rosa, S. Dalla; Kraemer, V.; Quirmbach, T.; Chitarin, G.; Gobbo, R.; Pesavento, G.; De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L.

    2015-01-01

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  1. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  2. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  3. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  4. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  5. Differences between two definitions of the critical current of HTS coils

    International Nuclear Information System (INIS)

    Pitel, Jozef

    2013-01-01

    Definition of the critical current of a coil made of anisotropic high temperature superconducting conductor is rather complicated and ambiguous, since the magnetic field generated across the winding can differ considerably in relation to both its magnitude and orientation. Two definitions of the critical current of such coils are discussed. The first definition, very often used in calculations to analyze the current carrying capacity, electric field and power dissipation of individual turns, represents an operating current at which an electric field of 1 μV cm −1 appears on one turn. The second definition represents an integral approach, and is used in experiments. This definition introduces the critical current of the coil as an operating current at which an average electric field E s , usually 0.1 μV cm −1 , appears on coil terminals. As an example, the distribution of the critical current and electric field of individual turns in the winding of a BSCCO model coil was analyzed. Critical currents of the coil as a function of an external magnetic field parallel with the coil axis were calculated according to both definitions. The results show that the first definition, which characterizes the winding at the local level, is suitable for HTS coils either operating in self-field or in a low external field, because the differences between the critical currents and n-indices of individual turns are considerable. The second criterion is suitable for the HTS coils operating in high fields, i.e. like high field insert coils. The self-field of a high field insert coil is negligible if the external field is high. As a result, the critical currents of all turns are almost identical, and the anisotropy in I c (B) characteristic plays practically no role. Rather unexpected behavior of the voltage–current characteristic of the model coil is predicted if an external field is applied. (paper)

  6. Microscopic observation of ferroelectric domains in SrTiO3 using birefringence imaging techniques under high electric fields

    International Nuclear Information System (INIS)

    Manaka, Hirotaka; Nozaki, Hirofumi; Miura, Yoko

    2017-01-01

    Phase transitions in SrTiO 3 between quantum paraelectric, coherent paraelectric, and electric-field-induced ferroelectric states are governed by tetragonal domains with quantum fluctuations. However, their characteristics are still unclear. To observe the electric-field-induced ferroelectric state using birefringence imaging techniques, we developed a suitable sample holder to apply high electric fields of up to E ≃ 5 kV/cm and temperatures down to T = 20 K. From birefringence imaging measurements of the ferroelectric LiNbO 3 with varying electric field, distributions of the electric field in the sample stage were found to be negligible. In SrTiO 3 , a huge-retardance area corresponding to the ferroelectric domains appears at E > 2 kV/cm and T ≤ 60 K even though the paraelectric domains partially remain. Furthermore, the fast-axis direction rotates by 90° at the ferroelectric phase transition because of an electrostrictive effect in ferroelectrics. The phase diagram of the critical electric field and temperature agrees with previous reports obtained from dielectric and neutron scattering measurements. (author)

  7. A critical review of Electric Earthquake Precursors

    Directory of Open Access Journals (Sweden)

    F. Vallianatos

    2001-06-01

    and can guarantee reliable electric field measurements, although improvements are still possible with new generation electrodes and smart measurement schemes facilitating noise suppression. It is increasingly apparent that simultaneous electric and magnetic measurements are indispensable and conducted in most new experiments. There is also an emerging trend towards multi-parametric, broadband observations that should provide far better data and constraints on the source processes. The physics of electrification mechanisms are beginning to clarify, as also is the potential of solid state effects: charge and current densities under controlled conditions are such, that if scaled up to the size of seismogenic zones, they would yield observable EEP. However, there are still many unknowns, requiring careful experimentation and theoretical development. Research is also directed towards decoding the physics of stress/strain changes that cause electrification, exploiting properties such as are the fractal nature of faulting and Self-Organised Criticality (SOC. The first evidence of possible electromagnetic precursors due to a SOC system has been published recently. Modelling of the source processes from first principles is stepping up and certain classes of observed signals can now be predicted by theory, providing new and more rigorous means of data authentication; such models have also established the feasibility of long range EEP signals. Although progress is apparent, the knowledge is still grossly incomplete and EEP data are not indisputable, if tested with the full rigour of scientific verification methods. The new research philosophy requires time and vigilance before it begins to pay off, but it appears to have taken a more promising course.

  8. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review.

    Science.gov (United States)

    Yan, Liang-Gong; He, Lang; Xi, Jun

    2017-09-02

    How to extract bioactive compounds safely and efficiently is one of the problems for the food and pharmaceutical industry. In recent years, several novel extraction techniques have been proposed. To pursue a more efficient method for industrial production, high intensity pulsed electric field (HIPEF) extraction technique has been developed. HIPEF extraction technique, which is based on the conventional pulsed electric field (PEF), provided higher electric field intensity and a special continuous extraction system, and it has confirmed less extraction time, higher extraction yield, and mild processing temperature. So this innovative technique is promising for application of industrial production. This review was devoted to introducing the recent achievement of HIPEF extraction technique, including novel HIPEF continuous extraction system, principles and mechanisms; the critical process factors influencing its performance applications; and comparison of HIPEF extraction with other extraction techniques. In the end, the defects and future trends of HIPEF extraction were also discussed.

  9. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  10. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  11. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  12. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    International Nuclear Information System (INIS)

    Stauss, Sven; Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-01-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors

  13. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  14. Global electricity transformation: The critical need for integrated market design and risk management research

    International Nuclear Information System (INIS)

    Hung-po Chao

    2006-01-01

    The past three decades transformed the electricity industry. The essential goals of liberalization have been to lower costs, improve reliability, and stimulate investment and innovations through establishment of competitive electricity markets, while also relying on market mechanisms to provide creative solutions to environmental and security problems. In many instances, these goals have been achieved, but the occurrence of some spectacular market failures have brought into question the whole restructuring effort. This paper reviews recent experiences with market reform and concludes that a significant cause of failure has been the rush to unbundle vertically integrated utilities without sufficient consideration of alternative ways to manage the risk of electricity market restructuring. In particular, there is a critical need for integrated market design and risk management research to improve the process of market transformation by taking a more evolutionary approach to discover a 'Third Way' above vertical integration and full unbundling. Such research can offer a crucial feedback link to the restructuring process by identifying important lessons to be learned from past experience and developing new analytical tools to help introduce more successful market designs for the future. (author)

  15. Application of high voltage electric field (HVEF) drying technology in potato chips

    International Nuclear Information System (INIS)

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-01-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  16. Copper wire theft and high voltage electrical burns

    OpenAIRE

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresenc...

  17. Critical current enhancement in high Tc superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Graebner, J.E.; Tiefel, T.H.

    1990-01-01

    Progress toward major technological applications of the bulk, high T c superconductors has been hindered by two major barriers, i.e., the Josephson weak-links at grain boundaries and the lack of sufficient intragrain flux pinning. It has been demonstrated that the weak link problem can be overcome by extreme alignment of grains such as in melt-textured-growth (MTG) materials. Modified or improved processing by various laboratories has produced further increased critical currents. However, the insufficient flux pinning seems to limit the critical current density in high fields to about 10 4 --10 5 A/cm 2 at 77K, which is not satisfactory for many applications. In this paper, processing, microstructure, and critical current behavior of the MTG type superconductors are described, and various processing possibilities for flux pinning enhancement are discussed

  18. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  19. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • Models of an electric vehicle with regenerative braking system (RBS) are built. • Control algorithm of RBS under safety–critical driving maneuvers is proposed. • Simulations and HIL tests of the proposed strategy are conducted. • Performance improvement of vehicle’s mean deceleration is up to 13.89%. • Test results verify the feasibility and effectiveness of the proposed method. - Abstract: This paper mainly focuses on control algorithm of the braking energy regeneration system of an electric bus under safety–critical driving situations. With the aims of guaranteeing vehicle stability in various types of tyre–road adhesion conditions, based on the characteristics of electrified powertrain, a novel control algorithm of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. First, the models of vehicle dynamics and main components including braking energy regenerative system of the case-study electric bus are built in MATLAB/Simulink. Then, based on the phase-plane method, the optimal brake torque is calculated for ABS control of vehicle. Next, a novel allocation strategy, wherein the target optimal brake torque is divided into two parts that are handled separately by the regenerative and friction brakes, is developed. Simulations of the proposed control strategy are conducted based on system models built using MATLAB/Simulink. The simulation results demonstrate that the developed strategy enables improved control in terms of vehicle stability and braking performance under different emergency driving conditions. To further verify the synthesized control algorithm, hardware-in-the-loop tests are also performed. The experimental results validate the simulation data and verify the feasibility and effectiveness of the developed control algorithm.

  20. Calibration-free electrical conductivity measurements for highly conductive slags

    International Nuclear Information System (INIS)

    Macdonald, Christopher J.; Gao, Huang; Pal, Uday B.; Van den Avyle, James A.; Melgaard, David K.

    2000-01-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF 2 - 20 wt.% CaO - 20 wt.% Al 2 O 3 ) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments

  1. Consumer knowledge and electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Crawshaw, A J.E.; Williams, D I; Crawshaw, C M

    1985-12-01

    Householders in all-electric homes were asked to rank their electrical appliances in terms of annual running cost. By comparing this with an individually calculated correct order, an assessment of their knowledge was made. On this measure overall knowledge was good, but half the sample underestimated the running costs of key high-energy using appliances (space heating, hot-water, cooking). This specific lack of knowledge is critical, and was found to be correlated with higher bills. 16 references.

  2. Nature of exponents found in the critical regime of YBCO

    International Nuclear Information System (INIS)

    Marhas, Manmeet Kaur; Saravanan, P.; Balakrishnan, K.; Srinivasan, R.; Kanjilal, D.; Metha, G.K.; Pai, S.P.; Pinto, R.; Vedvyas, M.; Ogale, S.B.; Mohan Rao, G.; Nathan, Senthil; Mohan, S.

    1997-01-01

    Full text: Fluctuation effects in electrical conductivity near T c is an important tool for studying the nature of phase transition in high T c ceramics. Probing critical regime by way of experiments demand data of good precision. Measurements were carried out on well characterised high T c films prepared by laser ablation and high pressure oxygen sputtering. High energy ion irradiation carried out to see the effect of disorder. Precise electrical resistivity measurements were carried out near T c with a temperature control accuracy better than 10 mK and large number of data points were collected in this regime. 100 MeV oxygen and 200 MeV Ag ions were used with varying fluences for irradiation at 77K. The data was analysed using existing models of critical fluctuation effects. The exponent of electrical conductivity in laser ablated thin films whose transition widths are less than 1 K was 1.33 and is independent of disorder caused by high energy ion irradiation and this could be identified as the exponent for excess conductivity in the critical intermediate charged fluctuation regime as proposed by Fisher. The exponent is around 2.7 in those films whose transition widths are greater than 1 K and also was independent of disorder and this could be identified as exponent in the para coherence regime

  3. Copper wire theft and high voltage electrical burns.

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  4. Reliability Evaluation for Optimizing Electricity Supply in a Developing Country

    OpenAIRE

    Mark Ndubuka NWOHU

    2007-01-01

    The reliability standards for electricity supply in a developing country, like Nigeria, have to be determined on past engineering principles and practice. Because of the high demand of electrical power due to rapid development, industrialization and rural electrification; the economic, social and political climate in which the electric power supply industry now operates should be critically viewed to ensure that the production of electrical power should be augmented and remain uninterrupted. ...

  5. Copper wire theft and high voltage electrical burns

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  6. Chemical Dynamics and Critical Phenomena: Electrical Conductivity and Reactivity of Benzyl Bromide in Triethylamine+Water Near its Consolute Point

    Science.gov (United States)

    Specker, Christopher D.; Ellis, Joel M.; Baird, James K.

    2007-06-01

    The binary liquid mixture of triethylamine+water has a lower consolute point at a critical composition of 32.27mass% triethylamine. Starting at a temperature within the one-phase region, the electrical conductivity of a sample of this mixture was measured and found to increase smoothly with increasing temperature before falling sharply at 291.24K (18.09°C). Since opalescence was visible at this temperature, it was identified with the critical solution temperature of the binary mixture. A solution of 90 μL of benzyl bromide dissolved in 90mL of 32.27mass% triethylamine+water was prepared, and the resulting Menschutkin reaction between benzyl bromide and triethylamine was allowed to come to equilibrium. The electrical conductivity of this equilibrium mixture was measured in the one-phase region and was found to increase smoothly with increasing temperature before rising sharply at 291.55K (18.40°C). This temperature was identified as the critical temperature of the ternary. The rate of approach of the ternary mixture to chemical equilibrium was also measured and shown to be governed by a first-order rate law. The temperature dependence of the rate coefficient followed the Arrhenius equation up to a temperature of about 290.74K (17.59°C). Above this temperature, the rate coefficient fell by as much as 22% below the value predicted by extrapolation of the Arrhenius equation. This suppression in the rate reaction in the vicinity of the critical temperature can be interpreted as evidence for the existence of critical slowing down.

  7. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deb, Sidart [LCG Consulting, Los Altos, CA (United States); Asokkumar, Aarthi [LCG Consulting, Los Altos, CA (United States); Hassanzadeh, Mohammad [LCG Consulting, Los Altos, CA (United States); Aarabali, Amirsaman [LCG Consulting, Los Altos, CA (United States)

    2018-05-11

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low VRE levels will still achieve their intended objective in a high VRE future. We qualitatively describe how various decisions may change with higher shares of VRE and outline an analytical framework for quantitatively evaluating the impacts of VRE on long-lasting decisions. We then present results from detailed electricity market simulations with capacity expansion and unit commitment models for multiple regions of the U.S. for low and high VRE futures. We find a general decrease in average annual hourly wholesale energy prices with more VRE penetration, increased price volatility and frequency of very low-priced hours, and changing diurnal price patterns. Ancillary service prices rise substantially and peak net-load hours with high capacity value are shifted increasingly into the evening, particularly for high solar futures. While in this report we only highlight qualitatively the possible impact of these altered price patterns on other demand- and supply-side electric sector decisions, the core set of electricity market prices derived here provides a foundation for later planned quantitative evaluations of these decisions in low and high VRE futures.

  8. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  9. Research on High-efficient Remanufacturing Technologies and Application of Electric Motor

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Yang, Xu; Wang, Gen

    2017-09-01

    The energy conservation of electric motor system is the key of industrial energy conservation. With the implementation and acceleration of electric motor energy efficiency improvement plan, more and more electric motors are knocked out. High-efficient remanufacturing of electric motor refers to improving the efficiency of electric motor and recycling the resources by replacing the winding, iron core and other components of electric motor on the basis of the low-efficient/outdated electric motors, which conforms to China’s policy of circular economy and resource recovery. The remanufacturing of electric motor not only maximizes the use of resources, but also reduces the energy consumption generated by reprocessing of cast iron, silicon steel sheet and other materials in dismantling of electric motor. However, structures and iron core materials used in design and manufacture of electric motors are different, and the degrees of wear of electric motors are also different under different operating conditions, which further result in diversified design schemes, increased remanufacturing cost and reduced remanufacturing efficiency. This paper analyzes the key process technologies for remanufacturing of electric motors are researched by analyzing the remanufacturing technologies of electric motors, and presents the feasibility to replace the cast-aluminum rotor with cast-copper rotor in high-efficient remanufacturing process of electric motor.

  10. Weak links in high critical temperature superconductors

    Science.gov (United States)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  11. Weak links in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Tafuri, Francesco; Kirtley, John R

    2005-01-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  12. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  13. Electrical and mechanical properties of highly elongated high density polyethylene as cryogenic insulation materials

    International Nuclear Information System (INIS)

    Yoshino, Katsumi; Park, Dae-Hee; Miyata, Kiyomi; Yamaoka, Hitoshi; Itoh, Minoru; Ichihara, Syouji.

    1989-01-01

    Electrical and mechanical properties of highly elongated high density polyethylene were investigated in the temperature range between 4.2 K and 400 K from a viewpoint of electrical insulation at low temperature and the following properties have been clarified. (1) The electrical conductivity of samples decreases with increasing draw ratio, and also decreases at cryogenic temperature. (2) Breakdown strength of highly elongated sample is similar to that of non-elongated sample. It is nearby temperature independent below 300 K but at higher temperature it falls steeply. (3) Mechanical breakdown stress and elastic modulus of high density polyethylene increase with increasing draw ratio. Their values at liquid nitrogen temperature are much higher than that at room temperature. On the other hand, strains decreases at liquid nitrogen temperature. (4) Break of the sample develops in the direction of 45deg from the direction of stress both at room temperature and at cryogenic temperature. (5) The characteristic of mechanical breakdown at liquid nitrogen temperature can be explained by a brittleness fracture process. (6) Toughness of high density polyethylene increases with increasing draw ratio until draw ratio of 5, and it decreased, and increase at higher draw ratio. However at extremely high draw ratio of 10 it again increases. These findings clearly indicate that highly elongated high density polyethylene has good electrical and mechanical properties at cryogenic temperature and can be used as the insulating materials at cryogenic temperature. (author)

  14. High Penetrated Wind Farm Impacts on the Electricity Price

    DEFF Research Database (Denmark)

    Haji Bashi, Mazaher; Yousefi, G. R.; Bak, Claus Leth

    2016-01-01

    of the high penetrated wind farm integration into electricity markets. Then, stochastic programming approach is employed to compare the volume of trades for a typical wind farm in a high and low wind penetrated market. Although increasing price spikes and volatility was reported in the literature......Energy trading policies, intermittency of wind farm output power, low marginal cost of the production, are the key factors that cause the wind farms to be effective on the electricity price. In this paper, the Danish electricity market is studied as a part of Nord Pool. Considering the completely...... fossil fuel free overview in Danish energy policies, and the currently great share of wind power (more than 100% for some hours) in supplying the load, it is an interesting benchmark for the future electricity markets. Negative prices, price spikes, and price volatility are considered as the main effects...

  15. An Empirical Study of Critical Soft Factors for Quality Improvement in The Electrical and Electronics Firms in Malaysia

    Directory of Open Access Journals (Sweden)

    Muhammad Madi Abdullah

    2009-03-01

    Full Text Available Soft factors are important aspect that sustains the organizations in their efforts towards continuous quality improvement (QI and customer satisfaction. The conventional wisdom states that quality improvement in organizations increases profits and productivity. Therefore, the aim of the paper is to examine the influence of critical soft factors (CSF on quality improvement (QI. For that purpose, this study examine: (i the relationship between the CSF and QI and (ii to what extent the six CSF explain QI. The study used survey data from 255 electrical and electronics (E&E firms in Malaysia. The individual managers representing the each firm made the unit of analysis of the study. The finding reveals that QI was significantly influenced by the following soft factors: management commitment, customer focus, employee involvement, training & education, and reward & recognition. Supplier relationship was not a significant predictor of quality improvement. Finally, this study has empirically shown that quality improvement will increase when the organizations emphasize more on soft factors.Keywords: Critical soft factors, quality improvement, Electrical and Electronics firms

  16. High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets

    Science.gov (United States)

    Gaillard, Benoit; Owkes, Mark; van Poppel, Bret

    2015-11-01

    Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.

  17. A nonconjugated radical polymer glass with high electrical conductivity

    Science.gov (United States)

    Joo, Yongho; Agarkar, Varad; Sung, Seung Hyun; Savoie, Brett M.; Boudouris, Bryan W.

    2018-03-01

    Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

  18. Electric Power Regulation in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Landa, J V [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico)

    1994-12-31

    The history of the electrical power sector in Mexico, the prominent role that government plays in the generation, transformation, distribution and supply of electrical power, and the implications of the North American Free Trade Agreement (NAFTA) for this sector were summarized. The slow pace of the Mexican electricity sector in achieving cost efficiency through pricing policy was criticized, and the issue of regulation versus deregulation of the electricity sector was examined in the context of NAFTA, emphasizing the contradiction between the idea of international trade and a highly regulated industry. Revisions of the original constitutional article to exclude electrical power generation from governmental control and to allow market mechanisms and competition to lower costs and increase efficiency was recommended.It was considered a pre-condition to a stable balance between competition and energy efficient environmentally friendly practices.

  19. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  20. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  1. High-authority smart material integrated electric actuator

    Science.gov (United States)

    Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary

    1997-05-01

    For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.

  2. Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    Fast electrical diagnostics and improvement of electrical circuits for methyl orange (MO) degradation by high voltage pulsed electrical discharge were investigated. To eliminate electromagnetic radiation, several effective methods were employed. RG 218 coaxial cable was substituted for the common transmission lines to transmit high voltage pulses, and multi-lines in parallel were earthed to avoid electromagnetic interference and, additionally, to reduce the stray inductance of the electrical circuit and increase the pulse rise rate to reduce the energy losses in the transmission system. The problem of the differences in the bandwidths of voltage and current probes causing an error in the calculation of energy dissipation was avoided by reducing the bandwidths of voltage and current measurements to the same value. The real discharge current was obtained by subtracting the capacitive current from the total current. The energy per pulse obtained in the reactor before and after improvement of the diagnostics and electrical circuit were 15.5 mJ and 26.8 mJ, respectively, and the energy efficiencies of MO degradation were 1.34 x 10 -9 mol/J and 1.95 x 10 -9 mol/J, respectively

  3. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to DC electrical stressing.

    Science.gov (United States)

    Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R

    2011-07-01

    We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.

  4. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  5. A survey of critical research areas in the energy segment of restructured electric power markets

    International Nuclear Information System (INIS)

    Nanduri, Vishnu; Das, Tapas K.

    2009-01-01

    Availability of a large volume of recent literature on deregulated (a.k.a. restructured) electricity markets underscores the importance of the research needs to ensure proper design and functioning of the markets. Researchers have made significant contributions fueling the evolution of the fundamental market design changes that have taken place since the beginning of the restructuring process. Due to the vast scope, existing survey papers are focused on particular facets of deregulated electricity markets. We adopt a similar approach by focusing on the most important research areas related to the energy market. The contributions of the survey paper lie in the novel approach used in classifying the literature based on critical research areas. Some areas of research such as auction based pricing, bidding strategy formulation, market equilibria, and market power are reviewed in a different light than other existing survey papers. We conclude by providing some future research directions for the energy markets. (author)

  6. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  7. Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers

    International Nuclear Information System (INIS)

    Jang, Dongsik; Eom, Jiyong; Jae Park, Min; Jeung Rho, Jae

    2016-01-01

    To the extent that demand response represents an intentional electricity usage adjustment to price changes or incentive payments, consumers who exhibit more-variable load patterns on normal days may be capable of altering their loads more significantly in response to dynamic pricing plans. This study investigates the variation in the pre-enrollment load patterns of Korean commercial and industrial electricity customers and their impact on event-day loads during a critical peak pricing experiment in the winter of 2013. Contrary to conventional approaches to profiling electricity loads, this study proposes a new clustering technique based on variability indices that collectively represent the potential demand–response resource that these customers would supply. Our analysis reveals that variability in pre-enrollment load patterns does indeed have great predictive power for estimating their impact on demand–response loads. Customers in relatively low-variability clusters provided limited or no response, whereas customers in relatively high-variability clusters consistently presented large load impacts, accounting for most of the program-level peak reductions. This study suggests that dynamic pricing programs themselves may not offer adequate motivation for meaningful adjustments in load patterns, particularly for customers in low-variability clusters. - Highlights: • A method of clustering customers by variability indices is developed. • Customers in high-variability clusters provide substantial peak reductions. • Low-variability clusters exhibit limited reductions. • For low-variability customers, alternative policy instruments is well advised. • A model of discerning customer's demand response potential is suggested.

  8. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1984-01-01

    The high- and medium-voltage electrical equipment failures of both nuclear and nonnuclear electric utilities have been reviewed for possible disruptive failure modes that would be of special concern in a nuclear power plant. The resulting emphasis was on the electrical faults of transformers, switchgear (circuit breakers), lightning (surge) arrestors, high-voltage cabling and buswork, control boards, and other electrical equipment that, through failure, can be the initiating event that may expand the original fault to nearby or associated equipment. Many failures of such equipment were found and documented, although the failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment. Conclusions and recommendations pertaining to the design, maintenance, and operation of the affected electrical equipment are presented

  9. High-performance electrically conductive silver paste prepared by silver-containing precursor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo; Cao, Yu; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Wuhan (China)

    2010-09-15

    A high-performance electrically conductive silver paste with no solid particles before drying and/or sintering is developed, in which silver-containing precursor is employed as conductive functional phase. Thermogravimetry analysis, volume electrical resistivity tests and sintering experiments show that the paste with about 14 wt.% silver pristine content is able to achieve the volume electrical resistivity of (2-3) x 10{sup -5} {omega} cm after it is sintered at 220 C. A micro-pen direct-writing process indicates that it is very suitable for the fabrication of high-resolution (25 {mu}m) and high-integration devices and apparatus. (orig.)

  10. LCA of electricity systems with high wind power penetration

    DEFF Research Database (Denmark)

    Turconi, Roberto; O' Dwyer, C. O.; Flynn, D.

    Electricity systems are shifting from being based on fossil fuels towards renewable sources to enhance energy security and mitigate climate change. However, by introducing high shares of variable renewables - such as wind and solar - dispatchable power plants are required to vary their output...... to fulfill the remaining electrical demand, potentially increasing their environmental impacts [1,2]. In this study the environmental impacts of potential short-term future electricity systems in Ireland with high shares of wind power (35-50% of total installed capacity) were evaluated using life cycle...... considered: while not outweighing the benefits from increasing wind energy, cycling emissions are not negligible and should thus be systematically included (i.e. by using emission factors per unit of fuel input rather than per unit of power generated). Cycling emissions increased with the installed wind...

  11. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  12. The exponential critical state of high-Tc ceramics

    International Nuclear Information System (INIS)

    Castro, H.; Rinderer, L.

    1994-01-01

    The critical current in high-Tc materials is strongly reduced by a magnetic field. We studied this dependency for tubular YBCO samples. We find an exponential drop as the field is increased from zero up to some tens of oersted. This behavior was already observed by others, however little work has been done in this direction. We define what we call the ''exponential critical state'' of HTSC and compare the prediction for the magnetization with experimental data. Furthermore, the ''Kim critical state'' is obtained as the small field limit. (orig.)

  13. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  14. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  15. Criticality in Neuronal Networks

    Science.gov (United States)

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; Deville, R. E. Lee; Beggs, John M.; Dahmen, Karin A.; Butler, Tom C.

    2012-02-01

    In recent years, experiments detecting the electrical firing patterns in slices of in vitro brain tissue have been analyzed to suggest the presence of scale invariance and possibly criticality in the brain. Much of the work done however has been limited in two ways: 1) the data collected is from local field potentials that do not represent the firing of individual neurons; 2) the analysis has been primarily limited to histograms. In our work we examine data based on the firing of individual neurons (spike data), and greatly extend the analysis by considering shape collapse and exponents. Our results strongly suggest that the brain operates near a tuned critical point of a highly distinctive universality class.

  16. Fabrication of highly conductive carbon nanotube fibers for electrical application

    International Nuclear Information System (INIS)

    Guo, Fengmei; Li, Can; Wei, Jinquan; Xu, Ruiqiao; Zhang, Zelin; Cui, Xian; Wang, Kunlin; Wu, Dehai

    2015-01-01

    Carbon nanotubes (CNTs) have great potential for use as electrical wires because of their outstanding electrical and mechanical properties. Here, we fabricate lightweight CNT fibers with electrical conductivity as high as that of stainless steel from macroscopic CNT films by drawing them through diamond wire-drawing dies. The entangled CNT bundles are straightened by suffering tension, which improves the alignment of the fibers. The loose fibers are squeezed by the diamond wire-drawing dies, which reduces the intertube space and contact resistance. The CNT fibers prepared by drawing have an electrical conductivity as high as 1.6 × 10 6 s m −1 . The fibers are very stable when kept in the air and under cyclic tensile test. A prototype of CNT motor is demonstrated by replacing the copper wires with the CNT fibers. (paper)

  17. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Vilim, Michael; Botterud, Audun

    2014-01-01

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  18. Multi-step ahead forecasts for electricity prices using NARX: A new approach, a critical analysis of one-step ahead forecasts

    International Nuclear Information System (INIS)

    Andalib, Arash; Atry, Farid

    2009-01-01

    The prediction of electricity prices is very important to participants of deregulated markets. Among many properties, a successful prediction tool should be able to capture long-term dependencies in market's historical data. A nonlinear autoregressive model with exogenous inputs (NARX) has proven to enjoy a superior performance to capture such dependencies than other learning machines. However, it is not examined for electricity price forecasting so far. In this paper, we have employed a NARX network for forecasting electricity prices. Our prediction model is then compared with two currently used methods, namely the multivariate adaptive regression splines (MARS) and wavelet neural network. All the models are built on the reconstructed state space of market's historical data, which either improves the results or decreases the complexity of learning algorithms. Here, we also criticize the one-step ahead forecasts for electricity price that may suffer a one-term delay and we explain why the mean square error criterion does not guarantee a functional prediction result in this case. To tackle the problem, we pursue multi-step ahead predictions. Results for the Ontario electricity market are presented

  19. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array

  20. Nonlinear piezoelectricity in epitaxial ferroelectrics at high electric fields.

    Science.gov (United States)

    Grigoriev, Alexei; Sichel, Rebecca; Lee, Ho Nyung; Landahl, Eric C; Adams, Bernhard; Dufresne, Eric M; Evans, Paul G

    2008-01-18

    Nonlinear effects in the coupling of polarization with elastic strain have been predicted to occur in ferroelectric materials subjected to high electric fields. Such predictions are tested here for a PbZr0.2Ti0.8O3 ferroelectric thin film at electric fields in the range of several hundred MV/m and strains reaching up to 2.7%. The piezoelectric strain exceeds predictions based on constant piezoelectric coefficients at electric fields from approximately 200 to 400 MV/m, which is consistent with a nonlinear effect predicted to occur at corresponding piezoelectric distortions.

  1. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  2. High-electric-field-stress-induced degradation of SiN passivated AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Wen-Ping, Gu; Huan-Tao, Duan; Jin-Yu, Ni; Yue, Hao; Jin-Cheng, Zhang; Qian, Feng; Xiao-Hua, Ma

    2009-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current I Dsat , maximal transconductance g m , and the positive shift of threshold voltage V TH at high drain-source voltage V DS . The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with V DS = 20 V and V GS = 0 V applied to the device for 10 4 sec, the SiN passivation decreases the stress-induced degradation of I Dsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of I Dsat , which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Advanced ceramic composite for high energy resistors. Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei; Ahmad, Rashtehizadeh

    2005-01-01

    There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area of innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new conductive bulk ceramic material has a controlled microstructure, which results in improved homogeneity, making the material suitable for use as a non-inductive high energy resistor. This paper describes characterization of the material's physical and electrical properties and relates them to improvements in low-inductance, high temperature, high power density and high energy density resistors. The bulk resistor approach offers high reliability through better mechanical properties and simplicity of construction

  4. Electrical and microstructural characterization of silver sheathed high Tc superconductors wires and ribbons

    International Nuclear Information System (INIS)

    Chaffron, L.; Regnier, P.; Schmirgeld, L.; Maurice, F.; Aguillon, C.; Senoussi, S.

    1991-01-01

    High Tc superconductors wires and ribbons were prepared according to the powder in tube method. It is shown that the electrical performances of the so prepared superconductors can be considerably improved, first by increasing as much as possible the density of the green body before sintering, and afterwards by melt texturing the sintered conductors. Some measurements of the transport critical current density of our conductors as a function of their diameter or their thickness are then presented and compared with indirect values obtained via the Bean method. The highest transport Jc measured in the present study, before melt texturing, are: 2250 and 5100 A/cm 2 at 77 and 63 K respectively, for a 50 μm thick silver sheathed ribbon. These figures compare nicely with the values of the intergranular critical current densities determined from magnetic measurements which are: 2100 and 5000 A/cm 2 at the same temperatures, and 40000 A/cm 2 at 4.2 K. Much higher intergranular values, in the range of 10 5 A/cm 2 were obtained after melt texturing the wires. Finally, microstructural characterizations carried out by X-ray diffraction, electron microprobe analysis and transmission electron microscopy are reported and discussed

  5. High voltage electricity installations a planning perspective

    CERN Document Server

    Jay, Stephen Andrew

    2006-01-01

    The presence of high voltage power lines has provoked widespread concern for many years. High Voltage Electricity Installations presents an in-depth study of policy surrounding the planning of high voltage installations, discussing the manner in which they are percieved by the public, and the associated environmental issues. An analysis of these concerns, along with the geographical, environmental and political influences that shape their expression, is presented. Investigates local planning policy in an area of the energy sector that is of highly topical environmental and public concern Cover

  6. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  7. Transport measurements in superconductors: critical current of granular high TC ceramic superconductor samples; Medidas de transporte em supercondutores: corrente critica de supercondutores granulares de alta temperatura critica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, W.A.C., E-mail: wagner.passos@univasf.edu.br [Universidade Federal do Vale do Sao Francisco (IPCM/UNIVASF), Juazeiro do Norte, BA (Brazil). Instituto de Pesquisas em Ciencia dos Materiais; Silva, E.B. [Companhia Energetica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2016-07-01

    This work presents a method to obtain critical current of granular superconductors. We have carried out transport measurements (ρxT curves and VxI curves) in a YBa{sub 2}Cu{sub 3}O{sub 7-δ} sample to determine critical current density of it. Some specimens reveal a 'semiconductor-like' behavior (electrical resistivity decreases with increasing temperatures above critical temperature T{sub c} of material) competing with superconductor behavior. Due to high granular fraction of the sample, these competition is clearly noted in ρxT curves. Measurements carried out from 0 to 8500 Oe of applied field show the same behavior, and the critical current density of the samples is shown. (author)

  8. The emergence of an electric mobility trajectory

    International Nuclear Information System (INIS)

    Dijk, Marc; Orsato, Renato J.; Kemp, René

    2013-01-01

    In this paper, we analyse the emergence of a trajectory of electric moblity. We describe developments in electric vehicles before and after 2005. The central thesis of the paper is that electric mobility has crossed a critical threshold and is benefitting from various developments whose influence can be expected to grow in importance: high oil prices, carbon constraints, and rise of organised car sharing and intermodality. We find that the development of vehicle engine technology depends on changes in (fueling) infrastructure, changes in mobility, changes in the global car market, evolution of energy prices, climate policy, and changes in the electricity sector. Special attention is given to interaction of technological alternatives: how these work out for the future of battery electric vehicles, hybrid electric vehicles and hydrogen fuel cell vehicles. - Highlights: ► A socio-technical analysis of the recent history of electric vehicles. ► An exploration of the future of electric vehicles. ► We highlight the interaction of vehicle technology and mobility patterns.

  9. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  10. High school physics teacher forms of thought about simple electric circuits

    International Nuclear Information System (INIS)

    Kucukozer, H.

    2005-01-01

    According to some researches on students and on science teachers, they have same conceptual difficulties about simple electric circuits and these affect their further learning or/and teaching. [2], [5], [8], [9], [11], [13]. The main aim of this study was to investigate in-service high school physics teachers form of thought about simple electric circuits. In this purpose a test that was developed by Kucukozer [7], contains eight questions related to simple electric circuits was applied to in-service physics teachers (25 subjects) in various Anatolian Teacher High School in Turkey. After analyzing and evaluating of their data, it was found that, the physics teachers have conceptual difficulties about simple electric circuits, especially the concepts about source of stationary current and current usage

  11. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  12. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [College of Engineering and Technology, Northeast Forestry University, Harbin 150040 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  13. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  14. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  15. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    Science.gov (United States)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  16. Electricity demand profile with high penetration of heat pumps in Nordic area

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2013-01-01

    This paper presents the heat pump (HP) demand profile with high HP penetration in the Nordic area in order to achieve the carbon neutrality power system. The calculation method in the European Standard EN14825 was used to estimate the HP electricity demand profile. The study results show...... there will be high power demand from HPs and the selection of supplemental heating for heat pumps has a big impact on the peak electrical power load of heating. The study in this paper gives an estimate of the scale of the electricity demand with high penetration of heat pumps in the Nordic area....

  17. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.

    Science.gov (United States)

    Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur

    2017-09-22

    Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Reliability Evaluation for Optimizing Electricity Supply in a Developing Country

    Directory of Open Access Journals (Sweden)

    Mark Ndubuka NWOHU

    2007-09-01

    Full Text Available The reliability standards for electricity supply in a developing country, like Nigeria, have to be determined on past engineering principles and practice. Because of the high demand of electrical power due to rapid development, industrialization and rural electrification; the economic, social and political climate in which the electric power supply industry now operates should be critically viewed to ensure that the production of electrical power should be augmented and remain uninterrupted. This paper presents an economic framework that can be used to optimize electric power system reliability. Finally the cost models are investigated to take into account the economic analysis of system reliability, which can be periodically updated to improve overall reliability of electric power system.

  19. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  20. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  1. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording

    Science.gov (United States)

    Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han

    2018-04-01

    Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.

  2. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  3. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    Science.gov (United States)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  4. Analysis and evaluation of ZPPR critical experiments for a 100 kilowatt-electric space reactor

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Collins, P.J.; Carpenter, S.G.; Olsen, D.N.; Smith, D.M.; Schaefer, R.W.; Doncals, R.A.; Andre, S.V.; Porter, C.A.; Cowan, C.L.; Stewart, S.L.; Protsik, R.

    1990-01-01

    ZPPR critical experiments were used for physics testing the reactor design of the SP-100, a 100-kW thermoelectric LMR that is being developed to provide electrical power for space applications. These tests validated all key physics characteristics of the design, including the ultimate safety in the event of a launch or re-entry accident. Both the experiments and the analysis required the use of techniques not previously needed for fast reactor designs. A few significant discrepancies between the experimental and calculated results leave opportunities for further reductions in the mass of the SP-100. An initial investigation has been made into application of the ZPPR-20 results, along with those of other relevant integral data, to the SP-100 design

  5. Application of a Gradient Descent Continuous Actor-Critic Algorithm for Double-Side Day-Ahead Electricity Market Modeling

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2016-09-01

    Full Text Available An important goal of China’s electric power system reform is to create a double-side day-ahead wholesale electricity market in the future, where the suppliers (represented by GenCOs and demanders (represented by DisCOs compete simultaneously with each other in one market. Therefore, modeling and simulating the dynamic bidding process and the equilibrium in the double-side day-ahead electricity market scientifically is not only important to some developed countries, but also to China to provide a bidding decision-making tool to help GenCOs and DisCOs obtain more profits in market competition. Meanwhile, it can also provide an economic analysis tool to help government officials design the proper market mechanisms and policies. The traditional dynamic game model and table-based reinforcement learning algorithm have already been employed in the day-ahead electricity market modeling. However, those models are based on some assumptions, such as taking the probability distribution function of market clearing price (MCP and each rival’s bidding strategy as common knowledge (in dynamic game market models, and assuming the discrete state and action sets of every agent (in table-based reinforcement learning market models, which are no longer applicable in a realistic situation. In this paper, a modified reinforcement learning method, called gradient descent continuous Actor-Critic (GDCAC algorithm was employed in the double-side day-ahead electricity market modeling and simulation. This algorithm can not only get rid of the abovementioned unrealistic assumptions, but also cope with the Markov decision-making process with continuous state and action sets just like the real electricity market. Meanwhile, the time complexity of our proposed model is only O(n. The simulation result of employing the proposed model in the double-side day-ahead electricity market shows the superiority of our approach in terms of participant’s profit or social welfare

  6. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  7. Critical thinking skills profile of senior high school students in Biology learning

    Science.gov (United States)

    Saputri, A. C.; Sajidan; Rinanto, Y.

    2018-04-01

    Critical thinking is an important and necessary skill to confront the challenges of the 21st century. Critical thinking skills accommodate activities that can improve high-order thinking skills. This study aims to determine senior high school students' critical thinking skills in Biology learning. This research is descriptive research using instruments developed based on the core aspects of critical thinking skills according to Facione which include interpretation, analysis, evaluation, explanation, conclusion, and self-regulation. The subjects in this study were 297 students in grade 12 of a senior high school in Surakarta selected through purposive sampling technique. The results of this study showed that the students' critical thinking skills on evaluation and self-regulation are in good criterion with 78% and 66% acquisition while 52% interpretation, 56% analysis, 52% conclusion and 42% explanation indicate sufficient criteria. The conclusion from this research is that critical thinking skill of the students still was in enough category, so that needed a way to enhance it on some indicators.

  8. Effect of the microstructure on electrical properties of high-purity germanium

    Science.gov (United States)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  9. Electricity Capacity Expansion Modeling, Analysis, and Visualization. A Summary of High-Renewable Modeling Experience for China

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Getman, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate (NDRC ERI 2015). Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further accelerating such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.

  10. Electricity Capacity Expansion Modeling, Analysis, and Visualization: A Summary of High-Renewable Modeling Experiences (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Getman, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This is the Chinese translation of NREL/TP-6A20-64831. Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate. Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further accelerating such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.

  11. Electrical insulation characteristics of liquid helium under high speed rotating field

    International Nuclear Information System (INIS)

    Ishii, I.; Fuchino, S.; Okano, M.; Tamada, N.

    1996-01-01

    Electrical breakdown behavior of liquid helium was investigated under high speed rotating field. In the development of superconducting turbine generator it is essential to get the knowledge of electrical insulation characteristics of liquid helium under high speed rotating field. When the current of the field magnet of a superconducting generator is changed, changing magnetic field generates heat in the conductor and it causes bubbles in the liquid helium around the conductor. The behavior of the bubbles is affected largely by the buoyancy which is generated by the centrifugal force. Electrical breakdown behavior of the liquid helium is strongly dependent on the gas bubbles in the liquid. Electrical breakdown voltage between electrodes was measured in a rotating cryostat with and without heater input for bubble formation. Decrease of the breakdown voltage by the heater power was smaller in the rotating field than that in the non rotating field

  12. Replacing critical rare earth materials in high energy density magnets

    Science.gov (United States)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  13. Advanced ceramic composite for high energy resistors : Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei; Ahmad, Rashtehizadeh

    2005-01-01

    There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area for innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new, new, conductive, bulk ceramic material has a controlled microstructure, which results in improved homogeneity, making the material suitable for use as a non-inductive, high energy resistor

  14. Critical thinking skills profile of high school students in learning chemistry

    Directory of Open Access Journals (Sweden)

    Budi Utami

    2017-08-01

    Full Text Available Critical thinking skill is the priority in the goals of education. In this case, the critical thinking has the higher process, such as analyzing, synthesizing, evaluating, drawing conclusion and reflecting which enables the individual to make the reasonable assessment both in the classroom and in the daily life.  This research is aimed to determine the students’ critical thinking skill in learning Chemistry at senior high school. This research used descriptive method in which the instruments were developed based on the indicators of critical thinking skill. The population of this research was 100 students of tenth, eleventh and twelfth grade from senior high schools in Surakarta which was chosen using cluster random sampling technique. The result of the research shows that the students of tenth, eleventh and twelfth grade have adequate critical thinking skills.

  15. Electric Conductivity and Dielectric-Breakdown Behavior for Polyurethane Magnetic Elastomers.

    Science.gov (United States)

    Sasaki, Shuhei; Tsujiei, Yuri; Kawai, Mika; Mitsumata, Tetsu

    2017-02-23

    The electric-voltage dependence of the electric conductivity for cross-linked and un-cross-linked magnetic elastomers was measured at various magnetic fields, and the effect of cross-linking on the electric conductivity and the dielectric-breakdown behavior was investigated. The electric conductivity for un-cross-linked elastomers at low voltages was independent of magnetic fields and the volume fraction of magnetic particles, indicating the electric conduction in the polyurethane matrix. At high voltages, the electric conductivity increased with the magnetic field, showing the electric conduction via chains of magnetic particles. On the other hand, the electric conductivity at low voltages for cross-linked elastomers with volume fractions below 0.06 was independent of the magnetic field, suggesting the electric conduction in the polyurethane matrix. At volume fractions above 0.14, the electric conductivity increased with the magnetic field, suggesting the electric conduction via chains of magnetic particles. At high voltages, the electric conductivity for cross-linked elastomers with a volume fraction of 0.02 was independent of the magnetic field, indicating the electric conduction through the polyurethane matrix. At volume fractions above 0.06, the electric conductivity suddenly increased at a critical voltage, exhibiting the dielectric breakdown at the bound layer of magnetic particles and/or the discontinuous part between chains.

  16. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  17. Critical current of high Tc superconducting Bi223/Ag tapes

    NARCIS (Netherlands)

    Huang, Y.; ten Haken, Bernard; ten Kate, Herman H.J.

    1998-01-01

    The magnetic field dependence of the critical current of various high Tc superconducting Bi2223/Ag tapes indicates that the transport current is carried through two paths: one is through weakly-linked grain boundaries (Josephson junctions); another is through well-connected grains. The critical

  18. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  19. A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites: Electrical and thermo-mechanical properties

    Directory of Open Access Journals (Sweden)

    B. B. Khatua

    2013-06-01

    Full Text Available In this work, polycarbonate (PC/multiwall carbon nanotube (MWCNT nanocomposites were prepared by simple melt mixing at a temperature (~350°C well above the processing temperature of PC, followed by compression molding, that exhibited percolation threshold as low as of 0.11 wt% and high electrical conductivity of 1.38x10–3 S•cm–1 at only 0.5 wt% MWCNT loading. Due to the lower interfacial energy between MWCNT and PC, the carbon nanotubes are excellently dispersed and formed continuous conductive network structure throughout the host polymer. AC electrical conductivity and dielectric permittivity of PC/MWCNT nanocomposites were characterized in a broad frequency range, 101–107 Hz. Low percolation threshold (pc of 0.11 wt% and the critical exponent (t of ~3.38 was resulted from scaling law equation. The linear plot of logσDC vs. p–1/3 supported the presence of tunneling conduction among MWCNTs. The thermal property and storage modulus of PC were increased with the incorporation of little amount of MWCNTs. Transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM confirmed the homogeneous dispersion and distribution of MWCNTs throughout the matrix phase.

  20. High voltage engineering

    CERN Document Server

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  1. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  2. An Electrically Switchable Metal-Organic Framework

    Science.gov (United States)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  3. Advanced ceramic composite for high energy resistors. Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei

    2005-01-01

    Full text : There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area for innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics, Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new conductive bulk ceramic material has a controlled microstructure, which results an improved homogeneity, making the material suitable for use as a non-inductive, high energy resistor. The new material has higher density, highee peak of temperature limit and greater physical strength compared with bulk ceramics currently used for pulsed power resistors. This paper describes characterization of the material's physical and electrical properties and relates them to improvements in low-power density, as compared to existing components would be expected and derived from specific properties such as good thermal conductivity, high strength, thermal shock resistance and high temperature capability. The bulk resistor approach that weas proposed offers high reliability through better mechanical properties and simplicity of construction

  4. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications.

    Science.gov (United States)

    Wang, Qijun; Li, Yifei; Sun, Da-Wen; Zhu, Zhiwei

    2018-02-02

    Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.

  5. Emergency Power For Critical Items

    Science.gov (United States)

    Young, William R.

    2009-07-01

    Natural disasters, such as hurricanes, floods, tornados, and tsunami, are becoming a greater problem as climate change impacts our environment. Disasters, whether natural or man made, destroy lives, homes, businesses and the natural environment. Such disasters can happen with little or no warning, leaving hundreds or even thousands of people without medical services, potable water, sanitation, communications and electrical services for up to several weeks. In our modern world, the need for electricity has become a necessity. Modern building codes and new disaster resistant building practices are reducing the damage to homes and businesses. Emergency gasoline and diesel generators are becoming common place for power outages. Generators need fuel, which may not be available after a disaster, but Photovoltaic (solar-electric) systems supply electricity without petroleum fuel as they are powered by the sun. Photovoltaic (PV) systems can provide electrical power for a home or business. PV systems can operate as utility interactive or stand-alone with battery backup. Determining your critical load items and sizing the photovoltaic system for those critical items, guarantees their operation in a disaster.

  6. Microstructures and critical currents in high-Tc superconductors

    International Nuclear Information System (INIS)

    Suenaga, Masaki

    1998-01-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high T c superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa 2 Cu 3 O 7 if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa 2 Cu 3 O 7 and how effective are these in pinning vortices

  7. Design of a 200kW electric powertrain for a high performance electric vehicle

    Directory of Open Access Journals (Sweden)

    Wilmar Martinez

    2016-09-01

    Full Text Available With the purpose of designing the electric powertrain of a high performance electric vehicle capable of running a quarter mile in 10 seconds, firstly it is necessary to calculate the required energy, torque, and power in order to size and select the suitable storage components and electric motors. Secondly, an assessment of the powertrain arrangement is needed to choose the best internal configuration of the vehicle and guarantee the highest efficiency possible. Finally, a design of the power conversion stages, specifically the DC-DC converter that interfaces the storage unit with the electric motors, is required as well. This paper shows the energy calculation procedure based on a longitudinal dynamic model of the vehicle and the selection method of the storage components and motors needed for this application, as well as the design of two 100kW interleaved boost converters with coupled inductors. In addition, a novel operation of the interleaved boost converter is proposed in order to increase the efficiency of the converter. As a result, the designed converter achieved a power density of 24,2kW/kg with an efficiency of 98 %, which was validated by experimental tests of a low power prototype.

  8. High energy XeBr electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  9. Dealing Collectively with Critical Incident Stress Reactions in High Risk Work Environments

    DEFF Research Database (Denmark)

    Müller-Leonhardt, Alice; Strøbæk, Pernille Solveig; Vogt, joachim

    2015-01-01

    organisations. Indeed, we found that the CISM programme once integrated within the socio-cultural patterns of this specific working environment enhanced not only individual feelings of being supported but also organisational safety culture. Keywords: coping; safety culture; critical incident stress management......aim of this paper is to shift the representation of coping patterns within high risk occupations to an existential part of cultural pattern and social structure, which characterises high reliability organisations. Drawing upon the specific peer model of critical incident stress management (CISM......), in which qualified operational peers support colleagues who experienced critical incident stress, the paper discusses critical incident stress management in air traffic control. Our study revealed coping patterns that co-vary with the culture that the CISM programme fostered within this specific high...

  10. Studies in the economics of electricity and heating

    International Nuclear Information System (INIS)

    Andersson, Roland; Bohman, M.; Taylor, L.

    1992-01-01

    This study deals with problems of pricing and capacity planning of electricity and to some extent, heat, as well as with the evaluation of research and development projects. A critical review is given of the discussion in the economic literature concerning whether the price for public utilities should be based on short-run (SRMC) or long-run marginal costs (LRMC). We find it advisable to dispense with the LRMC concept altogether and rely on pricing based on SRMC. We deal with the design of such prices, how they depend on peak and off-peak loads, locational differences in production, transmission and distribution costs etc., particularly when both demand and supply are random. Then follows a critical analysis of the high-voltage as well as low-voltage electricity tariffs used in Sweden. The coordinated pricing system used among power producers in the Nordic countries is found to be an almost ideal application of the theory. The problem of deriving an optimal price structure for cogenerated electricity and heat used for district heating in local communities is analyzed together with an attempt to measure short-run welfare gains of switching from the existing price structure in a stylized local community to the optimal price structure. A critical review presents concepts and methods used to assess the social costs of unsupplied electricity. Methods for dimensioning production capacity for electricity energy in an efficient way, and the problems of dimensioning production capacity for electricity in a socially optimal way are discussed. We then go on to examine the investment criteria used by the Swedish power industry. We also analyze criteria for appraisal of energy R and D projects from a governments perspective and present a model based on sequential decision making for evaluating uncertain energy R and D projects. (au) (138 refs., 45 figs. 18 tabs.)

  11. W/O Emulsions in High Electric Fields as Studied by Means of Time Domain Dielectric Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Foerdedal, Harald

    1995-11-01

    Since oil and brine coexist in the oil reservoirs, the crude oil produced contains free and emulsified water. The type of emulsion formed, water-in-oil or vice versa, generally depends on the amounts of water and oil before mixing. However, the presence of stabilisers, which occur naturally in crude oil, is also of major importance. It is found that dielectric spectroscopy is an appropriate experimental technique for investigating water-in-oil emulsion. When the instrumentation is equipped with an external power supply, information about the coalescence process can be obtained when the critical electric field is approached. Two distinctly different behaviours are observed. In model emulsions stabilised by commercial liquid surfactants a decrease in the static permittivity is observed as the electric field is applied. On the other hand, model emulsions stabilised by indigenous surfactants extracted from crude oils show an increase in the static permittivity as they are exposed to the external electric field. A quantitative parameter is derived for the emulsion stability. The value of the critical electric field is found to be sensitive to changes in the interfacial conditions, and multivariate analysis proves to be suitable for obtaining information about the general trends of variables on the emulsion stability. The stability of emulsions depends on several parameters, such as the amount and properties of the phases, the properties of the stabiliser, etc. Multivariate analysis reveals what variables are most important in characterising the stability/instability of emulsions.

  12. Method of boundary testing of the electric circuits and its application for calculating electric tolerances. [electric equipment tests

    Science.gov (United States)

    Redkina, N. P.

    1974-01-01

    Boundary testing of electric circuits includes preliminary and limiting tests. Preliminary tests permit determination of the critical parameters causing the greatest deviation of the output parameter of the system. The boundary tests offer the possibility of determining the limits of the fitness of the system with simultaneous variation of its critical parameters.

  13. CRITICAL ISSUES IN HIGH END COMPUTING - FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Corones, James [Krell Institute

    2013-09-23

    High-End computing (HEC) has been a driver for advances in science and engineering for the past four decades. Increasingly HEC has become a significant element in the national security, economic vitality, and competitiveness of the United States. Advances in HEC provide results that cut across traditional disciplinary and organizational boundaries. This program provides opportunities to share information about HEC systems and computational techniques across multiple disciplines and organizations through conferences and exhibitions of HEC advances held in Washington DC so that mission agency staff, scientists, and industry can come together with White House, Congressional and Legislative staff in an environment conducive to the sharing of technical information, accomplishments, goals, and plans. A common thread across this series of conferences is the understanding of computational science and applied mathematics techniques across a diverse set of application areas of interest to the Nation. The specific objectives of this program are: Program Objective 1. To provide opportunities to share information about advances in high-end computing systems and computational techniques between mission critical agencies, agency laboratories, academics, and industry. Program Objective 2. To gather pertinent data, address specific topics of wide interest to mission critical agencies. Program Objective 3. To promote a continuing discussion of critical issues in high-end computing. Program Objective 4.To provide a venue where a multidisciplinary scientific audience can discuss the difficulties applying computational science techniques to specific problems and can specify future research that, if successful, will eliminate these problems.

  14. High-efficiency electric motors: An analysis of a feasible tariff policy for Brazil

    International Nuclear Information System (INIS)

    Paiva Delgado, M.A. de; Tolmasquim, M.T.

    1997-01-01

    The main objective is to calculate an average value for an electricity tariff which will facilitate the introduction of high-efficiency electric motors in the production sector. Two computational models will be developed for technical-economic evaluation to assess economic attractiveness by calculating feasible average electricity tariffs in order to create a market for substitution of standard motors by new high-efficiency models (Purchase Decision Model) as well as to determine if retrofitting of standard installed motors by others with high-efficiency characteristics is viable, and, if so, to specify the optimum timing for such substitution (Substitution Decision Model). It should be noted that the Purchase Decision Model takes into account power factor adjustment and the Substitution Decision Model incorporates considerations as to reduction in the electromechanical performance of operating motors. Results indicate that even where average electricity tariffs are low, as in Brazil, high-efficiency motors are economically attractive compared to standard motors. There is an obvious need for complementary instruments to assist massive market penetration

  15. Critical Infrastructures: Background, Policy, and Implementation

    National Research Council Canada - National Science Library

    Moteff, John D

    2005-01-01

    .... electricity, the power plants that generate it, and the electric grid upon which it is distributed). The national security community has been concerned for sometime about the vulnerability of critical infrastructure to both physical and cyber attack...

  16. Development of high electrical resistance persistent current switch for high speed energization system

    International Nuclear Information System (INIS)

    Jizo, Y.; Furuta, Y.; Nakashima, H.

    1986-01-01

    Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom

  17. Study on Earthquake Response of High Voltage Electrical Equipment Coupling System with Flexible Busbar

    Science.gov (United States)

    Liu, Chuncheng; Qu, Da; Wang, Chongyang; Lv, Chunlei; Li, Guoqiang

    2017-12-01

    With the rapid development of technology and society, all walks of life in China are becoming more and more dependent on power systems. When earthquake occurs, the electrical equipment of substation is prone to damage because of its own structural features, top-heavy, and brittleness of main body. At the same time, due to the complex coupling of the soft electrical connection of substation electrical equipment, the negative impact can not be estimated. In this paper, the finite element model of the coupling system of the single unit of high voltage electrical equipment with the connecting soft bus is established and the seismic response is analysed. The results showed that there is a significant difference between the simple analysis for the seismic response of electrical equipment monomer and the analytical results of electrical equipment systems, and the impact on different electrical equipment is different. It lays a foundation for the future development of seismic performance analysis of extra high voltage electrical equipment.

  18. Data and Geocomputation: Time Critical Mission Support for the 2017 Hurricane Season

    Science.gov (United States)

    Bhaduri, B. L.; Tuttle, M.; Rose, A.; Sanyal, J.; Thakur, G.; White, D.; Yang, H. H.; Laverdiere, M.; Whitehead, M.; Taylor, H.; Jacob, M.

    2017-12-01

    A strong spatial data infrastructure and geospatial analysis capabilities are nucleus to the decision-making process during emergency preparedness, response, and recovery operations. For over a decade, the U.S. Department of Energy's Oak Ridge National Laboratory has been developing critical data and analytical capabilities that provide the Federal Emergency Management Agency (FEMA) and the rest of the federal response community assess and evaluate impacts of natural hazards on population and critical infrastructures including the status of the national electricity and oil and natural gas networks. These capabilities range from identifying structures or buildings from very high-resolution satellite imagery, utilizing machine learning and high-performance computing, to daily assessment of electricity restoration highlighting changes in nighttime lights for the impacted region based on the analysis of NOAA JPSS VIIRS Day/Night Band (DNB) imagery. This presentation will highlight our time critical mission support efforts for the 2017 hurricane season that witnessed unprecedented devastation from hurricanes Harvey, Irma, and Maria. ORNL provided 90m resolution LandScan USA population distribution data for identifying vulnerable population as well as structure (buildings) data extracted from 1m imagery for damage assessment. Spatially accurate data for solid waste facilities were developed and delivered to the response community. Human activity signatures were assessed from large scale collection of open source social media data around points of interests (POI) to ascertain level of destruction. The electricity transmission system was monitored in real time from data integration from hundreds of utilities and electricity outage information were provided back to the response community via standardized web-services.

  19. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    Science.gov (United States)

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  20. Challenges and Opportunities of Very Light High-Performance Electric Drives for Aviation

    Directory of Open Access Journals (Sweden)

    Markus Henke

    2018-02-01

    Full Text Available The demand for alternative fueling methods to reduce the need for fossil fuels is not limited to the electrification of ground vehicles. More-electric and all-electric aircraft pose challenges, with extensive requirements in terms of power density, efficiency, safety, and environmental sustainability. This paper focuses on electrical machines and their components, especially for high-power applications like the main propulsion. The electrical machine is evaluated from different aspects, followed by a closer look at the components and materials to determine the suitability of the current standard materials and advanced technologies. Furthermore, the mechanical and thermal aspects are reviewed, including new and innovative concepts for the cooling of windings and for the use of additive manufacturing. Aircraft have special demands regarding weight and installation space. Following recent developments and looking ahead to the future, the need and the possibilities for light and efficient electrical machines are addressed. All of the approaches and developments presented lead to a better understanding of the challenges to be expected and highlight the upcoming opportunities in electrical machine design for the use of electric motors and generators in future aircraft. Several prototypes of electrical machines for smaller aircraft already exist, such as the electric drive of the Siemens powered Extra 330LE. The focus of this paper is to provide an overview of current technical possibilities and technical interrelations of high performance electric drives for aviation. A 1 MW drive is exemplified to present the possibilities for future drives for airplanes carrying a larger number of passengers. All presented techniques can also be applied to other drive power classes.

  1. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  2. Electrical and thermal behavior of unsaturated soils: experimental results

    Science.gov (United States)

    Nouveau, Marie; Grandjean, Gilles; Leroy, Philippe; Philippe, Mickael; Hedri, Estelle; Boukcim, Hassan

    2016-05-01

    When soil is affected by a heat source, some of its properties are modified, and in particular, the electrical resistivity due to changes in water content. As a result, these changes affect the thermal properties of soil, i.e., its thermal conductivity and diffusivity. We experimentally examine the changes in electrical resistivity and thermal conductivity for four soils with different grain size distributions and clay content over a wide range of temperatures, from 20 to 100 °C. This temperature range corresponds to the thermal conditions in the vicinity of a buried high voltage cable or a geothermal system. Experiments were conducted at the field scale, at a geothermal test facility, and in the laboratory using geophysical devices and probing systems. The results show that the electrical resistivity decreases and the thermal conductivity increases with temperature up to a critical temperature depending on soil types. At this critical temperature, the air volume in the pore space increases with temperature, and the resulting electrical resistivity also increases. For higher temperatures , the thermal conductivity increases sharply with temperature up to a second temperature limit. Beyond it, the thermal conductivity drops drastically. This limit corresponds to the temperature at which most of the water evaporates from the soil pore space. Once the evaporation is completed, the thermal conductivity stabilizes. To explain these experimental results, we modeled the electrical resistivity variations with temperature and water content in the temperature range 20 - 100°C, showing that two critical temperatures influence the main processes occurring during heating at temperatures below 100 °C.

  3. Determining of the electric field strength using high frequency broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav D.

    2017-01-01

    Full Text Available Exposure of humans to electromagnetic fields of high frequency (above 100 kHz, i.e. radiofrequency radiation from the modern wireless systems, today inevitable is. The purpose of this paper is to highlight the importance of broadband measurements of the electric field of high frequency in order to fast and reliable assessment of human exposure. A practical method of ‘in situ’ measurement the electric field intensity which is related to the frequency range of 3 MHz to 18 GHz, is provided.

  4. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  5. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    Science.gov (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  6. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Marongiu, Andrea; Sauer, Dirk Uwe

    2015-05-01

    This work provides an overview of available methods and algorithms for on-board capacity estimation of lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-Function are discussed and analyzed by many authors and researchers in the past. On-board estimation of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions far from those used in laboratory environments as well as the large variation in aging behavior of each cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.

  7. High-voltage electrical burns due to copper theft - Case series.

    Science.gov (United States)

    Braga, M J; Oliveira, I; Egipto, P; Silva, A

    2016-03-31

    Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring.

  8. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  9. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  10. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  11. Global Electricity Trade Network: Structures and Implications

    Science.gov (United States)

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  12. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  13. High prices on electric power now again?

    International Nuclear Information System (INIS)

    Doorman, Gerard

    2003-01-01

    Deregulation of the electric power market has yielded low prices for the consumers throughout the 1990s. Consumption has now increased considerably, but little new production has been added. This results in high prices in dry years, but to understand this one must understand price formation in the Nordic spot market. The high prices are a powerful signal to the consumers to reduce consumption, but they are also a signal to the producers to seize any opportunity to increase production. However, the construction of new dams etc. stirs up the environmentalists. Ordinary consumers may protect themselves against high prices by signing fixed-price contracts. For those who can tolerate price fluctuations, spot prices are a better alternative than the standard contract with variable price

  14. Supercomputing Centers and Electricity Service Providers

    DEFF Research Database (Denmark)

    Patki, Tapasya; Bates, Natalie; Ghatikar, Girish

    2016-01-01

    from a detailed, quantitative survey-based analysis and compare the perspectives of the European grid and SCs to the ones of the United States (US). We then show that contrary to the expectation, SCs in the US are more open toward cooperating and developing demand-management strategies with their ESPs......Supercomputing Centers (SCs) have high and variable power demands, which increase the challenges of the Electricity Service Providers (ESPs) with regards to efficient electricity distribution and reliable grid operation. High penetration of renewable energy generation further exacerbates...... this problem. In order to develop a symbiotic relationship between the SCs and their ESPs and to support effective power management at all levels, it is critical to understand and analyze how the existing relationships were formed and how these are expected to evolve. In this paper, we first present results...

  15. Breakdown in ZnO Varistors by High Power Electrical Pulses; TOPICAL

    International Nuclear Information System (INIS)

    PIKE, GORDON E.

    2001-01-01

    This report documents an investigation of irreversible electrical breakdown in ZnO varistors due to short pulses of high electric field and current density. For those varistors that suffer breakdown, there is a monotonic, pulse-by-pulse degradation in the switching electric field. The electrical and structural characteristics of varistors during and after breakdown are described qualitatively and quantitatively. Once breakdown is nucleated, the degradation typically follows a well-defined relationship between the number of post-initiation pulses and the degraded switching voltage. In some cases the degraded varistor has a remnant 20(micro)m diameter hollow track showing strong evidence of once-molten ZnO. A model is developed for both electrical and thermal effects during high energy pulsing. The breakdown is assumed to start at one electrode and advance towards the other electrode as a thin filament of conductive material that grows incrementally with each successive pulse. The model is partially validated by experiments in which the varistor rod is cut at several different lengths from the electrode. Invariably one section of the cut varistor has a switching field that is not degraded while the other section(s) are heavily degraded. Based on the experiments and models of behavior during breakdown, some speculations about the nature of the nucleating mechanism are offered in the last section

  16. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    CERN Document Server

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  17. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric power generating unit

    International Nuclear Information System (INIS)

    Tuley, C.R.; Bauman, D.A.; Neuner, J.A.; Feilchenfeld, M.M.; Greenberg, L.

    1984-01-01

    An inadvertent approach to criticality in a nuclear fueled electric power generating unit is detected and an alarm is generated through on-line monitoring of the neutron flux. The difficulties of accurately measuring the low levels of neutron flux in a subcritical reactor are overcome by the use of a microcomputer which continuously generates average flux count rate signals for incremental time periods from thousands of samples taken during each such period and which serially stores the average flux count rate signals for a preselected time interval. At the end of each incremental time period, the microcomputer compares the latest average flux count rate signal with the oldest, and preferably each of the intervening stored values, and if it exceeds any of them by at least a preselected multiplication factor, an alarm is generated. (author)

  18. Mobile Learning Based Worked Example in Electric Circuit (WEIEC) Application to Improve the High School Students' Electric Circuits Interpretation Ability

    Science.gov (United States)

    Yadiannur, Mitra; Supahar

    2017-01-01

    This research aims to determine the feasibility and effectivity of mobile learning based Worked Example in Electric Circuits (WEIEC) application in improving the high school students' electric circuits interpretation ability on Direct Current Circuits materials. The research method used was a combination of Four-D Models and ADDIE model. The…

  19. Structural and electrical properties of TmTe under high pressure

    International Nuclear Information System (INIS)

    Tang, Jie; Matsumoto, Takehiko; Kosaka, Takayuki; Matsumura, Takeshi; Suzuki, Takashi; Mori, Nobuo

    1997-01-01

    Pressure-induced valence state of Tm ions in TmTe has been investigated by measurements of electrical resistivity in situ x-ray diffraction and magnetic susceptibility at high pressure. Below 2 GPa, the valence of Tm was confirmed to be 2 + from the results of compressibility and magnetic susceptibility. The pressure dependence of the electrical resistivity up to 2 GPa at room temperature showed an exponential decrease, indicating a linear closing of the energy gap at a rate of -1 meV/GPa. In the pressure range above 2 GPa where the energy gap disappeared, the valence transition from Tm 2+ to Tm 3+ was concluded from the pressure dependence of the lattice parameters. The electrical resistivity showing a logarithmic temperature dependence was reminiscent of Kondo effect. Above 6 GPa at which the pressure dependence of electrical resistivity abruptly decreased, the structure was confirmed to transform from the NaCl-type with Tm 3+ to a tetragonal structure. (author)

  20. Growth and decay of runaway electrons above the critical electric field under quiescent conditions

    International Nuclear Information System (INIS)

    Paz-Soldan, C.; Eidietis, N. W.; Wesley, J. C.; Granetz, R.; Hollmann, E. M.; Moyer, R. A.; Zhang, J.; Crocker, N. A.; Austin, M. E.; Wingen, A.; Zhu, Y.

    2014-01-01

    Extremely low density operation free of error field penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the flat-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density, until RE decay is observed. The transition from growth to decay is found to occur 3–5 times above the theoretical critical electric field for avalanche growth and is thus indicative of anomalous RE loss. This suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude

  1. Critical behavior of electrical resistivity in amorphous Fe–Zr alloys

    Indian Academy of Sciences (India)

    Analysis of the resistivity data particularly in the critical region reveals that these systems have a much wider range of critical region compared to other crystalline ferromagnetic materials. The value of and specific heat critical exponent, has the same values as those determined from our earlier magnetic measurements ...

  2. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  3. Processing and critical currents of high-Tc superconductor wires

    International Nuclear Information System (INIS)

    Krauth, H.; Heine, K.; Tenbrink, J.

    1991-01-01

    High-Tc superconductors are expected to have a major impact on magnet and energy technology. For technical applications they have to fulfill the requirement of carrying sufficient current at a critical current density of the order of 10 5 A/cm 2 at operating temperature and magnetic field. At 77 K these values have not been achieved yet in bulk material or wires due to weak link problems and flux creep effects. Progress made so far and remaining problems will be discussed in detail concentrating on problems concerning development of technical wires. In Bi-based materials technically interesting critical current densities could be achieved at 4.2 K in fields above 20 T (1,2), rendering possible the use of such material for very high field application. (orig.)

  4. Behavior of Rubber Materials under Exposure to High Electric Fields

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Henriksen, M,

    2013-01-01

    The effect of high electrical stress on rubber materials is investigated by performing breakdown tests and tracking resistance tests on selected samples. The study is focused on the relationship between the dielectric strength and the thickness of the samples, as well as the influence of the inte......The effect of high electrical stress on rubber materials is investigated by performing breakdown tests and tracking resistance tests on selected samples. The study is focused on the relationship between the dielectric strength and the thickness of the samples, as well as the influence...... of the interfaces between different layers of material. Tracking resistance tests are also performed on the rubber material. The purpose is to provide a complete study of the applicability of the rubber material in thunderstorm environments....

  5. Microstructure and critical current density in high-Tc metal oxide superconductors

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.

    1992-03-01

    Superconductor powders in the U-Ba-Cu-O (YBCO) and Bi-Pb-Sr-Ca-Cu-O (BSCCO) systems were synthesized by freeze-drying. Powders were characterized, and processed into samples for evaluation of superconducting behavior. Freeze-drying is attractive because the powders have high purity, are homogeneous, have a small size and are active. YBCO powders can be sintered to high density at 890 degrees C. Many compositions, processing approaches and heat treatments were explored in an effort to understand relations between microstructure and critical density, and to improve the critical current density. Powders were also formed into sputtering targets for coating preparation at Stanford University. The highest critical current density achieved with the YBCO powders was ∼15,000 A/cm 2 at 4.2K and 0.5T using powders treated to prevent carbon contamination. The BSCCO materials with the highest critical current density, ∼30,000 A/cm 2 at the same conditions were formed by heat treating melted and quenched samples. All critical current density measurements were made by Stanford University, a subcontractor to this effort. Stanford University also prepared coatings by off-axis magnetron sputtering

  6. Thermal and electrical conductivities of high purity tantalum

    International Nuclear Information System (INIS)

    Archer, S.L.

    1978-01-01

    The electrical resistivity and thermal conductivity of three high purity tantalum samples have been measured as functions of temperature over a temperature range of 5K to 65K. Sample purities ranged up to a resistivity ratio of 1714. The highest purity sample had a residual resistivity of .76 x 10 -10 OMEGA-m. The intrinsic resistivity varied as T 3 . 9 from 10K to 31K. The thermal conductivity of the purest sample had a maximum of 840 W/mK at 9.8K. The intrinsic thermal resistivity varied as T 2 . 4 from 10K to 35K. At low temperatures electrons were scattered primarily by impurities and by phonons with both interband and intraband transitions observed. The electrical and thermal resistivity is departed from Matthiessen's rule at low temperatures

  7. Application of high temperature superconductivity to electric motor design

    International Nuclear Information System (INIS)

    Edmonds, J.S.; Sharma, D.K.; Jordan, H.E.; Edick, J.D.; Schiferl, R.F.

    1992-01-01

    This paper reports on progress made in a joint project conducted by the Electric Power Research Institute and Reliance Electric Company to study the possible application of High Temperature Super Conductors (HTSC), materials to electric motors. Specific applications are identified which can be beneficially served by motors constructed with HTSC materials. A summary is presented of the components and design issues related to HTSC motors designed for these applications. During the course of this development program, a three tier HTSC wire performance specification has evolved. The three specifications and the rationale behind these three levels of performance are explained. A description of a test motor that has been constructed to verify the electromagnetic analytical techniques of HTSC motor design is given. Finally, a DC motor with an HTSC field coil is described. Measured data with the motor running is presented showing that the motor is operating with the field winding in the superconducting state

  8. High Performance Electrical Modeling and Simulation Verification Test Suite - Tier I; TOPICAL

    International Nuclear Information System (INIS)

    SCHELLS, REGINA L.; BOGDAN, CAROLYN W.; WIX, STEVEN D.

    2001-01-01

    This document describes the High Performance Electrical Modeling and Simulation (HPEMS) Global Verification Test Suite (VERTS). The VERTS is a regression test suite used for verification of the electrical circuit simulation codes currently being developed by the HPEMS code development team. This document contains descriptions of the Tier I test cases

  9. Electricity under the critical scrutiny of parliament and the people

    International Nuclear Information System (INIS)

    1982-01-01

    The history of electricity power generation in Switzerland over the last hundred years is examined from the point of view of its social and political implications. Particular attention is paid to the forthcoming decision by parliament regarding the construction of a new atomic power station at Kaiseraugst in view of the increasing anti-nuclear energy lobby in Switzerland itself and in West Germany to whom considerable quantities of electricity are ''exported''. (R.S.)

  10. High impact ionization rate in silicon by sub-picosecond THz electric field pulses (Conference Presentation)

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Hirori, Hideki

    2017-01-01

    Summary form only given. Metallic antenna arrays fabricated on high resistivity silicon are used to localize and enhance the incident THz field resulting in high electric field pulses with peak electric field strength reaching several MV/cm on the silicon surface near the antenna tips. In such high...... electric field strengths high density of carriers are generated in silicon through impact ionization process. The high density of generated carriers induces a change of refractive index in silicon. By measuring the change of reflectivity of tightly focused 800 nm light, the local density of free carriers...... near the antenna tips is measured. Using the NIR probing technique, we observed that the density of carriers increases by over 8 orders of magnitude in a time duration of approximately 500 fs with an incident THz pulse of peak electric field strength 700 kV/cm. This shows that a single impact...

  11. Development of high-performance ER gel produced by electric-field assisted molding

    International Nuclear Information System (INIS)

    Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30∼40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  12. High-tension electrical-arc-induced thermal burns caused by railway overhead cables.

    Science.gov (United States)

    Koller, J

    1991-10-01

    Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.

  13. Development of high-performance ER gel produced by electric-field assisted molding

    Energy Technology Data Exchange (ETDEWEB)

    Kakinuma, Y; Aoyama, T [Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi Kouhoku-ku Yokohama (Japan); Anzai, H [Fujikura kasei Co., Ltd. 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: kakinuma@sd.keio.ac.jp

    2009-02-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30{approx}40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  14. Potential criticality accident at the General Electric Nuclear Fuel and Component Manufacturing Facility, May 29, 1991

    International Nuclear Information System (INIS)

    1991-08-01

    At the General Electric Nuclear Fuel and Component Manufacturing facility, located near Wilmington, North Carolina, on May 28 and 29, 1991, approximately 150 kilograms of uranium were inadvertently transferred from safe process tanks to an unsafe tank located at the waste treatment facility, thus creating the potential for a localized criticality safety problem. The excess uranium was ultimately safely recovered when the tank contents were centrifuged to remove the uranium-bearing material. Subsequently, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to determine what happened, to identify probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents the team's findings and conclusions. 48 figs., 8 tabs

  15. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    Science.gov (United States)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

  16. Evaluation of electrical crosstalk in high-density photodiode arrays for X-ray imaging applications

    International Nuclear Information System (INIS)

    Ji Fan; Juntunen, Mikko; Hietanen, Iiro

    2009-01-01

    Electrical crosstalk is one of the important parameters in the photodiode array detector for X-ray imaging applications, and it becomes more important when the density of the photodiode array becomes higher. This paper presents the design of the high-density photodiode array with 250 μm pitch and 50 μm gap. The electrical crosstalk of the demonstrated samples is evaluated and compared with different electrode configurations: cathode bias mode and anode bias mode. The measurement results show good electrical crosstalk, ∼0.23%, in cathode bias mode regardless of the bias voltage, and slightly decreased or increased electrical crosstalk in anode bias mode. Moreover, the quantum efficiency is also evaluated from the same samples, and it behaves similar to the electrical crosstalk. Finally, some design guidance of the high-density photodiode array is given based on the discussion.

  17. Critical behavior of the dielectric constant in asymmetric fluids.

    Science.gov (United States)

    Bertrand, C E; Sengers, J V; Anisimov, M A

    2011-12-08

    By applying a thermodynamic theory that incorporates the concept of complete scaling, we derive the asymptotic temperature dependence of the critical behavior of the dielectric constant above the critical temperature along the critical isochore and below the critical temperature along the coexistence curve. The amplitudes of the singular terms in the temperature expansions are related to the changes of the critical temperature and the critical chemical potential upon the introduction of an electric field. The results of the thermodynamic theory are then compared with the critical behavior implied by the classical Clausius-Mossotti approximation. The Clausius-Mossotti approximation fails to account for any singular temperature dependence of the dielectric constant above the critical temperature. Below the critical temperature it produces an apparent asymmetric critical behavior with singular terms similar to those implied by the thermodynamic theory, but with significantly different coefficients. We conclude that the Clausius-Mossotti approximation only can account for the observed asymptotic critical behavior of the dielectric constant when the dependence of the critical temperature on the electric field is negligibly small. © 2011 American Chemical Society

  18. Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hjalmarson, Harold P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bigman, Verle Howard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Richard Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document

  19. Electric field analysis of extra high voltage (EHV) underground cables using finite element method

    DEFF Research Database (Denmark)

    Kumar, Mantosh; Bhaskar, Mahajan Sagar; Padmanaban, Sanjeevikumar

    2017-01-01

    used for the insulator due electrical, thermal or environmental stress. Most of these problems are related to the electric field stress on the insulation of the underground cables. The objective of the electric field analysis by using different numerical techniques is to find electric field stress...... electric field stress and other parameters of EHV underground cables with given boundary conditions using 2-D electric field analysis software package (IES-ELECTRO module) which is based on the finite element method (FEM).......Transmission and Distribution of electric power through underground cables is a viable alternative to overhead lines, particularly in residential or highly populated areas. The electrical stresses are consequences of regular voltages and over voltages and the thermal stresses are related to heat...

  20. Empirical high-latitude electric field models

    International Nuclear Information System (INIS)

    Heppner, J.P.; Maynard, N.C.

    1987-01-01

    Electric field measurements from the Dynamics Explorer 2 satellite have been analyzed to extend the empirical models previously developed from dawn-dusk OGO 6 measurements (J.P. Heppner, 1977). The analysis embraces large quantities of data from polar crossings entering and exiting the high latitudes in all magnetic local time zones. Paralleling the previous analysis, the modeling is based on the distinctly different polar cap and dayside convective patterns that occur as a function of the sign of the Y component of the interplanetary magnetic field. The objective, which is to represent the typical distributions of convective electric fields with a minimum number of characteristic patterns, is met by deriving one pattern (model BC) for the northern hemisphere with a +Y interplanetary magnetic field (IMF) and southern hemisphere with a -Y IMF and two patterns (models A and DE) for the northern hemisphere with a -Y IMF and southern hemisphere with a +Y IMF. The most significant large-scale revisions of the OGO 6 models are (1) on the dayside where the latitudinal overlap of morning and evening convection cells reverses with the sign of the IMF Y component, (2) on the nightside where a westward flow region poleward from the Harang discontinuity appears under model BC conditions, and (3) magnetic local time shifts in the positions of the convection cell foci. The modeling above was followed by a detailed examination of cases where the IMF Z component was clearly positive (northward). Neglecting the seasonally dependent cases where irregularities obscure pattern recognition, the observations range from reasonable agreement with the new BC and DE models, to cases where different characteristics appeared primarily at dayside high latitudes

  1. High voltage diagnostics on electrical insulation of supersonducting magnets

    International Nuclear Information System (INIS)

    Irmisch, M.

    1995-12-01

    The high voltage (HV) performance of superconducting magnets of large dimensions, e.g. as needed in fusion reactors, is a challange in the field of high voltage technology, i.e. especially in the field of cryogenic high voltage components and with respect to questions of HV insulation diagnostics at low temperature. By using the development of POLO - a superconducting prototype coil of a tokamak poloidal field coil - as an example, this work deals with special problems of how to get use of conventional HV test techniques for diagnostics under special cryogenic boundary conditions. As a first approach to gain experience in the field of phase resolved partial discharge (PRPD) measurements during operation of a superconductive coil, the POLO coil was subject to several high voltage tests. Compared with DC insulation resistance measurements and capacitive impulse voltage discharges to the coil, the AC PD measurements have been the only way to observe special characteristics of the electrical insulation with respect to the cooling down of the coil from 300 K to 4.2 K. The PRPD measurement technique thereby has proofed as a suitable diagnostic tool. This work can serve as basic data to be comparable within further projects of electrical insulation diagnostics at cryogenic temperatures. (orig.)

  2. High penetration wind generation impacts on spot prices in the Australian national electricity market

    International Nuclear Information System (INIS)

    Cutler, Nicholas J.; Boerema, Nicholas D.; MacGill, Iain F.; Outhred, Hugh R.

    2011-01-01

    This paper explores wind power integration issues for the South Australian (SA) region of the Australian National Electricity Market (NEM) by assessing the interaction of regional wind generation, electricity demand and spot prices over 2 recent years of market operation. SA's wind energy penetration has recently surpassed 20% and it has only a limited interconnection with other regions of the NEM. As such, it represents an interesting example of high wind penetration in a gross wholesale pool market electricity industry. Our findings suggest that while electricity demand continues to have the greatest influence on spot prices in SA, wind generation levels have become a significant secondary influence, and there is an inverse relationship between wind generation and price. No clear relationship between wind generation and demand has been identified although some periods of extremely high demand may coincide with lower wind generation. Periods of high wind output are associated with generally lower market prices, and also appear to contribute to extreme negative price events. The results highlight the importance of electricity market and renewable policy design in facilitating economically efficient high wind penetrations. - Highlights: → In South Australia (SA) wind generation is having an influence on market prices. → Little or no correlation is found between wind generation and demand. → Wind farms in SA are receiving a lower average price than in other States. → The results highlight the importance of appropriate electricity market design.

  3. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  4. Assessment of Extremely Low Frequency (ELF Electric and Magnetic Fields in Hamedan High Electrical Power Stations and their Effects on Workers

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani Shahna

    2011-09-01

    Full Text Available Introduction: Public and occupational exposure to extremely low frequency (ELF electric and magnetic fields induced by electrical equipment is a significant issue in the environment and at the workplace due to their potential health effects on public health. The purpose of this study was assessment of the electric and magnetic fields intensities and determination of mental and psychological effects of occupational exposure in the high voltage electric power stations in the city of Hamadan, Iran. Material and Methods: The intensities of the magnetic and electric fields were measured at eight high voltage electric power stations at three different intervals of sources using an HI-3604 instrument. A two-part questionnaire was used to assess mental and psychological effects of the exposure to these fields. Two groups of control and case workers including 30 samples were selected to determine the exposure effects. Results: The results of field measurements showed the highest average electric field intensity was related to the CVT unit with 3110 V/m at a 2 m distance from the source and the lowest average was related to the control room with 1.35 V/m next to the source. Also, the highest and lowest magnetic field intensities were close to the transformator 2 and the battery room (50.42 and 1.31 mG, respectively. Discussion and Conclusion: The intensities of electric and magnetic fields in the selected stations are lower than the ACGIH and ICNIRP standard levels for occupational exposures. The results obtained indicate that the distribution of these fields was nonlinear around the sources and the effects observed on exposed workers were non-thermal.

  5. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  6. The emergence of an electric mobility trajectory

    NARCIS (Netherlands)

    Dijk, M.; Orsato, R.J.; Kemp, R.P.M.

    2013-01-01

    In this paper, we analyse the emergence of a trajectory of electric mobility. We describe developments in electric vehicles before and after 2005. The central thesis of the paper is that electric mobility has crossed a critical threshold and is benefiting from various developments whose influence

  7. Probabilistic Fault Diagnosis in Electrical Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  8. Development of superconducting wire and cable for the SSC project in Sumitomo Electric Industries

    International Nuclear Information System (INIS)

    Sashida, T.; Saito, S.; Oku, G.; Kurimoto, K.; Yamada, Y.; Yokota, M.; Ohmatsu, K.; Nagata, M.

    1991-01-01

    As a large production volume of NbTi superconducting wire and cable is required for the SSC project, a production process has been developed at Sumitomo Electric to optimize critical variables of wire properties. To achieve high electrical properties and a high overall yield of NbTi alloy in the fabrication process, the authors have employed carefully designed large size multifilament billets weighing more than 350kg to decrease the number of billets in large production scale. The collider dipole magnet consists of inner and outer cables, and the cable should be as uniform as possible to ensure the performance of the magnets. The authors studied two aspects to obtain such uniformity of superconducting wire; one is the selection of unit weight and the other is the property of critical current density of a strand

  9. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  10. High Voltage Electrical Injuries In The University Of Calabar ...

    African Journals Online (AJOL)

    Even when patients present relatively early and are resuscitated and treated, complete prosthetic rehabilitation is difficult because of poverty and lack of social support systems. Case Report: This review presents three cases of high voltage electrical burns resulting from typical 11KVA burns as well as lightning strike.

  11. The california electricity reform debacle

    International Nuclear Information System (INIS)

    Jaccard, M.

    2001-01-01

    In 1998, California launched a dramatic reform of its electricity sector, vertically de-integrating its major utilities and establishing a competitive generation market, with separate entities responsible for grid control and power exchange. After two uneventful years, wholesale prices rose dramatically in the summer of 2000 and have remained high into 2001. An imbalance between the high wholesale prices and frozen retail rates caused a financial crisis for the electric utilities and power shortages have been a chronic threat. Several factors contributed to this crisis: capacity has not expanded in step with demand either in California or its larger trading region; extreme weather and poorly timed plant outages further increased demand and decreased supply; market design flaws allowed significant suppliers to influence the market while frozen retail rates limited the demand response that would have mitigated the supply-demand imbalance. State and federal agencies have taken corrective action but the situation may remain critical for some time. Longer term solutions involve recognizing the special characteristics of electricity in designing marking reform. Because electricity supply and demand must be instantaneously balanced at all times, market reform must ensure that someone has the responsibility and effective tools to ensure that this occurs, in spite of unforeseen circumstances, and to prevent the exercise of market power. Because a competitive commodity market must work in concert with a monopoly delivery system, someone must be responsible and have the means to develop and operate the grid in ways that are amenable to effective competition. Finally, reform design must ensure that the cyclical investment and price patterns of normal commodity markets are minimized in the electricity market and that when they do occur, market volatility does not compromise reliability and price stability for those who value these highly and would pay a premium for them

  12. Observability in electric power networks: identification critical measures methods; Observabilidade em redes de energia eletrica: metodos de identificacao de medidas criticas

    Energy Technology Data Exchange (ETDEWEB)

    London Junior, Joao Bosco Augusto

    1997-07-01

    One of the most important functions of the control and operation centers is to maintain service reliability in a electrical power system. In order to obtain a reliable operation of the power system, it is important to identify the critical measurements, and then to improve the measurement system using pseudo measurements. The goal of this work is to determine more efficient methods for critical measurement identification. A brief review of the some methods for observability analysis as well as two methodologies to identify critical measurements are presented. The first method has a combinatorial nature; the second one is supported by uni modular M matrix (incidence matrix of measurements for branches) and A matrix (incidence matrix of branch for nodes). The second method needs a combinatorial algorithm to be feasible, so that it becomes a slow method. Two new methods for critical measurements identification are presented in this work: the first one is based on the theory developed by Bretas (1996a), to analyse observability using graph paths; the second methods is supported y the Slutsker and Scudder (1987) theory, where identification is reached throughout the analysis of the jacobian matrix. (author)

  13. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  14. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  15. The potential of large critical currents in the high Tc oxides

    International Nuclear Information System (INIS)

    Deutcher, G.

    1993-01-01

    The potential for high critical current densities is examined. on a thermodynamical basis, the energy scale for vortex pinning can be derived for instance from a measurement of the width of the critical region. This energy scale is of the order of 0.2 eV in YBCO, which is sufficient for practical applications. Another important parameter is the short coherence length. The inner plane length, of the order of a few lattice spacing, is favorable for pinning by point defects. But the very short outer plane length gives rise to anomalous magnetic behavior, unfavorable for high-field applications at high temperature; this is true in particular in most anisotropic oxides, such as the Bi compounds (author)

  16. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    Directory of Open Access Journals (Sweden)

    J.-K. Mueller

    2018-01-01

    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  17. High Concentration of Heat Pumps in Suburban Areas and Reduction of Their Impact on the Electricity Network

    NARCIS (Netherlands)

    Pruissen, O.P. van; Kamphuis, I.G.

    2011-01-01

    One of the challenges of the near future for a more renewable Dutch electricity infrastructure is the embedding of high concentrations of heat pumps in currently built domestic residences. In the Dutch situation demand of electricity occurs simultaneously with demand of heat, high electricity peak

  18. Development of Assessment Instrument of Critical Thinking in Physics at Senior High School

    Science.gov (United States)

    Sugiarti, T.; Kaniawati, I.; Aviyanti, L.

    2017-02-01

    The result of preliminary study shows that the assessment of physics in school did not train students’ critical thinking skill. The assessment instrument just measured low cognitive aspects. Supposedly, critical thinking skill is trained in the assessment activity. The study aims to determine the characteristics and the quality of critical thinking skill instrument. It employs descriptive-qualitative method with research and development as the research design. The research participants are 35 students involved in the limited trial and 188 students in the wider trial from three public senior high school in Ciamis which in high level school. The data was collected through expert validation, tests and interviews. The results indicate that the characteristics of the assessment instrument of critical thinking skill is open-ended. The instrument fulfills some indicators namely analyzing argument, deduction, induction, and display information in the form of scenario, text, graphic and table. In addition, the data processing through V4 Anates program shows that the instrument reliability achieves 0.67 with high interpretation of 0.67 and the validity is 0.47 with enough interpretation. Thus, the assessment instrument of critical thinking skill in the form of open-ended essay meets the criteria of quality test, so it can use as instrument of assessment critical thinking skill.

  19. Electrically charged one-and-a-half monopole solution

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming [Universiti Sains Malaysia, School of Physics, USM Penang (Malaysia)

    2014-05-15

    Recently, we have discussed the coexistence of a finite energy one-half monopole and a 't Hooft-Polyakov monopole of opposite magnetic charges. In this paper, we would like to introduce electric charge into this new monopoles configuration, thus creating a one-and-a-half dyon. This new dyon possesses finite energy, magnetic dipole moment, and angular momentum and is able to precess in the presence of an external magnetic field. Similar to the other dyon solutions, when the Higgs self-coupling constant, λ, is nonvanishing, this new dyon solution possesses critical electric charge, total energy, magnetic dipolemoment, and dipole separation as the electric charge parameter, η, approaches 1. The electric charge and total energy increase with η to maximum critical values as η → 1 for all nonvanishing λ. However, the magnetic dipole moment decreases with η when λ ≥ 0.1 and the dipole separation decreases with η when λ ≥ 1 to minimum critical values as η → 1. (orig.)

  20. Electrically charged one-and-a-half monopole solution

    International Nuclear Information System (INIS)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2014-01-01

    Recently, we have discussed the coexistence of a finite energy one-half monopole and a 't Hooft-Polyakov monopole of opposite magnetic charges. In this paper, we would like to introduce electric charge into this new monopoles configuration, thus creating a one-and-a-half dyon. This new dyon possesses finite energy, magnetic dipole moment, and angular momentum and is able to precess in the presence of an external magnetic field. Similar to the other dyon solutions, when the Higgs self-coupling constant, λ, is nonvanishing, this new dyon solution possesses critical electric charge, total energy, magnetic dipolemoment, and dipole separation as the electric charge parameter, η, approaches 1. The electric charge and total energy increase with η to maximum critical values as η → 1 for all nonvanishing λ. However, the magnetic dipole moment decreases with η when λ ≥ 0.1 and the dipole separation decreases with η when λ ≥ 1 to minimum critical values as η → 1. (orig.)

  1. Feasibility study of electric motors constructed with high temperature superconducting materials

    International Nuclear Information System (INIS)

    Jordan, H.E.

    1989-01-01

    The potential application of high temperature superconducting (HTSC) materials to electric motors is discussed. The specific application area of motors in electric power generating stations has been selected and a feasible study has been initiated on the use of HTSC materials in the design of motors for this application. A progress report on this feasibility study is presented. Technical challenges in both the development of HTSC wire and the design of a motor to utilize this wire are discussed. Finally, the results of design calculations comparing a superconducting motor with one of conventional design are presented assuming that success can be achieved in overcoming the technical problems which must be resolved to produce a high performance HTSC wire

  2. The effect of high voltage pulsed electric field on water molecular

    Science.gov (United States)

    Fan, Xuejie; Bai, Yaxiang; Ren, Ziying

    2017-10-01

    In order to study the mechanism of high voltage pulsed electric field pre-treatment on the food drying technology. In this paper, water was treated with high pulse electric field (HPEF) in different frequency, and different voltage, then, the viscosity coefficient and the surface tension coefficient of the water were measured. The results showed that indicated that the viscosity coefficient and the surface tension coefficient of the treated water can be decreased, and while HPEF pre-treatment was applied for 22.5kV at a frequency of 50Hz and 70 Hz, the surface tension and the viscosity coefficient of the pre-treatment treatment were reduced 13.1% and 7.5%, respectively.

  3. High-voltage electrical burns due to copper theft – Case series

    Science.gov (United States)

    Braga, M.J.; Oliveira, I.; Egipto, P.; Silva, A.

    2016-01-01

    Summary Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring. PMID:27857650

  4. Critical operations capabilities in a high cost environment: a multiple case study

    Science.gov (United States)

    Sansone, C.; Hilletofth, P.; Eriksson, D.

    2018-04-01

    Operations capabilities have been a popular research area for many years and several frameworks have been proposed in the literature. The current frameworks do not take specific contexts into consideration, for instance a high cost environment. This research gap is of particular interest since a manufacturing relocation process has been ongoing the last decades, leading to a huge amount of manufacturing being moved from high to low cost environments. The purpose of this study is to identify critical operations capabilities in a high cost environment. The two research questions were: What are the critical operations capabilities dimensions in a high cost environment? What are the critical operations capabilities in a high cost environment? A multiple case study was conducted and three Swedish manufacturing firms were selected. The study was based on the investigation of an existing framework of operations capabilities. The main dimensions of operations capabilities included in the framework were: cost, quality, delivery, flexibility, service, innovation and environment. Each of the dimensions included two or more operations capabilities. The findings confirmed the validity of the framework and its usefulness in a high cost environment and a new operations capability was revealed (employee flexibility).

  5. Development and bottlenecks of renewable electricity generation in China: a critical review.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  6. Coordinated emergency response in a competitive electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Brindley, S. [Independent Electricity Market Operator, Toronto, ON (Canada)

    2002-07-01

    The Ontario Electricity Act and the Market Rules oblige electricity market participants to prepare and submit emergency plans to ensure the safe and reliable operation of the power system. Security and emergency preparedness includes emergency planning, drills and exercises, and critical infrastructure protection. The risk of power disruption is credible and the impact is large, as witnessed by the 1998 ice storm in eastern Ontario which resulted in major power outages, and as witnessed by the events of September 11, 2001. The emergency control actions that manage power system contingencies include recalling planned outages, reducing interchanges, increasing reserves, reducing voltage, purchasing emergency energy, and load shedding. Restoration priorities are to first restore power to critical transmission and generating station service loads, then to restore critical telecom facilities. This is followed by the restoration of customer loads only to the extent needed to control voltage and secure generating units. The final priority is to interconnect neighbours. The North American Electric Reliability Council (NERC) was established following the major 1965 blackout. NERC developed operational reliability standards and monitored compliance. A map depicting NERC regions and control areas in the US was presented. In Canada, the Canadian Electricity Association (CEA) addresses issues regarding critical infrastructure protection (CIP). It safeguards the essential components of the electricity infrastructure against physical and cyber threats through early warning systems and information sharing. 9 figs.

  7. Non invasive adjustment of fluid status in critically ill patients on renal replacement therapy. Role of Electrical Cardiometry

    Directory of Open Access Journals (Sweden)

    Khaled Hamed Mahmoud

    2016-08-01

    Full Text Available Background: Electrical Cardiometry allows measurement of fluid status using thoracic fluid content (TFC, cardiac output, cardiac index, systemic vascular resistance index which could be ideal noninvasive hemodynamic monitoring for patients undergoing hemodialysis (HD. Objectives: Investigating the relation between changes in TFC and amount of fluid removal during HD session and to monitor hemodynamic parameters to avoid episodes of hemodynamic compromise during HD session. Methods: Thirty critically ill patients on HD were enrolled. Clinical assessment of volume overload and hemodynamics (BP, MAP, CVP, monitored by Electrical Cardiometry ICON® before HD and all through sessions. Results: Out of studied patients males represented 46.7% (n = 14 with mean age 48 ± 16 years. There was positive correlation between UF volume and TFC (r = 0.410, P = 0.025. Out of the 30 pts studied 18 pts (60% were hemodynamically stable vs 12 pts (40% that had hypotension represented by non responders group and had lower TFC compared to the hemodynamically stable group (26.45 kohm−1 vs 37.8 kohm−1 with P value of 0.004 indicating that they were hypovolemic. Out of the 30 pts studied 18 pts (60% weren’t congested vs 12 pts (40% remained persistently congested after accomplishing HD session with significantly higher TFC when compared to those who got rid of congestion (43.14 ± 9.9 kohm−1 vs 25.44 ± 5.5 kohm−1 with P value of 0.0001 indicating that they were still hypervolemic. Using analysis of ROC curve TFC at 25.34 kohm−1 was a significant predictor of hypotension with P value of 0.002, AUC 83.4%, sensitivity 67% and specificity 100%. Also TFC cutoff value predicting persistent congestion was 37.02 kohm−1 with P value of 0.0001, AUC 95.8%, sensitivity 83% and specificity 100%. Conclusion: Electrical Cardiometry is an evolving noninvasive tool for adjusting fluid status of critically ill patient on RRT using thoracic fluid

  8. Neuromuscular Electrical Stimulation for Treatment of Muscle Impairment: Critical Review and Recommendations for Clinical Practice

    Science.gov (United States)

    Houghton, Pamela; Anthony, Joseph; Rennie, Sandy; Shay, Barbara L.; Hoens, Alison M.

    2017-01-01

    Purpose: In response to requests from physiotherapists for guidance on optimal stimulation of muscle using neuromuscular electrical stimulation (NMES), a review, synthesis, and extraction of key data from the literature was undertaken by six Canadian physical therapy (PT) educators, clinicians, and researchers in the field of electrophysical agents. The objective was to identify commonly treated conditions for which there was a substantial body of literature from which to draw conclusions regarding the effectiveness of NMES. Included studies had to apply NMES with visible and tetanic muscle contractions. Method: Four electronic databases (CINAHL, Embase, PUBMED, and SCOPUS) were searched for relevant literature published between database inceptions until May 2015. Additional articles were identified from bibliographies of the systematic reviews and from personal collections. Results: The extracted data were synthesized using a consensus process among the authors to provide recommendations for optimal stimulation parameters and application techniques to address muscle impairments associated with the following conditions: stroke (upper or lower extremity; both acute and chronic), anterior cruciate ligament reconstruction, patellofemoral pain syndrome, knee osteoarthritis, and total knee arthroplasty as well as critical illness and advanced disease states. Summaries of key details from each study incorporated into the review were also developed. The final sections of the article outline the recommended terminology for describing practice using electrical currents and provide tips for safe and effective clinical practice using NMES. Conclusion: This article provides physiotherapists with a resource to enable evidence-informed, effective use of NMES for PT practice. PMID:29162949

  9. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  10. A statistical study of high-altitude electric fields measured on the Viking satellite

    International Nuclear Information System (INIS)

    Lindqvist, P.A.; Marklund, G.T.

    1990-01-01

    Characteristics of high-altitude data from the Viking electric field instrument are presented in a statistical study based on 109 Viking orbits. The study is focused in particular on the signatures of and relationships between various parameters measured by the electric field instrument, such as the parallel and transverse (to B) components of the electric field instrument, such as electric field variability. A major goal of the Viking mission was to investigate the occurrence and properties of parallel electric fields and their role in the auroral acceleration process. The results in this paper on the altitude distribution of the electric field variability confirm earlier findings on the distribution of small-scale electric fields and indicate the presence of parallel fields up to about 11,000 km altitude. The directly measured parallel electric field is also investigated in some detail. It is in general directed upward with an average value of 1 mV/m, but depends on, for example, altitude and plasma density. Possible sources of error in the measurement of the parallel field are also considered and accounted for

  11. High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.

    2017-01-01

    Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational

  12. Study on the profitableness of electricity generation with high temperature reactors

    International Nuclear Information System (INIS)

    Kolb, G.

    1978-08-01

    The programme group 'Systemforschung und Technologische Entwicklung' (STE) of the Nuclear Research Centre Juelich in cooperation with the internal institutions 'Projekttraegerschaft Entwicklung von Hochtemperaturreaktoren' (PTH) and 'Institut fuer Reaktorentwicklung' (IRE) on the one hand, and the external partner 'Hochtemperatur-Reactorbau GmbH' (HRB) and 'Gesellschaft fuer Hochtemperaturreactor Technik' (GHT) on the other hand have set up a study on fuel cycle costs, electricity production cost and the economical use as well as uranium resource protection by introduction of high temperature reactors (HTR) with pebble bed core to generate electricity. The pressurized-water reactor (PWR) today on the market serves as comparison. The working results obtained sofar are compiled in the present report. It was particularly noted that - the HTR can economically fully compete with the PWR for electricity generation - the necessary supply of natural uranium for the HTR in open circuit is about one third lower and in the closed circuit, almost two thirds lower than in the corresponding PWR. A further reduction is possible on a long-term basis by highly converting HTW systems. (orig.) [de

  13. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    Science.gov (United States)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  14. PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, M.R.; Markel, T.

    2008-01-01

    The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

  15. Uncertainties in criticality analysis which affect the storage and transportation of LWR fuel

    International Nuclear Information System (INIS)

    Napolitani, D.G.

    1989-01-01

    Satisfying the design criteria for subcriticality with uncertainties affects: the capacity of LWR storage arrays, maximum allowable enrichment, minimum allowable burnup and economics of various storage options. There are uncertainties due to: calculational method, data libraries, geometric limitations, modelling bias, the number and quality of benchmarks performed and mechanical uncertainties in the array. Yankee Atomic Electric Co. (YAEC) has developed and benchmarked methods to handle: high density storage rack designs, pin consolidation, low density moderation and burnup credit. The uncertainties associated with such criticality analysis are quantified on the basis of clean criticals, power reactor criticals and intercomparison of independent analysis methods

  16. Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers

    Science.gov (United States)

    An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki

    2015-01-01

    Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.

  17. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  18. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    Energy Technology Data Exchange (ETDEWEB)

    Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  19. Neutronics and Thermal Hydraulics Analysis of a Conceptual Ultra-High Temperature MHD Cermet Fuel Core for Nuclear Electric Propulsion

    Directory of Open Access Journals (Sweden)

    Jian Song

    2018-04-01

    Full Text Available Nuclear electric propulsion (NEP offers unique advantages for the interplanetary exploration. The extremely high conversion efficiency of magnetohydrodynamics (MHD conversion nuclear reactor makes it a highly potential space power source in the future, especially for NEP systems. Research on ultra-high temperature reactor suitable for MHD power conversion is performed in this paper. Cermet is chosen as the reactor fuel after a detailed comparison with the (U,ZrC graphite-based fuel and mixed carbide fuel. A reactor design is carried out as well as the analysis of the reactor physics and thermal-hydraulics. The specific design involves fuel element, reactor core, and radiation shield. Two coolant channel configurations of fuel elements are considered and both of them can meet the demands. The 91 channel configuration is chosen due to its greater heat transfer performance. Besides, preliminary calculation of nuclear criticality safety during launch crash accident is also presented. The calculation results show that the current design can meet the safety requirements well.

  20. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  1. After the year 2000: Critical infrastructure protection

    International Nuclear Information System (INIS)

    Dreicer, M.

    1999-01-01

    Presentation defines the critical infrastructure which includes: telecommunication, banking, transportation, electric energy, oil and gas supply, water supply, emergency services and government operations. The problem of protecting the critical infrastructure is is exposed in detail concerning physical protection and protection of information systems against cyberthreats

  2. [Extensive injuries due to high-tension electrical current].

    Science.gov (United States)

    Tomásek, D; Königová, R; Snupárek, Z

    1989-03-01

    The authors submit a case of severe injury with high tension electric current. They emphasize the necessity of prevention of this injury which occurs most frequently when transformer stations are not adequately safeguarded, in case of inadequate protection when approaching trolley wires on the railway track, and when safety principles are not respected during work on the railway. The authors draw attention to the importance of immediate resuscitation and multidisciplinary comprehensive care.

  3. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    Science.gov (United States)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  4. High-power FEL design issues - a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  5. High benefits approach for electrical energy conversion in electric vehicles from DC to PWM-AC without any generated harmonic

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel hybrid power source including AC feature for using in electric/hybrid vehicles. • Minimizing the energy loss in electric/hybrid vehicles by using the proposed system. • Suitable AC wave form for braking/accelerating purposes in electric/hybrid vehicles. • A novelty is that the harmonic generated by the added AC feature is really zero. • Another novelty is the capability of choosing arbitrary frequency for AC feature. - Abstract: This paper presents a novel hybrid power source, including a Li-ion battery together with an interface, which generates simultaneously electrical energy with the forms of both DC and AC for electric vehicles. A novel and high benefits approach is applied to convert the electrical energy of the Li-ion battery from DC form to single-phase symmetric pulse-width modulation (PWM)-AC form. Harmonic generation is one of the important problems when electrical energy is converted from DC to AC but there are not any generated harmonic during the DC/AC conversion using the proposed technique. The proposed system will be widely used in electric/hybrid vehicles because it has many benefits. Minimizing the energy loss (saving energy), no generated harmonic (it is really zero), the capability of arbitrary/necessary frequency selection for output AC voltage and the ability of long distance energy transmission are some novelties and advantages of the proposed system. The proposed hybrid power source including DC/AC PWM inverter is simulated in Proteus 6 software environment and a laboratory-based prototype of the hybrid power source is constructed to validate the theoretical and simulation results. Simulation and experimental results are presented to prove the superiority of the proposed hybrid power supply

  6. Optimal control strategy design for extending all-electric driving capability of plug-in hybrid electric vehicles (PHEVs)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, S.S [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2007-07-01

    The high voltage energy storage system in plug-in hybrid electric vehicles (PHEVs) is usually a rechargeable type that service a dual purpose, notably to supplement the power delivered by the internal combustion engine, and to provide partial propulsion energy from an off-board source of electricity. The energy storage devices in electric vehicles typically improve vehicle efficiency through engine downsizing and by recapturing braking energy. However, since PHEVs have the ability to recharge their energy storage systems directly from the power grid, the periods of all-electric operation can be extended, thereby reducing the dependence on the internal combustion engine. This is particularly useful in city driving conditions. Developers of PHEV technology are faced with the challenge of choosing the appropriate energy storage battery in order to improve the all-electric drive range. In this study, control strategies were modeled for specific driving load conditions using the Advanced Vehicle Simulator (ADVISOR) software. This paper presented specific control algorithms for PHEV operation for various city driving loads. The optimal design strategy considered the improvement of critical energy storage parameters, overall drive train efficiency, and vehicle performance characteristics. Future trends in the design and development of PHEV drive trains were also presented. 13 figs.

  7. Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends.

    Science.gov (United States)

    Denaï, Mouloud A; Mahfouf, Mahdi; Mohamad-Samuri, Suzani; Panoutsos, George; Brown, Brian H; Mills, Gary H

    2010-05-01

    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.

  8. Critical Science Education in a Suburban High School Chemistry Class

    Science.gov (United States)

    Ashby, Patrick

    To improve students' scientific literacy and their general perceptions of chemistry, I enacted critical chemistry education (CCE) in two "regular level" chemistry classes with a group of 25 students in a suburban, private high school as part of this study. CCE combined the efforts of critical science educators (Fusco & Calabrese Barton, 2001; Gilbert 2013) with the performance expectations of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013a) to critically transform the traditional chemistry curriculum at this setting. Essentially, CCE engages students in the critical exploration of socially situated chemistry content knowledge and requires them to demonstrate this knowledge through the practices of science. The purpose of this study was to gauge these students development of chemistry content knowledge, chemistry interest, and critical scientific literacy (CSL) as they engaged in CCE. CSL was a construct developed for this study that necessarily combined the National Research Center's (2012) definition of scientific literacy with a critical component. As such, CSL entailed demonstrating content knowledge through the practices of science as well as the ability to critically analyze the intersections between science content and socially relevant issues. A mixed methods, critical ethnographic approach framed the collection of data from open-ended questionnaires, focus group interviews, Likert surveys, pre- and post unit tests, and student artifacts. These data revealed three main findings: (1) students began to develop CSL in specific, significant ways working through the activities of CCE, (2) student participants of CCE developed a comparable level of chemistry content understanding to students who participated in a traditional chemistry curriculum, and (3) CCE developed a group of students' perceptions of interest in chemistry. In addition to being able to teach students discipline specific content knowledge, the implications of this study are

  9. Plutonium Finishing Plant (PFP) Criticality Alarm System Commercial Grade Item (CGI) Critical Characteristics

    International Nuclear Information System (INIS)

    WHITE, W.F.

    1999-01-01

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for PFP's criticality alarm system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item. PFP's Criticality Alarm System includes the nine criticality alarm system panels and their associated hardware. This includes all parts up to the first breaker in the electrical distribution system. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-003, ''Definition and Means of Maintaining the Criticality Detectors and Alarms Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.''

  10. Propagation of 1-THz bandwidth electrical pulses on high Tc superconducting transmission lines

    International Nuclear Information System (INIS)

    Nuss, M.C.; Mankiewich, P.M.; Howard, R.E.; Harvey, T.E.; Brandle, C.D.; Straugh, B.L.; Smith, P.R.

    1989-01-01

    The new high temperature superconductors have triggered enormous interest not only because of the unique physics involved but also because of their technical potentials, such as the promise for propagation of extremely short electrical pulses. Superconducting band caps of --20TH z are predicted assuming BCS theory for the superconductor, making lossless propagation of electrical pulses as short as 50 fs possible. Despite microwave measurements at low frequencies of several gigahertz first studies at higher frequencies by Dykaar et al have shown distortion-free propagation of 100-GHz electrical pulses on YBa 2 Cu 3 O 3 (YBCO) lines for --5-mm propagation distance. Results were also reported for aluminum coplanar lines and a YBCO ground plane. The authors report on the propagation of 1-ps electrical pulses (1-THz bandwidth) on YBCO coplanar transmission lines defined on lanthanum gallate (LaGaO 3 ) as a substrate. On LaGaO 3 , YBCO grows highly oriented as on SrTiO 3 . However, unlike SrTiO 3 , LaGaO 3 has a much lower dielectric constant and small losses in the terahertz frequency range. Electrical pulses of --750-fs duration are generated in a radiation-damaged silicon-on-sapphire photoconductive switch integrated into a 20-μm coplanar stripline with 10-μm spacing and excited with 100-fs optical pulses from a CPM laser. An μ1-THz bandwidth electrical contact is made to the YBCO coplanar stripline defined on LaGaO 3 using a flip-chip geometry. They find that electrical pulses broaden only from 750 fs to 1 ps with little loss in amplitude on traveling through their flip-chip input and propagated electrical pulses are probed by electooptic sampling in two small LiTaO 3 crystals separated by 3 mm

  11. Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

    International Nuclear Information System (INIS)

    Kang, Jong O; Lee, On You; Mo, Young Kyu; Kim, Jun Il; Bang, Seung Min; Lee, Hong Seok; Kang, Hyoung Ku; Lee, Jae Hun; Jang, Cheol Yeong

    2015-01-01

    The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers

  12. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  13. Russian electricity reform. Emerging challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Russian Government is pursuing a strategy of very high economic growth, with the objective of doubling gross domestic product in ten years. It recognises the central role the electricity sector has to play to achieve this target and has embarked on a highly ambitious program of electricity reform. If it is to succeed, the reform program will have to create market structures, market rules and a regulatory framework that will foster competitive wholesale and retail electricity markets. At the same time, it will have to deal with sensitive social issues related to tariff rebalancing and the removal of cross subsidies. Only competitive markets based on transparent prices that reflect costs can deliver the efficient, reliable and internationally competitive performance needed to meet the government's economic targets. Such markets are essential to attract new investment that will be required to ensure security of electricity supply after 2010. This book focuses on key aspects of the proposed reform that could have an important bearing on its success. It also raises concerns as to the pace of reform in related areas, such as the need for complementary reforms in the Russian natural gas sector. The IEA commends the Russian Government on its efforts to embrace this electricity reform - a key element critical to meeting the challenges ahead in terms of its economic growth and energy security. 17 figs., 10 tabs., 3 maps.

  14. Data-Centric Knowledge Discovery Strategy for a Safety-Critical Sensor Application

    Directory of Open Access Journals (Sweden)

    Nilamadhab Mishra

    2014-01-01

    Full Text Available In an indoor safety-critical application, sensors and actuators are clustered together to accomplish critical actions within a limited time constraint. The cluster may be controlled by a dedicated programmed autonomous microcontroller device powered with electricity to perform in-network time critical functions, such as data collection, data processing, and knowledge production. In a data-centric sensor network, approximately 3–60% of the sensor data are faulty, and the data collected from the sensor environment are highly unstructured and ambiguous. Therefore, for safety-critical sensor applications, actuators must function intelligently within a hard time frame and have proper knowledge to perform their logical actions. This paper proposes a knowledge discovery strategy and an exploration algorithm for indoor safety-critical industrial applications. The application evidence and discussion validate that the proposed strategy and algorithm can be implemented for knowledge discovery within the operational framework.

  15. Motivation, Critical Thinking and Academic Verification of High School Students' Information-seeking Behavior

    Directory of Open Access Journals (Sweden)

    Z Hidayat

    2017-06-01

    Full Text Available High school students have known as Gen Y or Z and their media using can be understand on their information-seeking behavior. This research’s purposes were: 1 to analyze the students’ motivation; 2 to analyze the critical thinking and academic verification; 3 to analyze the information-seeking behavior. This study used quantitative approach through survey among 1125 respondents in nine clusters, i.e. Central, East, North, West, and South of Jakarta, Tangerang, Bekasi, Depok, and Bogor. Schools sampling based on "the best schools rank" by the government, while respondents have taken by accidental in each school. Construct of questionnaire included measurement of motivation, critical thinking and academic verification, and the information-seeking behavior at all. The results showed that the motivations of the use of Internet were dominated by habit to interact and be entertained while on the academic needs are still relatively small but increasing significantly. Students’ self-efficacy, performance and achievement goals tend to be high motives, however the science learning value, and learning environment stimulation were average low motives. High school students indicated that they think critically about the various things that become content primarily in social media but less critical of the academic information subjects. Unfortunately, high school students did not conducted academic verification on the data and information but students tend to do plagiarism. Key words: Student motivation, critical thinking, academic verification, information-seeking behavior, digital generation.

  16. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    The proximity effects of high voltage electric power transmission lines on Leyland Cypress (xCupressocyparis leylandii (Dallim. and A.B. Jacks.) Dallim) and Japanese Privet (Ligustrum japonicum Thunb.) growth were examined in a private nursery located in Sakarya, Turkey. Five transect were randomly chosen in both ...

  17. Preparation of graphene by electrical explosion of graphite sticks.

    Science.gov (United States)

    Gao, Xin; Xu, Chunxiao; Yin, Hao; Wang, Xiaoguang; Song, Qiuzhi; Chen, Pengwan

    2017-08-03

    Graphene nanosheets were produced by electrical explosion of high-purity graphite sticks in distilled water at room temperature. The as-prepared samples were characterized by various techniques to find different forms of carbon phases, including graphite nanosheets, few-layer graphene, and especially, mono-layer graphene with good crystallinity. Delicate control of energy injection is critical for graphene nanosheet formation, whereas mono-layer graphene was produced under the charging voltage of 22.5-23.5 kV. On the basis of electrical wire explosion and our experimental results, the underlying mechanism that governs the graphene generation was carefully illustrated. This work provides a simple but innovative route for producing graphene nanosheets.

  18. Electrical resistivity of UBe13 in high magnetic fields

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Lacerda, A.; Fisk, Z.; Smith, J.L.

    1996-01-01

    We have measured the temperature dependent electrical resistivity of single and polycrystal samples of UBe 13 in high magnetic fields. Two maxima in the resistivity are observed at T M1 and T M2 . T M1 , the temperature of the colder maximum, increases quadratically with magnetic field H, a field dependence previously observed under hydrostatic pressure. The high temperature maximum at T M2 emerges in fields above about 4 T and increases linearly with H, a behavior which may be due to a sharpening of the crystal field levels associated with a depression of the Kondo effect by high magnetic fields. copyright 1996 The American Physical Society

  19. High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz Rojo

    2015-08-01

    Full Text Available The out of plane electrical conductivity of highly anisotropic Bi2Te3 films grown via electro-deposition process was determined using four probe current-voltage measurements performed on 4.6 - 7.2 μm thickness Bi2Te3 mesa structures with 80 - 120 μm diameters sandwiched between metallic film electrodes. A three-dimensional finite element model was used to predict the electric field distribution in the measured structures and take into account the non-uniform distribution of the current in the electrodes in the vicinity of the probes. The finite-element modeling shows that significant errors could arise in the measured film electrical conductivity if simpler one-dimensional models are employed. A high electrical conductivity of (3.2 ± 0.4 ⋅ 105 S/m is reported along the out of plane direction for Bi2Te3 films highly oriented in the [1 1 0] direction.

  20. Electric emissions from electrical appliances

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intra-corporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration. (authors)

  1. Theoretical upper critical field Hc2 for inhomogeneous high temperature superconductors

    International Nuclear Information System (INIS)

    Caixeiro, E.S.; Gonzalez, J.L.; Mello, E.V.L. de

    2004-01-01

    We present the theoretical upper critical field H c2 (T) of the high temperature superconductors (HTSC), calculated through a linearized Ginzburg-Landau equation modified to consider the intrinsic inhomogeneity of the HTSC. The unusual behavior of H c2 (T) for these compounds, and other properties like the Meissner and Nernst effects detected at temperatures much higher than the critical temperature T c of the sample, are explained by the approach

  2. Use of hot air engine to generate electricity from biogas: a critique ...

    African Journals Online (AJOL)

    Third, a combination of high prices of fuel and environmental degradation and deforestation demand use of alternative renewable energy sources. The aim of this paper is to give a critical review and selected a suitable renewable energy by considering its ability to provide affordable, reliable and adequate electricity to ...

  3. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  4. Critical Resources for Emerging Battery Technologies for Hybrid and Electric Vehicles. Proceedings of the International Conference “ISWA World Solid Waste Congress”, 17th - 19th September 2012, Florence, Italy

    DEFF Research Database (Denmark)

    Habib, Komal; Nyander, Nils Christian; Wenzel, Henrik

    2012-01-01

    such as photovoltaics, wind turbines, electric and hybrid cars are, however, in turn dependent on other non- renewable resources such as metals which may become scarce in the future. The concept of ‘critical resources’ is in this context is an expression of how limited or constrained the supply of a resource......-manganese spinel Titanate (LMO – T)) for electric cars in a proposed scenario of 2050, in which a scale of 100 % global conversion of passenger cars to battery cars is modeled. Potential resource supply constraints for these emerging battery technologies in electric cars have been analyzed and assessed...

  5. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  6. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  7. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  8. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    Science.gov (United States)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-04-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  9. High level issues in reliability quantification of safety-critical software

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2012-01-01

    For the purpose of developing a consensus method for the reliability assessment of safety-critical digital instrumentation and control systems in nuclear power plants, several high level issues in reliability assessment of the safety-critical software based on Bayesian belief network modeling and statistical testing are discussed. Related to the Bayesian belief network modeling, the relation between the assessment approach and the sources of evidence, the relation between qualitative evidence and quantitative evidence, how to consider qualitative evidence, and the cause-consequence relation are discussed. Related to the statistical testing, the need of the consideration of context-specific software failure probabilities and the inability to perform a huge number of tests in the real world are discussed. The discussions in this paper are expected to provide a common basis for future discussions on the reliability assessment of safety-critical software. (author)

  10. Criticality Analysis Of TCA Critical Lattices With MNCP-4C Monte Carlo Calculation

    International Nuclear Information System (INIS)

    Zuhair

    2002-01-01

    The use of uranium-plutonium mixed oxide (MOX) fuel in electric generation light water reactor (PWR, BWR) is being planned in Japan. Therefore, the accuracy evaluations of neutronic analysis code for MOX cores have been employed by many scientists and reactor physicists. Benchmark evaluations for TCA was done using various calculation methods. The Monte Carlo become the most reliable method to predict criticality of various reactor types. In this analysis, the MCNP-4C code was chosen because various superiorities the code has. All in all, the MCNP-4C calculation for TCA core with 38 MOX critical lattice configurations gave the results with high accuracy. The JENDL-3.2 library showed significantly closer results to the ENDF/B-V. The k eff values calculated with the ENDF/B-VI library gave underestimated results. The ENDF/B-V library gave the best estimation. It can be concluded that MCNP-4C calculation, especially with ENDF/B-V and JENDL-3.2 libraries, for MOX fuel utilized NPP design in reactor core is the best choice

  11. Local Electric Field Facilitates High-Performance Li-Ion Batteries.

    Science.gov (United States)

    Liu, Youwen; Zhou, Tengfei; Zheng, Yang; He, Zhihai; Xiao, Chong; Pang, Wei Kong; Tong, Wei; Zou, Youming; Pan, Bicai; Guo, Zaiping; Xie, Yi

    2017-08-22

    By scrutinizing the energy storage process in Li-ion batteries, tuning Li-ion migration behavior by atomic level tailoring will unlock great potential for pursuing higher electrochemical performance. Vacancy, which can effectively modulate the electrical ordering on the nanoscale, even in tiny concentrations, will provide tempting opportunities for manipulating Li-ion migratory behavior. Herein, taking CuGeO 3 as a model, oxygen vacancies obtained by reducing the thickness dimension down to the atomic scale are introduced in this work. As the Li-ion storage progresses, the imbalanced charge distribution emerging around the oxygen vacancies could induce a local built-in electric field, which will accelerate the ions' migration rate by Coulomb forces and thus have benefits for high-rate performance. Furthermore, the thus-obtained CuGeO 3 ultrathin nanosheets (CGOUNs)/graphene van der Waals heterojunctions are used as anodes in Li-ion batteries, which deliver a reversible specific capacity of 1295 mAh g -1 at 100 mA g -1 , with improved rate capability and cycling performance compared to their bulk counterpart. Our findings build a clear connection between the atomic/defect/electronic structure and intrinsic properties for designing high-efficiency electrode materials.

  12. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  13. Non-critical strings at high energy

    CERN Document Server

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  14. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  15. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A critical assessment of the Hong Kong Government's proposed post-2008 regulatory regime for local electricity utilities

    International Nuclear Information System (INIS)

    Woo, Chi-Keung; Horowitz, Ira; Tishler, Asher

    2006-01-01

    In December 2005, the Hong Kong Government issued a 'Consultation Paper on Future Development of the Electricity Markets in Hong Kong: Stage II Consultation,' proposing a post-2008 regulatory regime upon the expiration of the existing regulatory contract between the Hong Kong Government and each of the two local electricity utilities. We assess the proposal using the criteria of safe, reliable, and environmentally friendly service at the lowest rates that will allow the utilities reasonable returns on their investments. We caution that if fully adopted, the highly risky proposal may lead to less-reliable service without the compensating benefits to the environment

  17. Nucleon electric dipole moments in high-scale supersymmetric models

    International Nuclear Information System (INIS)

    Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi

    2015-01-01

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  18. Nucleon electric dipole moments in high-scale supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Nagoya 464-8602 (Japan); Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8584 (Japan); Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)

    2015-11-12

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  19. High resolution electrical resistivity tomography of golf course greens irrigated with reclaimed wastewater: Hydrological approach

    Science.gov (United States)

    Tapias, Josefina C.; Lovera, Raúl; Himi, Mahjoub; Gallardo, Helena; Sendrós, Alexandre; Marguí, Eva; Queralt, Ignasi; Casas, Albert

    2014-05-01

    Actually, there are over 300 golf courses and more than three thousand licensed players in Spain. For this reason golf cannot be considered simply a hobby or a sport, but a very significant economic activity. Considered as one of the most rapidly expanding land-use and water demanding business in the Mediterranean, golf course development generates controversy. In the recent years there has been a considerable demand for golf courses to adopt environmentally sustainable strategies and particularly water authorities are forcing by law golf managers to irrigate with alternative water resources, mainly reclaimed wastewater. Watering practices must be based on soil properties that are characterized by samples removed from the different zones of the golf course and submitted to an accredited physical soil testing laboratory. Watering schedules are critical on greens with poor drainage or on greens with excessively high infiltration rates. The geophysical survey was conducted over the greens of the Girona Golf Club. Eighteen electrical resistivity tomographies were acquired using a mixed Wenner-Schlumberger configuration with electrodes placed 0.5 meter apart. Small stainless-steel nails were used as electrodes to avoid any damage in the fine turfgrass of greens The resistivity meter was set for systematically and automatically selects current electrodes and measurement electrodes to sample apparent resistivity values. Particle size analysis (PSA) has been performed on soil materials of any putting green. The PSA analysis has been composed of two distinct phases. The first has been the textural analysis of the soils for determining the content of sand, silt, and clay fraction via the use of a stack of sieves with decreasing sized openings from the top sieve to the bottom. Subsequently, the hydraulic conductivity of the substrates has been evaluated by means of Bredding and Hazen empirical relationships. The results of this research show that the electrical resistivity

  20. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor

    Science.gov (United States)

    Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze

    2018-03-01

    Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.

  1. Design of electric vehicle charging station based on wind and solar complementary power supply

    Science.gov (United States)

    Wang, Li

    2018-05-01

    Electric vehicles have become a major trend in the development of the automobile industry. Green energy saving is an important feature of their development. At the same time, the related charging facilities construction is also critical. If we improve the charging measures to adapt to its green energy-saving features, it will be to a greater extent to promote its further development. This article will propose a highly efficient green energy-saving charging station designed for the electric vehicles.

  2. Highly-Efficient Thermoelectronic Conversion of Heat and Solar Radiation to Electric Power

    OpenAIRE

    Meir, Stefan

    2013-01-01

    Thermionic energy conversion has long been a candidate to convert solar radiation and the combustion heat of fossil fuels into electricity at high efficiencies. However, the formation of electron space charges has prevented the widespread use of the principle since its was first suggested in 1915. In this work, a novel mechanism to suppress the effects of the space charge was investigated: the acceleration of electrons in a special configuration of electric and magnetic fields. This work d...

  3. Atmospheric electricity. [lightning protection criteria in spacecraft design

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  4. Electrical resistance and magnetoresistance of UCoAl under high pressure

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Oomi, G.; Andreev, Alexander V.; Sechovský, V.; Shiokawa, Y.

    --, - (2002), s. 126-128 ISSN 0022-3131 R&D Projects: GA ČR GP202/01/D045 Institutional research plan: CEZ:AV0Z1010914 Keywords : UCoAl * non-Fermi liquid * itinerant metamagnetism * electrical resistance * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.572, year: 2002

  5. Recommended E3 HEMP Heave Electric Field Waveform for the Critical Infrastructures. Volume 2

    Science.gov (United States)

    2017-07-31

    horizontal electric (E) field, as this field can effectively couple to long power and communications lines and induce quasi-dc currents in these systems ...Department of Defense E electric field EMP electromagnetic pulse EPRI Electric Power Research Institute FERC Federal Energy Regulatory Commission GMD...North American Electric Reliability Corporation nT nanotesla S/m siemens/m UV ultraviolet V Volt ix PREFACE This EMP Commission Report

  6. Electric fields, Joule and particle heating in the high latitude thermosphere. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, A [Auroral Observatory, Tromsoe (Norway)

    1976-08-01

    A short review of the recent high latitude measurements of ionospheric electric fields is given. The importance of investigating large-scale and slowly-varying electric fields in order to study magnetospheric convection is stressed. The motion of such high energetic phenomena as auroral forms and spread E-region echoes must be treated by extreme caution when interpreted as a manifestation of convection motion. The relationship between the ionospheric source and polarization field is still an unanswered problem. It is indicated that progress can be made in this respect when electric fields and conductivities are measured simultaneously in the ionosphere. Evidence is shown at one occasion that the meridional component during an auroral sunstorm might be mainly a polarization field. The height-integrated Joule heating rate is occasionally found to be far larger than the solar radiation input at auroral altitudes. The presence of this additional heat source at any time of day is expected to have a strong impact on the global-scale atmospheric dynamics. From comparisons made between Joule and particle heating it appears that the two components are comparable. It is expected that high latitude incoherent radars will contribute substantially to the understanding of these phenomena in the near future.

  7. High-tension electrical injury to the heart as assessed by radionuclide imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iino, Hitoshi; Chikamori, Taishiro; Hatano, Tsuguhisa [Tokyo Medical Coll. (Japan)] [and others

    2002-12-01

    The purpose of this study was to evaluate cardiac complications associated with electrical injury, 7 patients with high-tension electrical injury (6,600 V alternating current) underwent {sup 201}Tl and {sup 123}I-metaiodobenzylguanidine (MIBG) imaging in addition to conventional electrocardiographic and echocardiographic assessments. Electrocardiography showed transient atrial fibrillation, second degree atrioventricular block, ST-segment depression, and sinus bradycardia in each patient. Echocardiography showed mild hypokinesis of the anterior wall in only 2 patients, but {sup 201}Tl and {sup 123}I-MIBG myocardial scintigraphy showed an abnormal scan image in 6/7 and 5/6 patients, respectively. Decreased radionuclide accumulation was seen primarily in areas extending from the anterior wall to the septum. Decreased radionuclide accumulation was smaller in extent and milder in degree in {sup 123}I-MIBG than in {sup 201}Tl imaging. These results suggest that even in patients without definite evidence of severe cardiac complications in conventional examinations, radionuclide imaging detects significant damage due to high-tension electrical injury, in which sympathetic nerve dysfunction might be milder than myocardial cell damage. (author)

  8. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  9. Method to increase the transition temperature and for the critical magnetic field strength of the known intermetallic compounds of vanadium or niobium

    International Nuclear Information System (INIS)

    Winter, H.

    1977-01-01

    The invention deals with a method to raise the transition temperature and critical magnetic field strength of superconducting, intermetallic compounds of vanadium and niobium. For example, a niobium alloy with 4 wt.% Al in melted in vacuum electric arc and formed into a sheet of about 1 mm thick. Strips of this sheet are electrically heated up to 1,900 0 C for one hour in a high-vacuum oven. The strips are then annealed in evacuated quartz ampoules for 120 hours at 800 0 C. These strips have a transition temperature of 24 K and a critical magnetic field strength of 600 kg; the critical current density was 5 x 10 4 A/cm 2 . (HPOE) [de

  10. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  11. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    Science.gov (United States)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  12. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  13. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    Science.gov (United States)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  14. Electrical properties of single crystal Yttrium Iron Garnet ultra-thin films at high temperatures

    OpenAIRE

    Thiery, Nicolas; Naletov, Vladimir V.; Vila, Laurent; Marty, Alain; Brenac, Ariel; Jacquot, Jean-François; de Loubens, Grégoire; Viret, Michel; Anane, Abdelmadjid; Cros, Vincent; Youssef, Jamal Ben; Demidov, Vladislav E.; Demokritov, Sergej O.; Klein, Olivier

    2017-01-01

    We report a study on the electrical properties of 19 nm thick Yttrium Iron Garnet (YIG) films grown by liquid phase epitaxy. The electrical conductivity and Hall coefficient are measured in the high temperature range [300,400]~K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band-gap of $E_g\\approx 2$ eV, indicating that epitaxial YIG ultra-thin film...

  15. Drivers and Constraints of Critical Materials Recycling: The Case of Indium

    Directory of Open Access Journals (Sweden)

    Jenni Ylä-Mella

    2016-11-01

    Full Text Available Raw material criticality studies are receiving increasing attention because an increasing number of elements of great economic importance, performing essential functions face high supply risks. Scarcity of key materials is a potential barrier to large-scale deployment of sustainable energy and clean-tech technologies as resorting to several critical materials. As physical scarcity and geopolitical issues may present a barrier to the supply of critical metals, recycling is regarded as a possible solution to substitute primary resources for securing the long-term supply of critical metals. In this paper, the main drivers and constraints for critical materials recycling are analyzed from literature, considering indium as a case study of critical materials. This literature review shows that waste electrical and electronic equipment (WEEE could be a future source of critical metals; however, the reduction of dissipation of critical materials should have much higher priority. It is put forward that more attention should be paid to sustainable management of critical materials, especially improved practices at the waste management stage. This calls for not only more efficient WEEE recycling technologies, but also revising priorities in recycling strategies.

  16. Synthesis of high-complexity rhythmic signals for closed-loop electrical neuromodulation.

    Science.gov (United States)

    Zalay, Osbert C; Bardakjian, Berj L

    2013-06-01

    We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs of similar waveform and complexity to the biological system. This has enabled CRG network models to be used as platforms for testing seizure control strategies. Presently, we take the application one step further, envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network, forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and high phase coherence in the network. The tuned therapeutic network generated a high-complexity, multi-banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation using complex, biomimetic signals may provide an improvement over conventional electrical stimulation techniques for treating neurological disorders such as epilepsy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  18. Correction: Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel

    2016-01-28

    Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.

  19. Graphene-based sample supports for in situ high-resolution TEM electrical investigations

    International Nuclear Information System (INIS)

    Westenfelder, B; Scholz, F; Meyer, J C; Biskupek, J; Algara-Siller, G; Lechner, L G; Kaiser, U; Kusterer, J; Kohn, E; Krill, C E III

    2011-01-01

    Specially designed transmission electron microscopy (TEM) sample carriers have been developed to enable atomically resolved studies of the heat-induced evolution of adsorbates on graphene and their influence on electrical conductivity. Here, we present a strategy for graphene-based carrier realization, evaluating its design with respect to fabrication effort and applications potential. We demonstrate that electrical current can lead to very high temperatures in suspended graphene membranes, and we determine that current-induced cleaning of graphene results from Joule heating.

  20. Electrical impedance tomography

    Science.gov (United States)

    Lobo, Beatriz; Hermosa, Cecilia; Abella, Ana

    2018-01-01

    Continuous assessment of respiratory status is one of the cornerstones of modern intensive care unit (ICU) monitoring systems. Electrical impedance tomography (EIT), although with some constraints, may play the lead as a new diagnostic and guiding tool for an adequate optimization of mechanical ventilation in critically ill patients. EIT may assist in defining mechanical ventilation settings, assess distribution of tidal volume and of end-expiratory lung volume (EELV) and contribute to titrate positive end-expiratory pressure (PEEP)/tidal volume combinations. It may also quantify gains (recruitment) and losses (overdistention or derecruitment), granting a more realistic evaluation of different ventilator modes or recruitment maneuvers, and helping in the identification of responders and non-responders to such maneuvers. Moreover, EIT also contributes to the management of life-threatening lung diseases such as pneumothorax, and aids in guiding fluid management in the critical care setting. Lastly, assessment of cardiac function and lung perfusion through electrical impedance is on the way. PMID:29430443

  1. Critical Thinking Skills Of Junior High School Female Students With High Mathematical Skills In Solving Contextual And Formal Mathematical Problems

    Science.gov (United States)

    Ismail; Suwarsono, St.; Lukito, A.

    2018-01-01

    Critical thinking is one of the most important skills of the 21st century in addition to other learning skills such as creative thinking, communication skills and collaborative skills. This is what makes researchers feel the need to conduct research on critical thinking skills in junior high school students. The purpose of this study is to describe the critical thinking skills of junior high school female students with high mathematical skills in solving contextual and formal mathematical problems. To achieve this is used qualitative research. The subject of the study was a female student of eight grade junior high school. The students’ critical thinking skills are derived from in-depth problem-based interviews using interview guidelines. Interviews conducted in this study are problem-based interviews, which are done by the subject given a written assignment and given time to complete. The results show that critical thinking skills of female high school students with high math skills are as follows: In solving the problem at the stage of understanding the problem used interpretation skills with sub-indicators: categorization, decode, and clarify meaning. At the planning stage of the problem-solving strategy is used analytical skills with sub-indicators: idea checking, argument identification and argument analysis and evaluation skills with sub indicators: assessing the argument. In the implementation phase of problem solving, inference skills are used with subindicators: drawing conclusions, and problem solving and explanatory skills with sub-indicators: problem presentation, justification procedures, and argument articulation. At the re-checking stage all steps have been employed self-regulatory skills with sub-indicators: self-correction and selfstudy.

  2. Motivation, Critical Thinking and Academic Verification of High School Students' Information-seeking Behavior

    Directory of Open Access Journals (Sweden)

    Z Hidayat

    2018-01-01

    Full Text Available High school students have known as Gen Y or Z and their media using can be understand on their information-seeking behavior. This research’s purposes were: 1 to analyze the students’ motivation; 2 to analyze the critical thinking and academic verification; 3 to analyze the information-seeking behavior. This study used quantitative approach through survey among 1125 respondents in nine clusters, i.e. Central, East, North, West, and South of Jakarta, Tangerang, Bekasi, Depok, and Bogor. Schools sampling based on "the best schools rank" by the government, while respondents have taken by accidental in each school. Construct of questionnaire included measurement of motivation, critical thinking and academic verification, and the information-seeking behavior at all. The results showed that the motivations of the use of Internet were dominated by habit to interact and be entertained while on the academic needs are still relatively small but increasing significantly. Students’ self-efficacy, performance and achievement goals tend to be high motives, however the science learning value, and learning environment stimulation were average low motives. High school students indicated that they think critically about the various things that become content primarily in social media but less critical of the academic information subjects. Unfortunately, high school students did not conducted academic verification on the data and information but students tend to do plagiarism.

  3. Brachial artery protected by wrapped latissimus dorsi muscle flap in high voltage electrical injury

    Science.gov (United States)

    Gencel, E.; Eser, C.; Kokacya, O.; Kesiktas, E.; Yavuz, M.

    2016-01-01

    Summary High voltage electrical injury can disrupt the vascular system and lead to extremity amputations. It is important to protect main vessels from progressive burn necrosis in order to salvage a limb. The brachial artery should be totally isolated from the burned area by a muscle flap to prevent vessel disruption. In this study, we report the use of a wrap-around latissimus dorsi muscle flap to protect a skeletonized brachial artery in a high voltage electrical injury in order to salvage the upper extremity and restore function. The flap wrapped around the exposed brachial artery segment and luminal status of the artery was assessed using magnetic resonance angiography. No vascular intervention was required. The flap survived completely with good elbow function. Extremity amputation was not encountered. This method using a latissimus dorsi flap allows the surgeon to protect the main upper extremity artery and reconstruct arm defects, which contributes to restoring arm function in high voltage electrical injury. PMID:28149236

  4. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2018-01-01

    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  6. Summary - Advanced high-temperature reactor for hydrogen and electricity production

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2001-01-01

    Historically, the production of electricity has been assumed to be the primary application of nuclear energy. That may change. The production of hydrogen (H 2 ) may become a significant application. The technology to produce H 2 using nuclear energy imposes different requirements on the reactor, which, in turn, may require development of new types of reactors. Advanced High Temperature reactors can meet the high temperature requirements to achieve this goal. This alternative application of nuclear energy may necessitate changes in the regulatory structure

  7. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  8. A High-power Electric Propulsion Test Platform in Space

    Science.gov (United States)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  9. Charge dynamics in graphene and graphene superlattices under a high-frequency electric field: a semiclassical approach

    International Nuclear Information System (INIS)

    Kryuchkov, S V; Kukhar’, E I; Zav’yalov, D V

    2013-01-01

    The semiclassical theory of the dynamics of the charge carriers in graphene and in graphene superlattices exposed to a high-frequency electric field is developed. The dispersion law of the solid averaged over the period of the high-frequency electric field is found with the Kapitza method. The band gap in graphene is shown to arise under a high-frequency electric field polarized circularly. The effective mass of charge carriers in the center of the Brillouin band of the graphene superlattice is found to change sign under certain values of the amplitude of the high-frequency field. These values are shown to determine the bounds of the regions of the electromagnetic 2π-pulse stability. The dynamics of the π-pulse in a graphene superlattice is studied. (paper)

  10. Electric Field Guided Assembly of One-Dimensional Nanostructures for High Performance Sensors

    Directory of Open Access Journals (Sweden)

    Wing Kam Liu

    2012-05-01

    Full Text Available Various nanowire or nanotube-based devices have been demonstrated to fulfill the anticipated future demands on sensors. To fabricate such devices, electric field-based methods have demonstrated a great potential to integrate one-dimensional nanostructures into various forms. This review paper discusses theoretical and experimental aspects of the working principles, the assembled structures, and the unique functions associated with electric field-based assembly. The challenges and opportunities of the assembly methods are addressed in conjunction with future directions toward high performance sensors.

  11. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  12. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  13. Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality

    International Nuclear Information System (INIS)

    Xu, Wei; Xu, Hao; Zhao, Liu

    2014-01-01

    The thermodynamic phase space of Gauss-Bonnet (GB) AdS black holes is extended, taking the inverse of the GB coupling constant as a new thermodynamic pressure P GB . We studied the critical behavior associated with P GB in the extended thermodynamic phase space at fixed cosmological constant and electric charge. The result shows that when the black holes are neutral, the associated critical points can only exist in five dimensional GB-AdS black holes with spherical topology, and the corresponding critical exponents are identical to those for the Van der Waals system. For charged GB-AdS black holes, it is shown that there can be only one critical point in five dimensions (for black holes with either spherical or hyperbolic topologies), which also requires the electric charge to be bounded within some appropriate range; while in d < 5 dimensions, there can be up to two different critical points at the same electric charge, and the phase transition can occur only at temperatures which are not in between the two critical values. (orig.)

  14. Critical current density and wire fabrication of high-TC superconductors

    International Nuclear Information System (INIS)

    Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.

    1989-01-01

    In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes

  15. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  16. Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''

    International Nuclear Information System (INIS)

    Lundin, R.; Hultqvist, B.

    1989-01-01

    Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O + /H + ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. copyright American Geophysical Union 1989

  17. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs

    KAUST Repository

    Zhou, Jian

    2013-07-10

    We describe a strategy to design highly electrically conductive polycarbonate nanocomposites by using multiwalled carbon nanotubes (MWCNTs) coated with a thin layer of poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate), a conductive polymer. We found that this coating method improves the electrical properties of the nanocomposites in two ways. First, the coating becomes the main electrical conductive path. Second, the coating promotes the formation of a percolation network at a low filler concentration (0.3 wt %). To tailor the electrical properties of the conductive polymer coating, we used a polar solvent ethylene glycol, and we can tune the final properties of the nanocomposite by controlling the concentrations of the elementary constituents or the intrinsic properties of the conductive polymer coating. This very flexible technique allows for tailoring the properties of the final product. © 2013 American Chemical Society.

  18. High-latitude long-period pulsations in the atmospheric electricity according to observations at Schpitzbergen

    International Nuclear Information System (INIS)

    Klejmenova, N.G.; Kozyreva, O.V.; Mikhnovski, S.; Shimanski, A.; Ermolenko, D.Yu.

    1992-01-01

    The spectrum of long-period oscillations in the electric and magnetic fields is investigated for the first time using the data on simultaneous digital recording in the high altitudes at Schpitzbergen. It is established that during both tranquil and perturbed period at any time of the day, spectrum variation in electric and magnetic fields feature a decline discrete nature

  19. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    Science.gov (United States)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and

  20. High temperature heat capacities and electrical conductivities of boron carbides

    International Nuclear Information System (INIS)

    Matsui, Tsuneo; Arita, Yuri; Naito, Keiji; Imai, Hisashi

    1991-01-01

    The heat capacities and the electrical conductivities of B x C(x=3, 4, 5) were measured by means of direct heating pulse calorimetry in the temperature range from 300 to 1500 K. The heat capacities of B x C increased with increasing x value. This increase in the heat capacity is probably related to the change of the lattice vibration mode originated from the reduction of the stiffness of the intericosahedral chain accompanied with a change from C-B-C to C-B-B chains. A linear relationship between the logarithm of σT (σ is the electrical conductivity and T is the absolute temperature) of B x C and the reciprocal temperature was observed, indicating the presence of small polaron hopping as the predominant conduction mechanism. The electrical conductivity of B x C also increased with increasing x value (from 4 to 5) due to an increase of the polaron hopping of holes between carbon atoms at geometrically nonequivalent sites, since these nonequivalent sites of carbon atoms were considered to increase in either B 11 C icosahedra or in icosahedral chains with increasing x. The electrical conductivity of B 3 C was higher than that of B 4 C, which is probably due to the precipitation of high-conducting carbon. The thermal conductivity and the thermodynamic quantities of B 4 C were also determined precisely from the heat capacity value. (orig.)

  1. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  2. The effects of high frequency current ripple on electric vehicle battery performance

    International Nuclear Information System (INIS)

    Uddin, Kotub; Moore, Andrew D.; Barai, Anup; Marco, James

    2016-01-01

    Highlights: • Experimental study into the impact of current ripple on li-ion battery degradation. • 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. • Results highlight a greater spread of degradation for cells exposed to AC excitation. • Implications for BMS control, thermal management and system integration. - Abstract: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both the energy flows within the vehicle and the delivery of torque by the electrical machine. Such systems are known to generate undesired electrical noise on the high voltage bus. High frequency current oscillations, or ripple, if unhindered will enter the vehicle’s battery system. Real-world measurements of the current on the high voltage bus of a series hybrid electric vehicle (HEV) show that significant current perturbations ranging from 10 Hz to in excess of 10 kHz are present. Little is reported within the academic literature about the potential impact on battery system performance and the rate of degradation associated with exposing the battery to coupled direct current (DC) and alternating currents (AC). This paper documents an experimental investigation that studies the long-term impact of current ripple on battery performance degradation. Initial results highlight that both capacity fade and impedance rise progressively increase as the frequency of the superimposed AC current increases. A further conclusion is that the spread of degradation for cells cycled with a coupled AC–DC signal is considerably more than for cells exercised with a traditional DC waveform. The underlying causality for this degradation is not yet understood. However, this has important implications for the battery management system (BMS). Increased variations in cell capacity and impedance will cause differential current flows and heat generation within the battery pack that if not properly managed will further reduce battery life

  3. Critical Factors Explaining the Leadership Performance of High-Performing Principals

    Science.gov (United States)

    Hutton, Disraeli M.

    2018-01-01

    The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…

  4. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  5. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Eatherly, W.S.

    1997-01-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle (∼1 degrees C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle (∼100 degrees C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475 degrees C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to ∼65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500 degrees C on one of these new heats of CuNiBe, similar to that observed in other heats

  6. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Hostick, Donna [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markel, Tony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kintner-Meyer, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  7. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  8. Seasonal dependence of high-latitude electric fields

    International Nuclear Information System (INIS)

    de la Beaujardiere, O.; Leger, C.; Alcayde, D.; Fontanari, J.

    1991-01-01

    The seasonal dependence of the high-latitude electric field was investigated using Sondrestrom incoherent scatter radar data. Average ExB drifts were derived from 5 years of measurements centered around solar minimum. The electrostatic potentials that best fit the observed average electric field were calculated. It was found that the large-scale convection pattern significantly changes with season. This change involves the overall shape of the convection pattern, as well as the electric field intensity, and thus the total dawn-dusk potential across the polar cap. The cross polar cap potential drop is largest in fall, followed by winter, spring and summer. The small difference found between the summer and winter cross polar cap potential can be attributed to differing field-aligned potential drops. In view of the well-known relationship between field-aligned currents and parallel potential drop, this is consistent with the observations that Birkeland currents are larger in the summer than in winter. Changes in the overall shape of the convection pattern are consistent with the simple notion that the whole pattern is shifted toward the nightside as well as, to a lesser extent, toward the dawnside in summer as compared to winter. This assumption is based on the following observed effects: (1) The rotation of the overall convection pattern toward earlier local times with respect to the noon-midnight direction is maximum for summer on the dayside. (2) On the nightside, the Harang discontinuity is typically located within the radar field of view (Λ=67 to 82) in the winter averaged patterns, but it is equatorward of the field of view in summer. (3) The line that joins the dawn and dusk potential maxima is shifted toward the midnight sector in summer as compared to winter by about 5 degree. (4) In the dawn cell, the latitude of the convection reversal is the lowest during summer; in the dusk cell the latitude of the reversal is the lowest during winter

  9. Electrical storm: clinical manifestations and management.

    Science.gov (United States)

    Littmann, L; Rennyson, S L

    2007-10-01

    Electrical storm is the clustering of hemodynamically destabilizing ventricular tachycardia or ventricular fibrillation that typically requires multiple electrical cardioversions or defibrillations within a 24-hour period. Electrical storm is frequently seen in the acute phase of myocardial infarction, in patients with the genetic arrhythmia syndromes, and in patients with implanted cardioverters-defibrillators. The evaluation and management should focus on the immediate suppression of the arrhythmia, a search for possible reversible causes, and attempts to prevent recurrences. In this review we present the most common conditions associated with electrical storm, therapeutic options for suppression of electrical storm, and new investigational techniques emerging for the treatment of electrical storm in refractory cases. The management of this life threatening arrhythmia typically requires the coordinated efforts of emergency medicine, critical care, cardiology, cardiac electrophysiology, and pacemaker experts.

  10. Consideration of Nuclear Criticality When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff - I: Nuclear Criticality Constraints

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Sanchez, Lawrence C.; Trellue, Holly R.

    2003-01-01

    This paper presents the mass, concentration, and volume required for a critical event to occur in homogeneous mixtures of fissile material and various other geologic materials. The fissile material considered is primarily highly enriched uranium spent fuel; however, 239 Pu is considered in some cases. The non-fissile materials examined are those found in the proposed repository area at Yucca Mountain, Nevada: volcanic tuff, iron rust, concrete, and naturally occurring water. For 235 U, the minimum critical solid concentration for tuff was 5 kg/m 3 (similar to sandstone), and in goethite, 45 kg/m 3 . The critical mass of uranium was sensitive to a number of factors, such as moisture content and fissile enrichment, but had a minimum, assuming almost 100% saturation and >20% enrichment, of 18 kg in tuff as Soddyite (or 9.5 kg as UO 2 ) and 7 kg in goethite. For 239 Pu, the minimum critical solid concentration for tuff was 3 kg/m 3 (similar to sandstone); in goethite, 20 kg/m 3 . The critical mass of plutonium was also sensitive to a number of factors, but had a minimum, assuming 100% saturation and 80-90% enrichment, of 5 kg in tuff and 6 kg in goethite

  11. Excess electron mobility in ethane. Density, temperature, and electric field effects

    International Nuclear Information System (INIS)

    Doeldissen, W.; Schmidt, W.F.; Bakale, G.

    1980-01-01

    The excess electron mobility in liquid ethane was measured under orthobaric conditions as a function of temperature and electric field strength up to the critical temperature at 305.33 K. The low field mobility was found to rise strongly with temperature and exhibits a maximum value of 44 cm 2 V -1 s -1 at 2 0 below the critical temperature. At temperatures above 260 K the electron drift velocity shows a sublinear field dependence at high values of the electric field strength. These observations lead to the supposition that in liquid ethane a transition from transport via localized states to transport in extended states occurs. Measurements were also performed in fluid ethane at densities from 2.4 to 12.45 mol L -1 and temperatures from 290 to 340 K. On isochores in the vicinity of the critical density, an increase of the low field mobility with temperature was observed. This effect was found to disappear both at low (rho = 2.4 mol L -1 ) and high densities (rho greater than or equal to 9.2 mol L -1 ). In this density range, a sublinear field dependence of the drift velocities at high field strengths was noted. The critical velocity associated with the appearance of hot electrons was observed to decrease with higher densities indicating a smaller fractional energy transfer in electron molecule collisions. A compilation of electron mobilities in gaseous and liquid ethane shows that, up to densitiesof rho = 9.5 mol L -1 , μ proportional to n -1 is fulfilled if temperature effects are ignored. At intermediate densities, 9 mol L -1 -1 , a density dependence of μ proportional to rho -5 is found followed by a stronger mobility decrease toward the triple point. Positive ion mobilities measured under orthobaric conditions followed Walden's rule

  12. Highly effective cystic fibrosis clinical research teams: critical success factors.

    Science.gov (United States)

    Retsch-Bogart, George Z; Van Dalfsen, Jill M; Marshall, Bruce C; George, Cynthia; Pilewski, Joseph M; Nelson, Eugene C; Goss, Christopher H; Ramsey, Bonnie W

    2014-08-01

    Bringing new therapies to patients with rare diseases depends in part on optimizing clinical trial conduct through efficient study start-up processes and rapid enrollment. Suboptimal execution of clinical trials in academic medical centers not only results in high cost to institutions and sponsors, but also delays the availability of new therapies. Addressing the factors that contribute to poor outcomes requires novel, systematic approaches tailored to the institution and disease under study. To use clinical trial performance metrics data analysis to select high-performing cystic fibrosis (CF) clinical research teams and then identify factors contributing to their success. Mixed-methods research, including semi-structured qualitative interviews of high-performing research teams. CF research teams at nine clinical centers from the CF Foundation Therapeutics Development Network. Survey of site characteristics, direct observation of team meetings and facilities, and semi-structured interviews with clinical research team members and institutional program managers and leaders in clinical research. Critical success factors noted at all nine high-performing centers were: 1) strong leadership, 2) established and effective communication within the research team and with the clinical care team, and 3) adequate staff. Other frequent characteristics included a mature culture of research, customer service orientation in interactions with study participants, shared efficient processes, continuous process improvement activities, and a businesslike approach to clinical research. Clinical research metrics allowed identification of high-performing clinical research teams. Site visits identified several critical factors leading to highly successful teams that may help other clinical research teams improve clinical trial performance.

  13. Electrical conductivity of molten SnCl2 at temperature as high as 1314 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten SnCl 2 was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  14. The electricity exchange. On the organisation and latent functions of electricity exchange trading as seen from the viewpoint of market sociology

    International Nuclear Information System (INIS)

    Giacovelli, Sebastian

    2014-01-01

    Electricity exchange trading in Germany has existed since the year 2000. Since this time, the Leipzig electricity exchange, a reference market for off-exchange electricity trading, has operated in an environment marked by both criticism and acceptance. Taking this field of controversy as a point of departure the present empirical study in market sociology undertakes to investigate the organisation and latent functions of electricity exchange trading. The ensuing analysis provides answers to questions as to how prices are formed on the electricity exchange and what officially incommunicable functions are served by price formation on exchanges.

  15. Application of the nuclear liquid drop model to a negative hydrogen ion in the strong electric field of a laser

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il

    2000-09-01

    The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)

  16. Electrical safety code manual a plan language guide to national electrical code, OSHA and NFPA 70E

    CERN Document Server

    Keller, Kimberley

    2010-01-01

    Safety in any workplace is extremely important. In the case of the electrical industry, safety is critical and the codes and regulations which determine safe practices are both diverse and complicated. Employers, electricians, electrical system designers, inspectors, engineers and architects must comply with safety standards listed in the National Electrical Code, OSHA and NFPA 70E. Unfortunately, the publications which list these safety requirements are written in very technically advanced terms and the average person has an extremely difficult time understanding exactly what they need to

  17. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    International Nuclear Information System (INIS)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-01-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10 8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines

  18. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  19. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  20. Development of Ti-sheathed MgB2 wires with high critical current density

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Hanna, M; Yen, F; Lv, B; Alessandrini, M; Keith, S; Hoyt, C; Tang, Z; Salama, K

    2006-01-01

    Working towards developing lightweight superconducting magnets for future space and other applications, we have successfully fabricated mono-core Ti-sheathed MgB 2 wires by the powder-in-tube method. The wires were characterized by magnetization, electrical resistivity, x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry measurements. The results indicate that the Ti sheath does not react with the magnesium and boron, and the present wire rolling process can produce MgB 2 wires with a superconducting volume fraction of at least 64% in the core. Using the Bean model, it was found that at 5 K, the magnetic critical current densities, J c , measured in magnetic fields of 0, 5, and 8 T are about 4.2 x 10 5 , 3.6 x 10 4 , and 1.4 x 10 4 A cm -2 , respectively. At 20 K and 0 T, the magnetic J c is about 2.4 x 10 5 A cm -2 . These results show that at zero and low fields, the values of the magnetic J c for Ti-sheathed MgB 2 wires are comparable with the best results available for the Fe-sheathed MgB 2 wires. At high fields, however, the J c for Ti-sheathed MgB 2 wires appears higher than that for the Fe-sheathed MgB 2 wires

  1. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  2. Exhibition of electric and magnetic fields of extra-low frequency

    International Nuclear Information System (INIS)

    Rincon, Leonardo; Socadagui, Jorge; Roman, Francisco

    2001-01-01

    The existent norms were studied in the international environment regarding human beings' exhibition to electro-magnetic fields, under the points of view of the industrial frequency (60 Hz) and the time of exhibition. The norm CENELEC was selected (Committee Europeen of Normalisation Electro technique) ENV 50166-1. The electro-magnetic fields existent were measured in four substations of the Colombian interconnected system, locating the critical fields and relation them with the work places from the personnel exposed to this fields. In different areas of the substations studied they were values of electric field that violate the norm CENELEC, being the most critical case the areas of the module of line and of the patios of transformation. In magnetic field not it founded any violation of the mentioned norm. A serious case of exposed population was identified that corresponds to the gang in charge of carrying out the basic maintenance. This gang carries out its maintenance works in areas with critical electric fields and during superior times of exhibition to those permitted for the norm. The fields electrician and magnetic too were measured under the vain of transmission line of 115 kw and double vertical circuit. The measured values were compared with the values theoretical ob had by means of programs of calculation of fields electric and magnetic developed in the national university of Colombia, being obtained a very good approach for the case of the magnetic field. Using electro-magnetic field well known and trusts procedures, the measure probes were gauged in the laboratory of high voltage of the national university of Colombia

  3. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  4. Patterns in Soil Electrical Resistivity Across Land Uses in the Calhoun Critical Zone Observatory Landscape

    Science.gov (United States)

    Markewitz, D.; Sutter, L.; Richter, D. D., Jr.

    2017-12-01

    Soil Electrical Resistivity Tomography (ERT) was measured across the Calhoun Critical Zone Observatory in relation to land use cover. ERT can help identify patterns in soil and saprolite physical attributes and moisture content through multiple meters. ERT data were generated with an AGI Supersting R8 with a 28 probe dipole-dipole array on a 1.5 meter spacing providing information through the upper 9 m. In Nov/Dec 2016 ten soil pits were dug to 3m depth in agricultural fields, pine forests, and hardwood forests across the CCZO and ERT measures were taken centered on these pits. ERT values ranged from 200 to 2500 Ohm-m. ERT patterns in the agricultural field demonstrated a limited resistivity gradient (200-700 Ohm-m) appearing moist throughout. In contrast, research areas under pine and hardwood forest had stronger resistivity gradients reflecting both moisture and physical attributes (i.e., texture or rock content). For example, research area 2 under pine had an area of higher resistivity that correlated with a band of saprolite that was readily visible in the exposed profile. In research area 7 and 8 that included both pine and hardwood forest resistivity gradients had contradictory patterns of high to low resistivity from top to bottom. In research area 7 resistivity was highest at the surface and decreased with depth, a common pattern when water table is at depth. In research area 8 the inverse was observed with low resistivity above and resistivity increasing with depth, a pattern observed in upper landscape positions on ridges with moist clay above dry saprolite. ERT patterns did reflect a large difference in the measured agricultural fields compared to forest while other difference appeared to reflect landscape position.

  5. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    Science.gov (United States)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off

  6. Interlaboratory comparison on high-temperature superconductor critical-current measurements

    International Nuclear Information System (INIS)

    Wiejaczka, J.A.; Goodrich, L.F.

    1997-01-01

    An extensive interlaboratory comparison was conducted on high temperature superconductor (HTS) critical-current measurements. This study was part of an international cooperative effort through the Versailles Project on Advanced Materials and Standards (VAMAS). The study involved six US laboratories that are recognized leaders in the field of HTS. This paper includes the complete results from this comparison of critical-current measurements on Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10-x (2223) tapes. The effects of sample characteristics, specimen mounting, measurement technique, and specimen damage were studied. The future development of a standard HTS measurement method is also discussed. Most of the evolution of this emerging technology has occurred in improvement of the performance of the conductors. The successful completion of this interlaboratory comparison is an important milestone in the evolution of HTS technology and marks a level of maturity that the technology has reached

  7. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  8. Method for critical software event execution reliability in high integrity software

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, M.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    This report contains viewgraphs on a method called SEER, which provides a high level of confidence that critical software driven event execution sequences faithfully exceute in the face of transient computer architecture failures in both normal and abnormal operating environments.

  9. Vibration of high-voltage electric machines with rotors on rolling bearings

    Science.gov (United States)

    Shekyan, H. G.; Gevorgyan, A. V.

    2018-04-01

    The paper presents an investigation of vibrational activity of electric machines due to high-harmonic vibrational loadings. It is shown that the vibrational loadings experienced by bearings may result in the interruption of their normal operation and even take them out of action. Therefore, the values of the vibrational speed-up leading to high harmonics are factors determining the admissible dynamic loading on the bearings. In the paper, an attempt is made to consider the factors which result in origination of high harmonics and to illustrate methods for their smoothing.

  10. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  11. A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass

    Science.gov (United States)

    Chiaverina, Chris

    2014-01-01

    We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.

  12. Electrical conductivity of molten CdCl2 at temperatures as high as 1474 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2016-01-01

    The electrical conductivity of molten CdCl 2 was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  13. The earth’'s electric field sources from sun to mud

    CERN Document Server

    Kelley, Michael C

    2013-01-01

    The Earth's Electric Field provides you with an integrated and comprehensive picture of the generation of the terrestrial electric fields, their dynamics and how they couple/propagate through the medium. The Earth's Electric Field provides basic principles of terrestrial electric field related topics, but also a critical summary of electric field related observations and their significance to the various related phenomena in the atmosphere. For the first time, Kelley brings together information on this topic in a coherent way, making it easy to gain a broad overview of the critical processes in an efficient way. If you conduct research in atmospheric science, physics, atmospheric chemistry, space plasma physics, and solar terrestrial physics, you will find this book to be essential reading. The only book on the physics of terrestrial electric fields and their generation mechanisms, propagation and dynamics-making it essential reading for scientists conducting research in upper atmospheric, ionospheric, magnet...

  14. Electrical discharge phenomena application for solid fossil fuels in-situ conversion

    International Nuclear Information System (INIS)

    Bukharkin, A A; Lopatin, V V; Martemyanov, S M; Koryashov, I A

    2014-01-01

    The application of high voltage to oil shale initiates partial discharges (PDs) with the following treeing like in insulating dielectrics. Critical PDs and treeing with a high propagation rate occur under the low electrical intensity ∼10 2 V/cm due to oil shale's high porosity, heterogeneity and anisotropy. The completed discharge occurs as a result of these phenomena. Carbonization is initiated around a plasma channel at the treeing stage and extended during electromagnetic action time. Carbonized rock electrical resistance decreases by 8÷10 degrees to 10 ohm·cm, and shale and coal could be heated by Joule heat in carbonized volume and discharge plasma. A high-current supply is necessary for this heating stage. Also, a high- voltage supply with steep-grade characteristics can be used for PDs and treeing initiating and heating the carbonized rock with low resistance. Thus, these phenomena allow in-situ processing in order to produce a flammable gas and synthetic oil from inferior solid fossil fuels by pyrolytic conversion. Computations show that the ratio between energy derived from gas flaming and energy for shale conversion is more than fifty. Therefore, oil shale conversion with the help of electrical discharge phenomena application can be very efficient, as it needs little energy

  15. Breakdown of highly excited oxygen in a DC electric field

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsin, D.V.; Yuryshev, N.N.; Deryugin, A.A.; Kochetov, I.V.; Napartovich, A.P.

    2000-01-01

    The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1 Δ g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data

  16. The Relationship between Critical Thinking Abilities and Classroom Management Skills of High School Teachers

    Science.gov (United States)

    Demirdag, Seyithan

    2015-01-01

    High school teachers experience difficulties while providing effective teaching approaches in their classrooms. Some of the difficulties are associated with the lack of classroom management skills and critical thinking abilities. This quantitative study includes non-random selection of the participants and aims to examine critical thinking…

  17. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  18. Nanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy

    Directory of Open Access Journals (Sweden)

    Denghua Li

    2016-11-01

    Full Text Available Purple membranes (PM of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microscopy (EFM at the nanoscale. The topography, surface potential, and dielectric capacity of PMs were imaged and quantitatively measured in parallel. Two orientations of PMs were identified by EFM because of its high resolution in differentiating electrical characteristics. The extracellular (EC sides were more negative than the cytoplasmic (CP side by 8 mV. The direction of potential difference may facilitate movement of protons across the membrane and thus play important roles in proton pumping. Unlike the side-dependent surface potentials observed in PM, the EFM capacitive response was independent of the side and was measured to be at a dC/dz value of ~5.25 nF/m. Furthermore, by modification of PM with de novo peptides based on peptide-protein interaction, directional oriented PM assembly on silicon substrate was obtained for technical devices. This work develops a new method for studying membrane nanoelectronics and exploring the bioelectric application at the nanoscale.

  19. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  20. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey

    International Nuclear Information System (INIS)

    Akay, Diyar; Atak, Mehmet

    2007-01-01

    The need for energy supply, especially for electricity, has been increasing in the last two decades in Turkey. In addition, owing to the uncertain economic structure of the country, electricity consumption has a chaotic and nonlinear trend. Hence, electricity configuration planning and estimation has been the most critical issue of active concern for Turkey. The Turkish Ministry of Energy and Natural Resources (MENR) has officially carried out energy planning studies using the Model of Analysis of the Energy Demand (MAED). In this paper, Grey prediction with rolling mechanism (GPRM) approach is proposed to predict the Turkey's total and industrial electricity consumption. GPRM approach is used because of high prediction accuracy, applicability in the case of limited data situations and requirement of little computational effort. Results show that proposed approach estimates more accurate results than the results of MAED, and have explicit advantages over extant studies. Future projections have also been done for total and industrial sector, respectively

  1. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  2. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  3. ENEL high and medium voltage electrical substations for power supply to urban centers

    International Nuclear Information System (INIS)

    Bargigia, A.; Boatto, C.; Di Mario, A.; Fava, N.; Sciarra, S.; Speziali, R.

    1991-12-01

    Modular high and medium voltage gas insulated electrical substations are being used by ENEL (Italian Electricity Board) to meet the specific needs of urban centers with special design and sizing constraints of a historical/architectural nature. This paper illustrates the key design, construction operation and performance characteristics of these standardized units. The descriptions include brief notes on equipment-transformer interconnection, interchangeability and environmental compatibility. Performance test procedures and results of actual reliability and certification tests on some substations are reported

  4. Improving NASICON Sinterability through Crystallization under High-Frequency Electrical Fields

    Energy Technology Data Exchange (ETDEWEB)

    Lisenker, Ilya; Stoldt, Conrad R., E-mail: stoldt@colorado.edu [Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO (United States)

    2016-03-31

    The effect of high-frequency (HF) electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP) ion conducting ceramic was investigated. LAGP with the nominal composition Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300 V/cm at 1 MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using X-ray diffraction, scanning electron microscope, TEM, and electrochemical impedance spectroscopy to compare conventionally and field-sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 h of sintering were minor with measured sintering strains of 31 vs. 26% with and without field, respectively. Ionic conductivity of the sintered pellets was evaluated, and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  5. Critical thinking: Not all that critical

    Directory of Open Access Journals (Sweden)

    Bruce Dietrick Price

    2016-09-01

    Full Text Available Critical Thinking basically says to be suspicious of everything, except the fad known as Critical Thinking. It is perhaps best understood as a new and watered-down version of an earlier fad called Deconstruction. That was just a fancy word for debunking. After you strip away all the high-minded rhetoric, Critical Thinking is typically used to tell students that they should not trust conventional wisdom, tradition, religion, parents, and all that irrelevant, old-fashioned stuff. Critical Thinking, somewhat surprisingly, also turns out to be highly contemptuous of facts and knowledge. The formulation in public schools goes like this: children must learn how to think, not what to think. WHAT is, of course, all the academic content and scholarly knowledge that schools used to teach.

  6. Sustainable electricity options for Malaysia: the emerging importance of renewable electricity supply options

    International Nuclear Information System (INIS)

    Rosli, M.M.; Yusop, Y.M.

    2006-01-01

    Rapid economic expansion in Malaysia over recent decades has led to a large growth in demand for electricity. Demand growth has put a strain on the ability of the economy to expand its electricity infrastructure capacity rapidly to meet the surge in demand. Over the next decade or two, assuming Malaysia will continue to grow at current growth rates of 4.0%, Malaysia will require enormous supply of electricity to meet demand growth. To congregate this challenge, Malaysia needs to consider the energy supply systems that can contribute to the long-term sustainability of economy in the future. Energy supply is critical to social and economic development, and they both have direct and indirect impacts on the environment. The idea of sustainable energy frequently focuses on renewable energy (RE) resources and consideration of these resources in meeting the energy requirements of Malaysia is given high priority in this paper. This paper will embrace the issue of electricity supply resources, technologies and energy policies in accommodating the economy towards energy sustainability over the long term, thus meeting immediate energy needs. It is also the intention of this paper to highlight new and existing RE technologies and their important roles in encouraging a sustainable electricity supply growth pattern in Malaysia. RE generation systems will begin to make significant contributions to new generation capacity installations. However, political and policy reform will have to occur at an unprecedented rate for this to materialise. Malaysia Vision 2020 envisions for a caring society to evolve as part of the country ambition of achieving developed nation status. A balanced growth using sustainable development principles is advocated in which today's needs are met without compromising the needs of future generation

  7. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    Science.gov (United States)

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  8. Experience of Using Domestic High-Frequency Electric Welding Technology in Surgical Treatment of Patients with Abdominal Pathology

    Directory of Open Access Journals (Sweden)

    A.M. Babiy

    2014-04-01

    Full Text Available The article presents the experience of using electric welding technology of biological tissues with domestic high-frequency electrical generator EC 300 M1 in 176 patients at open and laparoscopic surgery for abdominal pathology. The analysis of findings showed that electric welding of living tissue provides reliable hemostasis, promotes tissue repair after their separation.

  9. Highly stable carbon nanotube field emitters on small metal tips against electrical arcing for miniature X-ray tubes

    International Nuclear Information System (INIS)

    Ha, Jun Mok; Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Cho, Sung Oh

    2015-01-01

    If CNT emitters are operated at a high voltage or at a high electric field, electrical arcing (or vacuum breakdown) can occur. Arcing can be initiated by the removed CNTs, impurities on the CNTs or substrates, protrusion of CNTs, low operating vacuum, and a very high electric field. Since arcing is accompanied with a very high current flow and it can produce plasma channel near the emitter, CNTs are seriously damaged or sometimes CNTs are almost completely removed from the substrate by the arcing events. Detachment of CNTs from a substrate is an irreversible catastrophic phenomenon for a device operation. In addition to the detachment of CNTs, arcing induces a sudden voltage drop and thus device operation is stopped. The metal mixture strongly attached CNTs to the tip substrate. Due to the strong adhesion, CNT emitters could be pre-treated with electrical conditioning process without seriously damaging the CNTs even though many intense arcing events were induced at the small and sharp geometry of the tip substrate. Impurities that were loosely bound to the substrates were almost removed and CNTs heights became uniform after the electrical conditioning process

  10. A micro-structured Si-based electrodes for high capacity electrical double layer capacitors

    International Nuclear Information System (INIS)

    Krikscikas, Valdas; Oguchi, Hiroyuki; Hara, Motoaki; Kuwano, Hiroki; Yanazawa, Hiroshi

    2014-01-01

    We challenged to make basis for Si electrodes of electric double layer capacitors (EDLC) used as a power source of micro-sensor nodes. Mcroelectromechanical systems (MEMS) processes were successfully introduced to fabricate micro-structured Si-based electrodes to obtain high surface area which leads to high capacity of EDLCs. Study of fundamental properties revealed that the microstructured electrodes benefit from good wettability to electrolytes, but suffer from electric resistance. We found that this problem can be solved by metal-coating of the electrode surface. Finally we build an EDLC consisting of Au-coated micro-structured Si electrodes. This EDLC showed capacity of 14.3 mF/cm 2 , which is about 530 times larger than that of an EDLC consisting of flat Au electrodes

  11. Temperature behavior of electrical properties of high-k lead-magnesium-niobium titanate thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenbin, E-mail: cwb0201@163.com [Electromechanical Engineering College, Guilin University of Electronic Technology (China); McCarthy, Kevin G. [Department of Electrical and Electronic Engineering, University College Cork (Ireland); Copuroglu, Mehmet; O' Brien, Shane; Winfield, Richard; Mathewson, Alan [Tyndall National Institute, University College Cork (Ireland)

    2012-05-01

    This paper reports on the temperature dependence of the electrical properties of high-k lead-magnesium-niobium titanate thin films processed with different compositions (with and without nanoparticles) and with different annealing temperatures (450 Degree-Sign C and 750 Degree-Sign C). These characterization results support the ongoing investigation of the material's electrical properties which are necessary before the dielectric can be used in silicon-based IC applications.

  12. Understanding household switching behavior in the retail electricity market

    International Nuclear Information System (INIS)

    Yang, Yingkui

    2014-01-01

    Deregulation of the Danish retail electricity market nearly a decade ago has produced little consumer switching among suppliers or renegotiation of supplier service contracts. From an energy policy perspective, a certain amount of supplier switching is an important indicator of the success of market deregulation. This argues that poor relationship management and a lack of economic benefits are two critical barriers to consumer switching. Latent class analysis indicates that only 11.4% of consumers are non-switchers, whereas 41.1% can be considered potential switchers and approximately one-half (47.5%) can be considered apathetic consumers. We also discuss the managerial implications for both electricity suppliers and policy makers. - Highlights: • This paper investigates the barriers for electricity supplier switching in Denmark. • Four switching barriers were identified. • Relationship management and economic benefits are critical for consumer switching. • Three consumer segments for electricity supplier switching were identified

  13. Preparation of high critical temperature YBa2Cu3O7 superconducting coatings by thermal spray

    International Nuclear Information System (INIS)

    Lacombe, Jacques

    1991-01-01

    The objective of this research thesis is the elaboration of YBa 2 Cu 3 O 7 superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa 2 Cu 3 O 7 , and their structural and electric characteristics [fr

  14. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Sohrabkhani, S.

    2008-01-01

    This paper presents an artificial neural network (ANN) approach for annual electricity consumption in high energy consumption industrial sectors. Chemicals, basic metals and non-metal minerals industries are defined as high energy consuming industries. It is claimed that, due to high fluctuations of energy consumption in high energy consumption industries, conventional regression models do not forecast energy consumption correctly and precisely. Although ANNs have been typically used to forecast short term consumptions, this paper shows that it is a more precise approach to forecast annual consumption in such industries. Furthermore, the ANN approach based on a supervised multi-layer perceptron (MLP) is used to show it can estimate the annual consumption with less error. Actual data from high energy consuming (intensive) industries in Iran from 1979 to 2003 is used to illustrate the applicability of the ANN approach. This study shows the advantage of the ANN approach through analysis of variance (ANOVA). Furthermore, the ANN forecast is compared with actual data and the conventional regression model through ANOVA to show its superiority. This is the first study to present an algorithm based on the ANN and ANOVA for forecasting long term electricity consumption in high energy consuming industries

  15. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  16. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    Science.gov (United States)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  17. Radiation resistant electrical bushing for high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zajic, V; Banyr, J

    1980-11-15

    The bushing described is characterized by a hollow with a joining member provided inside of at least one of the bushing's electrically conductive core soldered or embedded into a bore in the insulator. Thus, the concentration is limited of the material of the electrically conductive core in the area of the soldered or embedded joint of the support of the electrically conductive core and the insulator, and the resulting force effect is reduced of the difference in thermal dilatations of the materials of the electrically conductive core and the insulator.

  18. Radiation resistant electrical bushing for high pressures and temperatures

    International Nuclear Information System (INIS)

    Zajic, V.; Banyr, J.

    1980-01-01

    The bushing described is characterized by a hollow with a joining member provided inside of at least one of the bushing's electrically conductive core soldered or embedded into a bore in the insulator. Thus, the concentration is limited of the material of the electrically conductive core in the area of the soldered or embedded joint of the support of the electrically conductive core and the insulator, and the resulting force effect is reduced of the difference in thermal dilatations of the materials of the electrically conductive core and the insulator. (J.B.)

  19. High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons

    Science.gov (United States)

    Perez, Carlos R.

    The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries. Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material. This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon

  20. Hydrodynamical flows in dielectric liquid in strong inhomogeneous pulsed electric field

    International Nuclear Information System (INIS)

    Tereshonok, Dmitry V; Babaeva, Natalia Yu; Naidis, George V; Smirnov, Boris M

    2016-01-01

    We consider a hydrodynamical flow of dielectric liquid near a high voltage needle-shaped electrode in a strong inhomogeneous pulsed electric field. It was shown that under a small rise time, a negative pressure area (pressure is less than critical pressure) appears near the electrode leading to the formation of a cavity in which electric breakdown can develop. A comparison of the dependence of the velocity of fluid near an electrode for two cases (taking into account the dependence of dielectric permeability of the liquid on the electric field and without taking it into account) was made. A field-dependent dielectric coefficient leads to the appearance of two local maximums of the velocities and increases the minimum pressure, thus lowering the possibility of cavitation. While under the constant value of dielectric permeability only one local maximum appears. (paper)

  1. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  2. High-accuracy critical exponents for O(N) hierarchical 3D sigma models

    International Nuclear Information System (INIS)

    Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.

    2006-01-01

    The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits

  3. Electric Power Supply Chain Management Addressing Climate Change

    DEFF Research Database (Denmark)

    Wang, Xiao-Hui; Cong, Ronggang

    2012-01-01

    Supply chain management played a critical role in the electric power industrial chain optimization. The purpose of this paper was to review a sample of the literature relating to supply chain management and its possible applications in electricity power system, especially in the context of climate...... change. The study compared the difference between electric power supply chain management and traditional supply chain management. Furthermore, some possible research topics are addressed. The aim of this paper was to promote the application of supply chain management in the China electricity sector...

  4. Electrospinning of Polyacrylonitrile Nanofibers and Simulation of Electric Field via Finite Element method

    Directory of Open Access Journals (Sweden)

    Hadi Samadian

    2017-04-01

    Full Text Available Objective(s: Since the electric field is the main driving force in electrospinning systems, the modeling and analysis of electric field distribution are critical to the nanofibers production. The aim of this study was modeling of the electric field and investigating the various parameters on polyacrylonitrile (PAN nanofibers morphology and diameter. Methods: The electric field profile at the nozzle and electrospinning zone was evaluated by Finite Element Method. The morphology and diameter of nanofibers were examined by Scanning electron microscopy (SEM. Results: The results of the electric field analysis indicated that the electric field was concentrated at the tip of the nozzle. Moreover, in the spinning direction, the electric field was concentrated at the surface of the spinneret and decayed rapidly toward the surface of the collector. Increasing polymer solution concentration from 7 to 11wt.% led to increasing nanofibers diameter form 77.76 ± 19.44 to 202.42 ± 36.85. Conclusions: Base on our results, it could be concluded that concentration of the electric field at the tip of the nozzle is high and initiates jet and nanofibers formation. PAN nanofibers can be transformed to carbon nanofibers which have various applications in biomedicine.

  5. An Examination of Critical Thinking Skills in High School Choral Rehearsals

    Science.gov (United States)

    Garrett, Matthew L.

    2013-01-01

    The purpose of this study was to examine the relationship between time spent in nonperformance and critical thinking activities in high school choral rehearsals. Eighteen rehearsal observations were collected from public school music programs. Observed rehearsal behaviors were coded into three categories of nonperformance activity: lower-order…

  6. Investigation of True High Frequency Electrical Substrates of fMRI-Based Resting State Networks Using Parallel Independent Component Analysis of Simultaneous EEG/fMRI Data.

    Science.gov (United States)

    Kyathanahally, Sreenath P; Wang, Yun; Calhoun, Vince D; Deshpande, Gopikrishna

    2017-01-01

    Previous work using simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data has shown that the slow temporal dynamics of resting state brain networks (RSNs), e.g., default mode network (DMN), visual network (VN), obtained from fMRI are correlated with smoothed and down sampled versions of various EEG features such as microstates and band-limited power envelopes. Therefore, even though the down sampled and smoothed envelope of EEG gamma band power is correlated with fMRI fluctuations in the RSNs, it does not mean that the electrical substrates of the RSNs fluctuate with periods state fMRI fluctuations in the RSNs, researchers have speculated that truly high frequency electrical substrates may exist for the RSNs, which would make resting fluctuations obtained from fMRI more meaningful to typically occurring fast neuronal processes in the sub-100 ms time scale. In this study, we test this critical hypothesis using an integrated framework involving simultaneous EEG/fMRI acquisition, fast fMRI sampling ( TR = 200 ms) using multiband EPI (MB EPI), and EEG/fMRI fusion using parallel independent component analysis (pICA) which does not require the down sampling of EEG to fMRI temporal resolution . Our results demonstrate that with faster sampling, high frequency electrical substrates (fluctuating with periods <100 ms time scale) of the RSNs can be observed. This provides a sounder neurophysiological basis for the RSNs.

  7. The Bearingless Electrical Machine

    Science.gov (United States)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  8. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    Energy Technology Data Exchange (ETDEWEB)

    Shah, K G; Delima, T; Felix, S; Sheth, H; Tolosa, V; Tooker, A; Pannu, S S

    2012-03-28

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {micro}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal stud-bumps partially through the vias. Hermeticity testing showed leak rates better than 9 x 10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  9. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, A; Shah, K; Tolosa, V; Sheth, H; Felix, S; Delima, T; Pannu, S

    2012-03-29

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {mu}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal studbumps partially through the vias. Hermeticity testing showed leak rates better than 9x10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  10. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  11. Nuclear-electric power in space

    International Nuclear Information System (INIS)

    Truscello, V.C.; Davis, H.S.

    1984-01-01

    Because direct-broadcast satellites, air-traffic-control radar satellites, industrial processing on subsequent versions of the space station, and long range excursions to other planets using nuclear-electric propulsion systems, all space missions for which current power-supply systems are not sufficient. NASA and the DOE therefore have formed a joint program to develop the technology required for nuclear-reactor space power plants. After investigating potential space missions in the given range, the project will develop the technology to build such systems. High temperatures pose problems, ''hot shoes'' and ''cold shoes'', a Stirling engine dynamic system, and critical heat-transfer problems are all discussed. The nuclear reactor system for space as now envisioned is schematicized

  12. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  13. High-intensity pulsed electric field variables affecting Staphylococcus aureus inoculated in milk.

    Science.gov (United States)

    Sobrino-López, A; Raybaudi-Massilia, R; Martín-Belloso, O

    2006-10-01

    Staphylococcus aureus is an important milk-related pathogen that is inactivated by high-intensity pulsed electric fields (HIPEF). In this study, inactivation of Staph. aureus suspended in milk by HIPEF was studied using a response surface methodology, in which electric field intensity, pulse number, pulse width, pulse polarity, and the fat content of milk were the controlled variables. It was found that the fat content of milk did not significantly affect the microbial inactivation of Staph. aureus. A maximum value of 4.5 log reductions was obtained by applying 150 bipolar pulses of 8 mus each at 35 kV/cm. Bipolar pulses were more effective than those applied in the monopolar mode. An increase in electric field intensity, pulse number, or pulse width resulted in a drop in the survival fraction of Staph. aureus. Pulse widths close to 6.7 micros lead to greater microbial death with a minimum number of applied pulses. At a constant treatment time, a greater number of shorter pulses achieved better inactivation than those treatments performed at a lower number of longer pulses. The combined action of pulse number and electric field intensity followed a similar pattern, indicating that the same fraction of microbial death can be reached with different combinations of the variables. The behavior and relationship among the electrical variables suggest that the energy input of HIPEF processing might be optimized without decreasing the microbial death.

  14. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  15. Hydrogenic donor in a quantum well with an electric field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    Variational calculations of the binding energy of a hydrogenic donor in a quantum well formed by GaAs and Gasub(1-x)A1sub(x)As with a constant electric field are performed for different electric fields and well widths. A critical electric field is defined and its variation with well width is presented. (author)

  16. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    Science.gov (United States)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  17. High critical current density YBCO films and fabrication of dc-SQUIDs

    CERN Document Server

    Kuriki, S; Kawaguchi, Y; Matsuda, M; Otowa, T

    2002-01-01

    In order to improve the sensitivity of SQUID magnetometers made of high-T sub c films, we have studied the conditions of pulsed-laser deposition of YBCO films. Among the different deposition parameters examined, extensive degassing of the vacuum chamber before and precise control of the substrate temperature during the film deposition were found effective for obtaining high critical temperature T sub c and high critical current density J sub c. It was also found that the residual-resistance ratio has a clear correlation with J sub c , indicating that it can be a good, and easy to measure, index of the film quality. Films having T sub c approx 89-90 K and J sub c >= 5x10 sup 6 A cm sup - sup 2 at 77 K were used to fabricate SQUIDs without a pickup loop. Grain-boundary junctions formed on bicrystal substrates with a 30 deg. misorientation angle exhibited I sub c R sub n values of more than 100 mu V at 77 K. The well-known scaling behaviour of the relation I sub c R sub n propor to (J sup G sup B sub c) sup 1 su...

  18. WARRIOR II, a high performance modular electric robot system

    International Nuclear Information System (INIS)

    Downton, G.C.

    1996-01-01

    Initially designed for in-reactor welding by the Central Electricity Generating Board, WARRIOR has been developed using the concept of modular technology to become a light-weight, high performance robotic system. Research work on existing machines for in-reactor inspection and repair and heavy duty hydraulic manipulators was progressed in order to develop WARRIOR II, a versatile in-reactor welding system usable at any nuclear power station light enough to be deployed by existing remote handling equipment. WARRIOR II can be significantly reconfigured quickly to pursue different ends. (UK)

  19. Learning to REDUCE: A Reduced Electricity Consumption Prediction Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Saima; Chelmis, Charalampos; Prasanna, Viktor

    2016-02-12

    Utilities use Demand Response (DR) to balance supply and demand in the electric grid by involving customers in efforts to reduce electricity consumption during peak periods. To implement and adapt DR under dynamically changing conditions of the grid, reliable prediction of reduced consumption is critical. However, despite the wealth of research on electricity consumption prediction and DR being long in practice, the problem of reduced consumption prediction remains largely un-addressed. In this paper, we identify unique computational challenges associated with the prediction of reduced consumption and contrast this to that of normal consumption and DR baseline prediction.We propose a novel ensemble model that leverages different sequences of daily electricity consumption on DR event days as well as contextual attributes for reduced consumption prediction. We demonstrate the success of our model on a large, real-world, high resolution dataset from a university microgrid comprising of over 950 DR events across a diverse set of 32 buildings. Our model achieves an average error of 13.5%, an 8.8% improvement over the baseline. Our work is particularly relevant for buildings where electricity consumption is not tied to strict schedules. Our results and insights should prove useful to the researchers and practitioners working in the sustainable energy domain.

  20. Size effects in electrical behavior of high-Tc thin-film bridges

    International Nuclear Information System (INIS)

    Afanasyev, A.S.; Gubankov, V.N.; Divin, Y.Y.

    1991-01-01

    This paper reports on the size effects in electrical characteristics of polycrystalline YBa 2 Cu 3 O 7-x thin-film bridges studied in the temperature range 4-300K. It is shown, that at T > T c the decrease of bridge widths w from 200 to 10 μm leads to the increase of resistance R in several times and to the change in R □ (T) behavior □ from metallic type to activation type. At □ T approx-lt T c the R □ (w) values exponentially increased when the width w was decreased under some definite size L. At T c the index I c (T) ∼ (T - T) α changed from 3 to 1 if bridge width was decreased. Experimental data are discussed within the model, which takes into account large-scale percolation processes in the system of different intergrain Josephson junctions, where characteristic length L 0 of critical subnetwork is much larger than the grain size

  1. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  2. High resistance to sulfur poisoning of Ni with copper skin under electric field

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaopei; Zhang, Yanxing [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng, Henan Province (China)

    2017-02-12

    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field. - Highlights: • The electric field and Cu dopant effects on S poisoning feature of Ni are analyzed. • The present of large electric field can enhance S tolerance. • Cu dopant concentration affect the surface electronic structure of Ni. • 100% Cu doping on surface Ni layer can mostly decrease the sulfur poison.

  3. Physical rehabilitation interventions for adult patients during critical illness: an overview of systematic reviews

    Science.gov (United States)

    Connolly, Bronwen; O'Neill, Brenda; Salisbury, Lisa; Blackwood, Bronagh

    2016-01-01

    Background Physical rehabilitation interventions aim to ameliorate the effects of critical illness-associated muscle dysfunction in survivors. We conducted an overview of systematic reviews (SR) evaluating the effect of these interventions across the continuum of recovery. Methods Six electronic databases (Cochrane Library, CENTRAL, DARE, Medline, Embase, and Cinahl) were searched. Two review authors independently screened articles for eligibility and conducted data extraction and quality appraisal. Reporting quality was assessed and the Grading of Recommendations Assessment, Development and Evaluation approach applied to summarise overall quality of evidence. Results Five eligible SR were included in this overview, of which three included meta-analyses. Reporting quality of the reviews was judged as medium to high. Two reviews reported moderate-to-high quality evidence of the beneficial effects of physical therapy commencing during intensive care unit (ICU) admission in improving critical illness polyneuropathy/myopathy, quality of life, mortality and healthcare utilisation. These interventions included early mobilisation, cycle ergometry and electrical muscle stimulation. Two reviews reported very low to low quality evidence of the beneficial effects of electrical muscle stimulation delivered in the ICU for improving muscle strength, muscle structure and critical illness polyneuropathy/myopathy. One review reported that due to a lack of good quality randomised controlled trials and inconsistency in measuring outcomes, there was insufficient evidence to support beneficial effects from physical rehabilitation delivered post-ICU discharge. Conclusions Patients derive short-term benefits from physical rehabilitation delivered during ICU admission. Further robust trials of electrical muscle stimulation in the ICU and rehabilitation delivered following ICU discharge are needed to determine the long-term impact on patient care. This overview provides recommendations for

  4. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    Science.gov (United States)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  5. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  6. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  7. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilhwan You

    2017-10-01

    Full Text Available This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC with and without carbon nanotubes (CNTs. For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  8. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes.

    Science.gov (United States)

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Sooho; Kim, Min-Jae; Zi, Goangseup

    2017-10-29

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  9. Electrical and optical properties of highly oriented nanocrystalline vanadium pentoxide

    International Nuclear Information System (INIS)

    Bahgat, A.A.; Ibrahim, F.A.; El-Desoky, M.M.

    2005-01-01

    Highly oriented nanocrystalline hydrated vanadium pentoxide, V 2 O 5 .nH 2 O, were grown epitaxially on a glass substrate along the c-axis to form a film of 200 nm thick. The films were prepared by dissolving V 2 O 5 powder in hydrogen peroxide, H 2 O 2 , solution. X-ray diffraction, transmission electron micrograph and electron diffraction were used to identify the structure of the obtained nanocrystals. Homogenous nanocrystals of 7.0 ± 1.0 nm in size were obtained and were closed packed and are distributed evenly. Electrical conductivity and thermoelectric power were measured in the temperature range 300-480 K for the as prepared films parallel to the substrate surface; i.e. normal to the c-axis. The obtained results showed an n-type semiconducting behavior within the whole temperature range. It is also clear to see that a reversible abnormality at about 340 K is realized during the cooling electrical conductivity measurements. On the other hand, optical transmission and reflection were used to evaluate different optical parameters such as; optical band gap, nature of donor levels and different absorption bands parameters. Both the electrical and optical data are correlated and accordingly the conduction mechanism is verified. Electronic parameters such as effective mass, carriers' type and concentration and drift mobility were evaluated

  10. Electric field control methods for foil coils in high-voltage linear actuators

    NARCIS (Netherlands)

    Beek, van T.A.; Jansen, J.W.; Lomonova, E.A.

    2015-01-01

    This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators. The field control methods are evaluated using 2-D and 3-D boundary element methods. A comparison is presented between the field control methods and their ability to mitigate

  11. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  12. A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhongyu Dai

    2017-03-01

    Full Text Available In this paper, a Witricity-based high-power device is proposed for wireless charging of electric vehicles. According to the specific requirements of three-stage charging for electric vehicles, four compensation modes of the Witricity system are analyzed by the Loosely Coupled Theory among transformer coils and the Substitution Theorem in circuit theory. In addition, when combining voltage withstand levels, the current withstand capability, the switching frequency of electronic switching tubes, and the features of the resonant circuit, the series-parallel (SP compensation mode is selected as the best compensation mode for matching the capacitor of the system. The performances of coils with different ferrite core arrangements are compared by simulations and models. The feasibility of the system is verified theoretically and the system functions are evaluated by the joint simulation of Simplorer and Maxwell. Finally, a Witricity-based high-power device is proposed as designed, and the correctness of theoretical analyses and simulation results are verified.

  13. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    OpenAIRE

    Pan, Liwen; Zhang, Chengning

    2015-01-01

    This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge cir...

  14. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  15. The Tokai-mura JCO criticality accident and the activities of the accident countermeasure support team of Electric Power Companies, Japan

    International Nuclear Information System (INIS)

    Ogawa, Junko

    2000-01-01

    A criticality accident occurred at the JCO Tokai-mura nuclear fuel processing plant on September 30, 1999. This accident brought the damages which were unrivaled in the history of atomic energy development in Japan, seriously influencing the citizen life to such an extent as requesting for 320,000 inhabitants within 10 kilometers radius to stay indoors for as long as 18 hours. However, it could be said that though three workers suffered fatal injuries, no substantial hazards were made upon the regional inhabitants due to little release of radioactive substances. This video recorded the activities of the Accident Countermeasure Support Team of the Electric Power Companies immediately after the accident occurred, showing the chronological overview of the particulars of the accident. (author)

  16. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V M [Department of Theoretical Physics, I. I. Mechnikov Odessa National University, 65026 Odessa (Ukraine); Djuric, Z [Silvaco Data System, Silvaco Technology Centre, Compass Point, St. Ives PE27 5JL (United Kingdom); Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Sakan, N M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Tkachenko, I M [Department of Applied Mathematics, ETSII, Polytechnic University of Valencia, Camino de Vera s/n, Valencia 46022 (Spain)

    2004-07-21

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N{sub e}, and temperature, T, varied within the following limits: 10{sup 19} {<=} N{sub e} {<=} 10{sup 21} cm{sup -3} and 2 x 10{sup 4} {<=} T {<=} 10{sup 6} K, respectively. The external electric field frequency, f, varied in the range 3 GHz{<=} f {<=} 0.05{omicron}{sub p}, where {omicron}{sub p} is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications.

  17. Dynamic characteristics of non-ideal plasmas in an external high frequency electric field

    International Nuclear Information System (INIS)

    Adamyan, V M; Djuric, Z; Mihajlov, A A; Sakan, N M; Tkachenko, I M

    2004-01-01

    The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N e , and temperature, T, varied within the following limits: 10 19 ≤ N e ≤ 10 21 cm -3 and 2 x 10 4 ≤ T ≤ 10 6 K, respectively. The external electric field frequency, f, varied in the range 3 GHz≤ f ≤ 0.05ο p , where ο p is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications

  18. The evolution of legal aspects on the Brazilian electric power sector, a critical analysis; Evolucao dos marcos regulatorios do mercado de energia eletrica no Brasil, uma analise critica

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Adriano Silva

    2007-07-01

    The electric sector went through deep changes along these 125 years of electrification of the country, mainly the alternation of their investment bases, hour being private for the most part, state hour. The legal bases of concession and regulation also varied in this period, trying to adapt to the effective model of the time. This work intends to analyze the evolution of the regulatory models of the electric sector, identifying the main changes of paradigms and to compare the efficiency of the models already implanted in the segment, with views to the increment of the offer of energy in the period, molding a critical profile of the best model already adopted in the national electric sector. To compare qualitatively these models requests an analysis of the investment bases a priori in the sector, identifying the contribution of resources has been private or state, following by the government's legal positioning in the sense of being only regulator, or regulator and investor, concluding with an analysis of the electric power offer in the period and the power of self-financing of the companies, in order to assent that the mixed model is the most appropriate model for the sustainable growth of the electric power generation sector in Brazil. (author)

  19. The evolution of legal aspects on the Brazilian electric power sector, a critical analysis; Evolucao dos marcos regulatorios do mercado de energia eletrica no Brasil, uma analise critica

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Adriano Silva

    2007-07-01

    The electric sector went through deep changes along these 125 years of electrification of the country, mainly the alternation of their investment bases, hour being private for the most part, state hour. The legal bases of concession and regulation also varied in this period, trying to adapt to the effective model of the time. This work intends to analyze the evolution of the regulatory models of the electric sector, identifying the main changes of paradigms and to compare the efficiency of the models already implanted in the segment, with views to the increment of the offer of energy in the period, molding a critical profile of the best model already adopted in the national electric sector. To compare qualitatively these models requests an analysis of the investment bases a priori in the sector, identifying the contribution of resources has been private or state, following by the government's legal positioning in the sense of being only regulator, or regulator and investor, concluding with an analysis of the electric power offer in the period and the power of self-financing of the companies, in order to assent that the mixed model is the most appropriate model for the sustainable growth of the electric power generation sector in Brazil. (author)

  20. Beyond Critical Exponents in Neuronal Avalanches

    Science.gov (United States)

    Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin

    2011-03-01

    Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.

  1. Study of near-critical states of liquid-vapor phase transition of magnesium

    International Nuclear Information System (INIS)

    Emelyanov, A N; Shakhray, D V; Golyshev, A A

    2015-01-01

    Study of thermodynamic parameters of magnesium in the near-critical point region of the liquid-vapor phase transition and in the region of metal-nonmetal transition was carried out. Measurements of the electrical resistance of magnesium after shock compression and expansion into gas (helium) environment in the process of isobaric heating was carried out. Heating of the magnesium surface by heat transfer with hot helium was performed. The registered electrical resistance of expanded magnesium was about 10 4 -10 5 times lower than the electrical resistance of the magnesium under normal condition at the density less than the density of the critical point. Thus, metal-nonmetal transition was found in magnesium. (paper)

  2. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    International Nuclear Information System (INIS)

    Ahn, S. K.; Chang, H. Y.

    2008-01-01

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with the theories of electromagnetic effects in large area and/or high frequency capacitive discharges

  3. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  4. A critical analysis of the Spanish electrical system: risks and opportunities by 2050

    Directory of Open Access Journals (Sweden)

    Andrés Feijóo

    2015-01-01

    Full Text Available The Spanish electrical system is now in a position to take advantage of developments from the recent past. Many of its facilities, such as nuclear and coal power stations, have a useful life which will come to an end during the 2020-2030 decade [1] (from 2021 in the case of Vandellós 2, and up to 2028 in the case of Santa María de Garoña. The mankind is currently going through a global environmental crisis which includes greenhouse effect gas emissions as a major component [2]. These are closely linked to the energy system, particularly to electricity generation, and could be a determining factor in the future evolution of such a system. Clearly, such a crisis can potentially lead to serious difficulties in accessing energy for many people. The energy business sector has been undoing its ties to particular territories and has been expanding towards other countries to become more and more dependent on foreign capitals and decision-makers. Now that a stagnant period for electricity demand is being experienced, this does not favor new schemes. However, new proposals should be considered given that many infrastructures will soon be obsolete. In this paper some scenarios are proposed to contemplate the transition of the Spanish electrical system towards an energy model with the year 2050 in mind, where the goal is to lower greenhouse gas emissions [3]. One of the factors to be considered during this period should be the participation of renewable energies. Transport and mobility are also likely to undergo some changes, for similar reasons, and in this time frame they will increasingly be designed to use electricity.

  5. The role of hydrogen in high wind energy penetration electricity systems: the Irish case

    International Nuclear Information System (INIS)

    Gonzalez, A.; McKeogh, E.; Gallachoir, B.O.

    2004-01-01

    The deployment of wind energy is constrained by wind uncontrollability, which poses operational problems on the electricity supply system at high penetration levels, lessening the value of wind-generated electricity to a significant extent. This paper studies the viability of hydrogen production via electrolysis using wind power that cannot be easily accommodated on the system. The potential benefits of hydrogen and its role in enabling a large penetration of wind energy are assessed, within the context of the enormous wind energy resource in Ireland. The exploitation of this wind resource may in the future give rise to significant amounts of surplus wind electricity, which could be used to produce hydrogen, the zero-emissions fuel that many experts believe will eventually replace fossil fuels in the transport sector. In this paper the operation of a wind powered hydrogen production system is simulated and optimised. The results reveal that, even allowing for significant cost-reductions in electrolyser and associated balance-of-plant equipment, low average surplus wind electricity cost and a high hydrogen market price are also necessary to achieve the economic viability of the technology. These conditions would facilitate the installation of electrolysis units of sufficient capacity to allow an appreciable increase in installed wind power in Ireland. The simulation model was also used to determine the CO 2 abatement potential associated with the wind energy/hydrogen production. (author)

  6. Development of MgB2 superconductor wire with high critical current

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong; Kim, Nam Kyu; Kim, Yi Jeong; Yi, Ji Hye; Lee, Ji Hyun; Tan, Kai Sin

    2009-07-01

    The MgB 2 superconductor with smaller grain size could improve its critical properties by providing flux pinning centers with high grain boundary density. The effects of C doping such as charcoal, paper ash and glycerin on the superconducting properties was investigated for in situ processed MgB 2 samples using low purity semi-crystalline B powder. The results show a decrease in Tc and an enhancement of Jc at high fields for the C-doped samples as compared to the un-doped samples. A combined process of a mechanical ball milling and liquid glycerin (C 3 H 8 O 3 ) treatment of B powder has been conducted to enhance the superconducting properties of MgB 2 . The mechanical ball milling was effective for grain refinement, and a lattice disorder was easily achieved by glycerin addition. With the combined process, the critical properties was further increased due to a higher grain boundary density and a greater C substitution. To get fine grain structure of MgB 2 with high critical current properties, mechanical milling for as-received B powder and low temperature solid-state reaction of 550 or 600 .deg. C were attempted to in situ powder-in-tube processed MgB 2 /Fe wires. The critical current properties of the MgB 2 wires using the milled B powder were enhanced due to a smaller grain size and an increased volume of the superconducting phase. The solid-state reaction of a low temperature process for the samples using the milled B powder resulted in a poorer crystallinity with a smaller grain size, which improved superconducting properties. We established the system to measure the transport current properties of the MgB 2 wires. The field dependence of the transport Jc was evaluated for the MgB 2 wires heat-treated at different heat treatment conditions using ball-milled and glycerin-treated B powder. The MgB 2 magnet was developed and the AC loss of MgB 2 wire was also investigated. A conduction cooling device to cool the MgB 2 coil down to 4 K has been fabricated and the

  7. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  8. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  9. Electrical safety in flammable gas/vapor laden atmospheres

    CERN Document Server

    Korver, WOE

    1992-01-01

    This book provides comprehensive coverage of electrical system installation within areas where flammable gases and liquids are handled and processed. The accurate hazard evaluation of flammability risks associated with chemical and petrochemical locations is critical in determining the point at which the costs of electrical equipment and installation are balanced with explosion safety requirements. The book offers the most current code requirements along with tables and illustrations as analytic tools. Environmental characteristics are covered in Section 1 along with recommended electrical ins

  10. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  11. Israel - Palestine: The Geopolitics of Electricity

    International Nuclear Information System (INIS)

    Amsellem, David

    2014-01-01

    The electricity sector in the Middle-East is rarely studied, however this energy has a key role in the rivalry between Israelis and Palestinians. Indeed, the Hebrew State uses it as a tool of conquest and control in the West Bank and the Gaza Strip, by giving an access to commodities to Jewish settlers. Moreover, Palestinians are strongly dependent on electricity produced by Israeli power plants, which enables Israel to pressure on the Palestinians. Yet the Palestinian electricity dependence is a critical issue for Israel's security as the Hamas, whose leadership is at stake in the region, knows how to take advantage of the situation

  12. Planetary mission requirements, technology and design considerations for a solar electric propulsion stage

    Science.gov (United States)

    Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.

    1979-01-01

    High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.

  13. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)

    Science.gov (United States)

    Herman, Daniel A.; Tofil, Todd A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John S.; Hofer, Richard R.; Picha, Frank Q.; Jackson, Jerry; Allen, May

    2018-01-01

    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned exploration architecture. This paper presents the status of the combined NASA and Aerojet Rocketdyne AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  14. The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany

    International Nuclear Information System (INIS)

    Sensfuss, Frank; Ragwitz, Mario; Genoese, Massimo

    2008-01-01

    The German feed-in support of electricity generation from renewable energy sources has led to high growth rates of the supported technologies. Critics state that the costs for consumers are too high. An important aspect to be considered in the discussion is the price effect created by renewable electricity generation. This paper seeks to analyse the impact of privileged renewable electricity generation on the electricity market in Germany. The central aspect to be analysed is the impact of renewable electricity generation on spot market prices. The results generated by an agent-based simulation platform indicate that the financial volume of the price reduction is considerable. In the short run, this gives rise to a distributional effect which creates savings for the demand side by reducing generator profits. In the case of the year 2006, the volume of the merit-order effect exceeds the volume of the net support payments for renewable electricity generation which have to be paid by consumers. (author)

  15. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  16. Critical pathogenic steps to high risk Helicobacter pylori gastritis and gastric carcinogenesis.

    Science.gov (United States)

    Lee, Inchul

    2014-06-07

    Helicobacter pylori (H. pylori) gastritis may progress to high risk gastropathy and cancer. However, the pathological progression has not been characterized in detail. H. pylori induce persistent inflammatory infiltration. Neutrophils are unique in that they directly infiltrate into foveolar epithelium aiming the proliferative zone specifically. Neutrophilic proliferative zone foveolitis is a critical pathogenic step in H. pylori gastritis inducing intensive epithelial damage. Epithelial cells carrying accumulated genomic damage and mutations show the Malgun (clear) cell change, characterized by large clear nucleus and prominent nucleolus. Malgun cells further undergo atypical changes, showing nuclear folding, coarse chromatin, and multiple nucleoli. The atypical Malgun cell (AMC) change is a novel premalignant condition in high risk gastropathy, which may progress and undergo malignant transformation directly. The pathobiological significance of AMC in gastric carcinogenesis is reviewed. A new diagnosis system of gastritis is proposed based on the critical pathologic steps classifying low and high risk gastritis for separate treatment modality. It is suggested that the regulation of H. pylori-induced neutrophilic foveolitis might be a future therapeutic goal replacing bactericidal antibiotics approach.

  17. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    Science.gov (United States)

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  19. Protective design of critical infrastructure with high performance concretes

    International Nuclear Information System (INIS)

    Riedel, W.; Nöldgen, M.; Stolz, A.; Roller, C.

    2012-01-01

    Conclusions: High performance concrete constructions will allow innovative design solutions for critical infrastructures. Validation of engineering methods can reside on large and model scale experiments conducted on conventional concrete structures. New consistent impact experiments show extreme protection potential for UHPC. Modern FEM with concrete models and explicit rebar can model HPC and UHPC penetration resistance. SDOF and TDOF approaches are valuable design tools on local and global level. Combination of at least 2 out of 3 design methods FEM – XDOF- EXP allow reliable prediction and efficient innovative designs

  20. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  1. Coulomb systems seen as critical systems: Finite-size effects in two dimensions

    International Nuclear Information System (INIS)

    Jancovici, B.; Manificat, G.; Pisani, C.

    1994-01-01

    It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects

  2. Magnetic emission ranking of electrical appliances. A comprehensive market survey

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.; Lehofer, P.; Schmidpeter, U.; Rampetsreiter, M.

    2008-01-01

    Over the last decades emissions of magnetic fields from electric appliances have considerably changed. Based on a comprehensive market survey it could be shown that today magnetic emissions are usually characterised by complex frequency spectra while single-frequency emissions have become rare. Therefore, spectral assessment procedures play a critical role. Compared to frequency-weighted equivalent magnetic induction, rms values may underestimate emissions up to two orders of magnitudes. Therefore, rms measurements are not suitable and emission-ranking lists of devices need revision. Surface hot-spot measurements at nominal load conditions and 230 V/50 Hz supply involved 1146 new electrical devices of 166 different categories. High emissions were not rare. Magnetic emissions of devices of 73 different categories exceeded reference levels up to almost two orders of magnitudes above reference levels. Maximum values were higher than reported so far. Magnetic emissions were high enough to make even conformity with existing basic restrictions not self-evident. (authors)

  3. Geological survey by high resolution electrical survey on granite areas

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihiro; Yamada, Naoyuki

    2002-03-01

    As an Integral part of the geological survey in 'The study of the regions ground water flow system' that we are carrying out with Tono Geoscience Center, we proved the relation between the uncontinuation structure such as lineament in the base rock and resistivity structure (resistivity distribution), for the purpose of that confirms the efficacy of the high resolution electrical survey as geological survey, we carried out high resolution electrical survey on granite area. We obtained the following result, by the comparison of resistivity distribution with established geological survey, lineament analysis and investigative drilling. 1. The resistivity structure of this survey area is almost able to classify it into the following four range. 1) the low resistivity range of 50-800 Ωm, 2) The resistivity range like the middle of 200-2000 Ωm, 3) The high resistivity range of 2000 Ωm over, 4) The low resistivity range of depth of the survey line 400-550 section. 2. The low resistivity range of 4) that correspond with the established geological data is not admitted. 3. It was confirmed that resistivity structure almost correspond to geological structure by the comparison with the established data. 4. The small-scale low resistivity area is admitted in the point equivalent to the lineament position of established. 5. We carried out it with the simulation method about the low resistivity range of 4). As a result, it understood that it has the possibility that the narrow ratio low resistivity area is shown as the wide ratio resistivity range in the analysis section. In the survey in this time, it is conceivable that the resistivity distribution with the possibility of the unhomogeneous and uncontinuation structure of the base rock is being shown conspicuously, the efficacy of the high resolution resistivity survey as geological survey on granite was shown. (author)

  4. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  5. Electrical power technology for robotic planetary rovers

    Science.gov (United States)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  6. Electrical conductivity of molten CdCl{sub 2} at temperatures as high as 1474 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2016-11-01

    The electrical conductivity of molten CdCl{sub 2} was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  7. High Efficiency, Low Cost Parabolic Dish System for Cogeneration of Electricity and Heat

    Science.gov (United States)

    Chayet, Haim; Lozovsky, Ilan; Kost, Ori; Loeckenhoff, Ruediger; Rasch, Klaus-Dieter

    2010-10-01

    Highly efficient combined heat and power generating system based on CPV technology using unique dish design consisting of multiple simple flat mirrors mounted on a plastic parabolic surface. The dish of total aperture area of 11 m2 focuses 10.3 kWp onto a heat and electricity generating receiver. The receiver comprises a water cooled, dense triple junction cell array of 176 cm2 aperture area. A unique arrangement of the cells compensates for the non-uniformity of the reflected flux. Depending on the flow rate, the temperature of the hot water can be adjusted to suit from temperatures for domestic use, to temperatures suited for process heat. The output of 2.3 kWp electrical and 5.5 kWp thermal power from one dish system represent 20 to 21% electrical and 50% thermal conversion efficiency adding to 70% overall system efficiency.

  8. A visual acoustic high-pressure cell for the study of critical behavior of nonsimple mixtures

    Science.gov (United States)

    Aguiar-Ricardo, A.; Temtem, M.; Casimiro, T.; Ribeiro, N.

    2004-10-01

    A visual acoustic high-pressure cell was constructed for the determination of critical data of multicomponent mixtures. The cell was specially designed to include two piezoelectric transducers and two sapphire windows that make this cell well suited to investigate the critical behavior of mixtures, simultaneously using the acoustic technique and the direct visual inspection of the critical opalescence. Critical data obtained on the binary mixtures of CO2+CHF3 were used for comparison with values given in literature using the traditional methods. The acoustic results are in agreement with those obtained by the conventional methods, within the combined experimental errors. Comparison of visual and acoustic data enabled the evaluation of the applicability of the acoustic technique to study the critical behavior of multicomponent mixtures.

  9. Pyogenic Arthritis of the Ankle Joint Following a High-Voltage Electrical Burn in the Lower Extremity: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk Seon; Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Lee, Eil Seong; Min, Seon Jung; Han, You Mie [Dept. of Radiology, Hangang Scared Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Eil Seong [Dept.of Radiology, Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju (Korea, Republic of)

    2011-04-15

    A high-voltage electrical burn caused extensive deep muscle injuries beneath a relatively small skin wound at the contact point. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, which can lead to major amputations or sepsis. The radiologic features of this rare, sometimes life-threatening injury have occasionally been described in the literature. However, to the best of our knowledge, there have been no reports on a case of pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity. We report a case of the pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity.

  10. Electric Field Induced Strain in Electrostrictive Polymers Under High Hydrostatic Pressure - System Development and Material Characterization

    National Research Council Canada - National Science Library

    Zhang, Q

    2000-01-01

    ... of (i) developing a high performance piezo-bimorph based dilatometer which can be used to characterize the electric field induced strain response in polymer films under high hydrostatic pressure, (ii...

  11. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, L.K. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (Russian Federation)]. E-mail: kovalev@mail.sitek.net; Ilushin, K.V.; Penkin, V.T. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (RU)] [and others

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS)-YBCO and Bi-Ag-elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems. (author)

  12. Meeting Ontario's electricity needs : a critical review of the Ontario Power Authority's supply mix advice report

    International Nuclear Information System (INIS)

    Gibbons, J.; Fracassi, J.

    2006-01-01

    In December, 2005 the Ontario Power Authority (OPA) outlined its proposed blueprint for meeting Ontario's electricity needs to 2025 in the document entitled Supply Mix Advice Report. As a result of the actions taken by the current government, the OPA believes that Ontario will have adequate electricity supplies to meet the province's needs until 2013. However, it stated that Ontario will require an additional 15,000 megawatts of new generation capacity between 2013 and 2025. The OPA also recommends that a significant proportion of this new generation capacity be nuclear. The Ontario Clean Air Alliance undertook a review of the OPA report and identified several discrepancies including an over-estimation of Ontario's rate of electricity load growth from 2005 to 2025; an under-estimation of the potential for electricity productivity improvements to reduce electricity demand and raise living standards; an under-estimation of renewable energy supply potential; an under-estimation of the potential for biomass and natural gas fired combined heat and power plants to meet electricity needs and increase the competitiveness of Ontario's industries; an under-estimation of the economic costs and risks of nuclear power; and a biased recommendation for a 70 million dollar resource acquisition budget against energy efficiency investments that would reduce demand and raise living standards. This report provides the Ontario Clean Air Alliances' analysis of the OPA report and presents it own recommendations for how Ontario can increase its electricity productivity and meet its electricity supply needs until 2025. The report concluded that the Government of Ontario should direct the OPA to develop a long-term strategy to raise the price of electricity up to its full cost without raising the electricity bills of low income consumers or impairing the competitiveness of Ontario's industries. It was suggested that Ontario's electricity productivity should be increased to the same level as

  13. Markets for utility electricity

    International Nuclear Information System (INIS)

    Brooks, D.B.

    1990-01-01

    Every analysis of energy use, no matter what the sector or the country, has shown enormous opportunities for cost-effective conservation. Such opportunities should be identified and pursued wherever they appear. Because of its capital intensity and balance-of-payments implications on the supply side, and its potential to improve industrial efficiency and quality of life on the demand side, nowhere are such opportunities more critical than with electricity. Indeed, given the large and unsatisfied demand for electricity in those markets where it can be used efficiently, to ignore those opportunities is to invite ever more serious energy supply and demand problems. (author). 34 refs., 3 tabs., 1 appendix

  14. An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms

    International Nuclear Information System (INIS)

    Venugopal, Gunasekaran; Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-01-01

    High-temperature electrical transport properties are investigated for graphene-oxide nano thinfilms. The graphene-oxide nanoparticles are synthesized by modified Hummers method and characterized by UV–vis, Raman and X-ray diffraction techniques. The surface morphology of graphene-oxide film is analyzed using scanning electron and atomic force microscopy. The experimental results on high-temperature electrical studies of thinfilms exhibit metallic behavior followed by three-dimensional variable range hopping mechanism. The current–voltage characteristics at various temperatures (from 293 K to 573 K) were investigated. The effect of high-temperature on the functional groups of graphene-oxide film is evidently examined using X-ray photoelectron, thermal gravimetric analysis and Fourier transform infra-red spectroscopy. Transistor characteristics were performed after heat treatment resulting ambipolar behavior with holes and electron mobility of 127 and 66.9 cm 2 V −1 s −1 respectively. Our results are comparable to reduced graphene-oxide, indicating the advantage of our approach requires no further reduction to develop graphene-based transparent and conductive electrodes for dye-sensitized solar cells and ultra-capacitor applications.

  15. Comparative analysis of features of Polish and Lithuanian Day-ahead electricity market prices

    International Nuclear Information System (INIS)

    Bobinaite, Viktorija; Juozapaviciene, Aldona; Staniewski, Marcin; Szczepankowski, Piotr

    2013-01-01

    The goal of this article is to better understand the processes of electricity market price formation in Poland and Lithuania through an analysis of the features (volatility and spikes) of Lithuanian and Polish day-ahead electricity market prices and to assess how acquired electricity price features could affect the achievement of the main goals of the national energy policy. The following indicators have been calculated to determine electricity market price volatility: the oscillation coefficient, the coefficient of variation, an adjusted coefficient of variation, the standard deviation indicator, the daily velocity indicator (based on the overall average price) and the daily velocity indicator (based on the daily average price). Critical values for electricity market price have been calculated to evaluate price spikes. This analysis reveals that electricity market-price volatility is moderate in Poland and high in Lithuania. Electricity price spikes have been an observable phenomenon both in Lithuanian and in Polish day-ahead electricity markets, but they are more common in Lithuania, encompassing 3.15% of the time period analysed in Poland and 4.68% of the time period analysed in Lithuania. Volatile, spiking and increasing electricity prices in day-ahead electricity markets in Lithuania and Poland create preconditions and substantiate the relevance of implementation of the national energy policies and measures. - Highlights: • Moderate and seasonal volatility. • spiking market price and. • stable average price

  16. Automatic Calibration of High Density Electric Muscle Stimulation

    DEFF Research Database (Denmark)

    Knibbe, Jarrod; Strohmeier, Paul; Boring, Sebastian

    2017-01-01

    . (2) EMS requires time consuming, expert calibration -- confining these interaction techniques to the lab. EMS arrays have been shown to increase stimulation resolution, but as calibration complexity increases exponentially as more electrodes are used, we require heuristics or automated procedures......Electric muscle stimulation (EMS) can enable mobile force feedback, support pedestrian navigation, or confer object affordances. To date, however, EMS is limited by two interlinked problems. (1) EMS is low resolution -- achieving only coarse movements and constraining opportunities for exploration...... for successful calibration. We explore the feasibility of using electromyography (EMG) to auto-calibrate high density EMS arrays. We determine regions of muscle activity during human-performed gestures, to inform stimulation patterns for EMS-performed gestures. We report on a study which shows that auto...

  17. Engineering of Machine tool’s High-precision electric drives

    Science.gov (United States)

    Khayatov, E. S.; Korzhavin, M. E.; Naumovich, N. I.

    2018-03-01

    In the article it is shown that in mechanisms with numerical program control, high quality of processes can be achieved only in systems that provide adjustment of the working element’s position with high accuracy, and this requires an expansion of the regulation range by the torque. In particular, the use of synchronous reactive machines with independent excitation control makes it possible to substantially increase the moment overload in the sequential excitation circuit. Using mathematical and physical modeling methods, it is shown that in the electric drive with a synchronous reactive machine with independent excitation in a circuit with sequential excitation, it is possible to significantly expand the range of regulation by the torque and this is achieved by the effect of sequential excitation, which makes it possible to compensate for the transverse reaction of the armature.

  18. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  19. Energy optimization analysis of the more electric aircraft

    Science.gov (United States)

    Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen

    2018-02-01

    The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.

  20. Electricity supply enterprises: Profits in comparison between industries

    International Nuclear Information System (INIS)

    Kuehnl, U.

    1995-01-01

    The acquisition of participations by major electricity supply enterprises during the last years met with strong criticism from the general public and revived the controversial discussion about electricity prices and profits. Yet the electricity industry is subject to specific legal price controls guaranteeing a price formation that is cost-economical, just and fair under the causation principle and does not permit excessive profits. Under this aspect and against the background of discussing this issue on an economic basis the author presents an empirical survey. (orig.)

  1. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  2. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  3. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  4. Electrical activity of the diaphragm during nCPAP and high flow nasal cannula

    NARCIS (Netherlands)

    de Waal, C. G.; Hutten, G. J.; Kraaijenga, J. V.; de Jongh, F. H.; van Kaam, A. H.

    2017-01-01

    Objective To determine if the electrical activity of the diaphragm, as measure of neural respiratory drive and breathing effort, changes over time in preterm infants transitioned from nasal continuous positive airway pressure (nCPAP) to high flow nasal cannula (HFNC). Design Prospective

  5. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  6. Prices on electricity and transmission of electricity

    International Nuclear Information System (INIS)

    2003-01-01

    This publication contains data on prices of electric energy and transmission of electricity valid from 1 January 2003. The purpose is to illustrate the price changes on the electricity market in terms of prices for different customer categories. All companies holding network concessions for areas and all companies trading in electricity are included in this report, which is produced on an annual basis.The prices for transmission services 1 January 2003 were on the whole unchanged compared to the preceding year. For households the mean annual cost was SEK 882 for flats, SEK 4 335 for one- or two-family houses with electric heating and SEK 1 925 for those without electric heating. Electricity prices rose considerably on 1 January 2003 compared to the year before. The mean price per kWh for households with standard agreements was SEK 0.519 for deliveries to flats, SEK 0.447 for one- or two-family houses with electric heating and SEK 0.471 without electric heating. As a result, the mean annual cost increased by SEK 326 for flats, SEK 3 012 for one- or two-family houses with electric heating, and by SEK 774 for those houses without electric heating. The high costs of electricity may be explained in part by the development on the Nordic Power Exchange (Nord Pool), where the spot price increased by about 290 per cent during 2002 (1 USD is about 8 SEK)

  7. Critical transport current in granular high temperature superconductors

    International Nuclear Information System (INIS)

    Bogolyubov, N.A.

    1999-01-01

    The temperature and size dependence of the critical current in a zero magnetic field of three bismuth-based ceramic samples with round cross section and one sample with rectangular triangle cross section have been studied by a contactless technique. It is shown that the critical current can be presented as a product of the temperature and size dependent factors. The temperature-dependent multiplier reflects the individual peculiarities of the Josephson net of each sample, while the size factor is a homogeneous function of the cross-section sizes. The index of this function is independent of the cross-section form, the temperature and individual properties of HTSC samples. The radial distribution of critical current density in round samples and dependence of the critical current density on the magnetic conduction in granular HTSC have been found from the analysis of experimental data

  8. Critical analysis of mechanisms of incentive regulation operators of electricity and natural gas networks and infrastructures. Final report. Public version, 23 November 2015

    International Nuclear Information System (INIS)

    2015-01-01

    As the first mechanisms of incentive regulation of electricity and gas network operators have been introduced by the French Commission for Energy Regulation (CRE) since 2008 (the report recalls the main objectives of these mechanisms and their consequences), this report proposes a critical analysis of such mechanisms related to investments and to exploitation expenses of operators and which have been implemented in Germany, Spain, Ireland and in the United Kingdom. For each country, the report proposes a detailed description of these mechanisms for the electric power sector and the gas sector (general overview of the regulation framework, objectives, determination of the authorised income, shift processing, specific incentive mechanisms, modalities of management by the regulator), and a feedback of the different concerned actors (operators and regulators). The last part proposes a description of the status of the French regulation, and an analysis of transposition of the four foreign regulations, and states some propositions for evolutions (objectives, overview of recommended evolutions, focus on three types of regulation evolution: processing of arbitral charges, processing of other incited capital charges, processing of arbitral charges)

  9. Loss Aversion and Time-Differentiated Electricity Pricing

    Energy Technology Data Exchange (ETDEWEB)

    Spurlock, C. Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    I develop a model of loss aversion over electricity expenditure, from which I derive testable predictions for household electricity consumption while on combination time-of-use (TOU) and critical peak pricing (CPP) plans. Testing these predictions results in evidence consistent with loss aversion: (1) spillover effects - positive expenditure shocks resulted in significantly more peak consumption reduction for several weeks thereafter; and (2) clustering - disproportionate probability of consuming such that expenditure would be equal between the TOUCPP or standard flat-rate pricing structures. This behavior is inconsistent with a purely neoclassical utility model, and has important implications for application of time-differentiated electricity pricing.

  10. [Influence of high-voltage electric burn on the microcirculation of heart in rabbit].

    Science.gov (United States)

    Zhang, Qing-fu; Zhou, Hui-min; Wang, Che-jiang; Shao, Hong-bo

    2012-06-01

    To study the influence of high-voltage electric burn on the microcirculation of heart in rabbit. One-hundred and twenty New Zealand rabbits of clean grade were divided into control group (C) and electric burn group (EB) according to the random number table, with 60 rabbits in each group. Rabbits in EB group were subjected to high-voltage electric burn (the electrical current flow into the left foreleg at the lateral side of proximal end and out from the corresponding site of the right hind leg) with voltage regulator and experimental transformer. Rabbits in C group were sham injured with the same devices without electrification. At 15 minutes before injury, and 5 minutes, 1, 2, 4, 8 hour (s) post injury (PIM or PIH), ten rabbits in each group were chosen to examine the cardiac apex microcirculation hemoperfusion (CAMH) with laser Doppler hemoperfusion image instrument. The morphologic changes of microvessels of left ventricular wall tissues of 2 rabbits from each of the 10 rabbits collected at above-mentioned time points were observed with light microscope and transmission electron microscope. Auricular vein blood of rabbit was harvested at above-mentioned time points for the determination of aspartate amino transferase (AST), lactate dehydrogenase (LDH), hydroxybutyrate dehydrogenase (HBDH), creatine kinase (CK), and creatine kinase isozyme MB (CK-MB) by full-automatic biochemical analyzer. Data were processed with two-factor analysis of variance and LSD test. (1) The differences between C group and EB group in detection results were statistically significant, with F values from 425.991 to 3046.834, P values all below 0.01. Only the data within EB group were comparable. (2) At PIM 5, the CAMH value of rabbits in EB group was (1.96 ± 0.09) V, which was lower than that at 15 minutes before injury [(4.34 ± 0.35) V, P electric burn can bring damage to the microvessels of heart in rabbits and change blood flow of microcirculation, which should be given adequate

  11. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States); Ramana, C. V., E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2016-08-21

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  12. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    International Nuclear Information System (INIS)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul; Ramana, C. V.

    2016-01-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  13. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Science.gov (United States)

    Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul

    2016-08-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  14. Electric Motors. An Instructional Unit for High School Teachers of Vocational Agriculture.

    Science.gov (United States)

    Dalton, Delmer; Carpenter, Bruce

    Designed as a 3-week course of study in the agricultural mechanics curriculum to be taught at the junior or senior high school level, this unit on electric motors is divided into 11 major performance objectives. Each objective is subdivided into the areas of content, suggested teaching and learning activities, resources, and evaluation. Topics for…

  15. ELECTRICAL PROPERTIES OF DC REACTIVE MAGNETRON ...

    African Journals Online (AJOL)

    Mgina

    value of the AC resistivity was given by the ZnO:Al film with the highest value of ... Compared to other thin film ... critical parameters in determining the ... approach in studying the electronic transport ..... J 2009 Electrical and optical studies of.

  16. The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks

    Science.gov (United States)

    Chiu, Alan W. L.; Jahromi, Shokrollah S.; Khosravani, Houman; Carlen, Peter L.; Bardakjian, Berj L.

    2006-03-01

    The existence of hippocampal high-frequency electrical activities (greater than 100 Hz) during the progression of seizure episodes in both human and animal experimental models of epilepsy has been well documented (Bragin A, Engel J, Wilson C L, Fried I and Buzsáki G 1999 Hippocampus 9 137-42 Khosravani H, Pinnegar C R, Mitchell J R, Bardakjian B L, Federico P and Carlen P L 2005 Epilepsia 46 1-10). However, this information has not been studied between successive seizure episodes or utilized in the application of seizure classification. In this study, we examine the dynamical changes of an in vitro low Mg2+ rat hippocampal slice model of epilepsy at different frequency bands using wavelet transforms and artificial neural networks. By dividing the time-frequency spectrum of each seizure-like event (SLE) into frequency bins, we can analyze their burst-to-burst variations within individual SLEs as well as between successive SLE episodes. Wavelet energy and wavelet entropy are estimated for intracellular and extracellular electrical recordings using sufficiently high sampling rates (10 kHz). We demonstrate that the activities of high-frequency oscillations in the 100-400 Hz range increase as the slice approaches SLE onsets and in later episodes of SLEs. Utilizing the time-dependent relationship between different frequency bands, we can achieve frequency-dependent state classification. We demonstrate that activities in the frequency range 100-400 Hz are critical for the accurate classification of the different states of electrographic seizure-like episodes (containing interictal, preictal and ictal states) in brain slices undergoing recurrent spontaneous SLEs. While preictal activities can be classified with an average accuracy of 77.4 ± 6.7% utilizing the frequency spectrum in the range 0-400 Hz, we can also achieve a similar level of accuracy by using a nonlinear relationship between 100-400 Hz and <4 Hz frequency bands only.

  17. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  18. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    OpenAIRE

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Soonho; Kim, Min-Jae; Zi, Goangseup

    2017-01-01

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher ...

  19. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  20. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    Science.gov (United States)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.