WorldWideScience

Sample records for high copper levels

  1. Radiation resistance of copper alloys at high exposure levels

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA)); Zinkle, S.J. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    Copper alloys are currently being considered for high heat flux applications in fusion power devices. A review is presented of the results of two separate series of experiments on the radiation response of copper and copper alloys. One of these involved pure copper and boron-doped copper in the ORR mixed spectrum reactor. The other series included pure copper and a wide array of copper alloys irradiated in the FFTF fast reactor 16 refs., 13 figs.

  2. Low copper and high manganese levels in prion protein plaques

    Science.gov (United States)

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  3. Metallochaperones regulate intracellular copper levels.

    Directory of Open Access Journals (Sweden)

    W Lee Pang

    Full Text Available Copper (Cu is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.

  4. Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis

    Science.gov (United States)

    Hao, Xiao-dong; Liang, Yi-li; Yin, Hua-qun; Liu, Hong-wei; Zeng, Wei-min; Liu, Xue-duan

    2017-04-01

    Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains was carried out by mixed cultures on a small scale over a period of 210 d. Lump ores as a framework were loaded at the bottom of the ore heap. The overall copper leaching rates of tailings and lump ores were 57.10wt% and 65.52wt%, respectively. The dynamic shifts of microbial community structures about attached microorganisms were determined using the Illumina MiSeq sequencing platform based on 16S rRNA amplification strategy. The results indicated that chemolithotrophic genera Acidithiobacillus and Leptospirillum were always detected and dominated the microbial community in the initial and middle stages of the heap bioleaching process; both genera might be responsible for improving the copper extraction. However, Thermogymnomonas and Ferroplasma increased gradually in the final stage. Moreover, the effects of various physicochemical parameters and microbial community shifts on the leaching efficiency were further investigated and these associations provided some important clues for facilitating the effective application of bioleaching.

  5. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    Science.gov (United States)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  6. Level of copper in human split ejaculate.

    Science.gov (United States)

    Skandhan, Kalanghot; Valsa, James; Sumangala, Balakrishnan; Jaya, Vasudevan

    2017-02-03

    The purpose of this study was to understand the details of splits of an ejaculate and to locate the origin of release of copper into semen. Laboratory methods routinely followed for semen analysis were carried out. Copper was estimated by employing atomic absorption spectrophotometry. First split of ejaculate showed the highest number of motile sperm, the quality of which decreased from first to third. Copper level in splits 1, 2 and 3 was 29, 23 and 22 µg%, respectively. This study concluded that copper was released from throughout the genital tract.

  7. Bitrex: A new levelling agent for copper

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.K., E-mail: J.F.K.Cooper@gmail.com [Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Barnes, C.H.W. [Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-10-30

    Highlights: > Bitrex is a new levelling agent for copper. > The addition of Bitrex increases corrosion resistance of copper films. > The nature of pure copper electrodeposits depends on the growth template size. > Bitrex increases coppers current efficiency. - Abstract: We investigate the effects of denatonium benzoate (Bitrex) on the electrodeposition of copper films from a boric acid bath using scanning electron microscopy, cyclic voltammetry, electrochemical quartz microbalance (EQCM) measurements and corrosion studies. In the absence of Bitrex, pure copper films grown by this method are optically black owing to the appearance of complex surface nanostructures. The addition of Bitrex acts as a levelling agent preventing the formation of these nanostructures even for concentrations as low as 0.02 mM producing a lustrous film with low surface roughness. Bitrex is also found to improve the corrosion resistance by up to a factor of 20 and increase the current efficiency by over a factor of two. Bitrex is hypothesised to act directly on the cathode, partially inhibiting the growth or lowering the deposition current.

  8. Study of Copper Substitute in High Copper Price Market Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The high price of copper drives up industry cost,also it is difficult for terminal products to raise price to transfer the cost pressure brought by increase in copper price,as a result downstream consumption markets instead try to seek

  9. Deep levels of copper in silicon

    Science.gov (United States)

    Brotherton, S. D.; Ayres, J. R.; Gill, A.; van Kesteren, H. W.; Greidanus, F. J. A. M.

    1987-09-01

    Defect impurity levels have been examined in copper-diffused p-and n-type silicon using deep level transient spectroscopy. Levels at Ev+0.09, Ev+0.23, and Ev+0.42 eV have been observed in both types of material, although the deeper levels were only oberved in n-type material after post-diffusion annealing at 200 °C. Associated with the appearance of these levels in n-type material was another level at Ec-0.16 eV. This may be a further charge state of the center responsible for the Ev+0.23 eV and Ev+0.42 eV levels or the two centers may be decomposition products of a thermally unstable complex. Luminescence measurements have revealed the previously reported Cu-Cu spectrum in all the copper-diffused samples. The occurrence of this signal could not be correlated with the presence of the levels at Ev+0.23, Ev+0.42, or Ec-0.16 eV; this leaves the center at Ev+0.09 eV as the likely origin of the signal.

  10. Effects of dietary high-oleic acid sunflower oil, copper and vitamin E levels on the fatty acid composition and the quality of dry cured Parma ham.

    Science.gov (United States)

    Bosi, P; Cacciavillani, J A; Casini, L; Lo Fiego, D P; Marchetti, M; Mattuzzi, S

    2000-02-01

    The effects of seven isoenergetic dietary treatments: (1) no sunflower oil, 35 mg/kg Cu, without α-tocopheryl-acetate added; (2) to (7) 6% high oleic acid sunflower oil (HOSO), 35 or 175 mg/kg Cu crossed with a 0, 100 or 200 mg/kg α-tocopherol addition, were tested on quality characteristics of dry cured Parma hams from a total 84 Large White gilts. No statistically significant effect was detected on parameters of early evaluation of seasoning loss of hams. The seasoning loss and intramuscular fat content of seasoned hams averaged 28.1 and 3.3%, respectively, with no effect of the diet composition. The CIE L*a*b* colour values taken on the surface of the lean from Parma ham were not affected by dietary oil inclusion, nor by copper levels and by α-tocopherol addition in the feed mixture, except for the 'a' value that increased in HOSO groups (Poil group, the Parma hams in the HOSO groups showed a higher oleic acid content in the covering fat, but not different in neutral and polar fractions from semimenbranosus muscle. The oil inclusion reduced the saturated fatty acid content in subcutaneous fat and neutral lipids fraction from muscle to 30-34% No effect of α-tocopherol and copper levels were observed on fatty acids profiles. From the subjects fed the HOSO diet softer Parma hams were produced than those fed the control diet (χ(2)<0.05), while α-tocopherol and Cu levels did not influence the sensorial evaluation of hams. The inclusion of an oleic acid rich source in heavy pig diet brought about an improved nutritional value, but also the possible need of a prolonged ageing time to achieve an ideal firmness of Parma ham. Dietary α-tocopherol supplementation improved the red colour slightly and the lipid stability in Parma ham, while the supplementation of Cu in the diet had no influence on the tested parameters.

  11. High Copper Amalgam Alloys in Dentistry

    Directory of Open Access Journals (Sweden)

    Gaurav Solanki

    2012-07-01

    Full Text Available Amalgam Restoration is an example of the material giving its name to the process. Amalgam fillings are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth where it hardens slowly and replaces the missing tooth substance. The high copper have become material of choice as compared to low copper alloys nowadays because of their improved mechanical properties, corrosion resistance, better marginal integrity and improved performance in clinical trial. The high copper amalgam was used as a restorative material. The application of high copper amalgam was found to be much more useful than low copper amalgam. High copper had much more strength, corrosion resistance, durability and resistance to tarnish as compared to low copper amalgams. No marked expansion or condensation was noted in the amalgam restoration after its setting after 24 hrs. By using the high copper alloy, the chances of creep were also minimized in the restored tooth. No discomfort or any kind of odd sensation in the tooth was noted after few days of amalgam restoration in the tooth.

  12. Comparison of tarnish level in two types of high- copper dental amalgams with lathe-cut and spherical particles produced in Iran

    Directory of Open Access Journals (Sweden)

    Mosavi-nasab SM.

    2001-09-01

    Full Text Available "nAbstract: There are two types of high-copper dental amalgams produced in Iran; Cinalloy (lathe-cut particles and Cinalux (spherical particles. Tarnish is one of the disadvantages of dental amalgam, which precedes corrosion, and in fact it means real destruction of restorative materials. The purpose of this study was to compare the extent of tarnish in Cinalux and Cinalloy amalgams. 32 patients, with at least two carious or poorly restored teeth were selected. Then, each tooth was restored with one of these two types of dental amalgams. The restorations were polished after 24 hours and patients were followed up after 9 months. The restorations were categorized in four groups of no change, one plus (1-30%, two plus (30-60% and three plus (more than 60% according to the level of discoloration. The results showed that the level of tarnish in Cinalux group was significantly less than Cinalloy group. The mean of tarnish for Cinalloy and Cinalux was 2.09±0.59 and 1.72±0.68 respectively. In addition, statistical analysis showed that there was no significant relationship between tarnish and Oral hygiene, smoking, operator or type and place of restoration.

  13. A Case of Isolated Elevated Copper Levels during Pregnancy

    Directory of Open Access Journals (Sweden)

    LaToya R. Walker

    2011-01-01

    Full Text Available Introduction. Outside of Wilson's Disease, abnormal copper metabolism is a rare condition. In pregnancy, excess copper levels can be associated with intrauterine growth restriction, preeclampsia and neurological disease. Case Report. A 32 year old Gravida 4 para 2012 with an obstetrical history complicated by elevated copper levels presented for routine prenatal care. Her children had elevated copper levels at birth, with her firstborn child being diagnosed with autism and suffering three myocardial infarctions and being treated for elevated copper levels. During her prior pregnancies, she declined treatment for her elevated copper levels. During this pregnancy, she had declined chelation therapy and instead choose zinc therapy. She delivered a healthy infant with normal copper levels. Conclusion. Alterations in copper metabolism are rare, the consequences in pregnancy can be devastating. While isolated elevations of copper in pregnancy is exceedingly rare, it is treated the same as Wilson's disease. The goal is to prevent fetal growth restricting and neurological sequelae in the newborn and preeclampsia in the mother. Counseling, along with treatment options and timely delivery can greatly improve neonatal and maternal outcome.

  14. Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy.

    Science.gov (United States)

    Kuo, Macus Tien; Fu, Siqing; Savaraj, Niramol; Chen, Helen H W

    2012-09-15

    The high-affinity copper transporter (Ctr1; SCLC31A1) plays an important role in regulating copper homeostasis because copper is an essential micronutrient and copper deficiency is detrimental to many important cellular functions, but excess copper is toxic. Recent research has revealed that human copper homeostasis is tightly controlled by interregulatory circuitry involving copper, Sp1, and human (hCtr1). This circuitry uses Sp1 transcription factor as a copper sensor in modulating hCtr1 expression, which in turn controls cellular copper and Sp1 levels in a 3-way mutual regulatory loop. Posttranslational regulation of hCtr1 expression by copper stresses has also been described in the literature. Because hCtr1 can also transport platinum drugs, this finding underscores the important role of hCtr1 in platinum-drug sensitivity in cancer chemotherapy. Consistent with this notion is the finding that elevated hCtr1 expression was associated with favorable treatment outcomes in cisplatin-based cancer chemotherapy. Moreover, cultured cell studies showed that elevated hCtr1 expression can be induced by depleting cellular copper levels, resulting in enhanced cisplatin uptake and its cell-killing activity. A phase I clinical trial using a combination of trientine (a copper chelator) and carboplatin has been carried out with encouraging results. This review discusses new insights into the role of hCtr1 in regulating copper homeostasis and explains how modulating cellular copper availability could influence treatment efficacy in platinum-based cancer chemotherapy through hCtr1 regulation.

  15. Jiangxi Copper and Yates Joined Hands in High-Grade Copper Foil Project Construction

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The construction of a large-scale copper foilproject recently started in the High-Tech De-velopment Zone of Nanchang,the capital ofJiangxi Province.This new copper foil factory,with a designed annual production capacity of6,000 tons of high-grade copper foil,is a jointventure project between Jiangxi Copper Group,the No.1 copper producer in China,and YatesInc.,a leading US copper product company andthe world’s first electrical circuit board maker.

  16. Hepatic cobalt and copper levels in lambs in Norway.

    Science.gov (United States)

    Sivertsen, T; Plassen, C

    2004-01-01

    Cobalt and copper concentrations were measured in 599 lamb livers collected at slaughter from 58 sheep flocks in 6 different parts of Norway in 1993. Information about pasture, additional feeding and mineral supplements in the flocks was obtained through a questionnaire. Average hepatic levels of cobalt in the lamb flocks varied from copper from 5 to 240 microg/g ww. Flocks with deficient or marginal cobalt status were found in all parts of southern Norway, but primarily in the west and south-west. Some flocks with marginal copper status were found in the south-west, while flocks with signs of excessive hepatic copper concentrations were found mainly in inner parts of central and northern Norway. Hepatic copper concentrations were significantly higher in lambs that had grazed mountain pastures than in those that had grazed lowland pastures in the summer.

  17. Copper Deficiency in Sheep with High Liver Iron Accumulation

    Directory of Open Access Journals (Sweden)

    Isadora Karolina Freitas de Sousa

    2012-01-01

    Full Text Available An outbreak of enzootic ataxia among sheep raised in the northeastern region of Brazil is described. Copper (Cu deficiency was diagnosed in a herd of 56 sheep, among which five presented characteristic clinical symptoms of enzootic ataxia. The symptoms began 30 days after birth, with a clinical condition that included locomotion difficulty, limb ataxia, tremors, and continual falls. Liver biopsies were performed and blood was collected to determine hepatic and plasmatic Cu, iron (Fe, and zinc (Zn concentration, respectively. The laboratory results showed that the animals presented low copper concentrations in the plasma and liver, without difference between the clinically healthy animals and those affected by enzootic ataxia. Even after supplementation with adequate Cu levels had been recommended, it was found on a new visit to the farm four months later that one animal still presented a clinical condition and that the hepatic Cu levels of the herd had not risen. Despite the low copper content of the diet, the high hepatic Fe levels found suggest that antagonism due to this element may have been an important factor in triggering copper deficiency in these animals, and thus, additional copper supplementation may be necessary for these animals.

  18. Cancer risk in relation to serum copper levels.

    Science.gov (United States)

    Coates, R J; Weiss, N S; Daling, J R; Rettmer, R L; Warnick, G R

    1989-08-01

    A nested, matched case-control study was conducted to assess the relationship between serum levels of copper and the subsequent risk of cancer. One hundred thirty-three cases of cancer were identified during 1974-1984 among 5000 members of a northwest Washington State employee cohort from whom serum specimens had been previously obtained and stored. Two hundred forty-one controls were selected at random from the cohort and were matched to the cases on the basis of age, sex, race, and date of blood draw. Serum copper levels were measured by atomic absorption spectrometry. Risk of a subsequent diagnosis of cancer was positively associated with serum copper levels, but only among those cases diagnosed within 4 years of the time the serum specimens were collected. Among cases diagnosed more than 4 years after specimen collection, there was no consistent association between serum copper levels and risk. Adjustment for age, sex, race, occupational status, cigarette smoking, family history of cancer, alcohol consumption, and, among females, use of exogenous hormones had no appreciable effect on these relationships. The findings suggest that the presence of cancer may increase serum copper levels several years prior to its diagnosis. They are less supportive of the hypothesis that serum copper levels affect cancer risk.

  19. 高铜日粮对生长猪胃底腺Ghrelin分泌的影响%Effects of high dietary copper on ghrelin levels in the fundus gland of growing pigs

    Institute of Scientific and Technical Information of China (English)

    杨文艳; 杨文杰; 高云航; 刘国文; 杨连玉

    2012-01-01

    选用军牧1号断乳仔猪45头,随机分为3组,每组5个重复,每个重复3头,采用完全随机化设计进行生长试验,研究了不同来源(硫酸铜和蛋氨酸铜)和不同添加水平(5、125mg/kg)的高铜日粮对猪胃底腺Ghrelin分泌的影响.结果表明:与对照组相比,日粮中添加125 mg/kg硫酸铜和125 mg/kg蛋氨酸铜组平均日增重、绝对增重、平均采食量均显著提高(P<0.05),而不同钢源间差异不显著(P>0.05);试验组胃底腺Ghrelin mRNA水平显著提高(P<0.05);血液胃泌素含量显著增加(P<0.01),并且Ghrelin mRNA水平与血液胃泌素含量呈显著正相关关系.提示高铜可促进生长猪胃底腺Ghrelin的分泌,胃泌素的分泌与胃底腺区Ghrelin的基因表达有关.%The experiment was conducted to examine the effects of dietary copper supplementation on ghrelin mRNA expression levels in the fundus gland of growing pigs. Forty-five cross-bred pigs were randomly assigned to three groups of 15 pigs, each comprising five replicates of 3 animals. Pigs were allocated to diets that contained 5 mg/kg,(as a control) , 125 mg/kg sulphate copper and 125 mg/kg methio-nine copper, respectively. At the end of the experiment five pigs were selected at random from each group, slaughtered and collected the fundus gland for determination of ghrelin mRNA expression levels. The results showed that average daily gain, average daily feed intake, absolute weight and ghrelin expression levels were higher in the pigs fed the diets with 125 mg/kg methionine copper and 125 mg/kg sulphate copper ( P<0. 05 ) , than in the pigs fed the diet with 5 mg/kg copper, Furthermore, gastrin concentration of blood was dramatically higher in the pigs fed the diets with 125 mg/kg methionine copper and 125 mg/kg sulphate copper (P<0. 01) compared to those in 5 mg/kg copper group. The data indicated that high dietary copper appears to increase feed intake and promote weight gain by enhancing ghrelin m

  20. SERUM LEVELS OF COPPER AND IRON IN DENGUE FEVER

    Directory of Open Access Journals (Sweden)

    Rajendiran SOUNDRAVALLY

    2015-08-01

    Full Text Available SUMMARY The role of trace elements in dengue virulence is not yet known. The present study assessed the serum levels of two micronutrients, copper and iron, in cases of dengue fever. The study involved 96 patients of whom 48 had either severe or non-severe forms of dengue (with and without warning signs, and the remaining 48 were patients with other febrile illnesses (OFI, used as controls. Serum levels of copper and iron were evaluated at admission and by the time of defervescence using commercially available kits. At admission, no difference in the level of serum copper was observed between cases and controls. In the group of dengue cases, the copper level was found to be significantly decreased in severe and non-severe cases with warning signs, compared to non-severe cases without warning signs. In contrast, by the time of defervescence the copper level was found to be increased in all dengue cases compared to OFI controls, but no difference was observed among dengue cases. Unlike OFI controls, dengue cases showed an increasing pattern of copper levels from admission until defervescence. On the other hand, no such significant differences were observed in the serum level of iron in the clinical groups, except for a decreased iron level found in severe cases, compared to non-severe dengue without warning signs. The results show that copper is associated with dengue severity and this finding emphasizes the need to investigate the involvement of trace elements in disease severity so as to improve the prognosis of dengue.

  1. A study of serum zinc, selenium and copper levels in carcinoma of esophagus patients.

    Science.gov (United States)

    Goyal, M M; Kalwar, A K; Vyas, R K; Bhati, A

    2006-03-01

    The association of serum trace elements like selenium, zinc and copper has been found in different types of cancer. This study was conducted to see the serum level of these three trace elements in cancer esophagus patients. Biopsy confirmed cancer esophagus, 24 patients (12 males, 12 females, mean age 54.5±11.65 year with 23 healthy subjects (16 males, 7 females, mean age 44 ±13.82 years) were included in this study. Both control and study group patients were of same socio-economic status and dietary habits. Serum zinc and copper level were estimated using standard absorption spectrometer technique and serum selenium by Hydride generation method.We observed significant low serum levels of zinc and selenium while high level of serum copper in carcinoma esophagus patients, as compared with normal healthy controls. This shows an association of serum selenium zinc and copper with cancer esophagus.

  2. High Levels of Copper, Zinc, Iron and Magnesium, but not Calcium, in the Cerebrospinal Fluid of Patients with Fahr’s Disease

    Directory of Open Access Journals (Sweden)

    Isao Hozumi

    2010-05-01

    Full Text Available Patients with marked calcification of the basal ganglia and cerebellum have traditionally been referred to as having Fahr’s disease, but the nomenclature has been criticized for including heterogeneous etiology. We describe 3 patients with idiopathic bilateral striatopallidodentate calcinosis (IBSPDC. The patients were a 24-year-old man with mental deterioration, a 57-year-old man with parkinsonism and dementia, and a 76-year-old woman with dementia and mild parkinsonism. The former 2 patients showed severe calcification of the basal ganglia and cerebellum, and the latter patient showed severe calcification of the cerebellum. We found significantly increased levels of copper (Cu, zinc (Zn, iron (Fe and magnesium (Mg, using inductively coupled plasma mass spectrometry in the CSF of all these 3 patients. The increased levels of Cu, Zn, Fe and Mg reflect the involvement of metabolism of several metals and/or metal-binding proteins during the progression of IBSPDC. More numerous patients with IBSPDC should be examined in other races to clarify the common mechanism of the disease and to investigate the specific treatment.

  3. High-strength braze joints between copper and steel

    Science.gov (United States)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  4. A comparison between ultraviolet disinfection and copper alginate beads within a vortex bioreactor for the deactivation of bacteria in simulated waste streams with high levels of colour, humic acid and suspended solids.

    Directory of Open Access Journals (Sweden)

    Simon F Thomas

    Full Text Available We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.

  5. A Comparison between Ultraviolet Disinfection and Copper Alginate Beads within a Vortex Bioreactor for the Deactivation of Bacteria in Simulated Waste Streams with High Levels of Colour, Humic Acid and Suspended Solids

    Science.gov (United States)

    Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Allen, Michael J.

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries. PMID:25541706

  6. Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets

    Directory of Open Access Journals (Sweden)

    Dai-Wen Chen

    2010-11-01

    Full Text Available The current study aimed to investigate the effects of different levels of copper sulfate on the growth performance and cecal ecosystem in newly weaned piglets. One hundred piglets weaned at 28±2 d were randomly allocated to 4 treatments with 5 replicates of 5 piglets each. Piglets received for 28 d the base diet with i no addition (control or with copper addition (from copper sulfate at ii 100, iii 175, and iv 250 mg/kg-1. On day 21, twenty piglets were randomly selected (one from each replicate to slaughter and investigate the population and diversity of cecal microorganisms. The results showed that the diets containing 175 and 250 mg/kg-1 copper improved the average daily gain (ADG by 51% and 60% and decreased the feed to gain ratio (F/G by 21% and 16%, respectively. Adding 175 or 250 mg/kg-1 copper improved crude protein, ether extract, calcium and phosphorus digestibility. Viable counts of Enterobacteriaceae and Lactobacilli in cecum tended to be reduced, while the concentrations of cecal volatile fatty acids (VFA were increased in pigs fed diet supplemented as copper level increased. Polymerase chain reaction (PCR results showed that adding 175 or 250 mg/kg-1 copper reduced the lactobacilli in cecum. Denaturing gradient gel electrophoresis (DGGE maps showed that band numbers and intensity of cecal bacterial 16S rDNA decreased as the copper levels increased. The results suggested that the effects of high dietary copper on microflora and their activities and metabolic products might contribute to the intestinal health and result in improved growth performance.

  7. Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets

    Directory of Open Access Journals (Sweden)

    Shao-Feng Mei

    Full Text Available The current study aimed to investigate the effects of different levels of copper sulfate on the growth performance and cecal ecosystem in newly weaned piglets. One hundred piglets weaned at 28±2 d were randomly allocated to 4 treatments with 5 replicates of 5 piglets each. Piglets received for 28 d the base diet with i no addition (control or with copper addition (from copper sulfate at ii 100, iii 175, and iv 250 mg/kg–1. On day 21, twenty piglets were randomly selected (one from each replicate to slaughter and investigate the population and diversity of cecal microorganisms. The results showed that the diets containing 175 and 250 mg/kg–1 copper improved the average daily gain (ADG by 51% and 60% and decreased the feed to gain ratio (F/G by 21% and 16%, respectively. Adding 175 or 250 mg/kg–1 copper improved crude protein, ether extract, calcium and phosphorus digestibility. Viable counts of Enterobacteriaceae and Lactobacilli in cecum tended to be reduced, while the concentrations of cecal volatile fatty acids (VFA were increased in pigs fed diet supplemented as copper level increased. Polymerase chain reaction (PCR results showed that adding 175 or 250 mg/kg–1 copper reduced the lactobacilli in cecum. Denaturing gradient gel electrophoresis (DGGE maps showed that band numbers and intensity of cecal bacterial 16S rDNA decreased as the copper levels increased. The results suggested that the effects of high dietary copper on microflora and their activities and metabolic products might contribute to the intestinal health and result in improved growth performance.

  8. SIGNIFICANCE OF SERUM COPPER AND ZINC LEVEL IN GASTROINTESTINAL CANCER

    Directory of Open Access Journals (Sweden)

    Prathibha

    2016-02-01

    Full Text Available The roles of trace elements especially copper and zinc in carcinogenesis in relation to disease activity have shown useful in estimating the extent and prognosis of malignant tumor in the digestive organ. Keeping this in consideration, the study was conducted on 140 subjects either sex out of which 35 normal adults and 105 gastrointestinal (GI cancer patients. The follow up study was further undertaken and values of serum Cu and Zn of the same patients before and after surgery were recorded. The study showed that there was significant elevation (p<0.01 of serum copper levels before surgery and serum copper levels were deceased significantly (p<0.05 after surgery. Serum Zn level was found significantly (p<0.05 lower in GI cancer patients while the Zn level was increased significantly (p<0.01 after surgery. There was significant increase (p<0.01 in Cu/ Zn ratio of GI cancer patients before surgery in contrast to the control. The serum copper level in patients of GI cancer decreased significantly after surgery resulting normalization of metabolic process. A significant increase in serum Zn levels have been observed after treatment of the patients. The Cu/ Zn ratio decreased significantly after the surgery. These observations clearly indicate that serum Cu, Zn and Cu/ Zn ratio are useful in estimating the extent and prognosis of malignant tumors in digestive organs

  9. Copper and Lead levels in two popular leafy vegetables grown ...

    African Journals Online (AJOL)

    metals uptake by plants grown in polluted soils has been studied ... Abstract:A study was carried out to determine the levels of two heavy metals, Lead (Pb) and Copper (Cu), in two popular ... into small pieces and left to dry on paper for about 2.

  10. Hepatic Cobalt and Copper Levels in Lambs in Norway

    OpenAIRE

    Plassen C; Sivertsen T

    2004-01-01

    Cobalt and copper concentrations were measured in 599 lamb livers collected at slaughter from 58 sheep flocks in 6 different parts of Norway in 1993. Information about pasture, additional feeding and mineral supplements in the flocks was obtained through a questionnaire. Average hepatic levels of cobalt in the lamb flocks varied from

  11. Alterations in dimethylsulfoniopropionate (DMSP) levels in the coral Montastraea franksi in response to copper exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yost, Denise M. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States); Jones, Ross J. [Bermuda Institute of Ocean Sciences (BIOS), 17 Biological Lane, St Georges GE01 (Bermuda); Mitchelmore, Carys L., E-mail: mitchelmore@cbl.umces.edu [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1 Williams Street, P.O. Box 38, Solomons, MD 20688 (United States)

    2010-07-15

    Symbiotic corals routinely experience hyperoxic conditions within their tissues due to the photosynthesis of the endosymbiotic dinoflagellate microalgae (Symbiodinium spp.). Symbiodinium spp. produce high intracellular levels of the osmolyte dimethylsulfoniopropionate (DMSP). It has recently been discovered in marine algae that DMSP and its enzymatic breakdown products also play a significant role in the scavenging of cellular reactive oxygen species (ROS). To examine this potential for DMSP in corals, we exposed the hard coral Montastraea franksi to 1, 10 and 50 {mu}g L{sup -1} (ppb) concentrations of the oxidative stressor, copper. Levels of total (DMSP{sub t}, all coral tissue) were higher than particulate DMSP{sub p} (algal component only), demonstrating partitioning of DMSP between algal symbionts and coral host. Significant changes in levels of DMSP{sub t} and DMSP{sub p} occurred in M. franksi after 48 h, demonstrating a response to copper and indicating a potential antioxidant role for DMSP. DMSP{sub t} and DMSP{sub p} levels decreased with copper dose, although at the highest copper dose DMSP{sub p} levels increased, whereas DMSP{sub t} levels did not. This observed differential response to copper between DMSP{sub t} and DMSP{sub p} demonstrates that physiological changes may be overlooked if conclusions are based upon DMSP{sub t} levels alone, which is a common measure used in coral studies. Decreases in chlorophyll a and algal cell numbers in response to elevated copper were also observed. These indices are important physiological indicators and are often used as indices to normalize DMSP levels. Our data suggest that the use of these common indices for normalizing DMSP may not always be appropriate.

  12. Effects of Dietary Different Doses of Copper and High Fructose Feeding on Rat Fecal Metabolome.

    Science.gov (United States)

    Wei, Xiaoli; Song, Ming; Yin, Xinmin; Schuschke, Dale A; Koo, Imhoi; McClain, Craig J; Zhang, Xiang

    2015-09-04

    The gut microbiota plays a critical role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Increased fructose consumption and inadequate copper intake are two critical risk factors in the development of NAFLD. To gain insight into the role of gut microbiota, fecal metabolites, obtained from rats exposed to different dietary levels of copper with and without high fructose intake for 4 weeks, were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF MS). In parallel, liver tissues were assessed by histology and triglyceride assay. Our data showed that high fructose feeding led to obvious hepatic steatosis in both marginal copper deficient rats and copper supplementation rats. Among the 38 metabolites detected with significant abundance alteration between groups, short chain fatty acids were markedly decreased with excessive fructose intake irrespective of copper levels. C15:0 and C17:0 long chain fatty acids, produced only by bacteria, were increased by either high copper level or high fructose intake. In addition, increased fecal urea and malic acid paralleled the increased hepatic fat accumulation. Collectively, GC × GC-TOF MS analysis of rat fecal samples revealed distinct fecal metabolome profiles associated with the dietary high fructose and copper level, with some metabolites possibly serving as potential noninvasive biomarkers of fructose induced-NAFLD.

  13. Copper level and distribution in soils of forest ecosystems of Samara river region

    Directory of Open Access Journals (Sweden)

    A. A. Dubina

    2009-03-01

    Full Text Available The level and regularities of distribution of the copper in the soils of steppe and forest ecosystems of Samara river region were determined. The data on general and mobile forms of copper combination in soils of the studied ecosystems are presented. The interval of copper variation in the soils is indicated. The distribution of copper in soil genetic horizons is shown. The distinction in the copper content in soils of different types of the landscape was revealed.

  14. High-level Zn and Cd tolerance in Silene paradoxa L. from a moderately Cd- and Zn-contaminated copper mine tailing.

    Science.gov (United States)

    Arnetoli, Miluscia; Vooijs, Riet; Gonnelli, Cristina; Gabbrielli, Roberto; Verkleij, Jos A C; Schat, Henk

    2008-11-01

    Cadmium and zinc tolerance were examined in populations of Silene paradoxa, one from uncontaminated calcareous soil (CVD) and one from a mine tailing (FC) (Cd<1-15 ppm, Zn 400-1300 ppm, pH 2-6). The mine population exhibited extremely high Zn and Cd tolerance levels, although the degrees of Cd and Zn enrichment relatively low at the population site. Cd and Zn hypertolerance in FC were associated with reduced rates of accumulation of these metals, both in roots and shoots (Cd), or exclusively in shoots (Zn). However, exclusion potentially explained only a minor part of the superior tolerance in FC. Cd hypertolerance in FC was associated with decreased, rather than enhanced phytochelatin accumulation. The remarkably high levels of Cd and Zn hypertolerance in FC might relate to the low soil pH, due to oxidation of sulphide minerals, and the absence of soil organic matter at the FC site.

  15. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    Science.gov (United States)

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  16. Carnitine supplementation modulates high dietary copper-induced oxidative toxicity and reduced performance in laying hens.

    Science.gov (United States)

    Güçlü, Berrin Kocaoğlu; Kara, Kanber; Çakır, Latife; Çetin, Ebru; Kanbur, Murat

    2011-12-01

    This experiment was conducted to evaluate the effects of L-carnitine on performance, egg quality and certain biochemical parameters in laying hens fed a diet containing high levels of copper proteinate. Forty-eight 42-week-old laying hens were divided into four groups with four replicates. The laying hens were fed with a basal diet (control) or the basal diet supplemented with either 400 mg carnitine (Car)/kg diet, 800 mg copper proteinate (CuP)/kg diet or 400 mg carnitine + 800 mg copper (Car+CuP)/kg diet, for 6 weeks. Supplemental CuP decreased feed consumption (p supplemental CuP and Car+CuP. Supplemental CuP caused an increase in plasma malondialdehyde (p carnitine and copper combination may prevent the possible adverse effects of high dietary copper on performance and lipid peroxidation in hens.

  17. Photosynthesis and growth of young “Niágara Branca” vines (Vitis labrusca L. cultivated in soil with high levels of copper and liming

    Directory of Open Access Journals (Sweden)

    Rosa Daniel José

    2014-01-01

    Full Text Available The objective of this study was to evaluate the photosynthetic response and growth of young grape “Niagara Branca” vines grown in soil with high content of Cu and liming. The experiment was conducted in controlled environment with soil subjected to three levels of liming, with 0, 1.5 and 3.0 Mg ha−1 of lime. The effect of additional 50 mg kg−1 Cu in half of soil treatments was evaluated. The CO2 measurements, assimilation rate, stomatal conductance and transpiration were carried out in the tenth cultivation week using the IRGA equipment (Infrared Gaz Analyzer. Plant height, fresh weight and dry weight, concentration of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were measured. For most variables, the Cu had damaging effect on 0 and 1.5 Mg ha−1 liming treatments however, there was no significant damage in the 3.0 Mg ha−1 treatment. Rates of CO2 assimilation, stomatal conductance, and transpiration were increased with the addition of 50 mg kg−1 Cu. Liming to raise the pH of the soil is an effective practice to reduce the effects of Cu toxicity in young “Niagara Branca” grape vines.

  18. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  19. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Science.gov (United States)

    Matsumoto, Yasuhiro; Espinoza-Rivas, Andrés M; Pérez-Guzmán, Manuel A; Ortega-López, Mauricio

    2016-01-01

    Summary This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the surface of a copper foil supporting graphene oxide (GO) at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure. PMID:27547618

  20. Relation between anemia and blood levels of lead, copper, zinc and iron among children

    Directory of Open Access Journals (Sweden)

    Morsy Amal A

    2010-05-01

    Full Text Available Abstract Background Anemia is a health problem among infants and children. It is often associated with a decrease in some trace elements (iron, zinc, copper and an increase in heavy metals as lead. This study was done to determine the association of blood lead level > 10 μg/dl, with the increased risk to anemia, also, to investigate the relationship between anemia and changes in blood iron, zinc and copper levels, and measure lead level in drinking water. The study is a cross-sectional performed on 60 children. Venous blood samples were taken from the studied population for estimating hematological parameters as well as iron and ferritin levels. The concentrations of zinc, copper, and lead were measured. The studied population was divided into anemic and non-anemic (control groups. The anemic group was further classified into mild, moderate and severe anemia. The study subjects were also categorized into low and high blood lead level groups. Findings Approximately 63.33% of children had blood lead levels ≥ 10 μg/dl. At the blood lead level range of 10-20 μg/dl, a significant association was found for mild and severe anemia. The blood level of iron and ferritin was found to be significantly lower in high blood lead level and anemic groups than those of the low blood lead level and control groups. Lead level in drinking water was higher than the permissible limit. Conclusion Lead level ≥ 10 μg/dl was significantly associated with anemia, decreased iron absorption and hematological parameters affection. High blood lead levels were associated with low serum iron and ferritin. Lead level in drinking water was found to be higher than the permissible limits.

  1. Laser-enhanced ionization detection of trace copper in high salt matrices.

    Science.gov (United States)

    Havrilla, G J; Carter, C C

    1987-09-01

    Laser-enhanced ionization (LEI) is used to determine trace levels of metals in high salt matrices, an analysis that is difficult by conventional methods. Copper is presented in detail to demonstrate the capability of the method. Three-dimensional spectra of the stepwise excitation of copper are presented which illustrate the one photon, stepwise, and two-photon transitions. Seven copper transitions have been studied for analytical utility, and detection limits have been determined for each. Ionization interferences were accommodated by both matrix matching and separation of the interferences using ion exchange resin. Absolute determinations at the 0.05-ng level are possible with the use of a Teflon microsampling cup for low volume quantitative analysis. In addition to copper, silver, cobalt, iron, and nickel have been detected within the same dye tuning range. Twelve new LEI transitions have been identified for these elements along with detection limits.

  2. High potassium level

    Science.gov (United States)

    Hyperkalemia; Potassium - high; High blood potassium ... There are often no symptoms with a high level of potassium. When symptoms do occur, they may include: Nausea Slow, weak, or irregular pulse Sudden collapse, when the heartbeat gets too ...

  3. Association of serum levels of iron, copper, and zinc, and inflammatory markers with bacteriological sputum conversion during tuberculosis treatment.

    Science.gov (United States)

    Moraes, Milena Lima de; Ramalho, Daniela Maria de Paula; Delogo, Karina Neves; Miranda, Pryscila Fernandes Campino; Mesquita, Eliene Denites Duarte; de Melo Guedes de Oliveira, Hedi Marinho; Netto, Antônio Ruffino; Dos Anjos, Marcelino José; Kritski, Afrânio Lineu; de Oliveira, Martha Maria

    2014-08-01

    Iron, copper, and zinc are key micronutrients that play an important role in the immune response to Mycobacterium tuberculosis. The present study aimed to evaluate the association between serum levels of those micronutrients, inflammatory markers, and the smear and culture conversion of M. tuberculosis during 60 days of tuberculosis treatment. Seventy-five male patients with pulmonary tuberculosis (mean age, 40.0 ± 10.7 years) were evaluated at baseline and again at 30 and 60 days of tuberculosis treatment. Serum levels of iron, copper, zinc, albumin, globulin, C-reactive protein, and hemoglobin, and smear and cultures for M. tuberculosis in sputum samples were analyzed. Compared to healthy subjects, at baseline, patients with PTB had lower serum iron levels, higher copper levels and copper/zinc ratio, and similar zinc levels. During the tuberculosis treatment, no significant changes in the serum levels of iron, zinc, and copper/zinc were observed. Lower serum copper levels were associated with bacteriological conversion in tuberculosis treatment (tuberculosis-negative) at 30 days but not at 60 days (tuberculosis-positive). C-reactive protein levels and the C-reactive protein/albumin ratio were lower in tuberculosis-negative patients than in tuberculosis-positive patients at 30 and 60 days after treatment. Albumin and hemoglobin levels and the albumin/globulin ratio in patients with pulmonary tuberculosis increased during the study period, regardless of the bacteriological results. High serum globulin levels did not change among pulmonary tuberculosis patients during the study. Serum copper levels and the C-reactive protein/albumin ratio may be important parameters to evaluate the persistence of non-conversion after 60 days of tuberculosis treatment, and they may serve as predictors for relapse after successful treatment.

  4. Changes in copper and zinc serum levels in women wearing a copper TCu-380A intrauterine device.

    Science.gov (United States)

    Imani, Somaieh; Moghaddam-Banaem, Lida; Roudbar-Mohammadi, Shahla; Asghari-Jafarabadi, Mohammad

    2014-02-01

    OBJECTIVE To assess the effects of the copper intrauterine device (IUD) TCu-380A, on copper and zinc serum levels. MATERIAL AND METHODS This longitudinal study enrolled 121 women attending Health Centres in Tehran between November 2011 and August 2012. A blood sample was obtained before use and three months after insertion of a TCu-380A IUD. Serum levels of copper and zinc were measured for the 101 women who had completed three months with the device in situ. Analyses of change included paired t-tests, McNemar tests and linear regression. RESULTS Significant elevations in mean serum levels were found for both copper (170.22 μg/dl at three months vs.160.40 μg/dl at baseline, p = 0.034) and zinc (107.67 μg/dl at three months vs. 94.61 μg/dl at baseline, p IUD insertion. CONCLUSIONS A slight, but significant increase in copper serum levels, not reaching toxic levels, was observed three months after TCu-380A IUD insertion. Zinc levels too had risen significantly, which was quite unexpected, and warrants further investigation.

  5. Serum Copper and Zinc Levels Among Iranian Colorectal Cancer Patients.

    Science.gov (United States)

    Khoshdel, Zahra; Naghibalhossaini, Fakhraddin; Abdollahi, Kourosh; Shojaei, Shahla; Moradi, Mostafa; Malekzadeh, Mahyar

    2016-04-01

    Alterations of trace element concentrations adversely affect biological processes and could promote carcinogenesis. Only a few studies have investigated the degree of changes in copper and zinc levels in colorectal cancer (CRC). The aim of the present study was to compare the serum copper (Cu) and zinc (Zn) concentrations in patients with CRC from Iran with those of healthy subjects. Cu and Zn concentrations in the serum of 119 cancer patients and 128 healthy individuals were measured by atomic absorption spectrometry. We found a significant decrease in the total mean serum Cu and Zn concentrations in CRC patients as compared with the control group (137.5 ± 122.38 vs. 160.68 ± 45.12 μg/dl and 81.04 ± 52.05 vs. 141.64 ± 51.75, respectively). However, the serum Cu/Zn ratio in the patient group was significantly higher than that measured in the control group (p = 0.00). There was no significant difference in the mean values of serum Cu and Zn concentrations between young (obese cases (132.31 ± 87.43 vs. 103.81 ± 53.72 μg/dl, respectively) (p < 0.05). There was no difference in mean serum Cu and Zn concentrations in patients stratified by the site, stage, or differentiation grade of tumors. Our findings suggest that imbalance in Cu and Zn trace element level is associated with CRC and might play an important role in cancer development among Iranian patients.

  6. High blood cholesterol levels

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000403.htm High blood cholesterol levels To use the sharing features ... stroke, and other problems. The medical term for high blood cholesterol is lipid disorder, hyperlipidemia, or hypercholesterolemia. ...

  7. High-level verification

    CERN Document Server

    Lerner, Sorin; Kundu, Sudipta

    2011-01-01

    Given the growing size and heterogeneity of Systems on Chip (SOC), the design process from initial specification to chip fabrication has become increasingly complex. This growing complexity provides incentive for designers to use high-level languages such as C, SystemC, and SystemVerilog for system-level design. While a major goal of these high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of system-level designs, the focus so far for validation purposes has been on traditional testing techniques such as random testing and scenario-based

  8. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs.

    Science.gov (United States)

    Wang, Jianguo; Zhu, Xiaoyan; Guo, Yazhou; Wang, Zhe; Zhao, Baoyu; Yin, Yunhou; Liu, Guowen

    2016-07-01

    To investigate the effect of dietary copper on serum growth-related hormones levels and growth performance, a total of 60 weanling pigs were randomly assigned to six groups each containing 10 pigs, fed on basal diets supplemented with 0 (control), 100, 150, 200, 250, and 300 mg/kg copper sulfate for 80 days, respectively. The average daily gain (ADG), feed to gain ratio (F/G), feed intake and serum growth hormone (GH), insulin (INS), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were detected at interval of 20 days. The results revealed that ADG, and serum GH, INS, IGF-1, and IGFBP-3 concentrations were increased significantly in the pigs fed on diets added with 100, 150, 200, 250, and 300 mg/kg copper sulfate. Meanwhile, in the pigs supplemented with 250 mg/kg copper sulfate, ADG was increased significantly from the 40th to the 60th day of the experiment (P growth of pigs were related to the increasing levels of GH, INS, IGF-1, and IGFBP-3 in serum which were induced by copper. High dietary copper increase the concentrations of growth-related hormones in serum, resulting in improving the growth performance of weanling pigs.

  9. Serum copper and zinc levels in patients with cervical cancer.

    Science.gov (United States)

    Chen, C A; Hwang, J L; Kuo, T L; Hsieh, C Y; Huang, S C

    1990-08-01

    The serum copper (SCL) and zinc (SZL) levels were measured in 99 patients with cervical cancer and 50 patients with uterine myoma as controls. The mean SCL in the control group was 109.4 +/- 17.4 micrograms/ml as compared to 117.1 +/- 14.6 micrograms/dl and was not significant (NS) in 17 carcinoma in situ (CIS) patients, 142.3 +/- 14.2 micrograms/dl in 30 stage I patients (p less than 0.001), 159.0 +/- 16.6 micrograms/dl in 22 stage II patients (p less than 0.001), 171.6 +/- 25.7 micrograms/dl in 10 stage III or IV patients (p less than 0.001), and 166.2 +/- 32.2 micrograms/dl in 20 recurrent patients (p less than 0.001). The SCL returned to control level 2 weeks after surgical treatment for the stage I and II patients (mean 110.6 +/- 19.6 and 108.7 +/- 20.4 micrograms/dl, respectively, p less than 0.001). The SZL was 97.2 +/- 15.8 micrograms/dl in control patients and only showed a significant decrease in stage III or IV and recurrent patients (67.2 +/- 16.6 and 70.4 +/- 17.2 micrograms/dl, respectively). Concerning the copper/zinc ratio, the control group was 1.13 +/- 0.07 as compared to 1.17 +/- 0.07 in CIS (p = 0.06), 1.51 +/- 0.24 in stage I (p less than 0.001), 1.85 +/- 0.37 in stage II (p less than 0.001), 2.66 +/- 0.61 in stage III or IV (p less than 0.001), and 2.50 +/- 0.75 in recurrent patients (p less than 0.001). Taking mean +/- 2.5 SD of the control values as cut off points, the percentages of the recurrent patients with abnormal SCL, SZL, and a Cu/Zn ratio were 65, 30 and 90%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level. Th

  11. Shandong Hengyuan 200,000 tonnes of High-Precision Copper Product Project is Making Smooth Progress

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Shandong Hengyuan Copper Co., Ltd is an emerging copper product processing enterprise in China, the company plans to invest 1 billion yuan to construct 200,000 t/a high precision copper product, which includes: 20,000 tones of precision copper tube and copper alloy tube, 10,000 tonnes of railway electrification copper

  12. Copper oxide as a high temperature battery cathode material

    Science.gov (United States)

    Ritchie, A. G.; Mullins, A. P.

    1994-10-01

    Copper oxide has been tested as a cathode material for high temperature primary reserve thermal batteries in single cells at 530 to 600 C and at current densities of 0.1 to 0.25 A cm(exp -2) using lithium-aluminium alloy anodes and lithium fluoride-lithium chloride-lithium bromide molten salt electrolytes. Initial on-load voltages were around 2.3 V, falling to 1.5 V after about 0.5 F mol(exp -1) had been withdrawn. Lithium copper oxide, LiCu2O2, and cuprous oxide, Cu2O, were identified as discharge products.

  13. Study of the Serum Copper Levels in Patients with Major Depressive Disorder.

    Science.gov (United States)

    Styczeń, Krzysztof; Sowa-Kućma, Magdalena; Siwek, Marcin; Dudek, Dominika; Reczyński, Witold; Misztak, Paulina; Szewczyk, Bernadeta; Topór-Mądry, Roman; Opoka, Włodzimierz; Nowak, Gabriel

    2016-12-01

    Copper may be involved in the pathophysiology of depression. Clinical data on this issue are very limited and not conclusive. The purpose of the study was to determine the copper concentration in the serum of patients with major depressive disorder and to discuss its potential clinical usefulness as a biomarker of the disease. A case-control clinical study included 69 patients with current depressive episode, 45 patients in remission and 50 healthy volunteers. Cu concentration was measured by electrothermal atomic absorption spectrometry (ETAAS). The mean serum copper level in depressed patients was slightly lower (by 11 %; not statistically significant) than in the control group. Furthermore, there was no significant difference in Cu(2+) concentration between depressive episode and remission, nor between remission and control group. In the remission group were observed significant correlations between copper levels and the average number of relapses over the past years or time of remission. There was no correlation between serum copper and severity of depression, as measured by HDRS and MADRS. The obtained results showed no significant differences between the copper concentration in the blood serum of patients (both with current depressive episode and in remission) and healthy volunteers, as well as the lack of correlations between the copper level in the active stage of the disease and clinical features of the population. Our study is the first conducted on such a large population of patients, so the results may be particularly important and reliable source of knowledge about the potential role of copper in depression.

  14. Serum levels of ferritin, copper, and zinc in patients with oral cancer.

    Science.gov (United States)

    Baharvand, Maryam; Manifar, Soheila; Akkafan, Reihaneh; Mortazavi, Hamed; Sabour, Siamak

    2014-01-01

    Apart from the crucial role of micronutrients like copper, iron, and zinc in the functions of body enzymes, it seems that changes in the serum levels of these biomarkers may play a role in the pathogenesis of oral cancer. The aim of this study was to measure the serum levels of ferritin, copper, and zinc in patients with oral malignancies. Sixty consecutive patients with oral cancer, together with 66 age- and sex-matched controls were enrolled in this cross-sectional study. The serum levels of ferritin, copper, and zinc were measured in both patients and healthy individuals. Data were statistically analyzed by Student's t-test and Mann-Whitney U test. In patients with oral cancer, the serum levels of ferritin, copper, and zinc were 267.41 ± 249.45, 209.85 ± 160.28, and 113.51 ± 52.30 mg/dl, respectively. In the control group, the serum levels of ferritin, copper, and zinc were reported to be 106.13 ± 72.96, 114.20 ± 38.69, and 64.57 ± 31.54 mg/dl, respectively. The mean serum values of ferritin, copper, and zinc in cancerous patients were significantly higher than in controls (p serum levels of ferritin, copper, and zinc in oral cancer patients were significantly higher than in control group subjects.

  15. Serum levels of ferritin, copper, and zinc in patients with oral cancer

    Directory of Open Access Journals (Sweden)

    Maryam Baharvand

    2014-10-01

    Full Text Available Background: Apart from the crucial role of micronutrients like copper, iron, and zinc in the functions of body enzymes, it seems that changes in the serum levels of these biomarkers may play a role in the pathogenesis of oral cancer. The aim of this study was to measure the serum levels of ferritin, copper, and zinc in patients with oral malignancies. Methods: Sixty consecutive patients with oral cancer, together with 66 age- and sex-matched controls were enrolled in this cross-sectional study. The serum levels of ferritin, copper, and zinc were measured in both patients and healthy individuals. Data were statistically analyzed by Student's t-test and Mann-Whitney U test. Results: In patients with oral cancer, the serum levels of ferritin, copper, and zinc were 267.41 ± 249.45, 209.85 ± 160.28, and 113.51 ± 52.30 mg/dl, respectively. In the control group, the serum levels of ferritin, copper, and zinc were reported to be 106.13 ± 72.96, 114.20 ± 38.69, and 64.57 ± 31.54 mg/dl, respectively. The mean serum values of ferritin, copper, and zinc in cancerous patients were significantly higher than in controls (p < 0.001. Conclusions: The serum levels of ferritin, copper, and zinc in oral cancer patients were significantly higher than in control group subjects.

  16. Zinc and copper levels in plasma, erythrocytes, and whole blood in cancer patients.

    Science.gov (United States)

    Aldor, Y; Walach, N; Modai, D; Horn, Y

    1982-04-01

    Zinc and copper levels in erythrocytes, plasma, and whole blood were determined in 35 cancer patients and compared with 24 normal individuals. A decrease in zinc was found in all three blood constituents of the cancer patients. The decrease was significant in plasma and whole blood and nonsignificant in erythrocytes. Copper levels in the cancer group showed a slight and nonsignificant increase in erythrocytes, plasma, and whole blood. The copper to zinc ratio revealed a significant increase only for plasma levels. Further investigations are indicated to determine whether these two elements could serve as indicators for diagnosis or prognosis in cancer patients.

  17. Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtr1.

    Science.gov (United States)

    Chen, Helen H W; Song, Im-Sook; Hossain, Anwar; Choi, Min-Koo; Yamane, Yoshiaki; Liang, Zheng D; Lu, Jia; Wu, Lily Y-H; Siddik, Zahid H; Klomp, Leo W J; Savaraj, Niramol; Kuo, Macus Tien

    2008-09-01

    Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) up-regulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunit. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Because the GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into consideration that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with an expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through up-regulation of human copper transporter (hCtr) 1, which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. Although rates of copper transport were also up-regulated in the transfected cells, these cells exhibited biochemical signature of copper deficiency, suggesting that GSH functions as an intracellular copper-chelator and that overexpression of GSH can alter copper metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes the bioavailable copper pool, leading to up-regulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications in that modulation of the intracellular copper pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents.

  18. Lethal copper concentration levels for Clarias gariepinus (Burchell, 1822 @ a preliminary study

    Directory of Open Access Journals (Sweden)

    Marinda Van der Merwe

    1993-09-01

    Full Text Available Lethal copper concentrations were determined for both adult and juvenile Clarias gariepinus at representative mean summer and winter temperatures. Fish were exposed to copper for 96 hours in an experimental system and mortalities monitored. Toxicity curves of percentage mortality versus actual copper concentration were drawn, and the LC50 calculated for winter and summer temperatures. The lethal copper concentrations, expressed as LC50, found in laboratory exposures, ranged for adults from 1,29 mg/1 during summer to 1,38 mg/1 in winter. These values are considerably higher than the levels of copper in the water of the Olifants River in the Kruger National Park during summer (0,055 @ 0,016 mg/1 and winter (0,085 @ 0,032 mg/1. The derived LC50 values predict the level of copper which should be prevented at all cost. The fish in the Olifants River are already exposed to sublethal concentrations (40 of LC50 of copper. The results can be used as an indication of what the safe concentrations of copper should be.

  19. Assessing of plasma levels of iron, zinc and copper in Iranian Parkinson′s disease

    Directory of Open Access Journals (Sweden)

    Rokhsareh Meamar

    2016-01-01

    Full Text Available Background: Trace elements have long been suspected to be involved in Parkinson's disease (PD pathogenesis, but their exact roles have been remained controversial. In this study, we assessed the levels of copper (Cu, iron (Fe and zinc (Zn in different stage of PD patients. Materials and Methods: Serum concentrations of iron, copper and zinc were measured in 109 patients with PD by colorimetric methods. Staging of the disease was evaluated according to Hoehn and Yahr (H and Y and Unified PD Rating Scale III (UPDRS. Results: Severity values of PD measured by UPRDSIII and HY stages with mean ± SD were 22.9 ± 1.81 and 1.8 ± 1.1, respectively. Mean ± SD values of iron, zinc and copper are 100.7 ± 289.2, 68.3 ± 5.32, and 196.8 ± 162.1 μg/dl, respectively. Serum iron level in most of the patients was normal (76.6%. Whereas zinc concentration in most participants was below the normal range (64.5% and serum Cu in the majority of patients had a high normal concentration (42.7% and did not significantly differ among various PD stages. Conclusion: The result of this study does not confirm strong correlation between PD stages and serum levels of tested trace elements. The actual correlations between these elements and PD and whether modulating of these agents levels could be an effective approach in the treatment of this disease remain to be elucidated.

  20. Serum Copper, Zinc levels and Copper/Zinz ratio as biochemical markers in diagnosis and prognosis of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Sadr Sh

    1996-07-01

    Full Text Available Serum copper, zinc and the cu/zn ratio were measured in 55 patients with breast disease (20 with benign breast disease and 35 patients with breast cancer and 30 healthy subjects. The mean serum copper levels were higher in breast cancer than in benign breast diseases (127.5 µg/dl versus 92.4 µg/dl (P<0.0005 and controls (127.5 µg/dl versus 75.6 µg/dl (P<0.0005. Patients with advanced breast cancer had higher serum copper levels than did patients with early breast cancer (163 µg/dl versus 103.9 µg/dl (P<0.0005. Patients with advanced breast cancer had lower serum zinc levels than did patients with benign breast disease (68.9 µg/dl versus 135.9 µg/dl (P<0.0005 and controls (68.9 µg/dl versus 129.9 µg/dl (P<0.0005 but no significant difference have seen between serum zinc levels of early and advanced breast cancer patients (68.9 µg/dl versus 72.9 µg/dl (P<0.05. Serum zinc levels were not decreased in patients with benign breast disease

  1. Laser synthesis of a copper-single-walled carbon nanotube nanocomposite via molecular-level mixing and non-equilibrium solidification

    Science.gov (United States)

    Tu, Jay F.; Rajule, Nilesh; Molian, Pal; Liu, Yi

    2016-12-01

    A copper-single-walled carbon nanotube (Cu-SWCNT) metal nanocomposite could be an ideal material if it can substantially improve the strength of copper while preserving the metal’s excellent thermal and electrical properties. However, synthesis of such a nanocomposite is highly challenging, because copper and SWCNTs do not form intermetallic compounds and are insoluble; as a result, there are serious issues regarding wettability and fine dispersion of SWCNTs within the copper matrix. In this paper we present a novel wet process, called the laser surface implantation process (LSI), to synthesize Cu-SWCNT nanocomposites by mixing SWCNTs into molten copper. The LSI process includes drilling several microholes on a copper substrate, filling the microholes with SWCNTs suspended in solution, and melting the copper substrate to create a micro-well of molten copper. The molten copper advances radially outward to engulf the microholes with pre-deposited SWCNTs to form the Cu-SWCNT implant upon solidification. Rapid and non-equilibrium solidification is achieved due to copper’s excellent heat conductivity, so that SWCNTs are locked in position within the copper matrix without agglomerating into large clusters. This wet process is very different from the typical dry processes used in powder metallurgy. Very high hardness improvement, up to 527% over pure copper, was achieved, confirmed by micro-indentation tests, with only a 0.23% SWCNT volume fraction. The nanostructure of the nanocomposite was characterized by TEM imaging, energy-dispersive x-ray spectroscopy mapping and spectroscopy measurements. The SWCNTs were found to be finely dispersed within the copper matrix with cluster sizes in the range of nanometers, achieving the goal of molecular-level mixing.

  2. Effects of tetrathiomolybdate and penicillamine on brain hydroxyl radical and free copper levels: a microdialysis study in vivo.

    Science.gov (United States)

    Zhang, Ji-Wei; Liu, Jun-Xiu; Hou, Hai-Man; Chen, Ding-Bang; Feng, Li; Wu, Chao; Wei, Li-Ting; Li, Xun-Hua

    2015-02-27

    Wilson disease is an inherited disorder of excessive copper accumulation. The commonly used drug d-penicillamine (PA) or trientine both cause a high incidence (10-50%) of neurological worsening, which rarely occurs with tetrathiomolybdate (TM) treatment. To investigate the mechanisms of neurologic deterioration after the initiation of chelation therapy, brain hydroxyl radical and free copper were assessed in vivo in this study. On days 3, 7, 14, and 21 after PA or TM administration, striatal hydroxyl radical levels of both TX mice and controls were assessed by terephthalic acid (TA) combined with microdialysis and high-performance liquid chromatography (HPLC). Within the same microdialysis samples, free copper was measured by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that both hydroxyl radical and free copper markedly increased in the striatum of TX mice during PA administration but were not elevated when administering TM. These results suggested that the further increased free copper in the brain and oxidative stress caused by some chelators might contribute to the neurological deterioration.

  3. The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation.

    Science.gov (United States)

    de Boer, Tjalf E; Taş, Neslihan; Braster, Martin; Temminghoff, Erwin J M; Röling, Wilfred F M; Roelofs, Dick

    2012-01-03

    Copper has long been applied for agricultural practises. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on the springtail Folsomia candida an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure reflected the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. The study is a first step in the development of a molecular strategy aiming at a more comprehensive assessment of various aspects of soil quality and ecotoxicology.

  4. Deformation behavior of dispersion-strengthened copper at high temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Mengjun; ZHANG Yingchun; LUO Yun; LIU Xinyu

    2006-01-01

    The deformation behavior of dispersion-strengthened copper with different compositions was investigated by hot compression simulation tests on a Gleeble-1500 thermal-mechanical simulator. The microstructure during deformation at high temperature was also studied. The result shows that at the beginning of hot compression simulation, the flowing stress of the dispersion-strengthened copper quickly attains a peak value and the stress shows a greater decrease when the temperature is higher and the strain rate is lower. The dispersion particles lead to an obvious increase in the recrystallization temperature. Under experimental conditions, dynamic recovery is the main softening method. The constitutive equation at high temperature of 1.2%Al2O3-0.4%WC/Cu is obtained.

  5. Molybdenum and copper levels in white-tailed deer near uranium mines in Texas

    Science.gov (United States)

    King, K.A.; LeLeux, J.; Mulhern, B.M.

    1984-01-01

    Molybdenum toxicity, molybdenosis, in ruminant animals has been identified in at least 15 states and in Canada, England, Australia, and New Zealand. In most western states, molybdenosis has been associated with strip-mine spoil deposits. Molybdenum toxicity has been diagnosed in cattle pastured near uranium strip-mine spoils in several Texas counties. Recent reports from hunters and the authors' observations indicated that white-tailed deer (Odocoileus virginianus ) that fed near uranium-mine spoil deposits may also have been exposed to high levels of molybdenum. The objectives of this study were to determine if white-tailed deer from a South Texas uranium mining district were accumulating harmful levels of molybdenum and to compare molybdenum and copper levels with antler development in deer from the mined area vs. an unmined control area.

  6. Twinning in copper deformed at high strain rates

    Indian Academy of Sciences (India)

    S Cronje; R E Kroon; W D Roos; J H Neethling

    2013-02-01

    Copper samples having varying microstructures were deformed at high strain rates using a split-Hopkinson pressure bar. Transmission electron microscopy results show deformation twins present in samples that were both annealed and strained, whereas samples that were annealed and left unstrained, as well as samples that were unannealed and strained, are devoid of these twins. These deformation twins occurred at deformation conditions less extreme than previously predicted.

  7. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  8. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  9. Copper metabolism in analbuminaemic rats fed a high-copper diet.

    NARCIS (Netherlands)

    Yu, S.; Berg, van den G.J.; Beynen, A.C.

    1995-01-01

    Copper metabolism in male Nagase analbuminaemic (NA) rats was compared with that in male Sprague Dawley (SD) rats fed purified diets containing either 5 or 100 mg Cu/kg diet. Dietary copper loading increased hepatic and kidney copper concentrations in both strains to the same extent, but baseline va

  10. High temperature fatigue behavior of tungsten copper composites

    Science.gov (United States)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  11. Serum Iron, Zinc, and Copper Levels in Patients with Alzheimer's Disease: A Replication Study and Meta-Analyses.

    Science.gov (United States)

    Wang, Zi-Xuan; Tan, Lan; Wang, Hui-Fu; Ma, Jing; Liu, Jinyuan; Tan, Meng-Shan; Sun, Jia-Hao; Zhu, Xi-Chen; Jiang, Teng; Yu, Jin-Tai

    2015-01-01

    To evaluate whether iron, zinc, and copper levels in serum are disarranged in Alzheimer's disease (AD), we performed meta-analyses of all studies on the topic published from 1984 to 2014 and contextually carried out a replication study in serum as well. Our meta-analysis results showed that serum zinc was significantly lower in AD patients. Our replication and meta-analysis results showed that serum copper was significantly higher in AD patients than in healthy controls, so our findings were consistent with the conclusions of four previously published copper meta-analyses. Even if a possible role of iron in the pathophysiology of the disease could not be ruled out, the results of our meta-analysis showed no change of serum iron levels in AD patients, but this conclusion was not robust and requires further investigation. The meta-regression analyses revealed that in some studies, differences in serum iron levels could be due to the different mean ages, while differences in zinc levels appeared to be due to the different sex ratios. However, the effect of sex ratio on serum zinc levels in our meta-analysis is subtle and needs further confirmation. Also, diverse demographic terms and methodological approaches appeared not to explain the high heterogeneity of our copper meta-analysis. Therefore, when investigating trace elements, covariants such as age and sex have to be taken into account in the analyses. In the light of these findings, we suggest that the possible alteration of serum zinc and copper levels are involved in the pathogenesis of AD.

  12. Characterization of the defect levels in copper indium diselenide

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elfotouh, F.A.; Moutinho, H.; Bakry, A.; Coutts, T.J.; Kazmerski, L.L. (Solar Energy Research Inst., Golden, CO (USA))

    1991-05-01

    High-resolution photoluminescence (PL) measurements were carried out at 10 K to identify the energy levels associated with the various defect states dominating the semiconductor CuInSe{sub 2} (CIS). PL measurements were taken on the bare surfaces of both thin film and single-crystal (polished and cleaved) samples and through a (Cd, Zn)S window layer deposited by thermal co-evaporation onto the CIS absorber surface. A complete energy band diagram is proposed which identifies the origin of the 12 intrinsic defect states expected in this material. The effects of surface and heat treatments, used in device fabrication processing, on the existence and generation of defect states (deep and shallow) are identified and correlated with the device performance. The inferior single-crystal device performance is correlated with presence of a high density of process-generated radiative surface recombination states and trap levels. (orig.).

  13. Combustion Methods for Measuring Low Levels of Carbon in Nickel, Copper, Silver, and Gold

    Science.gov (United States)

    Jacobson, Nathan S.; Savadkouei, Kayvon; Morin, Christophe; Fenstad, Jo; Copland, Evan H.

    2016-12-01

    Laboratory studies and a literature search indicate that there is no definitive procedure for combustion analysis of low levels of carbon in Cu, Ag, and Au. Literature data disagree by one to two orders of magnitude for solubility of carbon in Cu, near the melting point. Data for Ag and Au are very limited. This study develops a procedure for combustion analysis of ppm levels of carbon in high-purity Ni, Cu, Ag, and Au samples. For comparison, each sample is measured with glow discharge mass spectrometry. The study begins with Ni, as the procedure for this material is fairly well established. For the other metals, an optimum accelerator and sample-to-accelerate weight ratio is developed. Fine particle copper is a suitable accelerator for Cu and Ag samples, and also shows potential for Au samples

  14. Serum levels of zinc and copper in epileptic children during long-term therapy with anticonvulsants.

    Science.gov (United States)

    Talat, Mohamed A; Ahmed, Anwar; Mohammed, Lamia

    2015-10-01

    To evaluate the serum levels of zinc and copper in epileptic children during the long-term treatment of anticonvulsant drugs and correlate this with healthy subjects. A hospital-based group matched case-control study was conducted in the Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt between November 2013 and October 2014. Ninety patients aged 7.1 ± 3.6 years were diagnosed with epilepsy by a neurologist. The control group was selected from healthy individuals and matched to the case group. Serum zinc and copper were measured by the calorimetric method using a colorimetric method kit. The mean zinc level was 60.1 ± 22.6 ug/dl in the cases, and 102.1 ± 18 ug/dl in the controls (p<0.001). The mean copper level was 180.1 ± 32.4 ug/dl in cases compared with 114.5 ± 18.5 ug/dl in controls (p<0.001). Serum zinc levels in epileptic children under drug treatment are lower compared with healthy children. Also, serum copper levels in these patients are significantly higher than in healthy people. No significant difference in the levels of serum copper and zinc was observed in using one drug or multiple drugs in the treatment of epileptic patients.

  15. Effects of dietary selenium, sulphur and copper levels on selenium concentration in the serum and liver of lamb.

    Science.gov (United States)

    Netto, Arlindo Saran; Zanetti, Marcus Antonio; Correa, Lisia Bertonha; Del Claro, Gustavo Ribeiro; Salles, Márcia Saladini Vieira; Vilela, Flávio Garcia

    2014-08-01

    Thirty-two lambs were distributed in eight treatments under 2×2×2 factorial experiment to compare the effects of two levels of selenium (0.2 to 5 mg/kg dry matter [DM]), sulphur (0.25% and 0.37%) and copper (8 and 25 mg/kg DM) levels on selenium concentration in liver and serum of lambs. A liver biopsy was done on all animals and blood samples were collected from the jugular vein prior to the beginning of the treatments. The blood was sampled every thirty days and the liver was sampled after 90 days, at the slaughter. Increasing differences were noticed during the data collection period for the serum selenium concentration, and it was found to be 0.667 mg/L in animals fed with 5 mg Se/kg DM and normal sulphur and copper concentrations in their diet. However, a three-way interaction and a reduction of selenium concentration to 0.483 mg/L was verified when increasing copper and sulphur concentration levels to 25 ppm and 0.37% respectively. The liver selenium concentration was also high for diets containing higher selenium concentrations, but the antagonist effect with the increased copper and sulphur levels remained, due to interactions between these minerals. Therefore, for regions where selenium is scarce, increasing its concentration in animal diets can be an interesting option. For regions with higher levels of selenium, the antagonistic effect of interaction between these three minerals should be used by increasing copper and sulphur dietary concentrations, thus preventing possible selenium poisoning.

  16. Effects of Dietary Selenium, Sulphur and Copper Levels on Selenium Concentration in the Serum and Liver of Lamb

    Science.gov (United States)

    Netto, Arlindo Saran; Zanetti, Marcus Antonio; Correa, Lisia Bertonha; Del Claro, Gustavo Ribeiro; Salles, Márcia Saladini Vieira; Vilela, Flávio Garcia

    2014-01-01

    Thirty-two lambs were distributed in eight treatments under 2×2×2 factorial experiment to compare the effects of two levels of selenium (0.2 to 5 mg/kg dry matter [DM]), sulphur (0.25% and 0.37%) and copper (8 and 25 mg/kg DM) levels on selenium concentration in liver and serum of lambs. A liver biopsy was done on all animals and blood samples were collected from the jugular vein prior to the beginning of the treatments. The blood was sampled every thirty days and the liver was sampled after 90 days, at the slaughter. Increasing differences were noticed during the data collection period for the serum selenium concentration, and it was found to be 0.667 mg/L in animals fed with 5 mg Se/kg DM and normal sulphur and copper concentrations in their diet. However, a three-way interaction and a reduction of selenium concentration to 0.483 mg/L was verified when increasing copper and sulphur concentration levels to 25 ppm and 0.37% respectively. The liver selenium concentration was also high for diets containing higher selenium concentrations, but the antagonist effect with the increased copper and sulphur levels remained, due to interactions between these minerals. Therefore, for regions where selenium is scarce, increasing its concentration in animal diets can be an interesting option. For regions with higher levels of selenium, the antagonistic effect of interaction between these three minerals should be used by increasing copper and sulphur dietary concentrations, thus preventing possible selenium poisoning. PMID:25083101

  17. Comparison of lowering copper levels with tetrathiomolybdate and zinc on mouse tumor and doxorubicin models.

    Science.gov (United States)

    Hou, Guoqing; Dick, Robert; Zeng, Chunhua; Brewer, George J

    2006-12-01

    Tetrathiomolybdate (TM), presumably by lowering copper levels and availability, has shown excellent efficacy in animal models of cancer and models of injury that produce fibrotic or inflammatory damage in lung, heart, and liver. Trials in human patients are underway. If the efficacy of TM is indeed through lowering copper levels, other anticopper drugs should be equally efficacious. Zinc is an anticopper drug, with proven efficacy in Wilson's disease, a disease of copper toxicity. In this study, the efficacy of zinc is compared with TM on a mouse tumor model and on the doxorubicin model of heart damage, and it is hypothesized that when copper availability is lowered to an equivalent extent, the 2 drugs would show equivalent efficacy. No effect is found of zinc on inhibiting growth of a tumor that is markedly inhibited by TM, and zinc is found to be less effective than TM in inhibiting cardiac damage from doxorubicin. This study shows that TM's mechanism of action in protecting against doxorubicin toxicity is because of its anticopper effects, as copper supplementation eliminated the protective effect of TM. It is also hypothesized that the differences between TM and zinc may be caused by TM's mechanism of action in which it binds copper already in the body, whereas zinc does not.

  18. Copper, zinc, and magnesium tissue and serum levels in patients with cervical carcinoma.

    Science.gov (United States)

    Altintas, A; Vardar, M A; Gönlüsen, F; Atay, Y; Evrüke, C; Arpaci, A; Aridogan, N

    1995-01-01

    Serum and cervical tissue copper (Cu), zinc (Zn) and magnesium (Mg) levels were determined by atomic absorption spectrophotometry in 65 women with cervical carcinoma and compared with levels in 30 healthy women. The patients mean serum Cu level (184.8 +/- 12.3 mugr/dl) was significantly higher than the control group (p cancerous tissues of patients with cervical carcinoma were not statistically significant (p > 0.05). There was also no significant difference between FIGO Stage I and IIA patients according to their serum and tissue concentrations of these trace elements. We concluded that serum and tissue copper, zinc and magnesium determinations have no use in cervical carcinoma management.

  19. Relation between anemia and blood levels of lead, copper, zinc and iron among children

    OpenAIRE

    Morsy Amal A; Abd el-hafez Manal A; Zaher Manal M; Hegazy Amal A; Saleh Raya A

    2010-01-01

    Abstract Background Anemia is a health problem among infants and children. It is often associated with a decrease in some trace elements (iron, zinc, copper) and an increase in heavy metals as lead. This study was done to determine the association of blood lead level > 10 μg/dl, with the increased risk to anemia, also, to investigate the relationship between anemia and changes in blood iron, zinc and copper levels, and measure lead level in drinking water. The study is a cross-sectional perfo...

  20. Fatigue behavior of copper and selected copper alloys for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Leedy, K.D.; Stubbins, J.F.; Singh, B.N.; Garner, F.A.

    1996-04-01

    The room temperature fatigue behavior of standard and subsize specimens was examined for five copper alloys: OFHC Cu, two CuNiBe alloys, a CuCrZr alloy, and a Cu-Al{sub 2}O{sub 3} alloy. Fatigue tests were run in strain control to failure. In addition to establishing failure lives, the stress amplitudes were monitored as a function of numbers of accrued cycles. The results indicate that the alloys with high initial yield strengths provide the best fatigue response over the range of failure lives examined in the present study: N{sub f} = 10{sup 3} to 10{sup 6}. In fact, the fatigue performance of the best alloys is dominated by the elastic portion of the strain range, as would be expected from the correlation of performance with yield properties. The alumina strengthened alloy and the two CuNiBe alloys show the best overall performance of the group examined here.

  1. Regulation of the high-affinity copper transporter (hCtr1) expression by cisplatin and heavy metals.

    Science.gov (United States)

    Liang, Zheng Dong; Long, Yan; Chen, Helen H W; Savaraj, Niramol; Kuo, Macus Tien

    2014-01-01

    Platinum-based antitumor agents have been the mainstay in cancer chemotherapy for many human malignancies. Drug resistance is an important obstacle to achieving the maximal therapeutic efficacy of these drugs. Understanding how platinum drugs enter cells is of great importance in improving therapeutic efficacy. It has been demonstrated that human high-affinity copper transporter 1 (hCtr1) is involved in transporting cisplatin into cells to elicit cytotoxic effects, although other mechanisms may exist. In this communication, we demonstrate that cisplatin transcriptionally induces the expression of hCtr1 in time- and concentration-dependent manners. Cisplatin functions as a competitor for hCtr1-mediated copper transport, resulting in reduced cellular copper levels and leading to upregulated expression of Sp1, which is a positive regulator for hCtr1 expression. Thus, regulation of hCtr1 expression by cisplatin is an integral part of the copper homeostasis regulation system. We also demonstrate that Ag(I) and Zn(II), which are known to suppress hCtr1-mediated copper transport, can also induce hCtr1/Sp1 expression. In contrast, Cd(II), another inhibitor of copper transport, downregulates hCtr1 expression by suppressing Sp1 expression. Collectively, our results demonstrate diverse mechanisms of regulating copper metabolism by these heavy metals.

  2. Microstrain in Nanocrystalline Copper by High Resolution Electron Microscopy

    Institute of Scientific and Technical Information of China (English)

    MIN Changping; RUAN Xuefeng; ZOU Huamin

    2009-01-01

    The elastic microstrains in a crystallite of electrodeposited nanocrystalline copper were investigated by analyzing the high resolution electron microscopy(HRTEM)image.The mi-crostrain was considered as consisting of two parts,in which the uniform part was determined with fast Fourier transformation of the HRTEM image,while the non-uniform part of the microstrain in the crystallite was measured by means of peak finding.Atomic column spacing measurements show that the crystal lattice is contracted in the longitudinal direction,while expanded in the transverse direction of the elliptical crystallite,indicating that the variation of microstrain exists mainly near the grain boundary.

  3. The Copper concentration variation to physical properties of high copper amalgam alloy

    Directory of Open Access Journals (Sweden)

    Aminatun Aminatun

    2006-09-01

    Full Text Available The function of copper (Cu inside amalgam is to increase hardness and impact force and to decrease thermal expansion coefficient. In general, amalgam which is used in dentistry and available in the market is contain Cu 22%, while the maximum Cu concentration is 30%. It is necessary to determine the concentration Cu does generate the best physical properties to be used as dental restorative agent. Amalgam is made by mixing blended-metal Ag-Sn-Cu (with Cu concentration of 13%, 21%, 22%, and 29% and Hg, stirred manually in a bowl for 15 minutes,leave it in temperature 27°C for 24 hours to become hardened. The result of X-Ray Diffractometer (XRD, analyzed by Rietveld method and Rietica program, shows amalgam with Cu 29% concentration for Cu3Sn compound density is 31.790 sma/Å3, for Ag2Hg3 compound is 41.733 sma/ Å3, a Cu3Sn relative weight percentage of 43.23%, Ag2Hg3 of 54.54%, Cu 7Hg6 of 2.23% and hardness of Cu 29% is 90.700 ± 0.005 kgf/mm2. These numbers are the highest values on Cu 29% concentrations compared to other copper concentration variants. Whereas amalgam thermal expansion coefficient on Cu 29% is (2.17 ± 0.9110-3 mm/°C is the lowest value compared to other Cu concentration. The conclution is that adding Cu concentration into amalgam will increase density value, Cu3Sn relative weight percentage, hardness level and will decrease amalgam thermal expansion coefficient. Amalgam 29% Cu concentration has better physical properties compared to amalgam Cu 22% concentration.

  4. Variations in serum copper and ceruloplasmin levels in advanced gastrointestinal cancer treated with polychemotherapy.

    Science.gov (United States)

    Scanni, A; Tomirotti, M; Licciardello, L; Annibali, E; Biraghi, M; Trovato, M; Fittipaldi, M; Adamoli, P; Curtarelli, G

    1979-06-30

    Serum copper and ceruloplasmin levels (SCL, SCeL) in 57 patients with advanced cancer of the stomach (35 cases) or large intestine (22 cases) treated with polychemotherapy were studies. In gastroenteric cancer, SCL, which are already high in untreated patients, have a tendency to increase further in cases of progression of the disease, while they seem to significantly decrease in cases of remission. SCeL during the trial appeared to be correlated to the clinical evolution of the disease only in the case of stomach cancer. In large intestine cancer, SCeL did not show any significant variation in relation to the normal range. These observations, in particular on the behavior of SCL in the neoplasms of the digestive tract, are in accordance with the results of other studies. The authors are inclined to attach a diagnostic and prognostic value to the variation in SCL and SCeL in gastrointestinal cancer.

  5. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    Science.gov (United States)

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.

  6. Simultaneous SERS detection of copper and cobalt at ultratrace levels.

    Science.gov (United States)

    Tsoutsi, Dionysia; Guerrini, Luca; Hermida-Ramon, Jose Manuel; Giannini, Vincenzo; Liz-Marzán, Luis M; Wei, Alexander; Alvarez-Puebla, Ramon A

    2013-07-07

    We report a SERS-based method for the simultaneous and independent determination of two environmental metallic pollutants, Cu(ii) and Co(ii). This was achieved by exploiting the coordination-sensitive Raman bands of a terpyridine (TPY) derivative for detecting transition metal ions. Changes in the vibrational SERS spectra of dithiocarbamate anchored terpyridine (TPY-DTC) were correlated as a function of each metal ion concentration, with limits of detection comparable to those of several conventional analytical methods. Simultaneous detection of ultratrace levels of Co(ii) in the presence of high Cu(ii) concentration was also demonstrated, supporting the potential of this sensing strategy for monitoring potable water supplies.

  7. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  8. Dense superconducting phases of copper-bismuth at high pressure

    Science.gov (United States)

    Amsler, Maximilian; Wolverton, Chris

    2017-08-01

    Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu11Bi7 , were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pressures with high densities from ab initio calculations. In particular, a Cu2Bi compound is found to be thermodynamically stable at pressures above 59 GPa, crystallizing in the cubic Laves structure. In strong contrast to Cu11Bi7 and CuBi, cubic Cu2Bi does not exhibit any voids or channels. Since the bismuth lone pairs in cubic Cu2Bi are stereochemically inactive, the constituent elements can be closely packed and a high density of 10.52 g/cm3 at 0 GPa is achieved. The moderate electron-phonon coupling of λ =0.68 leads to a superconducting temperature of 2 K, which exceeds the values observed both in Cu11Bi7 and CuBi, as well as in elemental Cu and Bi.

  9. Serum Levels of Zinc, Copper, Vitamin B12, Folate and Immunoglobulins in Individuals with Giardiasis

    Directory of Open Access Journals (Sweden)

    M Zarebavani

    2012-12-01

    Full Text Available Background: Giardia lamblia is one of the most important intestinal parasites. The aim of this study was to measure serum levels of IgA, IgE, zinc, copper, vitamin B12 and folate in individuals with giardiasis in comparison to normal subjects.Methods: The study was carried out among 49 Giardia positive and 39 age and sex matched healthy volunteers. Examination of stool samples was done by direct wet smear and formol-ether concentration method. Serum samples were obtained for further laboratory examination. IgA levels were measured by Single Radial Immune Diffusion (SRID. IgE levels were measured by ELISA kit. Zinc and copper levels was measured by Ziestchem Diagnostics Kit and colorimetric endpoint-method respectively. Vitamin B12 and folate levels were measured by DRG Diagnostics Kit and Enzyme Immunoassay method respectively. All data were analyzed using SPSS version 17.Results: There was a statistically significant difference in IgA, IgE, copper and zinc levels between positive and negative groups (P<0.05. There was no significant difference between vitamin B12 and folate levels between the two groups. Mean values of Giardia positive and negative groups for IgA were 309.26 and 216.89 mg/dl, IgE 167.34 and 35.49 IU/ml, copper 309.74 and 253.61 µg/dl and zinc 69.41 and 144.75 µg/dl respectively.Conclusion: The results showed levels of IgA may correlate more closely with giardiasis than IgE. Regarding trace elements, giardiasis elevated serum copper levels, while it decreased serum zinc. Finally, there was no significant difference in serum levels of vitamin B12 and folic acid between the two groups.

  10. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  11. High level of copper application to soil and leaves reduce the growth and yield of tomato plants Altos níveis de cobre no solo e nas folhas reduz crescimento e produtividade de tomateiros

    Directory of Open Access Journals (Sweden)

    Sahriye Sonmez

    2006-06-01

    Full Text Available Copper-containing fertilizers, fungicides and bactericides are extensively used in greenhouses in Turkey. Informations on effects of these applications to plants are scarce. The aim of the present study was to investigate effects of Cu application to a calcareous soil and to leaves on the yield and growth of tomato plants. Cu was first applied to soil as CuSO4.5H2O in three different levels (0, 1000, and 2000 mg Cu kg-1 and then to leaves in three different frequencies (no application, biweekly and weekly using two cupric fungicides (Cu oxychloride, and Cu salts of fatty and rosin acids in pot experiments carried out in a computer-controlled greenhouse. Total yield, fruit number, dry root weight and plant height decreased with increasing Cu application to soil. Increasing levels of Cu applied to soil and leaves resulted in decreasing final fruit number, dry root weight and plant height in 4th, 5th and 6th weeks. Combined applications of Cu to soil and leaves could be more deleterious to plants than when Cu is applied only to soil or leaves.Fertilizantes, fungicidas e bactericidas cúpricos são usados em larga escala em casas de vegetação na Turquia. Informações sobre os efeitos das aplicações destes produtos sobre as plantas são escassas. Este trabalho investiga os efeitos da aplicação de Cu na forma de CuSO4.5H2O a um solo calcário (0, 1000 e 2000 mg Cu kg-1 e em cobertura (controle, semanal e duas vezes por semana, nas formas de oxicloreto de cobre ou calda bordalesa na produção total, número de frutas, peso seco da raiz e altura de tomateiros cultivados em casa de vegetação. Produtividade total, número de frutas por planta, peso seco da raiz e altura das plantas foram reduzidas pelo aumento da quantidade de Cu aplicado ao solo. O aumento da concentração de CU no solo e folhas diminuiu número final de frutos por planta, peso seco da raiz e altura da planta na quarta, quinta e sexta semanas. A aplicação combinada de Cu ao

  12. Effect of high soil copper concentration on mycorrhizal grapevines

    Science.gov (United States)

    Nogales, Amaia; Santos, Erika S.; Viegas, Wanda; Aran, Diego; Pereira, Sofia H.; Vidigal, Patricia; Lopes, Carlos M.; Abreu, M. Manuela

    2017-04-01

    Repeated application of Copper (Cu) based fungicides in vineyards since the end of the 19th century has led to a significant increase in the concentration of this chemical element in many viticultural soils. Although Cu is an essential micronutrient for most organisms, it can be toxic for the development and survival of plants and soil (micro)organisms at high concentrations and eventually lead to yield loses in viticulture, as it negatively affects key physiological and biogeochemical processes. However, some soil microorganisms, including arbuscular mycorrhizal fungi (AMF), have developed adaptive mechanisms for persistence in environments with supra-optimal levels of essential elements or in the presence of harmful ones, as well as for increasing plant tolerance to such abiotic stress conditions. The objective of this work was to evaluate the effect of a high total soil concentration of Cu on microbial soil activity as well as on the development of mycorrhizal and non-mycorrhizal grapevines. A microcosm assay was set up under greenhouse and controlled conditions. Touriga Nacional grapevine variety plants grafted onto 1103P rootstocks were inoculated either with the AMF Rhizophagus irregularis or Funneliformis mosseae, or were left as non-inoculated controls. After three months, they were transplanted to containers filled with 4 kg of a sandy soil (pH: 7.0; electrical conductivity: 0.08 mS/cm; [organic C]: 5.6 g/kg; [N-NO3]: 1.1 mg/kg; [N-NH4]: 2.5 mg/kg; [extractable K]: 45.1 mg/kg; [extractable P]: 52.3 mg/kg), collected near to a vineyard in Pegões (Portugal). Two treatments were carried out: with and without Cu application. The soil with high Cu concentration was prepared by adding 300 mg Cu/kg (in the form of an aqueous solution of CuSO4·5H2O) followed by an incubation during four weeks in plastic bags at room temperature in dark. Physico-chemical soil characteristics (pH, electrical conductivity and nutrients concentration in available fraction), soil

  13. Comparison of serum levels of copper and zinc among multiple sclerosis patients and control group.

    Directory of Open Access Journals (Sweden)

    Behnaz Sedighi

    2013-12-01

    Full Text Available There have been several studies done on the role of metals in the occurrence of multiple sclerosis (MS disease, but their roles have not been confirmed yet. Because of the lack of information on this issue, this study compared the serum level of copper and zinc in MS patients with their levels in a control group.This was an analytical, cross-sectional study conducted in Kerman (a medium size city, Iran. We assessed the serum level of copper and zinc in 58 MS patients and 39 healthy individuals, who were selected from the relatives of cases and matched for age and sex.The average serum level of Copper in cases and controls were 93.7 and 88.9 ml/dl, respectively. The corresponding numbers for Zinc were 36.7 and 40.9 ml/dl, respectively. There was no significant difference between the two groups (copper: P = 0.459; zinc: P = 0.249.The groups were matched for age, sex, and family. However, we did not find a considerable difference between the level of these metals in MS patients and controls.

  14. Serum Zinc, Copper, Magnesium and Selenium Levels in Children with Helicobacter Pylori Infection.

    Science.gov (United States)

    Öztürk, Nurinnisa; Kurt, Nezahat; Özgeriş, Fatma Betül; Baygutalp, Nurcan Kılıç; Tosun, Mahya Sultan; Bakan, Nuri; Bakan, Ebubekir

    2015-06-01

    Helicobacter pylori infection can cause disease from mild to severe that may be accompanied by micronutrient deficiencies. We aimed to investigate serum zinc, copper, magnesium and selenium levels in Helicobacter pylori positive children. Thirty-four children, with chronic abdominal pain and diag-nosed to be Helicobacter pylori-positive and 20 healthy children with the same demo-graphic characteristics were included in the study. Serum zinc, copper and magnesium levels were measured in the flame unit of atomic absorption spectrophotometer, selenium levels were measured in the graphite unit of the same atomic absorption spectrophotometer. Serum zinc levels were significantly higher and serum magnesium levels were significantly lower (p0.05). There was no significant difference between serum selenium levels of two groups. We concluded that in Helicobacter pylori-positive children, many trace elements and mineral metabolism may change.

  15. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Directory of Open Access Journals (Sweden)

    Jorge Escobar

    2010-01-01

    Full Text Available Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance.

  16. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Science.gov (United States)

    Escobar, Jorge; Varela-Nallar, Lorena; Coddou, Claudio; Nelson, Pablo; Maisey, Kevin; Valdés, Daniel; Aspee, Alexis; Espinosa, Victoria; Rozas, Carlos; Montoya, Margarita; Mandiola, Cristian; Rodríguez, Felipe E.; Acuña-Castillo, Claudio; Escobar, Alejandro; Fernández, Ricardo; Diaz, Hernán; Sandoval, Mario; Imarai, Mónica; Rios, Miguel

    2010-01-01

    Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance. PMID:21253489

  17. High-performance copper alloy films for barrierless metallization

    Science.gov (United States)

    Lin, C. H.; Leau, W. K.; Wu, C. H.

    2010-11-01

    In this study, we observe useful properties of V1.1- and V0.8N0.4-bearing copper (Cu) films deposited on barrierless silicon (Si) substrates by a cosputtering process. The Cu98.8(V0.8N0.4), or Cu(VNx) for brevity, films exhibit low resistivity (2.9 μΩ cm) and minimal leakage current after annealing at temperatures up to 700 °C for 1 h; no detectable reaction occurs at the Cu/Si interface. These observations confirm the high thermal stability of Cu(VNx) films. Furthermore, since these films have good adhesion features, they can be used for barrierless Cu metallization.

  18. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity.

    Science.gov (United States)

    Tsai, Chia-Yang; Chang, Wei-Chen; Chen, Guan-Lin; Chung, Cheng-Huan; Liang, Jun-Xiang; Ma, Wei-Yang; Yang, Tsun-Neng

    2015-12-01

    Conductive ink using copper nanoparticles has attracted much attention in the printed electronics industry because of its low cost and high electrical conductivity. However, the problem of easy oxidation under heat and humidity conditions for copper material limits the wide applications. In this study, antioxidative copper inks were prepared by dispersing the nanoparticles in the solution, and then conductive copper films can be obtained after calcining the copper ink at 250 °C in nitrogen atmosphere for 30 min. A low sheet resistance of 47.6 mΩ/□ for the copper film was measured by using the four-point probe method. Importantly, we experimentally demonstrate that the electrical conductivity of copper films can be improved by increasing the calcination temperature. In addition, these highly conductive copper films can be placed in an atmospheric environment for more than 6 months without the oxidation phenomenon, which was verified by energy-dispersive X-ray spectroscopy (EDS). These observations strongly show that our conductive copper ink features high antioxidant properties and long-term stability and has a great potential for many printed electronics applications, such as flexible display systems, sensors, photovoltaic cells, and radio frequency identification.

  19. Data on copper level in the blood of patients with normal and abnormal angiography

    Directory of Open Access Journals (Sweden)

    Leila Amiri

    2016-12-01

    Full Text Available In this data article, we measured the levels of copper in the blood of patients undergoing coronary angiography. The samples were taken from patients with cardiovascular disease in Bushehr׳s university hospital, Iran. Patients were divided in two groups: normal angiography and abnormal angiography. After the chemical digestion of samples, the concentration levels of Cu in both groups were determined by using inductively coupled plasma optical spectrometry (ICP-OES.

  20. Data on copper level in the blood of patients with normal and abnormal angiography.

    Science.gov (United States)

    Amiri, Leila; Movahed, Ali; Iranpour, Dariush; Ostovar, Afshin; Raeisi, Alireza; Keshtkar, Mozhgan; Hajian, Najmeh; Dobaradaran, Sina

    2016-12-01

    In this data article, we measured the levels of copper in the blood of patients undergoing coronary angiography. The samples were taken from patients with cardiovascular disease in Bushehr׳s university hospital, Iran. Patients were divided in two groups: normal angiography and abnormal angiography. After the chemical digestion of samples, the concentration levels of Cu in both groups were determined by using inductively coupled plasma optical spectrometry (ICP-OES).

  1. Through-glass copper via using the glass reflow and seedless electroplating processes for wafer-level RF MEMS packaging

    Science.gov (United States)

    Lee, Ju-Yong; Lee, Sung-Woo; Lee, Seung-Ki; Park, Jae-Hyoung

    2013-08-01

    We present a novel method for the fabrication of void-free copper-filled through-glass-vias (TGVs), and their application to the wafer-level radio frequency microelectromechanical systems (RF MEMS) packaging scheme. By using the glass reflow process with a patterned silicon mold, a vertical TGV with smooth sidewall and fine pitch could be achieved. Bottom-up void-free filling of the TGV is successfully demonstrated through the seedless copper electroplating process. In addition, the proposed process allows wafer-level packaging with glass cap encapsulation using the anodic bonding process, since the reflowed glass interposer is only formed in the device area surrounded with silicon substrate. A simple coplanar waveguide (CPW) line was employed as the packaged device to evaluate the electrical characteristics and thermo-mechanical reliability of the proposed packaging structure. The fabricated packaging structure showed a low insertion loss of 0.116 dB and a high return loss of 35.537 dB at 20 GHz, which were measured through the whole electrical path, including the CPW line, TGVs and contact pads. An insertion loss lower than 0.1 dB and a return loss higher than 30 dB could be achieved at frequencies of up to 15 GHz, and the resistance of the single copper via was measured to be 36 mΩ. Furthermore, the thermo-mechanical reliability of the proposed packaging structure was also verified through thermal shock and pressure cooker test.

  2. Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons.

    Science.gov (United States)

    Spisni, Enzo; Valerii, Maria Chiara; Manerba, Marcella; Strillacci, Antonio; Polazzi, Elisabetta; Mattia, Toni; Griffoni, Cristiana; Tomasi, Vittorio

    2009-07-01

    Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1alpha, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.

  3. Thiamin, selenium, and copper levels in patients with idiopathic dilated cardiomyopathy taking diuretics

    Directory of Open Access Journals (Sweden)

    Sérgio da Cunha

    2002-11-01

    Full Text Available OBJECTIVE: To analyze the association of thiamin, selenium, and copper serum levels with cardiac function in patients with idiopathic dilated cardiomyopathy using diuretics, and also to compare them with levels in control patients with no evidence of disease. METHODS: The study comprised 30 patients with heart disease and 30 healthy control individuals. Thiamin was analyzed by measuring the activity of erythrocytic transketolase and the effect of thiamin pyrophosphate. Selenium and copper serum levels were measured by hydride generation and flame atomic absorption spectrophotometry, respectively. RESULTS: Thiamin deficiency was observed in 10% of the control individuals and in 33% of the patients with heart disease (p=0.02. The mean selenium and copper serum levels in control individuals and patients with heart disease were, respectively, 73.2±9.9 µg/L (56.5 to 94.5 µg/L and 72.3±14.3 µg/L (35.5 to 94 µg/L (p=0.77; 1.1±0.4mg/L (0.6 to 1.8mg/L and 1.2± 0.4mg/L (0.6 to 2.2mg/L (p=0.27. No association between the levels of these nutrients and cardiac function was observed. CONCLUSION: Thiamin deficiency was significantly more frequent in patients with heart disease. No significant difference was observed between the mean selenium and copper serum levels in control individuals and in patients with heart disease. The results suggest possible benefits with thiamin replacement in patients taking diuretics.

  4. Five Major State-Level Copper,Lead, Zinc Resource Succession Bases in Tibet Have Initially Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    According to the Chengdu Center of China Geological Survey,five major state-level copper-lead-zinc resource succession bases in Tibet have initially taken shape,featuring tremendous resource potentials.It has been learned that these five major resource succession bases are respectively copper-lead-zinc molybdenum iron prospecting development base in Central Tibet,chromite

  5. Highly Stable Transparent Electrodes Made from Copper Nanotrough Coated with AZO/Al2O3.

    Science.gov (United States)

    Li, Peng; Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Liu, Yichun

    2016-04-01

    Due to their high flexibility, high conductivity and high transparency in a wide spectrum range, metal nanowires and meshes are considered to be two of the most promising candidates to replace the traditional transparent conducting films, such as tin doped indium oxide. In this paper, transparent conducting films made from copper nanotroughs are prepared by the electrospinning of polymer fibers and subsequent thermal evaporation of copper. The advantages of the technique include low junction resistance, low cost and low preparation temperature. Although the copper nanotrough transparent conducting films exhibited a low sheet resistance (19.2 Ω/sq), with a high transmittance (88% at 550 nm), the instability of copper in harsh environments seriously hinders its applications. In order to improve the stability of the metal transparent conducting films, copper nanotroughs were coated with 39 nm thick aluminum-doped zinc oxide and 1 nm thick aluminum oxide films by atomic layer deposition. The optical and electrical measurements show that coating copper nanotrough with oxides barely reduces the transparency of the films. It is worth noting that conductive oxide coating can effectively protect copper nanotroughs from thermal oxidation or acidic corrosion, whilst maintaining the same flexibility as copper nanotroughs on its own.

  6. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences

    Science.gov (United States)

    Miller, M. K.; Powers, K. A.; Nanstad, R. K.; Efsing, P.

    2013-06-01

    The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ˜2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.

  7. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    Science.gov (United States)

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  8. Effect of Self-etch Adhesives on Self-sealing Ability of High-Copper Amalgams

    Science.gov (United States)

    Moazzami, Saied Mostafa; Moosavi, Horieh; Moddaber, Maryam; Parvizi, Reza; Moayed, Mohamad Hadi; Mokhber, Nima; Meharry, Michael; B Kazemi, Reza

    2016-01-01

    Statement of the Problem: Similar to conventional amalgam, high-copper amalgam alloy may also undergo corrosion, but it takes longer time for the resulting products to reduce microleakage by sealing the micro-gap at the tooth/amalgam interface. Purpose: The aim of this study was to evaluate the effect of self-etch adhesives with different pH levels on the interfacial corrosion behavior of high-copper amalgam restoration and its induction potential for self-sealing ability of the micro-gap in the early hours after setting by means of Electro-Chemical Tests (ECTs). Materials and Method: Thirty cylindrical cavities of 4.5mm x 4.7mm were prepared on intact bicuspids. The samples were divided into five main groups of application of Adhesive Resin (AR)/ liner/ None (No), on the cavity floor. The first main group was left without an AR/ liner (No). In the other main groups, the types of AR/ liner used were I-Bond (IB), Clearfil S3 (S3), Single Bond (SB) and Varnish (V). Each main group (n=6) was divided into two subgroups (n=3) according to the types of the amalgams used, either admixed ANA 2000 (ANA) or spherical Tytin (Tyt). The ECTs, Open Circuit Potential (OCP), and the Linear Polarization Resistance (LPR) for each sample were performed and measured 48 hours after the completion of the samples. Results: The Tyt-No and Tyt-IB samples showed the highest and lowest OCP values respectively. In LPR tests, the Rp values of ANA-V and Tyt-V were the highest (lowest corrosion rate) and contrarily, the ANA-IB and Tyt-IB samples, with the lowest pH levels, represented the lowest Rp values (highest corrosion rates). Conclusion: Some self-etch adhesives may increase interfacial corrosion potential and self-sealing ability of high-copper amalgams. PMID:27942548

  9. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings.

    Science.gov (United States)

    Zengin, Fikriye Kirbag; Kirbag, Sevda

    2007-07-01

    The effect of copperchloride (CuCl2) on the level of chlorophyll (a+b), proline, protein and abscisic acid in sunflower (Helianthus annuus L.) seedlings were investigated Control and copper treated (0.4, 0.5 and 0.6 mM) seedlings were grown for ten days in Hoagland solution. Abscisic acid content was determined in root, shoot and leaf tissues of seedlings by HPLC. Copper stress caused significant increase of the abscisic acid contents in roots, shoots and leaves of seedlings. The increase was dependent on the copper salt concentration. Enhanced accumulation of proline in the leaves of seedlings exposed to copper was determined, as well as a decrease of chlorophyll (a+b) and total protein (p Helianthus annuus L.) seedlings. Thus, we assumed that copper levels increase above some critical points seedling growth get negative effects. This assumption is in line with previous findings.

  10. Laser-Assisted Reduction of Highly Conductive Circuits Based on Copper Nitrate for Flexible Printed Sensors

    Science.gov (United States)

    Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming

    2017-10-01

    Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.

  11. GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) is a new high-temperature copper-based alloy. It possesses excellent high-temperature strength, creep resistance and low-cycle fatigue up to 700 C (1292 F) along with low thermal expansion and good conductivity. GRCop-84 can be processed and joined by a variety of methods such as extrusion, rolling, bending, stamping, brazing, friction stir welding, and electron beam welding. Considerable mechanical property data has been generated for as-produced material and following simulated braze cycles. The data shows that the alloy is extremely stable during thermal exposures. This paper reviews the major GRCop-84 mechanical and thermophysical properties and compares them to literature values for a variety of other high-temperature copper-based alloys.

  12. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Mehmet Akin

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS: 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5 mg kg-1 propofol, 1 mg kg-1 lidocaine and 0.6 mg kg-1 rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4 L min-1, 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4 L min-1 6 mg kg h-1 propofol and 1 µg kg h-1 fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS: It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION: According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.

  13. [Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity].

    Science.gov (United States)

    Akın, Mehmet; Ayoglu, Hilal; Okyay, Dilek; Ayoglu, Ferruh; Gür, Abdullah; Can, Murat; Yurtlu, Serhan; Hancı, Volkan; Küçükosman, Gamze; Turan, Işıl

    2015-01-01

    In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5mgkg(-1) propofol, 1mgkg(-1) lidocaine and 0.6mgkg(-1) rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4Lmin(-1), 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4Lmin(-1) 6mgkgh(-1) propofol and 1μgkgh(-1) fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    Directory of Open Access Journals (Sweden)

    Ruijin Liao

    2015-08-01

    Full Text Available The main insulation system in high-voltage direct current (HVDC transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the pigtail model were conducted at 130 °C in laboratory. Scanning electron microscopy (SEM was used to observe the surface of copper and paper. Pulse electroacoustic (PEA and thermally stimulated current (TSC methods were used to obtain the space charge behavior in paper. Results showed that both maximum and total amount of space charge increased for the insulation paper contaminated by semi-conductor chemical substance copper sulfide. The space charge decay rate of contaminated paper was significantly enhanced after the polarization voltage was removed. The TSC results revealed that copper sulfide increased the trap density and lowered the shallow trap energy levels. These results contributed to charge transportation by de-trapping and trapping processes. This improved charge transportation could be the main reason for the decreased breakdown voltage of paper insulation material.

  15. Elevated circulating levels of copper and nickel are found in elderly subjects with left ventricular hypertrophy.

    Science.gov (United States)

    Lind, P Monica; Olsén, Lena; Lind, Lars

    2012-12-01

    Identified risk factors for left ventricular hypertrophy (LVH) are hypertension, diabetes and obesity. However, since these risk factors only explain a part of the variation in left ventricular mass, we investigated if trace and heavy metals might also play a role in LVH. In the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study, left ventricular mass index (LVMI) and relative wall thickness (RWT) were determined by echocardiography together with eleven different trace and heavy metals in 993 subjects aged 70 years. Only copper levels were significantly related to LVMI following adjustment for sex, blood pressure, antihypertensive treatment, diabetes and body mass index (BMI) (p<0.0001). However, both copper (Cu) and nickel (Ni) were related to RWT following adjustment (p<0.0001). When divided into four geometric groups, both Cu and Ni were elevated in subjects with concentric remodelling and concentric LVH, but not in those with eccentric hypertrophy, when compared to subjects with a normal left ventricle. No relationships were found for zinc, aluminium, manganese, molybdenum, mercury, lead, cadmium, cobalt or chromium. Elevated levels of copper and nickel are found in elderly subjects with LVH, especially of the concentric type, following adjustment for known risk factors for LVH. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. High level binocular rivalry effects

    Directory of Open Access Journals (Sweden)

    Michal eWolf

    2011-12-01

    Full Text Available Binocular rivalry (BR occurs when the brain cannot fuse percepts from the two eyes because they are different. We review results relating to an ongoing controversy regarding the cortical site of the BR mechanism. Some BR qualities suggest it is low-level: 1 BR, as its name implies, is usually between eyes and only low levels have access to utrocular information. 2 All input to one eye is suppressed: blurring doesn’t stimulate accommodation; pupilary constrictions are reduced; probe detection is reduced. 3 Rivalry is affected by low level attributes, contrast, spatial frequency, brightness, motion. 4 There is limited priming due to suppressed words or pictures. On the other hand, recent studies favor a high level mechanism: 1 Rivalry occurs between patterns, not eyes, as in patchwork rivalry or a swapping paradigm. 2 Attention affects alternations. 3 Context affects dominance. There is conflicting evidence from physiological studies (single cell and fMRI regarding cortical level(s of conscious perception. We discuss the possibility of multiple BR sites and theoretical considerations that rule out this solution.We present new data regarding the locus of the BR switch by manipulating stimulus semantic content or high-level characteristics. Since these variations are represented at higher cortical levels, their affecting rivalry supports high-level BR intervention. In Experiment I, we measure rivalry when one eye views words and the other nonwords and find significantly longer dominance durations for nonwords. In Experiment II, we find longer dominance times for line drawings of simple, structurally impossible figures than for similar, possible objects. In Experiment III, we test the influence of idiomatic context on rivalry between words. Results show that generally words within their idiomatic context have longer mean dominance durations. We conclude that Binocular Rivalry has high-level cortical influences, and may be controlled by a high-level

  17. Elevated copper levels during larval development cause altered locomotor behavior in the adult carabid beetle Pterostichus cupreus L. (Coleoptera: Carbidae)

    DEFF Research Database (Denmark)

    Bayley, M; Baatrup, E; Heimbach, U

    1995-01-01

    It is generally believed that copper causes changes in carabid communities indirectly by reducing food availability, because these animals are frequently found to have only slightly elevated metal contents even close to pollution sources. Using computer-centered video tracking, the locomotor...... behavior of adult Pterostichus cupreus carabid beetles was quantified after being raised on copper-contaminated food and soil during larval development. Copper was found to have an acute toxic effect measured in larval mortality, to cause a slight increase in the developmental period of males......, but not to effect the emergence weights of adults of either sex. This toxic effect on the larvae was preserved through pupation to the surviving adults, which were normal in size and appearance, but displayed a dramatically depressed locomotor behavior. Copper analysis of these adults revealed that copper levels...

  18. Influence of Rangelia vitalii (Apicomplexa: Piroplasmorida) on copper, iron, and zinc bloodstream levels in experimentally infected dogs.

    Science.gov (United States)

    Da Silva, Aleksandro S; França, Raqueli T; Costa, Marcio M; Paim, Carlos B V; Paim, Francine C; Santos, Clarissa M M; Flores, Erico M M; Eilers, Tiago L; Mazzanti, Cinthia M; Monteiro, Silvia G; do Amaral, Carlos H; Lopes, Sonia T A

    2012-10-01

    The aim of this study was to evaluate the concentrations of copper, iron, and zinc in blood serum of dogs experimentally infected with Rangelia vitalii (n  =  7) compared with uninfected controls (n  =  5). Serum metal levels were determined in blood samples collected at days 0, 10, 15, and 20 post-infection (PI). Inductively coupled plasma optical emission spectrometry was used to measure the levels of copper, iron, and zinc. Significant differences (P disease.

  19. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients.

    Science.gov (United States)

    Kazi, Tasneem Gul; Afridi, Hassan Imran; Kazi, Naveed; Jamali, Mohammad Khan; Arain, Mohammad Bilal; Jalbani, Nussarat; Kandhro, Ghulam Abbas

    2008-04-01

    There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease. The aim of present study was to compare the level of essential trace elements, chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn) in biological samples (whole blood, urine, and scalp hair) of patients who have diabetes mellitus type 2 (n = 257), with those of nondiabetic control subjects (n = 166), age ranged (45-75) of both genders. The element concentrations were measured by means of an atomic absorption spectrophotometer after microwave-induced acid digestion. The validity and accuracy was checked by conventional wet-acid-digestion method and using certified reference materials. The overall recoveries of all elements were found in the range of (97.60-99.49%) of certified values. The results of this study showed that the mean values of Zn, Mn, and Cr were significantly reduced in blood and scalp-hair samples of diabetic patients as compared to control subjects of both genders (p < 0.001). The urinary levels of these elements were found to be higher in the diabetic patients than in the age-matched healthy controls. In contrast, high mean values of Cu and Fe were detected in scalp hair and blood from patients versus the nondiabetic subjects, but the differences found in blood samples was not significant (p < 0.05). These results are consistent with those obtained in other studies, confirming that deficiency and efficiency of some essential trace metals may play a role in the development of diabetes mellitus.

  20. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile.

    Science.gov (United States)

    De Gregori, Ida; Fuentes, Edwar; Rojas, Mariela; Pinochet, Hugo; Potin-Gautier, Martine

    2003-04-01

    This paper reports a comparative study of the concentration of three important environmental elements that are often found together in mineral deposits and then associated with mining activities; copper, arsenic and antimony. These elements were determined in 26 different agricultural soils from regions I, II and V in Chile, zones where the most important and biggest copper industries of this country are located. As background levels of these elements in soils have not been well established, in this study, both, impacted and non-impacted agricultural soils from different regions were considered. The relationships between the concentrations of these elements in soils were also examined. The concentration ranges for copper, arsenic and antimony were 11-530; 2.7-202 and 0.42-11 mg kg(-1) respectively. The copper concentrations in non-polluted soils from the north and central zone of Chile were similar. However, three sites from the north region have copper concentration as higher as 100 mg kg(-1), values that exceed the critical concentration for copper in soils. The concentration of arsenic and antimony in the north soils were higher than in non-impacted ones and, in the case of arsenic, greatly exceeded the world average concentration reported for this element in soils. The highest arsenic and antimony concentrations were found in Calama and Quillagua soils, two different sites in the Loa valley. The arsenic/antimony concentration ratio was higher in Quillagua soil. The high concentrations of three elements determined in impacted soils from region V (Puchuncaví and Catemu valleys) clearly shows the impact produced in this zone by the industrial and mining activities developed in their proximities. At Puchuncaví valley a clear decrease was observed in copper, arsenic and antimony concentrations in soils on the function of the distance from the industrial complex "Las Ventanas", and all concentrations exceeded the reported critical values for this matrix. Instead at

  1. Effects of low-level lead and arsenic exposure on copper smelter workers

    Energy Technology Data Exchange (ETDEWEB)

    Lilis, R.; Valciukas, J.A.; Malkin, J.; Weber, J.P.

    An analysis of reported symptoms and their relationship with indicators of lead absorption - blood lead (Pb-B) and zinc protoporphyrin (ZPP) - and of arsenic absorption - urinary arsenic (As-U) - was undertaken among 680 active copper smelter workers. Lead and arsenic absorption in the copper smelter employees were characterized by the median values of 30.4 ..mu..g/dl for Pb-B, 41.5 ..mu..g/dl for ZPP, and 26 ..mu..g/L for As-U. Blood lead was 40 ..mu..g/dl or higher in 16.7% or cases, ZPP was 50 ..mu..g/dl or higher in 31.2%, and urinary arsenic was 50 ..mu..g/L or higher in 16.4% of currently active copper smelter workers. The number of reported symptoms (from a total of 14 symptoms) increased with ZPP levels; the relationship with Pb-B was less marked. Arsenic contributed relatively little. Mean Pb-B, ZPP, and As-U levels for subjects reporting each of the 14 symptoms were compared with those of subjects who did not report the symptoms. Mean Pb-B was found to differ significantly for one symptom, fatigue. Significant differences in mean ZPP levels were found for fatigue, sleep disturbances, weakness, paresthesia, and joint pain. Prevalence rates for these symptoms rose more markedly with increasing ZPP than with Pb-B levels. The results indicate a relationship between certain CNS and musculo-skeletal symptoms and increased lead absorption in this population. Adherence to exposure standards that preclude undue lead absorption and appropriate biological monitoring including ZPP levels, are necessary to prevent adverse, especially long-term, health effects.

  2. Efeitos da suplementação de alto nível de cobre e de biotina na dieta de suínos de 8 a 20 kg Effects of high level of copper and biotin supplementation in the diet of weanling pigs (8 - 20 kg

    Directory of Open Access Journals (Sweden)

    J.F.M. Menten

    1992-01-01

    Full Text Available Dois experimentos foram conduzidos para investigar a necessidade de suplementação de biotina na dieta de leitões recém desmamados quando o cobre é utilizado como promotor de crescimento. Rações com níveis marginais de biotina (0,10 ppm, formuladas à base de trigo e farelo de soja, foram suplementadas ou não com 0,4 ppm de biotina (BIO e 250 ppm de cobre (COB e fornecidas a 168 leitões desmamados com 4 semanas de idade e peso médio de 7,8 kg. Os experimentos tiveram duração de 5 semanas. No experimento 1 houve uma interação BIO x COB (P 0,05. A suplementação conjunta de COB e BIO não melhorou o desempenho dos animais, em relação a sua suplementação individual.Two trials were carried out to investigate the need for supplemental biotin in the diet of weanling pigs when high dietary copper is used as growth promoter. Wheat - soybean meal based feeds, containing marginal levels of biotin (.10 ppm were supplemented or not with .4 ppm biotin (BIO and 250 ppm copper (COP. The diets were fed to 168 piglets weaned at 4 weeks of age with an average weight of 7.8 kg. The trials were conducted for 5 weeks. In trial 1 there was a BIO x COP interaction (P .05. The combination of supplemental BIO and COP did not result in further improvement in performance compared to the individual supplementation.

  3. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  4. Tensile and electrical properties of high-strength high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  5. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  6. High performance transparent conductor of graphene wrapped copper/nickel microgrids

    Science.gov (United States)

    Wu, Wei; Tassi, Nancy G.; Walls, Dennis J.; Zhang, Lei; Willner, Bruce

    2014-12-01

    A high performance, highly stable transparent conducting structure based on microscale copper/nickel grids wrapped with graphene is presented. Graphene is selectively deposited on the surfaces of the microgrids by atmospheric pressure chemical vapor deposition method. The optical transmittance of the copper/nickel microgrid sample is ˜80% over the visible and near-infrared spectra with a very small sheet resistance of ˜0.58 Ω/sq. After the high temperature deposition of graphene, the sample's transmittance increases to be ˜90% due to the line width reduction of the microgrids while the sheet resistance also increases to ˜5 Ω/sq. The graphene layer is deposited to keep the copper/nickel surfaces from being oxidized in the air. Both stability testing and composition spectra results confirm the long-term stability of the copper/nickel microgrids wrapped with graphene.

  7. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-12-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases ( i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  8. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-09-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases (i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  9. High performance 3D printed electronics using electroless plated copper

    OpenAIRE

    Jin Rong Jian; Taeil Kim; Jae Sung Park; Jiacheng Wang; Woo Soo Kim

    2017-01-01

    This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM) 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings...

  10. Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles.

    Science.gov (United States)

    Xiong, Jing; Wu, Xue-dong; Xue, Qun-ji

    2013-01-15

    Water-soluble and highly stable dispersions of copper nanoparticles were obtained using a biomolecule-assisted synthetic method. Dopamine was utilized as both reducing and capping agent in aqueous medium. The successful formation of DA-stabilized copper particles was demonstrated by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), Zeta potential measurement, and Fourier transform infrared spectroscopy (FT-IR). The mechanism of dopamine on the effective reduction and excellent stability of copper nanoparticles was also discussed. This facile biomolecule-assisted technique may provide a useful tool to synthesize other nanoparticles that have potential application in biotechnology.

  11. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters.

    Science.gov (United States)

    Lee, Ching-Chang; Shih, Tung-Seng; Chen, Hsiu-Ling

    2009-12-30

    Metallurgical processes, such as smelting, can generate organic impurities such as organic chloride chemicals, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The objective of this study was to elucidate the serum PCDD/F levels of 134 workers and ambient air levels around electric arc furnaces (EAF), secondary copper smelters and secondary aluminum smelters (ALSs) in Taiwan. The highest serum PCDD/F levels were found in the ALSs workers (21.9 pg WHO-TEQ/g lipid), with lower levels in copper smelter workers (21.5 pg WHO-TEQ/g lipid), and the lowest in the EAF plant workers (18.8 pg WHO-TEQ/g lipid). This was still higher than the levels for residents living within 5 km of municipal waste incinerators (14.0 pg WHO-TEQ/g lipid). For ambient samples, the highest ambient air PCDD/F level was in the copper smelters (12.4 pg WHO-TEQ/Nm(3)), with lower levels in ALSs (7.2 pg WHO-TEQ/Nm(3)), and the lowest in the EAF industry (1.8 pg WHO-TEQ/Nm(3)). The congener profiles were consistent in serum and in air samples collected in the copper smelters, but not for ALSs and EAF. In secondary copper smelters, the air PCDD/Fs levels might be directly linked to the PCDD/Fs accumulated in the workers due to the exceedingly stable congener pattern of the PCDD/F emission.

  12. The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil

    Directory of Open Access Journals (Sweden)

    Jianbo Liang

    2011-01-01

    Full Text Available We have investigated the effects of grain size and orientation of copper substrates for the growth of cupric oxide nanowires by thermal oxidation method. Long, less-roughness, high-density, and aligned cupric oxide nanowires have been synthesized by heating (200 oriented copper foils with small grain size in air gas. Long and aligned nanowires of diameter around 80 nm can only be formed within a short temperature range from 400 to 700°C. On the other hand, uniform, smooth-surface, and aligned nanowires were not formed in the case of larger crystallite size of copper foils with (111 and (200 orientation. Smaller grain size of copper foil with (200 orientation is favorable for the growth of highly aligned, smooth surface, and larger-diameter nanowires by thermal oxidation method.

  13. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.

    Science.gov (United States)

    Firkowska, Izabela; Boden, André; Boerner, Benji; Reich, Stephanie

    2015-07-08

    We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management.

  14. Assessing the Ultraviolet Exposure Level in Welding Workers of Sar-Cheshmeh Copper Complex

    Directory of Open Access Journals (Sweden)

    Javad Vatani

    2013-04-01

    Full Text Available Background: Because of being exposed to a wide range of ultraviolet radiations, welders are prone to eye and skin diseases. This study aims at determining the ultraviolet exposure level in welding workers of Sar-Cheshmeh Copper Complex.Materials and Methods: This cross-sectional study was conducted in 2010 on all welding workers of the complex using Hagner UV digital radiometer.Results: The mean value for the received ultraviolet radiation level was 0.09±0.045 j2/cm2. The level of UV exposure was significantly different (p=0.001 for the welders working in different units of the complex. The mineworkers received the highest level of radiation (0.14 j2/cm2.Conclusion: In this study, the ultraviolet exposure of welding workers is below the allowable threshold limit for UV radiation.

  15. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    Two copper alloys, dispersion-strengthened CuAl25 and precipitation-hardened CuCrZr, were examined under fatigue and fatigue with hold time loading conditions. Tests were carried out at room temperature and hold times were imposed at maximum tensile and maximum compressive strains. It was found...... times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...... the hold period at all applied strain levels in both tension and compression. In all cases, stresses relaxed quickly within the first few seconds of the hold period and much more gradually thereafter. The CuAl25 alloy showed a larger effect of hold time on reduction of high cycle fatigue life than did...

  16. Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients

    OpenAIRE

    Sarkar, A.; S; Dash; Barik, B. K.; Muttigi, Manjunatha S.; Kedage, V; Shetty, J. K.; Prakash, M.

    2010-01-01

    Presence of oxidative stress in type 2 diabetes mellitus (DM) is well proved. Current study was undertaken to know the relation between fasting plasma glucose (FPG) and copper along with antioxidants like total thiols and ceruloplasmin, and antioxidant enzyme glutathione S transferase (GST). The study group consisted of a total of 201 subjects which included nondiabetic healthy control subjects (n = 78) and diabetic patients (n = 123). Plasma total thiols, GST, copper and ceruloplasmin levels...

  17. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  18. High-level Petri Nets

    DEFF Research Database (Denmark)

    of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make...... there is only one kind of token and this means that the state of a place is described by an integer (and in many cases even by a boolean). In high-level nets each token can carry a complex information/data - which, e.g., may describe the entire state of a process or a data base. Today most practical...... by other papers. Thus, e.g., none of the original papers introducing the first versions of high-level Petri nets have been included. The introductions to the individual sections mention a number of researchers who have contributed to the development of high-level Petri nets. Detailed references...

  19. High performance 3D printed electronics using electroless plated copper

    Science.gov (United States)

    Jian, Jin Rong; Kim, Taeil; Park, Jae Sung; Wang, Jiacheng; Kim, Woo Soo

    2017-03-01

    This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM) 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings. Electroless plated copper thin film ensures 3D printed toroidal plastic structures to possess inductive behaviors. The inductance is demonstrated reliably with an applied source frequency from 100 kHz to 2 MHz as designs vary. An RL circuit is utilized to test the fabricated inductors' phase-leading characteristics with corresponding phase angle changes.

  20. High performance 3D printed electronics using electroless plated copper

    Directory of Open Access Journals (Sweden)

    Jin Rong Jian

    2017-03-01

    Full Text Available This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings. Electroless plated copper thin film ensures 3D printed toroidal plastic structures to possess inductive behaviors. The inductance is demonstrated reliably with an applied source frequency from 100 kHz to 2 MHz as designs vary. An RL circuit is utilized to test the fabricated inductors’ phase-leading characteristics with corresponding phase angle changes.

  1. Evaluation of Serum Superoxide Dismutase Activity, Malondialdehyde, and Zinc and Copper Levels in Patients With Keratoconus.

    Science.gov (United States)

    Kılıç, Raşit; Bayraktar, Aslhan Cavunt; Bayraktar, Serdar; Kurt, Ali; Kavutçu, Mustafa

    2016-12-01

    The aim of this study was to evaluate the relationship between antioxidant superoxide dismutase (SOD) enzyme activity, malondialdehyde (MDA) as a lipid peroxidation marker, and some trace elements such as zinc (Zn) and copper (Cu) levels in patients with keratoconus. A total of 58 patients with keratoconus and 53 control subjects with similar age and sex were evaluated in this study. The modified Krumeich keratoconus classification was used to divide the patients into 4 stages. Serum SOD activity, MDA, and zinc and copper levels were compared between the patient and control groups. The median serum SOD activity, MDA, and Zn and Cu levels were 27.2 (42.4-13.7) U/mL, 10.2 (11.9-8.5) nmol/mL, 87.9 (104.6-76.5) μmol/L, and 103.2 (117.9-90.3) μmol/L in the keratoconus group and 26.2 (32.5-14.4) U/mL, 8.8 (11.4-7.1) nmol/mL, 100.5 (121.1-81.8) μmol/L, and 98.4 (120.3-83.4) μmol/L in the control group, respectively. There was a statistically significant difference between the MDA and Zn levels of the keratoconus group and control subjects but not between the respective SOD activities or Cu levels (P = 0.016, P = 0.031, P = 0.440, and P = 0.376, respectively). We found no significant difference between the keratoconus group stages for serum SOD activity, serum MDA, and Zn and Cu levels (P > 0.05), and there was also no significant correlation between the keratoconus group stages and serum SOD activity, serum MDA, and Zn and Cu levels (P > 0.05). There is imbalance in the systemic oxidant/antioxidant status where Zn deficiency also plays a role in patients with keratoconus.

  2. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy

    Directory of Open Access Journals (Sweden)

    Zeynab KHERADMAND

    2014-07-01

    Full Text Available How to Cite This Article: Kheradmand Z, Yarali B, Zare A, Pourpak Z, Shams S, Ashrafi MR. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy. Iran J Child Neurol. 2014; 8(3:49-54. AbstractObjectiveTrace elements such as zinc and copper have physiological effects on neuronal excitability that may play a role in the etiology of intractable epilepsy. This topic has been rarely discussed in Iranian epileptic patients.This study with the analysis of serum zinc and copper levels of children and adolescents with intractable and controlled epilepsy may identifies the potential role of these two trace elements in the development of epilepsy and intractabilityto antiepileptic drug treatment. Materials & MethodsSeventy patients between the ages of 6 months to 15 years that referred to Children’s Medical Center with the diagnosis of epilepsy, either controlled or intractable to treatment enrolled in the study. After informed parental consent the levels of serum zinc and copper were measured with atomic absorptionspectrophotometer and analyzed with SPSS version 11.Results35 patients were enrolled in each group of intractable (IE and controlled epilepsy (CE. 71.45% of the IE and 25.72% of the CE group had zinc deficiency that was statistically significant. 48.58% of the IE and 45.72 of the CE group were copper deficient, which was not statistically significant.ConclusionOur findings showed significant low serum zinc levels of patients with intractable epilepsy in comparison with controlled epilepsy group. We recommend that serum zinc level may play a role in the etiology of epilepsy and intractable epilepsy therefore its measurement and prescription may be regarded in the treatment of intractable epilepsy.ReferencesMikati MA. Seizures in childhood. In: Kliegman RM, Stanton BF, Schor NF, Geme JWS, Behrman R (eds. Nelson textbook of pediatrics. 19th ed. Elsevier:Saunders; 2011. Pp

  3. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  4. Copper Decoration of Carbon Nanotubes and High Resolution Electron Microscopy

    Science.gov (United States)

    Probst, Camille

    A new process of decorating carbon nanotubes with copper was developed for the fabrication of nanocomposite aluminum-nanotubes. The process consists of three stages: oxidation, activation and electroless copper plating on the nanotubes. The oxidation step was required to create chemical function on the nanotubes, essential for the activation step. Then, catalytic nanoparticles of tin-palladium were deposited on the tubes. Finally, during the electroless copper plating, copper particles with a size between 20 and 60 nm were uniformly deposited on the nanotubes surface. The reproducibility of the process was shown by using another type of carbon nanotube. The fabrication of nanocomposites aluminum-nanotubes was tested by aluminum vacuum infiltration. Although the infiltration of carbon nanotubes did not produce the expected results, an interesting electron microscopy sample was discovered during the process development: the activated carbon nanotubes. Secondly, scanning transmitted electron microscopy (STEM) imaging in SEM was analysed. The images were obtained with a new detector on the field emission scanning electron microscope (Hitachi S-4700). Various parameters were analysed with the use of two different samples: the activated carbon nanotubes (previously obtained) and gold-palladium nanodeposits. Influences of working distance, accelerating voltage or sample used on the spatial resolution of images obtained with SMART (Scanning Microscope Assessment and Resolution Testing) were analysed. An optimum working distance for the best spatial resolution related to the sample analysed was found for the imaging in STEM mode. Finally, relation between probe size and spatial resolution of backscattered electrons (BSE) images was studied. An image synthesis method was developed to generate the BSE images from backscattered electrons coefficients obtained with CASINO software. Spatial resolution of images was determined using SMART. The analysis shown that using a probe

  5. RPython high-level synthesis

    Science.gov (United States)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  6. Serum level of Zinc and Copper among pregnant women of Jam area referred to Towhid Hospital,southern part of Bushehr

    Directory of Open Access Journals (Sweden)

    syead Mojtaba Jafari

    2015-05-01

    Full Text Available Background: Micronutrients are essential for the healthy growth and development of body organs and they have important roles in the function of immune and skeletal system . During pregnancy, due to the physiological changes for the normal growth of fetal, the need for minerals is significantly increased. The aim of this study was to find the status of serum copper and zinc and their relation to anemia in pregnant women. Materials and Methods: In this randomized, cross sectional descriptive study 250 pregnant women (mean age, 27.2±5.5 participated. They attended the medical center (In Jam area, Bushehr, Iran for routine checkups. Blood was collected from them and serum levels of Copper and Zinc were measured by atomic absorption spectrophothometric method. Hemoglobin and other indexes were measured by Automatic Counter analyzer. Results: the mean serum concentration of copper and Zinc were 126.5±56.7 g/dl and 67.6±18.2 g/dl respectively. Also the percentage of their deficiency was 21.2% and 47.2% respectively. The mean level of hemoglobin in the subjects was 11.9±1.2 and the percentage of anemia (Hb < 11g/dl was 21.6%. There was a significant differences between increases in gestational age and the deficiency of copper and zinc in the participants, which is as the pregnancy progress, the deficiency of Copper reduces (p=0.024 and that of Zinc increases(p=0.036. Conclusion: The results of this study showed that the deficiency of Copper, Zinc and the rate of anemia in the pregnant women of Jam area is significantly high and suggests that a proper interventional program should be planned to monitor such women at risk, before their marriage or in prenatal clinics.

  7. Effect of calcium, copper, and zinc levels in a rapeseed meal diet on mineral and trace element utilization in the rat.

    Science.gov (United States)

    Larsen, T; Sandström, B

    1992-11-01

    Mineral and trace element interactions were studied in a balance trial with rats. Calcium, copper, and zinc were supplied to a rapeseed meal diet in a factorial design. Animals were fed ad libitum, and absorption, excretion, and retention of the elements were evaluated either as fractions of total intake or in relation to nitrogen retention to account for differences in food intake and lean body mass increment. The intrinsic content of minerals and trace elements was sufficient to support growth at a rate that could be expected from the rapeseed protein quality. However, when calcium was included in the diet, the intrinsic dietary level of zinc appeared to be limiting, despite the fact that the zinc level was twice the recommended level. Additional zinc supply reversed growth impairment. This calcium-zinc interaction is believed to be owing to the formation of phytate complexes. Calcium addition influenced the calcium, phosphorus, magnesium, zinc, and iron--but not the copper--balances. The addition of calcium reduced the availability of the intrinsic zinc, whereas no effect was seen in the zinc-fortified groups. The availability of intrinsic copper was in a similar way significantly impaired by addition of dietary zinc, whereas copper-supplied groups were unaffected by zinc addition. Intrinsic iron availability was also dependent upon zinc addition, although in a more ambiguous way. Thus, addition of extrinsic minerals to a diet high in phytate can result in significant impairments of growth and mineral utilization.

  8. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    Directory of Open Access Journals (Sweden)

    Shi Chen

    2014-08-01

    Full Text Available The energy level alignment at the CH3NH3PbI3/copper phthalocyanine (CuPc interface is investigated by X-ray photoelectron spectroscopy (XPS and ultraviolet photoelectron spectroscopy (UPS. XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation – verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH3NH3PbI3, facilitating hole transfer from CH3NH3PbI3 to CuPc. However, subsequent hole extraction from CuPc may be impeded by the downward band bending in the CuPc layer.

  9. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shi; Goh, Teck Wee; Sum, Tze Chien, E-mail: Alfred@ntu.edu.sg, E-mail: Tzechien@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Sabba, Dharani; Chua, Julianto; Mathews, Nripan [Energy Research Institute @NTU (ERI-N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Huan, Cheng Hon Alfred, E-mail: Alfred@ntu.edu.sg, E-mail: Tzechien@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Institute of High Performance Computing, 1 Fusionopolis Way, #16–16 Connexis, Singapore 138632 (Singapore)

    2014-08-01

    The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/copper phthalocyanine (CuPc) interface is investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation – verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH{sub 3}NH{sub 3}PbI{sub 3}, facilitating hole transfer from CH{sub 3}NH{sub 3}PbI{sub 3} to CuPc. However, subsequent hole extraction from CuPc may be impeded by the downward band bending in the CuPc layer.

  10. Distribution of blood lead, blood cadmium, urinary cadmium, and urinary arsenic levels in employees of a copper smelter

    Energy Technology Data Exchange (ETDEWEB)

    Lilis, R.; Valciukas, J.A.; Weber, J.P.; Fischbein, A.; Nicholson, W.J.; Campbell, C.; Malkin, J.; Selikoff, I.J.

    1984-02-01

    A cross-sectional medical examination of a copper smelter work force included determination of blood lead (Pb-B), zinc protoporphyrin (ZPP), blood cadmium (Cd-B), urinary cadmium (Cd-U), and urinary arsenic (As-U), since it was known that such metal impurities were present in the copper concentrate. A total of 776 copper smelter employees (680 active and 96 retirees and ex-employees) were examined. Another 144 men, never employed in the smelter, but who had worked in copper mines (and sometimes in gold mines) were also examined. Mean Pb-B, ZPP, Cd-B, and As-U were significantly higher in active copper smelter employees than in retirees or miners, indicating exposure and absorption in the copper smelter. Significant correlations between Pb-B and Cd-B, and Cd-U and As-U were present, confirming the common source of absorption. Although there was evidence for an increased lead absorption, this was very moderate, with practically no Pb-B levels in excess of 60 ..mu..g/dl. A marked effect of smoking on blood cadmium levels was present; nevertheless, for all smoking categories Cd-B levels were significantly higher in active employees, indicating the independent contribution of exposure to cadmium in the smelter. Cd-U did not exceed 10 ..mu..g/g creatinine, the generally accepted critical level for the kidney, but was higher than 2 ..mu..g/g cretinine, a level very rarely exceeded in the general population, in a sizable proportion of those examined. The highest Cd-U levels were found in retired copper smelter employees; age might have been a contributing factor, besides a longer duration of exposure in the smelter.

  11. The CMS High Level Trigger

    CERN Document Server

    Adam, W; Deldicque, C; Ero, J; Frühwirth, R; Jeitler, Manfred; Kastner, K; Köstner, S; Neumeister, N; Porth, M; Padrta P; Rohringer, H; Sakulinb, H; Strauss, J; Taurok, A; Walzel, G; Wulz, C E; Lowette, S; Van De Vyver, B; De Lentdecker, G; Vanlaer, P; Delaere, C; Lemaître, V; Ninane, A; van der Aa, O; Damgov, J; Karimäki, V; Kinnunen, R; Lampen, T; Lassila-Perini, K M; Lehti, S; Nysten, J; Tuominiemi, J; Busson, P; Todorov, T; Schwering, G; Gras, P; Daskalakis, G; Sfyrla, A; Barone, M; Geralis, T; Markou, C; Zachariadou, K; Hidas, P; Banerjee, S; Mazumdara, K; Abbrescia, M; Colaleoa, A; D'Amato, N; De Filippis, N; Giordano, D; Loddo, F; Maggi, M; Silvestris, L; Zito, G; Arcelli, S; Bonacorsi, D; Capiluppi, P; Dallavalle, G M; Fanfani, A; Grandi, C; Marcellini, S; Montanari, A; Odorici, F; Travaglini, R; Costa, S; Tricomi, A; Ciulli, a V; Magini, N; Ranieri, R; Berti, L; Biasotto, M; Gulminia, M; Maron, G; Toniolo, N; Zangrando, L; Bellato, M; Gasparini, U; Lacaprara, S; Parenti, A; Ronchese, P; Vanini, S; Zotto, S; Ventura P L; Perugia; Benedetti, D; Biasini, M; Fano, L; Servoli, L; Bagliesi, a G; Boccali, T; Dutta, S; Gennai, S; Giassi, A; Palla, F; Segneri, G; Starodumov, A; Tenchini, R; Meridiani, P; Organtini, G; Amapane, a N; Bertolino, F; Cirio, R; Kim, J Y; Lim, I T; Pac, Y; Joo, K; Kim, S B; Suwon; Choi, Y I; Yu, I T; Cho, K; Chung, J; Ham, S W; Kim, D H; Kim, G N; Kim, W; CKim, J; Oh, S K; Park, H; Ro, S R; Son, D C; Suh, J S; Aftab, Z; Hoorani, H; Osmana, A; Bunkowski, K; Cwiok, M; Dominik, Wojciech; Doroba, K; Kazana, M; Królikowski, J; Kudla, I; Pietrusinski, M; Pozniak, Krzysztof T; Zabolotny, W M; Zalipska, J; Zych, P; Goscilo, L; Górski, M; Wrochna, G; Zalewski, P; Alemany-Fernandez, R; Almeida, C; Almeida, N; Da Silva, J C; Santos, M; Teixeira, I; Teixeira, J P; Varelaa, J; Vaz-Cardoso, N; Konoplyanikov, V F; Urkinbaev, A R; Toropin, A; Gavrilov, V; Kolosov, V; Krokhotin, A; Oulianov, A; Stepanov, N; Kodolova, O L; Vardanyan, I; Ilic, J; Skoro, G P; Albajar, C; De Troconiz, J F; Calderón, A; López-Virto, M A; Marco, R; Martínez-Rivero, C; Matorras, F; Vila, I; Cucciarelli, S; Konecki, M; Ashby, S; Barney, D; Bartalini, P; Benetta, R; Brigljevic, V; Bruno, G; Cano, E; Cittolin, S; Della Negra, M; de Roeck, A; Favre, P; Frey, A; Funk, W; Futyan, D; Gigi, D; Glege, F; Gutleber, J; Hansen, M; Innocente, V; Jacobs, C; Jank, W; Kozlovszky, Miklos; Larsen, H; Lenzi, M; Magrans, I; Mannelli, M; Meijers, F; Meschi, E; Mirabito, L; Murray, S J; Oh, A; Orsini, L; Palomares-Espiga, C; Pollet, L; Rácz, A; Reynaud, S; Samyn, D; Scharff-Hansen, P; Schwick, C; Sguazzoni, G; Sinanis, N; Sphicas, P; Spiropulu, M; Strandlie, A; Taylor, B G; Van Vulpen, I; Wellisch, J P; Winkler, M; Villigen; Kotlinski, D; Zurich; Prokofiev, K; Speer, T; Dumanoglu, I; Bristol; Bailey, S; Brooke, J J; Cussans, D; Heath, G P; Machin, D; Nash, S J; Newbold, D; Didcot; Coughlan, A; Halsall, R; Haynes, W J; Tomalin, I R; Marinelli, N; Nikitenko, A; Rutherford, S; Seeza, C; Sharif, O; Antchev, G; Hazen, E; Rohlf, J; Wu, S; Breedon, R; Cox, P T; Murray, P; Tripathi, M; Cousins, R; Erhan, S; Hauser, J; Kreuzer, P; Lindgren, M; Mumford, J; Schlein, P E; Shi, Y; Tannenbaum, B; Valuev, V; Von der Mey, M; Andreevaa, I; Clare, R; Villa, S; Bhattacharya, S; Branson, J G; Fisk, I; Letts, J; Mojaver, M; Paar, H P; Trepagnier, E; Litvine, V; Shevchenko, S; Singh, S; Wilkinson, R; Aziz, S; Bowden, M; Elias, J E; Graham, G; Green, D; Litmaath, M; Los, S; O'Dell, V; Ratnikova, N; Suzuki, I; Wenzel, H; Acosta, D; Bourilkov, D; Korytov, A; Madorsky, A; Mitselmakher, G; Rodríguez, J L; Scurlock, B; Abdullin, S; Baden, D; Eno, S; Grassi, T; Kunori, S; Pavlon, S; Sumorok, K; Tether, S; Cremaldi, L M; Sanders, D; Summers, D; Osborne, I; Taylor, L; Tuura, L; Fisher,W C; Mans6, J; Stickland, D P; Tully, C; Wildish, T; Wynhoff, S; Padley, B P; Chumney, P; Dasu, S; Smith, W H; CMS Trigger Data Acquisition Group

    2006-01-01

    At the Large Hadron Collider at CERN the proton bunches cross at a rate of 40MHz. At the Compact Muon Solenoid experiment the original collision rate is reduced by a factor of O (1000) using a Level-1 hardware trigger. A subsequent factor of O(1000) data reduction is obtained by a software-implemented High Level Trigger (HLT) selection that is executed on a multi-processor farm. In this review we present in detail prototype CMS HLT physics selection algorithms, expected trigger rates and trigger performance in terms of both physics efficiency and timing.

  12. Electrocrystallization of Monodisperse Nanocrystal Copper on Highly Oriented Pyrolytic Graphite Electrode

    Institute of Scientific and Technical Information of China (English)

    黄令; LEE,Eun-Sung; KIM,Kwang-Bum

    2005-01-01

    Mechanism of copper electrocrystallization on highly oriented pyrolytic graphite electrode from a solution of 1 mmol/L CuSO4 and 1.0 mol/L H2SO4 has been studied using cyclic voltammogram and chronoamperometry. The results show that in copper electrodeposition the charge-transfer step is fast and the rate of growth is controlled by the rate of mass transfer of copper ions to the growing centers. Reduction of Cu(Ⅱ) ions did not undergo underpotential deposition. The initial deposition kinetics of Cu electrocrystallization corresponds to a model including progressive nucleation and diffusion controlled growth. Copper nanocrystals with size of 75.6 nm and relative standard deviation of 9% can be obtained by modulation potential electrodeposition.

  13. Copper Chaperone for Cu/Zn Superoxide Dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc

    Directory of Open Access Journals (Sweden)

    L'Abbé Mary R

    2005-11-01

    Full Text Available Abstract Background Small increases in zinc (Zn consumption above recommended amounts have been shown to reduce copper (Cu status in experimental animals and humans. Recently, we have reported that copper chaperone for Cu/Zn superoxide dismutase (CCS protein level is increased in tissues of overtly Cu-deficient rats and proposed CCS as a novel biomarker of Cu status. Methods Weanling male Wistar rats were fed one of four diets normal in Cu and containing normal (30 mg Zn/kg diet or moderately high (60, 120 or 240 mg Zn/kg diet amounts of Zn for 5 weeks. To begin to examine the clinical relevance of CCS, we compared the sensitivity of CCS to mild Cu deficiency, induced by moderately high intakes of Zn, with conventional indices of Cu status. Results Liver and erythrocyte CCS expression was significantly (P P Conclusion Collectively, these data show that CCS is a sensitive measure of Zn-induced mild Cu deficiency and demonstrate a dose-dependent biphasic response for reduced Cu status by moderately high intakes of Zn.

  14. A STUDY ON RELATIONSHIP BETWEEN FASTING PLASMA GLUCOSE, COPPER AND CERULOPLASMIN LEVELS IN TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Rangaswamy

    2015-08-01

    Full Text Available INTRODUCTION: Diabetes mellitus (DM is an endocrine disease associated with hyperglycemia characterized by both insulin resistance and defective insulin secretion. Copper a transition metal is present in many tissues like liver, muscle etc., It can oxidize proteins and lipids which lead to increased production of free radical compounds. Ceruloplasmin an alpha 2 globulin is an acute phase copper containing plasma protein synthesized mainly by hepatic parenchymal cells, lymphocytes etc., Reactive oxygen species (ROS/ free radicals production due to hyperglycemia in diabetes mellitus can directly or indirectly alter the integrity and physiological function of cells. Present study was undertaken to study the relationship b etween fasting plasma glucose (FPG, copper and ceruloplasmin in type 2 Diabetes mellitus. MATERIALS AND METHODOLOGY: The study group consisted of a total 100 subjects which included non - diabetic healthy control subjects (n = 50 and type 2 diabetic patien ts (n = 50. Fasting blood samples were collected and analysed for estimation of fasting plasma glucose, serum copper and ceruloplasmin. RESULTS : Results shows increase in levels of copper and FPG (P<0.001 and decrease in ceruloplasmin (P<0.001 in type 2 DM patients compared to healthy controls. CONCLUSION: Our study shows an increase in copper and FPG with decreased levels of ceruloplasmin which may be due to generation of ROS which leads to increased consumption of available antioxidants in the body .

  15. The ALICE high level trigger

    Science.gov (United States)

    Alt, T.; Grastveit, G.; Helstrup, H.; Lindenstruth, V.; Loizides, C.; Röhrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestbø, A.; Vik, T.; Wiebalck, A.; the ALICE Collaboration

    2004-08-01

    The ALICE experiment at LHC will implement a high-level trigger system for online event selection and/or data compression. The largest computing challenge is posed by the TPC detector, which requires real-time pattern recognition. The system entails a very large processing farm that is designed for an anticipated input data stream of 25 GB s-1. In this paper, we present the architecture of the system and the current state of the tracking methods and data compression applications.

  16. Effect of Self-etch Adhesives on Self-sealing Ability of High-Copper Amalgams

    Directory of Open Access Journals (Sweden)

    Saied Mostafa Moazzami

    2016-12-01

    Full Text Available Statement of the Problem: Similar to conventional amalgam, high-copper amalgam alloy may also undergo corrosion, but it takes longer time for the resulting products to reduce microleakage by sealing the micro-gap at the tooth/amalgam interface. Purpose: The aim of this study was to evaluate the effect of self-etch adhesives with different pH levels on the interfacial corrosion behavior of high-copper amalgam restoration and its induction potential for self-sealing ability of the micro-gap in the early hours after setting by means of Electro-Chemical Tests (ECTs. Materials and Method: Thirty cylindrical cavities of 4.5mm x 4.7mm were prepared on intact bicuspids. The samples were divided into five main groups of application of Adhesive Resin (AR/ liner/ None (No, on the cavity floor. The first main group was left without an AR/ liner (No. In the other main groups, the types of AR/ liner used were I-Bond (IB, Clearfil S3 (S3, Single Bond (SB and Varnish (V. Each main group (n=6 was divided into two subgroups (n=3 according to the types of the amalgams used, either admixed ANA 2000 (ANA or spherical Tytin (Tyt. The ECTs, Open Circuit Potential (OCP, and the Linear Polarization Resistance (LPR for each sample were performed and measured 48 hours after the completion of the samples. Results: The Tyt-No and Tyt-IB samples showed the highest and lowest OCP values respectively. In LPR tests, the Rp values of ANA-V and Tyt-V were the highest (lowest corrosion rate and contrarily, the ANA-IB and Tyt-IB samples, with the lowest pH levels, represented the lowest Rp values (highest corrosion rates. Conclusion: Some self-etch adhesives may increase interfacial corrosion potential and self-sealing ability of high-copper amalgams. Keywords ● Electrochemical Test ● Dental Amalgam ● Corrosion ● Self-etch adhesive;

  17. The Influence of Long-Term Copper Contaminated Agricultural Soil at Different pH Levels on Microbial Communities and Springtail Transcriptional Regulation

    NARCIS (Netherlands)

    Boer, de T.E.; Tas, N.; Braster, M.; Temminghoff, E.J.M.; Roling, W.F.M.; Roelofs, D.

    2012-01-01

    Copper has long been applied for agricultural practises. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on t

  18. Using XAS and SXRF to Study Copper in Wilson Disease at the Molecular and Tissue Level

    Science.gov (United States)

    Ralle, Martina; Blackburn, Ninian J.; Lutsenko, Svetlana

    2007-02-01

    Wilson disease (WD) is a genetic disorder of copper metabolism associated with severe hepatic, neurological, and psychiatric abnormalities. In WD, the billiary copper excretion is impaired and copper accumulates in tissues, particularly in the liver and the brain. The affected gene, ATP7B, encodes the copper transporting ATPase, Wilson disease protein (WNDP). WNDP has six copper binding sites in the N-terminal portion of the molecule. Each site includes the conserved amino acid sequence MXCXXC, and binds 1 Cu(I) through its 2 cysteine residues. We performed X-ray absorption studies at the Cu Kα-edge on the recombinant N-terminal domain of WNDP (N-WNDP). Copper was bound to N-WNDP either in vivo or in vitro in the presence of different reducing agents. We found that in N-WNDP copper is predominantly coordinated in a linear fashion by two cysteines, with the appearance of a Cu-Cu interaction when all metal binding sites are filled. Increasing amounts of reducing agents containing sulfide or phosphine groups led to binding of the exogenous ligands to copper thereby increasing the coordination number of copper from two to three. To better understand the role of copper in WD, we utilized livers of the 6-weeks-old Atp7b-/- mice (an animal model for WD) in which the copper concentration was 10-20-fold higher compared to that of the control mice. The distribution of copper in hepatocytes was evaluated by synchrotron based X-ray fluorescence microprobe (SXRF). We demonstrate that we can prepare liver slices that retain copper and can detect copper with subcellular resolution. On the same sections μ-XANES (spot size: 5 micron) was used to determine the oxidation state of copper.

  19. Electrodeposition of copper from a copper sulfate solution using a packed-bed continuous-recirculation flow reactor at high applied electric current

    OpenAIRE

    Meshaal F. Alebrahim; I.A. Khattab; Sharif, Adel O.

    2015-01-01

    The purpose of this study is mainly to investigate the performance of a packed-bed continuous-recirculation flow reactor at high applied electric current in removing copper, Cu(II), from simulated electrolyte by electrodeposition. The effects of pHo, circulation rate of flow, initial copper concentration, intensity of the applied current and the method of application of electric current, as to have a constant value during all the time of electrolysis or to be decreased with time, on copper el...

  20. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    Science.gov (United States)

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW).

  1. Influences of copper on solidification structure and hardening behavior of high chromium cast irons

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XIONG Ji; FAN Hong-yuan; SHEN Bao-luo; GAO Sheng-ji

    2008-01-01

    The influences of copper on microstructure and the hardening behavior of high chromium cast irons subjected to sub-critical treatment were investigated.The results show that the mierostructure of the as-cast high chromium cast irons consists of retained austenite,martensite and M7 C3 type eutectic carbide.When copper is added into high chromium cast irons,austenite and carbide contents are increased.The increased addition of copper content from 0%to 1.84%leads to the increase of austenite and carbide from 15.9%and 20.0% to 61.0%and 35.5%,respectively.In the process of sub-critical treatment,the retained austenite in the matrix can be precipitated into secondary carbides and then transforms into martensite in cooling process,which causes the secondary hardening of the alloy under sub-critical treatment.High chromium cast irons containing copper in sub-critical treatment appear the second hardening curve peak due to the precipitation of copper from supersaturated matrix.

  2. Electrodeposition of copper from a copper sulfate solution using a packed-bed continuous-recirculation flow reactor at high applied electric current

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2015-09-01

    Full Text Available The purpose of this study is mainly to investigate the performance of a packed-bed continuous-recirculation flow reactor at high applied electric current in removing copper, Cu(II, from simulated electrolyte by electrodeposition. The effects of pHo, circulation rate of flow, initial copper concentration, intensity of the applied current and the method of application of electric current, as to have a constant value during all the time of electrolysis or to be decreased with time, on copper electrodeposition and current efficiency are revealed. The results showed that the increase in pH (provided not lead to the deposition of Cu(OH2, initial concentration of the copper and flow rate increased the electrodeposition of copper as well as improved current efficiency. However, increasing intensity of the applied electric current led to an increase in the electrodeposition of copper and decreased electrical efficiency. It was also observed that reducing the intensity of applied electric current with time during the electrolysis process while maintaining other operating variables constant led to a significant reduction in the consumption of electrical energy used in the process of copper removal by electrodeposition; a reduction of 41.6% could be achieved.

  3. The ALICE high level trigger

    Energy Technology Data Exchange (ETDEWEB)

    Alt, T [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Grastveit, G [Department of Physics and Technology, University of Bergen (Norway); Helstrup, H [Faculty of Engineering, Bergen University College (Norway); Lindenstruth, V [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Loizides, C [Institute for Nuclear Physics, University of Frankfurt (Germany); Roehrich, D [Department of Physics and Technology, University of Bergen (Norway); Skaali, B [Department of Physics, University of Oslo (Norway); Steinbeck, T [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Stock, R [Institute for Nuclear Physics, University of Frankfurt (Germany); Tilsner, H [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Ullaland, K [Department of Physics and Technology, University of Bergen (Norway); Vestboe, A [Faculty of Engineering, Bergen University College (Norway); Vik, T [Department of Physics, University of Oslo (Norway); Wiebalck, A [Kirchhoff Institute for Physics, University of Heidelberg (Germany)

    2004-08-01

    The ALICE experiment at LHC will implement a high-level trigger system for online event selection and/or data compression. The largest computing challenge is posed by the TPC detector, which requires real-time pattern recognition. The system entails a very large processing farm that is designed for an anticipated input data stream of 25 GB s{sup -1}. In this paper, we present the architecture of the system and the current state of the tracking methods and data compression applications.

  4. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

    Science.gov (United States)

    Burri, F.; Fertl, M.; Feusi, P.; Henneck, R.; Kirch, K.; Lauss, B.; Rüttimann, P.; Schmidt-Wellenburg, P.; Schnabel, A.; Voigt, J.; Zenner, J.; Zsigmond, G.

    2014-03-01

    We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

  5. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

    CERN Document Server

    Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

    2013-01-01

    We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

  6. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nikhil, E-mail: nkumar.phd2011.bt@nitrr.ac.in; Upadhyay, Lata Sheo Bachan, E-mail: contactlataupadhyay@gmail.com

    2016-11-01

    Highlights: • A facile and eco-friendly method for the synthesis of L-cysteine functionalized copper nanoparticles is reported. • Synthesis of Highly stable L-cysteine functionalized copper nanoparticles (∼40 nm) was done in an aqueous medium. • FTIR analysis shows that L-cysteine bound to the nanoparticle surface via thiol group. - Abstract: A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month.

  7. Lustrous copper nanoparticle film: Photodeposition with high quantum yield and electric conductivity

    Science.gov (United States)

    Miyagawa, Masaya; Yonemura, Mari; Tanaka, Hideki

    2016-11-01

    Cu nanoparticle (NP) film has attracted much attention due to its high electric conductivity. In the present study, we prepared a Cu NP film on a TiO2-coated substrate by photoreduction of copper acetate solution. The obtained film showed high electric conductivity and metallic luster by the successive deposition of Cu NP. Moreover, the film was decomposed on exposure to fresh air, and its decomposition reaction mechanisms were proposed. Hence, we concluded that the obtained lustrous film was composed of Cu NP, even though its physical properties was similar to bulk copper.

  8. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  9. Longitudinal study of serum zinc and copper levels in hemodialysis patients and their relation to biochemical markers.

    Science.gov (United States)

    Navarro-Alarcon, M; Reyes-Pérez, A; Lopez-Garcia, H; Palomares-Bayo, M; Olalla-Herrera, M; Lopez-Martinez, M C

    2006-12-01

    A 6-mo longitudinal study of 48 hemodialysis patients (HPs) with chronic renal failure was performed. Three blood samplings were done. Samples of whole blood from each patient were collected during hemodialysis sessions after passing through the artificial kidney. Zinc and copper levels were measured by atomic absorption spectrometry. Additionally, 36 biochemical indexes were evaluated during the study. Fifty-two healthy matched controls were also considered. Mean serum zinc and copper concentrations in HPs were significantly decreased (Zn) and increased (Cu), when compared with healthy controls (p < 0.01). Zinc concentrations found in the first and second blood samplings from patients were significantly lower than those measured for the third sampling (p < 0.01). The etiology of chronic renal failure influenced the statistically serum Zn levels of patients (p < 0.05). Serum copper levels of HPs were significantly diminished by the existence of secondary associated diseases (p < 0.01). Uric acid and parathyroid hormone, and total-cholesterol and glutamic-pyruvic-transaminase levels were significantly (p < 0.05) and linearly related with serum zinc and copper concentrations, respectively. From all of indexes, creatinine, direct bilirubin, magnesium, calcium, parathyroid hormone, transferrin, and albumin were statistically modified along the longitudinal study (p < 0.05). Transferrin serum levels were significantly diminished in the third blood sampling, indicating the tendency toward anemia in the patients. This result is reinforced by low levels of biochemical and hematological indexes related with iron body staus.

  10. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    Science.gov (United States)

    Tam, Sze Kee; Ng, Ka Ming

    2015-12-01

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10-5 Ω cm.

  11. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Sze Kee; Ng, Ka Ming, E-mail: kekmng@ust.hk [The Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering (Hong Kong)

    2015-12-15

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10{sup −5} Ω cm.Graphical Abstract.

  12. High-temperature conductivity in chemical bath deposited copper selenide thin films

    Science.gov (United States)

    Dhanam, M.; Manoj, P. K.; Prabhu, Rajeev. R.

    2005-07-01

    This paper reports high-temperature (305-523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu 2-xSe) and copper (II) selenide (Cu 3Se 2) thin films. Cu 2-xSe and Cu 3Se 2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu 2-xSe and Cu 3Se 2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.

  13. Dynamic recrystallization of electroformed copper liners of shaped charges in high-strain-rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were investigated by transmission electron microscopy (TEM). Meanwhile, the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis illustrated that unlike the as-formed electroformed copper linersof shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate. Optical microscopy shows a typical recrystallization structure, and TEM examination reveals dislocation cells existed in the thin foil specimen. These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process, and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  14. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Science.gov (United States)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  15. Chloride-Ion Penetrability and Mechanical Analysis of High Strength Concrete with Copper Slag

    Directory of Open Access Journals (Sweden)

    Savaş Erdem

    2014-05-01

    Full Text Available The use of waste materials and industrial by-products in high-strength concrete could increase the sustainability of the construction industry. In this study, the potential of using copper slag as coarse aggregate in high-strength concrete was experimentally investigated. The effects of replacing gravel coarse aggregate by copper slag particles on the compressive strength, chloride ion- migration, water permeability and impact resistance of high-strength concretes were evaluated. Incorporating copper slag coarse particles resulted in a compressive strength increase of about 14 % on average partly due to the low Ca/Si ratio through the interface area of this concrete (more homogenous internal structure as confirmed by the energy dispersive X-ray micro chemical analysis. It was also found that the copper slag high-strength concrete provided better ductility and had much greater load carrying capacity compared to gravel high-strength concrete under dynamic conditions. Finally, it was observed that in comparison to the high strength concrete with slag, the chloride migration coefficient from non-steady state migration was approximately 30 % greater in the gravel high-strength concrete.

  16. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA)); Weiss, H. (Lawrence Livermore National Lab., CA (USA))

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni), are being considered along with three austenitic candidates as possible materials for fabrication of containers for disposal of high-level radioactive waste. The waste will include spent fuel assemblies from reactors as well as high-level reprocessing wastes in borosilicate glass and will be sent to the prospective repository at Yucca Mountain, Nevada, for disposal. The containers must maintain mechanical integrity for 50 yr after emplacement to allow for retrieval of waste during the preclosure phase of repository operation. Containment is required to be substantially complete for up to 300 to 1000 yr. During the early period, the containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. The final closure joint will be critical to the integrity of the containers. This volume surveys the available data on the metallurgy of the copper-based candidate alloys and the welding techniques employed to join these materials. The focus of this volume is on the methods applicable to remote-handling procedures in a hot-cell environment with limited possibility of postweld heat treatment. The three copper-based candidates are ranked on the basis of the various closure techniques. On the basis of considerations regarding welding, the following ranking is proposed for the copper-based alloys: CDA 715 (best) > CDA 102 > CDA 613 (worst). 49 refs., 15 figs., 1 tab.

  17. Corrosion issues in high-level nuclear waste containers

    Science.gov (United States)

    Asl, Samin Sharifi

    In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the

  18. High-average-power high-beam-quality vis-UV sources based on kinetically enhanced copper vapor lasers

    Science.gov (United States)

    Brown, Daniel J. W.; Withford, Michael J.; Carman, Robert J.; Mildren, Richard P.; Piper, James A.

    2000-04-01

    Investigations of the factors that limit average power scaling of elemental copper vapor lasers (CVLs) have demonstrated that decay of the electron density in the interpulse period is critical in restricting pulse repetition rate and laser aperture scaling. We have recently developed the 'kinetic enhancement' (or KE) technique to overcome these limitations, whereby optimal plasma conditions are engineered using low concentrations of HCl/H2 additive gases in the Ne buffer. Dissociative electron attachment of HCl and subsequent mutual neutralization of Cl- and Cu+ promote rapid plasma relaxation and fast recovery of Cu densities, permitting operation at elevated Cu densities and pulse rates for given apertures. Using this approach, we have demonstrated increases in output power and efficiency of a factor of 2 or higher over conventional CVLs of the same size. For a 38 mm- bore KE-CVL, output powers up to 150 W have been achieved at 22 kHz, corresponding to record specific powers (80 mW/cm3) for such a 'small/medium-scale' device. In addition, kinetic enhancement significantly extends the gain duration and restores gain on-axis, even for high pulse rates, thereby promoting substantial increases (5 - 10x) in high- beam-quality power levels when operating with unstable resonators. This has enabled us to achieve much higher powers in second-harmonic generation from the visible copper laser output to the ultraviolet (e.g. 5 W at 255 nm from a small- scale KE-CVL). Our approach to developing KE-CVLs including computer modeling and experimental studies will be reviewed, and most recent results in pulse rate scaling and scaling of high-beam-quality power using oscillator-amplifier configurations, will be presented.

  19. Room temperature ppb level Cl2 sensing using sulphonated copper phthalocyanine films.

    Science.gov (United States)

    Kumar, Arvind; Singh, A; Debnath, A K; Samanta, S; Aswal, D K; Gupta, S K; Yakhmi, J V

    2010-09-15

    We present room temperature chemiresistive gas sensing characteristics of drop casted sulphonated copper phthalocyanine (CuTsPc) films. It has been demonstrated that these films are highly selective to Cl(2) and the sensitivity in the 5-2000 ppb range varies linearly between 65 and 625%. However, for concentrations >or=2000 ppb, the response becomes irreversible, which is found to be due to the chemical bond formation between Cl(2) and SO(3)Na group of CuTsPc films. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) data confirms the oxidation of SO(3)Na group by Cl(2) gas. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode

    Directory of Open Access Journals (Sweden)

    Aysenur Birinci

    2016-07-01

    Full Text Available A new solid contact copper selective electrode with a poly (vinyl chloride (PVC membrane consisting of o-xylylenebis(N,N-diisobutyldithiocarbamate as ionophore has been prepared. The main novelties of constructed ion selective electrode concept are the enhanced robustness, cheapness, and fastness due to the use of solid contacts. The electrode exhibits a rapid (< 10 seconds and near-Nernstian response to Cu2+ activity from 10−1 to 10−6 mol/L at the pH range of 4.0–6.0. No serious interference from common ions was found. The electrode characterizes by high potential stability, reproducibility, and full repeatability. The electrode was used as an indicator electrode in potentiometric titration of Cu(II ions with EDTA and for the direct assay of tea infusion samples by means of the calibration graph technique. The results compared favorably with those obtained by the atomic absorption spectroscopy (AAS.

  1. Applications of copper vapor laser lighting in high-speed motion analysis

    Science.gov (United States)

    Hogan, Daniel C.

    1991-01-01

    Over the past few years copper vapor lasers have become an important tool in high speed photography as a high-tech strobe lighting source. The short flash duration ( 025 microseconds) high brightness (of the order of 20 million Lumens) and high flash rates (32 per second from a single laser 96 per second from three lasers) of copper vapor lasers have enabled high resolution analysis of processes that previously could not be explored using conventional incandescent continuous or strobe lighting sources. A summary of applications that have benefited from the use of copper laser lighting will be presented. These applications include: analysis of shock waves in turbine engine blades analysis of spinning fibers in the textile industry analysis of the bursting of high pressure storage vessels analysis of turbulent flow in internal combustion engines and capture of ballistic data of objects travelling in excess of 1500ms1(3 mph). Discussion of why copper laser lighting was crucial in each of these applications will be presented.

  2. Recirculation of Chilean copper smelting dust with high impurities contents to the smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Fujisawa, T. [Nagoya Univ., Nagoya (Japan). EcoTopia Science Inst.; Montenegro, V. [Nagoya Univ., Nagoya (Japan). Dept. of Materials Science and Engineering

    2007-07-01

    Dust generated during the copper smelting process is generally stabilized using hydrometallurgical methods as it contains high concentrations of arsenic. In this laboratory study, dust was recirculated during the smelting process in order to recover more copper and decrease dust emissions while recovering more copper. The behaviour of impurities and their influence on matte quality was also investigated. Industrial matte, flue dust, slag, and copper concentrates from a Chilean smelter were used as test materials. Dust recirculation tests were conducted in a simulated electric furnace. Off-gases were collected in a reaction tube, and the condensed volatile matter, slag, and matte phases were analyzed for their elemental content by inductively coupled plasma atomic emission spectrometry. The distribution of arsenic (As); antimony (Sb), bismuth (Bi), lead (Pb), and zinc (Zn) were investigated by varying the amounts of dust recirculating to the smelting stage with 21 per cent of the oxygen. Results showed that distributions of all analyzed elements increased with recirculation. It was concluded that copper can be recovered using the dust recirculation technique. However, impurities may limit the efficacy of the dust recirculation process. 6 refs., 3 tabs., 4 figs.

  3. Control of Alzheimer's amyloid beta toxicity by the high molecular weight immunophilin FKBP52 and copper homeostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reiko Sanokawa-Akakura

    Full Text Available FK506 binding proteins (FKBPs, also called immunophilins, are prolyl-isomerases (PPIases that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP. Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Abeta toxicity. Towards this goal, we generated Abeta transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Abeta and increased lifespan in Abeta flies, whereas loss of function of FKBP52 exacerbated these Abeta phenotypes. Interestingly, the Abeta pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (-/- cells have increased intracellular copper and higher levels of Abeta. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Abeta peptides.

  4. Copper-phthalocyanine encapsulated into zeolite-Y with high Si/Al: An EPR study

    Science.gov (United States)

    Yahiro, Hidenori; Kimoto, Kunihiro; Yamaura, Hiroyuki; Komaguchi, Kenji; Lund, Anders

    2005-10-01

    Copper (II) phthalocyanine (CuPc) molecules encapsulated into zeolite-Y with Si/Al ratios of 2.7 and 410 were prepared by an in situ synthesis and characterized by UV-Vis and electron paramagnetic resonance (EPR) spectroscopies. Resolved Cu-hyperfine and N-superhyperfine structures were observed in the EPR spectrum of CuPc encapsulated into zeolite-Y with a high Si/Al ratio. UV-Vis and EPR studies as well as theoretical calculations suggest that the encapsulated CuPc molecule was distorted in zeolite-Y with keeping of the square-planar symmetry around the center copper (II) ion.

  5. Copper-Based Ultrathin Nickel Nanocone Films with High-Efficiency Dropwise Condensation Heat Transfer Performance.

    Science.gov (United States)

    Zhao, Ye; Luo, Yuting; Zhu, Jie; Li, Juan; Gao, Xuefeng

    2015-06-10

    We report a type of copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer (DCHT) performance, which can be fabricated by facile electrodeposition and low-surface-energy chemistry modification. Compared with flat copper samples, our nanosamples show condensate microdrop self-propelling (CMDSP) function and over 89% enhancement in the DCHT coefficient. Such remarkable enhancement may be ascribed to the cooperation of surface nanostructure-induced CMDSP function as well as in situ integration and ultrathin nature of nanofilms. These findings are very significant to design and develop advanced DCHT materials and devices, which help improve the efficiency of thermal management and energy utilization.

  6. High temperature tension-compression fatigue behavior of a tungsten copper composite

    Science.gov (United States)

    Verrilli, Michael J.; Gabb, Timothy P.

    1990-01-01

    The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue lives were shorter at 560 C as compared to 260 C due to changes in mode of matrix failure. On a total strain basis, the fatigue life of the composite at 560 C was the same as the life of unreinforced copper, indicating that the presence of the fibers did not degrade the fatigue resistance of the copper matrix in this composite system. Comparison of strain-controlled fatigue data to previously-generated load-controlled data revealed that the strain-controlled fatigue lives were longer because of mean strain and mean stress effects.

  7. High Strain-Rate Mechanical Behaviour of a Copper Matrix Composite for Nuclear Applications

    CERN Document Server

    Peroni, L

    2012-01-01

    Aim of this work is the investigation of mechanical behaviour of an alumina dispersion strengthened copper, known by the trade name GLIDCOP®, subjected to dynamic loads: it is a composite material with a copper matrix strengthened with aluminium oxide ceramic particles. Since the particle content is quite small the material keeps the OFE copper physical properties, such as thermal and electrical conductivity, but with a higher yield strength, like a mild-carbon steel. Besides, with the addition of aluminium oxide, the good mechanical properties are retained also at high temperatures and the resistance to thermal softening is increased: the second phase blocks the dislocation movement preventing the grain growth. Thanks to these properties GLIDCOP® finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collim...

  8. Zinc and copper levels in bladder cancer: a systematic review and meta-analysis.

    Science.gov (United States)

    Mao, Song; Huang, Songming

    2013-06-01

    It is well documented that oxidative stress is involved in the pathogenesis of bladder cancer. Zinc (Zn) and copper (Cu) are important components of antioxidants. However, the association between Zn or Cu levels and bladder cancer remains elusive. The present study was designed to investigate the alteration of serum and urinary levels of Zn or Cu in bladder cancer patients compared with controls by performing a systematic review. We searched the PubMed, Embase, and Cochrane databases from January 1990 to March 2013 to identify studies that met our predefined criteria. Six studies were included. Bladder cancer patients demonstrated significantly lower levels of serum Zn (three studies, random effects standard mean deviation (SMD): -1.072, 95 % CI: -1.489 to -0.656, P cancer patients and controls (two studies, random effects SMD: 0.153, 95 % CI: -0.244 to 0.55, P = 0.449). No evidence of publication bias was observed. In conclusion, the disorder of Zn and Cu is closely associated with bladder cancer. Frequent monitoring and early intervention should be recommended.

  9. Highly cytotoxic DNA-interacting copper(II) coordination compounds.

    Science.gov (United States)

    Brissos, Rosa F; Torrents, Ester; dos Santos Mello, Francyelli Mariana; Carvalho Pires, Wanessa; Silveira-Lacerda, Elisângela de Paula; Caballero, Ana B; Caubet, Amparo; Massera, Chiara; Roubeau, Olivier; Teat, Simon J; Gamez, Patrick

    2014-10-01

    Four new Schiff-base ligands have been designed and prepared by condensation reaction between hydrazine derivatives (i.e. 2-hydrazinopyridine or 2-hydrazinoquinoline) and mono- or dialdehyde (3-tert-butyl-2-hydroxybenzaldehyde and 5-tert-butyl-2-hydroxyisophthalaldehyde, respectively). Six copper(II) coordination compounds of various nuclearities have been obtained from these ligands, which are formulated as [Cu(L1)Cl](CH3OH) (1), [Cu(L2)NO3] (2), [Cu2(L3)(ClO4)2(CH3O)(CH3OH)](CH3OH) (3), [Cu2(L4)(ClO4)(OH)(CH3OH)](ClO4) (4), [Cu8(L3)4(NO3)4(OH)5](NO3)3(CH3OH)5(H2O)8 (5) and [Cu3(HL2')4Cl6](CH3OH)6 (6), as revealed by single-crystal X-ray studies. Their DNA-interacting abilities have been investigated using different characterization techniques, which suggest that the metal complexes act as efficient DNA binders. Moreover, cytotoxicity assays with several cancer cell lines show that some of them are very active, as evidenced by the sub-micromolar IC50 values achieved in some cases.

  10. High level white noise generator

    Science.gov (United States)

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  11. High-adhesion Cu patterns fabricated by nanosecond laser modification and electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ming; Liu, Jianguo, E-mail: liujg@mail.hust.edu.cn; Zeng, Xiaoyan; Du, Qifeng; Ai, Jun

    2015-10-30

    Highlights: • High-adhesion copper patterns on alumina ceramic were obtained conveniently. • Effects of processing parameters on adhesion were investigated. • The adhesion of copper–ceramic was higher than the tensile strength of tin-lead solder. • Failure mechanism was studied by the analysis of fracture surfaces. - Abstract: Adhesion strength is a crucial factor for the performance and reliability of metallic patterns on insulator substrates. In this study, we present an efficient technique for selective metallization of alumina ceramic with high adhesion strength by using nanosecond laser modification and electroless copper plating. Specifically, a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser was employed not only to decompose palladium chloride film locally for catalyzing the electroless reaction, but also to modify the ceramic surface directly using its high fluence. An orthogonal experiment was undertaken to study the effects of processing parameters including laser fluence, scanning speed and scanning line interval on adhesion strength. The adhesion strength was measured by pulling a metallic wire soldered into the copper coating perpendicular to the substrate using a pull tester. The results have shown that a strong adhesion between the copper coating and the alumina ceramic, higher than the tensile strength of tin-lead solder was obtained. Surface and interface characteristics were investigated to understand that, whose results have shown that the high-aspect-ratio microstructures formed by the laser modification is the major reason for the improvement of adhesion.

  12. Experimental Consequences of Mottness in High-Temperature Copper-Oxide Superconductors

    Science.gov (United States)

    Chakraborty, Shiladitya

    2009-01-01

    It has been more than two decades since the copper-oxide high temperature superconductors were discovered. However, building a satisfactory theoretical framework to study these compounds still remains one of the major challenges in condensed matter physics. In addition to the mechanism of superconductivity, understanding the properties of the…

  13. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  14. High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

    Science.gov (United States)

    Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo

    2015-10-01

    Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C-N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets.

  15. Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor.

    Science.gov (United States)

    Das, Gautam; Tran, Thao Quynh Ngan; Yoon, Hyon Hee

    2015-01-01

    In this work, three different spherulitic nanostructures Cu-CuOA, Cu-CuOB, and Cu-CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu-CuO nanostructures were investigated by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT)-modified indium tin oxide (ITO) electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu-CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu-CuOA, Cu-CuOB, and Cu-CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM(-1)·cm(-2), respectively. Moreover, the linear range is dependent on the structure types: 0.023-0.29 mM, 0.07-0.8 mM, and 0.023-0.34 mM for Cu-CuOA, Cu-CuOB, and Cu-CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu-CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, L-ascorbic acid, and creatinine. The high performance of the Cu-CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu-CuOB electrode applied to real urine and serum sample showed satisfactory performance.

  16. Plasma levels of zinc, copper, and ceruloplasmin in patients after undergoing laparoscopic adjustable gastric banding.

    Science.gov (United States)

    Böyük, Abdullah; Banlı, Oktay; Gümüş, Metehan; Evliyaoğlu, Osman; Demirelli, Salih

    2011-12-01

    Laparoscopic adjustable gastric banding (LAGB) causes significant weight loss in morbidly obese adults. However, its consequences on nutritional status still remain unclear. There are a few studies determining the nutritional status after LAGB and none have focused on the serum levels of zinc (Zn), copper (Cu), and ceruloplasmin (CP). We aimed to investigate the effects of LAGB surgery on plasma Zn, Cu, and CP levels. Thirty patients with LAGB with morbid obesity were included. Blood samples were collected preooperatively and in the postoperative third month to determine plasma Zn, Cu, and CP levels. The mean preoperative and postoperative body mass indexes (BMI) were 44.9 ± 7.4 kg/m(2) and 44.1 ± 6.5 kg/m(2), respectively. The mean weight loss was 12.9 ± 3.3 kg at the postoperative third month. The postoperative Zn (500 ± 130 ng/ml), Cu (280 ± 80 ng/ml), and CP (23.9 ± 8.8 mg/dl) values were statistically significantly lower than the preooperative Zn (740 ± 230 ng/ml), Cu (370 ± 80 ng/ml) and CP (33.3 ± 15.7 mg/dl) levels (p < 0.05). Decreases in the plasma levels of Zn, Cu, and CP were seen postoperatively following LAGB surgery. The nutritional status of LAGB-applied patients should be monitored and mineral supplementation may be considered.

  17. Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hai-Wen Zhao

    Full Text Available Trace elements have been recognized to play an important role in the development of Parkinson's disease (PD. However, it is difficult to precisely identify the relationship between these elements and the progression of PD because of an insufficient number of patients. In this study, quantifications of selenium (Se, copper (Cu, iron (Fe and zinc (Zn by atomic absorption spectrophotometry were performed in plasma from 238 PD patients and 302 controls recruited from eastern China, which is so far the largest cohort of PD patients and controls for measuring plasma levels of these elements. We found that plasma Se and Fe concentrations were significantly increased whereas Cu and Zn concentrations decreased in PD patients as compared with controls. Meanwhile, these four elements displayed differential changes with regard to age. Linear and logistic regression analyses revealed that both Fe and Zn were negatively correlated with age in PD patients. Association analysis suggests that lower plasma Se and Fe levels may reduce the risk for PD, whereas lower plasma Zn is probably a PD risk factor. Finally, a model was generated to predict PD patients based on the plasma concentrations of these four trace elements as well as other features such as sex and age, which achieved an accuracy of 80.97±1.34% using 10-fold cross-validation. In summary, our data provide new insights into the roles of Se, Cu, Fe and Zn in PD progression.

  18. Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson's disease.

    Science.gov (United States)

    Zhao, Hai-Wen; Lin, Jie; Wang, Xue-Bao; Cheng, Xing; Wang, Jian-Yong; Hu, Bei-Lei; Zhang, Yan; Zhang, Xiong; Zhu, Jian-Hong

    2013-01-01

    Trace elements have been recognized to play an important role in the development of Parkinson's disease (PD). However, it is difficult to precisely identify the relationship between these elements and the progression of PD because of an insufficient number of patients. In this study, quantifications of selenium (Se), copper (Cu), iron (Fe) and zinc (Zn) by atomic absorption spectrophotometry were performed in plasma from 238 PD patients and 302 controls recruited from eastern China, which is so far the largest cohort of PD patients and controls for measuring plasma levels of these elements. We found that plasma Se and Fe concentrations were significantly increased whereas Cu and Zn concentrations decreased in PD patients as compared with controls. Meanwhile, these four elements displayed differential changes with regard to age. Linear and logistic regression analyses revealed that both Fe and Zn were negatively correlated with age in PD patients. Association analysis suggests that lower plasma Se and Fe levels may reduce the risk for PD, whereas lower plasma Zn is probably a PD risk factor. Finally, a model was generated to predict PD patients based on the plasma concentrations of these four trace elements as well as other features such as sex and age, which achieved an accuracy of 80.97±1.34% using 10-fold cross-validation. In summary, our data provide new insights into the roles of Se, Cu, Fe and Zn in PD progression.

  19. Relation to Copper of N-1, a Nonobligate Bacterial Predator †

    OpenAIRE

    Casida, L. E.

    1987-01-01

    Nonobligate bacterial predator strain N-1 was highly resistant to copper. In fact, it required more than minimal amounts of copper to initiate growth, but not for growth that followed growth initiation. Strain N-1 made a peptide growth initiation factor (GIF) to marshal copper from its environment for growth initiation. Production of this GIF occurred before the onset of growth initiation, but production was shut down if excess copper was present. At high copper levels, the time required for ...

  20. [In vivo toxicity, and glutathione, ascorbic acid and copper level changes induced in mouse liver and kidney by copper(II) gluconate, a nutrient supplement].

    Science.gov (United States)

    Hojo, Y; Hashimoto, I; Miyamoto, Y; Kawazoe, S; Mizutani, T

    2000-03-01

    While copper(II) gluconate (CuGL) is generally used as a nutrient supplement for infant foods and as an oral deodorant, little information is available regarding a toxic effect of CuGL on mammals. In this article, we examined in vivo induction of toxicity and change of level of glutathione and ascorbic acid, major biological antioxidants, lipid peroxide and copper (Cu) in liver and kidney 4 h after single intraperitoneal administration of CuGL at 0.05 and 0.10 mmol/kg to mice. Serum glutamic pyruvic transaminase (SGPT) activity, an indicator of hepatotoxicity, significantly increased compared to control in proportion to doses of CuGL. Hepatic level of glutathione measured as nonprotein sulfhydryl was not proportional to CuGL doses, but enhanced after dosing of 0.05 mmol/kg and lowered by 0.10 mmol/kg. Like SGPT activity, serum urea nitrogen (SUN) concentration, an indicator of nephrotoxicity, significantly increased in proportion to doses of CuGL. Renal glutathione level was not different from control after dosing of 0.05 mmol/kg and lowered by 0.10 mmol/kg. In both organs, relative organ weight and lipid peroxide level were not affected by the treatment with CuGL; ascorbic acid level was elevated after dosing of 0.05 mmol/kg and was not different from control after treatment with 0.10 mmol/kg; like SGPT activity and SUN concentration, Cu level significantly increased in proportion to doses of CuGL. These results suggest that in the liver and kidney after the treatment with CuGL Cu accumulated may induce toxicity, leading to level changes of glutathione and ascorbic acid and to no induction of oxidative damage.

  1. Copper deficiency conditioned by high levels of zinc, manganese and iron in the Middle Paraíba, RJ, BrazilDeficiência de cobre condicionada a altos teores de zinco, manganês e ferro na região do Médio Paraíba, RJ, Brasil

    Directory of Open Access Journals (Sweden)

    Ana Paula Lopes Marques

    2013-06-01

    Full Text Available Concentrations of microminerals in the soils, pastures, and sera of adult and young bovines were determined in 7 areas of Middle Paraíba, Rio de Janeiro, Brazil, that showed a history of low reproductive performance, marked weight loss of cows after calving, allotriophagy, and changes in pelage color. The animals were subjected to clinical evaluation, and the main signs were as follows: regular to poor general condition, anemia, alopecia, depigmentation of the pelage in adult animals, discolored pelage (reddish in dark animals, and thinning and loss of hair around the eyes. Calves showed bad general appearance, retarded development, and rough, dry, and spiked hair. There were other evident signs such as craving and consumption of foreign material such as soil, wood, or bones. After the interview with the owners and on-site evaluation of the herds, soil samples, forages, and blood serum samples were obtained for analysis of macro and micronutrients in 2 different periods: May/June (end of the rainy season–autumn and October/November (end of dry season–spring. The findings of soil (3.03 ± 1.72/3.13 ± 1.22 mg/ dm3 and forage (11.91 ± 2.92/13.6 ± 5.23 ppm samples indicated normal and high levels of copper, respectively, in most of the pastures which is contrary to the clinical signs of deficiency observed in the animals. However, the copper levels in serum were lower than normal (0.42 ± 0.14/0.45 ± 0.17 ppm in majority of the animals, in periods of evaluation and for all properties. Excessively high values of iron, zinc, and manganese were found in soil and pasture samples, which could have probably been acting as antagonists of copper absorption, resulting in a conditioned deficiency. Descrevem-se as concentrações de microelementos minerais em amostras de solos, pastagens e soro de bovinos adultos e jovens em sete propriedades na região do Médio Paraíba, RJ, Brasil com histórico de baixo desempenho reprodutivo, emagrecimento

  2. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    Science.gov (United States)

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  3. Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients.

    Science.gov (United States)

    Sarkar, A; Dash, S; Barik, B K; Muttigi, Manjunatha S; Kedage, V; Shetty, J K; Prakash, M

    2010-01-01

    Presence of oxidative stress in type 2 diabetes mellitus (DM) is well proved. Current study was undertaken to know the relation between fasting plasma glucose (FPG) and copper along with antioxidants like total thiols and ceruloplasmin, and antioxidant enzyme glutathione S transferase (GST). The study group consisted of a total of 201 subjects which included nondiabetic healthy control subjects (n = 78) and diabetic patients (n = 123). Plasma total thiols, GST, copper and ceruloplasmin levels were measured all the subjects using spectrophotometric methods and FPG levels were determined in clinical chemistry analyzer Hitachi 912. There was significant increase in FPG (P<0.001) and copper (P<0.001) and decrease in ceruloplasmin (P<0.001) and protein thiols (P<0.001) in type 2 DM cases compared to healthy controls. There was no significant change in GST between type 2 DM cases and controls. There was significant negative correlation of FPG with antioxidants like ceruloplasmin (r = -0.420, P<0.001) and total thiols (r = -0.565, P<0.001). Protein thiols correlated positively with ceruloplasmin (r = 0.364, P<0.001). Our study indicates possible increase in copper mediated generation of ROS leading to increased consumption of available antioxidants in the body.

  4. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  5. Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city.

    Science.gov (United States)

    Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J

    2015-08-01

    This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.

  6. Role of serum copper and ceruloplasmin level in patients with dysfunctional uterine bleeding

    Directory of Open Access Journals (Sweden)

    Ketki P. Khandhadiya

    2014-04-01

    Conclusions: This study has concluded that serum copper and ceruloplasmin could be a sensitive indicator of angiogenesis in endometrium leading to DUB in females. [Int J Reprod Contracept Obstet Gynecol 2014; 3(2.000: 330-334

  7. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Science.gov (United States)

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  8. A Study of the Surface Quality of High Purity Copper after Heat Treatment

    CERN Document Server

    Aicheler, M; Atieh, S; Calatroni, S; Riddone, G; Lebet, S; Samoshkin, A

    2011-01-01

    Themanufacturing flow of accelerating structures for the compact linear collider, based on diamond-machined high purity copper components, include several thermal cycles (diffusion bonding, brazing of cooling circuits, baking in vacuum, etc.). The high temperature cycles may be carried out following different schedules and environments (vacuum, reducing hydrogen atmosphere, argon, etc.) and develop peculiar surface topographies which have been the object of extended observations. This study presents and discusses the results of scanning electron microscopy (SEM) and optical microscopy investigations.

  9. Enlightening the Mechanism of Copper Mediated PhotoRDRP via High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Frick, Elena; Anastasaki, Athina; Haddleton, David M; Barner-Kowollik, Christopher

    2015-06-03

    The initiation mechanism of photochemically mediated Cu-based reversible-deactivation radical polymerization (photoRDRP) was investigated using pulsed-laser polymerization (PLP) and high-resolution mass spectrometry. The variation of the catalyst composition and ESI-MS analysis of the resulting products provided information on how initiator, ligand, copper species, and monomer are interacting upon irradiation with UV light. A discussion of the results allows for a new postulation of the mechanism of photoRDRP and-for the first time-the unambiguous identification of the initiating species and their interactions within the reaction mixture. One pathway for radical generation proceeds via UV light-induced C-Br bond scission of the initiator, giving rise to propagating radicals. The generation of copper(I) species from copper(II) can occur via several pathways, including, among others, via reduction by free amine ligand in its excited as well as from its ground state via the irradiation with UV light. The amine ligand serves as a strong reducing agent and is likely the main participant in the generation of copper(I) species.

  10. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

  11. Lead concentration in blood of school children from copper mining area and the level of somatic development at birth

    Directory of Open Access Journals (Sweden)

    Teresa Sławińska-Ochla

    2011-12-01

    Full Text Available Background. The aim of the study was to assess the relations between lead intoxication in children at younger school age and the level of somatic development at birth. Materials and Methods. The research includes 717 children and adolescents 7–15 years old from LegnickoGłogowski copper mining region, which live in the vincity of „Głogów”, „Legnica” copper industrial plants and flotation tank reservoir „Żelazny most”. The analysis contained measures such as birth height, birth weight, Apgar score points, and blood lead level in 2007 and 2008. The whole blood lead level (Pb-B was indicated using atomic absorption spectrometry (AAS with electrothermic atomization by certified The Foundation for Children From The Copper Basin laboratory. Results.Rural childrenwere noted forsignificantly higher blood lead levelsthan urban peers. Also boysin comparison to girls had higher blood lead levels. Regardless of gender and place of residence there were no significant correlation between blood lead level and body mass at birth. Conclusion. The biological state of the organism at the moment of birth has no connection with the susceptibility to absorption of lead in the later phases of ontogenesis: the earlier school age and adlescence.

  12. Tissue Carcinoembryonic Antigen, Calcium, Copper and Iron Levels in Cancerous Lung Patients

    Directory of Open Access Journals (Sweden)

    Nasar Yousuf ALWAHAIBI

    2011-01-01

    Full Text Available Background and objective The expression of various trace elements and markers in lung cancer is controversial. The aim of this study is to evaluate the presence of calcium (Ca, copper (Cu, iron (Fe and carcinoembryonic antigen (CEA in cancerous untreated lung tissues and to determine a possible association between these markers and lung cancer. Methods Fourty-eight cancerous lung tissue blocks, from Sultan Qaboos University Hospital, Sultanate of Oman, were studied. Fe, Ca, Cu, and CEA were demonstrated in the tissue blocks using Perl's Prussian blue, Von Kossa's, modified rhodanine and immunohistochemical staining methods, respectively. Results Twenty-three of 48 specimens showed positive Fe staining, 2 showed positive Ca staining and Cu was absent in all specimens. 93.7% expressed CEA in varying degree of positivity. 81.25% of these sections showed high expression of CEA. Conclusion Tissue concentrations of trace elements were not elevated in lung cancer and therefore cannot be considered as a potential marker. Despite the low sensitivity and specificity of CEA as previously reported, tissue CEA should be considered as a potential marker in the evaluation of lung cancer.

  13. Tissue Carcinoembryonic Antigen, Calcium, Copper and Iron Levels in Cancerous Lung Patients

    Institute of Scientific and Technical Information of China (English)

    Nasar Yousuf ALWAHAIBI; Jokha Sultan ALGHARIBI; Amna Salim ALSHUKAILI; Ahmed Khalifa ALSHUKAILI

    2011-01-01

    Background and objective The expression of various trace elements and markers in lung cancer is controversial. The aim of this study is to evaluate the presence of calcium (Ca), copper (Cu), iron (Fe) and carcinoembryonic antigen (CEA) in cancerous untreated lung tissues and to determine a possible association between these markers and lung cancer.Methods Fourty-eight cancerous lung tissue blocks, from Sultan Qaboos University Hospital, Sultanate of Oman, were studied. Fe, Ca, Cu, and CEA were demonstrated in the tissue blocks using Perl's Prussian blue, Von Kossa's, modified rhodanine and immunohistochemical staining methods, respectively.Results Twenty-three of 48 specimens showed positive Fe staining, 2 showed positive Ca staining and Cu was absent in all specimens. 93.7% expressed CEA in varying degree of positivity. 81.25% of these sections showed high expression of CEA. Conclusion Tissue concentrations of trace elements were not elevated in lung cancer and therefore cannot be considered as a potential marker. Despite the low sensitivity and specificity of CEA as previously reported, tissue CEA should be considered as a potential marker in the evaluation of lung cancer.

  14. Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology.

    Science.gov (United States)

    Sparks, D L; Friedland, R; Petanceska, S; Schreurs, B G; Shi, J; Perry, G; Smith, M A; Sharma, A; Derosa, S; Ziolkowski, C; Stankovic, G

    2006-01-01

    Mounting evidence suggests copper may influence the progression of Alzheimer's disease by reducing clearance of the amyloid beta protein (Abeta) from the brain. Previous experiments show that addition of only 0.12 PPM copper (one-tenth the Environmental Protection Agency Human consumption limits) to distilled water was sufficient to precipitate the accumulation of Abeta in the brains of cholesterol-fed rabbits (1). Here we report that addition of copper to the drinking water of spontaneously hypercholesterolemic Watanabe rabbits, cholesterol-fed beagles and rabbits, PS1/APP transgenic mice produced significantly enhanced brain levels of Abeta. In contrast to the effects of copper, we found that aluminum- or zinc-ion-supplemented distilled water did not have a significant effect on brain Ab accumulation in cholesterol-fed rabbits. We also report that administration of distilled water produced a reduction in the expected accumulation of Ab in three separate animal models. Collectively, these data suggest that water quality may have a significant influence on disease progression and Ab neuropathology in AD.

  15. Chemical characterization of selected high copper dental amalgams using XPS and XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Talik, E. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)]. E-mail: talik@us.edu.pl; Babiarz-Zdyb, R. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Dziedzic, A. [Medical University of Silesia, Department of Conservative Dentistry and Periodontology, Akademicki 17 Sqr., 41-209 Bytom (Poland)

    2005-08-02

    The study was carried out to analyze some dependencies between the composition of seven high copper dental amalgams and mercury release behavior, as well as oxygen reactivity of metallic elements. Chemical comparative analysis of selected dental amalgams was carried out using X-ray photoelectron spectroscopy (XPS) technique and X-ray diffraction (XRD) method. The X-ray powder diffraction measurements revealed two main phases for measured amalgams: {gamma}{sub 1}-(Ag{sub 2}Hg{sub 3}) and {eta}'-(Cu{sub 6}Sn{sub 5}). The amount of mercury obtained by the XPS method was lower than the value quoted in the manufacturer's literature, which suggested evaporation of mercury under the UHV conditions. A linear decrease of oxygen and carbon contamination with the growing amount of Cu and Ag was observed. The XPS analysis showed that a high Sn concentration caused less resistance to oxidation. Some of the amalgams contained some extra elements, such as Bi, In, and Zn. All samples contained lead in metallic state and oxides. The amount of Ag, Cu, Sn ingredients determines the main properties of high copper amalgams and plays an important role in mercury evaporation. High tin concentration combined with the presence of smaller amounts of silver and copper (high Sn/Ag ratio) may influence the increase of mercury vaporization.

  16. Comparison of microleakage in high copper spherical amalgam restorations using three different dentin bondin systems

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2008-11-01

    Full Text Available "nBackground and Aim: Amalgam is one of the mostly used restorative materials, but has some disadvantages. Microleakage is one of the short comings of amalgam which may lead to sensitivity and recurrent caries. The aim of this study was to evaluate the effect of three dentin bonding systems on reduction of microleakage in amalgam restorations. "nMaterials and Methods: Class II amalgam restorations were made in 40 noncarious molar and premolar teeth. Then the specimens were divided into four equal groups. Scotch Bond Multi Purpose, Single bond, "niBond, were used as liner in groups one to three respectively and in group four no liner was used. The teeth were restored with high copper spherical amalgam. After thermocycling for 500 cycles at 50C and 550C, the specimens were immersed in basic fuchsin for 24 hours, bisectioned mesiodistally and evaluated under stereomicroscope at X25 for dye penetration. The data were analyzed by Kruskal-wallis and Scheffe. P<0.05 was considered as the level of significance. "nResults: The groups showed significant difference (p=0.003. The group four had significantly less microleakage than the first and second groups (p<0.05. The second and third groups showed significantly different microleakage (p=0.038. "nConclusion: Based on the results of this investigation applying dentin bonding agents has no effect on reducing microleakage in amalgam restorations, however more studies are recommended.

  17. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system

    OpenAIRE

    Schlecht, Ulrich; Suresh, Sundari; Xu, Weihong; Aparicio, Ana Maria; Chu, Angela; Proctor, Michael J; Davis, Ronald W.; Scharfe, Curt; St.Onge, Robert P.

    2014-01-01

    Background Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. Results We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then system...

  18. High Dietary Copper Increases Catecholamine Concentrations in the Hypothalami and Midbrains of Growing Pigs.

    Science.gov (United States)

    Yang, Wenyan; Zhao, Chunyu; Zhang, Cai; Yang, Lianyu

    2016-03-01

    The experiment was conducted to investigate the effect of high dietary copper on catecholamine concentration and dopamine-β-hydroxylase (DβH) activity in hypothalami and midbrains of growing pigs. Forty-five crossbred weanling pigs with an average body weight of 7.5 kg were randomly assigned to three groups of 15 each to receive a control diet containing 10 mg/kg Cu (diet A) and diets containing 125 (diet B) or 250 (diet C) mg Cu/kg DM for 45 days. Compared to the control, Cu supplementation at both 125 and 250 mg Cu/kg DM increased average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency. High dietary copper increased midbrain and hypothalami dopamine (DA) and norepinephrine (NE) concentrations and midbrain dopamine-β-hydroxylase activity. However, increasing dietary Cu had no effect on hypothalami dopamine-β-hydroxylase activity.

  19. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    OpenAIRE

    Recep Çakır; Sare Çelik

    2015-01-01

    Friction Stir Welding (FSW) is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min) with four different pin position (0-1-1.5-2 mm) and three different weld speeds ...

  20. High-voltage electrical burns due to copper theft - Case series.

    Science.gov (United States)

    Braga, M J; Oliveira, I; Egipto, P; Silva, A

    2016-03-31

    Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring.

  1. High-voltage electrical burns due to copper theft – Case series

    Science.gov (United States)

    Braga, M.J.; Oliveira, I.; Egipto, P.; Silva, A.

    2016-01-01

    Summary Electrical burns are among the most devastating trauma inflicted on the human body. These burns have a higher morbidity, length of stay and a much higher risk of amputation than any other type of burn. Electrical burns affect mostly young, working males because they are more frequently the result of a work accident. However, possibly due to the worldwide economic crisis, we are experiencing a new phenomenon: the theft of high-voltage copper wiring. PMID:27857650

  2. Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences

    Science.gov (United States)

    Miller, M. K.; Russell, K. F.; Kocik, J.; Keilova, E.

    2000-11-01

    An atom probe tomography microstructural characterization of low copper (0.06 at.% Cu) surveillance samples from a VVER 440 reactor has revealed manganese and silicon segregation to dislocations and other ultrafine features in neutron-irradiated base and weld materials (fluences 1×10 25 m-2 and 5×10 24 m-2, E>0.5 MeV, respectively). The results indicate that there is an additional mechanism of embrittlement during neutron irradiation that manifests itself at high fluences.

  3. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  4. EFFECTS OF HIGHER LEVELS OF CHROMIUM AND COPPER ON SOME HAEMATOLOGICAL PARAMETERS AND SERUM PROTEINS IN BROILERS

    Directory of Open Access Journals (Sweden)

    M. Tariq Javed, F, Ahmad. N, Z, Rafique1 and M, Bashir

    2003-01-01

    Full Text Available Effects of higher levels of chromium alone and in combination with copper were investigated in broiler chicks divided into seven equal groups viz. A, B, C, D, E, F and G. Group G served as control receiving no treatment. Groups A, B and F received chromium chloride at the rate of 2 g/kg and nicotinic acid 150 mg/kg feed while C, D and F received chromium chloride 8 g/kg and nicotinic acid 150mg/kg. Broilers of groups A and C received copper sulfate at the rate of 200 mg/kg while groups Band D 400 mg/kg feed. Haematological parameters studied revealed non-significant difference between treatment groups and control in haemoglobin concentration and total erythrocyte counts. However, only at 4th week, lower PCV was observed in birds fed higher levels of chromium chloride alone. Increase in TLC was observed in birds fed low chromium alone or' with low levels of copper. Results of serum proteins including total protein, albumin and globulin during first three weeks showed significantly or relatively lower values in treatment groups than control. Serum globulins generally revealed non-significant difference between treatment groups and control.

  5. Copper hexacyanoferrate battery electrodes with long cycle life and high power

    KAUST Repository

    Wessells, Colin D.

    2011-11-22

    Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper hexacyanoferrate, which has an ultra-low strain open framework structure, can be operated as a battery electrode in inexpensive aqueous electrolytes. After 40,000 deep discharge cycles at a 17g-C rate, 83% of the original capacity of copper hexacyanoferrate is retained. Even at a very high cycling rate of 83g-C, two thirds of its maximum discharge capacity is observed. At modest current densities, round-trip energy efficiencies of 99% can be achieved. The low-cost, scalable, room-temperature co-precipitation synthesis and excellent electrode performance of copper hexacyanoferrate make it attractive for large-scale energy storage systems. © 2011 Macmillan Publishers Limited. All rights reserved.

  6. China Copper Processing Industry Focus

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>1. Market Consumption The ’China Factor’ and Copper Price Fluctuation We all know China is an enormous consumer of copper,but the exact levels of consumption and where the copper has gone remains a mystery.

  7. Large-grained copper indium diselenide crystal growth by computer-controlled high-pressure liquid-encapsulated directional solidification

    Science.gov (United States)

    Schwerdtfeger, C. R.; Ciszek, T. F.

    1992-12-01

    Large-grained copper indium diselenide crystal growth by computer-controlled high-pressure liquid-encapsulated directional solidification is presented. A supply of good quality angle crystals is essential to characterization of the fundamental material properties. [AIP

  8. High-valent copper in biomimetic and biological oxidations.

    Science.gov (United States)

    Keown, William; Gary, J Brannon; Stack, T Daniel P

    2017-04-01

    A long-standing debate in the Cu-O2 field has revolved around the relevance of the Cu(III) oxidation state in biological redox processes. The proposal of Cu(III) in biology is generally challenged as no spectroscopic or structural evidence exists currently for its presence. The reaction of synthetic Cu(I) complexes with O2 at low temperature in aprotic solvents provides the opportunity to investigate and define the chemical landscape of Cu-O2 species at a small-molecule level of detail; eight different types are characterized structurally, three of which contain at least one Cu(III) center. Simple imidazole or histamine ligands are competent in these oxygenation reactions to form Cu(III) complexes. The combination of synthetic structural and reactivity data suggests (1) that Cu(I) should be considered as either a one or two electron reductant reacting with O2, (2) that Cu(III) reduction potentials of these formed complexes are modest and well within the limits of a protein matrix and (3) that primary amine and imidazole ligands are surprisingly good at stabilizing Cu(III) centers. These Cu(III) complexes are efficient oxidants for hydroxylating phenolate substrates with reaction hallmarks similar to that performed in biological systems. The remarkable ligation similarity of the synthetic and biological systems makes it difficult to continue to exclude Cu(III) from biological discussions.

  9. A promising structure for fabricating high strength and high electrical conductivity copper alloys.

    Science.gov (United States)

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-02-09

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application.

  10. A Case-Control Study of the Association Between Serum Copper Level and Febrile Seizures in Children

    Directory of Open Access Journals (Sweden)

    abolfazl MAHYAR

    2012-03-01

    Full Text Available How to Cite this Article: Mahyar A, Ayazi P, Dalirani R, Bakhtiyari H, Daneshi Khohan MM, Javadi A. A Case-Control Study of the Association Between SerumCopper Level and Febrile Seizures in Children. Iranian Journal of Child Neurology 2012;6(1:23-28.ObjectiveFebrile seizures are the most common cause of seizure in children. Identification of risk factors is very important. This study was conducted to determine the association between the serum copper level and simple febrile seizure in children.Materials & MethodsIn this study, 30 children with simple febrile seizures (case group were compared with 30 children with febrile illness without seizures (control group regarding serum copper level. This study was conducted in Qazvin children’s hospital (Qazvin, Iran.ResultsThe mean serum copper levels in the case and control groups were 141.41±30.90 and 129.43±18.97 mcg/dl, respectively. This difference was not significant statistically.ConclusionThis study revealed that there is no association between serum copper levels and febrile seizures. It seems that copper deficiency is not a risk factor for febrile seizures in children.References1. Mikati MA. Febrile seizures in: Kliegman RM, Stanton BF, GemeIII JWS, Schor NF, Behrman RE. Nelson textbookof pediatrics.19th edition. Philadelphia: Saunders; 2011.p. 2017-19.2. Ferrie C, Newton R, Martland T. Febrile seizure in:Mclntosh N, Helms PJ, Smyth RL, Logan S. Forfar& Arneils textbook of pediatrics, London: ChurchillLivingstone; 2008. p. 860-1.3. Mahyar A, Ayazi P, Fallahi M, Javadi A.Risk factors ofthe first febrile seizures in Iranian children. Int J Pediatr2010;2010:862897.[Epub 2010 Jun 24].4. Siqueira LF. Febrile seizures: update on diagnosisand management. Rev Assoc Med Bras 2010 Jul-Aug;56(4:489-92.5. Daoud A, Batieha A. Iron status a possible risk factor forthe first seizure. Epilepsy 2002;43(7:740-43.6. Hartfield DS, Tan J, Yager JY, Rosychuk RJ, SpadyD, Haines C, et al. The association between

  11. High resistance to sulfur poisoning of Ni with copper skin under electric field

    Science.gov (United States)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2017-02-01

    The effects of sulfur poisoning on the (1 0 0), (1 1 0) and (1 1 1) surfaces of pure Ni and Cu/Ni alloy are studied in consideration of the effect of electric field. The effects of Cu dopants on the S poisoning characteristics are analyzed by the means of the density functional theory results in combination with thermodynamics data using the ab initio atomistic thermodynamic method. When the Cu concentration increases to 50% on the surface layer of the Cu/Ni alloy, the (1 1 0) surface becomes the most vulnerable to the sulfur poisoning. Ni with a copper skin can mostly decrease the sulfur poisoning effect. Especially under the electric field of 1.0 V/Å, the sulfur adsorption and phase transition temperature can be further reduced. We therefore propose that Ni surfaces with copper skin can be very effective to improve the resistance to sulfur poisoning of the Ni anode under high electric field.

  12. Reliable Copper and Aluminum Connections for High Power Applications in Electromobility

    Science.gov (United States)

    Hofmann, Konstantin; Holzer, Matthias; Hugger, Florian; Roth, Stephan; Schmidt, Michael

    Investigations concerning the growth of intermetallic phases during the heat input both at the diffusion annealing of copper aluminum roll claddings and the subsequent welding process of copper-aluminum connections by using roll cladded inserts are compared to the analytical determination of phase growth. The temperature distribution in the cladding interface has been determined by thermal simulation, in order to calculate the growth of the intermetallic phases. A comparison between the width of the phases in the analytical calculation and the experiment is achieved. In consideration of high welding speeds, the energy input during the welding process is appraised in order to grade the growth of intermetallic phases. Furthermore the prevention of damage in the roll cladding interface by means of unadapted material thicknesses or welding parameters can be assessed analytically and numerically. The numerical simulations can determine the critical thickness of the roll cladding to avoid damage like exceeding growth of intermetallic phases.

  13. Electrochemical synthesis of highly ordered polypyrrole on copper modified aluminium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Siddaramanna, Ashoka [Centre Universitaire de Recherche sur l’Aluminium, University of Quebec at Chicoutimi, Saguenay, Quebec G7H2B1 (Canada); Saleema, N. [Aluminum Technology Centre, National Research Council of Canada, University East, Saguenay, Quebec G7H8C3 (Canada); Sarkar, D.K., E-mail: dsarkar@uqac.ca [Centre Universitaire de Recherche sur l’Aluminium, University of Quebec at Chicoutimi, Saguenay, Quebec G7H2B1 (Canada)

    2014-07-01

    Fabrication of highly ordered conducting polymers on metal surfaces has received a significant interest owing to their potential applications in organic electronic devices. In this context, we have developed a simple method for the synthesis of highly ordered polypyrrole (PPy) on copper modified aluminium surfaces via electrochemical polymerization process. A series of characteristic peaks of PPy evidenced on the infrared spectra of these surfaces confirm the formation of PPy. The X-ray diffraction (XRD) pattern of PPy deposited on copper modified aluminium surfaces also confirmed the deposition of PPy as a sharp and intense peak at 2θ angle of 23° attributable to PPy is observed while this peak is absent on PPy deposited on as-received aluminium surfaces. An atomic model of the interface of PPy/Cu has been presented based on the inter-atomic distance of copper–copper of (1 0 0) plane and the inter-monomer distance of PPy, to describe the ordering of PPy on Cu modified Al surfaces.

  14. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils

    DEFF Research Database (Denmark)

    Christiansen, Karen Søgaard; Borggaard, Ole K.; Holm, Peter Engelund

    2015-01-01

    Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils...

  15. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Science.gov (United States)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  16. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-

  17. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with

  18. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-

  19. Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate

    DEFF Research Database (Denmark)

    Hasman, Henrik; Kempf, I.; Chidaine, B.;

    2006-01-01

    The tcr gene cluster mediates in vitro copper resistance in Enterococcus faecium. Here we describe the selection of tcr-mediated copper resistance in E. faecium in an animal feeding experiment with young pigs fed 175 mg copper/kg feed (ppm), which is the concentration commonly used for piglets...... in European pig production. tcr-mediated copper resistance was not selected for in a control group fed low levels of copper (6 ppm). We also show coselection of macrolide- and glycopeptide-resistant E. faecium in the animal group fed the high level of copper. Finally, we identify the tcr genes...

  20. Level of Copper Ion in Cervical Mucus of Various Duration after Inserting VCu200 IUD

    Institute of Scientific and Technical Information of China (English)

    刘庆喜; 黄祝姈; 潘琢如

    1996-01-01

    The purpose of the study was to test the effective period of VCu200 IUD. The concentration of copper ion was measured with non-flame atomic absorption s pectrophotometer HITACHI- 180. The average concentration of copper ion(x±sx) was 2.66±0.58 μg/g cervical mucus wet weight (μg/g · M·W·W) in the first year, then gradually decreasing to 0.91±0. 16 μg/g·M·W·W in the fifteenth-year group of VCu200 IUD. There was an average of 0.35±0.08~0. 56±0. 14 μg/g·M·W·W in the control group. It showed that the concentration of copper ion was decreasing with prolongation of use of VCu200 IUD and there was statistically significant difference between VCu200 IUD group, on the one hand, and the stainless steel ring group and the control group (P<0.05~0. 01) on the other hand. No difference was found between the stainless steel ring group and the control group (P>0. 05). It was reported in the literature that the concentration of copper ion in 1.0 μg/ml had the action of anti fertility, and it was found that the concentration of copper ion was higher than 1.0 μg/ml in the tenth year after insertion of VCu200 IUD. It suggested that effective period of VCu200 IUD was at least ten years.

  1. PCR-cloning of tilapia ATP7A cDNA and its mRNA levels in tissues of tilapia following copper administrations.

    Science.gov (United States)

    Chen, Dong Shi; Chan, King Ming

    2011-10-01

    We are studying the toxicity of copper to tilapia and zebrafish and have found that the copper tolerance of tilapia and the sensitivity of zebrafish were due to several proteins' regulation mechanisms that were related to the effects of reactive oxygen species, mitochondrion copper transport, and stress response. To further reveal the mechanism of copper tolerance and sensitivity in tilapia and zebrafish, a full length cDNA of ATP7A was obtained in tilapia. Using real time quantitative PCR, the differential regulations of ATP7A in tilapia and zebrafish were studied. It was found that Cu(2+) gave a higher induction of ATP7A in tilapia than zebrafish, both in vivo and in vitro. These results suggest that the copper tolerance of tilapia may be due to higher expression level of ATP7A.

  2. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    CERN Document Server

    Mondal, S; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T

    2016-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with length 5 \\mu m, a maximum 13.8 times enhancement in the THz pulse energy (in $\\leq$ 20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies ($\\leq$ 20THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20 - 200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets of length 60 \\mu m . Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  3. The Copper Substrate Developments for the HIE-ISOLDE High-Beta Quarter Wave Resonator

    CERN Document Server

    Alberty, L; Aviles, I; Calatroni, S; Capatina, O; Foffano, G; Kadi, Y; Moyret, P; Schirm, K-M; Tardy, T; Venturini Delsolaro, W; D'Elia, A

    2013-01-01

    A new Linac using superconducting Quarter-Wave Resonators (QWRs) is under construction at CERN in the framework of the HIE-ISOLDE project. The QWRs are made by niobium sputtered on a bulk copper substrate. The working frequency at 4.5 K is 101.28 MHz and they will provide 6 MV/m accelerating gradient on the beam axis with a total maximum power dissipation of 10 W. The properties of the cavity substrate have a direct impact on the final cavity performance. The copper substrate has to ensure an optimum surface for the niobium sputtered layer. It has also to fulfil the required geometrical tolerances, the mechanical stability during operation and the thermal performance to optimally extract the RF dissipated power on cavity walls. The paper presents the mechanical design of the high β cavities. The procurement process of the copper raw material is detailed, including specifications and tests. The manufacturing sequence of the complete cavity is then explained and the structural and thermo-mechanical behaviour...

  4. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    Directory of Open Access Journals (Sweden)

    J. W. Elmer

    2001-05-01

    Full Text Available Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC. Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi and 3.45 MPa (500 psi], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa, full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two

  5. Copper overload and deficiency both adversely affect the central nervous system of Drosophila.

    Science.gov (United States)

    Hwang, Joab E C; de Bruyne, Marinus; Warr, Coral G; Burke, Richard

    2014-12-01

    The human copper homeostasis disorders Menkes and Wilson disease both have severe neurological symptoms. Menkes is a copper deficiency disorder whereas Wilson disease patients suffer from copper toxicity, indicating that tight control of neuronal copper levels is essential for proper nervous system development and function. Here we examine the consequences of neuronal copper deficiency and excess in the Drosophila melanogaster nervous system, using targeted manipulation of the copper uptake genes Ctr1A and Ctr1B and efflux gene ATP7 in combination with altered dietary copper levels. We find that pan-neuronal over expression of Ctr1B and ATP7 both result in a reduction in viability. The effects of Ctr1B over expression are exacerbated by dietary copper supplementation and rescued by copper limitation indicating a copper toxicity phenotype. Dietary manipulation has the opposite effect on ATP7 over expression, indicating that this causes neuronal copper deficiency due to excessive copper efflux. Copper deficiency also causes a highly penetrant developmental defect in surviving adult flies which can be replicated by both copper excess and copper deficiency targeted specifically to a small subset of neuropeptidergic cells. We conclude that both copper overload and excess have detrimental effects on Drosophila neuronal function, reducing overall fly viability as well as impacting on a specific neuropeptide pathway.

  6. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis

    Directory of Open Access Journals (Sweden)

    Christopher J. Hlynialuk

    2015-02-01

    Full Text Available Human SCO1 fulfills essential roles in cytochrome c oxidase (COX assembly and the regulation of copper (Cu homeostasis, yet it remains unclear why pathogenic mutations in this gene cause such clinically heterogeneous forms of disease. Here, we establish a Sco1 mouse model of human disease and show that ablation of Sco1 expression in the liver is lethal owing to severe COX and Cu deficiencies. We further demonstrate that the Cu deficiency is explained by a functional connection between SCO1 and CTR1, the high-affinity transporter that imports Cu into the cell. CTR1 is rapidly degraded in the absence of SCO1 protein, and we show that its levels are restored in Sco1−/− mouse embryonic fibroblasts upon inhibition of the proteasome. These data suggest that mitochondrial signaling through SCO1 provides a post-translational mechanism to regulate CTR1-dependent Cu import into the cell, and they further underpin the importance of mitochondria in cellular Cu homeostasis.

  7. High-level language computer architecture

    CERN Document Server

    Chu, Yaohan

    1975-01-01

    High-Level Language Computer Architecture offers a tutorial on high-level language computer architecture, including von Neumann architecture and syntax-oriented architecture as well as direct and indirect execution architecture. Design concepts of Japanese-language data processing systems are discussed, along with the architecture of stack machines and the SYMBOL computer system. The conceptual design of a direct high-level language processor is also described.Comprised of seven chapters, this book first presents a classification of high-level language computer architecture according to the pr

  8. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  9. Studies of cholecystokinin-stimulated biliary secretions reveal a high molecular weight copper-binding substance in normal subjects that is absent in patients with Wilson's disease.

    Science.gov (United States)

    Iyengar, V; Brewer, G J; Dick, R D; Chung, O Y

    1988-03-01

    Copper is unique among cations in that its balance is regulated by the liver. The liver regulates copper balance by excretion of copper (we call it regulatory copper) in the bile destined for loss in the stool. However, most copper secreted into the gastrointestinal tract, for example, that in saliva and gastric juice, is reabsorbed. The biochemical mechanism by which the normal liver "packages" regulatory copper to prevent its reabsorption is not understood. Whatever the mechanism, it appears to have failed in Wilson's disease, because patients with Wilson's disease do not excrete adequate amounts of regulatory copper in their bile to prevent copper accumulation. In the present work, we have studied cholecystokinin-stimulated biliary secretions obtained by intestinal intubation of five normal subjects and five patients with Wilson's disease. Studies of these secretions reveal: (1) that normal but not Wilson's disease biliary samples had a copper-containing peak in the void volume from Sephadex G-75 columns; (2) that the amount of copper in this peak extrapolated to 24 hours of secretion was appropriate to maintain normal copper balance; (3) that the amount of copper in this peak increased with dietary copper supplementation of normal subjects; (4) that normal but not Wilson's disease biliary samples cross-reacted with each of two ceruloplasmin antibodies; and (5) that the high molecular weight Sephadex G-75 fraction from normal but not from Wilson's disease biliary samples cross-reacted with ceruloplasmin antibody. We postulate that the high molecular weight copper-containing substance observed with Sephadex chromatography in normal biliary samples but absent in Wilson's disease samples is the copper-packaging mechanism for copper balance regulation.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Evolution of copper transporting ATPases in eukaryotic organisms.

    Science.gov (United States)

    Gupta, Arnab; Lutsenko, Svetlana

    2012-04-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.

  11. Comparison of microstructures in electroformed and spin-formed copper liners of shaped charge undergone high-strain-rate deformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The as-formed and post-deformed microstructures in both electroformed and spin-formed copper liners of shaped charge were studied by optical microscopy(OM), electron backscattering Kikuchi patterns(EBSP) technique and transmission electron microscopy(TEM). The deformation was carried out at an ultra-high strain rate. OM analysis shows that the initial grains of the electroformed copper liner are finer than those of the spin-formed copper liners. Meanwhile, EBSP analysis reveals that the fiber texture exists in the electroformed copper liners, whereas there is no texture observed in the spin-formed copper liners before deformation. Having undergone high-strain-rate deformation the grains in the recovered slugs, which are transformed from both the electroformed and spin-formed copper liners, all become small. TEM observations of the above two kinds of post-deformed specimens show the existence of cellular structures characterized by tangled dislocations and subgrain boundaries consisting of dislocation arrays. These experimental results indicate that dynamic recovery and recrystallization play an important role in the high-strain-rate deformation process.

  12. Effects of Copper Sulphate Administration to Pregnant Sheep on Some Mineral Levels in Blood Sera of Sheep and Lambs, and Birth Weight of Lambs

    OpenAIRE

    ÇİMTAY, İbrahim

    2014-01-01

    In this study, copper sulphate was administered during the last period of pregnancy to sheep in the Şanlıurfa region in which enzootic ataxia was encountered in the past. The objectives of this study were to search the effect of copper sulphate administration on some mineral levels (copper, zinc, iron, calcium and magnesium) in blood serum of pregnant sheep and their lambs, and birth weight of lambs. This study was performed on 35 pregnant sheep (control group: 15, experimental group: 20). I...

  13. Effects of Copper Sulphate Administration to Pregnant Sheep on Some Mineral Levels in Blood Sera of Sheep and Lambs, and Birth Weight of Lambs

    OpenAIRE

    ÇİMTAY, İbrahim

    2001-01-01

    In this study, copper sulphate was administered during the last period of pregnancy to sheep in the Şanlıurfa region in which enzootic ataxia was encountered in the past. The objectives of this study were to search the effect of copper sulphate administration on some mineral levels (copper, zinc, iron, calcium and magnesium) in blood serum of pregnant sheep and their lambs, and birth weight of lambs. This study was performed on 35 pregnant sheep (control group: 15, experimental group: 20). I...

  14. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  15. Effect of High-level Copper Diet on Expression of TrxR2 mRNA and Reduction Activity of TrxR2 of Liver in Broiler%高铜日粮对肉鸡肝脏TrxR2基因mRNA表达和还原活性的影响

    Institute of Scientific and Technical Information of China (English)

    刘好朋; 唐兆新; 苏荣胜; 胡京京; 韩前彪; 胡锴; 刘传敦; 万婷

    2011-01-01

    In order to examine the effect of high dietary copper on expression of TrxR2 mRNA in liver,and the reduction activity of TrxR2, the experiment was conducted with two hundred healthy 1 day-old Cobb broilers which were randomly divided into four groups based on diets as follows: control group (Cu 11 mg · kg-1 as the group Ⅰ ) and high copper groups (Cu content 110, 330, 550 mg · kg-1 , named group Ⅱ 、Ⅲ and Ⅳ ). The liver was taken from broiler in each group at the lOth , 30th and 50th days, respectively, reduction activity of the liver TrxR2 was detefmined by the method of DTNB, and the testing material was liver mitochondria which has been extraction from the liver, and the expression of the liver TrxR2 was determined by the method of semi-quantification and reverse transcription polymerase chain reaction (RT-PCR). The results showed that the reduction activity of liver TrxR2 decreased (P<0. 05) and the expression of TrxR2 mRNA was reduced (P<0. 05)at 50 d of Group Ⅳ , the reduction activity of liver TrxR2 was mcreased(P<0. 05) at 30 d and reduced (P>0. 05)at 50 d of Group Ⅲ , The experiental results indicated that fed high copper diets (330-550 mg · kg-1) could decrease TrxR2 mRNA expression in the liver and increase the reduction activity of TrxR2 first, and decrease it on 50 days.%本文旨在了解高铜日粮对肉鸡肝脏TrxR2基因mRNA表达和还原活性的影响.200羽1日龄Cobb商品代肉鸡随机分为4组,各组日粮中铜含量分别为:对照组(Ⅰ组)11 mg·kg-1、试验Ⅱ组110 mg·kg1、试验Ⅲ组330mg·kg-1和试验Ⅳ组550 mg·kg-1.饲养至10、30、50 d时每组各取5只鸡用于采集肝脏样品,提取肝脏线粒体用DTNB法测定肝脏TrxR2的还原活性,提取肝脏总RNA用RT-PCR法测定TrxR2 mRNA在肝脏中的表达量.结果显示,饲喂铜含量为550 mg·kg-1日粮50 d时还原活性降低(P<0.05)、TrxR2基因mRNA的表达量降低(P<0.05),饲喂铜含量为330 mg·kg-1日粮30 d时TrxR2

  16. Preliminary analysis of levels of arsenic and other metalic elements in PM10 sampled near Copper Smelter Bor (Serbia

    Directory of Open Access Journals (Sweden)

    Renata Kovačević

    2010-09-01

    Full Text Available In this paper, the levels of twenty one elements (Ag, Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, S, Se, Sr and Zn in PM10 are presented, as well as SO2 concentration, measured at the sampling site in an urban area of the town of Bor (40,000 inhabitants in eastern Serbia. The sampling site was located in a densely populated city center about 0.65 km away from one of the largest copper mines and copper smelters in Europe. For the first time PM10 was collected using the European standard sampler, during a preliminary campaign in duration of 7 days in early spring 2009. PM10 were sampled on PTFE membrane filters and element concentrations were quantified by GF AAS and ICP AES. Concentration levels and correlations within trace elements, PM10 and SO2 indicated that industrial activities underpinned with meteorological conditions of low wind speed (calm are the main factors that influence air pollution in a densely populated area. It was evident that both PM10 mass concentration and SO2 concentration once exceeded the daily limit values during a measuring period of seven days. Strong relationship was found between PM10 and Mn, Mg, Ca and B daily average concentrations. On the other hand, SO2 correlated strongly with As, Pb, Cd, Cu and S daily average concentrations. These results confirm the relationship between emissions of SO2 from the Copper Smelter Bor and calm meteorological conditions (wind speed less than 0.5 m/sec with the concentration levels of carcinogenic substances of arsenic, lead and cadmium in ambient air.

  17. High temperature oxidation event of gelatin nanoskin-coated copper fine particles observed by in situ TEM

    Directory of Open Access Journals (Sweden)

    Takashi Narushima

    2012-12-01

    Full Text Available Metallic copper fine particles were prepared using CuO slurry by hydrazine reduction in the presence of gelatin. To observe a behavior of these particles at high temperature, in situ heating TEM observations were carried out. Oxygen gas was introduced and the pressure of the TEM column was kept at 10−3 Pa, corresponding the pressure around the sample at 10−1 Pa. The gelatin, which acts as a protective nanoskin on the particle surface was gradually decomposed. Around approximately 140 °C, it was observed that Cu2O dots formed on the surface of the copper particle. This result is well consistent with the behavior of the TG-DTA curve of the copper fine particles under ambient conditions, and provides key information of oxidative behavior of copper fine particles.

  18. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  19. Generating, Detecting, and Analyzing High Frequency Acoustic Signals in Accelerator-Grade Copper

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Elizabeth L

    2002-12-11

    One of the major limitations on the Next Linear Collider (NLC), a high-gradient particle accelerator in development, is that sparks form within the copper structure, damaging the material. The sparks also generate high frequency acoustic signals that can be used as diagnostics to solve the problem. First, however, the signals' location, attenuation, and propagation must be established, so an effective method for generating and detecting these signals in a simple copper block is necessary. Impact trials with ball bearings and a BB gun as well as tests with a grinder, a laser, and a sparker were conducted to determine how to produce the greatest ratio of high to low frequency acoustic signals. The laser had the largest ratio, but the sparker was chosen because it also had high ratios and was both more practical and more analogous to the actual signals in the accelerator. Further tests were then conducted to determine the best sensor; an International Transducer Corporation 9020 1 N57 was chosen. Subsequent analysis of signals using this setup could establish the location and types of signals and, ultimately, how to solve the problem in the structure.

  20. From quantum matter to high-temperature superconductivity in copper oxides.

    Science.gov (United States)

    Keimer, B; Kivelson, S A; Norman, M R; Uchida, S; Zaanen, J

    2015-02-12

    The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures.

  1. High Stability Performance of Superhydrophobic Modified Fluorinated Graphene Films on Copper Alloy Substrates

    Directory of Open Access Journals (Sweden)

    Rafik Abbas

    2017-01-01

    Full Text Available A stable self-cleaning superhydrophobic modified fluorinated graphene surface with micro/nanostructure was successfully fabricated on copper substrates via drop coating process. Irregularly stacked island-like multilayered fluorinated graphene nanoflakes comprised the microstructure. The fabricated films exhibited outstanding superhydrophobic property with a water contact angle 167° and water sliding angle lower than 4°. The developed superhydrophobic surface showed excellent corrosion resistance with insignificant decrease of water contact angle 166° in 3.5 wt.% NaCl solution. This stable highly hydrophobic performance of the fluorinated graphene films could be useful in self-cleaning, antifogging, corrosion resistive coatings and microfluidic devices.

  2. Effects of High Salt Concentration and Residue on Copper and Aluminum Corrosion

    Institute of Scientific and Technical Information of China (English)

    HUO Ying; TAN Mike; Yong jun; SHU Li

    2013-01-01

    Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual,electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode.These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media.This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes,namely,the wire beam electrode(WBE).Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.

  3. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus.

    Science.gov (United States)

    Viktorínová, Alena; Toserová, Eva; Krizko, Marián; Duracková, Zdenka

    2009-10-01

    Diabetes mellitus (DM) is associated with the alterations in the metabolism of copper (Cu), zinc (Zn), and magnesium (Mg). The aim of the present study was to investigate plasma levels of these elements in patients with DM and in healthy subjects. Association between glycated hemoglobin and levels of metals was also evaluated. We studied 36 subjects with DM (type 1, 11; type 2, 25) and 34 healthy subjects matched for age, sex, and duration of diabetes. Plasma concentrations of Cu, Zn, and Mg were measured by atomic absorption spectrometry. An imbalance in the levels of studied metals was observed in both type 1 and type 2 DM. We found higher levels of Cu (P diabetic complications.

  4. Survey of Serum Zinc and Copper Levels in the Patients with Brucellosis and Comparing with Healthy Persons

    Directory of Open Access Journals (Sweden)

    P Eini

    2014-08-01

    Full Text Available Introduction: Brucellosis is a zoonotic infection. Metabolism of trace elements such as zinc and copper can influence the response of immunity system and can activate host 's immunochemical mechanisms against the organism. Therefore, this study aimed to determine changes in serum levels of Zn and Cu in patients with brucellosis in pre and post treatment compared with healthy persons. Methods: In this individual matched case-control study, 26 patients participated who were admitted to infectious unit of Farshchian Hospital with brucellosis. Moreover, 26 healthy individuals were included in the control group. 5mL of venous blood was taken from all cases in pre-treatment as well post-treatment. Then, the serum samples were diluted with deionized water, and Cu and Zn levels were measured by using Atomic Absorption Spectrophotometer. Results: In this study, 26 patients with brucellosis were enrolled, who were 13 men (50% and 13 women (50%. No significant difference was observed between the patients and the control group in regard with their age and sex. Serum level of Cu in patients with brucellosis was found to be 100.31µg/dl and 92.81µg/dl, respectively before and after the treatment (P=0.495. Serum level of Cu in healthy individuals was reported to be 97.96µg/dl. In addition, serum level of Zn in the patients and controls was 93 µg/dl and 96.38 µg/dl, respectively (P= 0.625. Patients' Zn Serum level was found to be 90.27µg/dl after the treatment. Conclusion: In this study, no significant changes were observed in serum levels of copper and zinc in the patients with brucellosis in comparison with the control group. Besides, no significant changes were reported in serum levels of these elements in the patients in the end of treatment.

  5. Effect of copper and aluminium on the event rate of cosmic ray muons at ground level in Bangi, Malaysia

    Science.gov (United States)

    Altameemi, Rasha N. I.; Gopir, G.

    2016-11-01

    In this study we determine the effect of aluminium (Al) and copper (Cu) shielding on the event rate of cosmic ray muons at ground level. The experiment was performed at Bangi in Malaysia with coordinates of 101.78° E, 2.92° N and elevation 30 m above sea level. Measurements were made along the vertical direction using muon telescopes (MTs) of parallel Geiger-Muller (GM) tubes with metal sheets above the MTs of up to 2.4 cm for Al and 2.7 cm for Cu. For these ranges of metal thicknesses, we find that the muon count rates increase linearly with the increase in metal thicknesses. The observed increase rate values are (0.18 ± 0.10) cm-1 and (0.26 ± 0.10)cm-1 for Al and Cu, respectively, with the larger value for Cu as expected from its higher atomic number and density. This indicates that for this thickness range, only the lower region of the Rossi curve is observed, with incoming cosmic ray muons producing charged particles in the metal layers, resulting in shower events or electromagnetic cascade. Thus, for this range of layer thickness, both aluminium and copper are not suitable to be used as shielding materials for ground level cosmic ray muons.

  6. Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction.

    Science.gov (United States)

    Kaur, Ravneet; Giordano, Cristina; Gradzielski, Michael; Mehta, Surinder K

    2014-01-01

    We report an aqueous-phase synthetic route to copper nanoparticles (CuNPs) using a copper-surfactant complex and tests of their catalytic efficiency for a simple nitrophenol reduction reaction under atmospheric conditions. Highly stable, water-dispersed CuNPs were obtained with the aid of polyacrylic acid (PAA), but not with other dispersants like surfactants or polymethacrylic acid (PMAA). The diameter of the CuNPs could be controlled in the range of approximately 30-85 nm by modifying the ratio of the metal precursor to PAA. The catalytic reduction of p-nitrophenol to p-aminophenol takes place at the surface of CuNPs at room temperature and was accurately monitored by UV/Vis spectroscopy. The catalytic efficiency was found to be remarkably high for these PAA-capped CuNPs, given the fact that at the same time PAA is efficiently preventing their oxidation as well. The activity was found to increase as the size of the CuNPs decreased. It can therefore be concluded that the synthesized CuNPs are catalytically highly efficient in spite of the presence of a protective PAA coating, which provides them with a long shelf life and thereby enhances the application potential of these CuNPs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of copper

    Science.gov (United States)

    Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni

    2017-01-01

    Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.

  8. A simple granulation technique for preparing high-porosity nano copper oxide(Ⅱ) catalyst beads

    Institute of Scientific and Technical Information of China (English)

    Seyed Javad Ahmadia; Mohammad Outokesh; Morteza Hosseinpour; Tahereh Mousavand

    2011-01-01

    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure.In the first step,copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition.Then,they were immobilized in the polymeric matrix of calcium alginate,and followed by high-temperature calcination in an air stream as the third step,in which carbonaceous materials were oxidized,to result in a pebble-type catalyst of high porosity.The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm,X-ray diffractometry (XRD),and thermo gravimetric (TG)analysis.The catalysts were further investigated by BET test for measurement of their surface area,and by temperature-programmed reduction analysis (H2-TPR) for determination of catalytic activity.The results demonstrated that immobilization of the CuO nanoparticle in the polymeric matrix of calcium alginate,followed by calcination at elevated temperatures,could result in notable mechanical strength and enhanced catalytic activity due to preservation of the high surface area,both valuable for practical applications.

  9. Liquid phase conversion of Glycerol to Propanediol over highly active Copper/Magnesia catalysts

    Indian Academy of Sciences (India)

    Satyanarayana Murty Pudi; Abdul Zoeb; Prakash Biswas; Shashi Kumar

    2015-05-01

    In this work, a series of Cu/MgO catalysts with different copper metal loading were prepared by the precipitation-deposition method. Their catalytic behaviour was investigated for glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO). The physico-chemical properties of the catalysts were characterized by various techniques such as BET surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and scanning electron microscopy (SEM) methods. The characterization results showed that the copper metal was well-dispersed over MgO support and a new phase Cu-MgO was also identified from XRD results after calcination. The 25Cu/MgO (Cu:25 wt%) catalyst exhibited the highest glycerol conversion of 88.7% and 1,2-PDO selectivity of 91.7% at 210°C, 4.5MPa of hydrogen pressure after 12 h. The high glycerol conversion was mainly due to the Cu dispersion on MgO support and high acidic strength. Further, the effects of temperature, hydrogen pressure, catalyst loading and glycerol concentration were studied over 25Cu/MgO catalyst for optimization of reaction parameters. Kinetic study over highly active 25Cu/MgO catalyst showed that the reaction followed the pseudo second order rate with respect to glycerol and the apparent activation energy was found to be 28.7 ± 0.8 kcal/mol.

  10. Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes.

    Science.gov (United States)

    Zhao, Yuxin; Mu, Shanjun; Sun, Wanfu; Liu, Quanzhen; Li, Yanpeng; Yan, Zifeng; Huo, Ziyang; Liang, Wenjie

    2016-12-08

    A rational integration of 1D metallic nanotubes and oxide nanoparticles has been demonstrated as a viable strategy for the production of both highly stable and efficient anodes for lithium ion batteries. We encapsulated copper oxide (CuO) nanoparticles in ultra-long metallic copper nanotubes with engineered interspaces, and explored their electrochemical properties. Such a hierarchical architecture provides three important features: (i) a continuous nanoscale metallic Cu shell to minimize electronic/ionic transmitting impedance; (ii) a unique quasi-one-dimensional structure with a large aspect ratio to reduce self-aggregation; (iii) free space for volume expansion of CuO nanoparticles and stable solid-electrolyte interphase (SEI) formation. The anode materials with such hierarchical structures have high specific capacity (around 600 mA h g(-1) at a current density of 0.1 A g(-1)), excellent cycling stability (over 94% capacity retention after 200 cycles) and superb reversible capacity of 175 mA h g(-1) at a high charging rate of 15 A g(-1).

  11. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode

    OpenAIRE

    2016-01-01

    A new solid contact copper selective electrode with a poly (vinyl chloride) (PVC) membrane consisting of o-xylylenebis(N,N-diisobutyldithiocarbamate) as ionophore has been prepared. The main novelties of constructed ion selective electrode concept are the enhanced robustness, cheapness, and fastness due to the use of solid contacts. The electrode exhibits a rapid (< 10 seconds) and near-Nernstian response to Cu2+ activity from 10−1 to 10−6 mol/L at the pH range of 4.0–6.0. No serious interfer...

  12. Indicative levels of PM in the ambient air in the surrounding villages of the copper smelter complex Bor, Serbia

    Directory of Open Access Journals (Sweden)

    Tasić Viša

    2012-01-01

    Full Text Available While information on air pollution in the form of particulate matter (PM has been monitored for longer period for EU countries, availability of PM data sets in the Western Balkan countries including the Republic of Serbia are still limited. Studies, related to the particulate pollution research, have been only carried out in the past several years. The main objective of this paper is to present PM levels measured in the ambient air in the surrounding settlements of the Copper Smelter Complex Bor. Also, one of the goals is a comparison of PM levels in the surrounding settlements with those measured in Bor town. The ambient levels of PM particles (PM10, PM2.5 were measured by automatic PM monitors at 4 nearby settlements: Slatina, Oštrelj, Krivelj and Brezonik in the time interval from 2005 to 2010. According to the measurement results, PM10 and PM2.5 levels in the ambient air were higher in the cold, heating, (October-March than in the warm no heating period (April-September. The exceeding of the daily limit of PM10 and PM2.5 mass concentration levels was observed at all measuring points. A higher number of exceedances were detected in the cold period. The results indicate that there is a significant seasonal change in the level of fine particles at all measuring places in surroundings. In addition, the PM levels in Bor town are more influenced by the air pollution from the Copper Smelter Complex than settlements in the vicinity, where the PM concentrations were greatly influenced by the presence of domestic heating in the cold period. [Projekat Ministarstva nauka Republike Srbije, br. III42008: Evaluation of Energy Performances and Indoor Environment Quality of Educational Buildings in Serbia with Impact to Health i br. III41028: “An Integral Study to Identify the Regional Genetic and Environmental Risk Factors for the Common Noncommunicable Diseases in the Human Population of Serbia

  13. RELATIONSHIP BETWEEN LEVEL OF COPPER IN BOVINE SEMINAL PLASMA AND SPERMATOZOA MOTILITY

    Directory of Open Access Journals (Sweden)

    Zuzana Kňažická

    2013-02-01

    Full Text Available The aim of this study was to evaluate relationship between copper (Cu concentration of bovine seminal plasma and spermatozoa motility. Semen samples were collected from 13 breeding bulls. The motility analysis was carried out using the Computer Assisted Sperm Analysis (CASA system. The mean value for the percentage of motile spermatozoa (MOT was 92.46±3.99% and the progressive motility of the spermatozoa (PROG as 90.23±4.02%. The seminal plasma Cu concentrations were analyzed by UV/VIS spectrophotometry. The total Cu concentration of the seminal plasma was 4.28±1.47 μM/L. The correlation analysis revealed a strong negative correlation between MOT and seminal plasma Cu concentration (rp=-0.781; P<0.01 as well as between PROG and Cu content in the seminal plasma (rp=-0.726; P<0.01. The data obtained from this study clearly indicated that concentration of copper in seminal plasma negatively affects the spermatozoa motility parameters and subsequently might cause reproductive alteration in male sexual functions.

  14. Highly efficient visual detection of trace copper(II) and protein by the quantum photoelectric effect.

    Science.gov (United States)

    Wang, Peng; Lei, Jianping; Su, Mengqi; Liu, Yueting; Hao, Qing; Ju, Huangxian

    2013-09-17

    This work presented a photocurrent response mechanism of quantum dots (QDs) under illumination with the concept of a quantum photoelectric effect. Upon irradiation, the photoelectron could directly escape from QDs. By using nitro blue tetrazolium (NBT) to capture the photoelectron, a new visual system was proposed due to the formation of an insoluble reduction product, purple formazan, which could be used to visualize the quantum photoelectric effect. The interaction of copper(II) with QDs could form trapping sites to interfere with the quantum confinement and thus blocked the escape of photoelectron, leading to a "signal off" visual method for sensitive copper(II) detection. Meanwhile, by using QDs as a signal tag to label antibody, a "signal on" visual method was also proposed for immunoassay of corresponding protein. With meso-2,3-dimercaptosuccinic-capped CdTe QDs and carcino-embryonic antigen as models, the proposed visual detection methods showed high sensitivity, low detection limit, and wide detectable concentration ranges. The visualization of quantum photoelectric effect could be simply extended for the detection of other targets. This work opens a new visual detection way and provides a highly efficient tool for bioanalysis.

  15. A highly sensitive fluorescence probe for metallothioneins based on tiron-copper complex.

    Science.gov (United States)

    Xiao, Xilin; Xue, Jinhua; Liao, Lifu; Huang, Mingyang; Zhou, Bin; He, Bo

    2015-06-15

    The fabrication of tiron-copper complex as a novel fluorescence probe for the sensitive directly detection of metallothioneins at nanomolar levels was demonstrated. In Britton-Robinson (B-R) buffer (pH 7.50), the interaction of bis(tiron)copper(II) complex cation [Cu(tiron)2](2+) and metallothioneins enhanced the fluorescence intensity of the system. The fluorescence enhancement at 347 nm was proportional to the concentration of metallothioneins. The mechanism was studied and discussed in terms of the fluorescence spectra. Under the optimal experimental conditions, at 347 nm, there was a linear relationship between the fluorescence intensity and the concentration of the metallothioneins in the range of 8.80 × 10(-9)-7.70 × 10(-7)mol L(-1), with a correlation coefficient of r=0.995 and detection limit 2.60 × 10(-9)mol L(-1). The relative standard deviation was 0.77% (n=11), and the average recovery 94.4%. The method proposed was successfully reliable, selective and sensitive in determining of trace metallothioneins in fish visceral organ samples with the results in good agreement with those obtained by HPLC.

  16. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  17. High-Level Dialogue on International Migration

    Directory of Open Access Journals (Sweden)

    UNHCR

    2006-08-01

    Full Text Available UNHCR wishes to bring the following observations andrecommendations to the attention of the High-LevelDialogue (HLD on International Migration and Development,to be held in New York, 14-15 September 2006:

  18. High-level binocular rivalry effects.

    Science.gov (United States)

    Wolf, Michal; Hochstein, Shaul

    2011-01-01

    Binocular rivalry (BR) occurs when the brain cannot fuse percepts from the two eyes because they are different. We review results relating to an ongoing controversy regarding the cortical site of the BR mechanism. Some BR qualities suggest it is low-level: (1) BR, as its name implies, is usually between eyes and only low-levels have access to utrocular information. (2) All input to one eye is suppressed: blurring doesn't stimulate accommodation; pupilary constrictions are reduced; probe detection is reduced. (3) Rivalry is affected by low-level attributes, contrast, spatial frequency, brightness, motion. (4) There is limited priming due to suppressed words or pictures. On the other hand, recent studies favor a high-level mechanism: (1) Rivalry occurs between patterns, not eyes, as in patchwork rivalry or a swapping paradigm. (2) Attention affects alternations. (3) Context affects dominance. There is conflicting evidence from physiological studies (single cell and fMRI) regarding cortical level(s) of conscious perception. We discuss the possibility of multiple BR sites and theoretical considerations that rule out this solution. We present new data regarding the locus of the BR switch by manipulating stimulus semantic content or high-level characteristics. Since these variations are represented at higher cortical levels, their affecting rivalry supports high-level BR intervention. In Experiment I, we measure rivalry when one eye views words and the other non-words and find significantly longer dominance durations for non-words. In Experiment II, we find longer dominance times for line drawings of simple, structurally impossible figures than for similar, possible objects. In Experiment III, we test the influence of idiomatic context on rivalry between words. Results show that generally words within their idiomatic context have longer mean dominance durations. We conclude that BR has high-level cortical influences, and may be controlled by a high-level mechanism.

  19. Influence of a High-Pressure Comminution Technology on Concentrate Yields in Copper Ore Flotation Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2014-10-01

    Full Text Available The article concerns the issues of flotation process effectiveness in relationship to the operating conditions of a high-pressure comminution process course. Experimental programme covering a flotation laboratory batch tests was a verification technique of a high-pressure crushing operations course. The most favorable values of flotation concentrate weight recoveries were obtained for the pressing force 6 kN and 4% of the feed moisture. It was also determined the model of the concentrate weight recovery as a function of pressing force in the press and feed moisture content. This model was the basis for the optimization of effects of copper ore flotation processes preceded in high-pressure crushing operation in roller presses.

  20. Deformation and failure of OFHC copper under high strain rate shear compression

    Science.gov (United States)

    Ruggiero, Andrew; Testa, Gabriel; Bonora, Nicola; Iannitti, Gianluca; Persechino, Italo; Colliander, Magnus Hörnqvist

    2017-01-01

    Hat-shaped specimen geometries were developed to generate high strain, high-strain-rates deformation under prescribed conditions. These geometries offer also the possibility to investigate the occurrence of ductile rupture under low or negative stress triaxiality, where most failure models fail. In this work, three tophat geometries were designed, by means of extensive numerical simulation, to obtain desired stress triaxiality values within the shear region that develops across the ligament. Material failure was simulated using the Continuum Damage Model (CDM) formulation with a unilateral condition for damage accumulation and validated by comparing with quasi-static and high strain rate compression tests results on OFHC copper. Preliminary results seem to indicate that ductile tearing initiates at the specimen corner location where positive stress triaxiality occurs because of local rotation and eventually propagates along the ligament.

  1. Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus

    Directory of Open Access Journals (Sweden)

    Fanxing Meng

    2016-05-01

    Full Text Available A study was carried out to test the responses of juvenile larger yellow croaker Larimichthys croceus to high Cu intake. Experimental diets were formulated containing three levels of Cu: low Cu (3.67 mg/kg, middle Cu (13.65 mg/kg and high Cu (25.78 mg/kg, and each diet were fed to large yellow croaker in triplicate for 10 weeks. Final body weight, weight gain and feed intake were the lowest in high Cu group, but hepatosomatic index was the highest; Cu concentrations in the whole-body, muscle and liver of fish fed low Cu diet was the lowest; Liver superoxide dismutase, catalase and glutathione peroxidase activities in fish fed high Cu diet were lower than those in fish fed other diets; The higher content of liver thiobarbituric acid reactive substance content was found in high Cu group, followed by middle Cu group, and the lowest in low Cu group; Liver 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, malic enzyme, isocitrate dehydrogenase and fatty acid synthase activities were the lowest in high Cu group, but lipoprotein lipase activity was the highest. This study indicated that high copper intake reduced growth of juvenile larger yellow croaker, inhibited activities of antioxidant enzymes and lipid synthetases, and led to energy mobilization.

  2. Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Aβ42-induced Alzheimer's disease-like symptoms.

    Science.gov (United States)

    Lang, Minglin; Fan, Qiangwang; Wang, Lei; Zheng, Yajun; Xiao, Guiran; Wang, Xiaoxi; Wang, Wei; Zhong, Yi; Zhou, Bing

    2013-11-01

    Disruption of copper homeostasis has been implicated in Alzheimer's disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan. Interestingly, Ctr1C inhibition led to a significant increase in higher-molecular-weight Aβ42 forms in brain lysates, whereas it was accompanied by a trend of decreased expression of amyloid-β degradation proteases (including NEP1-3 and IDE) with age and reduced Cu-Aβ interaction-induced oxidative stress in Ctr1C RNAi flies. Similar results were obtained from inhibiting another copper importer Ctr1B and overexpressing a copper exporter DmATP7 in the nervous system of AD flies. These results imply that copper may play a causative role in developing AD, as either Aβ oligomers or aggregates were less toxic in a reduced copper environment or one with less copper binding. Early manipulation of brain copper uptake can have a great effect on Aβ pathology.

  3. Easy Access to Metallic Copper Nanoparticles with High Activity and Stability for CO Oxidation.

    Science.gov (United States)

    Gonçalves, Renato V; Wojcieszak, Robert; Wender, Heberton; Sato B Dias, Carlos; Vono, Lucas L R; Eberhardt, Dario; Teixeira, Sergio R; Rossi, Liane M

    2015-04-22

    Copper catalysts are very promising, affordable alternatives for noble metals in CO oxidation; however, the nature of the active species remains unclear and differs throughout previous reports. Here, we report the preparation of 8 nm copper nanoparticles (Cu NPs), with high metallic content, directly deposited onto the surface of silica nanopowders by magnetron sputtering deposition. The as-prepared Cu/SiO2 contains 85% Cu0 and 15% Cu2+ and was enriched in the Cu0 phase by H2 soft pretreatment (96% Cu0 and 4% Cu2+) or further oxidized after treatment with O2 (33% Cu0 and 67% Cu2+). These catalysts were studied in the catalytic oxidation of CO under dry and humid conditions. Higher activity was observed for the sample previously reduced with H2, suggesting that the presence of Cu-metal species enhances CO oxidation performance. Inversely, a poorer performance was observed for the sample previously oxidized with O2. The presence of water vapor caused only a small increase in the temperature require for the reaction to reach 100% conversion. Under dry conditions, the Cu NP catalyst was able to maintain full conversion for up to 45 h at 350 °C, but it deactivated with time on stream in the presence of water vapor.

  4. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  5. Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: The biosynthesis of oxalate

    Science.gov (United States)

    Katie Jenkins; Carol A. Clausen; Frederick Green; Susan V. Diehl

    2015-01-01

    Copper is currently used as the key component in wood preservatives despite the known tolerance of many brown-rot Basidiomycetes. Copper-tolerant fungi, like Fibroporia radiculosa, produce and accumulate high levels of oxalate when exposed to copper. To gain insight into the mechanism of oxalate production, four F. radiculosa...

  6. Evaluating the Mechanism of Oxalate Synthesis of Fibroporia Radiculosa Isolates Adapting to Copper-Tolerance

    Science.gov (United States)

    Katie Marie Jenkins

    2012-01-01

    Despite the drawbacks associated with tolerant organisms, copper is still used as the key component in current wood preservatives. Copper-tolerant fungi, like Fibroporia radiculosa, produce and accumulate high levels of oxalate in response to copper. The biosynthesis of oxalate has been connected to specific enzymes in the glyoxylate and...

  7. Breakage of Curved Copper Wires Caused by High Impulse Current of Lightning

    Science.gov (United States)

    Hu, Xiaobo; Inaba, Tsuginori; Kindersberger, Josef

    In past studies, after thin straight copper wires of 0.1mmφ were exposed to an impulse current, their temperature rose; they melted according to the specific pre-arcing Joule integral in an adiabatic state. However, in this study, we confirmed that thick straight copper wires of 1mmφ and over it were broken in a solid state before melting The effect of physical damage on copper wire performance was confirmed. The test data suggest that ohmic heating is the main reason for thin (less than 1mmφ) copper wire breakage in the experiments. However, the magnetic force and skin effect are primarily responsible for breaking thick copper wires rather than thermal failure, as previously thought. And the thicker the copper wires diameter was, the more noticeable the magnetic force and skin effect were. Then the impulse current was impressed through curved copper wires from 0.3mmφ to 2.0mmφ. Because of different breakage mechanism for thin and thick copper wires, the current-carrying capability of thin curved copper wires did not change comparing to that of straight ones. However, the current-carrying capability of thick copper wires greatly decreased when they were curved.

  8. Maternal and Umbilical Cord Blood Levels of Zinc and Copper in Active Labor Versus Elective Caesarean Delivery at Khartoum Hospital, Sudan.

    Science.gov (United States)

    Elhadi, Alaeldin; Rayis, Duria A; Abdullahi, Hala; Elbashir, Leana M; Ali, Naji I; Adam, Ishag

    2016-01-01

    A case-control study was conducted in Khartoum Hospital Sudan to determine maternal and umbilical cord blood levels of zinc and copper in active labor versus elective cesarean delivery. Cases were women delivered vaginally and controls were women delivered by elective cesarean (before initiation of labor). Paired maternal and cord zinc and copper were measured using atomic absorption spectrophotometry. The two groups (52 paired maternal and cord in each arm) were well matched in their basic characteristics. In comparison with cesarean delivery, the median (interquartile range) of both maternal [87.0 (76.1-111.4) vs. 76.1 (65.2-88.3) μg/dL, P = 0.004] and cord zinc [97.8 (87.0-114.1) vs. 81.5(65.2-110.2) μg/dL P = 0.034] levels were significantly higher in the vaginal delivery. While there was no significant difference in the maternal copper [78.8 (48.1-106.1) vs. 92.4 (51.9-114.9) μg/dL, P = 0.759], the cord copper [43.5(29.9-76.1) vs. 32.2(21.7-49.6) μg/dL, P = 0.019] level was significantly higher in vaginal delivery. There was no significant correlation between zinc (both maternal and cord) and copper. While the cord zinc was significantly correlated with maternal zinc, there was no significant correlation between maternal and cord copper. The current study showed significantly higher levels of maternal and cord zinc and cord copper in women who delivered vaginally compared with caesarean delivery.

  9. Copper Selenide Nanocrystals as a High Performance, Solution Processed Thermoelectric Material

    Science.gov (United States)

    Forster, Jason; Lynch, Jared; Coates, Nelson; Sahu, Ayaskanta; Liu, Jun; Cahill, David; Urban, Jeff

    Nano-structuring a thermoelectric material often results in enhanced performance due to a decrease in the materials' thermal conductivity. Traditional nano-structuring techniques involve ball milling a bulk material followed by spark plasma sintering, a very energy intensive process. In this talk, we will describe the development of a self-assembled, high-performing, nano-structured thin film based on copper selenide nanocrystals. Mild thermal annealing of these films results in concurrent increases in the Seebeck coefficient and electrical conductivity. We are able to achieve power factors at room temperature that are as high as the best spark plasma sintered materials. These solution-processed films have potential applications as conformal, flexible materials for thermoelectric power generation.

  10. Experiences with electrochemical analysis of copper at the PPB-level in saline cooling water and in the water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K. [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Determination of trace amounts of copper in saline cooling water and in process water by differential pulse anodic stripping voltammetry combined with an UV-photolysis pretreatment is described. Copper concentrations well below 1 {mu}g/L may be analysed with a precision in the order of 10% and a high degree of accuracy. The basic principles of the method are described together with three applications covering analysis of cooling and process water samples. The analysis method has been applied to document the adherence of environmental limits for the copper uptake of cooling water passing brass condensers, to monitor the formation of protective layers of iron oxides on the cooling water side of brass condensers, and to study the transport of copper in water/steam cycles with heat exchangers and condensers of brass materials. (au)

  11. Correlation of erythrocyte and plasma levels of zinc, copper, and iron with evidence of metastatic spread in cancer patients.

    Science.gov (United States)

    Gorodetsky, R; Fuks, Z; Sulkes, A; Ginsburg, H; Weshler, Z

    1985-02-15

    The level of plasma copper (Cu-Pl) and zinc (Zn-Pl) and the level of erythrocyte iron (Fe-RBC), copper (Cu-RBC), and zinc (Zn-RBC) were determined in the blood of 70 normal donors and 138 patients with various solid tumors by diagnostic x-ray spectrometry (DXS), a technique based on x-ray fluorescence spectrometry analysis. There were no significant changes in the mean values of Zn-Pl, Fe-RBC, and Cu-RBC in the patients when compared with those of normal donors. The mean level of Cu-Pl in the normal donors was 1.34 +/- 0.37 micrograms/ml; it was significantly increased in the patients, ranging between 1.47 +/- 0.34 micrograms/ml for patients without evidence of active cancer (NED) and 1.91 +/- 0.76 micrograms/ml for patients with hepatic metastases. The most significant change observed was an increase in the Zn-RBC found in the patients with clinical evidence of metastatic spread. Whereas the Zn-RBC level in the normal donors was 9.85 +/- 1.47 micrograms/g wet weight, and not significantly elevated in the NED patients, it was elevated to values of 11.37 +/- 1.55 micrograms/g (P less than 0.004) for patients with soft tissue and hepatic metastases and was 12.34 +/- 1.65 micrograms/g (P less than 0.001) for patients with bone metastases. The data suggest a clear correlation between Zn-RBC and metastatic spread in nonlymphomatous human cancer.

  12. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  13. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis.

    Science.gov (United States)

    Sun, Tian-Shu; Ju, Xiao; Gao, Hui-Ling; Wang, Tao; Thiele, Dennis J; Li, Jia-Yi; Wang, Zhan-You; Ding, Chen

    2014-11-24

    Copper homeostasis is important for virulence of the fungus Cryptococcus neoformans, which can cause lethal meningoencephalitis in humans. Cryptococcus cells encounter high copper levels in the lung, where infection is initiated, and low copper levels in the brain. Here we demonstrate that two Cryptococcus copper transporters, Ctr1 and Ctr4, differentially influence fungal survival during pulmonary infection and the onset of meningoencephalitis. Protein Ctr1 is rapidly degraded under the high-copper conditions found in infected lungs, and its loss has no effect in fungal virulence in mice. By contrast, deleting CTR4 results in a hypervirulent phenotype. Overexpressing either Ctr1 or Ctr4 leads to profound reductions in fungal burden in the lung. However, during the onset of meningoencephalitis, expression of the copper transporters is induced and is critical for Cryptococcus virulence. Our work demonstrates that the fungal cells switch between copper detoxification and acquisition to address different copper stresses in the host.

  14. Expression Profile of Antioxidant Enzymes in Hemocytes from Freshwater Prawn Macrobrachium rosenbergii Exposed to an Elevated Level of Copper.

    Science.gov (United States)

    Guo, Hui; Miao, Yu-Tao; Xian, Jian-An; Qian, Kun; Wang, An-Li

    2015-10-01

    This study evaluated the expression level of antioxidant enzymes Cu, Zn-superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) in hemocytes of Macrobrachium rosenbergii exposed to copper by real-time PCR (qRT-PCR). Results showed that the mRNA expression of Cu, Zn-SOD increased to reach a peak at 6 h, then recovered to its normal level at 48 h. CAT expression level was significantly increased at 12 h and reached a peak at 24 h, but recovered to its normal level later. GPx expression level was significantly increased at 6 h and reached the peak at 12 h. GST expression level was significantly induced from 12 to 24 h and then dropped to its normal level at 48 h. These results indicated that antioxidant enzymes were inducible, possibly for removing excessive reactive oxygen species to protect prawn from oxidative stress.

  15. Effects of Copper Pollution on the Phenolic Compound Content, Color, and Antioxidant Activity of Wine.

    Science.gov (United States)

    Sun, Xiangyu; Ma, Tingting; Han, Luyang; Huang, Weidong; Zhan, Jicheng

    2017-05-03

    The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.

  16. Jiangxi Copper Co.,Ltd Invested 268 Million Yuan to Expand the Capacity of High-Grade Copper Foil Production to 5000 ton/year

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>At the end of 2008, Jiangxi Copper Co.,Ltd reviewed and approved the"Proposal on In- vesting 268 Million Yuan to Jiangxi Copper- Yates Foil Inc for Technical Upgrade and Phase-two Expansion of Capacity."

  17. EAP high-level product architecture

    DEFF Research Database (Denmark)

    Guðlaugsson, Tómas Vignir; Mortensen, Niels Henrik; Sarban, Rahimullah

    2013-01-01

    the function of the EAP transducers to be changed, by basing the EAP transducers on a different combination of organ alternatives. A model providing an overview of the high level product architecture has been developed to support daily development and cooperation across development teams. The platform approach...... of EAP technology products while keeping complexity under control. High level product architecture has been developed for the mechanical part of EAP transducers, as the foundation for platform development. A generic description of an EAP transducer forms the core of the high level product architecture....... Initial results from applying the platform on demonstrator design for potential applications are promising. The scope of the article does not include technical details. © 2013 SPIE....

  18. Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance

    OpenAIRE

    Yuling Chen; Fan Yang; Zhongyuan Sun; Qingtao Wang; Kaixia Mi; Haiteng Deng

    2015-01-01

    Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a worldwide public health threat. Mycobacterium tuberculosis is capable of resisting various stresses in host cells, including high levels of ROS and copper ions. To better understand the resistance mechanisms of mycobacteria to copper, we generated a copper-resistant strain of Mycobacterium smegmatis, mc2155-Cu from the selection of copper sulfate treated-bacteria. The mc2155-Cu strain has a 5-fold higher resistance to coppe...

  19. Dinuclear thiazolylidene copper complex as highly active catalyst for azid–alkyne cycloadditions

    Science.gov (United States)

    Schöffler, Anne L; Makarem, Ata; Rominger, Frank

    2016-01-01

    Summary A dinuclear N-heterocyclic carbene (NHC) copper complex efficiently catalyzes azide–alkyne cycloaddition (CuAAC) “click” reactions. The ancillary ligand comprises two 4,5-dimethyl-1,3-thiazol-2-ylidene units and an ethylene linker. The three-step preparation of the complex from commercially available starting compounds is more straightforward and cost-efficient than that of the previously described 1,2,4-triazol-5-ylidene derivatives. Kinetic experiments revealed its high catalytic CuAAC activity in organic solvents at room temperature. The activity increases upon addition of acetic acid, particularly for more acidic alkyne substrates. The modular catalyst design renders possible the exchange of N-heterocyclic carbene, linker, sacrificial ligand, and counter ion. PMID:27559407

  20. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance.

    Science.gov (United States)

    Zhu, Jie; Luo, Yuting; Tian, Jian; Li, Juan; Gao, Xuefeng

    2015-05-27

    We report that the dropwise condensation heat transfer (DCHT) effectiveness of copper surfaces can be dramatically enhanced by in situ grown clustered ribbed-nanoneedles. Combined experiments and theoretical analyses reveal that, due to the microscopically rugged and low-adhesive nature of building blocks, the nanosamples can not only realize high-density nucleation but constrain growing condensates into suspended microdrops via the self-transport and/or self-expansion mode for subsequently self-propelled jumping, powered by coalescence-released excess surface energy. Consequently, our nanosample exhibits over 125% enhancement in DCHT coefficient. This work helps develop advanced heat-transfer materials and devices for efficient thermal management and energy utilization.

  1. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose

    Directory of Open Access Journals (Sweden)

    Hanqing Zhang

    2017-06-01

    Full Text Available The ordered bifacial copper nanowire array (Cu BNWA was synthesized by a template assisted electrochemical deposition method. The morphology and structure of the as-prepared samples were investigated by field emission scanning electron microscope (FESEM and X-ray diffraction (XRD. The results show that the ordered Cu nanowire array with uniform geometrical dimensions covered both side of the Cu substrate. When used as the electrode for glucose detection, the minimum detectable concentration of glucose can be reached as low as 0.2 mM. Impressively, the sample still showed high sensitivity and stability for glucose detection after two months placement in ambient environment. These excellent performances of the Cu BNWA make it a promising non-enzyme glucose detection sensor for various applications.

  2. Dinuclear thiazolylidene copper complex as highly active catalyst for azid–alkyne cycloadditions

    Directory of Open Access Journals (Sweden)

    Anne L. Schöffler

    2016-07-01

    Full Text Available A dinuclear N-heterocyclic carbene (NHC copper complex efficiently catalyzes azide–alkyne cycloaddition (CuAAC “click” reactions. The ancillary ligand comprises two 4,5-dimethyl-1,3-thiazol-2-ylidene units and an ethylene linker. The three-step preparation of the complex from commercially available starting compounds is more straightforward and cost-efficient than that of the previously described 1,2,4-triazol-5-ylidene derivatives. Kinetic experiments revealed its high catalytic CuAAC activity in organic solvents at room temperature. The activity increases upon addition of acetic acid, particularly for more acidic alkyne substrates. The modular catalyst design renders possible the exchange of N-heterocyclic carbene, linker, sacrificial ligand, and counter ion.

  3. [Copper pathology (author's transl)].

    Science.gov (United States)

    Mallet, B; Romette, J; Di Costanzo, J D

    1982-01-30

    Copper is an essential dietary component, being the coenzyme of many enzymes with oxidase activity, e.g. ceruloplasmin, superoxide dismutase, monoamine oxidase, etc. The metabolism of copper is complex and imperfectly known. Active transport of copper through the intestinal epithelial cells involves metallothionein, a protein rich in sulfhydryl groups which also binds the copper in excess and probably prevents absorption in toxic amounts. In hepatocytes a metallothionein facilitates absorption by a similar mechanism and regulates copper distribution in the liver: incorporation in an apoceruloplasmin, storage and synthesis of copper-dependent enzymes. Metallothioneins and ceruloplasmin are essential to adequate copper homeostasis. Apart from genetic disorders, diseases involving copper usually result from hypercupraemia of varied origin. Wilson's disease and Menkes' disease, although clinically and pathogenetically different, are both marked by low ceruloplasmin and copper serum levels. The excessive liver retention of copper in Wilson's disease might be due to increased avidity of hepatic metallothioneins for copper and decreased biliary excretion through lysosomal dysfunction. Menkes' disease might be due to low avidity of intestinal and hepatic metallothioneins for copper. The basic biochemical defect responsible for these two hereditary conditions has not yet been fully elucidated.

  4. Metal-biradical chains from a high-spin ligand and bis(hexafluoroacetylacetonato)copper(II).

    Science.gov (United States)

    Rajadurai, Chandrasekar; Enkelmann, Volker; Ikorskii, Vladimir; Ovcharenko, Victor I; Baumgarten, Martin

    2006-11-27

    The synthesis, X-ray crystal structure, and magnetic studies of a rare example of organic/inorganic spin hybrid clusters extended in infinite ladder-type chain [Cu(C5F6HO2)2]7(C35H35N5O4)2 ([Cu(hfac)2]7(pyacbisNN)2, 2) formed by the reaction of a high spin nitronylnitroxide biradical C35H35N5O4 (pyacbisNN, 1) and bis(hexafluroacetylacetonate)copper(II) = Cu(hfac)2 are described. Single-crystal X-ray structure analysis revealed the triclinic P1 space group of 2 with the following parameters: a = 10.6191(4) A, b = 19.6384(7) A, c = 21.941(9) A, alpha = 107.111(7) degrees, beta = 95.107(8) degrees, gamma = 94.208(0) degrees , Z = 2. Each repeating unit in 2 carries a centrosymmetric cyclic six spin and a linear five spin cluster with four different copper coordination environments having octahedral and square planar geometries. These clusters are interconnected to form infinite chains which are running along the crystallographic b axis. The magnetic measurements show nearly paramagnetic behavior with very small variations over a large temperature range. The magnetic properties are thus result of complex competitions of many weak ferro- and antiferromagnetic interactions, which appear as small deviations from quite linear mu(eff) vs T dependence at low temperature. At high temperature (300-14 K), antiferromagnetic behavior dominates a little, while at very low temperature (14-2 K), a small increase of mu(eff) was observed. The magnetic susceptibility data are described by the Curie-Weiss law [chi = C/(T - theta)] with the optimal parameters C = 4.32 +/- 0.01 emuK/mol and theta = - 0.6 +/- 0.3 K, where C is the Curie constant and theta is the Weiss temperature.

  5. 铜触头的高频钎焊%High-frequency brazing a copper contact

    Institute of Scientific and Technical Information of China (English)

    刘轶强; 张狄林

    2012-01-01

    叙述了焊接一种大面积铜触头由气体火焰钎焊改为高频钎焊的研究过程.通过更换钎料,设计合适的感应线圈,选用合适的焊接工艺参数,焊接出合格的产品.经肉眼观察、滚压实验、金相分析和扫描电镜的全面检测,触头的高频钎焊质量优良,符合设计要求.该研究对提高铜触头的焊接合格率,降低生产成本,节省焊接时间并大幅提高生产率,减轻劳动强度和改善劳动环境都有极大的价值.%This paper describes a large area of copper contact welding by the gas flame brazing replaced by high-frequency brazing process.By replacing the induction coil of solder,design appropriate, the appropriate choice of welding parameters, welding of qualified products. By the virual inspection ,rolling experiments, metallographic analysis and scanning electron microscope,a comprehensive inspection,the contact by high-frequency brazing has good quality and meets the design requirements. This study has great value for the company to improve the pass rate of welding of copper contacts,reduces production costs,saves the welding lime and dramatically increases productivity, reduces labor intensity and improves the working environment.

  6. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics

    Science.gov (United States)

    Joo, Sung-Jun; Hwang, Hyun-Jun; Kim, Hak-Sung

    2014-07-01

    In this study, the size effect of copper particles on the flash light sintering of copper (Cu) ink was investigated using Cu nanoparticles (20-50 nm diameter) and microparticles (2 μm diameter). Also, the mixed Cu nano-/micro-inks were fabricated, and the synergetic effects between the Cu nano-ink and micro-ink on flash light sintering were assessed. The ratio of nanoparticles to microparticles in Cu ink and the several flash light irradiation conditions (irradiation energy density, pulse number, on-time, and off-time) were optimized to obtain high conductivity of Cu films. In order to precisely monitor the milliseconds-long flash light sintering process, in situ monitoring of electrical resistance and temperature changes of Cu films was conducted during the flash light irradiation using a real-time Wheatstone bridge electrical circuit, thermocouple-based circuit, and a high-rate data acquisition system. Also, several microscopic and spectroscopic characterization techniques such as scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the flash light sintered Cu nano-/micro-films. In addition, the sheet resistance of Cu film was measured using a four-point probe method. This work revealed that the optimal ratio of nanoparticles to microparticles is 50:50 wt%, and the optimally fabricated and flash light sintered Cu nano-/micro-ink films have the lowest resistivity (80 μΩ cm) among nano-ink, micro-ink, or nano-micro mixed films.

  7. Hyperfine-structure study of the 3d10 5p 2P3/2 level of neutral copper using pulsed level-crossing spectroscopy at short laser wavelengths

    Science.gov (United States)

    Bengtsson, J.; Larsson, J.; Svanberg, S.; Wahlstrom, C.-G.

    1990-01-01

    A hyperfine-structure study of the strongly perturbed 3d10 5p 2P3/2 state of neutral copper was performed using pulsed level-crossing spectroscopy. Excitation was accomplished at the short wavelength of 202 nm, where intense laser pulses were obtained using frequency tripling of dye laser radiation. For Cu-63, a = 61.7(9) MHz, b = 4.9(7) MHz, and tau = 25,5(10) ns were obtained for the magnetic dipole and the electric quadrupoles interaction constants and the lifetime, respectively. A comparison with theoretical calculations based on the multiconfiguration Hartree-Fock method is made. A discussion of the usefulness of level-crossing, quantum-beat, and radio-frequency techniques for high-resolution spectroscopy at wavelengths in the UV and vacuum-UV region is presented.

  8. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  9. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  10. Highly sensitive determination of copper in HeLa cell using capillary electrophoresis combined with a simple cell extraction treatment.

    Science.gov (United States)

    Meng, Lingchen; Fang, Ziyuan; Lin, Jian; Li, Meixian; Zhu, Zhiwei

    2014-04-01

    A new separation system of capillary electrophoresis (CE1) for the highly sensitive determination of copper was established by using ethylenediaminetetraacetic acid (EDTA) as a complexing agent and employing cetyltrimethylammonium chloride (CTAC) as a capillary inner wall modifier. Benefitted from the combination of field-enhanced sample injection (FESI) method, a limit of detection (LOD) of 2.7 nM was obtained, which was much lower than that of the conventional methods. This made it possible to determine trace copper in HeLa cell only by a simple cell extraction (CE2) treatment. Two copper-extraction methods-acid-hydrolysis and freeze-thaw-were compared. Limited by the requirement of low ion strength in FESI, only the extract using freeze-thaw could be successfully applied in the determination. The effectiveness assessment of this CE(2)-FESI method was adopted by inductively coupled plasma-atomic emission spectrometry (ICP-AES) as a gold standard.

  11. High-performance Copper Alloy QBD-6%高性能铜合金QBD-6

    Institute of Scientific and Technical Information of China (English)

    曾力维; 张舟逸; 蒋中华

    2015-01-01

    Use electromagnetic stirring, horizontal continuous casting to break casting structure and refine casting the precipitates "Ni - P" compounds by high temperature annealing. After 20 finished rolling mills, the production of QBD - 6 high-performance copper alloy plate strips has high strength, high elasticity, high conductivity, high finish and other characteristics which can replace imported alloy, such as: MF202, CAC5 and some low-intensity C7025. This can be successfully applied to the lead frame materials, connectors, terminals, and motor brush components in power tools.%采用电磁搅拌水平连铸,破碎铸造组织并通过高温退火细化铸造组织中的析出物"Ni-P"化合物,经过20辊轧机的成品轧制,生产的QBD-6高性能铜合金板带材具有高强度、高弹性、高导电和高光洁度等特性,可替代进口合金,如:M F202、C A C5以及部分低强度的C7025.成功应用于引线框架材料、连接器、端子以及电动工具中的电机电刷部件.

  12. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    Energy Technology Data Exchange (ETDEWEB)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  13. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    Science.gov (United States)

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  14. High spin levels in /sup 151/Ho

    Energy Technology Data Exchange (ETDEWEB)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszynski, M.; Preibisz, Z.

    1981-07-01

    We report here on the first study of the level structure of /sup 151/Ho. High spin levels in /sup 151/Ho have been populated in the /sup 141/Pr + /sup 16/O and /sup 144/Sm + /sup 12/C reactions. The level structure has been established up to 6,6 MeV energy and the spins and parities determined up to 49/2/sup -/. Most of the proposed level configurations can be explained by the coupling of h sub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units.

  15. High spin levels in /sup 151/Ho

    Energy Technology Data Exchange (ETDEWEB)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszynski, M.; Preibisz, Z.

    1981-07-01

    We report here on the first study of the level structure of /sup 151/Ho. High spin levels in /sup 151/Ho have been populated in the /sup 141/Pr + /sup 16/O and /sup 144/Sm + /sup 12/C reactions. The level structure has been established up to 6.6 MeV energy and the spins and parities determined up to 49/2/sup -/. Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal 17 +- 2 has been found. Its spin is larger than 57/2 h units.

  16. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is cha...

  17. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; Wit, de Patrick; Milbrat, Alexander; Luiten-Olieman, Mieke W.J.; Benes, Nieck E.; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-

  18. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils.

    Science.gov (United States)

    Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M

    2015-04-01

    Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.

  19. High-temperature interface superconductivity between metallic and insulating copper oxides.

    Science.gov (United States)

    Gozar, A; Logvenov, G; Kourkoutis, L Fitting; Bollinger, A T; Giannuzzi, L A; Muller, D A; Bozovic, I

    2008-10-09

    The realization of high-transition-temperature (high-T(c)) superconductivity confined to nanometre-sized interfaces has been a long-standing goal because of potential applications and the opportunity to study quantum phenomena in reduced dimensions. This has been, however, a challenging target: in conventional metals, the high electron density restricts interface effects (such as carrier depletion or accumulation) to a region much narrower than the coherence length, which is the scale necessary for superconductivity to occur. By contrast, in copper oxides the carrier density is low whereas T(c) is high and the coherence length very short, which provides an opportunity-but at a price: the interface must be atomically perfect. Here we report superconductivity in bilayers consisting of an insulator (La(2)CuO(4)) and a metal (La(1.55)Sr(0.45)CuO(4)), neither of which is superconducting in isolation. In these bilayers, T(c) is either approximately 15 K or approximately 30 K, depending on the layering sequence. This highly robust phenomenon is confined within 2-3 nm of the interface. If such a bilayer is exposed to ozone, T(c) exceeds 50 K, and this enhanced superconductivity is also shown to originate from an interface layer about 1-2 unit cells thick. Enhancement of T(c) in bilayer systems was observed previously but the essential role of the interface was not recognized at the time.

  20. [Copper IUDs (author's transl)].

    Science.gov (United States)

    Thiery, M

    1983-10-01

    for as long as 20 years. Shorter and smaller versions of standard copper IUDs have been tested as they permit easier insertion, but high rates of pregnancy, expulsion, and removal have prevented their wider use. The discovery that the size of the uterine cavity is more important than its length has prompted the development of some promising uterine measuring instruments. Attempts to develop a device appropriate for postpartum use have been disappointing, and expulsion rates remain high. A few promising new forms of copper IUDs have been developed but not yet tested clinically.

  1. Association between Serum Copper Status and Working Memory in Schoolchildren

    Directory of Open Access Journals (Sweden)

    Guoping Zhou

    2015-08-01

    Full Text Available Trace elements such as copper are essential micronutrients. Traditionally, copper has been studied in the context of micronutrient deficiencies. Recent studies in both animals and humans, however, have revealed that elevated blood copper can also have adverse effects on cognitive function since free copper can cross the blood-brain barrier and subsequently impose oxidative stress to neuronal cells. However, most of these human studies were conducted in adult populations with and without cognitive decline, and there are few studies on the effect of excess copper on cognitive function in children. This project seeks to look at the effects of elevated copper levels on cognitive development in a population of school age children (ages 10–14 years with mean age of 12.03 years and standard deviation (SD of 0.44 from Jintan, China. Briefly, serum copper levels and working memory test scores were collected from a sample of 826 children with a mean serum copper level of 98.10 (SD 0.75. Copper level was considered as a categorical variable (taking the first group as those with as ≤84.3 μg/dL, the second group as >84.3 and ≤110.4 μg/dL, and the third group as >110.4 μg/dL with the cut-off values defined by the first and third quartiles of the sample. Results showed a significant association between high copper levels (>110.4 μg/dL and poorer working memory in boys but this association was not seen in lower copper levels in either sex. These results suggests that in school age children, like in adults, elevated copper levels have the potential to adversely affect cognition.

  2. Python based high-level synthesis compiler

    Science.gov (United States)

    Cieszewski, Radosław; Pozniak, Krzysztof; Romaniuk, Ryszard

    2014-11-01

    This paper presents a python based High-Level synthesis (HLS) compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and map it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This article describes design, implementation and first results of created Python based compiler.

  3. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  4. Compact X-ray Source using a High Repetition Rate Laser and Copper Linac

    CERN Document Server

    Graves, W S; Brown, P; Carbajo, S; Dolgashev, V; Hong, K -H; Ihloff, E; Khaykovich, B; Lin, H; Murari, K; Nanni, E A; Resta, G; Tantawi, S; Zapata, L E; Kärtner, F X; Moncton, D E

    2014-01-01

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The 100 kHz repetition rate is orders of magnitude beyond existing high brightness copper linacs. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for m...

  5. Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2015-01-01

    Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.

  6. 低砷高锑阳极的铜电解生产%Low Arsenic High Antimony Copper Anode Copper Electrolysis Production

    Institute of Scientific and Technical Information of China (English)

    杨洪光

    2012-01-01

    介绍了我国北方某电解铜厂,在很长一段时间内,采购的阳极含砷较低而含锑较高。针对这种阳极板,采取了合理控制电解液成分、合理选用添加剂种类和控制用量、提高电解液温度、改变电解液循环方式、由常规电解改为周期反向电解等技术措施和完善操作方法,使电铜的合格率达到了100%。%A electrolytic copper factory in north,in a long time,purchased the anode arsenic low and antimony high.In this kind of YangJiBan,through taking reasonable control electrolyte composition,reasonable choice of additive type and dosage of control,improving the electrolyte temperature,changing the electrolyte cycle way,by conventional electrolysis to cycle reverse electrolysis,etc,such as technical measures and perfect operation methods,the qualified rate of the copper was made to reach 100%.

  7. Tracking at High Level Trigger in CMS

    CERN Document Server

    Tosi, Mia

    2014-01-01

    A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and lepton iso...

  8. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  9. Service-oriented high level architecture

    CERN Document Server

    Wang, Wenguang; Li, Qun; Wang, Weiping; Liu, Xichun

    2009-01-01

    Service-oriented High Level Architecture (SOHLA) refers to the high level architecture (HLA) enabled by Service-Oriented Architecture (SOA) and Web Services etc. techniques which supports distributed interoperating services. The detailed comparisons between HLA and SOA are made to illustrate the importance of their combination. Then several key enhancements and changes of HLA Evolved Web Service API are introduced in comparison with native APIs, such as Federation Development and Execution Process, communication mechanisms, data encoding, session handling, testing environment and performance analysis. Some approaches are summarized including Web-Enabling HLA at the communication layer, HLA interface specification layer, federate interface layer and application layer. Finally the problems of current research are discussed, and the future directions are pointed out.

  10. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  11. High-level radioactive wastes. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, L.H. (ed.)

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  12. Commissioning of the CMS High Level Trigger

    CERN Document Server

    Agostino, Lorenzo; Beccati, Barbara; Behrens, Ulf; Berryhil, Jeffrey; Biery, Kurt; Bose, Tulika; Brett, Angela; Branson, James; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Dahmes, Bryan; Deldicque, Christian; Dusinberre, Elizabeth; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gutleber, Johannes; Hatton, Derek; Laurens, Jean-Francois; Loizides, Constantin; Ma, Frank; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Patras, Vaios; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdeckerd, Philipp; Schwick, Christoph; Serrano Margaleff, Josep Francesc; Shpakov, Dennis; Simon, Sean; Sumorok, Konstanty; Sungho Yoon, Andre; Wittich, Peter; Zanetti, Marco

    2009-01-01

    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

  13. Commissioning of the CMS High Level Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Agostino, Lorenzo; et al.

    2009-08-01

    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

  14. Commissioning of the CMS High Level Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Agostino, Lorenzo; et al.

    2009-08-01

    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

  15. Age-Dependent Increase of Brain Copper Levels and Expressions of Copper Regulatory Proteins in the Subventricular Zone and Choroid Plexus

    Directory of Open Access Journals (Sweden)

    Sherleen eFu

    2015-06-01

    Full Text Available Our recent data suggest a high accumulation of Cu in the subventricular zone (SVZ along the wall of brain ventricles. Anatomically, SVZ is in direct contact with cerebrospinal fluid (CSF, which is secreted by a neighboring tissue choroid plexus. Changes in Cu regulatory gene expressions in the SVZ and choroid plexus as the function of aging may determine Cu levels in the CSF and SVZ. This study was designed to investigate associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus. The SVZ and choroid plexus were dissected from brains of 3-week, 10-week or 9-month old male rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and old animals contained the highest Cu level compared with other tested brain regions. Significant positive correlations between age and Cu levels in SVZ and plexus were observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of young and adult rats (p<0.01, respectively. Quantitation by qPCR of the transcriptional expressions of Cu regulatory proteins showed that the SVZ expressed the highest level of Cu storage protein MTs, while the choroid plexus expressed the high level of Cu transporter protein Ctr1. Noticeably, Cu levels in the SVZ were positively associated with type B slow proliferating cell marker Gfap (p<0.05, but inversely associated with type A proliferating neuroblast marker Dcx (p<0.05 and type C transit amplifying progenitor marker Nestin (p<0.01. Dmt1 had significant positive correlations with age and Cu levels in the plexus (p<0.01. These findings suggest that Cu levels in all tested brain regions are increased as the function of age. The SVZ shows a different expression pattern of Cu-regulatory genes from the choroid plexus. The age-related increase of MTs and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active brain region.

  16. Variations of serum copper values in pregnancy

    OpenAIRE

    Vukelić Jelka; Kapamadžija Aleksandra; Petrović Đorđe; Grujić Zorica; Novakov-Mikić Aleksandra; Kopitović Vesna; Bjelica Artur

    2012-01-01

    Introduction. Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. Objective. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathol...

  17. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...

  18. Influence of the level of oxygenation in sediment and water on copper bioavailability to marine bivalves: Laboratory experiments and translocation experiments in the field

    NARCIS (Netherlands)

    Hummel, H.; Magni, P.; Amiard-Triquet, C.; Rainglet, F.; Modderman, R.; Van Duijn, Y.; Herssevoort, M.; De Jong, J.H.; Snitsevorg, L.; Ytsma, M.; Bogaards, R.H.; De Wolf, L.

    1998-01-01

    The effects of differences in the level of oxygenation of sediment or water on the condition and copper content of two bivalves, the Baltic clam Macoma balthica and the cockle Cerastoderma edule, were assessed. Specimens from four intertidal flats in the Netherlands and France were compared,

  19. Screening of Blood Levels of Mercury, Cadmium, and Copper in Pregnant Women in Dakahlia, Egypt: New Attention to an Old Problem.

    Science.gov (United States)

    Motawei, Shimaa M; Gouda, Hossam E

    2016-06-01

    Heavy metals toxicity is a prevalent health problem particularly in developing countries. Mercury and cadmium are toxic elements that have no physiologic functions in human body. They should not be present in the human body by any concentration. Copper, on the other hand, is one of the elements that are essential for normal cell functions and a deficiency as well as an excess of which can cause adverse health effects. To test blood levels of mercury, cadmium, and copper in pregnant women in Dakahlia, Egypt. Using atomic absorption spectrophotometry, blood levels of cadmium, mercury, and copper were measured in 150 pregnant women attending to the antenatal care in Mansoura University Hospital in Dakahlia governorate, Egypt. The mean ± SD of blood mercury, cadmium, and copper levels were found to be far from their levels in the population surveys carried in developed countries like United States of America (USA) and Canada. Heavy metal intoxication and accumulation is a major health hazard. Developing countries, including Egypt, still lack many of the regulatory policies and legislations to control sources of pollution exposure. This should be dealt with in order to solve this problem and limit its health consequences.

  20. Multilayer, Stacked Spiral Copper Inductors on Silicon with Micro-Henry Inductance Using Single-Level Lithography

    Directory of Open Access Journals (Sweden)

    Timothy Reissman

    2012-01-01

    Full Text Available We present copper structures composed of multilayer, stacked inductors (MLSIs with tens of micro-Henry inductance for use in low frequency (sub 100 MHz, power converter technology. Unique to this work is the introduction of single-level lithography over the traditional two-level approach to create each inductor layer. The result is a simplified fabrication process which results in a reduction in the number of lithography steps per inductor (metal layer and a reduction in the necessary alignment precision. Additionally, we show that this fabrication process yields strong adhesion amongst the layers, since even after a postprocess abrasion technique at the inner diameter of the inductors, no shearing occurs and connectivity is preserved. In total, three separate structures were fabricated using the single-level lithography approach, each with a three-layered, stacked inductor design but with varied geometries. Measured values for each of the structures were extracted, and the following results were obtained: inductance values of 24.74, 17.25, and 24.74 μH, self-resonances of 9.87, 5.72, and 10.58 MHz, and peak quality factors of 2.26, 2.05, and 4.6, respectively. These values are in good agreement with the lumped parameter model presented.

  1. A new copper containing MALDI matrix that yields high abundances of [peptide + Cu]+ ions.

    Science.gov (United States)

    Wu, Zhaoxiang; Fernandez-Lima, Francisco A; Perez, Lisa M; Russell, David H

    2009-07-01

    The dinuclear copper complex (alpha-cyano-4-hydroxycinnamic acid (CHCA) copper salt (CHCA)(4)Cu(2)), synthesized by reacting CHCA with copper oxide (CuO), yields increased abundances of [M + xCu - (x-1)H](+) (x = 1-6) ions when used as a matrix for matrix-assisted laser desorption ionization (355 nm Nd:YAG laser). The yield of [M + xCu - (x-1)H](+) (x = 1 to approximately 6) ion is much greater than that obtained by mixing peptides with copper salts or directly depositing peptides onto oxidized copper surfaces. The increased ion yields for [M + xCu - (x-1)H](+) facilitate studies of biologically important copper binding peptides. For example, using this matrix we have investigated site-specific copper binding of several peptides using fragmentation chemistry of [M + Cu](+) and [M + 2Cu - H](+) ions. The fragmentation studies reveal interesting insight on Cu binding preferences for basic amino acids. Most notable is the fact that the binding of a single Cu(+) ion and two Cu(+) ions are quite different, and these differences are explained in terms of intramolecular interactions of the peptide-Cu ionic complex.

  2. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.

    Science.gov (United States)

    Kiaune, Lina; Singhasemanon, Nan

    2011-01-01

    Besides being a naturally occurring element and an essential micronutrient, copper is used as a pesticide, but at generally higher concentrations. Copper, unlike organic pesticides, does not degrade, but rather enters a complex biogeochemical cycle. In the water column, copper can exist bound to both organic and inorganic species and as free or hydrated copper ions. Water column chemistry affects copper speciation and bioavailability. In all water types (saltwater, brackish water, and freshwater), organic ligands in the water column can sequester the majority of dissolved copper, and therefore, organic ligands play the largest role in copper bioavailability. In freshwater, however, the geochemistry of a particular location, including water column characteristics such as water hardness and pH, is a significant factor that can increase copper bioavailability and toxicity. In most cases, organic ligand concentrations greatly exceed copper ion concentrations in the water column and therefore provide a large buffering capacity. Hence, copper bioavailability can be grossly overestimated if it is based on total dissolved copper (TDCu) concentrations alone. Other factors that influence copper concentrations include location in the water column, season, temperature, depth, and level of dissolved oxygen. For example, concentrations of bioavailable copper may be significantly higher in the bottom waters and sediment pore waters, where organic ligands degrade much faster and dissolved copper is constantly resuspended and recycled into the aquatic system. Aquatic species differ greatly in their sensitivity to copper. Some animals, like mollusks, can tolerate high concentrations of the metal, while others are adversely affected by very low concentrations of copper. Emerging evidence shows that very low, sublethal copper levels can adversely affect the sense of smell and behavior of fish. The developmental stage of the fish at the time of copper exposure is critical to the

  3. Investigation of high-k yttrium copper titanate thin films as alternative gate dielectrics

    Science.gov (United States)

    Grazia Monteduro, Anna; Ameer, Zoobia; Rizzato, Silvia; Martino, Maurizio; Caricato, Anna Paola; Tasco, Vittorianna; Chaitanya Lekshmi, Indira; Hazarika, Abhijit; Choudhury, Debraj; Sarma, D. D.; Maruccio, Giuseppe

    2016-10-01

    Nearly amorphous high-k yttrium copper titanate thin films deposited by laser ablation were investigated in both metal-oxide-semiconductor (MOS) and metal-insulator-metal (MIM) junctions in order to assess the potentialities of this material as a gate oxide. The trend of dielectric parameters with film deposition shows a wide tunability for the dielectric constant and AC conductivity, with a remarkably high dielectric constant value of up to 95 for the thick films and conductivity as low as 6  ×  10-10 S cm-1 for the thin films deposited at high oxygen pressure. The AC conductivity analysis points out a decrease in the conductivity, indicating the formation of a blocking interface layer, probably due to partial oxidation of the thin films during cool-down in an oxygen atmosphere. Topography and surface potential characterizations highlight differences in the thin film microstructure as a function of the deposition conditions; these differences seem to affect their electrical properties.

  4. The properties of high-energy milled pre-alloyed copper powders containing 1 wt. % Al

    Directory of Open Access Journals (Sweden)

    VISESLAVA RAJKOVIC

    2007-01-01

    Full Text Available The microstructural and morphological changes of inert gas atomized pre-alloyed Cu-1 wt. % Al powders subjected to hith-energy milling were studied. The microhardness of hot-pressed compacts was measured as a function of milling time. The thermal stability during exposure at 800 °C and the electrical conductivity of compacts were also examined. During the high-energy milling, severe deformation led to refinement of the powder particle grain size (from 550 nm to about 55 nm and a decrease in the lattice parameter (0.10 %, indicating precipitation of aluminium from the copper matrix. The microhardness of compacts obtained from 5 h-milled powders was 2160 MPa. After exposure at 800 °C for 5 h, these compacts still exhibited a high microhardness value (1325 MPa, indicating good thermal stability. The increase of microhardness and good thermal stability is attributed to the small grain size (270 and 390 nm before and after high temperature exposure, respectively. The room temperature electrical conductivity of compacts processed from 5 h-milled powder was 79 % IACS.

  5. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries

    Science.gov (United States)

    Yu, Hong; Yang, Jun; Geng, Hongbo; Chao Li, Cheng

    2017-04-01

    Uniform carbon wrapped copper telluride nanowires were successfully prepared by using an in situ conversion reaction. The length of these nanowires is up to several micrometers and the width is around 30–40 nm. The unique one dimensional structure and the presence of conformal carbon coating of copper telluride greatly accommodate the large volumetric changes during cycling, significantly increase the electrical conductivity and reduce charge transfer resistance. The copper telluride nanowires show promising performance in a lithium ion battery with a discharge capacity of 130.2 mA h g‑1 at a high current density of 6.0 A g‑1 (26.74 C) and a stable cycling performance of 673.3 mA h g‑1 during the 60th cycle at 100 mA g‑1. When evaluated as anode material for a sodium ion battery, the copper telluride nanowires deliver a reversible capacity of 68.1 mA h g‑1 at 1.0 A g‑1 (∼4.46 C) and have a high capacity retention of 177.5 mA h g‑1 during the 500th cycle at 100 mA g‑1.

  6. Performance of the CMS High Level Trigger

    CERN Document Server

    Perrotta, Andrea

    2015-01-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved trac...

  7. Evaluation of micronutrient (zinc, copper and iron levels in periodontitis patients with and without diabetes mellitus type 2: A biochemical study

    Directory of Open Access Journals (Sweden)

    Biju Thomas

    2013-01-01

    Full Text Available Context: Periodontal tissue destruction is caused by an inappropriate host response to microorganisms. Diabetes is a metabolic disease and most of its complications are due to hyperglycemia. Periodontitis is considered as its sixth complication. Micronutrients such as zinc, copper and iron are essential for human health. There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease and its complication. An association between micronutrients and periodontitis has also been suggested by preliminary studies. However, till date there is a lack of relevant clinical data. Aim: This study was designed to estimate and compare the serum levels of zinc, copper and iron in diabetes mellitus type 2 patients and healthy individuals with and without periodontitis. Setting and Design: Single centre case-control study. Subjects and Materials: This study included 150 subjects, 50 in each group. Group 1 comprised of 50 subject with diabetes mellitus type 2 and periodontitis. Group 2 comprised of 50 subjects with chronic periodontitis and Group 3 comprised of 50 control subjects. Atomic absorption spectrophotometry method was used to measure clinical level of zinc and copper in serum. Estimation of serum iron levels was done by bathophenanthroline method. Statistical analysis: The results obtained were tabulated and subjected to statistical analysis by analysis of variance and Tukey multiple comparison tests using statistical software SPSS version 17. Results: The results showed that the serum levels of zinc decreased and serum levels of iron and copper increased in diabetes patients with periodontitis compared to healthy individuals with and without periodontitis. Conclusion: Imbalance of Zinc, copper and iron levels in the serum can predispose an individual to the risk of developing periodontitis.

  8. Evaluation of micronutrient (zinc, copper and iron) levels in periodontitis patients with and without diabetes mellitus type 2: a biochemical study.

    Science.gov (United States)

    Thomas, Biju; Gautam, Anshuman; Prasad, B Rajendra; Kumari, Suchetha

    2013-01-01

    Periodontal tissue destruction is caused by an inappropriate host response to microorganisms. Diabetes is a metabolic disease and most of its complications are due to hyperglycemia. Periodontitis is considered as its sixth complication. Micronutrients such as zinc, copper and iron are essential for human health. There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease and its complication. An association between micronutrients and periodontitis has also been suggested by preliminary studies. However, till date there is a lack of relevant clinical data. This study was designed to estimate and compare the serum levels of zinc, copper and iron in diabetes mellitus type 2 patients and healthy individuals with and without periodontitis. Single centre case-control study. This study included 150 subjects, 50 in each group. Group 1 comprised of 50 subject with diabetes mellitus type 2 and periodontitis. Group 2 comprised of 50 subjects with chronic periodontitis and Group 3 comprised of 50 control subjects. Atomic absorption spectrophotometry method was used to measure clinical level of zinc and copper in serum. Estimation of serum iron levels was done by bathophenanthroline method. The results obtained were tabulated and subjected to statistical analysis by analysis of variance and Tukey multiple comparison tests using statistical software SPSS version 17. The results showed that the serum levels of zinc decreased and serum levels of iron and copper increased in diabetes patients with periodontitis compared to healthy individuals with and without periodontitis. Imbalance of Zinc, copper and iron levels in the serum can predispose an individual to the risk of developing periodontitis.

  9. Cause and Measures of High Copper Content in Electrolyzing Manganese Dioxide Process%电解二氧化锰生产中铜含量偏高的原因分析及措施

    Institute of Scientific and Technical Information of China (English)

    丁延庚

    2014-01-01

    针对电解二氧化锰生产中产品和电解废液中铜含量偏高的问题,分析其原因,提出相应的改进措施,使铜含量控制在一个较低的水平,产品质量大大提高。%Analyze the cause of the high copper content in both the product and the electrolysis waste water in the electrolyzing manganese dioxide process ,propose the improvement measures .The copper content is controlled to a lower level ,the product quality is greatly improved .

  10. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Science.gov (United States)

    Sun, Xiang-Yu; Zhao, Yu; Liu, Ling-Ling; Jia, Bo; Zhao, Fang; Huang, Wei-Dong; Zhan, Ji-Cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  11. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  12. Deformation and annealing behavior of heavily drawn oxygen-free high-conductivity (OFHC) copper

    Science.gov (United States)

    Waryoba, Daudi Rigenda

    Conductor wires used in pulsed high-field magnets require metallic materials with a beneficial combination of high mechanical strength to resist the Lorentz forces and high electrical conductivity to limit temperature excursions due to Joule heating. To achieve the required strength, most conductors are fabricated from microcomposite materials using the work hardening effect after heavy cold deformation such as wire drawing. Since the microstructure and texture of these microcomposites are complex, a detailed systematic study of these materials requires a separate study of the individual phases. This work presents a comprehensive study of the microstructure and microtexture evolution during deformation, and subsequent annealing of heavily deformed OFHC copper wires. Analytical tools used for investigation include optical microscopy, scanning electron microscopy (SEM), orientation-imaging microscopy (OIM) in SEM, and transmission electron microscopy (TEM). Mechanical properties were evaluated by tensile and microhardness testing. Some of the key features of the as-drawn wire are elongated grain size and shear bands. The intensity of the shear bands increased with strain. The ultimate tensile strength (UTS) and the microhardness of the heavily cold-drawn copper wires increased with strain, reached a saturation point and dropped at higher deformation strain. Deformation did not significantly alter the electrical conductivity of the wires. Deformed and recovered microstructures were characterized by a strong+weak duplex fiber texture. Nucleation of recrystallized grains occurred at shear bands and resulted in randomization of texture. On the other hand, recrystallization produced a strong+weak, which later changed to a fiber texture during abnormal grain growth. A detailed analysis showed that recrystallization was a growth-controlled mechanism, and proceeds from the outer surface to the core. Interestingly, secondary recrystallization was observed to proceed from the

  13. The Association Between Serum Levels of Selenium, Copper, and Magnesium with Thyroid Cancer: a Meta-analysis.

    Science.gov (United States)

    Shen, Fei; Cai, Wen-Song; Li, Jiang-Lin; Feng, Zhe; Cao, Jie; Xu, Bo

    2015-10-01

    There are conflicting reports on the correlation between serum levels of selenium (Se), copper (Cu), and magnesium (Mg) with thyroid cancer. The purpose of the present study is to clarify the association between Se, Cu, and Mg levels with thyroid cancer using a meta-analysis approach. We searched articles indexed in PubMed published as of January 2015 that met our predefined criteria. Eight eligible articles involving 1291 subjects were identified. Overall, pooled analysis indicated that subjects with thyroid cancer had lower serum levels of Se and Mg, but higher levels of Cu than the healthy controls [Se: standardized mean difference (SMD) = -0.485, 95% confidence interval (95%CI) = (-0.878, -0.092), p = 0.016; Cu: SMD = 2.372, 95%CI = (0.945, 3.799), p = 0.001; Mg: SMD = -0.795, 95%CI = (-1.092, -0.498), p cancer in Norway [SMD = -0.410, 95%CI = (-0.758, -0.062), p = 0.021] and Austria [SMD = -0.549, 95%CI = (-0.743, -0.355), p cancer had higher serum levels of Cu in China [SMD = 1.571, 95%CI = (1.121, 2.020), p cancer. However, the subgroup analysis found that there was significant effect modification of Se, Cu levels by ethnic, like China and Poland. Thus, this finding needs further confirmation by a trans-regional multicenter study to obtain better understanding of causal relationship between Se, Cu, and Mg with thyroid cancer of different human races or regions.

  14. [Copper and the human body].

    Science.gov (United States)

    Krízek, M; Senft, V; Motán, J

    1997-11-19

    Copper is one of the essential trace elements. It is part of a number of enzymes. Deficiency of the element is manifested by impaired haematopoesis, bone metabolism, disorders of the digestive, cardiovascular and nervous system. Deficiency occurs in particular in patients suffering from malnutrition, malabsorption, great copper losses during administration of penicillamine. Sporadically copper intoxications are described (suicidal intentions or accidental ingestion of beverages with a high copper content). Acute exposure to copper containing dust is manifested by metal fume fever. Copper salts can produce local inflammations. Wilson's disease is associated with inborn impaired copper metabolism. In dialyzed patients possible contaminations of the dialyzate with copper must be foreseen as well as the possible release of copper from some dialyzation membranes. With the increasing amount of copper in the environment it is essential to monitor the contamination of the environment.

  15. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-01

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  16. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  17. Normal-state nodal electronic structure in underdoped high-Tc copper oxides.

    Science.gov (United States)

    Sebastian, Suchitra E; Harrison, N; Balakirev, F F; Altarawneh, M M; Goddard, P A; Liang, Ruixing; Bonn, D A; Hardy, W N; Lonzarich, G G

    2014-07-03

    An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.

  18. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    Science.gov (United States)

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  19. Paths and determinants for Penicillium janthinellum to resist low and high copper.

    Science.gov (United States)

    Xu, Jian; Chen, Guo-Li; Sun, Xue-Zhe; Fan, Xian-Wei; You-Zhi, Li

    2015-08-12

    Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H(+)-transporting ATPases-based ATP production, V-type H(+)-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model.

  20. Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux

    Institute of Scientific and Technical Information of China (English)

    Liu Xiang(刘翔); S.Tamura; K.Tokunaga; N.Yoshida; Zhang Fu(张斧); Xu Zeng-yu(许增裕); Ge Chang-chun(葛昌纯); N.Noda

    2003-01-01

    Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS)and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten /Carbon Fiber-Enhancedmaterial) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited byphysical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a gradedtransition interface. Different grain growth processes of tungsten coatings under stable and tran-sient heat loads were observed, their experimental results indicated that the recrystallizing tem-perature of VPS-W coating was about 1400 ℃ and a recrystallized columnar layer of about 30μmthickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications ofW/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface,surface plastic deformations and cracks, were investigated, and the erosion mechanism erosionproducts) of these two kinds of tungsten coatings under high heat flux was also studied.

  1. High-speed blanking of copper alloy sheets: Material modeling and simulation

    Science.gov (United States)

    Husson, Ch.; Ahzi, S.; Daridon, L.

    2006-08-01

    To optimize the blanking process of thin copper sheets ( ≈ 1. mm thickness), it is necessary to study the influence of the process parameters such as the punch-die clearance and the wear of the punch and the die. For high stroke rates, the strain rate developed in the work-piece can be very high. Therefore, the material modeling must include the dynamic effects.For the modeling part, we propose an elastic-viscoplastic material model combined with a non-linear isotropic damage evolution law based on the theory of the continuum damage mechanics. Our proposed modeling is valid for a wide range of strain rates and temperatures. Finite Element simulations, using the commercial code ABAQUS/Explicit, of the blanking process are then conducted and the results are compared to the experimental investigations. The predicted cut edge of the blanked part and the punch-force displacement curves are discussed as function of the process parameters. The evolution of the shape errors (roll-over depth, fracture depth, shearing depth, and burr formation) as function of the punch-die clearance, the punch and the die wear, and the contact punch/die/blank-holder are presented. A discussion on the different stages of the blanking process as function of the processing parameters is given. The predicted results of the blanking dependence on strain-rate and temperature using our modeling are presented (for the plasticity and damage). The comparison our model results with the experimental ones shows a good agreement.

  2. Coexistence of Fermi arcs and Fermi pockets in a high-T(c) copper oxide superconductor.

    Science.gov (United States)

    Meng, Jianqiao; Liu, Guodong; Zhang, Wentao; Zhao, Lin; Liu, Haiyun; Jia, Xiaowen; Mu, Daixiang; Liu, Shanyu; Dong, Xiaoli; Zhang, Jun; Lu, Wei; Wang, Guiling; Zhou, Yong; Zhu, Yong; Wang, Xiaoyang; Xu, Zuyan; Chen, Chuangtian; Zhou, X J

    2009-11-19

    In the pseudogap state of the high-transition-temperature (high-T(c)) copper oxide superconductors, angle-resolved photoemission (ARPES) measurements have seen Fermi arcs-that is, open-ended gapless sections in the large Fermi surface-rather than a closed loop expected of an ordinary metal. This is all the more puzzling because Fermi pockets (small closed Fermi surface features) have been suggested by recent quantum oscillation measurements. The Fermi arcs cannot be understood in terms of existing theories, although there is a solution in the form of conventional Fermi surface pockets associated with competing order, but with a back side that is for detailed reasons invisible to photoemission probes. Here we report ARPES measurements of Bi(2)Sr(2-x)La(x)CuO(6+delta) (La-Bi2201) that reveal Fermi pockets. The charge carriers in the pockets are holes, and the pockets show an unusual dependence on doping: they exist in underdoped but not overdoped samples. A surprise is that these Fermi pockets appear to coexist with the Fermi arcs. This coexistence has not been expected theoretically.

  3. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  4. Intergenerational ethics of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Nagoya Univ., Graduate School of Engineering, Nagoya, Aichi (Japan); Nasu, Akiko; Maruyama, Yoshihiro [Shibaura Inst. of Tech., Tokyo (Japan)

    2003-03-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  5. Plant growth, development and change in GSH level in safflower (Carthamus tinctorius L. exposed to copper and lead

    Directory of Open Access Journals (Sweden)

    Li Shufen

    2015-01-01

    Full Text Available The effects of exposure to heavy metals, copper (Cu and lead (Pb in the soil, separately and in combination, were examined in Safflower (Carthamus tinctorius L.. Plant growth and development, GSH level and GSH2 expression at seedling, branching, and flowering stages were studied. Cu at lower concentrations had a stimulating effect on seedling height and root length. A significant positive correlation was observed between heavy metal concentrations and inhibition of plant growth. Plant height, root length and lateral root numbers decreased progressively with increasing concentrations of Cu and Pb. Except at the seedling stage, the metal mixture elicited a synergistic effect on safflower growth and development. The GSH content was significantly reduced in both safflower roots and leaves at increased concentrations of heavy metals, with the exception of the treatment with a low concentration of Cu that resulted in a slightl increase in GSH content at the seedling and branching stages. RT-PCR analysis revealed a negative correlation between GSH2 expression levels and metal concentration. Short exposure to low concentrations of Cu induce an increase in GSH synthesis to preserve normal plant growth, whereas prolonged exposure and large Cu and Pb concentrations affect the GSH metabolic chain, and are severely toxicity. The findings obtained in this study enhance our understanding of the role of the GSH pool in the response of plants to heavy metal-induced stress, and serve as a basis for improved cultivation of safflower.

  6. Proton Affinity Calculations with High Level Methods.

    Science.gov (United States)

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  7. [Influence of EPS on silicate corrosion inhibition for copper pipe in soft water].

    Science.gov (United States)

    Li, Shi-Yin

    2008-10-01

    The effects of sodium alginate on silicate corrosion inhibition for copper pipe in simulated soft water were investigated. The results showed that more soluble copper release was occurred when low concentration sodium alginate was in presence. The 1 a aged copper pipe released more soluble copper than the 3 a and 10 a aged copper pipe. The sequence of concentration of soluble copper release was c 1 a > c 3 a, > c 10 a. However, compared to the low concentration sodium alginate, soluble copper released from the 1 a aged copper pipe increased, and the 3 a and 10 a aged copper pipe were inverse when high level sodium alginate was in presence. These phenomena showed that the effect of silicate corrosion inhibition decreased when extracellular polymer substances was dissolved in soft water. Under the conditions of pH 7.5 and sodium alginate 16 mg/L, soluble copper release tend was gradually increase-decrease-gradually run-up which due to the absorption of sodium alginate on the surface of copper surface and the complex interaction between sodium alginate, silicate and copper ions. When the initial pH value was low, compared to the system of no sodium alginate, the soluble copper release distinctly increased in the presence of sodium alginate. The amount of soluble copper released from 1 a copper pipe is higher than that from 3 a and 10 a aged copper pipe, which due to the different components of copper corrosion by-products on the surface of different aged copper pipes and the different solubility of different corrosion by-products.

  8. Results of crack-arrest tests on two irradiated high-copper welds

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, S.K.; Corwin, W.R.; Nanstead, R.K. (Oak Ridge National Lab., TN (USA))

    1990-12-01

    The objective of this study was to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288{degree}C to an average fluence of 1.9 {times} 10{sup 19} neutrons/cm{sup 2} (>1 MeV). Evaluation of the results shows that the neutron-irradiation-induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves (for the range of test temperatures covered) did not seem to have been altered by irradiation compared to those of the ASME K{sub Ia} curve. 9 refs., 21 figs., 10 tabs.

  9. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction.

    Science.gov (United States)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Mieke W J; Benes, Nieck E; Koper, Marc T M; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas-liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology.

  10. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    Science.gov (United States)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Mieke W. J.; Benes, Nieck E.; Koper, Marc T. M.; Mul, Guido

    2016-02-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas-liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology.

  11. Effect of inhibitors on corrosion behavior of copper-nickel in concentrated lithium bromide solution at high temperature

    Institute of Scientific and Technical Information of China (English)

    黄乃宝; 梁成浩; 佟大维

    2002-01-01

    The conventional mass-loss tests and the electrochemical techniques were used to study the inhibition action of LiOH and Na2MoO4 either individually or in different combination for copper-nickel alloy in boiling 65%LiBr solution. It indicates that the corrosion rate of copper-nickel is decreased when LiOH or Na2MoO4 is added to the solution individually. LiOH concentration has a double-effect on the corrosion behavior of copper-nickel. Low concentration is benefit to forming oxide film. High concentration results in dissolution of oxide film. The optimal concentration of LiOH is 0.15mol/L. The dissolution of copper-nickel is effectively prevented when adding 200mg/L Na2MoO4 to boiling 65%LiBr solution with 0.15mol/L LiOH. The inhibition mechanism is considered that the films of Cu, Ni, Mo oxides and deposited nonprotective in soluble CuBr on the surface of metal could prevent Br- ion from absorption, which prevent alloy dissolving.

  12. The high-level trigger of ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Tilsner, H.; Lindenstruth, V.; Steinbeck, T. [Kirchhoff Institute for Physics, University of Heidelberg (Germany); Alt, T.; Aurbakken, K.; Grastveit, G.; Nystrand, J.; Roehrich, D.; Ullaland, K.; Vestbo, A. [Department of Physics, University of Bergen (Norway); Helstrup, H. [Bergen College (Norway); Loizides, C. [Institute of Nuclear Physics, University of Frankfurt (Germany); Skaali, B.; Vik, T. [Department of Physics, University of Oslo (Norway)

    2004-07-01

    One of the main tracking detectors of the forthcoming ALICE Experiment at the LHC is a cylindrical Time Projection Chamber (TPC) with an expected data volume of about 75 MByte per event. This data volume, in combination with the presumed maximum bandwidth of 1.2 GByte/s to the mass storage system, would limit the maximum event rate to 20 Hz. In order to achieve higher event rates, online data processing has to be applied. This implies either the detection and read-out of only those events which contain interesting physical signatures or an efficient compression of the data by modeling techniques. In order to cope with the anticipated data rate, massive parallel computing power is required. It will be provided in form of a clustered farm of SMP-nodes, based on off-the-shelf PCs, which are connected with a high bandwidth low overhead network. This High-Level Trigger (HLT) will be able to process a data rate of 25 GByte/s online. The front-end electronics of the individual sub-detectors is connected to the HLT via an optical link and a custom PCI card which is mounted in the clustered PCs. The PCI card is equipped with an FPGA necessary for the implementation of the PCI-bus protocol. Therefore, this FPGA can also be used to assist the host processor with first-level processing. The first-level processing done on the FPGA includes conventional cluster-finding for low multiplicity events and local track finding based on the Hough Transformation of the raw data for high multiplicity events. (orig.)

  13. The high-level trigger of ALICE

    Science.gov (United States)

    Tilsner, H.; Alt, T.; Aurbakken, K.; Grastveit, G.; Helstrup, H.; Lindenstruth, V.; Loizides, C.; Nystrand, J.; Roehrich, D.; Skaali, B.; Steinbeck, T.; Ullaland, K.; Vestbo, A.; Vik, T.

    One of the main tracking detectors of the forthcoming ALICE Experiment at the LHC is a cylindrical Time Projection Chamber (TPC) with an expected data volume of about 75 MByte per event. This data volume, in combination with the presumed maximum bandwidth of 1.2 GByte/s to the mass storage system, would limit the maximum event rate to 20 Hz. In order to achieve higher event rates, online data processing has to be applied. This implies either the detection and read-out of only those events which contain interesting physical signatures or an efficient compression of the data by modeling techniques. In order to cope with the anticipated data rate, massive parallel computing power is required. It will be provided in form of a clustered farm of SMP-nodes, based on off-the-shelf PCs, which are connected with a high bandwidth low overhead network. This High-Level Trigger (HLT) will be able to process a data rate of 25 GByte/s online. The front-end electronics of the individual sub-detectors is connected to the HLT via an optical link and a custom PCI card which is mounted in the clustered PCs. The PCI card is equipped with an FPGA necessary for the implementation of the PCI-bus protocol. Therefore, this FPGA can also be used to assist the host processor with first-level processing. The first-level processing done on the FPGA includes conventional cluster-finding for low multiplicity events and local track finding based on the Hough Transformation of the raw data for high multiplicity events. PACS: 07.05.-t Computers in experimental physics - 07.05.Hd Data acquisition: hardware and software - 29.85.+c Computer data analysis

  14. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    Castricum, H.L.; Bakker, H.; Poels, E.K.

    1999-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  15. Emission of SO2 and SO4 2-: From copper smelter and its influence on the level of total S in soil and moss in Bor, Serbia, and the surroundings

    OpenAIRE

    Šerbula Snežana M.; Ţivković Dragana T.; Radojević Ana A.; Kalinović Tanja S.; Kalinović Jelena V.

    2015-01-01

    Bor and the surroundings (Eastern Serbia) have been known for exploitation and processing of sulphide copper ores for more than 100 years. Emissions of waste gases and particulate matter rich in heavy metals are characteristic for pyrometallurgical production of copper. Long-term measurement results (2005-2008) indicate an increased sulphur dioxide level in the urban-industrial zone of Bor since it is closest to the copper smelter which is a dominant source...

  16. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  17. Serum copper and zinc levels in Thai patients with various diseases.

    Science.gov (United States)

    Songchitsomboon, S; Komindr, S; Komindr, A; Kulapongse, S; Puchaiwatananon, O; Udomsubpayakul, U

    1999-07-01

    This study was conducted to evaluate the possible alteration of serum Cu and Zn levels in 118 medical inpatients (53 women and 65 men) in Ramathibodi Hospital. Patients were classified according to their main clinical diseases: pulmonary (n = 12), renal (14), infectious (30), malignant (9), cardiovascular (22), GI & hepatic (13) and hematological (18) diseases. Significantly increased serum Cu concentrations were found in patients with pulmonary, malignant, cardiovascular and infectious diseases; moreover, 75, 75, 50 and 37 per cent of these diseases, respectively, had serum levels greater than the normal mean + 2SD (23.6 mumol/L). Besides, 5 per cent of patients (3 in renal, 1 in infectious and 2 in GI & hepatic diseases) had low serum Cu levels suggestive of Cu depletion. By contrast, significantly decreased serum Zn concentrations were found in patients with GI & hepatic, infectious, renal, cardiovascular and malignant diseases. Serum Zn levels below the normal mean - 2SD (8.1 mumol/L) were presented in 46, 37, 29, 23 and 22 per cent of cases, respectively. It was found that serum Cu/Zn ratio in our patients not only with cancer but also with other diseases were statistically significant from the normal group. Hence, the use of serum Cu/Zn ratios as markers for the diagnosis of cancer or for staging tumors must be interpreted cautiously.

  18. Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence.

    Science.gov (United States)

    Guigues, Stéphanie; Bravin, Matthieu N; Garnier, Cédric; Masion, Armand; Chevassus-Rosset, Claire; Cazevieille, Patrick; Doelsch, Emmanuel

    2016-03-01

    Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.

  19. A copper hyperaccumulation phenotype correlates with pathogenesis in Cryptococcus neoformans.

    Science.gov (United States)

    Raja, Meera R; Waterman, Scott R; Qiu, Jin; Bleher, Reiner; Williamson, Peter R; O'Halloran, Thomas V

    2013-04-01

    Cryptococcus neoformans is a major human pathogen and a cause of meningoencephalitis in immunocompromised patients. Many factors contribute to the extraordinary survivability and pathogenicity of this fungus in humans, including copper homeostasis pathways. Previous work has shown that deletion of the copper-dependent regulator Cuf1 results in decreased virulence and dissemination in brain infection, suggesting that copper acquisition is important to the persistence of this pathogen. Here, we show that the minimal copper quota of C. neoformans is maintained at a high level even when grown under conditions of stringent copper limitation. Intriguingly, when this fungal pathogen is grown in standard and copper-enriched media, it sequesters even higher levels of this essential metal, achieving levels that are far higher than non-pathogenic S. cerevisiae. The hypothesis that copper acquisition plays an essential role in virulence is further corroborated by the findings that a hypovirulent CUF1-deletant strain of C. neoformans retrieved from infected mice contains almost a 6-fold lower concentration of intracellular copper than the pathogenic wild-type strain. The concentration difference arises in part from larger-sized cuf1Δ cell. Under in vitro growth conditions, the size of the cuf1Δ cells is normal and the hypertrophy phenotype is readily induced in vitro under conditions of copper starvation. Taken together, these data suggest that acquisition of extraordinary levels of copper is an important factor in the survivability of the pathogen in the copper-deplete environment of infection, and effective copper concentration may play an important role in the pathogenesis of C. neoformans.

  20. Tracking at High Level Trigger in CMS

    CERN Document Server

    Tosi, Mia

    2016-01-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabili- ties of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a stream- lined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable out- put rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and ...

  1. Characteristics and antimicrobial activity of copper-based materials

    Science.gov (United States)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  2. Use of copper radioisotopes in investigating disorders of copper metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Rusden Campus, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes {sup 64}Cu (t 1/2 = 12.8 hr) and {sup 67}Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  3. Competition between the pseudogap and superconductivity in the high-T(c) copper oxides.

    Science.gov (United States)

    Kondo, Takeshi; Khasanov, Rustem; Takeuchi, Tsunehiro; Schmalian, Jörg; Kaminski, Adam

    2009-01-15

    In a classical Bardeen-Cooper-Schrieffer superconductor, pairing and coherence of electrons are established simultaneously below the critical transition temperature (T(c)), giving rise to a gap in the electronic energy spectrum. In the high-T(c) copper oxide superconductors, however, a pseudogap extends above T(c). The relationship between the pseudogap and superconductivity is one of the central issues in this field. Spectral gaps arising from pairing precursors are qualitatively similar to those caused by competing electronic states, rendering a standard approach to their analysis inconclusive. The issue can be settled, however, by studying the correlation between the weights associated with the pseudogap and superconductivity spectral features. Here we report a study of two spectral weights using angle-resolved photoemission spectroscopy. The weight of the superconducting coherent peak increases away from the node following the trend of the superconducting gap, but starts to decrease in the antinodal region. This striking non-monotonicity reveals the presence of a competing state. We demonstrate a direct correlation, for different values of momenta and doping, between the loss in the low-energy spectral weight arising from the opening of the pseudogap and a decrease in the spectral weight associated with superconductivity. We therefore conclude that the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing.

  4. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Recep Çakır

    2015-12-01

    Full Text Available Friction Stir Welding (FSW is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min with four different pin position (0-1-1.5-2 mm and three different weld speeds (20-30-50 mm/min by friction stir welding. The influence of welding parameters on microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine of mechanical properties. Nugget zone microstructures were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in energy-dispersive X-ray spectroscopy (EDX. Depending on the XRD analysis results intermetallic phase was observed to form in the interfacial region. In the tensile test results, 83.55% weld performance was obtained in the friction stir welding merge of Al-Cu.

  5. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.

    Science.gov (United States)

    Jeon, Jong-Ok; Lee, Kee Doo; Seul Oh, Lee; Seo, Se-Won; Lee, Doh-Kwon; Kim, Honggon; Jeong, Jeung-hyun; Ko, Min Jae; Kim, BongSoo; Son, Hae Jung; Kim, Jin Young

    2014-04-01

    Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4 ; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se atmosphere at temperatures ranging from 400 °C to 600 °C. The crystallization of CZTSe starts at 400 °C and is completed at 500 °C, while crystal growth continues at higher temperatures. Owing to compromises between enhanced crystallinity and poor physical properties, CZTSe thin films annealed at 550 °C exhibit the best and most-stable device performances, reaching up to 8.0 % active efficiency; among the highest efficiencies for CZTSe thin-film solar cells prepared by electrodeposition. Further analysis of the electronic properties and a comparison with another state-of-the-art device prepared from a hydrazine-based solution, suggests that the conversion efficiency can be further improved by optimizing parameters such as film thickness, antireflection coating, MoSe2 formation, and p-n junction properties.

  6. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins

    Directory of Open Access Journals (Sweden)

    Sergi Puig

    2014-01-01

    Full Text Available Copper (Cu is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins.

  7. Targeting copper in cancer therapy: 'Copper That Cancer'.

    Science.gov (United States)

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.

  8. A photoreducible copper(II)-tren complex of practical value: generation of a highly reactive click catalyst.

    Science.gov (United States)

    Harmand, Lydie; Lambert, Romain; Scarpantonio, Luca; McClenaghan, Nathan D; Lastécouères, Dominique; Vincent, Jean-Marc

    2013-11-25

    A detailed study on the photoreduction of the copper(II) precatalyst 1 to generate a highly reactive cuprous species for the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction is presented. For the photoactive catalyst described herein, the activation is driven by a photoinduced electron transfer (PET) process harnessing a benzophenone-like ketoprofenate chromophore as a photosensitizer, which is equally the counterion. The solvent is shown to play a major role in the Cu(II) to Cu(I) reduction process as the final electron source, and the influence of the solvent nature on the photoreduction efficiency has been studied. Particular attention was paid to the use of water as a potential solvent, aqueous media being particularly appealing for CuAAC processes. The ability to solubilize the copper-tren complexes in water through the formation of inclusion complexes with β-CDs is demonstrated. Data is also provided on the fate of the copper(I)-tren catalytic species when reacting with O2, O2 being used to switch off the catalysis. These data show that partial oxidation of the secondary benzylamine groups of the ligand to benzylimines occurs. Preliminary results show that when prolonged irradiation times are employed a Cu(I) to Cu(0) over-reduction process takes place, leading to the formation of copper nanoparticles (NPs). Finally, the main objective of this work being the development of photoactivable catalysts of practical value for the CuAAC, the catalytic, photolatent, and recycling properties of 1 in water and organic solvents are reported.

  9. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    Science.gov (United States)

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

  10. ZnO:Cu nanorods with visible luminescence: copper induced defect levels and its luminescence dynamics

    Science.gov (United States)

    Raji, R.; Gopchandran, K. G.

    2017-02-01

    In this work, we report the synthesis of ZnO:Cu nanoparticles with rod-like morphology using co-precipitation method. X-ray diffraction analysis indicated that these ZnO:Cu nanoparticles has wurtzite structure with preferential growth along (1 0 1) crystal plane. The formation of additional defect levels in these particles on doping with Cu was investigated using Raman and fluorescence spectroscopy. The increase in intensity of E 1 (LO) mode observed at ~580 cm-1 in the Raman spectra of ZnO:Cu nanoparticles, confirmed the formation of additional defect levels in these nanoparticles on doping with Cu. The doping concentration was evident in the intensity of the additional Raman mode observed at ~280 cm-1 for the Cu doped nanoparticles. Photoluminescence spectra of Cu doped ZnO nanoparticles shows three visible emission peaks at 413, 435 and 531 nm along with a UV emission peak at 390 nm, whereas undoped ZnO nanoparticles showed only two peaks, at 389 and 582 nm. The shrinkage in band gap causing the emission of violet, blue and green colors on doping with Cu are attributed to the s-d and p-d exchange interactions between conduction band electrons of ZnO and localized d electrons of Cu ions, resulting in renormalization of band gap. The emission bands observed in these ZnO:Cu nanoparticles has been illustrated with a schematic energy level diagram.

  11. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    Science.gov (United States)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-10-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100- µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  12. Influence of copper exposure on whole-body sodium levels in larval fathead minnows (Pimephales promelas).

    Science.gov (United States)

    Van Genderen, Eric J; Tomasso, Joseph R; Klaine, Stephen J

    2008-06-01

    Because metals such as Cu inhibit ionoregulation, the increased energy requirement to counter passive diffusive losses in soft water may translate into increased sensitivity to metal exposure. We developed a method to determine whole-body Na concentrations of larval fathead minnows (Pimephales promelas) as a physiological indicator of health. This method was used to characterize net rates of Na flux from fish exposed to Cu in the presence of varying levels of hardness and alkalinity. In extremely soft waters (hardness, hardness (>10 mg/L as CaCO(3)), however, decreased the apparent kinetics of Na loss caused by Cu exposure, which suggests the process was related to uncompetitive inhibition of Cu by hardness cations. Although the percentage of Na loss associated with mortality in larval fish was similar to that in juvenile and adult fish (30% loss of exchangeable Na pool), larvae reached this level within 12 h of exposure, and it was not representative of the onset of mortality. These results suggested that ionoregulatory measures by themselves are not a conclusive metric for Cu regulation using larval fish. To account for increased sensitivity in low-hardness waters in the development of biotic ligand models, the critical amount of Cu associated with the gill to cause mortality (i.e., the median lethal accumulation value) should be characterized more appropriately as a function of hardness below 20 mg/L as CaCO(3).

  13. A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J.; Brown, D.J.W.; Piper, J.A. (Macquarie Univ., Sydney (Australia). Centre for Lasers and Applications)

    1994-08-01

    A self-consistent computer model has been developed to simulate the discharge kinetics and lasing characteristics of a copper-vapor laser (CVL) for typical operating conditions. Using a detailed rate-equation analysis, the model calculates the spatio-temporal evolution of the population densities of 11 atomic and ionic copper levels, four neon levels, and includes 70 collisional and radiative processes, in addition to radial particle transport. The long-term evolution of the plasma is taken into account by integrating the set of coupled rate equations describing the discharge and electrical circuit through multiple excitation-afterglow cycles. A time-dependent two-electron group model, based on a bi-Maxwellian electron energy distribution function, has been used to evaluate the energy partitioning between the copper vapor and the neon-buffer gas. The behavior of the plasma in the cooler end regions of the discharge tube near the electrodes, where the plasma kinetics are dominated by the buffer gas, has also been modeled. Results from the model have been compared to experimental data for a narrow-bore ([phi] = 1.8 cm) CVL operating under optimum conditions.

  14. Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile

    Science.gov (United States)

    Schwanck, Franciele; Simões, Jefferson C.; Handley, Michael; Mayewski, Paul A.; Bernardo, Ronaldo T.; Aquino, Francisco E.

    2016-01-01

    Arsenic variability records are preserved in snow and ice cores and can be utilized to reconstruct air pollution history. The Mount Johns ice core (79°55‧S; 94°23‧W and 91.2 m depth) was collected from the West Antarctic Ice Sheet in the 2008/09 austral summer. Here, we report the As concentration variability as determined by 2137 samples from the upper 45 m of this core using ICP-SFMS (CCI, University of Maine, USA). The record covers approximately 125 years (1883-2008) showing a mean concentration of 4.32 pg g-1. The arsenic concentration in the core follows global copper mining evolution, particularly in Chile (the largest producer of Cu). From 1940 to 1990, copper-mining production increased along with arsenic concentrations in the MJ core, from 1.92 pg g-1 (before 1900) to 7.94 pg g-1 (1950). In the last two decades, environmental regulations for As emissions have been implemented, forcing smelters to treat their gases to conform to national and international environmental standards. In Chile, decontamination plants required by the government started operating from 1993 to 2000. Thereafter, Chilean copper production more than doubled while As emission levels declined, and the same reduction was observed in the Mount Johns ice core. After 1999, arsenic concentrations in our samples decreased to levels comparable to the period before 1900.

  15. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers.

    Science.gov (United States)

    Körpe, Didem Aksoy; Aras, Sümer

    2011-02-03

    Heavy-metal contamination is an important environmental problem in the world. It is known that high concentrations of heavy metals cause toxic damage to cells and tissues. In this study the effects of copper (Cu(2+)) contamination were determined at the molecular and population levels in eggplant (Solanum melongena L.) seedlings exposed to various concentrations of the metal ion. Inhibition of root growth, reduction in dry weight and total soluble protein content in the roots of eggplant seedlings were observed with increasing Cu(2+) concentrations. In ecotoxicology, analysis by random amplification of polymorphic DNA (RAPD) has been applied as a suitable biomarker assay for plants. For the RAPD analyses, nine RAPD primers were found to produce unique polymorphic band patterns and were subsequently used to produce a total of 80 and 168 bands in the roots of untreated and treated eggplant seedlings, respectively. The changes in RAPD profiles after Cu(2+) contamination were considered as variations, i.e. as gain and/or loss of bands compared with control seedlings. These results suggest that changes in genomic template stability could be detected with RAPD profiles and this result could be compared with the growth, dry weight and total soluble protein content of the seedlings grown at various Cu(2+) concentrations. The measurements of parameters at the molecular and population levels are fundamental to accumulate valuable information and to understand clearly the effect of a contaminant on an organism in ecotoxicology.

  16. Reliability-Centric High-Level Synthesis

    CERN Document Server

    Tosun, S; Arvas, E; Kandemir, M; Xie, Yuan

    2011-01-01

    Importance of addressing soft errors in both safety critical applications and commercial consumer products is increasing, mainly due to ever shrinking geometries, higher-density circuits, and employment of power-saving techniques such as voltage scaling and component shut-down. As a result, it is becoming necessary to treat reliability as a first-class citizen in system design. In particular, reliability decisions taken early in system design can have significant benefits in terms of design quality. Motivated by this observation, this paper presents a reliability-centric high-level synthesis approach that addresses the soft error problem. The proposed approach tries to maximize reliability of the design while observing the bounds on area and performance, and makes use of our reliability characterization of hardware components such as adders and multipliers. We implemented the proposed approach, performed experiments with several designs, and compared the results with those obtained by a prior proposal.

  17. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application

    Energy Technology Data Exchange (ETDEWEB)

    Vuković, Jovana S.; Babić, Marija M.; Antić, Katarina M.; Miljković, Miona G.; Perić-Grujić, Aleksandra A.; Filipović, Jovanka M.; Tomić, Simonida Lj., E-mail: simonida@tmf.bg.ac.rs

    2015-08-15

    In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12–50 °C. Swelling study was conducted in wide range of pHs at 37 °C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed. - Graphical abstract: Display Omitted - Highlights: • Design and evaluation of novel pH responsive hydrogel series. • Structural, morphological, thermal characterization and controlled copper release. • Antibacterial activity against Escherichia coli and Staphylococcus aureus over 99%. • Antifungal activity against Candida albicans over 99%. • In vitro evaluation studies revealed great potential for wound healing application.

  18. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity

    Science.gov (United States)

    Vita, Nicolas; Landolfi, Gianpiero; Baslé, Arnaud; Platsaki, Semeli; Lee, Jaeick; Waldron, Kevin J.; Dennison, Christopher

    2016-12-01

    Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1–2) × 1017 M‑1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.

  19. Copper signaling axis as a target for prostate cancer therapeutics.

    Science.gov (United States)

    Safi, Rachid; Nelson, Erik R; Chitneni, Satish K; Franz, Katherine J; George, Daniel J; Zalutsky, Michael R; McDonnell, Donald P

    2014-10-15

    Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose

  20. Corrosion models for predictions of performance of high-level radioactive-waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-11-01

    The present plan for disposal of high-level radioactive waste in the US is to seal it in containers before emplacement in a geologic repository. A proposed site at Yucca Mountain, Nevada, is being evaluated for its suitability as a geologic repository. The containers will probably be made of either an austenitic or a copper-based alloy. Models of alloy degradation are being used to predict the long-term performance of the containers under repository conditions. The models are of uniform oxidation and corrosion, localized corrosion, and stress corrosion cracking, and are applicable to worst-case scenarios of container degradation. This paper reviews several of the models.

  1. Research on copper removal from high copper content gold-loaded carbon and its application%高铜载金炭脱铜技术研究及应用

    Institute of Scientific and Technical Information of China (English)

    陈淑萍; 王春; 刘亚建; 赖桂华; 衷水平; 伍赠玲; 王世辉; 简伟峰

    2015-01-01

    To deal with the adverse effect high copper content gold-loaded carbon imposes on gold production in the ore-dressing plant of Zijinshan Gold Copper Mine ,a process of copper removal by cyanidation and copper reduction in the terminal stage by heap leaching is carried out to perform the experimental research on copper removal and pro -duction practice .The results show that bench scale copper removal tests by cyanidation can reach a copper removal rate of more than 91 %;the practice of copper removal by cyanidation and copper reduction in the terminal stage by heap leaching is able to cut production cost once the copper removal rate reaches 50%which is qualified for gold de-sorption .The copper grade in high copper content gold-loaded carbon decreases from more than 20 g/kg to less than 10 g/kg.The gold desorption rate of treated gold-loaded carbon under high temperature and pressure reaches more than 97 .5%and the gold grade in the carbon after gold deprivation decreases to lower than 0 .1 g/kg;the technique of copper reduction in the terminal stage by heap leaching solves the problem of copper deprived solution treatment . The process has the advantages of low cost ,less investment ,easy operation and vast sum of profits .%为解决紫金山金铜矿选矿厂产生的高铜载金炭对提金生产造成的不利影响,采用氰化脱铜-堆浸末期降铜工艺进行了除铜试验研究及生产实践。其结果表明:小型氰化脱铜试验铜脱除率可达9 l %以上;氰化脱铜-堆浸末期降铜工业生产实践中,为降低生产成本,脱铜率达50%以上即可,此时已满足解吸金的指标要求,其高铜载金炭铜品位由20 g/kg以上降到10 g/kg以下,脱铜载金炭高温高压解吸金的解吸率达到97.5%以上,脱金炭金品位基本降至0.1 g/kg以下;其堆浸末期降铜技术的应用,较好地解决了脱铜液难处理的问题。该工艺具有成本低、投资少、操作简单、效益显著等优点。

  2. An analysis of copper transport in the insulation of high voltage transformers

    CERN Document Server

    Whitfield, T B

    2001-01-01

    Measurements of surface concentrations by XPS correlate well with measurements made with atomic absorption spectroscopy on solutions of extracts of the contaminated paper. The laboratory measurements have allowed determination of the diffusion coefficients and activation energy for the transport process and thus give a basis for interpretation of the diffusion profiles found in the transformer in terms of time and temperature of operation. The diffusion process is temperature dependant. The results have been used to produce long term prediction curves. Examination of the paper insulation and copper stress braiding during stripdown of a number of Current Transformers (FMK type 400kV) has revealed the presence of dark deposits. Copper foils are often interspersed within layers of paper insulation and mineral oil found in transformer windings. The dark deposits were often found in association with these foils, affecting several layers of paper in addition to the layer in contact with the copper foil. This thesis...

  3. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  4. Copper(I)-catalyzed azide-alkyne cycloadditions in microflow: catalyst activity, high-T operation, and an integrated continuous copper scavenging unit.

    Science.gov (United States)

    Varas, Alvaro Carlos; Noël, Timothy; Wang, Qi; Hessel, Volker

    2012-09-01

    AVOIDING THE COPPERS: A continuous-flow synthesis for the Cu(I) -catalyzed azide-alkyne cycloaddition reaction using [Cu(phenanthroline)(PPh₃)₂]NO₃ as a homogeneous catalyst is developed (up to 92 % isolated yield). Elevated temperatures allow achieving full conversions and using lower catalyst loadings. Residual copper in the triazole compound is efficiently removed via an inline extraction process, employing aqueous EDTA as a copper scavenger. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fully Copper-Exchanged High-Silica LTA Zeolites as Unrivaled Hydrothermally Stable NH3 -SCR Catalysts.

    Science.gov (United States)

    Ryu, Taekyung; Ahn, Nak Ho; Seo, Seungwan; Cho, Jung; Kim, Hyojun; Jo, Donghui; Park, Gi Tae; Kim, Pyung Soon; Kim, Chang Hwan; Bruce, Elliott L; Wright, Paul A; Nam, In-Sik; Hong, Suk Bong

    2017-03-13

    Diesel engine technology is still the most effective solution to meet tighter CO2 regulations in the mobility and transport sector. In implementation of fuel-efficient diesel engines, the poor thermal durability of lean nitrogen oxides (NOx ) aftertreatment systems remains as one major technical hurdle. Divalent copper ions when fully exchanged into high-silica LTA zeolites are demonstrated to exhibit excellent activity maintenance for NOx reduction with NH3 under vehicle simulated conditions even after hydrothermal aging at 900 °C, a critical temperature that the current commercial Cu-SSZ-13 catalyst cannot overcome owing to thermal deactivation. Detailed structural characterizations confirm the presence of Cu(2+) ions only at the center of single 6-rings that act not only as a catalytically active center, but also as a dealumination suppressor. The overall results render the copper-exchanged LTA zeolite attractive as a viable substitute for Cu-SSZ-13.

  6. Characterization of Copper Coatings Deposited by High-Velocity Oxy-Fuel Spray for Thermal and Electrical Conductivity Applications

    Science.gov (United States)

    Salimijazi, H. R.; Aghaee, M.; Salehi, M.; Garcia, E.

    2017-08-01

    Copper coatings were deposited on steel substrates by high-velocity oxy-fuel spraying. The microstructure of the feedstock copper powders and free-standing coatings were evaluated by optical and scanning electron microscopy. The x-ray diffraction pattern was utilized to determine phase compositions of powders and coatings. Oxygen content was determined by a LECO-T300 oxygen determiner. The thermal conductivity of the coatings was measured in two directions, through-thickness and in-plane by laser flash apparatus. The electrical resistivity of the coatings was measured by the four-point probe method. Oxygen content of the coatings was two times higher than that of the initial powders (0.35-0.37%). The thermal and electrical conductivities of the coatings were different depending on the direction of the measurement. The thermal and electrical conductivity of the coatings improved after annealing for 6 h at a temperature of 600°C.

  7. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    Science.gov (United States)

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  8. Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence.

    Science.gov (United States)

    Zeng, Jun; Zhu, Qinghe; Wu, Yucheng; Lin, Xiangui

    2016-04-01

    Bacterial laccase CueO from Escherichia coli can oxidize polycyclic aromatic hydrocarbons (PAHs); however, its application in the remediation of PAH-contaminated soil mainly suffers from a low oxidation rate and copper dependence. It was reported that a laccase with a higher redox potential tended to have a higher oxidation rate; thus, the present study investigated the oxidation of PAHs using another bacterial laccase CotA from Bacillus subtilis with a higher redox potential (525 mV) than CueO (440 mV). Recombinant CotA was overexpressed in E. coli and partially purified, exhibiting a higher laccase-specific activity than CueO over a broad pH and temperature range. CotA exhibited moderate thermostability at high temperatures. CotA oxidized PAHs in the absence of exogenous copper. Thereby, secondary heavy metal pollution can be avoided, another advantage of CotA over CueO. Moreover, this study also evaluated some unexplained phenomena in our previous study. It was observed that the oxidation of PAHs with bacterial laccases can be promoted by copper. The partially purified bacterial laccase oxidized only two of the 15 tested PAHs, i.e., anthracene and benzo[a]pyrene, indicating the presence of natural redox mediators in crude cell extracts. Overall, the recombinant CotA oxidizes PAHs with high laccase activity and copper independence, indicating that CotA is a better candidate for the remediation of PAHs than CueO. Besides, the findings here provide a better understanding of the oxidation of PAHs using bacterial laccases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microstructural Features and Properties of High-hardness and Heat-resistant Dispersion Strengthened Copper by Reaction Milling

    Institute of Scientific and Technical Information of China (English)

    YAN Peng; LIN Chenguang; CUI Shun; LU Yanjie; ZHOU Zenglin; LI Zengde

    2011-01-01

    The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the intemal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vo1%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single y-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD); the HRB hardness of the ADSC can be as high as 95; the outcomes should be attributed to the pinning effect ofnano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for l h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc.

  10. Body fat levels in children in younger school age from rural areas living in Copper Mining Region in south-west Poland

    Directory of Open Access Journals (Sweden)

    Paweł Posłuszny

    2011-03-01

    Full Text Available Background. Obesity as a civilization disease has been called the "epidemic" in the late twentieth century. It is a risk factor for many diseases, including cardiovascular disease, which is the last time a major cause of death. In Europe and the United States, the number of overweight people exceeds now 50% of the population. The incidence of overweight and obesity continue to rise and this phenomenon is also observed in our country even in case of an early childhood. In Poland, percentage of very young school children (boys and girls who are overweight or obese amounts to about 15%. Obesity is particularly common among children from industrial environments living in highly developed countries. The aim of his study was to assess the level of fat in boys and girls from rural areas aged 7 to 10 from industrial environment. Material and methods. The study was carried out at six rural schools located in the copper mining region in south-west Poland in 2001. For the needs of the study use was made of existing results covering altogether 488 children of early school age – 261 girls and 227 boys. Measurements were taken of height, body mass, waist and hip circumferences. Body fat, body water and lean body mass were measured with Futrex. Respectively the BMI and WHR were calculated from measurements taken earlier. Results and conclusions. The BMI level is within the values of acceptable standard in majority of children. The percentage of children above the standard fluctuates within the limits of typical peers from other regions of the country and is about 15%. In boys obesity increases with age, in girls the values increase also, but they are of lower importance. Most of the examined children present an average level of total body fatness. A very small percentage of them exceeds the level considered as obese.

  11. Development of two highly sensitive immunoassays for detection of copper ions and a suite of relevant immunochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hongwei [College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193 (China); Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Nan Tiegui; Tan Guiyu; Gao Wei; Cao Zhen; Sun Shuo; Li Zhaohu [College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193 (China); Li, Qing X., E-mail: qingl@hawaii.edu [Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Wang Baomin, E-mail: wbaomin@263.com [College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193 (China)

    2011-09-19

    Highlights: {center_dot} Two highly sensitive immunoassays for determination of Cu(II) at sub ppb levels. {center_dot} The heterologous competitive enzyme linked immunosorbent assay for heavy metals. {center_dot} Haptenated protein directly conjugated with HRP can reduce the loss of HRP activity. - Abstract: Availability of highly sensitive assays for metal ions can help monitor and manage the environmental and food contamination. In the present study, a monoclonal antibody against Copper(II)-ethylenediaminetetraacetic acid was used to develop two sensitive ELISAs for Cu(II) analysis. Cobalt(II)-EDTA-BSA was the coating antigen in a heterologous indirect competitive ELISA (hicELISA), whereas Co(II)-EDTA-BSA-horseradish peroxidase (HRP) was the enzyme tracer in a heterologous direct competitive ELISA (hdcELISA). Both ELISAs were validated for detecting the content of Cu(II) in environmental waters. The ELISA data agreed well with those from graphite furnace atomic absorption spectroscopy. The methods of developing the Cu(II) hicELISA and hdcELISA are potentially applicable for developing ELISAs for other metals. The chelator-protein complexes such as EDTA-BSA and EDTA-BSA-HRP can form a suite of metal complexes having the consistent hapten density, location and orientation on the conjugates except the difference of the metal core, which can be used as ideal reagents to investigate the relationship between assay sensitivity and antibody affinities for the haptens and the analytes. The strategy of conjugating a haptenated protein directly with HRP can reduce the loss of HRP activity during the conjugation reaction and thus can be applicable for the development of ELISAs for small molecules.

  12. 1,2,3-Triazole-Functionalized Polysulfone Synthesis through Microwave-Assisted Copper-Catalyzed Click Chemistry: A Highly Proton Conducting High Temperature Membrane.

    Science.gov (United States)

    Sood, Rakhi; Donnadio, Anna; Giancola, Stefano; Kreisz, Aurélien; Jones, Deborah J; Cavaliere, Sara

    2016-07-06

    Microwave heating holds all the aces regarding development of effective and environmentally friendly methods to perform chemical transformations. Coupling the benefits of microwave-enhanced chemistry with highly reliable copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry paves the way for a rapid and efficient synthesis procedure to afford high performance thermoplastic materials. We describe herein fast and high yielding synthesis of 1,2,3-triazole-functionalized polysulfone through microwave-assisted CuAAC as well as explore their potential as phosphoric acid doped polymer electrolyte membranes (PEM) for high temperature PEM fuel cells. Polymers with various degrees of substitution of the side-chain functionality of 1,4-substituted 1,2,3-triazole with alkyl and aryl pendant structures are prepared by sequential chloromethylation, azidation, and microwave-assisted CuAAC using a range of alkynes (1-pentyne, 1-nonyne, and phenylacetylene). The completeness of reaction at each step and the purity of the clicked polymers were confirmed by (1)H-(13)C NMR, DOSY-NMR and FTIR-ATR spectroscopies. The thermal and thermochemical properties of the modified polymers were characterized by differential scanning calorimetry and thermogravimetric analysis coupled with mass spectroscopy (TG-MS), respectively. TG-MS analysis demonstrated that the commencement of the thermal degradation takes place with the decomposition of the triazole ring while its substituents have critical influence on the initiation temperature. Polysulfone functionalized with 4-phenyl-1,2,3-triazole demonstrates significantly higher Tg, Td, and elastic modulus than the ones bearing 4-propyl-1,2,3-triazole and 4-heptyl-1,2,3-triazole groups. After doping with phosphoric acid, the functionalized polymers with acid doping level of 5 show promising performance with high proton conductivity in anhydrous conditions (in the range of 27-35 mS/cm) and satisfactorily high elastic modulus (in the range

  13. The ATLAS High Level Trigger Steering

    CERN Document Server

    Berger, N; Eifert, T; Fischer, G; George, S; Haller, J; Höcker, A; Masik, J; Zur Nedden, M; Pérez-Réale, V; Risler, C; Schiavi, C; Stelzer, J; Wu, X; International Conference on Computing in High Energy and Nuclear Physics

    2008-01-01

    The High Level Trigger (HLT) of the ATLAS experiment at the Large Hadron Collider receives events which pass the LVL1 trigger at ~75 kHz and has to reduce the rate to ~200 Hz while retaining the most interesting physics. It is a software trigger and performs the reduction in two stages: the LVL2 trigger and the Event Filter (EF). At the heart of the HLT is the Steering software. To minimise processing time and data transfers it implements the novel event selection strategies of seeded, step-wise reconstruction and early rejection. The HLT is seeded by regions of interest identified at LVL1. These and the static configuration determine which algorithms are run to reconstruct event data and test the validity of trigger signatures. The decision to reject the event or continue is based on the valid signatures, taking into account pre-scale and pass-through. After the EF, event classification tags are assigned for streaming purposes. Several powerful new features for commissioning and operation have been added: co...

  14. Physical exertion may cause high troponin levels.

    Science.gov (United States)

    Agewall, Stefan; Tjora, Solve

    2011-11-15

    It is important to measure troponin levels when acute myocardial infarct is suspected. Many other factors that affect the heart can cause an increase in troponin levels, for example extreme physical exertion. Recent studies have shown that more normal physical activity can also lead to increase in troponin levels in healthy individuals.

  15. Simulation of a high-pressure water jet structure as an innovative tool for pulverizing copper ore in KGHM Polska Miedź S.A.

    Directory of Open Access Journals (Sweden)

    Przemysław Józef Borkowski

    2016-01-01

    Full Text Available Effective comminution of copper ore for further processing during flotation is still a challenge, both as a technological problem as well as for the high energy costs of such processing.A high-pressure water jet is one alternative method of preparing copper ore for final flotation, causing distinct enlargement of the surface of micronized particles, which could be profitable for copper production.As a consequence of such innovative processing, particles of copper ore become micronized, ensuring grain fractions directly useful for flotation at the exit of the pulverizing apparatus (the hydro-jetting mill.The paper presents some results of simulation as well as describing an analysis of the phenomena occurring inside the high-pressure water and abrasive-water jets of specific structures, elaborated in the aspect of developing hybrid jets of maximum erosive efficiency, potentially useful for effective pulverization.

  16. Highly efficient synthesis of phenols by copper-catalyzed hydroxylation of aryl iodides, bromides, and chlorides.

    Science.gov (United States)

    Yang, Kai; Li, Zheng; Wang, Zhaoyang; Yao, Zhiyi; Jiang, Sheng

    2011-08-19

    8-Hydroxyquinolin-N-oxide was found to be a very efficient ligand for the copper-catalyzed hydroxylation of aryl iodides, aryl bromides, or aryl chlorides under mild reaction conditions. This methodology provides a direct transformation of aryl halides to phenols and to alkyl aryl ethers. The inexpensive catalytic system showed great functional group tolerance and excellent selectivity. © 2011 American Chemical Society

  17. The Effect of Orthophosphate as a Copper Corrosion Inhibitor in High Alkalinity Drinking Water Systems

    Science.gov (United States)

    2007-03-01

    in the near future. 7 2.2. Human Health Concerns In the human body, copper is a component of proteins that perform a range of functions...chloroorganics and chloramines , as well as free available chlorine) following a three-minute reaction time and a DPD Total Chlorine Reagent packet

  18. The dynamic response of Copper 101 under high-rate loading

    NARCIS (Netherlands)

    Bragov, A. M.; Lomunov, A. K.; Abramov, A. V.; Konstantinov, A. Yu.; Sergeichev, I. V.; Braithwaite, C.; Proud, W. G.; Church, P. D.; Cullis, I. G.; Gould, P.

    2006-01-01

    The initial results of an investigation into the dynamic behavior of copper C101 are presented. This study involved several experimental technicques; quasi-static, compressive Split Hopkinson Pressure Bar (SHPB), a modified Taylor test and a direct impact method. From these studies dynamic and stati

  19. X-ray diffraction and high-resolution TEM observations of biopolymer nanoskin-covered metallic copper fine particles: preparative conditions and surface oxidation states.

    Science.gov (United States)

    Yonezawa, Tetsu; Uchida, Yoshiki; Tsukamoto, Hiroki

    2015-12-28

    Metallic copper fine particles used for electro conductive pastes were prepared by the chemical reduction of cupric oxide microparticles in the presence of gelatin. After reduction, the fine particles were collected by decantation with pH control and washing, followed by drying at a moderate temperature. The surface oxidation state of the obtained copper fine particles could be considerably varied by altering the pH of the particle dispersion, as shown by X-ray diffraction and high-resolution transmission electron microscopy. Our results strongly indicate that decantation under a nitrogen atmosphere can prevent the oxidation of copper fine particles but a slight oxidation was found.

  20. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  1. Insight into selective removal of copper from high-concentration nickel solutions with XPS and DFT: New technique to prepare 5N-nickel with chelating resin.

    Science.gov (United States)

    Tao, Xuewen; Liu, Fuqiang; Bai, Zhiping; Wei, Dongyang; Zhang, Xiaopeng; Wang, Junfei; Gao, Jie; Sun, Xiaowen; Li, Baohua; Li, Chenghui; Li, Aimin

    2016-10-01

    An efficient and profitable separation process was proposed to prepare 5N (the purity of the metal solution reaches 99.999%) high-purity nickel from 3N nickel-solutions using Purolite S984. The adsorption performance of this superior resin, especially its selectivity for metal ions, was explored quantitatively. The maximum adsorption capacity for copper was 2.286mmol/g calculated by the Langmuir model, which was twice as large as that for nickel. In the binary systems, the adsorption capacity for nickel was decreased by 45%, indicating direct competition for the active sites. The infinite separation factor for copper versus nickel exceeded 300, revealing the feasibility of preparing 5N-level high-purity nickel solutions, which was further verified using the 800BV (bed volume) effluent in the column dynamic process. According to the cost-benefit analysis, purification contributed to a profit of approximately 60,000USD per cycle, and the investment return period was less than 1/3years. Density functional theory analysis confirmed that four nitrogen atoms would be involved in the coordination complex and thus a structure involving two five-membered rings could be achieved. The X-ray photoelectron spectra confirmed the involvement of nitrogen atoms, implying a coordination ratio of approximately 1:1.

  2. Copper hypersensitivity.

    Science.gov (United States)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  3. Highly sensitive visual detection of copper (II) using water-soluble azide-functionalized gold nanoparticles and silver enhancement.

    Science.gov (United States)

    Zhang, Zhen; Li, Wenqing; Zhao, Qiuling; Cheng, Ming; Xu, Li; Fang, Xiaohong

    2014-09-15

    A high-sensitive method for the visual detection of copper ions in aqueous solution is developed. The method is based on copper ion-catalyzed 'click' reaction between the water-soluble azide-functionalized gold nanoparticles (AuNPs) and alkyne-modified glass slide. The PEG linker was employed as a stabilizing component along with the terminal azide group to keep the AuNPs stably dispersed in water without the assistance of any organic solvent. In the presence of copper ions, the AuNPs are 'clicked' on the slide, and the darkness of the AuNPs in the sample spot is promoted by silver enhancement process. Only a tiny amount of sample (10 μl) is needed with the detectable concentration down to 62 pM by the commonly used flatbed scanner, which is 2-3 orders of magnitude lower than those in previous reports. The selectivity relative to other potentially interfering ions and the applicability in real samples, human serum and tap water, have also been evaluated. Our method has a good potential in point-of-use applications and environment surveys. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. INTERACTION OF COPPER BASED PRESERVATIVES WITH WOOD

    Directory of Open Access Journals (Sweden)

    Ali Temiz

    2004-11-01

    Full Text Available Copper is highly toxic to fungi and the element is widely used in many preservative formulations over 50 years. The interactions of wood and copper-based preservatives impact both the performance and the environment aspects of treated wood. Copper might be present in treated wood as coppercellulose complex, copper-lignin complex, and crystalline or amorphous inorganic/organic copper compounds. In this review; it was aimed to investigate the interactions of wood and copper-based preservatives, Copper Adsorpsion factors and copper forms in treated wood

  5. Interfacial bonding enhancement of reel-to-reel selective electrodeposition of copper stabilizer on a multifilamentary second-generation high-temperature superconductor tape

    Science.gov (United States)

    Cai, Xinwei; Li, Wei; Bose, Anima; Selvamanickam, Venkat

    2016-10-01

    A reel-to-reel copper selective electrodeposition process over a multifilamentary second-generation high-temperature superconductor (2G-HTS) has been demonstrated in our previous work. If the interfacial bonding between the deposited copper layer and the underlying silver overlayer is weak, it might lead to delamination in applications including magnets, motors and generators. In this study, two approaches have been used to improve the copper-silver bonding without the degradation of superconductor performance. The first approach is acidifying the electrolyte by adding sulfuric acid, by which the kinetics of copper electrodeposition is enhanced, resulting in finer microstructure at the copper-silver interface and thus, improved interfacial bonding strength. The second approach consists of blocking the electrolyte outflow at the entrance of the reel-to-reel electroplating cell, by which the occurrence of large copper seeds on the tape caused by the heavy turbulence flow is effectively prevented. With these two improvements together deployed in the process, the peeling strength between the copper and silver layers of the 2G-HTS tape has been improved from 2 N in 90° peeling and from 3.0 N in 180° peeling, without any degradation on the superconducting performance.

  6. Intensive Plasmonic Flash Light Sintering of Copper Nanoinks Using a Band-Pass Light Filter for Highly Electrically Conductive Electrodes in Printed Electronics.

    Science.gov (United States)

    Hwang, Yeon-Taek; Chung, Wan-Ho; Jang, Yong-Rae; Kim, Hak-Sung

    2016-04-06

    In this work, an intensive plasmonic flash light sintering technique was developed by using a band-pass light filter matching the plasmonic wavelength of the copper nanoparticles. The sintering characteristics, such as resistivity and microstructure, of the copper nanoink films were studied as a function of the range of the wavelength employed in the flash white light sintering. The flash white light irradiation conditions (e.g., wavelength range, irradiation energy, pulse number, on-time, and off-time) were optimized to obtain a high conductivity of the copper nanoink films without causing damage to the polyimide substrate. The wavelength range corresponding to the plasmonic wavelength of the copper nanoparticles could efficiently sinter the copper nanoink and enhance its conductivity. Ultimately, the sintered copper nanoink films under optimal light sintering conditions showed the lowest resistivity (6.97 μΩ·cm), which was only 4.1 times higher than that of bulk copper films (1.68 μΩ·cm).

  7. Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation.

    Science.gov (United States)

    Baker, Jonathan; Sitthisak, Sutthirat; Sengupta, Mrittika; Johnson, Miranda; Jayaswal, R K; Morrissey, Julie A

    2010-01-01

    Copper is an important cofactor for many enzymes; however, high levels of copper are toxic. Therefore, bacteria must ensure there is sufficient copper for use as a cofactor but, more importantly, must limit free intracellular levels to prevent toxicity. In this study, we have used DNA microarray to identify Staphylococcus aureus copper-responsive genes. Transcriptional profiling of S. aureus SH1000 grown in excess copper identified a number of genes which fall into four groups, suggesting that S. aureus has four main mechanisms for adapting to high levels of environmental copper, as follows: (i) induction of direct copper homeostasis mechanisms; (ii) increased oxidative stress resistance; (iii) expression of the misfolded protein response; and (iv) repression of a number of transporters and global regulators such as Agr and Sae. Our experimental data confirm that resistance to oxidative stress and particularly to H2O2 scavenging is an important S. aureus copper resistance mechanism. Our previous studies have demonstrated that Eap and Emp proteins, which are positively regulated by Agr and Sae, are required for biofilm formation under low-iron growth conditions. Our transcriptional analysis has confirmed that sae, agr, and eap are repressed under high-copper conditions and that biofilm formation is indeed repressed under high-copper conditions. Therefore, our results may provide an explanation for how copper films can prevent biofilm formation on catheters.

  8. SOLVING A COPPER CORROSION PROBLEM WITH ORTHOPHOSPHATE: INDIAN HILL, OHIO CASE STUDY

    Science.gov (United States)

    Many small and medium-sized water systems have troublt complying with the copper Action Level (of the Lead and Copper Rule), sometimes concurrently with meeting the lead Action level. The problem is especially troubling and widespread with ground water supplies having high alkali...

  9. The Revovery of Copper and Cobalt from Oxidized Copper Ore and Converter Slag

    OpenAIRE

    ZİYADANOĞULLARI, Berrin; ZİYADANOĞULLARI, Recep

    1999-01-01

    The aim of this study was to develop a method for obtaining copper and cobalt from oxidized copper ore and converter slag. In order to convert the copper and cobalt into sulfate compounds the main step was to roast the samples obtained by sulfurization and transfer the samples into solution. First the oxidized copper ore was roasted, followed by the mixture of converter slag and oxidized copper ore. Since the levels of copper and cobalt were low, the sulfurization process was carri...

  10. Serum levels of zinc, copper, iron, cobalt, magnesium, and selenium elements in children diagnosed with Giardia intestinalis and Enterobiosis vermicularis in Hatay, Turkey.

    Science.gov (United States)

    Culha, Gülnaz; Sangün, Mustafa Kemal

    2007-07-01

    The intestinal parasites are noted to be an important health problem in Turkey as similarly reported in the globe. The aim of this study was to investigate the changes in total content of essential elements, namely, zinc, iron, copper, cobalt, magnesium, and selenium, in children infected with intestinal parasites aged between 6 and 12 years inhabiting in Hatay Province, Turkey. These essential elements were measured in the children/patient who was positive for intestinal parasites, Giardia intestinalis and Enterobius vermicularis. Scores were obtained from the positive study group (SG), and their age matched the healthy children control group (CG). Serological levels of zinc, iron, copper, cobalt, magnesium, and selenium were analyzed by Varian Liberty Series II inductively coupled plasma atomic emission spectrometer (ICP-AES). The mean magnesium concentrations were found to be statistically different at 95% confidence interval level between study groups. As a result of this study, selenium was found to be uncorrelated with all other elements examined; whereas, copper was observed to have statistically significant correlations with cobalt, magnesium, and zinc. In addition, cobalt-magnesium, cobalt-zinc, and magnesium-zinc metal pairs were found to have statistically significant correlations based on study findings.

  11. Reagents for selective extraction of nickel(II), cobalt(II) and copper(II) from highly acidic sulfate feeds containing iron

    OpenAIRE

    Roebuck, James William

    2015-01-01

    This thesis focuses on development of new regents which are suitable for recovering nickel, cobalt and copper from laterite leach solutions, specifically focusing on reagent requirements for novel base metal flowsheets developed by Anglo American. The work aims to design reagents which can extract nickel(II), cobalt(II) and copper(II) from a highly acidic aqueous sulfate solutions whilst showing selectivity over iron(II) and iron(III). Chapter 1 reviews current extractive metallur...

  12. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  13. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  14. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator.

    Science.gov (United States)

    Li, Hongbo; Xue, Yan; Wang, Wei

    2014-04-15

    An ultrasensitive and selective photoelectrochemical (PEC) aptasensor for mercury ions was first fabricated based on perylene-3, 4, 9, 10-tetracarboxylic acid/graphene oxide (PTCA/GO) heterojunction using quercetin-copper(II) complex intercalated into the poly(dT)-poly(dA) duplexes. Both the PTCA/GO heterojunction and the quercetin-copper(II) complex are in favor of the sensitivity for the fabricated PEC aptasensor due to band alignment and strong reduction capability, respectively. And they efficiently promote the separation of photoexcited carriers and enhance the photocurrent. The formation of thymine-Hg(2+)-thymine coordination chemistry resulted in the dehybridization of poly(dT)-poly(dA) duplexes and then the intercalator quercetin-copper(II) complex broke away from the surface of the PEC aptasensor. As the concentration of mercury ions increased, the photocurrent gradually decreased. The electrode response for mercury ions detection was in the linear range from 0.01 pmol L(-1) to 1.00 pmol L(-1) with the detection limit of 3.33 fmol L(-1). The label-free PEC aptasensor has excellent performances with ultrasensitivity and good selectivity besides the advantage of economic and facile fabrication. The strategy of quercetin-copper(II) complex as a novel DNA intercalator paves a new way to improve the performances for PEC sensors. © 2013 Published by Elsevier B.V.

  15. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  16. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Shoshani-Dror, Dana [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Weksler-Zangen, Sarah [Diabetes Research Unit, Hebrew University Hadassah Medical School and Hospital, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester, MN (United States); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  17. Highly selective and sensitive determination of copper ion by two novel optical sensors

    Directory of Open Access Journals (Sweden)

    Mehrorang Ghaedi

    2017-05-01

    Full Text Available New optical sensors for the determination of copper ion by incorporation of 1,1′-(4-nitro-1,2-phenylenebis(azan-1-yl-1-ylidenebis(methan-1-yl-1-lidenedinaphthalen-2-ol(L1, 1,1′-2,2′-(1,2-phenylenebis(ethene-2,1-diyldinaphthalen-2-ol 1(L2, dibutylphthalate (DBP and sodium tetraphenylborate (Na-TPB to the plasticized polyvinyl chloride matrices were prepared. The tendency of both ionophores (L2 and L1 as chromoionophore was significantly enhanced by the addition of DBP to the membrane. The proposed sensors benefit from advantages such as high stability, reproducibility and relatively long lifetime, good selectivity for Cu2+ ion determination over a large number of alkali, alkaline earth, transition and heavy metal ions. At optimum values of membrane compositions and experimental conditions, both sensors’ response was linear over a concentration range of 7.98 × 10−6 to 1.31 × 10−4mol L−1 and 1.99 × 10−6 to 5.12 × 10−5 mol L−1 for L2 and L1, respectively. Sensor detection limit based on the definition that the concentration of the sample leads to a signal equal to the blank signal plus three times of its standard deviation was found to be 3.99 × 10−7 and 5.88 × 10−7 mol L−1 for L2 and L1, respectively. The response time of the optodes (defined as the time required reaching the 90% of the peak signal was found to be 5–8 min for L2 and 20–25 min for L1 based sensor. The proposed optical sensors were applied successfully for the determination of Cu2+ ion content in water samples.

  18. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting.

    Science.gov (United States)

    Yang, Haoran; Jauregui, Luis A; Zhang, Genqiang; Chen, Yong P; Wu, Yue

    2012-02-01

    Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS nanocrystals can be synthesized in large quantities from solution phase reaction and compressed into robust bulk pellets through spark plasma sintering and hot press while still maintaining nanoscale grain size inside. Electrical and thermal measurements have been performed from 300 to 700 K to understand the electron and phonon transports. Extra copper doping during the nanocrystal synthesis introduces a significant improvement in the performance.

  19. Photoneutron production in tungsten, praseodymium, copper and beryllium by using high energy electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F. E-mail: jalluf@macadam.cea.fr; Lyoussi, A.; Payan, E.; Recroix, H.; Mariani, A.; Nurdin, G.; Buisson, A.; Allano, J

    1999-09-01

    This paper presents comparisons between photoneutron production measurements in tungsten, copper, praseodymium and beryllium, and calculated data resulting from the ELEPHANT (ELEctron, PHoton And Neutron Transport) code. Measurements were made using the DGA/ETCA linear electron accelerator located at Arcueil, France. Bremsstrahlung endpoints varying in the 15-25 MeV energy range were used. Detectors were positioned at different angles with respect to the electron beam axis. Each measured value is compared with the corresponding calculated value.

  20. Regenerable copper-based sorbents for high temperature flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.; Abbasian, J.; Slimane, R.B.; Williams, B.E.; Khalili, N.R.; Ho, K.K.

    2000-07-01

    During conventional combustion process the sulfur in the coal is converted to sulfur dioxide (SO{sub 2}). This hazardous air pollutant combines with the moisture in the atmosphere and creates what is commonly known as acid rain. Thus the removal of this pollutant from flue gas prior to its discharge is very important. Government regulations have been introduced and have become progressively more stringent. In the Clean Air Act Amendments (CAAA) of 1990, for example, legislation was introduced requiring electric utilities to adopt available technology for removal of pollutant gases and particulates from coal combustion flue gases so that the increased use of coal is done in an environmentally acceptable manner. A number of processes have been developed for flue gas desulfurization (FGD). The moving bed copper oxide process has been regarded as one of the most promising emerging technologies for SO{sub 2} and NO{sub x} removal from flue gases at elevated temperatures. This process is based on the utilization of a dry, regenerable sorbent, that consists of copper oxide (CuO) supported on gamma alumina ({gamma}-Al{sub 2}O{sub 3}), in a cross flow moving-bed reactor. This study has been directed toward evaluation of the commercially available alumina-supported copper-based (ALCOA) sorbent to establish the baseline for development of new and improved sorbents for the copper oxide process. Evaluation of the baseline sorbent included determination of effective sulfur capacity and sulfur removal efficiency of the sorbent, the effects of operating parameters on the performance of the sorbent, as well as long term durability of the sorbent. Physical and chemical properties of the baseline sorbent were also determined.

  1. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  2. High alcohol consumption causes high IgE levels but not high risk of allergic disease

    DEFF Research Database (Denmark)

    Lomholt, Frederikke K; Nielsen, Sune F; Nordestgaard, Børge G

    2016-01-01

    disease. Genetically, we explored potential causal relationships between alcohol consumption and IgE levels and allergic disease. RESULTS: The multivariable adjusted odds ratio for IgE levels greater than versus less than 150 kU/L and compared with subjects without allergic disease was 2.3 (95% CI, 2......BACKGROUND: High alcohol consumption is associated with high IgE levels in observational studies; however, whether high alcohol consumption leads to high IgE levels and allergic disease is unclear. OBJECTIVE: We tested the hypothesis that high alcohol consumption is associated with high IgE levels...... for the alcohol-metabolizing enzymes alcohol dehydrogenase 1B (ADH-1B; rs1229984) and alcohol dehydrogenase 1c (ADH-1C; rs698). Observationally, we investigated associations between IgE levels and allergic disease (allergic asthma, rhinitis, and eczema) and between alcohol consumption and IgE levels and allergic...

  3. Statistics of high-level scene context.

    Science.gov (United States)

    Greene, Michelle R

    2013-01-01

    CONTEXT IS CRITICAL FOR RECOGNIZING ENVIRONMENTS AND FOR SEARCHING FOR OBJECTS WITHIN THEM: contextual associations have been shown to modulate reaction time and object recognition accuracy, as well as influence the distribution of eye movements and patterns of brain activations. However, we have not yet systematically quantified the relationships between objects and their scene environments. Here I seek to fill this gap by providing descriptive statistics of object-scene relationships. A total of 48, 167 objects were hand-labeled in 3499 scenes using the LabelMe tool (Russell et al., 2008). From these data, I computed a variety of descriptive statistics at three different levels of analysis: the ensemble statistics that describe the density and spatial distribution of unnamed "things" in the scene; the bag of words level where scenes are described by the list of objects contained within them; and the structural level where the spatial distribution and relationships between the objects are measured. The utility of each level of description for scene categorization was assessed through the use of linear classifiers, and the plausibility of each level for modeling human scene categorization is discussed. Of the three levels, ensemble statistics were found to be the most informative (per feature), and also best explained human patterns of categorization errors. Although a bag of words classifier had similar performance to human observers, it had a markedly different pattern of errors. However, certain objects are more useful than others, and ceiling classification performance could be achieved using only the 64 most informative objects. As object location tends not to vary as a function of category, structural information provided little additional information. Additionally, these data provide valuable information on natural scene redundancy that can be exploited for machine vision, and can help the visual cognition community to design experiments guided by statistics

  4. 高强化铜电解精炼新工艺与生产实践%Electrolytic Refining Technology of High Strengthen Copper and Production Practice

    Institute of Scientific and Technical Information of China (English)

    周松林

    2013-01-01

    The copper electrolytic refining technology with high current density and plant practice were introduced. This new technology was successfully commercialized in large-scale production in Xiangguang Copper for the first time. The current density for copper electrolysis is increased to 420 A/m2, and copper electrolytic capacity is greatly improved.%介绍了高电流密度铜电解精炼新工艺技术及生产实践.该技术首次在祥光铜业大规模工业生产中成功应用,使铜电解电流密度提高到420 A/m2,大幅提高了铜电解产能.

  5. 混酸电解高杂铜的综合回收实验%Comprehensive recovery of the mixed acid electrolytic high copper scrap

    Institute of Scientific and Technical Information of China (English)

    何旺才; 唐庆丰

    2014-01-01

    This discussion in the lead oxide residue, a small blast furnaces for smelting, liquation furnace after removal of copper are copper slag, and then through the fire method for smelting cast high copper anode plate at low current density electrolysis refining process characteristics and technical conditions for recovering copper and precious metals control and achieved the expected results.%论述了自金银冶炼产生的氧化渣中,采用小型鼓风炉进行还原熔炼、熔析炉除铜后得到铜渣,再经过火法冶炼浇铸成高杂铜阳极板,在低电流密度下电解精炼回收铜和贵金属工艺的特点及技术条件的控制,并取得了预期的效果。

  6. Progress in the High Level Trigger Integration

    CERN Multimedia

    Cristobal Padilla

    2007-01-01

    During the week from March 19th to March 23rd, the DAQ/HLT group performed another of its technical runs. On this occasion the focus was on integrating the Level 2 and Event Filter triggers, with a much fuller integration of HLT components than had been done previously. For the first time this included complete trigger slices, with a menu to run the selection algorithms for muons, electrons, jets and taus at the Level-2 and Event Filter levels. This Technical run again used the "Pre-Series" system (a vertical slice prototype of the DAQ/HLT system, see the ATLAS e-news January issue for details). Simulated events, provided by our colleagues working in the streaming tests, were pre-loaded into the ROS (Read Out System) nodes. These are the PC's where the data from the detector is stored after coming out of the front-end electronics, the "first part of the TDAQ system" and the interface to the detectors. These events used a realistic beam interaction mixture and had been subjected to a Level-1 selection. The...

  7. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing.

    Science.gov (United States)

    Arnquist, Isaac J; Hoppe, Eric J; Bliss, Mary; Grate, Jay W

    2017-03-07

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of (1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, (2) dissolving both the ash and the boat in acid, (3) performing a column separation to remove copper, and (4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for (232)Th and (238)U, respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for (232)Th and 2 pg/g for (238)U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.

  8. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Hoppe, Eric J.; Bliss, Mary; Grate, Jay W.

    2017-02-21

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of 1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, 2) dissolving both the ash and the boat in acid, 3) performing a column separation to remove copper, and 4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene® 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for Th and U respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for Th and 2 pg/g for U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries, and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.

  9. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration

    OpenAIRE

    Mario Manto

    2014-01-01

    As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper d...

  10. The relationship between dietary behavior of Senior residents and copper level in Plasma%中老年居民膳食行为与血铜关系

    Institute of Scientific and Technical Information of China (English)

    叶丽; 张昕蕾; 叶莹莹

    2012-01-01

      Objective:To get to know the condition of dietary copper intake among residents over 40 years old and factors that influence it, to provide basis on which nutrition and health care strategies for this age group are made. Methods:Conducting questionnaire surveys among 131 healthy residents between 41-86 years old from a community in the city of Wuhan, and measuring the level of copper content in their plasma. Results:The group surveyed has a copper level of (0.86±0.19)mg/L, and the difference between male and female average copper level shows no statistical significance. The rate of zinc lack is 6.1%, and the difference between male and female shows no statistical significance. Multiple Logistic Regression Analysis indicates it is possible that the factor that causes zinc lack is taking in too much dairy.Conclusion:Balanced diets and diversities of food can prevent residents aged over 40 from lacking copper.%  目的:了解中老年人群铜营养状况及其影响因素,为制定中老年人群营养保健策略提供依据.方法:对某市某社区41~86岁131位健康人进行问卷调查并检测其血浆铜的水平.结果:调查人群的血浆铜为(0.86±0.19)mg/L,男女性血浆铜均值差异无统计学意义.缺锌发生率为6.1%,男女发生率差异无统计学意义.多元logistc回归分析表明:缺锌发生的危险因素可能为摄入过多奶制品.结论:平衡膳食,食物种类的多样化可以预防中老年人群缺铜的发生.

  11. Highly active and selective catalysis of copper diphosphine complexes for the transformation of carbon dioxide into silyl formate.

    Science.gov (United States)

    Motokura, Ken; Kashiwame, Daiki; Takahashi, Naoki; Miyaji, Akimitsu; Baba, Toshihide

    2013-07-22

    Copper diphosphine complexes have been found to be highly active and selective homogeneous catalysts for the hydrosilylation of CO2. The structure of the phosphine ligands strongly affects their catalytic activity. Turnover number (TON) reaches 70,000 after 24 hours with 1,2-bis(diisopropylphosphino)benzene as a ligand under 1 atmosphere of CO2. (1)H and (13)C NMR spectra, carried out under the reaction conditions, showed the reaction mechanism through insertion of CO2 into Cu-H to afford Cu/formate species.

  12. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    Science.gov (United States)

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  13. One-step synthesis of xanthones catalyzed by a highly efficient copper-based magnetically recoverable nanocatalyst.

    Science.gov (United States)

    Menéndez, Cintia A; Nador, Fabiana; Radivoy, Gabriel; Gerbino, Darío C

    2014-06-06

    A versatile and highly efficient strategy to construct a xanthone skeleton via a ligand-free intermolecular catalytic coupling of 2-substituted benzaldehydes and a wide range of phenols has been developed. For this purpose, a novel and magnetically recoverable catalyst consisting of copper nanoparticles on nanosized silica coated maghemite is presented. The reaction proceeds smoothly with easy recovery and reuse of the catalyst. The methodology is compatible with various functional groups and provides an attractive protocol for the generation of a small library of xanthones in very good yield.

  14. Development of high-efficiency solar cells on copper indium selenide single crystals (cadmium sulfide, zinc oxide)

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Lap Sum

    1996-12-31

    Photovoltaic cells with a ZnO/CdS/CuInSe{sub 2} structure were fabricated on bulk CuInSe{sub 2} substrates. Conversion efficiencies of more than or near 10 per cent were obtained on cells with an active area and without the use of antireflection coating. Copper indium selenide single crystals can be used as absorbers in thin film solar cells. In this study, the single crystals were grown by a horizontal Bridgman method. An annealing of the CuInSe{sub 2} substrate before the CdS deposition was found to be essential in obtaining high photovoltaic performance.

  15. Statistics of High-level Scene Context

    Directory of Open Access Journals (Sweden)

    Michelle R. Greene

    2013-10-01

    Full Text Available Context is critical to our ability to recognize environments and to search for objects within them: contextual associations have been shown to modulate reaction time and object recognition accuracy, as well as influence the distribution of eye movements and patterns of brain activations. However, we have not yet systematically quantified the relationships between objects and their scene environments. Here I seek to fill this gap by providing descriptive statistics of object-scene relationships. A total of 48,167 objects were hand-labeled in 3499 scenes using the LabelMe tool (Russell, Torralba, Muphy & Freeman, 2008. From these data, I computed a variety of descriptive statistics at three different levels of analysis: the ensemble statistics that describe the density and spatial distribution of unnamed things in the scene; the bag of words level where scenes are described by the list of objects contained within them; and the structural level where the spatial distribution and relationships between the objects are measured. The utility of each level of description for scene categorization was assessed through the use of linear classifiers, and the plausibility of each level for modeling human rapid scene categorization is discussed. Ensemble statistics were found to be the most informative (per feature, and also best explained human patterns of categorization errors. Although a bag of words classifier had similar performance to human observers, it had a markedly different pattern of errors. Some objects are more useful than others, and ceiling classification performance could be achieved using only the 64 most informative objects. As object location tends not to vary as a function of category, structural information provided little additional information. Additionally, these data provide valuable information on natural scene redundancy that can be exploited for machine vision, and can help researchers in visual cognition design new data

  16. Food and Nutrition Curriculum Guide for Florida. Elementary Level, Middle/Junior High Level, Senior High Level, Post-Secondary Level.

    Science.gov (United States)

    Crabtree, Myrna P.; Baum, Rosemere

    This curriculum guide contains competency-based curricula suggested for teaching foods and nutrition courses on the elementary, middle/junior high school, senior high school, and postsecondary levels in Florida. For each level, concepts and subconcepts are presented, referenced to competencies or terminal performance objectives. For each…

  17. Unravelling the Chemical Nature of Copper Cuprizone

    OpenAIRE

    Messori, L.; Casini, A.; C.Gabbiani; Sorace, L.; Muniz-Miranda, M.; Zatta, P

    2007-01-01

    During the last 50 years, formation of the highly chromogenic copper cuprizone complex has been exploited for spectrophotometric determinations of copper although the precise chemical nature of the resulting species has never been ascertained; we eventually show here, in contrast to current opinion, that copper cuprizone is a copper(III) complex.

  18. High-level Behavior Representation Languages Revisited

    Science.gov (United States)

    2016-06-07

    Newell, A. (1980). The keystroke-level model for user performance time with interactive systems. Communications of the ACM , 23(7), 396-410. Cohen, M. A... ACM Conference on Human Factors in Computing Systems, CHI󈧊. New York, NY: ACM . Howes, A., Lewis, R. L., Vera, A., & Richardson, J. (2005...modeling made easy. In Proceedings of CHI 2004 (Vienna, Austria, April 2004), 455-462. New York, NY: ACM . Jones, R. M., Crossman, J. A. L., Lebiere, C

  19. Molecular orientation of copper phthalocyanine thin films on different monolayers of fullerene on SiO{sub 2} or highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Wang, Congcong [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Liu, Xiaoliang [Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China); Xu, Xumei; Li, Youzhen [School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Xie, Fangyan [Instrumental Analysis Center, Sun Yat-Sen University, Guangzhou 510275 (China); Gao, Yongli [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2015-03-23

    The interface electronic structures of copper phthalocyanine (CuPc) have been studied using ultraviolet photoemission spectroscopy as different monolayers of C{sub 60} were inserted between CuPc and a SiO{sub 2} or highly ordered pyrolytic graphite (HOPG) substrate. The results show that CuPc has standing up configuration with one monolayer of C{sub 60} insertion on SiO{sub 2} while lying down on HOPG, indicating that the insertion layer propagates the CuPc-substrate interaction. Meanwhile, CuPc on more than one monolayers of C{sub 60} on different substrates show that the substrate orientation effect quickly vanished. Our study elucidates intriguing molecular interactions that manipulate molecular orientation and donor-acceptor energy level alignment.

  20. Globalism on the High School Level.

    Science.gov (United States)

    Presutti, Robert M.

    1997-01-01

    Describes the International Sibling Program at Lewiston-Porter High School in Youngstown, New York. Notes that 10 "sibling schools" in eight countries participate by exchanging faculty and students. Suggests that the program has given students, staff, and the community many opportunities to interact with the real world. (RS)

  1. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis

    OpenAIRE

    2016-01-01

    Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculo...

  2. Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance.

    Directory of Open Access Journals (Sweden)

    Yuling Chen

    Full Text Available Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a worldwide public health threat. Mycobacterium tuberculosis is capable of resisting various stresses in host cells, including high levels of ROS and copper ions. To better understand the resistance mechanisms of mycobacteria to copper, we generated a copper-resistant strain of Mycobacterium smegmatis, mc2155-Cu from the selection of copper sulfate treated-bacteria. The mc2155-Cu strain has a 5-fold higher resistance to copper sulfate and a 2-fold higher resistance to isoniazid (INH than its parental strain mc2155, respectively. Quantitative proteomics was carried out to find differentially expressed proteins between mc2155 and mc2155-Cu. Among 345 differentially expressed proteins, copper-translocating P-type ATPase was up-regulated, while all other ABC transporters were down-regulated in mc2155-Cu, suggesting copper-translocating P-type ATPase plays a crucial role in copper resistance. Results also indicated that the down-regulation of metabolic enzymes and decreases in cellular NAD, FAD, mycothiol, and glutamine levels in mc2155-Cu were responsible for its slowing growth rate as compared to mc2155. Down-regulation of KatG2 expression in both protein and mRNA levels indicates the co-evolution of copper and INH resistance in copper resistance bacteria, and provides new evidence to understanding of the molecular mechanisms of survival of mycobacteria under stress conditions.

  3. Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance.

    Science.gov (United States)

    Chen, Yuling; Yang, Fan; Sun, Zhongyuan; Wang, Qingtao; Mi, Kaixia; Deng, Haiteng

    2015-01-01

    Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a worldwide public health threat. Mycobacterium tuberculosis is capable of resisting various stresses in host cells, including high levels of ROS and copper ions. To better understand the resistance mechanisms of mycobacteria to copper, we generated a copper-resistant strain of Mycobacterium smegmatis, mc2155-Cu from the selection of copper sulfate treated-bacteria. The mc2155-Cu strain has a 5-fold higher resistance to copper sulfate and a 2-fold higher resistance to isoniazid (INH) than its parental strain mc2155, respectively. Quantitative proteomics was carried out to find differentially expressed proteins between mc2155 and mc2155-Cu. Among 345 differentially expressed proteins, copper-translocating P-type ATPase was up-regulated, while all other ABC transporters were down-regulated in mc2155-Cu, suggesting copper-translocating P-type ATPase plays a crucial role in copper resistance. Results also indicated that the down-regulation of metabolic enzymes and decreases in cellular NAD, FAD, mycothiol, and glutamine levels in mc2155-Cu were responsible for its slowing growth rate as compared to mc2155. Down-regulation of KatG2 expression in both protein and mRNA levels indicates the co-evolution of copper and INH resistance in copper resistance bacteria, and provides new evidence to understanding of the molecular mechanisms of survival of mycobacteria under stress conditions.

  4. Speech at the High-level Dialogue

    Institute of Scientific and Technical Information of China (English)

    Yu; Hongjun

    2014-01-01

    <正>The commemoration of 2014 International Day of Peace,themed with"A More Secure Asia Aspired by People"is highly relevant.To begin with,I would like to share 3 points on Asian security with you.Firstly,problems in the realm of traditional security are worrying.Outdated security perspectives and security systemic structures left by the cold war are threatening Asian peace and development,yet some countries still believe in backward security

  5. Residual stress in copper containing a high concentration of krypton precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Haerting, M.; Yaman, M.; Bucher, R.; Britton, D.T. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2002-08-01

    A study of the residual stress and bubble pressure in bulk samples of copper, containing 3 at.-% krypton, using X-ray diffraction techniques is presented here. The authors have confirmed that the Kr forms solid precipitates with an fcc structure, which is consistent with an estimated pressure of 2.4 GPa. Stress measurements in the surrounding Cu matrix indicate a zero normal stress, confirming that the matrix experiences only a shear strain. The magnitude of the shear stress is estimated from the bubble pressure to be below the yield stress of the matrix, thus explaining the long term stability of the bubbles. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  6. A highly selective and sensitive fluorescence assay for determination of copper(II) and cobalt(II) ions in environmental water and toner samples.

    Science.gov (United States)

    Tsai, Chia-Yi; Lin, Yang-Wei

    2013-02-21

    In this study, a highly selective and sensitive fluorescence assay has been proposed for the determination of copper(II) and cobalt(II) ions in environmental water and toner samples. In the presence of hydrogen peroxide, copper(II) reacted with a new fluorescence reagent Amplex® UltraRed (AUR), forming a fluorescence product only at pH 7.0, while the fluorescence product of cobalt(II) with AUR formed only at pH 9.0. The fluorescence signal obtained was linear with respect to the copper(II) concentration over the range of 1.6-12.0 μM (R(2) = 0.988) and was linear with respect to the cobalt(II) concentration over the range of 45.0 nM to 1.0 μM (R(2) = 0.992). The limits of detection (at a signal-to-noise ratio of 3) for copper(II) and cobalt(II) were 0.17 μM and 14.0 nM, respectively. Our present approach is simpler, faster, and more cost-effective than other techniques for the detection of copper(II) and cobalt(II) ions in environmental water samples and that of copper(II) ions in toner samples.

  7. Feed additive interactions in the chicken: reduction of tissue copper deposition by dietary roxarsone in healthy and in Eimeria acervulina-infected or Eimeria tenella-infected chicks.

    Science.gov (United States)

    Czarnecki, G L; Baker, D H

    1984-07-01

    Interactions among roxarsone, copper, and coccidiosis were studied in growing crossbred chicks. Corn-soy or corn-soy-corn gluten meal diets were fed in all assays. In the absence of supplemental copper, 50 mg/kg roxarsone did not affect gain. However, in the presence of 250 mg/kg supplemental copper, there was a depression in gain due to feeding 50 mg/kg roxarsone. In contrast, at a toxic level of copper (1000 mg/kg), a growth response resulted from feeding roxarsone. In all instances, roxarsone markedly decreased liver copper concentration in birds fed high levels of copper. Multiple crop intubations of Eimeria acervulina or Eimeria tenella depressed performance and exacerbated copper toxicity symptoms. Copper supplementation as well as coccidial infection resulted in depressed plasma pigmentation.

  8. Cloning, high-level expression, purification and characterization of a ...

    African Journals Online (AJOL)

    Cloning, high-level expression, purification and characterization of a staphylokinase variant, SakøC, ... African Journal of Biotechnology ... Hence in this study, we reported the cloning, high-level expression, purification and characterization of ...

  9. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-01

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  10. Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications.

    Science.gov (United States)

    Kim, Yong Ho; Lim, Young-Woo; Kim, Yun Hyeok; Bae, Byeong-Soo

    2016-04-06

    We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol-gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris(trimethylsiloxy)silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards.

  11. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  12. Industrial experiment of copper electrolyte purification by copper arsenite

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ya-jie; XIAO Fa-xin; WANG Yong; LI Chun-hua; XU Wei; JIAN Hong-sheng; MA Yut-ian

    2008-01-01

    Copper electrolyte was purified by copper arsenite that was prepared with As2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).

  13. Investigation of association between high background radiation exposure with trace element concentrations’ (Copper, Zinc, Iron and Magnesium of hot springs workers blood in Mahalat

    Directory of Open Access Journals (Sweden)

    Darius Shahbazi-Gahrouei

    2014-10-01

    Full Text Available Background: People who live or work in high background radiation areas are subjected to high background radiation dose for long time, with low dose. The biological effect of low dose of radiation in long time and also background radiation is unknown and the mechanism of biological responses to these radiation doses has remained largely unclear. To investigate chronic radiation effects, parameters should be noticed those have a little but important change in biological system. Body trace element in this regards have an important roles. Trace element plays an important role in vital processes and acceptable ranges of these elements for physiological process are limited. Material and methods: In this study 30 participants of hot springs permanent employee area in mahalat (mean background dose : 21.6 mSiv were selected as a sample group and 30 persons with similar social class and normal background dose, not engaged in any type of radiation work, selected as control group. Five ml of blood sample was taken from each participant and after preparation of samples, the concentration of elements: copper, iron, zinc and magnesium were measured with atomic absorption spectrometry. Data analysis was performed using SPSS software. Results: The average concentration of copper, iron, zinc and magnesium in employee group was 0.67±0.11, 1.54±0.41, 1.76±0.34, 19.78±1.42 and in control group was 0.78±0.06, 1.06±0.15, 0.85±0.05, 20.34±0.57 ,respectively. Copper concentration in employees was lower than that of control group, although zinc and iron had significant increase in employee group. Magnesium average concentration in employee was lower than that of control group, but this difference was not statistically significant (p>0.05. Statistically (p<0.05 increase in Fe and Zn ratio and decrease in Cu ratio in employee group was found. Conclusions: Although the value of radiation doses of hot springs Permanent employee (chronic doses is low, but it can

  14. Bumblebee pupae contain high levels of aluminium.

    Directory of Open Access Journals (Sweden)

    Christopher Exley

    Full Text Available The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD value of 51.0 (33.0 μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  15. Bumblebee pupae contain high levels of aluminium.

    Science.gov (United States)

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  16. The copper intrauterine device for emergency contraception: an opportunity to provide the optimal emergency contraception method and transition to highly effective contraception.

    Science.gov (United States)

    Dermish, Amna I; Turok, David K

    2013-07-01

    Worldwide, 40% of all pregnancies are unintended. Widespread, over-the-counter availability of oral emergency contraception (EC) has not reduced unintended pregnancy rates. The EC visit presents an opportunity to initiate a highly effective method of contraception in a population at high risk of unintended pregnancy who are actively seeking to avoid pregnancy. The copper intrauterine device (IUD), the most effective method of EC, continues to provide contraception as effective as sterilization for up to 12 years, and it should be offered as the first-line method of EC wherever possible. Increased demand for and supply of the copper IUD for EC may have an important role in reducing rates of unintended pregnancy. The EC visit should include access to the copper IUD as optimal care but should ideally include access to all highly effective methods of contraception.

  17. Presenilin promotes dietary copper uptake.

    Directory of Open Access Journals (Sweden)

    Adam Southon

    Full Text Available Dietary copper is essential for multicellular organisms. Copper is redox active and required as a cofactor for enzymes such as the antioxidant Superoxide Dismutase 1 (SOD1. Copper dyshomeostasis has been implicated in Alzheimer's disease. Mutations in the presenilin genes encoding PS1 and PS2 are major causes of early-onset familial Alzheimer's disease. PS1 and PS2 are required for efficient copper uptake in mammalian systems. Here we demonstrate a conserved role for presenilin in dietary copper uptake in the fly Drosophila melanogaster. Ubiquitous RNA interference-mediated knockdown of the single Drosophila presenilin (PSN gene is lethal. However, PSN knockdown in the midgut produces viable flies. These flies have reduced copper levels and are more tolerant to excess dietary copper. Expression of a copper-responsive EYFP construct was also lower in the midgut of these larvae, indicative of reduced dietary copper uptake. SOD activity was reduced by midgut PSN knockdown, and these flies were sensitive to the superoxide-inducing chemical paraquat. These data support presenilin being needed for dietary copper uptake in the gut and so impacting on SOD activity and tolerance to oxidative stress. These results are consistent with previous studies of mammalian presenilins, supporting a conserved role for these proteins in mediating copper uptake.

  18. Screw Thread-Like Platinum-Copper Nanowires Bounded with High-Index Facets for Efficient Electrocatalysis.

    Science.gov (United States)

    Zhang, Nan; Bu, Lingzheng; Guo, Shaojun; Guo, Jun; Huang, Xiaoqing

    2016-08-10

    Introducing high-index facets into nanocrystals (NCs) is an effective way for boosting the electrocatalytic intrinsic activity. However, the established NCs with high-index facets usually have a big diameter, which makes them exhibit a very limited surface area, thus finally limited mass activity. To embody the advantage of high-index facets in enhancing electrocatalysis well, the better nanostructures should meet the requirement of both high surface area and high-density high-index facets. Herein, we report our important advances in making the unique three-dimensional screw thread-like platinum-copper (Pt-Cu) alloy nanowires (NWs) with high-density high-index facets and controlled composition. Such special NWs with a high surface area of 46.90 m(2) g(-1) exhibit much better performance than the PtCu nanoparticles (NPs) in alcohol electrooxidations. This work opens a new way for maximizing the electrocatalytic performance by introducing high-index facets into high-surface-area stable bimetallic NWs.

  19. Large low-symmetry polarons of the high-Tc, copper oxides: Formation, mobility and ordering

    Science.gov (United States)

    Bersuker, Gennadi I.; Goodenough, John B.

    1997-02-01

    A microscopic model of the evolution from antiferromagnetic insulator to superconductor on oxidation of the parent-phase (CuO 2) 2- sheets of a cuprate superconductor starts with the assumption that strong electron-lattice interactions are dominant and give a heterogeneous electronic distribution. Introduction of pseudo-Jahn-Teller vibronic coupling associated with the δ holes in the (CuO 2) (2-δ) - sheets is shown to stabilize, below a critical temperature Tp ≈ 850 K, large non-adiabatic polarons containing 5 to 7 copper centers; cooperative low-symmetry in-plane vibrations also stabilize an elastic attractive force between polarons that can overcome the longer-range Coulomb repulsion between polarons. Utilizing established parameters for isolated CuO 6 complexes gives a calculated polaron size of 5 to 7 copper centers, which compares with a measured mean size of 5.3 copper centers in underdoped samples 0 hopping. This type of motion, which is not described by conventional transport theories, gives a linear increase of the resistivity with temperature above a temperature Tϱ due to scattering of the polaron at its own border, which separates regions inside and outside the polaron of slightly different mean CuO bond length. At lower temperatures, the polaron mobility becomes activated, but at higher concentrations this change is obscured because the elastic interpolaron attractive force causes the polarons to condense into a “polaron liquid,” and below some critical temperature Td ≥ Tc the polarons undergo long-range ordering into one-dimensional polaronic stripes separated by stripes of the parent phase, which support antiferromagnetic spin fluctuations. The zig-zag polaron stripes consist of polaron pairs oriented alternately along [100] and [010] axes of a CuO 2 sheet. Formation of the ordered superstructure permits conduction of hole pairs without scattering from lattice vibrations provided there is also coupling in the third dimension between Cu

  20. Hair copper in intrauterine copper device users.

    Science.gov (United States)

    Thiery, M; Heyndrickx, A; Uyttersprot, C

    1984-03-01

    The antifertility effect of copper-bearing IUDs is based on continuous release of copper, which is a result of the reaction between the metal and the uterine secretions. Released cupric ions collect in the endometrium and in the uterine fluid but significant accumulation has not been found in the bloodstream or elsewhere. Following Laker's suggestion that hair be used for monitoring essential trace elements, e.g., copper, we checked the copper content of the hair of women wearing copper-bearing IUDs. Samples of untreated pubic hair removed by clipping before diagnostic curettage were obtained from 10 young (24-34 years old), white caucasian females who until then had been wearing an MLCu250 IUD for more than 1 year. Pubes from 10 comparable (sex, age, race) subjects who had never used a Cu-containing device served as controls. The unwashed material was submitted to the toxicology laboratory, where the copper content was assessed by flameless atomic absorption, a technique whose lower limit of measurement lies at a concentration of 0.05 mcg Cu/ml fluid (50 ppb). Hair samples were washed to remove extraneous traces of metal according to the prescriptions of the International Atomic Energy Agency, weighed, and mineralized, after which a small volume (10 mcl) of the diluted fluid was fed into the graphite furnace. Each sample (75-150 mg) was analyzed 4 times, both before and after washing. Since the cleaning procedure reduces the weight of the sample (mainly by the removal of fat, dust, etc.) this explains why the percentage copper content of washed hair is higher than that of unwashed hair belonging to the same subject. The results indicate that there was no significant difference (Mann-Whitney U test) between the mean copper levels of both unwashed and washed pubes from women who were using or had never used an MLCu250 IUD. We therefore conclude that the use of this copper-containing device is not associated with significant accumulation of copper in (pubic) hair.

  1. Semiconductor High-Level Dosimeters Used in the SLAC Mixed Gamma and Neutron Fields

    CERN Document Server

    Mao, S

    2003-01-01

    As part of an exploration of Semiconductor High-Level Dosimetry (SHLD) in the accelerator radiation fields, the response of SHLD system, composed of dual MOSFETs, wide-base PIN diode, and a microprocessor-controlled reader, was calibrated in photon (Co-60) and neutron (Bare-reactor) fields. The response curves for the MOSFET and the PIN diode were determined. The neutron sensitivity of the PIN diode is about a factor of 2200 times higher than its photon sensitivity. Therefore, the PIN diode can be used to measure the neutron dose and virtually ignore the photon dose contribution. The MOSFET can be used to estimate the photon dose after subtracting the ionizing effect of the neutrons. The SHLD was used in the SLAC mixed field to measure the photon and neutron doses around a copper beam dump. The photon measurements near the copper dump agreed reasonably with the FLUKA Monte Carlo calculations. The neutron measurements agreed with FLUKA calculations to within a factor of two.

  2. Three-Dimensional Reduced Graphene Oxide Network on Copper Foam as High-performance Supercapacitor Electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    - integrated supercapacitor electrode s (3DrGO@Cuf) [1] . The method involves a two - step procedure, self - assembly of graphene oxide (GO) nanosheets on Cuf and electrochemical reduction of GO into rGO. We have systematically characterized as - synthesized materials using AFM, SEM and XRD to reveal......E lectrochemically generated copper foam (Cuf) could serve as an effective template for fabrication of three - dimensional (3D) reduced graphe n e oxide (rGO) network s. Here we present a facile approach to preparation of 3D rGO network supported by Cuf a s binder - free and current collector...... knowledge, we may have achieve d the highest specific capacitance with 3DrGO@Cuf electrodes among reported pure 3D graphene materials to date (i.e. 3D graphene materials without doping additional capacitive species ) [2 , 3 ]...

  3. Shape-controlled synthesis of palladium and copper superlattice nanowires for high-stability hydrogen sensors

    Science.gov (United States)

    Yang, Dachi; Carpena-Núñez, Jennifer; Fonseca, Luis F.; Biaggi-Labiosa, Azlin; Hunter, Gary W.

    2014-01-01

    For hydrogen sensors built with pure Pd nanowires, the instabilities causing baseline drifting and temperature-driven sensing behavior are limiting factors when working within a wide temperature range. To enhance the material stability, we have developed superlattice-structured palladium and copper nanowires (PdCu NWs) with random-gapped, screw-threaded, and spiral shapes achieved by wet-chemical approaches. The microstructure of the PdCu NWs reveals novel superlattices composed of lattice groups structured by four-atomic layers of alternating Pd and Cu. Sensors built with these modified NWs show significantly reduced baseline drifting and lower critical temperature (259.4 K and 261 K depending on the PdCu structure) for the reverse sensing behavior than those with pure Pd NWs (287 K). Moreover, the response and recovery times of the PdCu NWs sensor were of ~9 and ~7 times faster than for Pd NWs sensors, respectively.

  4. High efficiency pollutant removal with the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Hoffman, J.S.; Yeh, J.T. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Resnik, K.P.; Vore, P.A. [Gilbert Commonwealth, Inc., Pittsburgh, PA (United States)

    1995-12-31

    Dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. One such technique, the Moving-Bed Copper Oxide Process, is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. A parametric study of the process was conducted on a life-cycle test system. All process steps, including absorption and regeneration, were integrated into this life-cycle test system so that continuous, long-term operation of the total process cold be experimentally evaluated. The effects of absorption temperature, sorbent and gas residence times, and inlet SO{sub 2} and NO{sub x} concentration on removal efficiencies and overall operational performance are discussed.

  5. High packing density laser diode stack arrays using Al-free active region laser bars with a broad waveguide and discrete copper microchannel-cooled heatsinks

    Institute of Scientific and Technical Information of China (English)

    Zhigang Liu; Gaozhan Fang; Kecheng Feng

    2009-01-01

    A high packing density laser diode stack array is developed utilizing Al-free active region laser bars with a broad waveguide and discrete copper microchannel-cooled heatsinks. The microchannel cooling technology leads to a 10-bar laser diode stack array having the thermal resistance of 0.199 ℃/W, and enables the device to be operated under continuous-wave (CW) condition at an output power of 1200 W. The thickness of the discrete copper heatsink is only 1.5 mm, which results in a high packing density and a small bar pitch of 1.8 mm.

  6. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    Science.gov (United States)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-09-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  7. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    Science.gov (United States)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-12-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  8. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Science.gov (United States)

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts.

  9. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  10. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne Johan; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1) con

  11. High Cobalt, Copper And Zinc Smelting Practice Of High Raw Material%高钴、高铜锌原料冶炼的实践

    Institute of Scientific and Technical Information of China (English)

    韦庭胜

    2012-01-01

    This article mainly introduced in the process of zinc hydrometallurgy how successful treatment of high cobalt, copper refined zinc and treatment effect. Through the introduction of cobalt, copper impurity in the process of zinc hydrometallurgy of zinc electrolysis process hazard and affect the quality of refined zinc, and cobalt, copper impurity in the process of zinc hydrometallurgy leaching, purification, electrolytic process behavior, make the production process and process conditions. Simple description of roasting, leaching process conditions and basis. Focuses on the purification mechanism, antimony trioxide purification method mechanism. Presents a selection of inverse antimony trioxide purification method basis, Narrative Choice purification process and technological conditions. At the same time for cobalt impurities high case, prevent cobalt impurities accumulation in production system, puts forward the method and effect of cobalt impurities control. Finally, introduces the application of formulation of the production process and application in hydrometallurgical zinc production in treatment of high cobalt, some experience of high copper.%文章主要介绍在湿法炼锌中如何成功处理高钴、高铜精锌矿及处理效果。通过介绍钴、铜杂质在湿法炼锌中电解过程的危害及对锌锭质量的影响,以及分析了精锌矿中钴、铜杂质在湿法炼锌中浸出、净化、电解过程中的行为,制定了生产工艺流程和工艺条件。简单地叙述沸腾焙烧、浸出的工艺条件和制定依据。重点叙述净化工艺机理、锑盐净化法机理。提出了选择逆锑盐净化法的依据,叙述所选择净化工艺流程和工艺条件。同时针对钴杂质特高情况下,防止钴杂质在生产系统积累,提出了钴杂质控制的方法及效果。最后介绍应用制定的工艺生产应用效果及在湿法炼锌生产中处理高钴、高铜矿几点心得。

  12. The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates

    Directory of Open Access Journals (Sweden)

    Živković Živan

    2009-01-01

    Full Text Available This paper presents the results of multi-linear regression analysis (MLRA of the slag composition (SiO2, FeO, Fe3O4, CaO, Al2O3 and the content of copper in the matte on resulting copper content in the slag during smelting of the sulfide concentrates in the reverberatory furnace. When comparing results obtained with MLRA model calculations with values measured at industrial level high degree of fitting is obtained (R2 = 0.974. This indicates that slag composition and content of copper in the matte influences the copper losses in the waste slag with the probability of 95 %.

  13. Emission of SO2 and SO42- from copper smelter and its influence on the level of total s in soil and moss in Bor and the surroundings

    Directory of Open Access Journals (Sweden)

    Šerbula Snežana M.

    2015-01-01

    Full Text Available Bor and the surroundings (Eastern Serbia have been known for exploitation and processing of sulphide copper ores for more than 100 years. Emissions of waste gases and particulate matter rich in heavy metals are characteristic for pyrometallurgical production of copper. Long-term measurement results (2005-2008 indicate an increased sulphur dioxide level in the urban-industrial zone of Bor since it is closest to the copper smelter which is a dominant source of air pollution in the studied area. Average annual sulphur dioxide concentrations at four measuring sites in the urban-industrial zone exceeded the maximum allowable value of 50 μg/m3. However the maximum allowable value of the total atmospheric depositions (200 mg/m2/day on an annual basis exceeded only at two of 15 measuring sites in the urban-industrial and rural zone. The highest annual deposition rate of sulphates from deposition was detected in the urban-industrial zone. Since the maximum permitted value for sulphates is not defined by the Serbian Regulations, the extent of the pollution cannot be discussed. Since the environment can continuously be polluted through the wet and dry deposition, biomonitoring by moss was conducted, which revealed significantly higher concentrations of total sulphur in moss in the urban-industrial zone, compared to the background zone. The obtained results confirm the reliability of moss as a bioindicator of ambient pollution. Higher total S concentration in soil samples was noted at the rural site (Ostrelj located in the close vicinity of two tailing ponds. [Projekat Ministarstva nauke Republike Srbije, br. 46010, br. 33038 i br. 172037

  14. Effects of Dietary Copper Level on Copper Apparent Biological Utilization and Copper Deposition in Tissue and Organ of Silver Foxes during the Winter Hair Period%饲粮铜水平对冬毛期银狐铜表观生物学利用率及组织器官铜沉积量的影响

    Institute of Scientific and Technical Information of China (English)

    钟伟; 鲍坤; 张婷; 刘凤华; 杨雅涵; 张海华; 李光玉

    2014-01-01

    This experment was conducted to study the effects of dietary copper level on copper apparent biolog-ical utilization and copper deposition in tissue and organ of silver foxes during the winter hair period. Fifty 120-day-old female silver foxes with an average body weight of ( 5 134 ± 540 ) g were selected and randomly as-signed into 5 groups with 10 replicates in each group and 1 silver fox in each replicate. Foxes in the 6 groups were fed the basal diets supplemented 6 ( group Ⅰ) , 30 ( group Ⅱ) , 60 ( group Ⅲ) , 90 ( group Ⅳ) and 150 mg/kg ( groupⅤ) citric acid copper, respectively. The copper content in basal diet was 4.92 mg/kg. The pre-trial period lasted for 7 days and the trial period lasted for 51 days. The results showed as follows:1) diet-ary copper level did not significantly affect average daily feed intake, fecal output and copper apparent biologi-cal utilization ( P>0.05) , but significantly affected the copper intake and fecal copper output ( P0.05) . It is concluded that adding 60 mg/kg citric acid copper ( actual dietary copper content appropriately 65 mg/kg) in the basal diet is beneficial for digestion and utilization of copper of silver foxesx during the win-ter hair period.%本试验旨在研究饲粮铜水平对冬毛期银狐铜表观生物学利用率及组织器官铜沉积量的影响。选择50只120日龄、平均体重为(5134±540)g的健康雌性银狐,随机分成5组,每组设10个重复,每个重复1只银狐。各组分别饲喂在基础饲粮中添加6(Ⅰ组)、30(Ⅱ组)、60(Ⅲ组)、90(Ⅳ组)和150 mg/kg(Ⅴ组)柠檬酸铜的试验饲粮,基础饲粮中铜含量为4.92 mg/kg。预试期7 d,正试期51 d。结果表明:1)饲粮铜水平对平均日采食量、粪排出量和铜表观生物学利用率均无显著影响(P>0.05),对铜摄入量和粪铜排出量有极显著影响(P<0.01)。随着饲粮铜水平增加,铜摄入量和粪

  15. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    Science.gov (United States)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  16. Conceptual modeling coupled thermal-hydrological-chemical processes in bentonite buffer for high-level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Young; Park, Jin Young [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Ryu, Ji Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

  17. Talitrid amphipods (Crustacea) as biomonitors for copper and zinc

    Science.gov (United States)

    Rainbow, P. S.; Moore, P. G.; Watson, D.

    1989-06-01

    Data are presented on the copper and zinc concentrations of four talitrid amphipod species (standard dry weight 10 mg), i.e. Orchestia gammarellus (Pallas), O. mediterranea Costa, Talitrus saltator Montagu and Talorchestia deshayesii (Audouin), from 31 sites in S.W. Scotland, N. Wales and S.W. England. More limited data are also presented for cadmium in O. gammarellus (three sites) and T. deshayesii (one site). In S.W. Scotland, copper concentrations were raised significantly in O. gammarellus from Whithorn and Auchencairn (Solway) and Loch Long and Holy Loch (Clyde). In S.W. England, copper concentrations were highest at Restronguet Creek, Torpoint and Gannel (Cornwall). Samples of O. gammarellus from Islay (inner Hebrides) taken adjacent to the effluent outfalls of local whisky distilleries fell into two groups based on copper concentrations (presumably derived from copper stills), the higher copper levels deriving from the more productive distilleries. High copper levels were found in T. saltator and Tal. deshayesii from Dulas Bay (Wales). Zinc levels in O. gammarellus were high in Holy Loch and Auchencairn (Scotland), Gannel and Torpoint (England) but extremely elevated (as was Zn in O. mediterranea) at Restronguet Creek. Zinc was also high in T. saltator from Dulas Bay (Wales), but not in Tal. deshayesii. Cadmium levels in O. gammarellus from Kilve (Bristol Channel) were much raised. These differences (a) conform with expectations of elevated bioavailability of these metals from well researched areas (S.W. England & N. Wales), and (b) identify hitherto unappreciated areas of enrichment in S.W. Scotland. Orchestia gammarellus is put forward as a suitable biomonitor for copper and zinc in British coastal waters.

  18. Highly sensitive photodetectors based on hybrid 2D-0D SnS{sub 2}-copper indium sulfide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yun; Zhan, Xueying; Xu, Kai; Yin, Lei; Cheng, Zhongzhou; Jiang, Chao; Wang, Zhenxing, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn; He, Jun, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-01-04

    Both high speed and efficiency of photoelectric conversion are essential for photodetectors. As an emerging layered metal dichalcogenide (LMD), tin disulfide owns intrinsic faster photodetection ability than most other LMDs but poor light absorption and low photoelectric conversion efficiency. We develop an efficient method to enhance its performance by constructing a SnS{sub 2}-copper indium sulfide hybrid structure. As a result, the responsivity reaches 630 A/W, six times stronger than pristine SnS{sub 2} and much higher than most other LMDs photodetectors. Additionally, the photocurrents are enhanced by more than 1 order of magnitude. Our work may open up a pathway to improve the performance of photodetectors based on LMDs.

  19. Highly sensitive detection of copper ions by densely grafting fluorescein inside polyethyleneimine core-silica shell nanoparticles.

    Science.gov (United States)

    Qiao, Yali; Zheng, Xingwang

    2015-12-21

    In this work, polyethyleneimine (PEI) core-silica shell nanoparticles were synthesized and used for densely grafting fluorescent receptor units inside the core of these particles to result in multi-receptor units collectively sensing a target. Herein, copper ion quenching of the fluorescence intensity of a fluorescein isothiocyanate (FITC) system was selected as a model to confirm our proof-of-concept strategy. Our results showed that, compared to free FITC in solution, a 10-fold enhancement of the Stern-Volmer constant value for Cu(2+) quenching of the fluorescence intensity of the grafted state of FITC in PEI core-silica shell nanoparticles was achieved. Furthermore, compared to a previous collective sensing scheme by densely grafting fluorescent receptor units on a silica nanoparticle surface, the proposed scheme, which grafted fluorescent receptor units inside a polymer nano-core, was simple, highly efficient and presented higher sensitivity.

  20. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO

    KAUST Repository

    Rasul, Shahid

    2014-12-23

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.