WorldWideScience

Sample records for high conversion rates

  1. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens

  2. Silicon chip based wavelength conversion of ultra-high repetition rate data signals

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    We report on all-optical wavelength conversion of 160, 320 and 640 Gbit/s line-rate data signals using four-wave mixing in a 3.6 mm long silicon waveguide. Bit error rate measurements validate the performance within FEC limits.......We report on all-optical wavelength conversion of 160, 320 and 640 Gbit/s line-rate data signals using four-wave mixing in a 3.6 mm long silicon waveguide. Bit error rate measurements validate the performance within FEC limits....

  3. Simultaneous high bit-rate format and mode conversion with a single tilted apodized few-mode fiber Bragg grating

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Sima, Chaotan

    2016-10-01

    We propose an all-optical approach for simultaneous high bit-rate return-to-zero (RZ) to non-return-to-zero (NRZ) format and LP01 to LP11 mode conversion using a weakly tilted apodized few-mode fiber Bragg grating (TA-FM-FBG) with specific linear spectral response. The grating apodization profile is designed by utilizing an efficient inverse scattering algorithm and the maximum refractive index modulation is adjusted based on the grating tilt angle, according to Coupled-Mode Theory. The temporal performance and operation bandwidth of the converter are discussed. The approach provides potential favorable device for the connection of various communication systems.

  4. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  5. Observations of high rates of NO2 – HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Prinn

    2009-01-01

    Full Text Available Nitrous acid (HONO plays a significant role in the atmosphere, especially in the polluted troposphere. Its photolysis after sunrise is an important source of hydroxyl free radicals (OH. Measurements of nitrous acid and other pollutants were carried out in the Kathmandu urban atmosphere during January–February 2003, contributing to the sparse knowledge of nitrous acid in South Asia. The results showed average nocturnal levels of HONO (1.7±0.8 ppbv, NO2 (17.9±10.2 ppbv, and PM10 (0.18±0.11 mg m−3 in urban air in Kathmandu. Surprisingly high ratios of chemically formed secondary [HONO] to [NO2] (up to 30% were found, which indicates unexpectedly efficient chemical conversion of NO2 to HONO in Kathmandu. The ratios of [HONO]/[NO2] at nights are much higher than previously reported values from measurements in urban air in Europe, North America and Asia. The influence of aerosol plumes, relative humidity, aerosol surface and ground reactive surface, temperature on NO2-HONO chemical conversion were discussed. The high humidity, strong and low inversion layer at night, and serious aerosol pollution burden may explain the particularly efficient conversion of NO2 to HONO.

  6. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.

    Science.gov (United States)

    Hu, Meijuan; Jiang, Yinzhu; Sun, Wenping; Wang, Hongtao; Jin, Chuanhong; Yan, Mi

    2014-11-12

    Sodium ion batteries are attracting ever-increasing attention for the applications in large/grid scale energy storage systems. However, the research on novel Na-storage electrode materials is still in its infancy, and the cycling stability, specific capacity, and rate capability of the reported electrode materials cannot satisfy the demands of practical applications. Herein, a high performance Sb(2)O(3) anode electrochemically reacted via the reversible conversion-alloying mechanism is demonstrated for the first time. The Sb(2)O(3) anode exhibits a high capacity of 550 mAh g(-1) at 0.05 A g(-1) and 265 mAh g(-1) at 5 A g(-1). A reversible capacity of 414 mAh g(-1) at 0.5 A g(-1) is achieved after 200 stable cycles. The synergistic effect involving conversion and alloying reactions promotes stabilizing the structure of the active material and accelerating the kinetics of the reaction. The mechanism may offer a well-balanced approach for sodium storage to create high capacity and cycle-stable anode materials.

  7. High-rate anaerobic wastewater treatment: diversifying from end-of the pipe treatment to resource oriented conversation techniques

    NARCIS (Netherlands)

    Lier, van J.B.

    2008-01-01

    Decades of developments and implementations in the field of high-rate anaerobic wastewater treatment have put the technology at a competitive level. With respect to sustainability and cost-effectiveness, anaerobic treatment has a much better score than many alternatives. Particularly, the energy con

  8. Laparoscopic cholecystectomy: Rate and predictors for conversion

    Directory of Open Access Journals (Sweden)

    Merdad Adnan

    1999-01-01

    Full Text Available Laparoscopic cholecystectomy (LC was attempted in 847 patients, 823 (97.2% were completed laparoscopically and 24 (2.8% had to be converted to open cholecystectomy (OC. Acute cholecystitis was the commonest reason for conversion (13 out of 24 patients. Patients who had acute cholecystitis are five times at risk for conversion to open than other patients with non-acute cholecystitis (p< 0.00I . Age and sex were not statistically significant predictors for conversion. There were no mortalities and no major bile duct injuries in our series. These data confirms the safety of LC, identify factors which predicts conversion to OC and may be helpful in selecting patients for day care ambulatory LC.

  9. 49 CFR 583.14 - Currency conversion rate.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Currency conversion rate. 583.14 Section 583.14... conversion rate. For purposes of calculations of content value under this part, manufacturers and suppliers shall calculate exchange rates using the methodology set forth in this section. (a) Manufacturers....

  10. Rate Modelling of Alkali Gelatinization at Low Conversions

    Directory of Open Access Journals (Sweden)

    Osoka Emmanuel CHIBUIKE

    2010-12-01

    Full Text Available The rate of starch gelatinisation under strong alkali conditions was modeled at low conversion (x < 0.4, with the degree of gelatinisation (conversion defined in terms of sample viscosity. Experimental data at low conversion were fit to eleven rate models based on the mechanism of the unreacted-core model and the rate controlling steps determined. Film diffusion (stokes regime plus Product layer diffusion steps control the rate of reaction for all sodium hydroxide concentrations and at low conversion (x < 0.4, with the dominance shifting from Film diffusion to Product layer diffusion as sodium hydroxide concentration is increased.

  11. Rate and predictors of conversion from unipolar to bipolar disorder

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Willer, Inge Stoel; Andersen, Per Kragh

    2017-01-01

    OBJECTIVES: For the first time to present a systematic review and meta-analysis of the conversion rate and predictors of conversion from unipolar disorder to bipolar disorder. METHODS: A systematic literature search up to October 2016 was performed. For the meta-analysis, we only included studies...... that used survival analysis to estimate the conversion rate. RESULTS: A total of 31 studies were identified, among which 11 used survival analyses, including two register-based studies. The yearly rate of conversion to bipolar disorder decreased with time from 3.9% in the first year after study entry......, the prevalence of psychotic depression, the prevalence of chronic depression, and severity of depression. It was not possible to identify risk factors that were consistently or mainly confirmed to predict conversion across studies. CONCLUSIONS: The conversion rate from unipolar to bipolar disorder decreases...

  12. Estimating forest conversion rates with annual forest inventory data

    Science.gov (United States)

    Paul C. Van Deusen; Francis A. Roesch

    2009-01-01

    The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...

  13. Mathematical Simulation of High-Conversion Binary Copolymerization

    Institute of Scientific and Technical Information of China (English)

    JiangWei; QinJiguang

    2005-01-01

    A new model for mathematical simulation of high-conversion binary copolymerization was established by combination of the concept of the three stage polymerization model (TSPM) proposed by Qin et al. for bulk free radical homopolymerization with the North equation to describe high-conversion copolymerization reaction exhibiting a strong gel effect, and the mathematical expressions of this new model were derived. Like TSPM, the new model also assmnes that the whole course of binary copolymerization can be divided into three different stages: low conversion, gel effect and glass effect stages. In addition, the reaction rate constants and the initiator efficiency at each copolymerization stage do not vary with conversion. Based on the expressions derived, a plot method for determining the overall rate constants and critical conversions was proposed. The literature data on conversion history for styrene (St)-methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA)-MMA copolymerizations were treated to examine the model, which shows that the model is satisfactory.

  14. CONVERSION RATES OF SURFACE HOx RADICALS IN BEIJING CITY

    Institute of Scientific and Technical Information of China (English)

    REN Xin-rong; WANG Li-xin; WANG Hui-xiang; MIAO Guo-fang

    2004-01-01

    Surface OH radical concentration in Beijing City was measured by impregnated filter trapping technique-high performance liquid chromatography (IFT-HPLC). The observed concentration of OH radical showed obvious diurnal and seasonal variations, with maximum readings at noon or afternoon, ~80×106OH/cm3 in summer and ~20×106-40×106OH/cm3 in fall. On the basis of measured data, the reaction rates related to the photochemical process of Hox (OH+HO2) were derived and characteristics of atmospheric chemical processes in the city were analyzed. The results showed that conversion rates of atmospheric OH and HO2 in the summer of Beijing City were air of the city mainly originated from the photolysis of the gaseous HNO2, and the main sink of OH were the photochemical reactions with VOCs, NO2, HCHO and CO. It was different from the clean area.

  15. VLSI circuits for high speed data conversion

    Science.gov (United States)

    Wooley, Bruce A.

    1994-05-01

    The focus of research has been the study of fundamental issues in the design and testing of data conversion interfaces for high performance VLSI signal processing and communications systems. Because of the increased speed and density that accompany the continuing scaling of VLSI technologies, digital means of processing, communicating, and storing information are rapidly displacing their analog counterparts across a broadening spectrum of applications. In such systems, the limitations on system performance generally occur at the interfaces between the digital representation of information and the analog environment in which the system is embedded. Specific results of this research include the design and implementation of low-power BiCMOS comparators and sample-and-hold amplifiers operating at clock rates as high as 200 MHz, the design and integration of a 12-bit, 5 MHz CMOS A/D converter employing a two-step architecture and a novel self-calibrating comparator, the design and integration of an optoelectronic communications receiver front-end in a GaAs-on-Si technology, the initiation of research into the use of an active silicon substrate probe card for fully testing high-performance mixed-signal circuits at the wafer level, and a preliminary study of means for correcting dynamic errors in high-performance A/D converters.

  16. VLSI Circuits for High Speed Data Conversion

    Science.gov (United States)

    1994-05-16

    Meeting, pp. 289-292, Sept. 199 1. [4] Behzad Razavi , "High-Speed, Nigh-Resolution Analog-to-Digital Conversion in VLSI Technologies, Ph.D. Thesis... Behzad Razavi and Bruce A. Wooley, "Design Techniques for High-Speed, High- Resolution Comparators," IEEE J. Solid-State Circuits, vol. 27, pp. 1916-192...Dec. 1992. [8] Behzad Razavi and Bruce A. Wooley, "A 12-Bkt 5-MSamplesoc Two-Step CMOS A/D Converter," IEEE J. Solid-State Circuits, vol. 27, pp

  17. Recent Rates of Forest Harvest and Conversion in North America

    Science.gov (United States)

    Masek, Jeffrey G.; Cohen, Warren B.; Leckie, Donald; Wulder, Michael A.; Vargas, Rodrigo; de Jong, Ben; Healey, Sean; Law, Beverly; Birdsey, Richard; Houghton, R. A.; Mildrexler, David; Goward, Samuel; Smith, W. Brad

    2011-01-01

    Incorporating ecological disturbance into biogeochemical models is critical for estimating current and future carbon stocks and fluxes. In particular, anthropogenic disturbances, such as forest conversion and wood harvest, strongly affect forest carbon dynamics within North America. This paper summarizes recent (2000.2008) rates of extraction, including both conversion and harvest, derived from national forest inventories for North America (the United States, Canada, and Mexico). During the 2000s, 6.1 million ha/yr were affected by harvest, another 1.0 million ha/yr were converted to other land uses through gross deforestation, and 0.4 million ha/yr were degraded. Thus about 1.0% of North America fs forests experienced some form of anthropogenic disturbance each year. However, due to harvest recovery, afforestation, and reforestation, the total forest area on the continent has been roughly stable during the decade. On average, about 110 m3 of roundwood volume was extracted per hectare harvested across the continent. Patterns of extraction vary among the three countries, with U.S. and Canadian activity dominated by partial and clear ]cut harvest, respectively, and activity in Mexico dominated by conversion (deforestation) for agriculture. Temporal trends in harvest and clearing may be affected by economic variables, technology, and forest policy decisions. While overall rates of extraction appear fairly stable in all three countries since the 1980s, harvest within the United States has shifted toward the southern United States and away from the Pacific Northwest.

  18. High-speed analog-to-digital conversion

    CERN Document Server

    Demler, Michael J

    1991-01-01

    This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, ""

  19. Internal conversion in highly-stripped {sup 83}Kr ions

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Ahmad, I.; Gehring, J. [and others

    1995-08-01

    The transition probability per unit time for the decay of a nuclear level via internal conversion (IC), {lambda}IC, depends on the electron environment of the nucleus. For example, inner-shell conversion in highly-charged ions can change appreciably as electrons are successively removed from the ion. Magnetic dipole (Ml) transitions are especially sensitive to this effect since the internal conversion depends strongly on the electron density at the nucleus. Hence, measurements of {lambda}IC,q, the internal conversion rate in an ion with charge state q, can provide good tests of theoretical electron wave functions if the electron configuration in the ions is known. In a previous experiment, a new method which identifies charge-changing events during passage of ion beams through a magnetic spectrometer was used to determine {lambda}IC,q for the 14.4-keV isomer in {sup 57}Fe. This contribution reports measurements made using the same technique for the 9.4-keV isomer in {sup 83}Kr. A beam of {sup 83}Kr with energy 650 MeV bombarded a Au target with a thickness 300 {mu}g cm{sup -2}. Secondary scattered beams were accepted and analyzed by an Enge magnetic spectrometer. The numbers of excited nuclei decaying during passage through the spectrometer and their internal conversion rates were deduced from the pattern of events measured in the spectrometer focal plane.

  20. Study on water cooled high conversion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of study on advanced reactors for the future, conceptual design of high conversion water cooled reactors is being studied, aiming at the contribution to nuclear fuel cycle by the LWR technology, since the utilization of LWRs will extend over a long period of time . We are studying on the reactor core concepts for BWR and PWR reactor systems. As for BWR system, three types of reactor cores are investigating for three different design goals; long operation period, high conversion ratio and high applicability for the existing BWR system. In all the cases, we have obtained a fair prospect of a large core concept with a capacity of 1,000 MWe class having negative void reactivity coefficient. This study is a part of JAERI-JAPCO (Japan Atomic Power Company) cooperative studies. Various kinds of conceptual designs will be created until the end of FY 1999. The designs will be checked and reviewed at that time, then experimental studies on the realization of the concepts will start with further design works from FY 2000. (author)

  1. The rate of handedness conversion and related factors in left-handed children.

    Science.gov (United States)

    Meng, Ling-fu

    2007-03-01

    The rate of handedness conversion was 2.7% to 11.8% in prior studies based on the total population including innately right-handed people. However, the conversion rate of innately left-handed people has not been reported. The purpose of this study was to investigate the percentage of handedness conversion in children who are innately left-handed. The data in the present study showed that 59.3% (121/211) of left-handed children had been forced to convert to right-handedness. Current handedness was also reported by 114 of the 121 informants, and the rates of right-, left-, and mixed-handedness were 56.1% (64/114), 26.3% (30/114), and 17.5% (20/114) respectively. More than half had successfully changed from left to right. Some variables, especially the educational level of the parents and the child's grade level, were related to this conversion intention. The children whose parents had less education were more likely to be forced to change handedness. Additionally, the rate of handedness conversion in younger children was lower than in older children. However, even for the children whose parents had higher education, or for the children who were younger, there was a high percentage (45.7% and 41.8% respectively) who had changed their handedness. Therefore, preventing the possible side effects for children who have undergone hand conversion should be emphasised in the future.

  2. Application of a conversion factor to estimate the adenoma detection rate from the polyp detection rate.

    LENUS (Irish Health Repository)

    Francis, Dawn L

    2011-03-01

    The adenoma detection rate (ADR) is a quality benchmark for colonoscopy. Many practices find it difficult to determine the ADR because it requires a combination of endoscopic and histologic findings. It may be possible to apply a conversion factor to estimate the ADR from the polyp detection rate (PDR).

  3. Selecting and applying cesium-137 conversion models to estimate soil erosion rates in cultivated fields.

    Science.gov (United States)

    Li, Sheng; Lobb, David A; Tiessen, Kevin H D; McConkey, Brian G

    2010-01-01

    The fallout radionuclide cesium-137 ((137)Cs) has been successfully used in soil erosion studies worldwide. However, discrepancies often exist between the erosion rates estimated using various conversion models. As a result, there is often confusion in the use of the various models and in the interpretation of the data. Therefore, the objective of this study was to test the structural and parametrical uncertainties associated with four conversion models typically used in cultivated agricultural landscapes. For the structural uncertainties, the Soil Constituent Redistribution by Erosion Model (SCREM) was developed and used to simulate the redistribution of fallout (137)Cs due to tillage and water erosion along a simple two-dimensional (horizontal and vertical) transect. The SCREM-predicted (137)Cs inventories were then imported into the conversion models to estimate the erosion rates. The structural uncertainties of the conversion models were assessed based on the comparisons between the conversion-model-estimated erosion rates and the erosion rates determined or used in the SCREM. For the parametrical uncertainties, test runs were conducted by varying the values of the parameters used in the model, and the parametrical uncertainties were assessed based on the responsive changes of the estimated erosion rates. Our results suggest that: (i) the performance/accuracy of the conversion models was largely dependent on the relative contributions of water vs. tillage erosion; and (ii) the estimated erosion rates were highly sensitive to the input values of the reference (137)Cs level, particle size correction factors and tillage depth. Guidelines were proposed to aid researchers in selecting and applying the conversion models under various situations common to agricultural landscapes.

  4. Donor conversion rates depend on the assessment tools used in the evaluation of potential organ donors

    NARCIS (Netherlands)

    Y.J. de Groot (Yorick); E.F.M. Wijdicks (Eelco); M. van der Jagt (Mathieu); J. Bakker (Jan); B. Roozenbeek (Bob); J.N.M. IJzermans (Jan); E.J.O. Kompanje (Erwin)

    2011-01-01

    textabstractPurpose: It is desirable to identify a potential organ donor (POD) as early as possible to achieve a donor conversion rate (DCR) as high as possible which is defined as the actual number of organ donors divided by the number of patients who are regarded as a potential organ donor. The DC

  5. Hospital revisit rate after a diagnosis of conversion disorder.

    Science.gov (United States)

    Merkler, Alexander E; Parikh, Neal S; Chaudhry, Simriti; Chait, Alanna; Allen, Nicole C; Navi, Babak B; Kamel, Hooman

    2016-04-01

    To estimate the hospital revisit rate of patients diagnosed with conversion disorder (CD). Using administrative data, we identified all patients discharged from California, Florida and New York emergency departments (EDs) and acute care hospitals between 2005 and 2011 with a primary discharge diagnosis of CD. Patients discharged with a primary diagnosis of seizure or transient global amnesia (TGA) served as control groups. Our primary outcome was the rate of repeat ED visits and hospital admissions after initial presentation. Poisson regression was used to compare rates between diagnosis groups while adjusting for demographic characteristics. We identified 7946 patients discharged with a primary diagnosis of CD. During a mean follow-up of 3.0 (±1.6) years, patients with CD had a median of three (IQR, 1-9) ED or inpatient revisits, compared with 0 (IQR, 0-2) in patients with TGA and 3 (IQR, 1-7) in those with seizures. Revisit rates were 18.25 (95% CI, 18.10 to 18.40) visits per 100 patients per month in those with CD, 3.90 (95% CI, 3.84 to 3.95) in those with TGA and 17.78 (95% CI, 17.75 to 17.81) in those with seizures. As compared to CD, the incidence rate ratio for repeat ED visits or hospitalisations was 0.89 (95% CI, 0.86 to 0.93) for seizure disorder and 0.32 (95% CI 0.31 to 0.34) for TGA. CD is associated with a substantial hospital revisit rate. Our findings suggest that CD is not an acute, time-limited response to stress, but rather that CD is a manifestation of a broader pattern of chronic neuropsychiatric disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Let Them Talk!: Teaching High School Spanish Conversation.

    Science.gov (United States)

    Konopacki, Steven

    1990-01-01

    Describes the use of conversational partnerships (CP) in high school Spanish classes. CPs seek to improve spoken proficiency by allowing students to rehearse conversational roles, plan strategies, and polish pronunciation. (CB)

  7. Integrated process for high conversion and high yield protein PEGylation.

    Science.gov (United States)

    Pfister, David; Morbidelli, Massimo

    2016-08-01

    Over the past decades, PEGylation has become a powerful technique to increase the in vivo circulation half-life of therapeutic proteins while maintaining their activity. The development of new therapeutic proteins is likely to require further improvement of the PEGylation methods to reach even better selectivity and yield for reduced costs. The intensification of the PEGylation process was investigated through the integration of a chromatographic step in order to increase yield and conversion for the production of mono-PEGylated protein. Lysozyme was used as a model protein to demonstrate the feasibility of such approach. In the integrated reaction/separation process, chromatography was used as fractionation technique in order to isolate and recycle the unreacted protein from the PEGylated products. This allows operating the reactor with short reaction times so as to minimize the production of multi-PEGylated proteins (i.e., conjugated to more than one polymer). That is, the reaction is stopped before the desired product (i.e., the mono-PEGylated protein) can further react, thus leading to limited conversion but high yield. The recycling of the unreacted protein was then considered to drive the protein overall conversion to completion. This approach has great potential to improve processes whose yield is limited by the further reaction of the product leading to undesirable by-products. Biotechnol. Bioeng. 2016;113: 1711-1718. © 2016 Wiley Periodicals, Inc.

  8. Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions

    Directory of Open Access Journals (Sweden)

    Chih-Chun Kung

    2015-05-01

    Full Text Available Taiwan is eager to develop renewable energy because it is vulnerable to energy price distortion and ocean level rise. Previous studies show bioenergy technologies can be applied mutually, but pay little attention on feedstocks to energy conversion rate, which has potential influences on policy making in renewable energy and environment. This study employs a price endogenous mathematical programming model to simultaneously simulate the market operations under various feedstocks to energy conversion rates, energy prices, and greenhouse gas (GHG prices. The result shows pyrolysis-based electricity can reach up to 2.75 billion kWh annually, but it will be driven out at low conversion rate and high GHG price. Pyrolysis plus biochar application will be the optimal option in terms of carbon sequestration. Market valuation on potential threats of extreme weather could have substantial influences on ethanol and renewable electricity generation. To achieve aimed GHG emission reduction and/or bioenergy production, government intervention may be involved to align the market operation with Taiwan’s environmental policy.

  9. High rate drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C. (Fermilab, Batavia, IL 60510 (United States)); Berisso, M.C. (Fermilab, Batavia, IL 60510 (United States)); Gutierrez, G. (Fermilab, Batavia, IL 60510 (United States)); Holmes, S.D. (Fermilab, Batavia, IL 60510 (United States)); Wehmann, A. (Fermilab, Batavia, IL 60510 (United States)); Avilez, C. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Felix, J. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Moreno, G. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Romero, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Sosa, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Forbush, M. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Huson, F.R. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Wightman, J.A. (Department of Physi

    1994-06-01

    Fermilab experiment 690, a study of target dissociation reactions pp[yields]pX using an 800 GeV/c proton beam and a liquid hydrogen target, collected data in late 1991. The incident beam and 600-800 GeV/c scattered protons were measured using a system of six 6 in.x4 in. and two 15 in.x8 in. pressurized drift chambers spaced over 260 m. These chambers provided precise measurements at rates above 10 MHz (2 MHz per cm of sense wire). The measurement resolution of the smaller chambers was 90 [mu]m, and the resolution of the larger chambers was 125 [mu]m. Construction details and performance results, including radiation damage, are presented. ((orig.))

  10. Temperature responses of substrate carbon conversion efficiencies and growth rates of plant tissues.

    Science.gov (United States)

    Hansen, Lee D; Thomas, Nathan R; Arnholdt-Schmitt, Birgit

    2009-12-01

    Growth rates of plant tissues depend on both the respiration rate and the efficiency with which carbon is incorporated into new structural biomass. Calorespirometric measurement of respiratory heat and CO2 rates, from which both efficiency and growth rate can be calculated, is a well established method for determining the effects of rapid temperature changes on the respiratory and growth properties of plant tissues. The effect of the alternative oxidase/cytochrome oxidase activity ratio on efficiency is calculated from first principles. Data on the temperature dependence of the substrate carbon conversion efficiency are tabulated. These data show that epsilon is maximum and approximately constant through the optimum growth temperature range and decreases rapidly as temperatures approach temperature limits to growth. The width of the maximum and the slopes of decreasing epsilon at high and low temperatures vary greatly with species, cultivars and accessions.

  11. Study of frame-rate up conversion based on H.264

    Institute of Scientific and Technical Information of China (English)

    GAN Zong-liang; ZHU Xiu-chang

    2007-01-01

    In this study, a low complexity frame-rate up conversion method using compressed domain information for H.264 decoder is proposed. In the proposed scheme, the motion vectors (MVs) are estimated using constant acceleration motion model, and the MVs regarded as no credibility are corrected, and the interpolation method is applied on the basis of the macroblock (MB) coded types.Applied to the H.264 decoder, the proposed method provides high quality interpolation frames and an obvious decrease of the block artifacts.

  12. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CONVERSE COUNTY, WYOMING, USA.

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  13. High Temperature Magnetics for Power Conversion

    Science.gov (United States)

    2005-06-01

    complex zig zag cutout shown earlier. On the secondary, 3 layers at a time were folded. Folds alternated in direction to even out overall foil...ingredients were mixed in a high-shear blender, calcined at 900°C in air, and ground in a stirred ball mill for 2 hours to an average particle size of...approximately 1 micron. Various organic binders and dispersants were added at the milling step to enhance particle size reduction and improve pressing

  14. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... to be applied, especially at low power levels where gating loss becomes a significant percentage of the total loss budget. Various resonant gate drive methods have been proposed to address this design challenge, with varying size, cost, and complexity. This dissertation presents a self-oscillating resonant gate...

  15. Low to high temperature energy conversion system

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  16. Highly sensitive direct conversion ultrasound interferometer

    Science.gov (United States)

    Svitelskiy, Oleksiy; Grossmann, John; Suslov, Alexey

    2015-03-01

    Being invented more than fifty years ago, the ultrasonic pulse-echo technique has proven itself as a valuable and indispensable non-destructive tool to explore elastic properties of materials in engineering and scientific tasks. We propose a new design for the instrument based on mass-produced integral microchips. In our design the radiofrequency echo-pulse signal is processed by AD8302 RF gain and phase detector (www.analog.com).Its phase output is linearly proportional to the phase difference between the exciting and response signals. The gain output is proportional to the log of the ratio of amplitudes of the received to the exciting signals. To exclude the non-linear fragments and to enable exploring large phase changes, we employ parallel connection of two detectors, fed by in-phase and quadrature signals respectively. The instrument allowed us exploring phase transitions with precision of ΔV / V ~10-7 (V is the ultrasound speed). The high sensitivity of the logarithmic amplifiers embedded into AD8302 requires good grounding and screening of the receiving circuitry.

  17. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  18. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  19. Studies on Catalyst Deactivation Rate and Byproducts Yield during Conversion of Methanol to Olefins

    Institute of Scientific and Technical Information of China (English)

    Yan Dengchao; Munib Shahda; Weng Huixin

    2006-01-01

    The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A temperature of 425 ℃ appeared to be the optimum one suitable for conversion of methanol to olefins. Since the presence of water could increase the olefins selectivity, the methanol conversion reactions with mixed water/methanol feed were also studied. The effect of weight hourly space velocity on conversion of methanol was also studied. The results indicated that the olefins selectivity was significantly increased as WHSV increased till approximately 7.69 h-1 then it began to level off. Different factors affecting the catalyst deactivation rate was studied, showing that the catalyst deactivation time was dependent on reaction conditions, and temperatures higher and lower than the optimal one made the catalyst deactivation faster.Adding water to methanol could slow down the catalyst deactivation rate.

  20. Conversing Rate from Morphine to Continuous Infusion of Fentanyl in Patients Suffering Cancer Pain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the proper conversing rate from morphine to continuous infusion of fentanyl in patients suffering cancer pain. Methods: A retrospective study was carried on in 20 patients with cancer pain in Shizuoka Cancer Center from Sep. 2002 to Nov. 2003. Pain intensity, adverse reactions, and satisfaction index of patients were evaluated. Results: The pain intensity was stable in 17 patients indicating good pain-control within 1 week after conversion and unstable in 3 patients after conversion suggesting poor pain-control. Fentanyl injection could alleviate side effects and increase the satisfaction index of patients. Conclusion: The equipotent ratio for ratio less than 72:1 was proposed to get stable pain-relieving effect. But the equipotent ratio for conversion of morphine to continuous infusion of fentanyl could not be determined. We must consider the morphine dose before the confirmation of the conversing rate.

  1. Body mass index, conversion rate and complications among patients undergoing robotic surgery for endometrial carcinoma.

    Science.gov (United States)

    Cunningham, Mary J; Dorzin, Esther; Nguyen, Loan; Anderson, Elizabeth; Bunn, W Douglas

    2015-12-01

    A retrospective cohort study was performed to evaluate the relationship of BMI to conversion rate in patients undergoing robotic surgery for endometrial cancer. Secondary outcomes were operative times, number of lymph nodes retrieved, and complications. Women with endometrial cancer scheduled for robotic surgery from September 2008 to September 2012 were included. Women were divided into three groups based on BMI, and conversion rates to laparotomy were compared. Descriptive and comparative analyses were performed among non-obese, obese, and morbidly obese women who completed robotic surgery. 298 women were scheduled for robotic surgery for endometrial carcinoma: 87 non-obese (BMI 19-29, μ 25.23), 110 obese (BMI 30-39, μ 34.21), and 101 morbidly obese (BMI 40-71, μ 47.38). Conversion to laparotomy occurred in 18 patients (6%), with no difference in conversion rate between BMI categories. Direct comparison between converted and completed robotic patients showed no significant differences in preoperative characteristics, except that patients who required conversion had a higher number of previous abdominal surgeries. Patients completing robotic surgery underwent node dissections at similar rates in all three BMI categories. Operating room time, but not surgical time, was increased in morbidly obese patients. There were no significant differences in complications, performance of lymphadenectomy, or lymph node yields between BMI categories. Increase in BMI was not associated with an increase in rate of conversion to laparotomy or complication rate in patients undergoing robotic surgery for endometrial carcinoma. Node dissections were pathologically equivalent between BMI categories.

  2. Enhancing Heralding Efficiency and Biphoton Rate in Type-I Spontaneous Parametric Down-Conversion

    CERN Document Server

    Guilbert, Hannah E

    2014-01-01

    The nonlinear optical process of spontaneous parametric down-conversion (SPDC) is widely studied for applications in quantum information science due to its ability to produce two photons that can be entangled in many degrees of freedom. For applications in quantum communication, two metrics of this process are particularly important: heralding efficiency and total joint rate. Here, we derive expressions for both quantities for a variety of different beam geometries and frequencies. We pay specific attention to the spectrum of both biphotons and individual photons. We reveal the underlying mechanisms responsible for the spectral shape and show they differ for different geometries and frequencies. We then use these spectra to calculate heralding efficiency and joint count rate and examine how each of these metrics changes with different geometries, frequencies, and spectral filtering and beam parameters. Interestingly, we find very high heralding efficiencies are achievable for collinear geometries, while nonco...

  3. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY...) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 3 Table 3 to Part 679—Product...

  4. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure

    NARCIS (Netherlands)

    Lindeboom, R.E.F.; Ferrer, I.; Weijma, J.; Lier, van J.B.

    2013-01-01

    This work studied the anaerobic conversion of neutralized volatile fatty acids (VFA) into biogas under Autogenerative High Pressure Digestion (AHPD) conditions. The effects of the operating conditions on the biogas quality, and the substrate utilisation rates were evaluated using 3 AHPD reactors (0.

  5. Advanced materials for high-temperature thermoelectric energy conversion

    Science.gov (United States)

    Vining, Cronin B.; Vandersande, Jan W.; Wood, Charles

    1992-01-01

    A number of refractory semiconductors are under study at the Jet Propulsion Laboratory for application in thermal to electric energy conversion for space power. The main thrust of the program is to improve or develop materials of high figure of merit and, therefore, high conversion efficiencies over a broad temperature range. Materials currently under investigation are represented by silicon-germanium alloys, lanthanum telluride, and boron carbide. The thermoelectric properties of each of these materials, and prospects for their further improvements, are discussed. Continued progress in thermoelectric materials technology can be expected to yield reliable space power systems with double to triple the efficiency of current state of the art systems.

  6. Microresonator Kerr frequency combs with high conversion efficiency

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve ~30% conversion efficiency (~200 mW on-chip comb power excluding the pump) in the fiber telecommunication band with broadband mode-locked dark-pulse combs. We present a general analysis on the efficiency which is applicable to any phase-locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time-domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  7. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Stubkjær, Kristian

    1997-01-01

    This work assesses the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination. Operation and design guidelines for conversion speeds above 10 Gb/s are described...... and the various tradeoffs are discussed. Experiments at bit rates up to 40 Gb/s are presented for both cross-gain modulation (XGM) and cross-phase modulation (XPM) in SOAs demonstrating the high-speed capability of these techniques...

  8. Strong converse rates for classical communication over thermal and additive noise bosonic channels

    Science.gov (United States)

    Roy Bardhan, Bhaskar; Wilde, Mark M.

    2014-02-01

    We prove that several known upper bounds on the classical capacity of thermal and additive noise bosonic channels are actually strong converse rates. Our results strengthen the interpretation of these upper bounds, in the sense that we now know that the probability of correctly decoding a classical message rapidly converges to 0 in the limit of many channel uses if the communication rate exceeds these upper bounds. In order for these theorems to hold, we need to impose a maximum photon number constraint on the states input to the channel (the strong converse property need not hold if there is only a mean photon number constraint). Our first theorem demonstrates that Koenig and Smith's upper bound on the classical capacity of the thermal bosonic channel is a strong converse rate, and we prove this result by utilizing the structural decomposition of a thermal channel into a pure-loss channel followed by an amplifier channel. Our second theorem demonstrates that Giovannetti et al.'s upper bound on the classical capacity of a thermal bosonic channel corresponds to a strong converse rate, and we prove this result by relating the success probability to the rate, the effective dimension of the output space, and the purity of the channel as measured by the Rényi collision entropy. Finally, we use similar techniques to prove that similar previously known upper bounds on the classical capacity of an additive noise bosonic channel correspond to strong converse rates.

  9. High resolution A/D conversion based on piecewise conversion at lower resolution

    Science.gov (United States)

    Terwilliger, Steve

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  10. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  11. The method of estimating bisulfite conversion rate in DNA methylation analysis.

    Science.gov (United States)

    Yangyang, Liu; Hengmi, Cui

    2015-09-01

    To establish an effective method to estimate the conversion rate of bisulfite-treated genomic DNA, TaqMan qPCR assay was performed using probes and primers that are specific for bisulfite-converted or -unconverted DNA standard samples separately. Then two linear standard curves were generated by plotting Ct values against logarithm of absolute DNA amount with serial dilutions of the bisulfite-converted or unconverted DNA samples. Based on two standard curves, the unknown bisulfite-treated genomic DNA sample was analyzed using the same TaqMan probes and the bisulfite conversion rate was precisely estimated. This method was further verified to be reliable using known mixed bisulfite-converted and -unconverted DNA templates as well as DNA samples treated with different bisulfite kits. These results showed that this method can effectively estimate bisulfite conversion rate of genomic DNA and thus provides a reliable and quick method for accurate analyses of DNA methylation.

  12. ON COPOLYMERIZATION KINETICS OF N-VINYL PYRROLIDONE METHYL METHACRYLATE AT HIGH CONVERSION

    Institute of Scientific and Technical Information of China (English)

    WEN Jianyie; Sun Yishi

    1988-01-01

    In this work, Fourier transform infrared spectroscopy was used to study the copolymerization kinetics of N-vinyl pyrrolidone-methyl methacrylate (VPMMA) at high conversion. Through computer simulation,copolymerization rate equation based on the free volume theory, diffusion theory and modified MH model was established. The activation energy of copolymerization was also estimated.

  13. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper...

  14. Speech rate effects on the processing of conversational speech across the adult life span.

    Science.gov (United States)

    Koch, Xaver; Janse, Esther

    2016-04-01

    This study investigates the effect of speech rate on spoken word recognition across the adult life span. Contrary to previous studies, conversational materials with a natural variation in speech rate were used rather than lab-recorded stimuli that are subsequently artificially time-compressed. It was investigated whether older adults' speech recognition is more adversely affected by increased speech rate compared to younger and middle-aged adults, and which individual listener characteristics (e.g., hearing, fluid cognitive processing ability) predict the size of the speech rate effect on recognition performance. In an eye-tracking experiment, participants indicated with a mouse-click which visually presented words they recognized in a conversational fragment. Click response times, gaze, and pupil size data were analyzed. As expected, click response times and gaze behavior were affected by speech rate, indicating that word recognition is more difficult if speech rate is faster. Contrary to earlier findings, increased speech rate affected the age groups to the same extent. Fluid cognitive processing ability predicted general recognition performance, but did not modulate the speech rate effect. These findings emphasize that earlier results of age by speech rate interactions mainly obtained with artificially speeded materials may not generalize to speech rate variation as encountered in conversational speech.

  15. Rate of Conversion from Prodromal Alzheimer's Disease to Alzheimer's Dementia: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Alex Ward

    2013-09-01

    Full Text Available Background: The purpose of this study was to summarize published estimates for conversion from mild cognitive impairment or amnestic mild cognitive impairment to Alzheimer's dementia. We carried out a systematic review of English language publications to identify cohort studies published since January 2006 that reported the risk or rate of conversion. Summary: Thirty-two cohort studies were identified, of which 14 reported annualized conversion rates (ACRs. Conversions over 1 year ranged from 10.2 to 33.6% (5 studies, median: 19.0%, and over 2 years from 9.8 to 36.3% (7 studies, median: 18.6%. ACRs ranged from 7.5 to 16.5% (7 studies, median: 11.0% per person-year for studies recruiting from clinics, and from 5.4 to 11.5% (7 studies, median: 7.1% for community samples. Key Message: Extensive variation was observed in conversion rates due to the population sampled, diagnostic criteria, and duration, and because many studies did not account for loss to follow-up.

  16. Hemiarthroplasty for Displaced Femoral Neck Fractures in the Elderly Has a Low Conversion Rate.

    Science.gov (United States)

    Grosso, Matthew J; Danoff, Jonathan R; Murtaugh, Taylor S; Trofa, David P; Sawires, Andrew N; Macaulay, William B

    2017-01-01

    Hemiarthroplasty (HA) has been a mainstay treatment for displaced femoral neck fractures for many years. The purpose of this study was to report the conversion rate of HA to total hip arthroplasty (THA) for displaced femoral neck fractures and compare outcomes between implant constructs (bipolar vs unipolar), fixation options (cemented vs cementless stems), and age groups (fractures at our institution between 1999 and 2013 with a minimum of 2-year follow-up. The overall component revision rate, including conversion to THA, revision HA, revision with open reduction internal fixation, and Girdlestone procedure, was 5.6% (39/686). Seventeen patients (2.5%) were converted from HA to THA at an average of 1.9 years after index procedure. A significantly lower conversion rate of 1.4% (7/499 patients) was found in the older patient cohort (≥75 years old) compared to 5.3% (11/187) in the younger cohort. The most common causes for conversion surgery to THA were acetabular wear (5 patients), aseptic loosening (4 patients), and periprosthetic fracture (3 patients). There was a significantly lower rate of periprosthetic fracture (0.4% vs 2.5%, P value .025) in the cemented implant group compared to the cementless group. We observed a higher rate of dislocations in the bipolar vs unipolar group (3.8% vs 1%, P value .02) and no other significant differences between these groups. We observed a low reoperation rate for this cohort of patients, relatively higher conversion rates for the younger population, fewer periprosthetic fractures with the use of cemented stems, and no advantage of bipolar over unipolar prostheses. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A PROSPECTIVE STUDY OF SPUTUM CONVERSION RATE AND CURE RATE IN SMEAR POSITIVE RETREATMENT PATIENTS UNDER RNTCP IN RURAL POPULATION

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2015-06-01

    Full Text Available BACKGROUND AND OBJECTIVES : Directly Observed Treatment , Short course (DOTS is the name of the World Health Organization (WHO recommended TB (Tuberculosis control strategy. It is vital for the success of the TB control program. This study has been taken up to assess the compliance , bacteriological sputum conversion and cure rates in retreatment smear positive pulmonary tuberculosis patients. M ETHODS : A prospective study which included one hundred and twenty four smear positive retreatment pulmonary tuberculosis patients. Baseline data from patients was collected. Subsequent follow up was done at 3rd , 4th , 5 th , 6th , 8th and 9th month. On follow up repeat sputum sample was taken and patients were assessed for sputum conversion and cure rate. RESULTS : The most affected group was 45 - 54(29.8% years , followed by 35 - 44yrs (27.4%.The overall sputum conversion rate at the end of 3rd /4th month was 55.6 %. The cure rate for patients with sputum 3+ , 2+ , 1+ were 33.96% , 22.64% and 37.74% respectively. There is no association between outcome and sputum grading (p=0.607. The overall cure rate was 42.7% and the default rate was 33.04%. The failure rate was 12 .09% and the death rate was 11.29%. The commonest cause for default was illiteracy , smoking and alcohol intake. CONCLUSION : Patient education and counseling regarding the importance of giving up addictions , providing drugs to the doorsteps , involving famil y members in the treatment and treating failure group of patients with appropriate drugs based on DST will improve cure rates and reduce default rates.

  18. High Data Rate Quantum Cryptography

    Science.gov (United States)

    Kwiat, Paul; Christensen, Bradley; McCusker, Kevin; Kumor, Daniel; Gauthier, Daniel

    2015-05-01

    While quantum key distribution (QKD) systems are now commercially available, the data rate is a limiting factor for some desired applications (e.g., secure video transmission). Most QKD systems receive at most a single random bit per detection event, causing the data rate to be limited by the saturation of the single-photon detectors. Recent experiments have begun to explore using larger degree of freedoms, i.e., temporal or spatial qubits, to optimize the data rate. Here, we continue this exploration using entanglement in multiple degrees of freedom. That is, we use simultaneous temporal and polarization entanglement to reach up to 8.3 bits of randomness per coincident detection. Due to current technology, we are unable to fully secure the temporal degree of freedom against all possible future attacks; however, by assuming a technologically-limited eavesdropper, we are able to obtain 23.4 MB/s secure key rate across an optical table, after error reconciliation and privacy amplification. In this talk, we will describe our high-rate QKD experiment, with a short discussion on our work towards extending this system to ship-to-ship and ship-to-shore communication, aiming to secure the temporal degree of freedom and to implement a 30-km free-space link over a marine environment.

  19. Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates.

    Science.gov (United States)

    Palamara, Pier Francesco; Francioli, Laurent C; Wilton, Peter R; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K; Sankararaman, Sriram; Sunyaev, Shamil R; de Bakker, Paul I W; Wakeley, John; Pe'er, Itsik; Price, Alkes L

    2015-12-01

    The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10(-8) per base per generation and a rate of 1.26 × 10(-9) for conversion as 5.99 × 10(-6). We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction.

  20. Conversational Rate of a Non-Vocal Person with Motor Neurone Disease Using the 'TALK' System.

    Science.gov (United States)

    Todman, J.; Lewins, E.

    1996-01-01

    This study evaluated the use of TALK, a computer-based augmentative and alternative communication (AAC) system, in the social communications of a nonvocal woman with motor neurone disease. She was able to achieve an average conversational rate of 42 words per minute (wpm) using TALK, compared with 2 to 10 wpm with other AAC systems using…

  1. Rate-distortion optimized frame dropping and scheduling for multi-user conversational and streaming video

    Institute of Scientific and Technical Information of China (English)

    TU Wei; CHAKARESKI Jacob; STEINBACH Eckehard

    2006-01-01

    We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversational and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the conversational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling approach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.

  2. Low Threshold and High Conversion Efficiency Nanosecond Mid-Infrared KTA OPO

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; LI Jian-Song; CUI Hai-Xia; XU Deng-Gang; WANG Yu-Ye; ZHOU Rui; WANG Jing-Li; WANG Peng; YAO Jian-Quan

    2009-01-01

    Based on a Type Ⅱ non-critically phase-matched KTA crystal,a low-threshold and high conversion efficiency midinfrared optical parametric oscillator(OPO)pumped by a diode-end-pumped Nd:YVO_4 laser is demonstrated.The OPO threshold is only 0.825 W.The maximum output power of 435mW at 3.47μm is achieved with the repetition rate of 30kHz,corresponding to an optical-to-optical conversion efficiency of 4.4%.The photon conversion efficiency is as high as about 64%.The pulse width is 3.5 ns with a peak power of 4 kW for the maximum output power.

  3. Ultra-high-speed wavelength conversion in a silicon photonic chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    We have successfully demonstrated all-optical wavelength conversion of a 640-Gbit/s line-rate return-to-zero differential phase-shift keying (RZ-DPSK) signal based on low-power four wave mixing (FWM) in a silicon photonic chip with a switching energy of only ~110 fJ/bit. The waveguide dispersion...... of the silicon nanowire is nano-engineered to optimize phase matching for FWM and the switching power used for the signal processing is low enough to reduce nonlinear absorption from twophoton- absorption (TPA). These results demonstrate that high-speed wavelength conversion is achievable in silicon chips...

  4. High Speed Signal Wavelength Conversion Using Stimulated Raman Effect in Ultrasmall Silicon-on-Insulator Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    WU Jian-Wei; LUO Feng-Guang; GALLEP Cristiano de Mello

    2008-01-01

    We propose the high speed signal wavelength conversion based on stimulated Raman effect on silicon waveguides.Simulation results of non-return-to-zero(NRZ)pseudorandom bit sequence(27-1 code)at 500-Gb/s rate of conversion in an ultrasmall silicon-on-insulator(SOI)optical wavegnide are presented by co-propagating pump optical field.The most attractive issue is that the inverted converted signal can be obtained at the same wavelength as that of primary signal.In addition,the conversion performances,including extinction ratio(ER)and average peak power of conversion signal,depend strongly on the launching pump intensity.

  5. Rapid assessment of malaria transmission using age-specific sero-conversion rates.

    Directory of Open Access Journals (Sweden)

    Laveta Stewart

    Full Text Available BACKGROUND: Malaria transmission intensity is a crucial determinant of malarial disease burden and its measurement can help to define health priorities. Rapid, local estimates of transmission are required to focus resources better but current entomological and parasitological methods for estimating transmission intensity are limited in this respect. An alternative is determination of antimalarial antibody age-specific sero-prevalence to estimate sero-conversion rates (SCR, which have been shown to correlate with transmission intensity. This study evaluated SCR generated from samples collected from health facility attendees as a tool for a rapid assessment of malaria transmission intensity. METHODOLOGY AND PRINCIPAL FINDINGS: The study was conducted in north east Tanzania. Antibodies to Plasmodium falciparum merozoite antigens MSP-1(19 and AMA-1 were measured by indirect ELISA. Age-specific antibody prevalence was analysed using a catalytic conversion model based on maximum likelihood to generate SCR. A pilot study, conducted near Moshi, found SCRs for AMA-1 were highly comparable between samples collected from individuals in a conventional cross-sectional survey and those collected from attendees at a local health facility. For the main study, 3885 individuals attending village health facilities in Korogwe and Same districts were recruited. Both malaria parasite prevalence and sero-positivity were higher in Korogwe than in Same. MSP-1(19 and AMA-1 SCR rates for Korogwe villages ranged from 0.03 to 0.06 and 0.07 to 0.21 respectively. In Same district there was evidence of a recent reduction in transmission, with SCR among those born since 1998 [MSP-1(19 0.002 to 0.008 and AMA-1 0.005 to 0.014 ] being 5 to 10 fold lower than among individuals born prior to 1998 [MSP-1(19 0.02 to 0.04 and AMA-1 0.04 to 0.13]. Current health facility specific estimates of SCR showed good correlations with malaria incidence rates in infants in a contemporaneous

  6. High performance dc-dc conversion with voltage multipliers

    Science.gov (United States)

    Harrigill, W. T.; Myers, I. T.

    1974-01-01

    The voltage multipliers using capacitors and diodes first developed by Cockcroft and Walton in 1932 were reexamined in terms of state of the art fast switching transistors and diodes, and high energy density capacitors. Because of component improvements, the voltage multiplier, used without a transformer, now appears superior in weight to systems now in use for dc-dc conversion. An experimental 100-watt 1000-volt dc-dc converter operating at 100 kHz was built, with a component weight of about 1 kg/kW. Calculated and measured values of output voltage and efficiency agreed within experimental error.

  7. A conversion formula for comparing pulse oximeter desaturation rates obtained with different averaging times.

    Directory of Open Access Journals (Sweden)

    Jan Vagedes

    Full Text Available OBJECTIVE: The number of desaturations determined in recordings of pulse oximeter saturation (SpO2 primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. METHODS: Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2-4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D. The whole procedure was carried out for 7 different minimal desaturation durations (≥ 1, ≥ 5, ≥ 10, ≥ 15, ≥ 20, ≥ 25, ≥ 30 s below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. RESULTS: Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1(c, where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. CONCLUSION: This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations.

  8. The Unexpected Influence of Precursor Conversion Rate in the Synthesis of III-V Quantum Dots.

    Science.gov (United States)

    Franke, Daniel; Harris, Daniel K; Xie, Lisi; Jensen, Klavs F; Bawendi, Moungi G

    2015-11-23

    Control of quantum dot (QD) precursor chemistry has been expected to help improve the size control and uniformity of III-V QDs such as indium phosphide and indium arsenide. Indeed, experimental results for other QD systems are consistent with the theoretical prediction that the rate of precursor conversion is an important factor controlling QD size and size distribution. We synthesized and characterized the reactivity of a variety of group-V precursors in order to determine if precursor chemistry could be used to improve the quality of III-V QDs. Despite slowing down precursor conversion rate by multiple orders of magnitude, the less reactive precursors do not yield the expected increase in size and improvement in size distribution. This result disproves the widely accepted explanation for the shortcoming of current III-V QD syntheses and points to the need for a new generalizable theoretical picture for the mechanism of QD formation and growth.

  9. Influence of curing rate on softening in ethanol, degree of conversion, and wear of resin composite

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Asmussen, Erik

    2011-01-01

    PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus......, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared...... spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene's test, one and three-way ANOVA, and Tukey HSD test (alpha = 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites...

  10. Monitoring forest/non-forest land use conversion rates with annual inventory data

    Science.gov (United States)

    Francis A. Roesch; Paul C. Van Deusen

    2012-01-01

    The transitioning of land from forest to other uses is of increasing interest as urban areas expand and the world’s population continues to grow. Also of interest, but less recognized, is the transitioning of land from other uses into forest. In this paper, we show how rates of conversion from forest to non-forest and non-forest to forest can be estimated in the US...

  11. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2017-05-15

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Kinetic modeling of ethane pyrolysis at high conversion.

    Science.gov (United States)

    Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M

    2011-09-29

    The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential

  13. Dose-rate conversion factors for external exposure to photons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1981-08-01

    Dose-rate conversion factors for external exposure to photons and electrons have been calculated for approximately 500 radionuclides of potential importance in environmental radiological assessments. The dose-rate factors were obtained using the DOSFACTER computer code. The results given in this report incorporate calculation of electron dose-rate factors for radiosensitive tissues of the skin, improved estimates of organ dose-rate factors for photons, based on organ doses for monoenergetic sources at the body surface of an exposed individual, and the spectra of scattered photons in air from monoenergetic sources in an infinite, uniformly contaminated atmospheric cloud, calculation of dose-rate factors for other radionuclides in addition to those of interest in the nuclear fuel cycle, and incorporation of updated radioactive decay data for all radionuclides. Dose-rate factors are calculated for three exposure modes - immersion in contaminated air, immersion in contaminated water, and exposure at a height of 1 m above a contaminated ground surface. The report presents the equations used to calculate the external dose-rate factors for photons and electrons, documentation of the revised DOSFACTER computer code, and a complete tabulation of the calculated dose-rate factors. 30 refs., 12 figs.

  14. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    Energy Technology Data Exchange (ETDEWEB)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  15. Low-temperature conversion of high-moisture biomass: Continuous reactor system results

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J. Jr.; Butner, R.S.; Baker, E.G.; Neuenschwander, G.G.

    1989-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process for converting high-moisture biomass feedstocks and other wet organic substances to useful gaseous fuels. This system, in which thermocatalytic conversion takes place in an aqueous environment, was designed to overcome the problems usually encountered with high-water-content feedstocks. The process uses a reduced nickel catalyst at temperatures as low as 350{degree}C and pressures ranging from 2000 to 4000 psig -- conditions favoring the formation of gas consisting mostly of methane. The results of numerous batch tests showed that the system could convert feedstocks not readily converted by conventional methods. Fifteen tests were conducted in a continuous reactor system to further evaluate the effectiveness of the process for high-moisture biomass gasification and to obtain conversion rate data needed for process scaleup. During the tests, the complex gasification reactions were evaluated by several analytical methods. The results of these tests show that the heating value of the gas ranged from 400 to 500 Btu/scf, and if the carbon dioxide is removed, the product gas is pipeline quality. Conversion of the feedstocks was high. Engineering analysis indicates that, based on these results, a tubular reactor can be designed that should convert greater than 99% of the carbon fed as high-moisture biomass to a gaseous product in a reaction time of less than 11 min.

  16. Leadership conversations challenging high potential managers to become great leaders

    CERN Document Server

    Berson, Alan S

    2012-01-01

    Conversation techniques and tools that can help strong managers become great leaders Often the very same skills and traits that enable rising stars to achieve success ""tenacity, aggressiveness, self-confidence"" become liabilities when promoted into a leadership track. While managers'' conversations are generally transactional and centered on the task at hand, leaders must focus on people, asking great questions and aligning them with the vision for the future. Leadership mindsets and skills can be developed, and Leadership Conversations provides practical guidance for connecting with others

  17. Small protease sensitive oligomers of PrPSc in distinct human prions determine conversion rate of PrP(C.

    Directory of Open Access Journals (Sweden)

    Chae Kim

    Full Text Available The mammalian prions replicate by converting cellular prion protein (PrP(C into pathogenic conformational isoform (PrP(Sc. Variations in prions, which cause different disease phenotypes, are referred to as strains. The mechanism of high-fidelity replication of prion strains in the absence of nucleic acid remains unsolved. We investigated the impact of different conformational characteristics of PrP(Sc on conversion of PrP(C in vitro using PrP(Sc seeds from the most frequent human prion disease worldwide, the Creutzfeldt-Jakob disease (sCJD. The conversion potency of a broad spectrum of distinct sCJD prions was governed by the level, conformation, and stability of small oligomers of the protease-sensitive (s PrP(Sc. The smallest most potent prions present in sCJD brains were composed only of∼20 monomers of PrP(Sc. The tight correlation between conversion potency of small oligomers of human sPrP(Sc observed in vitro and duration of the disease suggests that sPrP(Sc conformers are an important determinant of prion strain characteristics that control the progression rate of the disease.

  18. High-order harmonic conversion efficiency in helium

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J.K.

    1992-10-23

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L{sub coh}={pi}b/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N{sub q}=[({pi}{sup z}n{sup z}b{sup 3}{tau}{sub q}{vert_bar}d{sub q}{vert_bar}{sup z})/4h]{l_brace}(p/q)(2l/b){sup z}{r_brace}. N{sub q} - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; {tau}{sub q} - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature).

  19. High-order harmonic conversion efficiency in helium

    Energy Technology Data Exchange (ETDEWEB)

    Crane, J.K.

    1992-10-23

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L[sub coh]=[pi]b/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N[sub q]=[([pi][sup z]n[sup z]b[sup 3][tau][sub q][vert bar]d[sub q][vert bar][sup z])/4h][l brace](p/q)(2l/b)[sup z][r brace]. N[sub q] - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; [tau][sub q] - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature).

  20. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  1. Effect of concurrent walking and interlocutor distance on conversational speech intensity and rate in Parkinson's disease.

    Science.gov (United States)

    McCaig, Cassandra M; Adams, Scott G; Dykstra, Allyson D; Jog, Mandar

    2016-01-01

    Previous studies have demonstrated a negative effect of concurrent walking and talking on gait in Parkinson's disease (PD) but there is limited information about the effect of concurrent walking on speech production. The present study examined the effect of sitting, standing, and three concurrent walking tasks (slow, normal, fast) on conversational speech intensity and speech rate in fifteen individuals with hypophonia related to idiopathic Parkinson's disease (PD) and fourteen age-equivalent controls. Interlocuter (talker-to-talker) distance effects and walking speed were also examined. Concurrent walking was found to produce a significant increase in speech intensity, relative to standing and sitting, in both the control and PD groups. Faster walking produced significantly greater speech intensity than slower walking. Concurrent walking had no effect on speech rate. Concurrent walking and talking produced significant reductions in walking speed in both the control and PD groups. In general, the results of the present study indicate that concurrent walking tasks and the speed of concurrent walking can have a significant positive effect on conversational speech intensity. These positive, "energizing" effects need to be given consideration in future attempts to develop a comprehensive model of speech intensity regulation and they may have important implications for the development of new evaluation and treatment procedures for individuals with hypophonia related to PD.

  2. Consensus Through Conversation How to Achieve High-Commitment Decisions

    CERN Document Server

    Dressler, Larry

    2006-01-01

    Facilitation expert Larry Dressler's Consensus Through Conversation is a guide for the effective facilitation and practice of one of business's most popular - but most widely misunderstood - decision-making models: consensus.

  3. Autism's 'Worryingly' High Suicide Rates Spur Conference

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_165946.html Autism's 'Worryingly' High Suicide Rates Spur Conference Signs of ... News) -- High rates of suicide among people with autism are drawing specialists to a conference this week ...

  4. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion.

    Science.gov (United States)

    Chen, Lin; Liu, Tianzhong; Zhang, Wei; Chen, Xiaolin; Wang, Junfeng

    2012-05-01

    The effect of storage temperature and time on lipid composition of Scenedesmus sp. was studied. When stored at 4°C or higher, the free fatty acid content in the wet biomass increased from a trace to 62.0% by day 4. Using two-step catalytic conversion, algae oil with a high free fatty acid content was converted to biodiesel by pre-esterification and transesterification. The conversion rate of triacylglycerols reached 100% under the methanol to oil molar ratio of 12:1 during catalysis with 2% potassium hydroxide at 65°C for 30 min. This process was scaled up to produce biodiesel from Scenedesmus sp. and Nannochloropsis sp. oil. The crude biodiesel was purified using bleaching earth. Except for moisture content, the biodiesel conformed to Chinese National Standards.

  5. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout

    DEFF Research Database (Denmark)

    Henryon, Mark; Jokumsen, Alfred; Berg, Peer

    2002-01-01

    The objective of this study was to test that additive genetic (co)variation for survival, growth rate, feed conversion efficiency, and resistance to viral haemorrhagic septicaemia (VHS) exists within a farmed population of rainbow trout. Thirty sires and 30 dams were mated by a partly factorial...... the predicted breeding values for VHS resistance and the predicted breeding values for the body weights, body length, and feed conversion efficiencies. These results demonstrate that additive genetic (co)variation for growth rate, feed conversion efficiency, and VHS resistance does exist within the farmed...

  6. Rate and predictors of conversion from unipolar to bipolar disorder: A systematic review and meta-analysis.

    Science.gov (United States)

    Kessing, Lars Vedel; Willer, Inge; Andersen, Per Kragh; Bukh, Jens Drachman

    2017-08-01

    For the first time to present a systematic review and meta-analysis of the conversion rate and predictors of conversion from unipolar disorder to bipolar disorder. A systematic literature search up to October 2016 was performed. For the meta-analysis, we only included studies that used survival analysis to estimate the conversion rate. A total of 31 studies were identified, among which 11 used survival analyses, including two register-based studies. The yearly rate of conversion to bipolar disorder decreased with time from 3.9% in the first year after study entry with a diagnosis of unipolar disorder to 3.1% in years 1-2, 1.0% in years 2-5 and 0.8% in years 5-10. A total of eight risk factors were evaluated comprising gender, age at onset of unipolar disorder, number of depressive episodes, treatment resistance to antidepressants, family history of bipolar disorder, the prevalence of psychotic depression, the prevalence of chronic depression, and severity of depression. It was not possible to identify risk factors that were consistently or mainly confirmed to predict conversion across studies. The conversion rate from unipolar to bipolar disorder decreases with time. It was not possible to identify predictors of conversion that were consistently or mainly confirmed across studies, which may be due to variations in methodology across studies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure.

    Science.gov (United States)

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-12-01

    This work studied the anaerobic conversion of neutralized volatile fatty acids (VFA) into biogas under Autogenerative High Pressure Digestion (AHPD) conditions. The effects of the operating conditions on the biogas quality, and the substrate utilisation rates were evaluated using 3 AHPD reactors (0.6 L); feeding a concentration of acetate and VFA (1-10 g COD/L) corresponding to an expected pressure increase of 1-20 bar. The biogas composition improved with pressure up to 4.5 bar (>93% CH4), and stabilized at 10 and 20 bar. Both, acetotrophic and hydrogenotrophic methanogenic activity was observed. Substrate utilisation rates of 0.2, 0.1 and 0.1 g CODCH4/g VSS/d for acetate, propionate and butyrate were found to decrease by up to 50% with increasing final pressure. Most likely increased Na(+)-requirement to achieve CO2 sequestration at higher pressure rather than end-product inhibition was responsible.

  8. Stochastic and equilibrium pictures of the ultracold FFR molecular conversion rate

    CERN Document Server

    Yamakoshi, Tomotake; Zhang, Chen; Greene, Chris H

    2013-01-01

    The ultracold molecular conversion rate occurring in an adiabatic ramp through a Fano-Feshbach resonance is studied and compared in two statistical models. One model, the so-called stochastic phase space sampling (SPSS)[E.Hodby et al., PRL.94 120402(2005)] evaluates the overlap of two atomic distributions in phase space by sampling atomic pairs according to a phase-space criterion. The other model, the chemical equilibrium theory(ChET)[S.Watabe and T.Nikuni, PRA.77 013616(2008)] considers atomic and molecular distributions in the limit of the chemical and thermal equilibrium. The present study applies SPSS and ChET to a prototypical system of K+K K2 in all the symmetry combinations, namely Fermi-Fermi, Bose-Bose, and Bose-Fermi cases. To examine implications of the phase-space criterion for SPSS, the behavior of molecular conversion is analyzed using four distinct geometrical constraints. Our comparison of the results of SPSS with those of ChET shows that while they appear similar in most situations, the two ...

  9. Stochastic and equilibrium pictures of the ultracold Fano-Feshbach-resonance molecular conversion rate

    Science.gov (United States)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Zhang, Chen; Greene, Chris H.

    2013-05-01

    The ultracold molecular conversion rate occurring in an adiabatic ramp through a Fano-Feshbach resonance is studied and compared in two statistical models. One model, the so-called stochastic phase-space sampling (SPSS) [Hodby , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.120402 94, 120402 (2005)] evaluates the overlap of two atomic distributions in phase space by sampling atomic pairs according to a phase-space criterion. The other model, the chemical equilibrium theory (ChET) [Watabe and Nikuni, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.013616 77, 013616 (2008)] considers atomic and molecular distributions in the limit of the chemical and thermal equilibrium. The present study applies SPSS and ChET to a prototypical system of K+K→ K2 in all the symmetry combinations, namely Fermi-Fermi, Bose-Bose, and Bose-Fermi cases. To examine implications of the phase-space criterion for SPSS, the behavior of molecular conversion is analyzed using four distinct geometrical constraints. Our comparison of the results of SPSS with those of ChET shows that while they appear similar in most situations, the two models give rise to rather dissimilar behaviors when the presence of a Bose-Einstein condensate strongly affects the molecule formation.

  10. High conversion efficiency in resonant four-wave mixing processes.

    Science.gov (United States)

    Lee, Chin-Yuan; Wu, Bo-Han; Wang, Gang; Chen, Yong-Fang; Chen, Ying-Cheng; Yu, Ite A

    2016-01-25

    We propose a new scheme of the resonant four-wave mixing (FWM) for the frequency up or down conversion, which is more efficient than the commonly-used scheme of the non-resonant FWM. In this new scheme, two control fields are spatially varied such that a probe field at the input can be converted to a signal field at the output. The efficiency of probe-to-signal energy conversion can be 90% at medium's optical depth of about 100. Our proposed scheme works for both the continuous-wave and pulse cases, and is flexible in choosing the control field intensity. This work provides a very useful tool in the nonlinear frequency conversion.

  11. High efficiency in mode-selective frequency conversion.

    Science.gov (United States)

    Quesada, Nicolás; Sipe, J E

    2016-01-15

    Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this Letter, we argue that these limits can be understood as time-ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore, using a simple scaling argument, we show that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as "attenuators" of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric downconversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode-selective FC.

  12. Highly efficient frequency conversion with bandwidth compression of quantum light

    CERN Document Server

    Allgaier, Markus; Sansoni, Linda; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2016-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, since elements based on parametric down-conversion sources, quantum dots, color centres or atoms are fundamentally different in their frequencies and bandwidths. While pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here, we demonstrate an engineered sum-frequency-conversion process in Lithium Niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 75.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  13. Modelling Deposition and Erosion rates with RadioNuclides (MODERN) - Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides.

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E; Mabit, Lionel; Alewell, Christine

    2016-10-01

    The measurement of fallout radionuclides (FRN) has become one of the most commonly used tools to quantify sediment erosion or depositional processes. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRN, land uses and soil redistribution processes. The new model MODERN (Modelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of any FRN at the reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance in converting different FRN inventories is discussed for a theoretical case as well as for two already published case studies i.e. a (137)Cs study in an alpine and unploughed area in the Aosta valley (Italy) and a (210)Pbex study on a ploughed area located in the Transylvanian Plain (Romania). The tests highlight a highly significant correspondence (i.e. correlation factor of 0.91) between the results of MODERN and the published results of other models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The development and the cost free accessibility of MODERN (see modern.umweltgeo.unibas.ch) will ensure the promotion of wider application of FRNs for tracing soil erosion and sedimentation.

  14. Theoretical Standard Model Rates of Proton to Neutron Conversions Near Metallic Hydride Surfaces

    CERN Document Server

    Widom, A

    2006-01-01

    The process of radiation induced electron capture by protons or deuterons producing new ultra low momentum neutrons and neutrinos may be theoretically described within the standard field theoretical model of electroweak interactions. For protons or deuterons in the neighborhoods of surfaces of condensed matter metallic hydride cathodes, such conversions are determined in part by the collective plasma modes of the participating charged particles, e.g. electrons and protons. The radiation energy required for such low energy nuclear reactions may be supplied by the applied voltage required to push a strong charged current across a metallic hydride surface employed as a cathode within a chemical cell. The electroweak rates of the resulting ultra low momentum neutron production are computed from these considerations.

  15. Motion-compensated coding and frame rate up-conversion: models and analysis.

    Science.gov (United States)

    Dar, Yehuda; Bruckstein, Alfred M

    2015-07-01

    Block-based motion estimation (ME) and motion compensation (MC) techniques are widely used in modern video processing algorithms and compression systems. The great variety of video applications and devices results in diverse compression specifications, such as frame rates and bit rates. In this paper, we study the effect of frame rate and compression bit rate on block-based ME and MC as commonly utilized in inter-frame coding and frame rate up-conversion (FRUC). This joint examination yields a theoretical foundation for comparing MC procedures in coding and FRUC. First, the video signal is locally modeled as a noisy translational motion of an image. Then, we theoretically model the motion-compensated prediction of available and absent frames as in coding and FRUC applications, respectively. The theoretic MC-prediction error is studied further and its autocorrelation function is calculated, yielding useful separable-simplifications for the coding application. We argue that a linear relation exists between the variance of the MC-prediction error and temporal distance. While the relevant distance in MC coding is between the predicted and reference frames, MC-FRUC is affected by the distance between the frames available for interpolation. We compare our estimates with experimental results and show that the theory explains qualitatively the empirical behavior. Then, we use the models proposed to analyze a system for improving of video coding at low bit rates, using a spatio-temporal scaling. Although this concept is practically employed in various forms, so far it lacked a theoretical justification. We here harness the proposed MC models and present a comprehensive analysis of the system, to qualitatively predict the experimental results.

  16. Overview of novel photovoltaic conversion techniques at high intensity levels

    Science.gov (United States)

    Stirn, R. J.

    1978-01-01

    The paper describes several photovoltaic devices currently under development that can operate under light intensities considerably higher than can silicon solar cells. The technologies discussed include GaAs heteroface solar cells, multi-color systems, thermophotovoltaics, and laser energy conversion. Array costs for the GaAs and multi-color elements are estimated.

  17. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  18. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    CERN Document Server

    Clouvas, A; Antonopoulos-Domis, M; Silva, J

    2000-01-01

    The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...

  19. Understanding High Rate Behavior Through Low Rate Analog

    Science.gov (United States)

    2014-04-28

    Dioh, N.N., et al., The High-Strain Rate Behavior of Polymers. Journal De Physique Iv, 1994. 4(C8): p. 119-124. 21. Dioh, N.N., P.S. Leevers, and J.G...constitutive response of polymeric materials as a function of temperature and strain rate. Journal De Physique Iv, 2003. 110: p. 27-32. 23. Brown, E.N...properties of polycarbonate under dynamic loading. Journal De Physique Iv, 2003. 110: p. 159-164. 56. Li, Z.H. and J. Lambros, Strain rate effects on the

  20. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  1. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  2. The new conversion model MODERN to derive erosion rates from inventories of fallout radionuclides

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine

    2016-04-01

    The measurement of fallout radionuclides (FRNs) has become one of the most commonly used methods to quantify soil erosion and depositional processes. FRNs include anthropogenic radionuclides (e.g. 137Cs, 239+240Pu) released into the atmosphere during nuclear bomb tests and power plant accidents (e.g Chernobyl, Fukushima-Daiichi), as well as natural radiotracers such as 210Pbex and 7Be. FRNs reach the land surface by dry and wet fallouts from the atmosphere. Once deposited, FRNs are tightly adsorbed by fine soil particles and their subsequent redistribution is mostly associated with soil erosion processes. FRNs methods are based on a qualitative comparison: the inventory (total radionuclide activity per unit area) at a given sampling site is compared to that of a so called reference site. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRNs, land uses and soil redistribution processes. This new model i.e. MODERN (MOdelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of a given FRN at a reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance has been tested on two published case studies: (i) a 137Cs study in an alpine and unploughed area in the Aosta valley (Italy) and (ii) a 210Pbex study on a ploughed area located in Romania. The results show a good agreement and a significant correlation (r= 0.91, p<0.0001) between the results of MODERN and the published models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The open access code and the cost free accessibility of MODERN will ensure the promotion of a wider

  3. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  4. Liquid phase conversion of Glycerol to Propanediol over highly active Copper/Magnesia catalysts

    Indian Academy of Sciences (India)

    Satyanarayana Murty Pudi; Abdul Zoeb; Prakash Biswas; Shashi Kumar

    2015-05-01

    In this work, a series of Cu/MgO catalysts with different copper metal loading were prepared by the precipitation-deposition method. Their catalytic behaviour was investigated for glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO). The physico-chemical properties of the catalysts were characterized by various techniques such as BET surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), NH3-temperature programmed desorption (NH3-TPD) and scanning electron microscopy (SEM) methods. The characterization results showed that the copper metal was well-dispersed over MgO support and a new phase Cu-MgO was also identified from XRD results after calcination. The 25Cu/MgO (Cu:25 wt%) catalyst exhibited the highest glycerol conversion of 88.7% and 1,2-PDO selectivity of 91.7% at 210°C, 4.5MPa of hydrogen pressure after 12 h. The high glycerol conversion was mainly due to the Cu dispersion on MgO support and high acidic strength. Further, the effects of temperature, hydrogen pressure, catalyst loading and glycerol concentration were studied over 25Cu/MgO catalyst for optimization of reaction parameters. Kinetic study over highly active 25Cu/MgO catalyst showed that the reaction followed the pseudo second order rate with respect to glycerol and the apparent activation energy was found to be 28.7 ± 0.8 kcal/mol.

  5. Energy conversion approaches and materials for high-efficiency photovoltaics

    Science.gov (United States)

    Green, Martin A.; Bremner, Stephen P.

    2017-01-01

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  6. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Bikram [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Damodaran, Anoop R. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Cho, Hanna [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Martin, Lane W. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.

  7. Intermittent Very High Frequency Plasma Deposition on Microcrystalline Silicon Solar Cells Enabling High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Mitsuoki Hishida

    2016-01-01

    Full Text Available Stopping the plasma-enhanced chemical vapor deposition (PECVD once and maintaining the film in a vacuum for 30 s were performed. This was done several times during the formation of a film of i-layer microcrystalline silicon (μc-Si:H used in thin-film silicon tandem solar cells. This process aimed to reduce defect regions which occur due to collision with neighboring grains as the film becomes thicker. As a result, high crystallinity (Xc of μc-Si:H was obtained. Eventually, a solar cell using this process improved the conversion efficiency by 1.3% (0.14 points, compared with a normal-condition cell. In this paper, we propose an easy method to improve the conversion efficiency with PECVD.

  8. Frame rate up-conversion using multiresolution critical point filters with occlusion refinement

    Institute of Scientific and Technical Information of China (English)

    Yi-xiong ZHANG; Wei-dong WANG; Peng LIU; Qing-dong YAO

    2008-01-01

    In this paper,multiresolution critical-point filters (CPFs) are employed to image matching for frame rate up-conversion (FRUC). By CPF matching,the dense motion field can be obtained for representing object motions accurately. However,the elastic motion model does not hold in the areas of occlusion,thus resulting in blur artifacts in the interpolated frame. To tackle this problem,we propose a new FRUC scheme using an occlusion refined CPF matching interpolation (ORCMI). In the proposed approach,the occlusion refinement is based on a bidirectional CPF mapping. And the intermediate frames are generated by the bidirectional interpolation for non-occlusion pixels combined with unidirectional projection for the occlusion pixeis. Ex-perimental results show that ORCMI improves the visual quality of the interpolated frames,especially at the occlusion regions. Compared to the block matching based FRUC algorithm,ORCMI can achieve 1~2 dB PSNR gain for standard video sequences.

  9. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  10. Treating Culture: What 11 High School EFL Conversation Textbooks in South Korea Do

    Science.gov (United States)

    Kang-Young, Lee

    2009-01-01

    This study collects 11 high-school EFL conversation textbooks used in Korea and sees how the textbooks teach culture since language learning is closely tied to culture learning (Kramsch, 2002). Conversation materials are chosen because socio-cultural values and norms are best acquired during the process of interaction (Scollon & Scollon,…

  11. High-Performance Photothermal Conversion of Narrow-Bandgap Ti2 O3 Nanoparticles.

    Science.gov (United States)

    Wang, Juan; Li, Yangyang; Deng, Lin; Wei, Nini; Weng, Yakui; Dong, Shuai; Qi, Dianpeng; Qiu, Jun; Chen, Xiaodong; Wu, Tom

    2017-01-01

    Ti2 O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2 O3 nanoparticles possess strong light absorption and nearly 100% internal solar-thermal conversion efficiency. Furthermore, Ti2 O3 -nanoparticle-based thin film shows potential use in seawater desalination and purification.

  12. Numerical investigation of power requirements for ultra-high-speed serial-to-parallel conversion

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Palushani, Evarist

    2012-01-01

    We present a numerical bit-error rate investigation of 160-640 Gbit/s serial-to-parallel conversion by four-wave mixing based time-domain optical Fourier transformation, showing an inverse scaling of the required pump energy per bit with the bit rate.......We present a numerical bit-error rate investigation of 160-640 Gbit/s serial-to-parallel conversion by four-wave mixing based time-domain optical Fourier transformation, showing an inverse scaling of the required pump energy per bit with the bit rate....

  13. High-Fidelity Down-Conversion Source for Secure Communications Using On-Demand Single Photons

    Science.gov (United States)

    Roberts, Tony

    2015-01-01

    AdvR, Inc., has built an efficient, fully integrated, waveguide-based source of spectrally uncorrelated photon pairs that will accelerate research and development (R&D) in the emerging field of quantum information science. Key to the innovation is the use of submicron periodically poled waveguides to produce counter propagating photon pairs, which is enabled by AdvR's patented segmented microelectrode poling technique. This novel device will provide a high brightness source of down-conversion pairs with enhanced spectral properties and low attenuation, and it will operate in the visible to the mid-infrared spectral region. A waveguide-based source of spectrally and spatially pure heralded photons will contribute to a wide range of NASA's advanced technology development efforts, including on-demand single photon sources for high-rate spaced-based secure communications.

  14. Shutdown Margin for High Conversion BWRs Operating in Th-233U Fuel Cycle

    CERN Document Server

    Shaposhnik, Yaniv; Elias, Ezra

    2013-01-01

    Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-233U fuel cycle (Th-RBWR). The studied has an axially heterogeneous fuel assembly structure with a single fissile zone sandwiched between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Instead, an alternative assembly design, also relying on heterogeneous fuel zoning, is proposed for achieving fissile inventory ratio (FIR) above unity, adequate SDM and meeting minimum CPR limit at thermal core output matching the ABWR power. The new concept was modeled as a single 3-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupl...

  15. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  16. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    on this knowledge, a new method is proposed for the reduction of the transient glitches, based on linear extrapolation of the channel output signal. The design of a low power continuous-time (CT) Delta-Sigma (∆Σ) ADC for use in the adaptive A/D conversion channel is also presented. When designing a CT ∆Σ ADC......, the choice of e.g. integrator topology, feedback waveform, feedback type, noise transfer function, and quantization levels, results in a large design space, both at the modulator and circuit level. A new optimization method is presented, that seeks to minimize the current consumption of the ADC. Based...... on an analysis of the modulator circuits and loopfilter, the optimization method determines a theoretical minimum current solution based on a set of performance requirements. Furthermore the use of current mode feedback in combination with active-RC integrators in the CT ∆Σ ADC is investigated as a method...

  17. Radiation-Induced High-Temperature Conversion of Cellulose

    Directory of Open Access Journals (Sweden)

    Alexander V. Ponomarev

    2014-10-01

    Full Text Available Thermal decomposition of cellulose can be upgraded by means of an electron-beam irradiation to produce valuable organic products via chain mechanisms. The samples being irradiated decompose effectively at temperatures below the threshold of pyrolysis inception. Cellulose decomposition resembles local “explosion” of the glucopyranose unit when fast elimination of carbon dioxide and water precede formation of residual carbonyl or carboxyl compounds. The dry distillation being performed during an irradiation gives a liquid condensate where furfural and its derivatives are dominant components. Excessively fast heating is adverse, as it results in a decrease of the yield of key organic products because pyrolysis predominates over the radiolytic-controlled decomposition of feedstock. Most likely, conversion of cellulose starts via radiolytic formation of macroradicals do not conform with each other, resulting in instability of the macroradical. As a consequence, glucosidic bond cleavage, elimination of light fragments (water, carbon oxides, formaldehyde, etc. and formation of furfural take place.

  18. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  19. Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater.

    Science.gov (United States)

    Wang, Jinghan; Zhou, Wenguang; Yang, Haizhen; Wang, Feng; Ruan, Roger

    2015-11-01

    In this study, a well-controlled three-stage process was proposed for high ammonium removal from synthetic wastewater using selected promising microalgal strain UMN266. Three trophic modes (photoautotrophy, heterotrophy, and mixotrophy), two N sufficiency conditions (N sufficient and N deprived), two inoculum modes (photoautotrophic and heterotrophic), and different NH4(+)-N concentrations were compared to investigate the effect of trophic mode conversion and N deprivation on high NH4(+)-N removal by UMN266. Results showed that photoautotrophic inoculum with trophic mode conversion from heterotrophy to photoautotrophy and N deprivation in Stage 2 turned was the optimum plan for NH4(+)-N removal, and average removal rates were 12.4 and 19.1mg/L/d with initial NH4(+)-N of 80 and 160mg/L in Stage 3. Mechanism investigations based on algal biomass carbon (C) and N content, cellular composition, and starch content confirmed the above optimum plan and potential of UMN266 as bioethanol feedstock.

  20. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...

  1. High-Rate Receiver Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an initial architectural and preliminary hardware design study for a high-rate receiver capable of decoding modulation suites specified by CCSDS 413.0-G-1...

  2. High pressure HC1 conversion of cellulose to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Antonoplis, Robert Alexander; Blanch, Harvey W.; Wilke, Charles R.

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound

  3. Positive Steady States of a Prey-predator Model with Diffusion and Non-monotone Conversion Rate

    Institute of Scientific and Technical Information of China (English)

    Rui PENG; Ming Xin WANG; Wen Yan CHEN

    2007-01-01

    In this paper,we study the positive steady states of a prey-predator model with di .usion throughout and a non-monotone conversion rate under the homogeneous Dirichlet boundary condition. We obtain some results of the existence and non-existence of positive steady states.The stability and uniqueness of positive steady states are also discussed.

  4. A new solid-conversion gas detector for high energy X-ray industrial computed tomography

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ri-feng; CHEN Wei-min; DUAN Xiao-jiao

    2011-01-01

    A new type of solid-conversion gas detector is investigated for high energy X-ray industrial computed tomography(H ECT).The conversion efficiency is calculated by using the EGSnrc Monte Carlo code on the Linux platform to simulate the transport process of photons and electrons in the detector.The simulation results show that the conversion efficiency could be more than 65%,if the X-ray beam width is less than about 0.2 mm,and a tungsten slab with 0.2 mum thickness and 30 mm length is employed as a radiation conversion medium.Meanwhile the results indicate that this new detector has higher conversion efficiency as well as less volume.Theoretically this new kind of detector could take place of the traditional scintillation detector for HECT.

  5. The effect of particle size, morphology and C-rates on 3D structured Co3O4 inverse opal conversion mode anode materials

    Science.gov (United States)

    McNulty, David; Geaney, Hugh; Carroll, Elaine; Garvey, Shane; Lonergan, Alex; O’Dwyer, Colm

    2017-02-01

    Engineering Co3O4 nanoparticles into highly ordered, 3D inverse opal (IO) structures is shown to significantly improve their performance as more efficient conversion mode Li-ion anode materials. By comparison with Co3O4 microparticles, the advantages of the porous anode architecture are clearly shown. The inverse opal material markedly enhances specific capacity and capacity retention. The impact of various C rates on the rate of the initial charge demonstrates that higher rate charging (10 C) was much less destructive to the inverse opal structure than charging at a slow rate (0.1 C). Slower C rates that affect the IO structure resulted in higher specific capacities (more Li2O) as well as improved capacity retention. The IO structures cycle as CoO, which improves Coulombic efficiency and limits volumetric changes, allowing rate changes more efficiently. This work demonstrates how 3D IOs improve conversion mode anode material performance in the absence of additive or binders, thus enhancing mass transport of Li2O charge–discharge product through the open structure. This effect mitigates clogging by structural changes at slow rates (high capacity) and is beneficial to the overall electrochemical performance.

  6. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  7. KINETICS OF VINYL CHLORIDE (CO)POLYMERIZATION AT HIGH CONVERSION

    Institute of Scientific and Technical Information of China (English)

    Zu-ren Pan; Zhi-xue Weng; Zhi-ming Huang

    1999-01-01

    This paper provides a summarized review on the kinetics of vinyl chloride homopolymerization in the absence and presence of chain transfer agents, of VC/DAP(diallyl phthalate) copolymerization with chain extension and/or slightly crosslinking functions, and of vinylidene chloride/VC random copolymerization.Models of rate, degree of polymerization or molecular weight, copolymer composition, gel fraction and crosslinking density were proposed and interpreted mechanistically.

  8. Rates and predictors of remission, recurrence and conversion to bipolar disorder after the first lifetime episode of depression

    DEFF Research Database (Denmark)

    Bukh, J. D.; Andersen, P. K.; Kessing, L. V.

    2016-01-01

    to 2013. Cumulative incidences and the influence of clinical variables on the rates of remission, recurrence and conversion to bipolar disorder, respectively, were estimated by survival analysis techniques. RESULTS: Within 5 years, 83.3% obtained remission, 31.5% experienced recurrence of depression and 8......BACKGROUND: In depression, non-remission, recurrence of depressive episodes after remission and conversion to bipolar disorder are crucial determinants of poor outcome. The present study aimed to determine the cumulative incidences and clinical predictors of these long-term outcomes after the first.......6% converted to bipolar disorder (6.3% within the first 2 years). Non-remission increased with younger age, co-morbid anxiety and suicidal ideations. Recurrence increased with severity and treatment resistance of the first depression, and conversion to bipolar disorder with treatment resistance, a family...

  9. Understanding High Saving Rate in China

    Institute of Scientific and Technical Information of China (English)

    Xinhua He; Yongfu Cao

    2007-01-01

    This paper presents a detailed analysis of the Chinese saving rate based on the flow of funds data. It finds that the most widely adopted view of precautionary saving, which is regarded as the top reason for maintaining a high saving rate in China, is misleading because this conclusion is drawn from the household survey data. In fact, the household saving rate has declined dramatically since the mid-1990s, as is observed from the flow of funds framework.The high national saving rate is attributed to the increasing shares of both government and corporation disposable incomes. Insufficient consumption demand is caused by the persistent decrease in percentage share of household to national disposable income. Governmentdirected income redistribution urgently needs to be improved to accelerate consumption,which in turn would make the Chinese economy less investment-led and help to reduce the current account surplus.

  10. A high-strain-rate superplastic ceramic.

    Science.gov (United States)

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials.

  11. Electrorheological Effects at High Shear Rate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Much attention has been given to electrorheological (ER) fluids because of the ER effect, which has been described by a large number of researchers as a notable increase in the apparent viscosity of a fluid upon the application of an electric field. The description of ER effects is, however, not accurate at high shear rates. To clarify the discrepancy, we analyze and compute the apparent viscosity as a function of shear rate for ER fluid flow between rotating coaxial cylinders in the presence of an electric field. The theoretical predictions show that the increase of electric intensity contributes little to the apparent viscosity enhancement at high shear rates, while ER effects for ER fluids with a higher polarization rate still exist and ER devices possess controllability in this regime. Description of the ER effect by the apparent viscosity leads to an unrealistic conclusion that ER effects disappear at high shear rates, because the apparent viscosity of ER fluids approaches the value for Newtonian fluids. Therefore, it is concluded that the proper description of ER effects, i.e., one that holds uniformly for any strain rate when ER effects exist, is manifested by a remarkable increase in the extra stress rather than in the apparent viscosity of ER fluids.

  12. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  13. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    The high strain rate characterisation of FRP materials present the experimenter with a new set of challenges in obtaining valid experimental data. These challenges were addressed in this work with basis in classic wave theory. The stress equilibrium process for linear elastic materials, as fibre...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...

  14. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  15. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  16. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  17. High Resolution Measurement of the Glycolytic Rate

    Science.gov (United States)

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  18. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  19. High rate, high reliability Li/SO2 cells

    Science.gov (United States)

    Chireau, R.

    1982-03-01

    The use of the lithium/sulfur dioxide system for aerospace applications is discussed. The high rate density in the system is compared to some primary systems: mercury zinc, silver zinc, and magnesium oxide. Estimates are provided of the storage life and shelf life of typical lithium sulfur batteries. The design of lithium cells is presented and criteria are given for improving the output of cells in order to achieve high rate and high reliability.

  20. High Rate Performing Li-ion Battery

    Science.gov (United States)

    2015-02-09

    permeable to lithium ions and efficient in transferring the electrons into/from the LVP surface to the corresponding current collector. a) b) c) d) e...PO4)3/C for High Rate Lithium-ion Battery Applications”, Lee Hwang Sheng, Nail Suleimanov, Vishwanathan Ramar, Mangayarkarasi Murugan, Kuppan

  1. [Hopes of high dose-rate radiotherapy].

    Science.gov (United States)

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-04-01

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Understanding High School Graduation Rates in Arizona

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  3. Understanding High School Graduation Rates in Delaware

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  4. Understanding High School Graduation Rates in Idaho

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  5. Understanding High School Graduation Rates in Illinois

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  6. Understanding High School Graduation Rates in Massachusetts

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  7. Understanding High School Graduation Rates in Pennsylvania

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  8. Understanding High School Graduation Rates in Minnesota

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  9. Understanding High School Graduation Rates in Kentucky

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in Maryland

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in Wisconsin

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in Wyoming

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in Alaska

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in Oklahoma

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Understanding High School Graduation Rates in Tennessee

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  16. Understanding High School Graduation Rates in Georgia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  17. Understanding High School Graduation Rates in Iowa

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  18. Understanding High School Graduation Rates in Nevada

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  19. Understanding High School Graduation Rates in Texas

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  20. Understanding High School Graduation Rates in Florida

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  1. Understanding High School Graduation Rates in Nebraska

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  2. Understanding High School Graduation Rates in Oregon

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  3. Understanding High School Graduation Rates in Kansas

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  4. Understanding High School Graduation Rates in Virginia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  5. Understanding High School Graduation Rates in Connecticut

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  6. Understanding High School Graduation Rates in Hawaii

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  7. Understanding High School Graduation Rates in Vermont

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  8. Understanding High School Graduation Rates in Mississippi

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  9. Understanding High School Graduation Rates in California

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in Ohio

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in Montana

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in Maine

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in Washington

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in Louisiana

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Understanding High School Graduation Rates in Colorado

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  16. Understanding High School Graduation Rates in Michigan

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  17. Understanding High School Graduation Rates in Indiana

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  18. Understanding High School Graduation Rates in Utah

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  19. Understanding High School Graduation Rates in Alabama

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  20. Understanding High School Graduation Rates in Arkansas

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  1. Understanding High School Graduation Rates in Missouri

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  2. Experimental study of conversion from atomic high-order harmonics to x-ray emissions

    Institute of Scientific and Technical Information of China (English)

    王骐; 陈建新; 夏元钦; 陈德应

    2003-01-01

    There are two physical phenomena in a strong laser intensity. One is the high-order harmonic emission; the other is x-ray emission from optical-field ionized plasmas. The experiment of conversion from high-order harmonics to x-ray emissions was given with a 105fs Ti:sapphire laser by adjusting laser intensities. The ingredient in plasma was investigated by the numerical simulations. Our experimental results suggested that the free electrons have detrimental effects on harmonic generation but are favourable for x-ray emission from optical-field ionized plasmas. If we want to obtain more intense harmonic signals as a coherent light source in the soft x-ray region, we must avoid the production of free electrons in plasmas. At the same time, if we want to observe x-rays for the development of high-repetition-rate table-top soft x-ray lasers, we should strip all atoms in the plasmas to a necessary ionized stage by the optical-fieldionization in the field of a high-intensity laser pulse.

  3. A miniature high repetition rate shock tube.

    Science.gov (United States)

    Tranter, R S; Lynch, P T

    2013-09-01

    A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.

  4. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  5. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  6. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  7. A comparison of radical and non-radical conversion rates of SVOCs in the tropospheric condensed phase

    Science.gov (United States)

    Tilgner, Andreas; Herrmann, Hartmut

    2010-05-01

    Secondary formation pathways of organic compounds are currently intensely discussed including conversions in tropospheric aqueous particles as well as cloud droplets. Particularly, SVOCs (Semivolatile Organic Compounds) and their reaction products are expected to be potential precursors for the formation of higher molecular organic compounds. In the aqueous phase, such compounds can undergo both various oxidative processes (radical and non-radical oxidants reactions) and non oxidative processes (aldol, acetal, dimerisation and ester formation reactions). These chemical aqueous phase processes are expected to be very efficient proceeding on short timescales and produce multifunctional organic compounds of less volatility. However, the importance of non-radical reactions compared to currently known radical oxidations under different conditions has not yet been assessed .Current aqueous phase mechanisms such as CAPRAM (Chemical Aqueous Phase RAdical Mechanism; Herrmann et al., 2005) do consider radical oxidation processes of organic compounds. In the present study, a comparison of radical and non-radical conversion rates of organics in cloud droplet and aqueous particles is performed for both urban and remote environmental conditions. For the comparison, available reaction rate constants have been used together with outcome of recent model simulations (Tilgner and Herrmann, 2010) using the CAPRAM 3.0i mechanism. First order-conversion rate constants in the aqueous phase for cloud and aqueous particle conditions, for (i) OH, (ii) NO3, (iii) H2O2, (iv) the aldol condensation, (v) the dimerisation and (vi) the ammonium-catalysed accretion reactions were calculated with the available, at current quite restricted data set. From the comparison, it is concluded that organic accretion reactions might be of interest in some cases but generally do by far not reach the oxidative conversion rates of radical and non-radical oxidants. Particularly, the adol condensation reactions

  8. Patchy zooplankton grazing and high energy conversion efficiency: ecological implications of sandeel behavior and strategy

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Christensen, Asbjørn; Rindorf, Anna

    2013-01-01

    of prey. Here we studied zooplankton consumption and energy conversion efficiency of lesser sandeel (Ammodytes marinus) in the central North Sea, using stomach data, length and weight-at-age data, bioenergetics, and hydrodynamic modeling. The results suggested: (i) Lesser sandeel in the Dogger area depend...... sandeel densities and growth rates per area than larger habitats...

  9. AREA EFFICIENT FRACTIONAL SAMPLE RATE CONVERSION ARCHITECTURE FOR SOFTWARE DEFINED RADIOS

    Directory of Open Access Journals (Sweden)

    Latha Sahukar

    2014-09-01

    Full Text Available The modern software defined radios (SDRs use complex signal processing algorithms to realize efficient wireless communication schemes. Several such algorithms require a specific symbol to sample ratio to be maintained. In this context the fractional rate converter (FRC becomes a crucial block in the receiver part of SDR. The paper presents an area optimized dynamic FRC block, for low power SDR applications. The limitations of conventional cascaded interpolator and decimator architecture for FRC are also presented. Extending the SINC function interpolation based architecture; towards high area optimization and providing run time configuration with time register are presented. The area and speed analysis are carried with Xilinx FPGA synthesis tools. Only 15% area occupancy with maximum clock speed of 133 MHz are reported on Spartan-6 Lx45 Field Programmable Gate Array (FPGA.

  10. High strain rate characterization of polymers

    Science.gov (United States)

    Siviour, Clive R.

    2017-01-01

    This paper reviews the literature on the response of polymers to high strain rate deformation. The main focus is on the experimental techniques used to characterize this response. The paper includes a small number of examples as well as references to experimental data over a wide range of rates, which illustrate the key features of rate dependence in these materials; however this is by no means an exhaustive list. The aim of the paper is to give the reader unfamiliar with the subject an overview of the techniques available with sufficient references from which further information can be obtained. In addition to the `well established' techniques of the Hopkinson bar, Taylor Impact and Transverse impact, a discussion of the use of time-temperature superposition in interpreting and experimentally replicating high rate response is given, as is a description of new techniques in which mechanical parameters are derived by directly measuring wave propagation in specimens; these are particularly appropriate for polymers with low wave speeds. The vast topic of constitutive modelling is deliberately excluded from this review.

  11. Diabetes Reduces the Rate of Sputum Culture Conversion in Patients With Newly Diagnosed Multidrug-Resistant Tuberculosis.

    Science.gov (United States)

    Salindri, Argita D; Kipiani, Maia; Kempker, Russell R; Gandhi, Neel R; Darchia, Lasha; Tukvadze, Nestani; Blumberg, Henry M; Magee, Matthew J

    2016-09-01

    Background.  Diabetes is a risk factor for active tuberculosis (TB), but little is known about the relationship between diabetes and multidrug-resistant (MDR) TB. We aimed to assess risk factors for primary MDR TB, including diabetes, and determine whether diabetes reduced the rate of sputum culture conversion among patients with MDR TB. Methods.  From 2011 to 2014, we conducted a cohort study at the National Center for Tuberculosis and Lung Diseases in Tbilisi, Georgia. Adult (≥35 years) patients with primary TB were eligible. Multidrug-resistant TB was defined as resistance to at least rifampicin and isoniazid. Patients with capillary glycosylated hemoglobin (HbA1c) ≥ 6.5% or previous diagnosis were defined to have diabetes. Polytomous regression was used to estimate the association of patient characteristics with drug resistance. Cox regression was used to compare rates of sputum culture conversion in patients with and without diabetes. Results.  Among 318 patients with TB, 268 had drug-susceptibility test (DST) results. Among patients with DST results, 19.4% (52 of 268) had primary MDR TB and 13.4% (36 of 268) had diabetes. In multivariable analyses, diabetes (adjusted odds ratio [aOR], 2.51; 95% confidence interval [CI], 1.00-6.31) and lower socioeconomic status (aOR, 3.51; 95% CI, 1.56-8.20) were associated with primary MDR TB. Among patients with primary MDR TB, 44 (84.6%) converted sputum cultures to negative. The rate of sputum culture conversion was lower among patients with diabetes (adjusted hazard ratio [aHR], 0.34; 95% CI, .13-.87) and among smokers (aHR, 0.16; 95% CI, .04-.61). Conclusions.  We found diabetes was associated with an increased risk of primary MDR TB; both diabetes and smoking were associated with a longer time to sputum culture conversion.

  12. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  13. A Conversation with Randy Asher, Principal of New York City's Brooklyn Technical High School

    Science.gov (United States)

    Asher, Randy J.

    2016-01-01

    This is a conversation with Randy Asher, principal of New York City's Brooklyn Technical High School. Brooklyn Tech is a selective science high school in New York City, founded in 1922 as a school for boys with potential for careers in engineering and applied science. Today, it provides full-time education for both male and female students from…

  14. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  15. Preliminary Neutronic Study of D2O-cooled High Conversion PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hikaru Hiruta; Gilles Youinou

    2013-10-01

    This paper presents a preliminary neutronics analysis of tight-pitch D2O-cooled high-conversion PWRs loaded with MOX fuel aiming at high Pu conversion and negative void coefficient. SCALE6.1 has been exclusively utilized for this study. The analyses are performed in two separate parts. The first part of this paper investigates the performance of axial and internal blankets and seeks break-even or near-breeder core even without the presence of radial blankets. The second part of this paper performs sensitivity and uncertainty analyses of integral parameters (keff and void coefficient) for selected systems in order to analyze the characters of this high-conversion PWR from different aspects.

  16. Development of low read noise high conversion gain CMOS image sensor for photon counting level imaging

    Science.gov (United States)

    Seo, Min-Woong; Kawahito, Shoji; Kagawa, Keiichiro; Yasutomi, Keita

    2016-05-01

    A CMOS image sensor with deep sub-electron read noise and high pixel conversion gain has been developed. Its performance is recognized through image outputs from an area image sensor, confirming the capability of photoelectroncounting- level imaging. To achieve high conversion gain, the proposed pixel has special structures to reduce the parasitic capacitances around FD node. As a result, the pixel conversion gain is increased due to the optimized FD node capacitance, and the noise performance is also improved by removing two noise sources from power supply. For the first time, high contrast images from the reset-gate-less CMOS image sensor, with less than 0.3e- rms noise level, have been generated at an extremely low light level of a few electrons per pixel. In addition, the photon-counting capability of the developed CMOS imager is demonstrated by a measurement, photoelectron-counting histogram (PCH).

  17. A prototype of a high rating MRPC

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Jing-Bo; YAN Qiang; LI Yuan-Jing; CHENG Jian-Ping; YUE Qian; LI Jin

    2009-01-01

    Six-gap resistive plate chamber (MRPC) prototypes with semiconductive glass electrodes (bulk resistivity~1010.cm) were studied for suitability in time-of-flight (TOF) applications at high rates. These studies were performed using a continuous electron beam of 800 MeV at IHEP and an X-ray machine. Time resolutions of about 100 ps and efficiencies larger than 90% were obtained for flux densities up to 28 kHz/cm2.

  18. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  19. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  20. The Design of VoIP Systems With High Perceptual Conversational Quality

    Directory of Open Access Journals (Sweden)

    Benjamin W. Wah

    2009-04-01

    Full Text Available This paper describes our work on real-time two-party and multi-party VoIP (voice-over-IP systems that can achieve high perceptual conversational quality. It focuses on the fundamental understanding of conversational quality and its trade-offs among the design of speech codecs and strategies for network control, playout scheduling, and loss concealments. We have studied three key aspects that address the limitations of existing work and improve the perceptual quality of VoIP systems. Firstly, we have developed a statistical approach based on just-noticeable difference (JND to significantly reduce the large number of subjective tests, as well as a classification method to automatically learn and generalize the results to unseen conditions. Using network and conversational conditions measured at run time, the classifier learned helps adjust the control algorithms in achieving high perceptual conversational quality. Secondly, we have designed a cross-layer speech codec to interface with the loss-concealment and playout scheduling algorithms in the packet-stream layer in order to be more robust and effective against packet losses. Thirdly, we have developed a distributed algorithm for equalizing mutual silences and an overlay network for multi-party VoIP systems. The approach leads to multi-party conversations with high listening only speech quality and balanced mutual silences.

  1. Survey of pain specialists regarding conversion of high-dose intravenous to neuraxial opioids

    Directory of Open Access Journals (Sweden)

    Gorlin AW

    2016-09-01

    Full Text Available Andrew W Gorlin, David M Rosenfeld, Jillian Maloney, Christopher S Wie, Johnathan McGarvey, Terrence L Trentman Department of Anesthesiology, Mayo Clinic Arizona, Phoenix, AZ, USA Abstract: The conversion of high-dose intravenous (IV opioids to an equianalgesic epidural (EP or intrathecal (IT dose is a common clinical dilemma for which there is little evidence to guide practice. Expert opinion varies, though a 100 IV:10:EP:1 IT conversion ratio is commonly cited in the literature, especially for morphine. In this study, the authors surveyed 724 pain specialists to elucidate the ratios that respondents apply to convert high-dose IV morphine, hydromorphone, and fentanyl to both EP and IT routes. Eighty-three respondents completed the survey. Conversion ratios were calculated and entered into graphical scatter plots. The data suggest that there is wide variation in how pain specialists convert high-dose IV opioids to EP and IT routes. The 100 IV:10 EP:1 IT ratio was the most common answer of survey respondent, especially for morphine, though also for hydromorphone and fentanyl. Furthermore, more respondents applied a more aggressive conversion strategy for hydromorphone and fentanyl, likely reflecting less spinal selectivity of those opioids compared with morphine. The authors conclude that there is little consensus on this issue and suggest that in the absence of better data, a conservative approach to opioid conversion between IV and neuraxial routes is warranted. Keywords: intrathecal pump, epidural, cancer pain

  2. Survey of pain specialists regarding conversion of high-dose intravenous to neuraxial opioids.

    Science.gov (United States)

    Gorlin, Andrew W; Rosenfeld, David M; Maloney, Jillian; Wie, Christopher S; McGarvey, Johnathan; Trentman, Terrence L

    2016-01-01

    The conversion of high-dose intravenous (IV) opioids to an equianalgesic epidural (EP) or intrathecal (IT) dose is a common clinical dilemma for which there is little evidence to guide practice. Expert opinion varies, though a 100 IV:10:EP:1 IT conversion ratio is commonly cited in the literature, especially for morphine. In this study, the authors surveyed 724 pain specialists to elucidate the ratios that respondents apply to convert high-dose IV morphine, hydromorphone, and fentanyl to both EP and IT routes. Eighty-three respondents completed the survey. Conversion ratios were calculated and entered into graphical scatter plots. The data suggest that there is wide variation in how pain specialists convert high-dose IV opioids to EP and IT routes. The 100 IV:10 EP:1 IT ratio was the most common answer of survey respondent, especially for morphine, though also for hydromorphone and fentanyl. Furthermore, more respondents applied a more aggressive conversion strategy for hydromorphone and fentanyl, likely reflecting less spinal selectivity of those opioids compared with morphine. The authors conclude that there is little consensus on this issue and suggest that in the absence of better data, a conservative approach to opioid conversion between IV and neuraxial routes is warranted.

  3. Survey of pain specialists regarding conversion of high-dose intravenous to neuraxial opioids

    Science.gov (United States)

    Gorlin, Andrew W; Rosenfeld, David M; Maloney, Jillian; Wie, Christopher S; McGarvey, Johnathan; Trentman, Terrence L

    2016-01-01

    The conversion of high-dose intravenous (IV) opioids to an equianalgesic epidural (EP) or intrathecal (IT) dose is a common clinical dilemma for which there is little evidence to guide practice. Expert opinion varies, though a 100 IV:10:EP:1 IT conversion ratio is commonly cited in the literature, especially for morphine. In this study, the authors surveyed 724 pain specialists to elucidate the ratios that respondents apply to convert high-dose IV morphine, hydromorphone, and fentanyl to both EP and IT routes. Eighty-three respondents completed the survey. Conversion ratios were calculated and entered into graphical scatter plots. The data suggest that there is wide variation in how pain specialists convert high-dose IV opioids to EP and IT routes. The 100 IV:10 EP:1 IT ratio was the most common answer of survey respondent, especially for morphine, though also for hydromorphone and fentanyl. Furthermore, more respondents applied a more aggressive conversion strategy for hydromorphone and fentanyl, likely reflecting less spinal selectivity of those opioids compared with morphine. The authors conclude that there is little consensus on this issue and suggest that in the absence of better data, a conservative approach to opioid conversion between IV and neuraxial routes is warranted. PMID:27703394

  4. Characterisation of Systems for Raman-Assisted High-Speed Wavelength Conversion

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Zibar, Darko

    2005-01-01

    Raman-assisted wavelength conversion for ultra-high speed data is characterised in approaches: a novel scheme based on cross-phase modulation using specially designed notch filters and a 160 Gb/s experiment based on self-phase modulation......Raman-assisted wavelength conversion for ultra-high speed data is characterised in approaches: a novel scheme based on cross-phase modulation using specially designed notch filters and a 160 Gb/s experiment based on self-phase modulation...

  5. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  6. Shutdown margin for high conversion BWRs operating in Th-{sup 233}U fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnik, Y., E-mail: shaposhy@bgu.ac.il [NRCN – Nuclear Research Center Negev, POB 9001, Beer Sheva 84190 (Israel); Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Elias, E. [Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa (Israel)

    2014-09-15

    Highlights: • BWR core operating in a closed self-sustainable Th-{sup 233}U fuel cycle. • Shutdown Margin in Th-RBWR design. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal–hydraulic analysis includes MCPR observation. - Abstract: Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-{sup 233}U fuel cycle (Th-RBWR). The studied core has an axially heterogeneous fuel assembly structure with a single fissile zone “sandwiched” between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Implementation of alternative reactivity control materials, reducing axial leakage through non-uniform enrichment distribution, use of burnable poisons, reducing number of pins as well as increasing pin diameter are also shown to be incapable of meeting the SDM requirements. Instead, an alternative assembly design, based on Rod Cluster Control Assembly with absorber rods was investigated. This design matches the reference ABWR core power and has adequate shutdown margin. The new concept was modeled as a single three-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules.

  7. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    Science.gov (United States)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  8. Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value.

    Science.gov (United States)

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2016-06-01

    With the aim of controlling their proliferation, two invasive alien plants, Lantana camara (LC) and Mimosa pigra (MP), both widespread in Africa, were considered for torrefaction for renewable energy applications. Using thermogravimetric analysis, the influence of heating rate (HR: 2.18-19.82°Cmin(-1)) together with variable temperature and hold time on char yield and HHV (in a bomb calorimeter) were determined. Statistically significant effects of HR on HHV with optima at 10.5°Cmin(-1) for LC and 20°Cmin(-1) for MP were obtained. Increases of HHV up to 0.8MJkg(-1) or energy yield greater than 10%, together with a 3-fold reduction in torrefaction conversion time could be achieved by optimisation of HR. Analysis of the torrefaction volatiles by TG-MS showed that not only hemicelluloses, but also lignin conversion, could influence the optimum HR value.

  9. High strain rate deformation of layered nanocomposites

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  10. Laparotomy conversion rate of laparoscopic radical hysterectomy for early-stage cervical cancer in a consecutive series without case selection.

    Science.gov (United States)

    Park, Jeong-Yeol; Nam, Joo-Hyun

    2014-09-01

    To estimate the feasibility and conversion rate of laparoscopic radical hysterectomy (LRH) in early-stage cervical cancer. Data were collected from the medical records of 260 consecutive patients with stage IA2 to IIA2 cervical cancer who had undergone LRH, regardless of age, body mass index, prior abdominal surgery, uterus size, or tumor size. The median patient age was 48 years (range, 26-78 years), 11.9 % of whom were elderly (≥65 years), 11.2 % were obese (≥30 kg/m(2)), 15.4 % had undergone previous abdominal surgery, and 13.1 % had a tumor larger than 4 cm. Negative-margin resection was feasible in all patients except one. The median operative time and estimated blood loss were 253 min (range, 111-438 min) and 300 mL (range, 80-2000 mL), respectively. Intraoperative and postoperative complications occurred in seven (2.7 %) and 10 patients (3.8 %), respectively. Four patients (1.5 %) required intraoperative conversion to laparotomy, three of which were due to conglomerated metastatic lymph nodes surrounding the aorta (n = 2), the left external iliac vein (n = 1) or the left ureter (n = 1). LRH was still completed in the four conversion patients, and a laparotomy was required for the removal of the conglomerated metastatic lymph nodes and the repair of the injured vessels. The conversion rate to laparotomy among patients undergoing LRH for early-stage cervical cancer was 1.5 % when performed exclusively in consecutive patients. LRH showed comparable feasibility and effectiveness to open radical hysterectomy in the treatment of early-stage cervical cancer.

  11. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    Science.gov (United States)

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-01-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254

  12. High frame-rate digital radiographic videography

    Energy Technology Data Exchange (ETDEWEB)

    King, N.S.P.; Cverna, F.H.; Albright, K.L.; Jaramillo, S.A.; Yates, G.J.; McDonald, T.E. [Los Alamos National Lab., NM (United States); Flynn, M.J.; Tashman, S. [Henry Ford Health System, Detroit, MI (United States)

    1994-09-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100-microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  13. Novel High Rate Lithium Intercalation Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Application of amorphous V2O5/carbon/neodymium oxide (Nd2O3) composite is one of ways to surmount the lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3.and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.

  14. Experimental recombination rates for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold Schuch [Dept. of Atomic Physics, Stockholm Univ., Frescativ., Stockholm (Sweden)

    2000-01-01

    Recent studies of recombination between free electrons and highly charged ions using electron coolers of heavy-ion storage rings have produced accurate rate coefficients of interest for plasma modeling and diagnostics. Some surprises were discovered which can lead to revisions of recombination models. With bare ions one finds at low energy a strong and puzzling deviation from radiative recombination theory. Dielectronic recombination with C3+, N4+ show that jj coupling gives essential contributions to the cross section also for light ions. (author)

  15. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  16. A high repetition rate XUV seeding source for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Arik

    2012-05-15

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  17. Restorative Justice Conferencing, Oral Language Competence, and Young Offenders: Are These High-Risk Conversations?

    Science.gov (United States)

    Snow, Pamela

    2013-01-01

    This article is concerned with the oral language demands (both talking and listening) associated with restorative justice conferencing--an inherently highly verbal and conversational process. Many vulnerable young people (e.g., those in the youth justice system) have significant, yet unidentified language impairments, and these could compromise…

  18. The modified gait abnormality rating scale in patients with a conversion disorder: a reliability and responsiveness study.

    Science.gov (United States)

    Vandenberg, Justin M; George, Deanna R; O'Leary, Andrea J; Olson, Lindsay C; Strassburg, Kaitlyn R; Hollman, John H

    2015-01-01

    Individuals with conversion disorder have neurologic symptoms that are not identified by an underlying organic cause. Often the symptoms manifest as gait disturbances. The modified gait abnormality rating scale (GARS-M) may be useful for quantifying gait abnormalities in these individuals. The purpose of this study was to examine the reliability, responsiveness and concurrent validity of GARS-M scores in individuals with conversion disorder. Data from 27 individuals who completed a rehabilitation program were included in this study. Pre- and post-intervention videos were obtained and walking speed was measured. Five examiners independently evaluated gait performance according to the GARS-M criteria. Inter- and intrarater reliability of GARS-M scores were estimated with intraclass correlation coefficients (ICCs). Responsiveness was estimated with the minimum detectable change (MDC). Pre- to post-treatment changes in GARS-M scores were analyzed with a dependent t-test. The correlation between GARS-M scores and walking speed was analyzed to assess concurrent validity. GARS-M scores were quantified with good-to-excellent inter- (ICC = 0.878) and intrarater reliability (ICC = 0.989). The MDC was 2 points. Mean GARS-M scores decreased from 7 ± 5 at baseline to 1 ± 2 at discharge (t26 = 7.411, p conversion disorder. GARS-M scores provide objective measures upon which treatment effects can be assessed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Recrystallization of High Carbon Steel during High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recrystallization of high carbon steel during high temperature and high speed rolling has been studied by analyzing the stress-strain curves and the austenite grain size.Isothermal multi-pass hot compression at high strain rate was carried out by Gleeble-2000. The austenite grain size was measured by IBAS image analysis system. The results show that static recrystallization occurred at interpass time under pre-finish rolling, and at the finish rolling stage, due to the brief interpass time, static recrystallization can not be found.

  20. Low insertion loss highly mode-selective spatial multiplexers using multi-plane light conversion

    Science.gov (United States)

    Morizur, Jean-François; Barré, Nicolas; Pinel, Olivier; Lenglé, Kevin; Garcia, Lionel; Jaffres, Lionel; Jian, Pu; Labroille, Guillaume

    2016-02-01

    Multi-Plane Light Conversion enables novel beam shaping devices, including spatial multiplexers. After a presentation of the achievable performances of these spatial multiplexers, which can combine 10 spatial modes with cross-talk below -22 dB and insertion loss below 4 dB, we review the performances of Multi-Plane Light Con-version in multiple application cases. These application cases include mode-multiplexed optical amplification, high-power beam shaping and combining and LAN fiber capacity upgrade.

  1. Up-Conversion Luminescence of a High Soluble Zinc Phthalocyanine-Epoxy Derivative

    Institute of Scientific and Technical Information of China (English)

    沈悦; 夏义本; 陈精纬; 顾峰; 焦凤华; 张建成

    2004-01-01

    Synthesis and photoelectric properties of a high soluble zinc phthalocyanine-epoxy derivative are investigated.The derivative can be solubilized in convenient solvents, such as CH3OH, CH3CH2OH and H2O. The fluorescence and UV-visible analyses indicate that the ZnPc-epoxy derivative still maintains the plane structure which comes from Zn(4,4',4",4″′-ta)Pc and the derivative has obvious up-conversion luminescence in room temperature. The up-conversion luminescence can be explained by the selection rule depending on the two-photon absorption.

  2. Effects of conversions for high energy neutrinos originating from cosmological $\\gamma$-ray burst fireballs

    CERN Document Server

    Athar, H

    1999-01-01

    We study neutrino conversions in the recently envisaged source of high energy ($E \\geq 10^{6}$ GeV) neutrinos, that is, in the vicinity of cosmological gamma-ray burst fireballs (GRB). We consider mainly the possibility of neutrino conversions due to an interplay of neutrino transition magnetic moment, $\\mu$, and the violation of equivalence principle (VEP), parameterized by $\\Delta f$, in a reasonable strength of magnetic field in the vicinity of the GRB. We point out that for $\\Delta f \\sim 10^{-25}(\\delta m^2/1 {eV}^2)$, a resonant spin-flavour precession between $\\bar{\

  3. Conversion of Airborne Gamma ray Spectra to Ground Level Air Kerma Rates

    DEFF Research Database (Denmark)

    Bargholz, Kim; Korsbech, Uffe C C

    1997-01-01

    A new method for relating airborne gamma-ray spectra to dose rates and kerma rates at ground level is presented. Dependent on flying altitude 50 m to 125 m the method gives correct results for gamma energies above 250 keV respective 350 keV. At lower energies the method underestimate the dose...... or kerma rates; by having a large fraction of the ground level gamma-rays at energies below 350 keV special care should be taken at an interpretation of the results....

  4. High counting rate resistive-plate chamber

    Science.gov (United States)

    Peskov, V.; Anderson, D. F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast (less than 1 ns) and have very simple construction: just two parallel metallic plates or mesh electrodes. Depending on the applied voltage they may work either in spark mode or avalanche mode. The advantage of the spark mode of operation is a large signal amplitude from the chamber, the disadvantage is that there is a large dead time (msec) for the entire chamber after an event. The main advantage of the avalanche mode is high rate capability 10(exp 5) counts/mm(sup 2). A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (greater than 10(exp 10) Omega(cm) materials. In practice RPC's are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm(sup 2), leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases.

  5. Restructuring fundamental predator-prey models by recognising prey-dependent conversion efficiency and mortality rates.

    Science.gov (United States)

    Li, Jiqiu; Montagnes, David J S

    2015-05-01

    Incorporating protozoa into population models (from simple predator-prey explorations to complex food web simulations) is of conceptual, ecological, and economic importance. From theoretical and empirical perspectives, we expose unappreciated complexity in the traditional predator-prey model structure and provide a parsimonious solution, especially for protistologists. We focus on how prey abundance alters two key components of models: predator conversion efficiency (e, the proportion of prey converted to predator, before mortality loss) and predator mortality (δ, the portion of the population lost though death). Using a well-established model system (Paramecium and Didinium), we collect data to parameterize a range of existing and novel population models that differ in the functional forms of e and δ. We then compare model simulations to an empirically obtained time-series of predator-prey population dynamics. The analysis indicates that prey-dependent e and δ should be considered when structuring population models and that both prey and predator biomass also vary with prey abundance. Both of these impact the ability of the model to predict population dynamics and, therefore, should be included in theoretical model evaluations and assessment of ecosystem dynamics associated with biomass flux.

  6. High-ratio voltage conversion in CMOS for efficient mains-connected standby

    CERN Document Server

    Meyvaert, Hans

    2016-01-01

    This book describes synergetic innovation opportunities offered by combining the field of power conversion with the field of integrated circuit (IC) design. The authors demonstrate how integrating circuits enables increased operation frequency, which can be exploited in power converters to reduce drastically the size of the discrete passive components. The authors introduce multiple power converter circuits, which are very compact as result of their high level of integration. First, the limits of high-power-density low-voltage monolithic switched-capacitor DC-DC conversion are investigated to enable on-chip power granularization. AC-DC conversion from the mains to a low voltage DC is discussed, enabling an efficient and compact, lower-power auxiliary power supply to take over the power delivery during the standby mode of mains-connected appliances, allowing the main power converter of these devices to be shut down fully. Discusses high-power-density monolithic switched-capacitor DC-DC conversion in bulk CMOS,...

  7. High-energy, high-rate materials processing

    Science.gov (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  8. Active High Power Conversion Efficiency Rectifier With Built-In Dual-Mode Back Telemetry in Standard CMOS Technology.

    Science.gov (United States)

    Bawa, G; Ghovanloo, M

    2008-09-01

    In this paper, we present an active rectifier with high power conversion efficiency (PCE) implemented in a 0.5- mum 5 V standard CMOS technology with two modes of built-in back telemetry; short- and open-circuit. As a rectifier, it ensures a PCE > 80%, taking advantage of active synchronous rectification technique in the frequency range of 0.125-1 MHz. The built-in complementary back telemetry feature can be utilized in implantable microelectronic devices (IMD), wireless sensors, and radio frequency identification (RFID) applications to reduce the silicon area, increase the data rate, and improve the reading range and robustness in load shift keying (LSK).

  9. High-Frame-Rate Oil Film Interferometry

    CERN Document Server

    White, Jonathan C; Chen, John

    2010-01-01

    The fluid dynamics video to which this abstract relates contains visualization of the response of a laminar boundary layer to a sudden puff from a small hole. The boundary layer develops on a flat plate in a wind tunnel; the hole is located at a streamwise Reynolds number of 100,000. The visualization of the boundary layer response is accomplished using interferometry of a transparent, thin film of oil placed on the surface immediately downstream of the hole and with its leading edge perpendicular to the direction of flow. Through lubrication theory, it is understood that the rate of change of the spacing of the interference fringes is proportional to the skin friction at any instant. For reference, a small disk-shaped protrusion of the type often used to trip the boundary layer in wind model tunnel testing is also shown. Three cases with different puff strengths are included. Using a high-speed commercial camera, frame rates in excess of 1000/sec have been recorded; the video shown here was taken at 24 frame...

  10. High spin rate magnetic controller for nanosatellites

    Science.gov (United States)

    Slavinskis, A.; Kvell, U.; Kulu, E.; Sünter, I.; Kuuste, H.; Lätt, S.; Voormansik, K.; Noorma, M.

    2014-02-01

    This paper presents a study of a high rate closed-loop spin controller that uses only electromagnetic coils as actuators. The controller is able to perform spin rate control and simultaneously align the spin axis with the Earth's inertial reference frame. It is implemented, optimised and simulated for a 1-unit CubeSat ESTCube-1 to fulfil its mission requirements: spin the satellite up to 360 deg s-1 around the z-axis and align its spin axis with the Earth's polar axis with a pointing error of less than 3°. The attitude of the satellite is determined using a magnetic field vector, a Sun vector and angular velocity. It is estimated using an Unscented Kalman Filter and controlled using three electromagnetic coils. The algorithm is tested in a simulation environment that includes models of space environment and environmental disturbances, sensor and actuator emulation, attitude estimation, and a model to simulate the time delay caused by on-board calculations. In addition to the normal operation mode, analyses of reduced satellite functionality are performed: significant errors of attitude estimation due to non-operational Sun sensors; and limited actuator functionality due to two non-operational coils. A hardware-in-the-loop test is also performed to verify on-board software.

  11. High readmission rate after heart valve surgery

    DEFF Research Database (Denmark)

    Sibilitz, K L; Berg, S K; Thygesen, Lau Caspar;

    2015-01-01

    of anxiety and depression were present in 13.6% and 13.8%, respectively (Hospital Anxiety and Depression Scale score ≥ 8). Twelve months following discharge, 483 persons (56%) were readmitted. Readmission was associated with lower self-reported health (SF-36 PCS: 46.5 vs. 43.9, and MCS 52.2 vs. 50.7). Higher...... after surgery (3.2 (1.2-8.9)) predicted mortality. CONCLUSIONS: 6-12 months after heart valve surgery the readmission rate is high and the self-reported health status is low. Readmission is associated with low self-reported health. Therefore, targeted follow-up strategies post-surgery are needed....

  12. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  13. Efficiency of frequency conversion of high power laser and KDP crystal clamping method

    Science.gov (United States)

    Yan, Han; Du, Weifeng; Pei, Guoqing; Qin, Tinghai; Ye, Lang; Xu, Xu

    2017-05-01

    In the high power solid laser driver, the frequency conversion unit is of strict requirement to meet the drive condition of ICF. The performance of large caliber KDP crystal, which is the core of frequency conversion of laser, is a vital aspect affecting the overall technical index of the laser driver. In order to get a higher efficiency of frequency conversion, KDP crystal must keep a better surface condition, which asks for high-quality assemblage and adjustment. The current method used in engineering has insufficient knowledge and recognition on surface deformation control of the crystal. Meanwhile, the method itself is of low efficiency on clamping, and lacks of protection for the crystal. Thus, in this article an investigation of crystal clamping method with lower force was performed, factors affecting the surface of crystal were explored, through both imitation and experiment. The clamping method was redesigned and the frequency conversion efficiency was tested. Meanwhile, with the new method, clamping efficiency increases, the optical performance of crystals improves, and the crystals get better protection.

  14. Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Guan-Nan Tan

    2016-01-01

    Full Text Available A novel Vivaldi rectenna operated at 35 GHz with high millimeter wave to direct current (MMW-to-DC conversion efficiency is presented and the arrays are investigated. The measured conversion efficiency is 51.6% at 35 GHz and the efficiency higher than 30% is from 33.2 GHz to 36.6 GHz when the input MMW power is 79.4 mW. The receiving Vivaldi antenna loaded with metamaterial units has a high gain of 10.4 dBi at 35 GHz. A SIW- (substrate integrated waveguide- to-microstrip transition is designed not only to integrate the antenna with the rectifying circuit directly but also to provide the DC bypass for the rectifying circuit. When the power density is 8.7 mW/cm2, the received MMW power of the antenna is 5.6 mW, and the maximum conversion efficiency of the rectenna element is 31.5%. The output DC voltage of the element is nearly the same as that of the parallel array and is about half of the series array. The DC power obtained by the 1 × 2 rectenna arrays is about two times as much as that of the element. The conversion efficiencies of the arrays are very close to that of the element. Large scale arrays could be expended for collecting more DC power.

  15. Upgrade Strategy for ALICE at High Rate

    CERN Document Server

    Musa, L

    2012-01-01

    The longterm goal of the ALICE experiment is to provide a precise characterization of the Quark-Gluon Plasma (QGP) state. Such a determination of its properties including initial temperature, degrees of freedom, speed of sound, and in general, transport coefficients would be a major achievement. This would go a long way towards a better understanding of QCD as a genuine multi-particle theory. To achieve this goal, high statistics measurements are required, which will give access also to the very rare physics channels needed to understand the dynamics of this condensed phase of QCD. The general upgrade strategy for the ALICE central barrel is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz, that would provide an accumulated sample of the order of 10 nb^-1 in the period 2019-2023. In this document we sketch the modifications/replacements needed in all ALICE central barrel detectors and online systems (Trigger, DAQ and HLT) for high luminosity running. As the ALICE for...

  16. Wavelength conversion of a 40 Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Tokle, Torger; Geng, Yan

    2005-01-01

    by the gain bandwidth of erbium-doped fiber amplifiers, are obtained in only 50-m dispersion-flattened HNL-PCF with nonlinear coefficient equal to 11 W-1·km-1. This experiment demonstrates the potential of four-wave mixing in HNL-PCF as a modulation format and bit rate transparent wavelength conversion......Wavelength conversion of a 40-Gb/s return-to-zero differential phase-shift keying signal is demonstrated in a highly nonlinear photonic crystal fiber (HNL-PCF) for the first time. A conversion efficiency of -20 dB for a pump power of 23 dBm and a conversion bandwidth of 31 nm, essentially limited...

  17. High Strain Rate Compression Testing of Ceramics and Ceramic Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, W. R. (William R.)

    2005-01-01

    The compressive deformation and failure behavior of ceramics and ceramic-metal composites for armor applications has been studied as a function of strain rate at Los Alamos National Laboratory since the late 1980s. High strain rate ({approx}10{sup 3} s{sup -1}) uniaxial compression loading can be achieved using the Kolsky-split-Hopkinson pressure bar (SHPB) technique, but special methods must be used to obtain valid strength results. This paper reviews these methods and the limitations of the Kolsky-SHPB technique for this class of materials. The Kolsky-split-Hopkinson pressure bar (Kolsky-SHPB) technique was originally developed to characterize the mechanical behavior of ductile materials such as metals and polymers where the results can be used to develop strain-rate and temperature-dependent constitutive behavior models that empirically describe macroscopic plastic flow. The flow behavior of metals and polymers is generally controlled by thermally-activated and rate-dependent dislocation motion or polymer chain motion in response to shear stresses. Conversely, the macroscopic mechanical behavior of dense, brittle, ceramic-based materials is dominated by elastic deformation terminated by rapid failure associated with the propagation of defects in the material in response to resolved tensile stresses. This behavior is usually characterized by a distribution of macroscopically measured failure strengths and strains. The basis for any strain-rate dependence observed in the failure strength must originate from rate-dependence in the damage and fracture process, since uniform, uniaxial elastic behavior is rate-independent (e.g. inertial effects on crack growth). The study of microscopic damage and fracture processes and their rate-dependence under dynamic loading conditions is a difficult experimental challenge that is not addressed in this paper. The purpose of this paper is to review the methods that have been developed at the Los Alamos National Laboratory to

  18. Medicare program; physician fee schedule conversion factor for calendar year 1998 and sustainable growth rate for fiscal year 1998--HCFA. Final notice.

    Science.gov (United States)

    1997-10-31

    This final notice announces the calendar year 1998 Medicare physician fee schedule conversion factor and the fiscal year 1998 sustainable growth rate for expenditures for physicians' services under the Medicare Supplementary Medical Insurance (Part B) program as required by sections 1846(d) and (f), respectively, of the Social Security Act. The 1998 Medicare physician fee schedule conversion factor is $36,6873. The sustainable growth rate for fiscal year 1998 is 1.5 percent.

  19. Conversion of bromine during thermal decomposition of printed circuit boards at high temperature.

    Science.gov (United States)

    Jin, Yu-qi; Tao, Lin; Chi, Yong; Yan, Jian-hua

    2011-02-15

    The conversion of bromine during the thermal decomposition of printed circuit boards (PCBs) was investigated at isothermal temperatures ranging from 800°C to 1100°C by using a quartz tube furnace. The influence of temperature, oxygen concentrations (0%, 10% and 21% in the nitrogen-oxygen atmosphere) and content of steam on conversion of bromine was studied. With the increment of temperature, the conversion from organic bromine in the PCBs to inorganic bromine in the gaseous fraction increased from 69.0% to 96.4%. The bromine was mainly evolved as HBr and Br(2) in oxidizing condition and the Br(2)/HBr mass ratio increased at stronger oxidizing atmosphere. The experimental results also indicated that the existence of steam can reduce the formation of Br(2). Furthermore, co-combustion of PCBs with S and CaO, both as addition agents, was investigated, respectively. In the presence of SO(2), Br(2)/HBr mass ratio obviously decreased. Moreover, the utilization of calcium oxide can efficiently promote the conversion of organic bromine to inorganic bromine. According to the experimental results, incinerating PCBs at high temperature can efficiently destroy the organobrominated compounds that are considered to be possible precursors of polybrominated dibenzeo-p-dioxins and dibenzofurans (PBDD/Fs), but the Br(2) and HBr in flue gas should be efficiently controlled.

  20. Efficient and high speed depth-based 2D to 3D video conversion

    Science.gov (United States)

    Somaiya, Amisha Himanshu; Kulkarni, Ramesh K.

    2013-09-01

    Stereoscopic video is the new era in video viewing and has wide applications such as medicine, satellite imaging and 3D Television. Such stereo content can be generated directly using S3D cameras. However, this approach requires expensive setup and hence converting monoscopic content to S3D becomes a viable approach. This paper proposes a depth-based algorithm for monoscopic to stereoscopic video conversion by using the y axis co-ordinates of the bottom-most pixels of foreground objects. This code can be used for arbitrary videos without prior database training. It does not face the limitations of single monocular depth cues nor does it combine depth cues, thus consuming less processing time without affecting the efficiency of the 3D video output. The algorithm, though not comparable to real-time, is faster than the other available 2D to 3D video conversion techniques in the average ratio of 1:8 to 1:20, essentially qualifying as high-speed. It is an automatic conversion scheme, hence directly gives the 3D video output without human intervention and with the above mentioned features becomes an ideal choice for efficient monoscopic to stereoscopic video conversion. [Figure not available: see fulltext.

  1. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tolesa Fita Chala

    2017-07-01

    Full Text Available In this work, novel WO3-x/polyurethane (PU nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72 and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications.

  2. Early traumatic experiences, perceived discrimination and conversion to psychosis in those at clinical high risk for psychosis.

    Science.gov (United States)

    Stowkowy, Jacqueline; Liu, Lu; Cadenhead, Kristin S; Cannon, Tyrone D; Cornblatt, Barbara A; McGlashan, Thomas H; Perkins, Diana O; Seidman, Larry J; Tsuang, Ming T; Walker, Elaine F; Woods, Scott W; Bearden, Carrie E; Mathalon, Daniel H; Addington, Jean

    2016-04-01

    There is evidence to suggest that both early traumatic experiences and perceived discrimination are associated with later onset of psychosis. Less is known about the impact these two factors may have on conversion to psychosis in those who are at clinical high risk (CHR) of developing psychosis. The purpose of this study was to determine if trauma and perceived discrimination were predictors of conversion to psychosis. The sample consisted of 764 individuals who were at CHR of developing psychosis and 280 healthy controls. All participants were assessed on past trauma, bullying and perceived discrimination. Individuals at CHR reported significantly more trauma, bullying and perceived discrimination than healthy controls. Only perceived discrimination was a predictor of later conversion to psychosis. Given that CHR individuals are reporting increased rates of trauma and perceived discrimination, these should be routinely assessed, with the possibility of offering interventions aimed at ameliorating the impact of past traumas as well as improving self-esteem and coping strategies in an attempt to reduce perceived discrimination.

  3. A low complexity, low spur digital IF conversion circuit for high-fidelity GNSS signal playback

    Science.gov (United States)

    Su, Fei; Ying, Rendong

    2016-01-01

    A low complexity high efficiency and low spur digital intermediate frequency (IF) conversion circuit is discussed in the paper. This circuit is key element in high-fidelity GNSS signal playback instrument. We analyze the spur performance of a finite state machine (FSM) based numerically controlled oscillators (NCO), by optimization of the control algorithm, a FSM based NCO with 3 quantization stage can achieves 65dB SFDR in the range of the seventh harmonic. Compare with traditional lookup table based NCO design with the same Spurious Free Dynamic Range (SFDR) performance, the logic resource require to implemented the NCO is reduced to 1/3. The proposed design method can be extended to the IF conversion system with good SFDR in the range of higher harmonic components by increasing the quantization stage.

  4. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  5. New Architecture towards Ultrathin CdTe Solar Cells for High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    A. Teyou Ngoupo

    2015-01-01

    Full Text Available Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D is used to investigate the possibility of realizing ultrathin CdTe based solar cells with high and stable conversion efficiency. In the first step, we modified the conventional cell structure by substituting the CdS window layer with a CdS:O film having a wide band gap ranging from 2.42 to 3.17 eV. Thereafter, we simulated the quantum efficiency, as well as the parameters of J-V characteristics, and showed how the thickness of CdS:O layer influences output parameters of Glass/SnO2/ZTO/CdS:O/CdTe1-xSx/CdTe/Ni reference cell. High conversion efficiency of 17.30% has been found using CdTe1-xSx (x=0.12 and CdTe layers of thickness 15 nm and 4 μm, respectively. Secondly, we introduced a BSR layer between the absorber layer and back metal contact, which led to Glass/SnO2/ZTO/CdS:O/CdTe1-xSx/CdTe/BSR/Ni configuration. We found that a few nanometers (about 5 nm of CdTe1-xSx layer is sufficient to obtain high conversion efficiency. For BSR layer, different materials with large band gap, such as ZnTe, Cu2Te, and p+-CdTe, have been used in order to reduce minority carrier recombination at the back contact. When ZnTe is used, high conversion efficiency of 21.65% and better stability are obtained, compared to other BSR.

  6. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  7. Demonstrating Nonhexavelent Chrome Steel Conversion Coatings on Stryker High Hard Armor Steel Hatches

    Science.gov (United States)

    2014-01-01

    embrittlement are as follows: 1. Any ferrous -based alloy exhibiting hardness greater than Rc35 (e.g., high-strength steel) requires testing and heat...section is based on the findings from WP-1521. Most of the conversion coating work thus far has focused on the use of TCP on aluminum alloys . In...recent years, TCP has enjoyed good success on aluminum. However, for steel alloys and phosphated surfaces, further development is needed. One of the

  8. HE CONVERSION OF THE EFFICIENCY OF LABOR, RESPECTIVELY OF LABOR PRODUCTIVITY IN THE ECONOMIC AND COMMERCIAL RATE OF RETURN

    Directory of Open Access Journals (Sweden)

    Constantin CĂRUNTU

    2010-12-01

    Full Text Available Generally, an activity is considered to be efficient if the production implies low costs or if the revenues from selling the products on the market outweigh the expenditures that were made to achieve them. Labor productivity as an efficiency indicator of a production process represents an expression of the relationship between effect (products, services and effort (work means, labor force, work items. Through the labor productivity conversion in rates of return (economic and commercial is determined an evolution and an influence on these rates, driving the company’s own efforts to innovate, produce and harness goods, works and services with maximum utility, efficiency and competitiveness services. The aim of this paper is to highlight the work efficiency, respectively the labor productivity detached from the factorial context in the trade and economic rates of return. The introduction presents some general aspects referring to labor productivity, then it will be presented and discussed the analytical methods used in the process of reflecting the labor productivity in the rates of return, the results analysis, and at the end of this paper it will be presented some conclusions based on the study case. The expected results consist in identifying the mechanisms by which labor efficiency is converted into the company’s economic and financial performance.

  9. Forensic watermarking and bit-rate conversion of partially encrypted AAC bitstreams

    Science.gov (United States)

    Lemma, Aweke; Katzenbeisser, Stefan; Celik, Mehmet U.; Kirbiz, S.

    2008-02-01

    Electronic Music Distribution (EMD) is undergoing two fundamental shifts. The delivery over wired broadband networks to personal computers is being replaced by delivery over heterogeneous wired and wireless networks, e.g. 3G and Wi-Fi, to a range of devices such as mobile phones, game consoles and in-car players. Moreover, restrictive DRM models bound to a limited set of devices are being replaced by flexible standards-based DRM schemes and increasingly forensic tracking technologies based on watermarking. Success of these EMD services will partially depend on scalable, low-complexity and bandwidth eficient content protection systems. In this context, we propose a new partial encryption scheme for Advanced Audio Coding (AAC) compressed audio which is particularly suitable for emerging EMD applications. The scheme encrypts only the scale-factor information in the AAC bitstream with an additive one-time-pad. This allows intermediate network nodes to transcode the bitstream to lower data rates without accessing the decryption keys, by increasing the scale-factor values and re-quantizing the corresponding spectral coeficients. Furthermore, the decryption key for each user is customized such that the decryption process imprints the audio with a unique forensic tracking watermark. This constitutes a secure, low-complexity watermark embedding process at the destination node, i.e. the player. As opposed to server-side embedding methods, the proposed scheme lowers the computational burden on servers and allows for network level bandwidth saving measures such as multi-casting and caching.

  10. An integrated CMOS high data rate transceiver for video applications

    Science.gov (United States)

    Yaping, Liang; Dazhi, Che; Cheng, Liang; Lingling, Sun

    2012-07-01

    This paper presents a 5 GHz CMOS radio frequency (RF) transceiver built with 0.18 μm RF-CMOS technology by using a proprietary protocol, which combines the new IEEE 802.11n features such as multiple-in multiple-out (MIMO) technology with other wireless technologies to provide high data rate robust real-time high definition television (HDTV) distribution within a home environment. The RF frequencies cover from 4.9 to 5.9 GHz: the industrial, scientific and medical (ISM) band. Each RF channel bandwidth is 20 MHz. The transceiver utilizes a direct up transmitter and low-IF receiver architecture. A dual-quadrature direct up conversion mixer is used that achieves better than 35 dB image rejection without any on chip calibration. The measurement shows a 6 dB typical receiver noise figure and a better than 33 dB transmitter error vector magnitude (EVM) at -3 dBm output power.

  11. An integrated CMOS high data rate transceiver for video applications

    Institute of Scientific and Technical Information of China (English)

    Liang Yaping; Che Dazhi; Liang Cheng; Sun Lingling

    2012-01-01

    This paper presents a 5 GHz CMOS radio frequency (RF) transceiver built with 0.18 μm RF-CMOS technology hy using a proprietary protocol,which combines the new IEEE 802.11n features such as multiplein multiple-out (MIMO) technology with other wireless technologies to provide high data rate robust real-time high definition television (HDTV) distribution within a home environment.The RF frequencies cover from 4.9 to 5.9 GHz:the industrial,scientific and medical (ISM) band.Each RF channel bandwidth is 20 MHz.The transceiver utilizes a direct up transmitter and low-IF receiver architecture.A dual-quadrature direct up conversion mixer is used that achieves better than 35 dB image rejection without any on chip calibration.The measurement shows a 6 dB typical receiver noise figure and a better than 33 dB transmitter error vector magnitude (EVM) at -3 dBm output power.

  12. High voltage high repetition rate pulse using Marx topology

    Science.gov (United States)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  13. In Situ Grown Fe2O3 Single Crystallites on Reduced Graphene Oxide Nanosheets as High Performance Conversion Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Li, Ting; Qin, Aiqiong; Yang, Lanlan; Chen, Jie; Wang, Qiufan; Zhang, Daohong; Yang, Hanxi

    2017-06-14

    Electrochemical conversion reactions of metal oxides provide a new avenue to build high capacity anodes for sodium-ion batteries. However, the poor rate performance and cyclability of these conversion anodes remain a significant challenge for Na-ion battery applications because most of the conversion anodes suffer from sluggish kinetics and irreversible structural change during cycles. In this paper, we report an Fe2O3 single crystallites/reduced graphene oxide composite (Fe2O3/rGO), where the Fe2O3 single crystallites with a particle size of ∼300 nm were uniformly anchored on the rGO nanosheets, which provide a highly conductive framework to facilitate electron transport and a flexible matrix to buffer the volume change of the material during cycling. This Fe2O3/rGO composite anode shows a very high reversible capacity of 610 mAh g(-1) at 50 mA g(-1), a high Coulombic efficiency of 71% at the first cycle, and a strong cyclability with 82% capacity retention after 100 cycles, suggesting a potential feasibility for sodium-ion batteries. More significantly, the present work clearly illustrates that an electrochemical conversion anode can be made with high capacity utilization, strong rate capability, and stable cyclability through appropriately tailoring the lattice structure, particle size, and electronic conduction channels for a simple transition-metal oxide, thus offering abundant selections for development of low-cost and high-performance Na-storage electrodes.

  14. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment.

    Science.gov (United States)

    Wolf, Moritz; Kotzé, Hendrik; Fischer, Nico; Claeys, Michael

    2017-02-15

    Highly monodisperse cobalt crystallites, supported on Stöber silica spheres, as model catalysts for the Fischer-Tropsch synthesis were exposed to simulated high conversion environments in the presence and absence of CO utilising an in house developed in situ magnetometer. The catalyst comprising the smallest crystallites in the metallic state (average diameter of 3.2 nm) experienced pronounced oxidation whilst the ratio of H2O to H2 was increased stepwise to simulate CO conversions from 26% up to complete conversion. Direct exposure of this freshly reduced catalyst to a high conversion Fischer-Tropsch environment resulted in almost spontaneous oxidation of 40% of the metallic cobalt. In contrast, a model catalyst with cobalt crystallites of 5.3 nm only oxidised to a small extent even when exposed to a simulated conversion of over 99%. The largest cobalt crystallites were rather stable and only experienced measurable oxidation when subjected to H2O in the absence of H2. This size dependency of the stability is in qualitative accordance with reported thermodynamic calculations. However, the cobalt crystallites showed an unexpected low susceptibility to oxidation, i.e. only relatively high ratios of H2O to H2 partial pressure caused oxidation. Similar experiments in the presence of CO revealed the significance of the actual Fischer-Tropsch synthesis on the metallic surface as the dissociation of CO, an elementary step in the Fischer-Tropsch mechanism, was shown to be a prerequisite for oxidation. Direct oxidation of cobalt to CoO by H2O seems to be kinetically hindered. Thus, H2O may only be capable of indirect oxidation, i.e. high concentrations prevent the removal of adsorbed oxygen species on the cobalt surface leading to oxidation. However, a spontaneous direct oxidation of cobalt at the interface between the support and the crystallites by H2O forming presumably cobalt silicate type species was observed in the presence and absence of CO. The formation of these

  15. HIgh Rate X-ray Fluorescence Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grudberg, Peter Matthew [XIA LLC

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  16. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  17. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  18. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  19. All-Optical Wavelength Conversion of a High-Speed RZ-OOK Signal in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits.......All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits....

  20. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.

    Science.gov (United States)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-12-07

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.

  1. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  2. Design of high energy density thermoelectric energy conversion unit by using FGM compliant pads

    CERN Document Server

    Kambe, M

    1999-01-01

    In order to provide increasingly large amounts of electrical power to space and terrestrial systems with a sufficiently high level of reliability at a reasonable cost, thermoelectric (TE) energy conversion system by using $9 functionally graded material (FGM) compliant pads has been focused. To achieve high thermal energy density in TE power conversion systems, conductively coupling the TE units to the hot and cold heat exchangers is the most effective $9 configuration. This is accomplished by two sets of FGM compliant pads. This design strategy provides (1) a high flux, direct conduction path to heat source and heat sink, (2) the structural flexibility to protect the cell from high $9 stress due to thermal expansion, (3) an extended durability by a simple FGM structure, and (4) manufacturing cost reduction by spark plasma sintering. High thermal energy density of ten times as much as conventional radioisotope $9 thermoelectric generator is expected. Manufacturing of Cu/Al/sub 2/O/sub 3//Cu symmetrical FGM co...

  3. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  4. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E; Rosen, M; Glenzer, S H; Suter, L J; Girard, F; Jadaud, J P; Schein, J; Constantin, C G; Neumayer, P; Landen, O

    2008-02-22

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10{sup 14} and 10{sup 15} W/cm{sup 2} over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After {approx}0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10{sup 14} W/cm{sup 2} laser intensity and of 80% at 10{sup 15} W/cm{sup 2}. The M-band flux (2-5 keV) is negligible at 10{sup 14} W/cm{sup 2} reaching {approx}1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10{sup 15} W/cm{sup 2} laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  5. Recombination Rate Variation Modulates Gene Sequence Evolution Mainly via GC-Biased Gene Conversion, Not Hill-Robertson Interference, in an Avian System.

    Science.gov (United States)

    Bolívar, Paulina; Mugal, Carina F; Nater, Alexander; Ellegren, Hans

    2016-01-01

    The ratio of nonsynonymous to synonymous substitution rates (ω) is often used to measure the strength of natural selection. However, ω may be influenced by linkage among different targets of selection, that is, Hill-Robertson interference (HRI), which reduces the efficacy of selection. Recombination modulates the extent of HRI but may also affect ω by means of GC-biased gene conversion (gBGC), a process leading to a preferential fixation of G:C ("strong," S) over A:T ("weak," W) alleles. As HRI and gBGC can have opposing effects on ω, it is essential to understand their relative impact to make proper inferences of ω. We used a model that separately estimated S-to-S, S-to-W, W-to-S, and W-to-W substitution rates in 8,423 avian genes in the Ficedula flycatcher lineage. We found that the W-to-S substitution rate was positively, and the S-to-W rate negatively, correlated with recombination rate, in accordance with gBGC but not predicted by HRI. The W-to-S rate further showed the strongest impact on both dN and dS. However, since the effects were stronger at 4-fold than at 0-fold degenerated sites, likely because the GC content of these sites is farther away from its equilibrium, ω slightly decreases with increasing recombination rate, which could falsely be interpreted as a consequence of HRI. We corroborated this hypothesis analytically and demonstrate that under particular conditions, ω can decrease with increasing recombination rate. Analyses of the site-frequency spectrum showed that W-to-S mutations were skewed toward high, and S-to-W mutations toward low, frequencies, consistent with a prevalent gBGC-driven fixation bias.

  6. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  7. The Myth of a High Savings Rate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In an attempt to entice consumers to save less and spend more, China has focused on perfecting its social security system, reforming taxation and dividend-sharing proportion between the government and state-owned enterprises. Liu Yuhui, Director of the China Economy Appraisal and Rating Center at the Institute of Finance and Banking, the Chinese Academy of Social Sciences, offered his insights in an Economic Observer article. Edited excerpts follow

  8. The Combustion of HMX. [burning rate at high pressures

    Science.gov (United States)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  9. The effect of wind shielding and pen position on the average daily weight gain and feed conversion rate of grower/finisher pigs

    DEFF Research Database (Denmark)

    Jensen, Dan B.; Toft, Nils; Cornou, Cécile

    2014-01-01

    Pigs are known to be particularly sensitive to heat and cold. If the temperature becomes too low, the pigs will grow less efficiently and be more susceptible to diseases such as pneumonia. If the temperature is too high, the pigs will tend to foul the pen, leading to additional risks of infection...... producers and research stations have implemented a shielding to prevent winds from blowing between separate sections of the pig housing buildings. However, according to our search of the literature, no published studies have ever investigated the effectiveness of such shielding.To determine the significance...... of the effects of wind shielding, linear mixed models were fitted to describe the average daily weight gain and feed conversion rate of 1271 groups (14 individuals per group) of purebred Duroc, Yorkshire and Danish Landrace boars, as a function of shielding (yes/no), insert season (winter, spring, summer, autumn...

  10. High voltage conversion ratio, switched C & L cells, step-down DC-DC converter

    DEFF Research Database (Denmark)

    Pelan, Ovidiu; Muntean, Nicolae; Cornea, Octavian;

    2013-01-01

    The paper presents a high voltage conversion ratio DC-DC step-down topology obtained from a classical buck converter associated with an input switched-capacitor cell and an output switched-inductor cell. Analytical descriptions, the voltage and current limits of the main components are synthesized...... in a comparative form, related to the classical buck structure, in order to emphasis the advantages of the proposed converter. Digital simulations and experimental results obtained with a built prototype are compared. From the first evaluation, the proposed converter is expected to be effectively used at input...

  11. New Architecture towards Ultrathin CdTe Solar Cells for High Conversion Efficiency

    OpenAIRE

    A. Teyou Ngoupo; S. Ouédraogo; Zougmoré, F.; Ndjaka, J. M. B.

    2015-01-01

    Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) is used to investigate the possibility of realizing ultrathin CdTe based solar cells with high and stable conversion efficiency. In the first step, we modified the conventional cell structure by substituting the CdS window layer with a CdS:O film having a wide band gap ranging from 2.42 to 3.17 eV. Thereafter, we simulated the quantum efficiency, as well as the parameters of J-V characteristics, and showed how the thickness of CdS:O l...

  12. High-Resolution Conversion Electron Spectroscopy of Valence Electron Configurations (CESVEC) in Solids

    CERN Multimedia

    2002-01-01

    First measurements with the Zurich $\\beta$-spectrometer on sources from ISOLDE have demonstrated that high resolution spectroscopy of conversion electrons from valence shells is feasible.\\\\ \\\\ This makes possible a novel type of electron spectroscopy (CESVEC) on valence-electron configurations of tracer elements in solids. Thus the density of occupied electron states of impurities in solids has been measured for the first time. Such data constitute a stringent test of state-of-the-art calculations of impurity properties. Based on these results, we are conducting a systematic investigation of impurities in group IV and III-V semiconductors.

  13. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    Moving away from fossil fuels requires harvesting more and more intermittent renewable energy resources and establishing a sustainable system for the production of chemicals. This brings forward the need for efficient large scale energy storage technologies 1-3 and technologies for the conversion...... of renewable electricity to chemicals. Electrochemical reactors can play a crucial role in this endeavor, since they can efficiently and reversibly transform electricity to high-value chemicals, and thus serve as energy storage and recovery devices for balancing the grid, while offering a means...

  14. LIQUID ARGON CALORIMETER PERFORMANCE AT HIGH RATES

    CERN Document Server

    Kukhtin, V; The ATLAS collaboration

    2011-01-01

    The performance of the ATLAS liquid argon endcap and forward calorimeters has been projected at the planned high luminosity LHC option HL-LHC by exposing small calorimeter modules of the electromagnetic, hadronic, and forward calorimeters to high intensity proton beams at IHEP/Protvino accelerator. The results of HV current and of pulse shape analysis, and also the dependence of signal amplitude on beam intensity are presented.

  15. High Reproduction Rate versus Sexual Fidelity

    OpenAIRE

    Sousa, A. O.; de Oliveira, S. Moss

    2000-01-01

    We introduce fidelity into the bit-string Penna model for biological ageing and study the advantage of this fidelity when it produces a higher survival probability of the offspring due to paternal care. We attribute a lower reproduction rate to the faithful males but a higher death probability to the offspring of non-faithful males that abandon the pups to mate other females. The fidelity is considered as a genetic trait which is transmitted to the male offspring (with or without error). We s...

  16. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  17. The indications and contraindications of laparoscopic cholecystectomy and its conversion to open rate in Imam Hospital, 1372-77

    Directory of Open Access Journals (Sweden)

    Nik Kholgh A

    2000-09-01

    decision making is based on patient's general condition. The conversion to open rate was 7.4% (9 of 121 cases. Causes of conversion were: Severe adhesions, technical and enforced. There was no death after LC.

  18. Smoking Rates Still High in Some Racial Groups, CDC Reports

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160256.html Smoking Rates Still High in Some Racial Groups, CDC ... lot of progress in getting Americans to stop smoking, some groups still have high smoking rates, a ...

  19. Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres

    Science.gov (United States)

    Ducros, Nicolas; Morin, Franck; Cook, Kevin; Labruyère, Alexis; Février, Sébastien; Humbert, Georges; Druon, Fréderic; Hanna, Marc; Georges, Patrick; Canning, J.; Buczynski, Ryszard; Pysz, Dariusz; Stepien, Ryszard

    2010-04-01

    Chalcogenide or heavy metal oxide glasses are well known for their good transparency in the mid-infrared (MIR) domain as well as their high nonlinear refractive index (n2) tens to hundreds times higher than that of silica. We have investigated the nonlinear frequency conversion processes, based upon either stimulated Raman scattering (SRS) or soliton fission and soliton self-frequency shift (SSFS) in fibres made up with such highly nonlinear infrared transmitting glasses. First, SRS has been investigated in a chalcogenide As2S3 step index fibre. In the single pass configuration, under quasi continuous wave 1550 nm pumping, Raman cascade up to the forth Stokes order has been obtained in a 3 m long piece of fibre. The possibility to build a Raman laser thanks to in-fibre written Bragg gratings has also been investigated. A 5 dB Bragg grating has been written successfully in the core. Then, nonlinear frequency conversion in ultra-short pulse regime has been studied in a heavy metal oxide (lead-bismuth-gallium ternary system) glass photonic crystal fibre. Broadband radiation, from 800 nm up to 2.8 μm, has been obtained by pumping an 8 cm long piece of fibre at 1600 nm in sub-picosecond pulsed regime. The nonlinear frequency conversion process was assessed by numerical modelling taking into account the actual fibre cross-section as well as the measured linear and nonlinear parameters and was found to be due to soliton fission and Raman-induced SSFS.

  20. High frame rate imaging based photometry

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Jørgensen, U. G.; Andersen, M. I.;

    2012-01-01

    in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from...... an EMCCD is not normally distributed. Also, the readout process generates spurious charges in any CCD, but in EMCCD data, these charges are visible as opposed to the conventional CCD. Furthermore we aim to eliminate the photon waste associated with lucky imaging by combining this method with shift......-and-add. A simple probabilistic model for the dark output of an EMCCD is developed. Fitting this model with the expectation-maximization algorithm allows us to estimate the bias, readout noise, amplification, and spurious charge rate per pixel and thus correct for these phenomena. To investigate the stability...

  1. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland.

    Science.gov (United States)

    Hu, Yuansheng; Zhao, Yaqian; Zhao, Xiaohong; Kumar, Jeyakumar L G

    2012-04-17

    A new development on treatment wetland technology for the purpose of achieving high rate nitrogen removal from high strength wastewater has been made in this study. The laboratory scale alum sludge-based intermittent aeration constructed wetland (AlS-IACW) was integrated with predenitrification, intermittent aeration, and step-feeding strategies. Results obtained from 280 days of operation have demonstrated extraordinary nitrogen removal performance with mean total nitrogen (TN) removal efficiency of 90% under high N loading rate (NLR) of 46.7 g N m(-2) d(-1). This performance was a substantial improvement compared to the reported TN removal performance in literature. Most significantly, partial nitrification and simultaneous nitrification denitrification (SND) via nitrite was found to be the main nitrogen conversion pathways in the AlS-IACW system under high dissolved oxygen concentrations (3-6 mg L(-1)) without specific control. SND under high dissolved oxygen (DO) brings high nitrogen conversion rates. Partial nitrification and SND via nitrite can significantly reduce the demand for organic carbon compared with full nitrification and denitrification via nitrate (up to 40%). Overall, these mechanisms allow the system to maintaining efficient and high rate TN removal even under carbon limiting conditions.

  2. High Count Rate Electron Probe Microanalysis

    Science.gov (United States)

    Geller, Joseph D.; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller. PMID:27446749

  3. High pressure, high strain rate material strength studies

    Science.gov (United States)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  4. High-Rate Capable Floating Strip Micromegas

    CERN Document Server

    Bortfeldt, Jonathan; Biebel, Otmar; Danger, Helge; Flierl, Bernhard; Hertenberger, Ralf; Lösel, Philipp; Moll, Samuel; Parodi, Katia; Rinaldi, Ilaria; Ruschke, Alexander; Zibell, André

    2015-01-01

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60MHz/cm$^2$. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48cm$\\times$50cm with 1920 copper anode strips exhibits in 120GeV pion beams a spatial resolution of 50$\\mu$m at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below $5^\\circ$ are observed. Systematic deviations of this $\\mu$TPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4cm$\\time...

  5. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.

    Science.gov (United States)

    Xiao, Jia-Wen; Fan, Shi-Xuan; Wang, Feng; Sun, Ling-Dong; Zheng, Xiao-Yu; Yan, Chun-Hua

    2014-04-21

    Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 10(7) M(-1) cm(-1)), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm(-2), 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm(-2). These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.

  6. Porous Pt Nanoparticles with High Near-Infrared Photothermal Conversion Efficiencies for Photothermal Therapy.

    Science.gov (United States)

    Zhu, Xiao-Ming; Wan, Hong-Ye; Jia, Henglei; Liu, Liang; Wang, Jianfang

    2016-12-01

    Plasmonic nanostructures are of potential in acting as a type of optical agents for cancer photothermal therapy. To effectively function as photothermal therapy agents, plasmonic nanostructures are strongly desired to have good biocompatibility and high photothermal conversion efficiencies. In this study, poly(diallyldimethylammonium chloride)-coated porous Pt nanoparticles are synthesized for photothermal therapy. The Pt nanoparticles possess broadband near-infrared light absorption in the range from 650 to 1200 nm, therefore allowing for selecting different laser wavelengths for photothermal therapy. The as-prepared Pt nanoparticles exhibit remarkable photothermal conversion efficiencies under 809 and 980 nm laser irradiation. In vitro studies indicate that the Pt nanoparticles display good biocompatibility and high cellular uptake efficiencies through an endocytosis pathway. Photothermal heating using 808 nm laser irradiation (>7.0 W cm(-2) , 3 min) leads to notable cytotoxic effect, and more than 70% of cells are photothermally ablated after 3 min irradiation at 8.4 W cm(-2) . Furthermore, simultaneous application of photothermal therapy synergistically enhances the cytotoxicity of an anti-cancer drug doxorubicin. Therefore, the porous Pt nanoparticles have great potential as an attractive photothermal agent for cancer therapy.

  7. Conversion of Mountain Beech Coppices into High Forest: An Example for Ecological Intensification.

    Science.gov (United States)

    Mattioli, Walter; Ferrari, Barbara; Giuliarelli, Diego; Mancini, Leone Davide; Portoghesi, Luigi; Corona, Piermaria

    2015-11-01

    Converting beech coppices into high forest stands has been promoted in the last decades as a management goal to attenuate the negative effects that frequent clearcutting may have on soil, landscape, and biodiversity conservation. The silvicultural tool usually adopted is the gradual thinning of shoots during the long span of time required to complete the conversion, that also allows the owner to keep harvesting some wood. This research reports and discusses, in the light of the ecological intensification approach, the results achieved from an experimental test started more than 25 years ago in a 42-year-old beech (Fagus sylvatica L.) coppice with standards in central Italy. The effects of various thinning intensities (three treatments plus a control) on the stand growth and structure are assessed by successive forest inventories. Analyses are integrated by spatial indices to assess stem density and canopy cover. Converting beech coppices into high forest through gradual thinning of shoots proves to be an effective step down the road to silvicultural systems characterized by continuous forest cover, as a tool of ecological intensification suitable to guarantee both public and private interests. Thinning has led to stands with fewer but larger stems, thus accelerating the long conversion process while maintaining both wood harvesting capability and environmental services.

  8. Conversion of Mountain Beech Coppices into High Forest: An Example for Ecological Intensification

    Science.gov (United States)

    Mattioli, Walter; Ferrari, Barbara; Giuliarelli, Diego; Mancini, Leone Davide; Portoghesi, Luigi; Corona, Piermaria

    2015-11-01

    Converting beech coppices into high forest stands has been promoted in the last decades as a management goal to attenuate the negative effects that frequent clearcutting may have on soil, landscape, and biodiversity conservation. The silvicultural tool usually adopted is the gradual thinning of shoots during the long span of time required to complete the conversion, that also allows the owner to keep harvesting some wood. This research reports and discusses, in the light of the ecological intensification approach, the results achieved from an experimental test started more than 25 years ago in a 42-year-old beech ( Fagus sylvatica L.) coppice with standards in central Italy. The effects of various thinning intensities (three treatments plus a control) on the stand growth and structure are assessed by successive forest inventories. Analyses are integrated by spatial indices to assess stem density and canopy cover. Converting beech coppices into high forest through gradual thinning of shoots proves to be an effective step down the road to silvicultural systems characterized by continuous forest cover, as a tool of ecological intensification suitable to guarantee both public and private interests. Thinning has led to stands with fewer but larger stems, thus accelerating the long conversion process while maintaining both wood harvesting capability and environmental services.

  9. Photovoltaic Energy Conversion System Constructed by High Step-Up Converter with Hybrid Maximum Power Point Tracking

    OpenAIRE

    Hwu, K. I.; Tu, W. C.; Wang, C.R.

    2013-01-01

    A photovoltaic energy conversion system, constructed by high step-up converter with hybrid maximum power point tracking (HMPPT), is presented. A voltage converter with a high voltage conversion ratio is proposed, which is simple in circuit and easy in control. After this, such a converter operating with a suitable initial duty cycle of the pulsewidth-modulated (PWM) control signal, together with the proposed HMPPT algorithm combining the fractional open-circuit voltage method and the incremen...

  10. High dose rate brachytherapy source measurement intercomparison.

    Science.gov (United States)

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  11. Rate and Predictors of the Conversion of Abstracts Presented at the Canadian Cardiovascular Congress Scientific Meetings to Full Peer-Reviewed Publications

    DEFF Research Database (Denmark)

    Abuzeid, Wael; Fosbøl, Emil Loldrup; Fosbøl, Philip Loldrup

    2013-01-01

    abstracts presented at the Canadian Cardiovascular Congress (CCC) from 2006 to 2010 into peer-reviewed article publications within 2 years of their initial presentation. Using a previously validated computer algorithm, we searched the International Statistical Institute Web of Science to identify peer......The rate of conversion of abstracts presented at scientific meetings into peer-reviewed published manuscripts is an important metric for medical societies, because it facilitates translation of scientific knowledge into practice. We determined the rate and predictors of conversion of scientific...

  12. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion

    Science.gov (United States)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-11-01

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile

  13. Liquid argon calorimeter performance at high rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2012-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $10^{12}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  14. Liquid Argon Calorimeter performance at High Rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2013-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  15. High-deposition-rate ceramics synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Osterheld, T.H.; Outka, D.A. [Sandia National Laboratories, Livermore, CA (United States)] [and others

    1995-05-01

    Parallel experimental and computational investigations are conducted in this project to develop validated numerical models of ceramic synthesis processes. Experiments are conducted in the High-Temperature Materials Synthesis Laboratory in Sandia`s Combustion Research Facility. A high-temperature flow reactor that can accommodate small preforms (1-3 cm diameter) generates conditions under which deposition can be observed, with flexibility to vary both deposition temperature (up to 1500 K) and pressure (as low as 10 torr). Both mass spectrometric and laser diagnostic probes are available to provide measurements of gas-phase compositions. Experiments using surface analytical techniques are also applied to characterize important processes occuring on the deposit surface. Computational tools developed through extensive research in the combustion field are employed to simulate the chemically reacting flows present in typical industrial reactors. These include the CHEMKIN and Surface-CHEMKIN suites of codes, which permit facile development of complex reaction mechanisms and vastly simplify the implementation of multi-component transport and thermodynamics. Quantum chemistry codes are also used to estimate thermodynamic and kinetic data for species and reactions for which this information is unavailable.

  16. High rate fabrication of compression molded components

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.; Smith, Glen L.; Miller, Robert J.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; and applying molding pressure to the pre-form to form the composite component.

  17. The modern high rate digital cassette recorder

    Science.gov (United States)

    Clemow, Martin

    1993-01-01

    The magnetic tape recorder has played an essential role in the capture and storage of instrumentation data for more than thirty years. During this time, data recording technology has steadily progressed to meet user demands for more channels, wider bandwidths, and longer recording durations. When acquisition and processing moved from analog to digital techniques, so recorder design followed suit. Milestones marking the evolution of the data recorder through these various stages - multi-track analog, high density longitudinal digital, and more recently rotary digital - have often represented important breakthroughs in the handling of ever-greater quantities of data. Throughout this period there has been a very clear line of demarcation between data storage methods in the 'instrumentation world' on the one hand and the 'computer peripheral world' on the other. This is despite the fact that instrumentation data, whether analog or digital at the point of acquisition, is now likely to be processed on a digital computer at some stage. Regardless of whether the processing device is a small personal computer, a workstation, or the largest supercomputer, system integrators have traditionally been faced with the same basic problem - how to interface what is essentially a manually controlled, continuously running device (the tape recorder) into the fast start/stop computer environment without resorting to an excessive amount of complex custom interfacing and performance compromise. The increasing availability of affordable high power processing equipment throughout the scientific world is forcing recorder manufacturers to make their latest and perhaps most important breakthrough - the computer-friendly data recorder. The operating characteristics of such recorders are discussed and the resultant impact on both data acquisition and data analysis elements of system configuration are considered.

  18. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency.

    Science.gov (United States)

    Chang, Chieh; Tran, Van H; Wang, Junbo; Fuh, Yiin-Kuen; Lin, Liwei

    2010-02-10

    Nanogenerators capable of converting energy from mechanical sources to electricity with high effective efficiency using low-cost, nonsemiconducting, organic nanomaterials are attractive for many applications, including energy harvesters. In this work, near-field electrospinning is used to direct-write poly(vinylidene fluoride) (PVDF) nanofibers with in situ mechanical stretch and electrical poling characteristics to produce piezoelectric properties. Under mechanical stretching, nanogenerators have shown repeatable and consistent electrical outputs with energy conversion efficiency an order of magnitude higher than those made of PVDF thin films. The early onset of the nonlinear domain wall motions behavior has been identified as one mechanism responsible for the apparent high piezoelectricity in nanofibers, rendering them potentially advantageous for sensing and actuation applications.

  19. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    Moving away from fossil fuels requires harvesting more and more intermittent renewable energy resources and establishing a sustainable system for the production of chemicals. This brings forward the need for efficient large scale energy storage technologies 1-3 and technologies for the conversion...... densities. This work will provide an overview of our efforts to develop components of such high temperature alkaline electrochemical reactors for different applications. Low-cost large-scale production methods have been successfully employed for the production of ceramic diaphragms and full cells...... of renewable electricity to chemicals. Electrochemical reactors can play a crucial role in this endeavor, since they can efficiently and reversibly transform electricity to high-value chemicals, and thus serve as energy storage and recovery devices for balancing the grid, while offering a means...

  20. A One-Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Zhang, Jing; Xie, Songlin; Wan, Fang; Deng, Jue; Cheng, Xunliang; Hu, Yajie; Liao, Meng; Wang, Bingjie; Sun, Xuemei; Peng, Huisheng

    2017-08-26

    Electricity generation from flowing water has been developed for over a century and plays a critical role in our lives. Generally, heavy and complex facilities are required for electricity generation, while using these technologies for applications that require a small size and high flexibility is difficult. Here, we developed a fluidic nanogenerator fiber from an aligned carbon nanotube sheet to generate electricity from any flowing water source in the environment as well as in the human body. The power conversion efficiency reached 23.3 %. The fluidic nanogenerator fiber was flexible and stretchable, and the high performance was well-maintained after deformation over 1 000 000 cycles. The fiber also offered unique and promising advantages, such as the ability to be woven into fabrics for large-scale applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Conversion of Dynamic High Pressures from Air to Water for a Spherical TNT Charge

    Directory of Open Access Journals (Sweden)

    A. K. Sharma

    1996-01-01

    Full Text Available A numerical method has been applied to convert the dynamic high pressures from air-to-water for a spherical TNT charge. Standard equation of scaling law in air for TNT has been utilised to make the necessary conversions. The investigations have been made by taking into consideration the ambient pressure values for the two media. The calculations have been performed under the scaled distances to get better results. Experimental measurements using indigenous blast pressure gauge have been undertaken by detonating spherical charges of TNT under the same scaled distances in water to check the correctness of results and direct application of this method. A fairly close agreement between the theoretically computed and the experimental values of the dynamic high pressures shows the practical utility of this approach in that it enables an estimate of the experimental shock wave pressures, without conducting underwater experiments.

  2. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind......This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...

  3. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  4. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  5. High data rate optical transceiver terminal

    Science.gov (United States)

    Clarke, E. S.

    1973-01-01

    The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.

  6. New Measurements Using External Photon Conversion at a High Luminosity B Factory

    CERN Document Server

    Ishino, H; Nakao, M; Yoshikawa, T

    2007-01-01

    We propose two novel methods for testing the standard model using external photon conversion at a high-luminosity e^+e^- B factory proposed recently. The first method is to measure the mixing-induced CP-violation parameter S_{pi^0pi^0} in B^0 --> pi^0 pi^0 decays. The precision of S_{pi^0pi^0} is estimated to be 0.23 from a Monte Carlo study for a data sample containing 50 x 10^9 BBbar pairs. We demonstrate that this measurement is crucial for reducing the discrete ambiguity of the Cabibbo-Kobayashi-Maskawa angle phi_2 determined from the isospin analysis with B --> pi pi decays. The second method is to measure photon polarization in B^0 --> K^{*0}(--> K^+ pi^-) gamma decays using the external photon conversion, and combine it with S_{K^{*}gamma} from B^0 --> K^{*0}(--> K^0_S pi^0) gamma decays. This offers a promising way of determining the hypothetical right-handed current amplitude and phase beyond the standard model.

  7. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    Science.gov (United States)

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.

  8. Speaking rate, conversational speech acts, interruption, and linguistic complexity of 20 pre-school stuttering and non-stuttering children and their mothers.

    Science.gov (United States)

    Ryan, B P

    2000-01-01

    This is the second in a series of reports concerning stuttering pre-school children enrolled in a longitudinal study; the first was Ryan (1992). Conversational samples of 20 stuttering and 20 non-stuttering pre-school children and their mothers were analysed for speaking rate, conversational speech acts, interruption, and linguistic complexity. Between-group analyses revealed few differences between either the two children or two mother groups. Within-group analyses indicated differences that involved conversational speech acts and linguistic complexity. Most stuttering occurred on statements (M = 32.3% stuttered) and questions (M = 20.9% stuttered). Stuttered and disfluent sentences had higher Developmental Sentence Scoring (DSS) (Lee, 1974) scores (M = 10.9, 12.9, respectively) than fluent sentences (M = 7.6). Multiple correlation analyses indicated that speaking rate of mothers (0.561) and normal disfluency of children (0.396) were major predictor variables.

  9. The Effect of Minimum Wage Rates on High School Completion

    Science.gov (United States)

    Warren, John Robert; Hamrock, Caitlin

    2010-01-01

    Does increasing the minimum wage reduce the high school completion rate? Previous research has suffered from (1. narrow time horizons, (2. potentially inadequate measures of states' high school completion rates, and (3. potentially inadequate measures of minimum wage rates. Overcoming each of these limitations, we analyze the impact of changes in…

  10. Effects of zilpaterol hydrochloride on growth rates, feed conversion, and carcass traits in calf-fed Holstein steers.

    Science.gov (United States)

    Beckett, J L; Delmore, R J; Duff, G C; Yates, D A; Allen, D M; Lawrence, T E; Elam, N

    2009-12-01

    Two experiments were conducted to evaluate the effectiveness of zilpaterol hydrochloride (ZH) to enhance growth performance and carcass characteristics in calf-fed Holstein steers. In Exp. 1, Holstein steers (n = 2,311) were fed in a large-pen trial in 2 phases at a commercial feed yard in the desert Southwest. In Exp. 2, a total of 359 steers were fed in a small-pen university study. In Exp. 1 and 2, cattle were implanted with a combination trenbolone acetate-estradiol implant approximately 120 d before slaughter. Cattle were fed ZH for 0, 20, 30, or 40 d before slaughter at a rate of 8.3 mg/kg (DM basis). A 3-d withdrawal was maintained immediately before slaughter. Cattle within an experiment were fed to a common number of days on feed. During the last 120 d before slaughter, ADG was not enhanced by feeding ZH for 20 d (P = 0.33 in Exp. 1, and P = 0.79 in Exp. 2). Gain-to-feed conversion was increased by feeding ZH for all durations in Exp. 1 (P Feeding ZH increased HCW by 9.3 (Exp. 2) to 11.6 (Exp. 1) kg at 20 d compared with the control groups. Across both experiments, dressing percent was increased for all durations of feeding ZH (P feeding ZH for 20 d in either experiment (P >or= 0.6), LM area was increased for all durations of feeding ZH (P feeding ZH in Exp. 1. This effect was not observed in Exp. 2. Holstein steers clearly respond to the beta-agonist ZH, and 20 d of feeding ZH with a 3-d withdrawal significantly increased carcass weights, muscling, and carcass leanness.

  11. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations

    NARCIS (Netherlands)

    Besson, M.; Aubin, J.; Komen, H.; Poelman, M.; Quillet, E.; Vandeputte, M.; Arendonk, Van J.A.M.; Boer, De I.J.M.

    2016-01-01

    Today, fish farming faces an increasing demand in fish products, but also various environmental challenges. Genetic improvement in growth rate and feed conversion ratio is known to be an efficient way to increase production and increase efficiency in fish farming. The environmental consequences o

  12. High regression rate, high density hybrid fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  13. Report of feasibility study on international-cooperation in high efficient energy conversion technology

    Science.gov (United States)

    1993-03-01

    With regard to accelerated introduction of high efficient energy conversion technology to developing countries, the paper investigates the countries' thoughts of the introduction of the technology and the status of the introduction bases. The countries for survey are the Philippines, Indonesia, Malaysia and Thailand. The Philippine government expects to develop cogeneration as well as large power sources and to widen effective use of natural energy. In Indonesia, they largely expect effective use of biomass energy using Stirling engines by international cooperation and the promoted local electrification using standalone distributed fuel cells. In Malaysia, they have great expectations of the introduction of air conditioning facilities using Stirling engines and the use of standalone distributed fuel cells for promotion of local electrification. Thailand hopes for the use of Stirling engines to air conditioning systems, and the development of solar Stirling generators with solar energy as a heat source and electric vehicles.

  14. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode

    DEFF Research Database (Denmark)

    Marina, O.A.; Mogensen, Mogens Bjerg

    1999-01-01

    such as nickel and platinum. CG4 was found to exhibit a low electrocatalytic activity for methane oxidation as well as no significant reforming activity implying that the addition of an electrocatalyst or cracking catalyst to the CG4 anode is required for SOFC operating on methane. The methane conversion......Direct electrochemical oxidation of methane was attempted on a gadolinia-doped ceria Ce(0.6)Gd(0.4)O(1.8) (CG4) electrode in a solid oxide fuel cell using a porous gold-CG4 mixture as current collector Gold is relatively inert to methane in contrast to other popular SOFC anode materials...... observed at the open-circuit potential and low anodic overpotentials seems to be due to thermal methane cracking in the gas phase and on the alumina surfaces in the cell housing. At high anodic overpotentials, at electrode potentials where oxygen evolution was expected to take place, the formation of CO(2...

  15. Targeted high and low speech frequency bands to right and left ears respectively improve task performance and perceived sociability in dyadic conversations.

    Science.gov (United States)

    Gregory, Stanford W; Kalkhoff, Will; Harkness, Sarah K; Paull, Jessica L

    2009-07-01

    Past research shows that the lower nonverbal frequencies of the human voice, beneath .5 kHz, transmit an acoustic signal promoting social convergence and status accommodation between human interlocutors. We conducted a laboratory experiment and a validation study to explore the possible communications benefits of targeting the low-frequency band to the left ears of human participants and the high-frequency band to the right ears. We compare this "Enhanced" condition with two other conditions: a "Confounded" condition, in which the low-frequency band was targeted to participants' right ears and the higher-frequency band to their left ears; and a Control condition, in which the entire unaltered frequency band was targeted to both ears. For the duration of their interaction, experiment participants engaged in dyadic conversations while attempting to complete a task via an audio-visual communication system. Our results show that both the speed and accuracy of task completion were significantly improved in the Enhanced condition. In the second validation study, groups of participants rated the quality of videotaped conversations from the experiment using a semantic differential instrument. The Enhanced condition conversations were rated significantly more affectively favourable than either the unaltered Control or Confounded condition conversations. Overall, our results exhibit potential for enhancing two-way electronic communications and improving task performances in media environments.

  16. Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. P.; Edwards, M. S.

    1978-06-01

    In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

  17. Strain rate effect in high-speed wire drawing process

    Science.gov (United States)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  18. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  19. Tailoring Membrane Nanostructure and Charge Density for High Electrokinetic Energy Conversion Efficiency.

    Science.gov (United States)

    Haldrup, Sofie; Catalano, Jacopo; Hinge, Mogens; Jensen, Grethe V; Pedersen, Jan S; Bentien, Anders

    2016-02-23

    The electrokinetic energy conversion (EKEC) of hydraulic work directly into electrical energy has been investigated in charged polymeric membranes with different pore charge densities and characteristic diameters of the nanoporous network. The membranes were synthesized from blends of nitrocellulose and sulfonated polystyrene (SPS) and were comprehensively characterized with respect to structure, composition, and transport properties. It is shown that the SPS can be used as a sacrificial pore generation medium to tune the pore size and membrane porosity, which in turn highly affects the transport properties of the membranes. Furthermore, it is shown that very high EKEC efficiencies (>35%) are encountered in a rather narrow window of the properties of the nanoporous membrane network, that is, with pore diameters of ca. 10 nm and pore charge densities of 4.6 × 10(2) to 1.5 × 10(3) mol SO3(-) m(-3) for dilute solutions (0.03 M LiCl). The high absolute value of the efficiency combined with the determination of the optimal membrane morphology makes membrane-based EKEC devices a step closer to practical applications and high-performance membrane design less empirical.

  20. Spin-symmetry conversion and internal rotation in high J molecular systems

    Science.gov (United States)

    Mitchell, Justin; Harter, William

    2006-05-01

    Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.

  1. High quality LaVO3 films as solar energy conversion material.

    Science.gov (United States)

    Zhang, Hai-Tian; Brahlek, Matthew J; Ji, Xiaoyu; Lei, Shiming; Lapano, Jason; Freeland, John W; Gopalan, Venkatraman; Engel-Herbert, Roman

    2017-03-21

    Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron-hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron-electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency. Utilizing the self-regulated growth kinetics in hybrid molecular beam epitaxy this obstacle can be overcome. High quality, stoichiometric LaVO3 films were grown with defect densities of in-gap states up to two orders of magnitude lower compared to the films in literature, and a factor of three lower than LaVO3 bulk single crystals. Photoconductivity measurements revealed a significant photo-responsivity increase as high as 10-fold of stoichiometric LaVO3 films compared to their nonstoichiometric counterparts. This work marks a critical step towards the realization of high performance Mott insulator solar cells beyond conventional semiconductors.

  2. Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems

    Institute of Scientific and Technical Information of China (English)

    Oskars Ozolins; Vjaceslavs Bobrovs

    2015-01-01

    In this work we study all-optical multi-channel return-to-zero (RZ)-on-off keying (OOK) to nonreturn-to-zero (NRZ)-OOK format conversion in single uniform fiber Bragg grating (FBG) for mixed line-rate dense wavelength-division multiplexing systems using mathematical simulations.Forty and 20 Gbit/s RZ-OOK signals with 33% and 50% duty cycles are converted to NRZ-OOK signals in single uniform FBG with 21% reflectivity.Impact of amplitude noise from FBG contrast profile on modulation format conversion efficiency is also studied.

  3. Energy Conversion in High Enthalpy Flows and Non-equilibrium Plasmas

    Science.gov (United States)

    2014-01-01

    energy transfer processes that figure in the study and development of high power gas lasers . Non-equilibrium is defined here as occurring in a fluid...involves the development of a high power laser using carbon monoxide produced by reacting entrained air with carbon. The laser is to develop a total...nitric oxide planar laser induced fluorescence (NO PLIF), high frame rate nitric dioxide molecular tagging velocimetry (NO2 MTV), picosecond

  4. Automatic conversational scene analysis in children with Asperger syndrome/high-functioning autism and typically developing peers.

    Science.gov (United States)

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.

  5. Automatic conversational scene analysis in children with Asperger syndrome/high-functioning autism and typically developing peers.

    Directory of Open Access Journals (Sweden)

    Alessandro Tavano

    Full Text Available Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs. SCPs assume that whenever an agent's process changes state (e.g., from silence to speech, it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.

  6. Automatic Conversational Scene Analysis in Children with Asperger Syndrome/High-Functioning Autism and Typically Developing Peers

    Science.gov (United States)

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior. PMID:24489674

  7. A novel on-chip high to low voltage power conversion circuit

    Institute of Scientific and Technical Information of China (English)

    Wang Hui; Wang Songlin; Lai Xinquan; Ye Qiang; Mou Zaixin; Li Xianrui; Guo Baolong

    2009-01-01

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6μm BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm2 area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/℃. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  8. High Blood Pressure Rates Have Doubled Worldwide Since 1975

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162069.html High Blood Pressure Rates Have Doubled Worldwide Since 1975 Most of ... News) -- The number of people worldwide with high blood pressure has nearly doubled over the past 40 years, ...

  9. Free radical suspension polymerization kinetics of styrene up to high conversion

    NARCIS (Netherlands)

    Tefera, Nurelegne; Weickert, Günter; Bloodworth, Robert; Schweer, Johannes

    1994-01-01

    Styrene was polymerized using different amounts of azoisobutyronitrile as initiator at temperatures of 70°C, 75°C and 80°C in suspension. The course of reaction up to almost complete conversion was modeled within a classical kinetic framework. Optimal simultaneous descriptions of both conversion and

  10. High-shear-rate capillary viscometer for inkjet inks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xi [FUJIFILM Dimatix, Inc., Lebanon, New Hampshire 03766 (United States); Carr, Wallace W.; Bucknall, David G. [School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Morris, Jeffrey F. [Department of Chemical Engineering and Benjamin Levich Institute for Physico-Chemical Hydrodynamics, City College of New York, New York, New York 10031 (United States)

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  11. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model.

    Science.gov (United States)

    Rahim, Muhammad Imran; Tavares, Ana; Evertz, Florian; Kieke, Marc; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Willbold, Elmar; Jürgen Maier, Hans; Glasmacher, Birgit; Behrens, Peter; Hauser, Hansjörg; Mueller, Peter P

    2016-05-06

    Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  12. Circuit and interconnect design for high bit-rate applications

    NARCIS (Netherlands)

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate applicati

  13. High Graduate Unemployment Rate and Taiwanese Undergraduate Education

    Science.gov (United States)

    Wu, Chih-Chun

    2011-01-01

    An expansion in higher education in combination with the recent global economic recession has resulted in a high college graduate unemployment rate in Taiwan. This study investigates how the high unemployment rate and financial constraints caused by economic cutbacks have shaped undergraduates' class choices, job needs, and future income…

  14. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    Science.gov (United States)

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  15. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor;

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor...

  16. Dose-rate conversion factors for external exposure to photon and electron radiation from radionuclides occurring in routine releases from nuclear fuel cycle facilities. [Conversion factors are given for dose rates to 21 organs from 240 different radionuclides for 3 different modes of exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, D.C.

    1979-02-01

    Dose-rate conversion factors for external exposure to photon and electron radiation have been calculated for 240 radionuclides of potential importance in routine releases from nuclear fuel cycle facilities. Dose-rate conversion factors for immersion in contaminated air, immersion in contaminated water, and exposure to a contaminated ground surface are estimated for tissue-equivalent material at the body surface of an exposed individual. For each exposure mode, photon dose-rate conversion factors are also estimated for 22 body organs. The calculations assume that the contaminated air, water, and ground surface are infinite in extent and that the radionuclide concentration is uniform. Dose-rate conversion factors for immersion in contaminated air and water are based on the requirement that all energy emitted in the decay of a radionuclide is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated for a height of 1 m using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air. The computer code DOSFACTER written to perform the calculations is described and documented.

  17. Investigation of the Performance of D2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This report presents FY13 activities for the analysis of D2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relative fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and

  18. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    Science.gov (United States)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Selective catalytic conversion of bio-oil over high-silica zeolites.

    Science.gov (United States)

    Widayatno, Wahyu Bambang; Guan, Guoqing; Rizkiana, Jenny; Du, Xiao; Hao, Xiaogang; Zhang, Zhonglin; Abudula, Abuliti

    2015-03-01

    Four high silica zeolites, i.e., HSZ-385, 890, 960, and 990 were utilized for the selective catalytic conversion of bio-oil from Fallopia japonica to certain chemicals in a fixed-bed reactor. The Beta-type HSZ-960 zeolite showed the highest selectivity to hydrocarbons, especially to aromatics as well as PAH compounds with the lowest unwanted chemicals while HSZ-890 showed high selectivity to aromatics. NH3-Temperature Programmed Desorption (TPD) analysis indicated that different amounts of acid sites in different zeolites determined the catalytic activity for the oxygen removal from bio-oil, in which the acid sites at low temperature (LT) region gave more contribution within the utilized temperature region. The reusability test of HSZ-960 showed the stability of hydrocarbons yield at higher temperature due to the significant contribution of coke gasification which assisted further deoxygenation of bio-oil. These results provide a guidance to select suitable zeolite catalysts for the upgrading of bio-oil in a practical process.

  20. Solar energy conversion by using solar-pumped laser and high-temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Arashi, Haruo; Nigara, Yutaka; Ishigame, Mareo

    1988-08-10

    For the purpose of conversion and storage of solar energy, the development of solar-pumped laser has been carried out from a stand point of the optical behavior, and the fundamental experimental study on high-temperature steam electrolysis has been performed from a view point of the thermal behavior. From these investigations, their effects on the utilization of solar energy were clarified. The solar radiation was successfully converted to a coherent laser radiation with wave length of 1.06 micro m by a water-cooled Nd:YAG laser rod in the solar concentrator with focal distance of 3.2m and diameter of 10m. The output of the laser of 40 W was obtained. The experiment on high-temperature steam electrolysis was conducted at the temperature range of 1070 to 1670 K in an electric furnace which simulates solar heating using ZrO/sub 2/ + 8 mol%Y/sub 2/O/sub 3/ as an electrolyte, and it was confirmed that hydrogen is produced with 92% in efficiency. (13 figs, 12 refs)

  1. A Low-Cost Time-Hopping Impulse Radio System for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Jinyun Zhang

    2005-03-01

    Full Text Available We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are (i all-baseband implementation that obviates the need for passband components, (ii symbol-rate (not chip rate sampling, A/D conversion, and digital signal processing, (iii fast acquisition due to novel search algorithms, and (iv spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110 Mbps at 7–10 m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.

  2. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    Science.gov (United States)

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels.

  3. Miniature High Stability High Temperature Space Rated Blackbody Radiance Source

    Science.gov (United States)

    Jones, J. A.; Beswick, A. G.

    1987-09-01

    This paper presents the design and test performance of a conical cavity type blackbody radiance source that will meet the requirements of the Halogen Occultation Experiment (HALOE) on the NASA Upper Atmospheric Research Satellite program (UARS). Since a radiance source meeting the requirements of this experiment was unavailable in the commercial market, a development effort was undertaken by the HALOE Project. The blackbody radiance source operates in vacuum at 1300 K + 0.5 K over any 15-minute interval, uses less than 7.5 watts of power, maintains a 49°C outer case temperature, and fits within the 2.5 x 2.5 x 3.0 inch envelope allocated inside the HALOE instrument. Also, the unit operates in air, during ground testing of the HALOE instrument, where it uses 17 watts of power with an outer case temperature of 66°C. The thrust of this design effort was to minimize the heat losses, in order to keep the power usage under 7.5 watts, and to minimize the amount of silica in the materials. Silica in the presence of the platinum heater winding used in this design would cause the platinum to erode, changing the operating temperature set-point. The design required the development of fabrication techniques which would provide very small, close tolerance parts from extremely difficult-to-machine materials. Also, a space rated ceramic core and unique, low thermal conductance, ceramic-to-metal joint was developed, tested and incorporated in this design. The completed flight qualification hardware has undergone performance, environmental and life testing. The design configuration and test results are discussed in detail in this paper.

  4. Ultrabroad-band wavelength converter with high flattening conversion efficiency in a semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Xu(徐晓峰); Jue Wei(韦珏); Zhihui Kang(康智慧); Yun Jiang(姜云); Huifang Zhang(张惠芳); Jinyue Gao(高锦岳)

    2004-01-01

    The efficiency of ultrabroad-band wavelength conversion using orthogonal-pump four-wave mixing in a semiconductor optical amplifier is measured for the wavelength shifts from 1500 to 1640 nm. The variation of conversion efficiency is < 0.9 dB over the wavelength range from 1530 to 1560 nm (C-band), and < 4.5dB over the wavelength range from 1560 to 1610 nm (L-band). The maximum conversion efficiency is about -8.7 dB.

  5. High frame-rate neutron radiography of dynamic events

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, R.H.; Robinson, A.H.; Barton, J.P.

    1981-11-20

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames/second. Synchronization has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two-phase flow. The equipment uses the Oregon State University TRIGA reactor capable of pulsing to 3000 MW peak power, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 10/sup 11/ n/cm/sup 2/s with a pulse, full width at half maximum, of 9 ms. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on the image quality. Modulation transfer function analysis has been used to assist in the evaluation of the system performance.

  6. Are high real interest rates bad for world economic growth?

    OpenAIRE

    1991-01-01

    There is a conventional perception that high real interest rates are bad for economic growth. However, the authors show that close examination of the experience over the last 40 years undermines the existence of such a relationship. For much of the 1950-79 period, expost real interest rates were less than the growth rate of income in the major economies, whereas the 1980s were a period of rapid growth in the world economy that coincided withunprecedentedly high real interest rates. The author...

  7. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    Science.gov (United States)

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-07-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3‑xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity.

  8. Biosyngas Fischer. Tropsch conversion by high Fe loaded supported catalysts prepared with ultrasound and microwave

    Energy Technology Data Exchange (ETDEWEB)

    Pirola, C.; Di Fronzo, A.; Boffito, D.C.; Bianchi, C. [Milano Univ. (Italy). Dipt. di Chimica; Di Michele, A. [Perugia Univ. (Italy). Dipt. di Fisica

    2012-07-01

    Catalysts with iron high loading of 30 wt%, promoted with K (2.0 wt%) and Cu (3.75 wt%), have been synthesized according to three different methods: (1) the traditional impregnation method (TR); (2) Ultrasound (US) assisted TR method; (3) Microwave (MW) assisted TR method. All the samples have been fully characterized by BET, ICP/OES, XRPD, TG-DTA, FT-IR, TPR, SEM and TEM and tested in a laboratory pilot plant for Fischer-Tropsch synthesis working at 220 C and 20 bar. The results of the catalysts characterization indicated that the morphology of the samples strongly depends on the method of preparation. The best FTS results in term of C{sub 2+} yield (41%) has been obtained using MW with a good value of the selectivity towards heavy hydrocarbons, while in term of CO conversion (58%), using US. The samples prepared with non-traditional methods show FTS better results, probably due to a more wide and uniform distribution of Fe in the medium during the synthesis phase. (orig.)

  9. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  10. High-Efficiency, Nanowire Based Thermoelectric Devices for Radioisotope Power Conversion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal responds to topic S3.03 of the 2010 NASA SBIR solicitation, for Power Generation and Conversion. Thermoelectric devices offer a simple and...

  11. Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens

    Directory of Open Access Journals (Sweden)

    Rosa Guilherme JM

    2009-01-01

    Full Text Available Abstract Accuracy of prediction of yet-to-be observed phenotypes for food conversion rate (FCR in broilers was studied in a genome-assisted selection context. Data consisted of FCR measured on the progeny of 394 sires with SNP information. A Bayesian regression model (Bayes A and a semi-parametric approach (Reproducing kernel Hilbert Spaces regression, RKHS using all available SNPs (p = 3481 were compared with a standard linear model in which future performance was predicted using pedigree indexes in the absence of genomic data. The RKHS regression was also tested on several sets of pre-selected SNPs (p = 400 using alternative measures of the information gain provided by the SNPs. All analyses were performed using 333 genotyped sires as training set, and predictions were made on 61 birds as testing set, which were sons of sires in the training set. Accuracy of prediction was measured as the Spearman correlation (r¯S MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafmOCaiNbaebadaWgaaWcbaGaem4uamfabeaaaaa@2EB5@ between observed and predicted phenotype, with its confidence interval assessed through a bootstrap approach. A large improvement of genome-assisted prediction (up to an almost 4-fold increase in accuracy was found relative to pedigree index. Bayes A and RKHS regression were equally accurate (r¯S MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafmOCaiNbaebadaWgaaWcbaGaem4uamfabeaaaaa@2EB5@ = 0.27 when all 3481 SNPs were included in the model. However, RKHS with 400 pre-selected informative SNPs was more accurate than Bayes A with all SNPs.

  12. High Strain Rate Compressive Tests on Woven Graphite Epoxy Composites

    Science.gov (United States)

    Allazadeh, Mohammad Reza; Wosu, Sylvanus N.

    2011-08-01

    The behavior of composite materials may be different when they are subjected to high strain rate load. Penetrating split Hopkinson pressure bar (P-SHPB) is a method to impose high strain rate on specimen in the laboratory experiments. This research work studied the response of the thin circular shape specimens, made out of woven graphite epoxy composites, to high strain rate impact load. The stress-strain relationships and behavior of the specimens were investigated during the compressive dynamic tests for strain rates as high as 3200 s-1. One dimensional analysis was deployed for analytical calculations since the experiments fulfilled the ratio of diameter to length of bars condition in impact load experiments. The mechanics of dynamic failure was studied and the results showed the factors which govern the failure mode in high strain deformation via absorbed energy by the specimen. In this paper, the relation of particle velocity with perforation depth was discussed for woven graphite epoxy specimens.

  13. Ultra-High-Speed Optical Serial-to-Parallel Data Conversion in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2011-01-01

    We demonstrate conversion from 64×10 Gbit/s OTDM to 25 GHz DWDM by time-domain optical Fourier transformation. Using a single silicon nanowire, 40 of 64 OTDM tributaries are simultaneously converted to DWDM channels within FEC limits.......We demonstrate conversion from 64×10 Gbit/s OTDM to 25 GHz DWDM by time-domain optical Fourier transformation. Using a single silicon nanowire, 40 of 64 OTDM tributaries are simultaneously converted to DWDM channels within FEC limits....

  14. Quantum data locking for high-rate private communication

    Science.gov (United States)

    Lupo, Cosmo; Lloyd, Seth

    2015-03-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it.

  15. Effectiveness of high interest rate policy on exchange rates: A reexamination of the Asian financial crisis

    Directory of Open Access Journals (Sweden)

    Chin Diew Lai

    2006-09-01

    Full Text Available One of the most controversial issues in the aftermath of the Asian financial crisis has been the appropriate response of monetary policy to a sharp decline in the value of some currencies. In this paper, we empirically examine the effects on Asian exchange rates of sharply higher interest rates during the Asian financial crisis. Taking account of the currency contagion effect, our results indicate that sharply higher interest rates helped to support the exchange rates of South Korea, the Philippines, and Thailand. For Malaysia, no significant causal relation is found from the rate of interest to exchange rates, as the authorities in Malaysia did not actively adopt a high interest rate policy to defend the currency.

  16. Influence of the flux axial form on the conversion rate and duration of cycle between recharging for ThPu and U{sub nat} fuels in CANDU reactors; Influence de la forme axiale du flux sur le taux de conversion et la duree du cycle entre rechargements pour du combustible ThPu et U{sub nat} dans les reacteurs CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Richard [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-01-15

    To face the increasing world power demand the world nuclear sector must be continuously updated and developed as well. Thus reactors of new types are introduced and advanced fuel cycles are proposed. The technological and economic feasibility and the transition of the present power park to a renewed park require thorough studies and scenarios, which are highly dependent on the reactor performances. The conversion rate and cycle span between recharging are important parameters in the scenarios studies. In this frame, we have studied the utilisation of thorium in the CANDU type reactors and particularly the influence of axial form of the flux, i.e. of the recharging mode, on the conversion rate and duration of the cycle between recharging. The results show that up to a first approximation the axial form of the flux resulting from the neutron transport calculations for assessing the conversion rate is not necessary to be taken into account. However the time span between recharging differs up to several percents if the axial form of the flux is taken into consideration in transport calculations. Thus if the burnup or the recharging frequency are parameters which influence significantly the deployment scenarios of a nuclear park an approach more refined than a simple transport evolution in a typical cell/assembly is recommended. Finally, the results of this study are not more general than for the assumed conditions but they give a thorough calculation method valid for any recharging/fuel combination in a CANDU type reactor.

  17. Rate and predictors of the conversion of abstracts presented at the Canadian Cardiovascular Congress scientific meetings to full peer-reviewed publications.

    Science.gov (United States)

    Abuzeid, Wael; Fosbøl, Emil L; Fosbøl, Philip L; Fosbøl, Marie; Zarinehbaf, Sanaz; Ross, Heather; Ko, Dennis T; Bennell, Maria C; Wijeysundera, Harindra C

    2013-11-01

    The rate of conversion of abstracts presented at scientific meetings into peer-reviewed published manuscripts is an important metric for medical societies, because it facilitates translation of scientific knowledge into practice. We determined the rate and predictors of conversion of scientific abstracts presented at the Canadian Cardiovascular Congress (CCC) from 2006 to 2010 into peer-reviewed article publications within 2 years of their initial presentation. Using a previously validated computer algorithm, we searched the International Statistical Institute Web of Science to identify peer-reviewed full manuscript publications of these abstracts. A multivariable logistic regression was used to identify independent factors associated with successful publication. From 2006 to 2010, 3565 abstracts were presented at the CCC. Overall 24.1% of presented abstracts were published within 2 years of the conference. Mean impact factor for publications was 5.2 (range, 0.4-53.2). The type of presentation (for poster vs oral; odds ratio, 0.71; 95% confidence interval, 0.60-0.83; P publication. Late breaking abstracts and those related to cancer and clinical sciences were more likely to be published, compared with prevention, vascular biology, and pediatrics. In conclusion, the publication rate at the CCC is only marginally lower than that reported for large international North American and European cardiology conferences (30.6%). Efforts should focus on several identified barriers to improve conversion of abstracts to full report publication. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  18. Utilizing high-fidelity crucial conversation simulation in genetic counseling training.

    Science.gov (United States)

    Holt, R Lynn; Tofil, Nancy M; Hurst, Christina; Youngblood, Amber Q; Peterson, Dawn Taylor; Zinkan, J Lynn; White, Marjorie Lee; Clemons, Jason L; Robin, Nathaniel H

    2013-06-01

    Genetics professionals are often required to deliver difficult news to patients and families. This is a challenging task, but one that many genetics trainees have limited opportunity to master during training. This is true for several reasons, including relative scarcity of these events and an understandable hesitation of supervisors allowing a trainee to provide such high stakes information. Medical simulation is effective in other health care disciplines giving trainees opportunities of "hands on" education in similar high stakes situations. We hypothesized that crucial conversations simulation would be effective for genetics trainees to gain experience in communication and counseling skills in a realistic clinical scenario. To test this hypothesis, we designed a prenatal counseling scenario requiring disclosure of an abnormal amniocentesis result and discussion of pregnancy management options; we challenged participants to address common counseling questions. Three medical genetics resident physicians and five genetic counseling students participated. Genetics and simulation experts observed the session via live video feed from a different room. A behavioral checklist was completed in real time assessing trainee's performance and documenting medical information discussed. Debriefing immediately followed the session and included simulation and genetics experts and the actor parents. Participants completed open-ended post evaluations. There was a trend towards participants being more likely to discuss issues the child could have while an infant/toddler rather than issues that could emerge as the child with Down Syndrome transitions to adulthood and end of life (P=.069). All participants found the simulation helpful, notably that it was more realistic than role-playing with colleagues.

  19. High-peak-power, high-repetition-rate intracavity optical parametric oscillator at 1.57μm

    Institute of Scientific and Technical Information of China (English)

    Yuye Wang; Degang Xu; Yizhong Yu; Wuqi Wen; Jingping Xiong; Peng Wang; Jianquan Yao

    2007-01-01

    We report a high-peak-power, high-repetition-rate diode-side-pumped Nd:YAG Q-switched intracavity optical parametric oscillator (IOPO) at 1.57μm with a type-Ⅱ non-critically phase-matched x-cut KTP crystal. The average power of 1.15 W at 1.57μm is obtained at 4.3-kHz repetition rate. The peak power of the pulses amounts to 33.4 kW with 8-ns duration. The average conversion efficiency from Q-switched 1.064-μm-wavelength input power to OPO signal output power is up to 10.5%.

  20. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    Science.gov (United States)

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  1. Online tuning technique of frequency conversion crystals of high power solid-state laser facility at low 1ω drive irradiance

    Science.gov (United States)

    Zhang, Fan; Zhong, Wei; Guo, Huaiwen; Wang, Yuancheng; Huang, Xiaoxia; Wang, Fang; Zhou, Lidan; Jia, Huaiting; Deng, Xuewei; Zhou, Wei

    2017-05-01

    Advanced an online low 1ω drive irradiance tuning technique of frequency conversion crystals of high power solid-state laser facility, which can acquire the best match angle of frequency conversion crystals through online low 1ω drive irradiance tuning curve test, and achieve fast and high precision angle correction to assure the frequency conversion crystals to achieve the highest energy conversion efficiency in shot experiments. Analyzed the possibility of online low 1ω drive irradiance tuning technique of frequency conversion crystals, researched the technical scheme of online low 1ω drive irradiance tuning of frequency conversion crystals, and applied this technique on SG facility, which achieved 60% 70% frequency conversion efficiency in high energy shots.

  2. Anhydrous ZnCl2: A Highly Efficient Reagent for Facile and Regioselective Conversion of Epoxides to β-Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Ronak Eisavi

    2016-01-01

    Full Text Available Facile conversion of structurally different epoxides to the corresponding β-chlorohydrins was carried out successfully with anhydrous ZnCl2 in CH3CN. The reactions were carried out within 10-50 min to give β-chlorohydrins with perfect regioselectivity and high yields (80-97%.

  3. Quantum spatial correlations in high-gain parametric down-conversion measured by means of a CCD camera

    DEFF Research Database (Denmark)

    Jedrkiewicz, O.; Brambilla, E.; Bache, Morten

    2006-01-01

    We consider travelling-wave parametric down-conversion in the high-gain regime and present the experimental demonstration of the quantum character of the spatial fluctuations in the system. In addition to showing the presence of sub-shot noise fluctuations in the intensity difference, we demonstr...

  4. Ranking Hearing Aid Input-Output Functions for Understanding Low-, Conversational-, and High-Level Speech in Multitalker Babble

    Science.gov (United States)

    Chung, King; Killion, Mead C.; Christensen, Laurel A.

    2007-01-01

    Purpose: To determine the rankings of 6 input-output functions for understanding low-level, conversational, and high-level speech in multitalker babble without manipulating volume control for listeners with normal hearing, flat sensorineural hearing loss, and mildly sloping sensorineural hearing loss. Method: Peak clipping, compression limiting,…

  5. High Burn Rate Hybrid Fuel for Improved Grain Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel type of fuel providing high burning rate for hybrid rocket applications is proposed. This fuel maintains a hydrodynamically rough surface to...

  6. High Count Rate Single Photon Counting Detector Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An optical communications receiver requires efficient and high-rate photon-counting capability so that the information from every photon, received at the aperture,...

  7. Development of a High Fluence, High Conversion Efficiency X-Ray Silver Metal Foam Source at the NIF

    Science.gov (United States)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Thorn, D.; Widmann, K.; Blue, B. E.,

    2016-10-01

    High x-ray conversion efficiency (XRCE) L-shell Ag sources are being developed for High Energy Density experiments. The targets are nominally 4 mm in diameter, 4 mm tall cylinders of free standing Ag metal foam with densities of 10 - 30 mg/cm3 and made by a new technique of freeze drying an aqueous suspension of Ag nano wires. 192 laser beams from NIF are used to heat the targets with 150 TW of power in a 4 ns square in time pulse depositing 600 kJ into the target. XRCEs from these targets have been measured by using the Dante diode spectrometer to be 7% which is much less than the predictions from simulations. The nano wires at nominal solid density might not be homogenized sufficiently by the laser heating pulse which could limit the XRCE. To increase the XRCE, we plan to use a laser prepulse of 1 kJ to preheat the nano wires in the target before the main laser heating pulse. The results of these experiments will be discussed. This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  8. Quantum Communication with a High-Rate Entangled Photon Source

    Science.gov (United States)

    Wilson, Nathaniel C.; Chaffee, Dalton W.; Lekki, John D.; Wilson, Jeffrey D.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  9. High rate resistive plate chamber for LHC detector upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Y., E-mail: haddad@llr.in2p3.fr [Laboratoire Leprince-Ringuet (LLR), École Polytechnique, 91120 Palaiseau (France); Laktineh, I.; Grenier, G.; Lumb, N. [IPNL, Villeurbanne 69622 Lyon (France); Cauwenbergh, S. [Ghent University, Ghent (Belgium)

    2013-08-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPCs) used as muon detectors in the LHC experiments has prevented the use of such detectors in the high rate regions in both CMS and ATLAS detectors. One alternative to these detectors is RPCs made with low resistivity glass plates (10{sup 10}Ωcm), a beam test at DESY has shown that such detectors can operate at few thousand Hz/cm{sup 2} with high efficiency (>90%)

  10. The roadmap for low price- high performance IR detector based on LWIR to NIR light up-conversion approach

    Science.gov (United States)

    Kipper, R.; Arbel, D.; Baskin, E.; Fayer, A.; Epstein, A.; Shuall, N.; Saguy, A.; Veksler, D.; Spektor, B.; Ben-Aharon, D.; Garber, V.

    2009-05-01

    The introduction of an uncooled microbolometer image sensor about a decade ago enabled cost reduction of IR cameras. As a result, the available markets grew both in military and civilian applications. Since then, the price of microbolometer was gradually reduced due to introduction of devices with smaller pixel, maturity of the technology and quantity growth. However, the requirement for a vacuum package still limits the price of microbolometer based cameras to several thousands of dollars. Sirica's novel wavelength conversion technology aims at breaking this paradigm by being uncooled and vacuumless, lowering IR camera prices by an order of magnitude, opening the way to new mass markets. Sirica's proprietary IR-to-Visible/NIR conversion layer allows for low-cost high performance LWIR detector with no requirement for cooling and vacuum packaging. In the last years, the development efforts focused on development of the conversion media. Recently, a parallel effort for the integration of the conversion layer together with other detector components has started. Packaging of detector components, such as conversion layer, pumping light source, dichroic filter, and their coupling with silicon CMOS image sensor have great importance from a price-performance point of view. According to the company's business-development roadmap, the detector prototype should be available during the first quarter of 2010.

  11. High strain rate loading of polymeric foams and solid plastics

    Science.gov (United States)

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.

    2000-04-01

    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  12. HIGH HEATING RATES AFFECTS GREATLY THE INACTIVATION RATE OF ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Juan Pablo Huertas

    2016-08-01

    Full Text Available Heat resistance of microorganisms can be affected by different influencing factors. Although the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20ºC/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50ºC/min were achieved in the heat exchanger, which were much slower than those around 20ºC/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimates about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than ten times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7ºC/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

  13. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  14. 我国旅游资源经济转化率及其省际差异分析%On Analysis of Tourism Resources Economic Conversion Rate and Inter-Provincial Variance in China

    Institute of Scientific and Technical Information of China (English)

    白洋; 杨晓霞; 樊昊

    2015-01-01

    旅游资源经济转化率是衡量旅游资源开发利用水平的重要指标。在对旅游资源丰裕度、旅游经济综合发展水平量化估值的基础上,尝试建立旅游资源经济转化率模型,以2012年的截面数据对全国各省级行政区的旅游资源经济转化率进行定量测算与分析,结果表明:①我国旅游资源经济转化率总体水平偏低且省际差异明显;②我国省级行政区旅游资源经济转化率可划分为高、中、低3个等级,其中高等级包含2个省级行政区,中等级包含10个省级行政区,低等级包含19个省级行政区;③东北、西北地区只拥有低转化率等级的省级行政区;华北、西南地区拥有中、低转化率等级的省级行政区;华东、中南地区同时拥有高、中、低转化率等级的省级行政区。%Tourism resources economic conversion rate is an important indicator to measure tourism re‐sources development and utilization level .T his study on the basis of the quantitative valuation of tourism resources abundance and tourism economy comprehensive development level attempts to establish the tourism resources of economic conversion model ,quantitatively estimates the 2012 China's provincial ad‐ministrative region tourism resources economic conversion rate and analyzes the difference .Results show that 1) The overall level of tourism resources economic conversion rate of China is low ,and difference to be markedly ;2)T he provincial administrative region tourism resources economic conversion can be divided into high ,medium and low three grades ,high‐grade contains two provincial administrative region ,mid‐range contains 10 provincial administrative region ,lower level contains 19 provincial administrative region , which contains high grade 2 provincial level administrative region ,the intermediate contains 10 provincial‐level administrative region ,lower level contains 19 provincial administrative region

  15. Radio Interface for High Data Rate Wireless Sensor Networks

    CERN Document Server

    Henaut, Julien; Dragomirescu, Daniela; Plana, Robert

    2010-01-01

    This paper gives an overview of radio interfaces devoted for high data rate Wireless Sensor Networks. Four aerospace applications of WSN are presented to underline the importance of achieving high data rate. Then, two modulation schemes by which High Data Rate can be achieved are compared : Multi carrier approaches, represented by the popular Orthogonal Frequency Division Multiplexing (OFDM) and Single carrier methods, represented by Single Carrier Frequency division Equalization and its application for multiple access Single Carrier Frequency division multiple Access (SC-FDMA). SC-FDMA, with a very low Peak Average Power Ratio (PAPR), is as strong alternative to the OFDM scheme for highly power constraint application. The Chosen radio interface will be, finally, tested by a model based design approach based on Simulink and FPGA realization. SC-FDMA, with a very low Peak Average Power Ratio (PAPR), is as strong alternative to the OFDM scheme for highly power constraint application. The Chosen radio interface ...

  16. Stretching Behavior of Red Blood Cells at High Strain Rates

    Science.gov (United States)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  17. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  18. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  19. High efficiency light source using solid-state emitter and down-conversion material

    Science.gov (United States)

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  20. Analysis of proinsulin and its conversion products by reversed-phase high-performance liquid chromatography

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Nielsen, Jens Høiriis

    1993-01-01

    /or posttranslational processes (enzymatic conversion, intracellular degradation) could be possible explanations. Elevated amounts of proinsulin-immunoreactive material (PIM) have been described to occur in various conditions/diseases, suggesting alterations in beta-cell function, but the composition of the secreted...... of separating all the relevant, closely related polypeptides involved. This review will deal with the optimization of the RP-HPLC separations as well as sample preparation and recovery. Applications of the selected methods in the study of proinsulin biosynthesis and its conversion will also be presented....

  1. High deposition rate nanocrystalline silicon with enhanced homogeneity

    NARCIS (Netherlands)

    Verkerk, A.; Rath, J.K.; Schropp, R.E.I.

    2010-01-01

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inacti

  2. High-rate squeezing process of bulk metallic glasses

    Science.gov (United States)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  3. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  4. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    Science.gov (United States)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  5. Performances of an Interleaved High Step-Up Converter with Different Soft-Switching Snubbers for PV Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2013-01-01

    Full Text Available This paper proposes an interleaved high step-up converter with different soft-switching snubbers for PV energy conversion applications. For the high step-up converter, interleaved and coupled-inductor technologies are used to reduce output ripple current and increase output power level. Simultaneously, two types of snubbers, a single-capacitor snubber and boost type snubber, are introduced separately into the discussed converters for comparing their performances of conversion efficiency and switching losses. For drawing maximum power from the PV arrays, a perturbation-and-observation method realized with the microcontroller is adopted to achieve maximum power point tracking (MPPT algorithm and power regulating scheme. Finally, two prototypes of the interleaved coupled-inductor boost converter with a single-capacitor snubber and with boost type snubber are implemented, respectively. The experimental results obtained are used to verify and compare the performances and feasibilities of the discussed converters with different snubbers in PV conversion applications. The experimental results show that the proposed system is suitable for PV energy conversion applications when the duty ratios of switches of the converter are less than 0.5.

  6. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Michael D D'Emic

    Full Text Available BACKGROUND: Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. METHODOLOGY/PRINCIPAL FINDINGS: We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days. Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. CONCLUSIONS/SIGNIFICANCE: Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size, and derived titanosaurs and

  7. Application of vibrational correlation formalism to internal conversion rate: case study of Cu(n) (n = 3, 6, and 9) and H2/Cu3.

    Science.gov (United States)

    Chiodo, Sandro Giuseppe; Mineva, Tzonka

    2015-03-21

    This work reports non-radiative internal conversion (IC) rate constants obtained for Cun with n = 3, 6, and 9 and H2 on Cu3. The Time-Dependent Density Functional Theory (TDDFT) method was employed with three different functionals in order to investigate the electronic structures and the absorption spectra. The performance of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) and the hybrid B3LYP and PBE0 exchange correlation functionals in combination with the SVP and the def2-TZVP basis sets was examined. TDDFT results were used as input data to compute internal conversion rate constants. For this purpose, we have developed a program package. A description of the theoretical background used in our numerical implementation and the program input file is presented. In view of future applications of this program package in photoinduced catalysis, we present the analysis of the IC rate processes for the photodissociation of H2 on Cu3. These results showed the applicability of the method and the computational program to identify the vibrational modes in transition metal clusters giving rise to the largest IC rate constant due to their interactions with the excited electronic states occurring in the hot-electron induced dissociation phenomena.

  8. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal...

  9. Highly selective methodology for the direct conversion of aromatic aldehydes to glycol monoesters.

    Science.gov (United States)

    Sharghi, Hashem; Sarvari, Mona Hosseini

    2003-05-16

    Al(2)O(3)/MeSO(3)H (AMA) was found to be an extremely efficient reagent for the conversion of aromatic aldehydes and diols to glycol monoesters. The remarkable selectivity achieved with this reagent is an attractive feature of the present method.

  10. Experimental verification of high spectral entanglement for pulsed waveguided spontaneous parametric down-conversion

    DEFF Research Database (Denmark)

    Avenhaus, M.; Chekhova, M. V.; Krivitsky, Leonid

    2009-01-01

    We study the spectral properties of spontaneous parametric down-conversion (SPDC) in a periodically poled waveguided structure of potassium-titanyl-phosphate (KTP) crystal pumped by ultrashort pulses. Our theoretical analysis reveals a strongly entangled and asymmetric structure of the two...

  11. Establishment of a Digital Knowledge Conversion Architecture Design Learning with High User Acceptance

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Apollo; Weng, Kuo-Hua

    2017-01-01

    The purpose of this study is to design a knowledge conversion and management digital learning system for architecture design learning, helping students to share, extract, use and create their design knowledge through web-based interactive activities based on socialization, internalization, combination and externalization process in addition to…

  12. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (

  13. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  14. Study of High Strain Rate Response of Composites

    Science.gov (United States)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  15. STIR: Tailored Interfaces for High Strength Composites Across Strain Rates

    Science.gov (United States)

    2013-09-02

    was requested during our kickoff meeting at ARL APG. High performance fabrics including Kevlar, Twaron, Zylon , and Dyneema are used in developing...Kevlar, and Zylon for various pullout rates. Force– displacement data was recorded, and both warp and fill yarns were pulled from the fabric. Their...results presented that the effect of pullout rate is negligible for Kevlar, whereas the effect is bigger on Spectra, and significant for Zylon

  16. EFFECT OF LOW DOSES OF THE MYCOTOXIN FUMONISIN B1 ON THE BODY MASS GAIN, FEED INTAKE AND FEED CONVERSION RATE OF PIGS

    Directory of Open Access Journals (Sweden)

    Akos Toth

    2000-06-01

    Full Text Available The fumonisin group of mycotoxins produced by Fusariun moniliforme is a rather newly discovered contaminant of some agricultural products, especially maize based food and animal feed. Fumonisin was discovered in 1988 of mouldy maize inspected since 1993 has shown FB1 contamination, the degree of this contamination increasing from year to year. Problems of mycotoxins cause significant economic losses due to the reduced feed intake, body weight gain and feed efficiency. We have very few informations about the effect of FB1 on these in South Africa, where high evidence was found between the occurrence of human oesophageal cancer and the rate of FB1 contamination. The discovery of this toxin lead to the explanation of equine leucoencephalomalacia (ELEM, porcine pulmonary oedema (PPC and possibly liver cancer in rats. In Hungary almost 70 % parameters – especially in farm animals. Three experiments were carried out with weaned piglets, in order to study the dose and time dependent effect of FB1. Fungal culture of Fusariun moniliforme was added to the diet so that the FB1 exposure was: 0, 10, 20 and 40 ppm for 4 weeks, 0, 1, 5 and 10 ppm for 8 weeks and 0, 1, 5 and 10 ppm for 5 months. In none of the experiments and the periods examined had FB1 any significant effect on feed consumption, body weight gain and feed conversion of weaned pigs. In spite of these findings mild or severe pulmonary oedema caused by the toxin was found in the animals by dissection carried out at the end of the experiment. Our results draw the attention to human health concerns of FB1. The toxin consumed by the animals without any clinical signs can cumulate in the animals and then enter the human organism by means of products of animal origin (meat, milk, etc..

  17. High rate tests of the LHCb RICH Upgrade system

    CERN Multimedia

    Blago, Michele Piero

    2016-01-01

    One of the biggest challenges for the upgrade of the LHCb RICH detectors from 2020 is to readout the photon detectors at the full 40 MHz rate of the LHC proton-proton collisions. A test facility has been setup at CERN with the purpose to investigate the behaviour of the Multi Anode PMTs, which have been proposed for the upgrade, and their readout electronics at high trigger rates. The MaPMTs are illuminated with a monochromatic laser that can be triggered independently of the readout electronics. A first series of tests, including threshold scans, is performed at low trigger rates (20 kHz) for both the readout and the laser with the purpose to characterise the behaviour of the system under test. Then the trigger rate is increased in two separate steps. First the MaPMTs are exposed to high illumination by triggering the pulsed laser at a high (20 MHz) repetition rate while the DAQ is readout at the same low rate as before. In this way the performance of the MaPMTs and the attached electronics can be evaluated ...

  18. Nanoengineering Titania for High Rate Lithium Storage: A Review

    Institute of Scientific and Technical Information of China (English)

    Chunhai Jiang; Jinsong Zhang

    2013-01-01

    Nanostructured titania have been intensively investigated as anode materials of Li-ion batteries for their excellent high rate performance.The size effects of TiO2 polymorphs (mainly rutile,anatase and TiO2-B) on their electrochemical performance and the latest efforts in nanoengineering titania anodes through enhancing their ionic or electronic transportation or both are reviewed in this work.We suppose that micron-or submicronsized porous structures assembled by TiO2 nanoparticles,nanowires/nanotubes or nanosheets with a high percentage of exposing high reactive facets together with a conductive percolating network are ideal anodes not only for high rate lithium storage but also for high packing densities of the active materials.

  19. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-07-05

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  20. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  1. High strain rate compression testing of glass fibre reinforced polypropylene

    Directory of Open Access Journals (Sweden)

    Cloete T.J.

    2012-08-01

    Full Text Available This paper details an investigation of the high strain rate compression testing of GFPP with the Split Hopkinson Pressure Bar (SHPB in the through-thickness and in-plane directions. GFPP posed challenges to SHPB testing as it fails at relatively high stresses, while having relatively low moduli and hence mechanical impedance. The modifications to specimen geometry and incident pulse shaping in order to gather valid test results, where specimen equilibrium was achieved for SHPB tests on GFPP are presented. In addition to conventional SHPB tests to failure, SHPB experiments were designed to achieve specimen equilibration at small strains, which permitted the capture of high strain rate elastic modulus data. The strain rate dependency of GFPP’s failure strengths in the in-plane and through-thickness direction is modelled using a logarithmic law.

  2. High-Strain Rate Mechanical Response of Cured Epoxy Networks

    Science.gov (United States)

    Sirk, Timothy; Khare, Ketan; Karim, Mir; Lenhart, Joseph; Khare, Rajesh; Andzelm, Jan

    2013-03-01

    Chemically cross-linked polymer networks are increasingly common in high performance composites, adhesives and other applications involving high-impact loading conditions or ballistic collisions. The mechanical behavior of epoxy and other polymer networks exhibit a strong dependence on strain rate near the glass transition temperature (Tg); however, the elastic modulus at strain rates greater than 105 1/s is difficult to capture with experimental techniques. We present computational results of Di-Glycidyl Ether of Bisphenol A (DGEBA) and Jeffamine diamines (D230) from molecular dynamics simulation, which is intrinsically well-suited to model material deformation at high strain rates. Our results show that the experimental Tg can be reproduced from molecular dynamics, and the Williams-Landel-Ferry equation is useful in rationalizing the shift of Tg due to fast annealing and high strain rates. Temperature sweeps of elastic modulus show the glass-rubber transition to occur over a significantly wider temperature range compared with experimental measurements at low strain rates.

  3. Could ICG-aided robotic cholecystectomy reduce the rate of open conversion reported with laparoscopic approach? A head to head comparison of the largest single institution studies.

    Science.gov (United States)

    Gangemi, A; Danilkowicz, R; Elli, F E; Bianco, F; Masrur, M; Giulianotti, P C

    2017-03-01

    Comparative studies between robotic and laparoscopic cholecystectomy (LC) focus heavily on economic considerations under the assumption of comparable clinical outcomes. Advancement of the robotic technique and the further widespread use of this approach suggest a need for newer comparison studies. 676 ICG-aided robotic cholecystectomies (ICG-aided RC) performed at the University of Illinois at Chicago (UIC) Division of General, Minimally Invasive and Robotic Surgery were compiled retrospectively. Additionally, 289 LC were similarly obtained. Data were compared to the largest single institution LC data sets from within the US and abroad. Statistically significant variations were found between UIC-RC and UIC-LC in minor biliary injuries (p = 0.049), overall open conversion (p ≤ 0.001), open conversion in the acute setting (p = 0.002), and mean blood loss (p advantages associated with the robotic platform may significantly decrease the rate of open conversion in both the acute and non-acute setting. The sample size discrepancy and the non-randomized nature of our study do not allow for drawing definitive conclusions.

  4. Rates and predictors of remission, recurrence and conversion to bipolar disorder after the first lifetime episode of depression--a prospective 5-year follow-up study.

    Science.gov (United States)

    Bukh, J D; Andersen, P K; Kessing, L V

    2016-04-01

    In depression, non-remission, recurrence of depressive episodes after remission and conversion to bipolar disorder are crucial determinants of poor outcome. The present study aimed to determine the cumulative incidences and clinical predictors of these long-term outcomes after the first lifetime episode of depression. A total of 301 in- or out-patients aged 18-70 years with a validated diagnosis of a single depressive episode were assessed from 2005 to 2007. At 5 years of follow-up, 262 patients were reassessed by means of the life chart method and diagnostic interviews from 2011 to 2013. Cumulative incidences and the influence of clinical variables on the rates of remission, recurrence and conversion to bipolar disorder, respectively, were estimated by survival analysis techniques. Within 5 years, 83.3% obtained remission, 31.5% experienced recurrence of depression and 8.6% converted to bipolar disorder (6.3% within the first 2 years). Non-remission increased with younger age, co-morbid anxiety and suicidal ideations. Recurrence increased with severity and treatment resistance of the first depression, and conversion to bipolar disorder with treatment resistance, a family history of affective disorder and co-morbid alcohol or drug abuse. The identified clinical characteristics of the first lifetime episode of depression should guide patients and clinicians for long-term individualized tailored treatment.

  5. High removal rate laser-based coating removal system

    Science.gov (United States)

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  6. Strategies for adapting to high rates of employee turnover.

    Science.gov (United States)

    Mowday, R T

    1984-01-01

    For many organizations facing high rates of employee turnover, strategies for increasing employee retention may not be practical because employees leave for reasons beyond the control of management or the costs of reducing turnover exceed the benefits to be derived. In this situation managers need to consider strategies that can minimize or buffer the organization from the negative consequences that often follow from turnover. Strategies organizations can use to adapt to uncontrollably high employee turnover rates are presented in this article. In addition, suggestions are made for how managers should make choices among the alternative strategies.

  7. Hydraulic characteristics of converse curvature section and aerator in high-head and large discharge spillway tunnel

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The hydraulic characteristics and cavitation erosion near the converse curvature section in the high-head and large discharge spillway tunnel have been important issues of concern to the hydropower project.In this paper,the evolutions of hydraulic elements such as pressure,flow velocity,wall shear stress,etc.in the converse curvature section are analyzed and the impacts of bottom aerator on hydraulic characteristics are discussed,with the commercial software FLUENT6.3 as a platform and combining the k-model and VOF method.The flow pattern in the converse curvature section of spillway tunnel is given by the three-dimensional numerical simulation.It indicates that the pressure changes rapidly with great pressure gradient from the beginning to the end of the curve.It also shows that the shear stress on side wall just downstream the end of the converse curvature curve is still increasing;the aeration cavity formed downstream the bottom aerator may cause the side wall pressure decreased to worsen the cavitation characteristics near the side wall.By means of the physical model experiment,the three-dimensional aerator composed of side wall baffling aerator and bottom aerator is studied,the baffling aerator suitable for the water flow conditions with water depth of 6.0 to 8.0 m and flow velocity of 35 to 50 m/s is proposed.

  8. A case of a superficial spreading melanoma in situ diagnosed via digital dermoscopic monitoring with high dynamic range conversion

    Science.gov (United States)

    Sato, Toshitsugu; Tanaka, Masaru

    2014-01-01

    A 48-year-old woman presented with a 3 mm, pigmented macule at her first visit to our clinic. The macule, which showed complete symmetry and a typical network, was tentatively diagnosed as a Clark nevus; a 6-month follow-up was recommended, and the patient returned 7 months later. At the second visit, the lesion had enlarged to a diameter of 5 mm, and dermoscopy revealed that it had maintained its typical pigment network. At this point, evidence-based monitoring would have led to excision but the decision was made to continue monitoring. Owing to poor compliance, the patient went another 2 years without follow-up. When we assess small lesions, such as this, the usefulness of dermoscopy is apparent. Additionally, we examined the benefits and drawbacks of high dynamic range (HDR) conversion of the dermoscopy images and their helpfulness for inspecting small lesions. Although the delicate structures present in the lesion can be recognized by a dermoscopy expert and HDR image conversion has a capacity to highlight important structures, there is also a risk that HDR image conversion may mask some of the structural changes. However, a comparison of the original dermoscopy images with the HDR-converted images provides newly trained dermoscopists the opportunity to recognize new findings and to distinguish the differences in the findings between both the types of images. Therefore, such comparisons might be useful for obtaining an accurate diagnosis by using dermoscopy and HDR image conversion. PMID:25396087

  9. Natural gas conversion process

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

  10. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  11. Modified high-accuracy 3D shape data conversion system for reverse engineering applications

    Science.gov (United States)

    Sitnik, Robert; Kujawinska, Malgorzata

    2001-10-01

    In the paper the sequential steps of reverse engineering based on the data gathered by full-field optical system are discussed. The compete conversion process of a cloud of point coordinates to CAD/CAM is presented. The triangulation algorithm, which automatically creates the triangle mesh from the input cloud of points is described. Each block of this algorithm is explained din details with special attention paid to the parameters controlling the quality of the data conversion process. The adaptive process of reducing the number of the triangles on the base of second derivative of local curvature of objects' surface is explained. The error analysis is discussed at each step of the cloud data processing in dependency of the algorithm initial parameters.

  12. New high performance SAW convolvers used in high bit rate and wideband spread spectrum CDMA communications system.

    Science.gov (United States)

    Hikita, M; Takubo, C; Asai, K

    2000-01-01

    New surface acoustic wave (SAW) convolver structures with high conversion efficiency and self-temperature compensation characteristics have been developed. Strong piezoelectric substrates, regardless of temperature coefficients of delay (TCD), can be used in these convolvers. New demodulation techniques using the developed SAW convolver for high bit rate and wideband spread spectrum code division multiple access (CDMA) communications have also been developed. I- and Q-channel demodulation data can be derived directly from binary phase shift keying (BPSK) or quadri-phase shift keying (QPSK) CDMA signals. In an experiment using a 128 degrees YX-LiNbO(3) substrate, CDMA signals of 9 Mbps (megabits per second) with 60 Mcps (megachips per second) spread by 13-chip Barker code and 11 Mbps with 140 Mcps spread by 25-chip Shiba's code were clearly demodulated, demonstrating the effectiveness of these techniques for use in future CDMA communications.

  13. A High Efficiency Wavelength Conversion Scheme Based on Four Wave Minxing in a Semiconductor Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new approach of all optical wavelength converter based on four wave mixing (FWM) in a semiconductor optical amplifier (SOA) with the conjugate wave reflected by a fiber Bragg grating (FBG) and then amplified by the SOA is reported. By adjusting the pump power, the conversion efficiency could be improved 7~10dB with signal-to-background-noise-ratio (SBR) deteriorated 1~2dB, compared with traditional single pump four wave mixing.

  14. Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion

    OpenAIRE

    Laiho K.; Cassemiro K.N.; Silberhorn C.

    2009-01-01

    Parametric down-conversion (PDC) offers the possibility to control the fabrication of non-Gaussian states such as Fock states. However, in conventional PDC sources energy and momentum conservation introduce strict frequency and photon number correlations, which impact the fidelity of the prepared state. In our work we optimize the preparation of single-photon Fock states from the emission of waveguided PDC via spectral filtering. We study the effect of correlations via photon number resolving...

  15. Effect of size and structure of a bacteria fuel cell on the electricity production and energy conversion rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiachang; Halme, A.

    1997-12-31

    The direct conversion of chemical energy to electrical energy can be realized by using microorganisms as catalyst in a microbial fuel cell. A relative big size bacteria fuel cell is investigated and compared to a smaller one constructed and tested previously. The big cell consists of a anode chamber and two cathode chambers. A packed bed of graphite particles was used as the anode and an oxygen gas diffusion electrode was used as the cathode in both devices. The cation permeable ion-exchange membrane from DuPont was used to separate anodic and cathodic chambers. Batch and self-circulation operation modes were applied in both devices. The apparent anode volume of the bigger device is 145.3 ml which is 2.7 times of the smaller cell volume (53.3 ml). The purpose of this study is to know what size of a bacteria fuel cell is suitable for the fuel cell to obtain maximum power output per volume. (orig.) 18 refs.

  16. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products.

    Science.gov (United States)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

  17. High frame rate CCD camera with fast optical shutter

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; McDonald, T.E. Jr. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley National Lab., CA (United States)

    1998-09-01

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  18. User microprogrammable processors for high data rate telemetry preprocessing

    Science.gov (United States)

    Pugsley, J. H.; Ogrady, E. P.

    1973-01-01

    The use of microprogrammable processors for the preprocessing of high data rate satellite telemetry is investigated. The following topics are discussed along with supporting studies: (1) evaluation of commercial microprogrammable minicomputers for telemetry preprocessing tasks; (2) microinstruction sets for telemetry preprocessing; and (3) the use of multiple minicomputers to achieve high data processing. The simulation of small microprogrammed processors is discussed along with examples of microprogrammed processors.

  19. Pedalling rate affects endurance performance during high-intensity cycling

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    , such as muscle fibre type composition and power reserve, relate to endurance time. Twenty males underwent testing to determine their maximal oxygen uptake (VO(2max)), power output corresponding to 90% of VO(2max) at 80 rpm (W90), FCPR at W90, percentage of slow twitch muscle fibres (% MHC I), maximal leg power...... time was negatively related to VO(2max), W90 and % MHC I, while positively related to power reserve. In conclusion, at group level, endurance time was longer at FCPR and at a pedalling rate 25% lower compared to a pedalling rate 25% higher than FCPR. Further, inter-individual physiological variables......The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables...

  20. Evaluation of dissolution rate on high plutonium content MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shinichi; Kurita, Ichiro; Endo, Hideo; Higuchi, Hidetoshi; Kihara, Yoshiyuki [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Ogasawara, Masahiro; Shinada, Masanori; Kowata, Masato [Inspection Development Company Ltd., Tokai, Ibaraki (Japan)

    2002-06-01

    The dissolution rate of high Pu content MOX fuel into nitric acid was measured as a function of Pu content. MOX fuel samples, pressed and sintered, were dissolved in 7 M of boiling nitric acid, and the dissolution rate was measured by analyzing the Pu and U concentration in the solution. The dissolution rate of MOX fuel tended to decrease with the increase in the Pu content and was reduced after 6 hours of dissolution. These results agreed well with previous ones, but the dissolution rate was 3-6 times faster than those. It is estimated that the cause of this difference was due to underestimation of the surface area of MOX fuel powder and the difference of the MOX O/M ratio. (author)

  1. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    Science.gov (United States)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-05-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s-1and OTDM demultiplexing from 80 to 10 Gbit s-1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10-9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. The work was supported in part by the CAS/SAFEA International Partnership Program for Creative Research Teams.

  2. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    OCONNOR,P.; GRATCHEV,V.; KANDASAMY,A.; POLYCHRONAKOS,V.; TCHERNIATINE,V.; PARSONS,J.; SIPPACH,W.

    1999-09-25

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm{sup 2}/s.

  3. Childhood Onset Schizophrenia: High Rate of Visual Hallucinations

    Science.gov (United States)

    David, Christopher N.; Greenstein, Deanna; Clasen, Liv; Gochman, Pete; Miller, Rachel; Tossell, Julia W.; Mattai, Anand A.; Gogtay, Nitin; Rapoport, Judith L.

    2011-01-01

    Objective: To document high rates and clinical correlates of nonauditory hallucinations in childhood onset schizophrenia (COS). Method: Within a sample of 117 pediatric patients (mean age 13.6 years), diagnosed with COS, the presence of auditory, visual, somatic/tactile, and olfactory hallucinations was examined using the Scale for the Assessment…

  4. High Reported Spontaneous Stuttering Recovery Rates: Fact or Fiction?

    Science.gov (United States)

    Ramig, Peter R.

    1993-01-01

    Contact after 6 to 8 years with families of 21 children who were diagnosed as stuttering but did not receive fluency intervention services found that almost all subjects still had a stuttering problem. Results dispute the high spontaneous recovery rates reported in the literature and support the value of early intervention. (Author/DB)

  5. High deposition rate nanocrystalline silicon with enhanced homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, Arjan; Rath, Jatindra K.; Schropp, Ruud [Section Nanophotonics-Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2010-03-15

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inactive region into the plasma zone. It was calculated that back diffusion plays a role in the regime for high deposition rate (4.5 nm/s) via the residence time for particles in the plasma and the corresponding diffusion length for silane from outside the plasma. The stabilization time for back diffusion was derived and found to be on the order of tens of seconds. Experiment showed that the incubation layer for nc-Si:H is very thick in films deposited at a high rate compared to films deposited in a regime of lower deposition rate. The use of a hydrogen plasma start greatly reduced this incubation layer. Further control of the crystalline fraction could be achieved via slight reduction of the degree of depletion via the silane flow. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Advances in high rate anaerobic treatment: staging of reactor systems.

    NARCIS (Netherlands)

    Lier, van J.B.; Zee, van der F.P.; Tan, N.C.G.; Rebac, S.; Kleerebezem, R.

    2001-01-01

    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptan

  7. Adapting high-rate anaerobic treatment to Middle East conditions

    NARCIS (Netherlands)

    Mahmoud, N.A.; Zeeman, G.; Lier, van J.B.

    2008-01-01

    High-rate anaerobic technologies offer cost-effective solutions for sewage treatment in the Middle East and Palestine in particular. The sewage characteristics in Palestine are quite different from the values elsewhere and show solids contents of more than 1000 mg chemical oxygen demand (COD)ss/L

  8. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  9. Understanding High School Graduation Rates in the District of Columbia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in New Mexico

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in Rhode Island

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in South Dakota

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in West Virginia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in North Carolina

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Understanding High School Graduation Rates in South Carolina

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  16. Understanding High School Graduation Rates in North Dakota

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  17. Understanding High School Graduation Rates in New York

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  18. Understanding High School Graduation Rates in the United States

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  19. Understanding High School Graduation Rates in New Hampshire

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  20. Understanding High School Graduation Rates in New Jersey

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  1. Highly photoluminescent and photostable CdSe quantum dot-nylon hybrid composites for efficient light conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying; Riehle, Frank-Stefan [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany); Nitschke, Roland [Life Imaging Center, Centre of Systems Biology, University of Freiburg Habsburgerstr. 49, D-79104 Freiburg (Germany); Centre for Biological Signalling Studies (BIOSS), University of Freiburg (Germany); Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A novel in situ synthesis approach for highly luminescent CdSe core QDs-nylon hybrid materials. Black-Right-Pointing-Pointer Potential applications for light and energy conversion are demonstrated. Black-Right-Pointing-Pointer Three dimensional structures out of this hybrid material are available. - Abstract: Highly photoluminescent hexadecylamine (HDA) capped core CdSe quantum dots (QDs) with fluorescent quantum yields (QYs) up to 60% were synthesized using a hot injection method and directly incorporated into nylon polymer. For the incorporation of crude CdSe QDs into nylon a simple reproducible and upscalable one pot approach was developed without the need of further purification steps. The photoluminescence (PL) properties of the core QDs and the resulting QD-polymer hybrid composites were investigated and compared. Red emitting hybrid materials exhibit a QY of 60% with a high potential for applications in direct light and energy conversion. The hybrid materials could be successfully utilized as LED conversion layers. By avoiding exposure to oxygen the hybrid films can be kept for a month without detecting a significant decrease in luminescence. Various three dimensional structures are easily available opening doors for further applications such as novel materials for fluorescence standard development in laser scanning microscopy (LSM).

  2. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Foyto, L [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Kutikkad, K [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; McKibben, J C [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Peters, N. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  3. Mechanisms of high heart rate variability: a fresh look

    Directory of Open Access Journals (Sweden)

    Vladimir A. Lukyanchenko

    2016-05-01

    Full Text Available Consideration is being given herein to some mechanisms of high heart rate variability (high HRV, which cannot be attributed to sports exercise loading. The mechanism responsible for high HRV is explained as that resulted from the continuous performance (opening and closure of arteriovenous anastomoses in different organs and systems in a human organism. An assessment of this phenomenon is given herein from the point of view of a practicing physician who treats regularly patients with already established clinical diagnoses and those without an established nosological profile according to International Statistical Classification of Diseases and Related Health Problems 10th Revision.

  4. OFDM-based Low-voltage Powerline High Rate Communication

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-bing(张有兵); CHENG Shi-jie(程时杰); Joseph Nguimbis; XIONG Lan(熊兰)

    2004-01-01

    Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based high rate digital communication over low-voltage powerline is analyzed and simulated. The capability of thc signal transmission system in overcoming multi-path interference and selection of the system parameters are discussed. And time-domain simulation is carried out to investigate the transmission capability of the OFDM cammunication system for different mapping schemes and transmission power levels. Simulation results show that it is possible to realize high rate digital communication over iow-voltage powerliue using OFDM when the transmitted power is large enough.

  5. High strain rate behavior of pure metals at elevated temperature

    Science.gov (United States)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  6. Conversational Dominance.

    Science.gov (United States)

    Esau, Helmut; Poth, Annette

    Details of conversational behavior can often not be interpreted until the social interaction, including the rights and obligations of the participants, their intent, the topic, etc., has been defined. This paper presents a model of conversation in which the conversational image a person presents in a given conversational situation is a function of…

  7. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  8. Rapid slowing of the atrial fibrillatory rate after administration of AZD7009 predicts conversion of atrial fibrillation

    DEFF Research Database (Denmark)

    Aunes, Maria; Egstrup, Kenneth; Frison, Lars

    2014-01-01

    BACKGROUND: Effects on the atrial fibrillatory rate (AFR) were studied during infusion with the combined potassium and sodium channel blocker AZD7009. METHODS AND RESULTS: Patients with persistent atrial fibrillation (AF) were randomized to AZD7009 or placebo. Thirty-five patients converted...

  9. Systematic Uncertainties in High-Rate Germanium Data

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.; Pitts, William K.; VanDevender, Brent A.; Wood, Lynn S.

    2016-10-06

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning with a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.

  10. Coal conversion rate in 1t/d PSU liquefaction reactor; 1t/d PSU ekika hannoto ni okeru sekitan tenka sokudo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the coal liquefaction characteristics, coal slurry samples were taken from the outlets of the reactors and slurry preheater of NEDOL process 1 t/d process supporting unit (PSU), and were analyzed. Tanito Harum coal was used for liquefaction, and the slurry was prepared with recycle solvent. Liquefaction was performed using synthetic iron sulfide catalyst at reaction temperatures, 450 and 465{degree}C. Solubility of various solid samples was examined against n-hexane, toluene, and tetrahydrofuran (THF). When considering the decrease of IMO (THF-insoluble and ash) as a characteristic of coal conversion reaction, around 20% at the outlet of the slurry preheater, around 70% within the first reactor, and several percents within the successive second and third reactors were converted against supplied coal. Increase of reaction temperature led to the increase of evaporation of oil fraction, which resulted in the decrease of actual slurry flow rate and in the increase of residence time. Thus, the conversion of coal was accelerated by the synergetic effect of temperature and time. Reaction rate constant of the coal liquefaction was around 2{times}10{sup -1} [min{sup -1}], which increased slightly with increasing the reaction temperature from 450 to 465{degree}C. 3 refs., 5 figs., 1 tab.

  11. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.

  12. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  13. Physical characteristics of the Selectron high dose rate intracavitary afterloader

    Energy Technology Data Exchange (ETDEWEB)

    Chenery, S.G.A.; Pla, M.; Podgorsak, E.B. (Royal Victoria Hospital, Montreal, Quebec (Canada); McGill Univ., Montreal, Quebec (Canada))

    1985-08-01

    The physics measurements on a Selectron high dose-rate afterloading cobalt-60 unit are reported. The installation was found to be acceptable from the standpoint of radiation safety and cost effectiveness; hospital bed space was saved as treatment could be on an outpatient basis. A source calibration 4% higher than the value stated by the manufacturer was obtained. Measurement of the ratio of exposure rate in water to that in air confirmed the calibration and the applicability of correction factors for routine clinical dosimetry recommended in the literature.

  14. Nanocrystalline silicon prepared at high growth rate using helium dilution

    Indian Academy of Sciences (India)

    Koyel Bhattacharya; Debajyoti Das

    2008-06-01

    Growth and optimization of the nanocrystalline silicon (nc-Si : H) films have been studied by varying the electrical power applied to the helium diluted silane plasma in RF glow discharge. Wide optical gap and conducting intrinsic nanocrystalline silicon network of controlled crystalline volume fraction and oriented crystallographic lattice planes have been obtained at a reasonably high growth rate from helium diluted silane plasma, without using hydrogen. Improving crystallinity in the network comprising ∼ 10 nm Si-nanocrystallites and contributing optical gap widening, conductivity ascending and that obtained during simultaneous escalation of the deposition rate, promises significant technological impact.

  15. Modelling Chemical Kinetics of Soybean Oil Transesterification Process for Biodiesel Production: An Analysis of Molar Ratio between Alcohol and Soybean Oil Temperature Changes on the Process Conversion Rate

    Directory of Open Access Journals (Sweden)

    Maicon Tait

    2006-12-01

    Full Text Available A mathematical model describing chemical kinetics of transesterification of soybean oil for biodiesel production has been developed. The model is based on the reverse mechanism of transesterification reactions and describes dynamics concentration changes of triglycerides, diglycerides, monoglycerides, biodiesel, and glycerol production. Reaction rate constants were written in the Arrhenius form. An analysis of key process variables such as temperature and molar ratio soybean oil- alcohol using response surface analysis was performed to achieve the maximum soybean conversion rate to biodiesel. The predictive power of the developed model was checked for the very wide range of operational conditions and parameters values by fitting different experimental results for homogeneous catalytic and non-catalytic processes published in the literature. A very good correlation between model simulations and experimental data was observed.

  16. Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage.

    Science.gov (United States)

    Choi, Bong Gill; Park, Ho Seok

    2012-04-01

    A facilitated electrochemical reaction at the surface of electrodes is crucial for highly efficient energy conversion and storage. Herein, various nanoparticles (NPs) including Au, Pt, Pd, Ru, and RuO(2), were synthesized in situ and directly deposited on the ionic liquid (IL)-functionalized reduced graphene oxides (RGOs) in a controlled manner. The size, amount, and crystalline structures of discrete NPs were readily controlled, giving rise to enhanced methanol oxidation and pseudocapacitance. The well-defined nanostructure of decorated NPs and the favorable interaction between ILs and RGOs (or NPs) facilitated the electrochemical reaction, where NPs acted as electrocatalysts for energy conversion and played the role of redox-active electrodes for energy storage.

  17. Efficient continuous-wave nonlinear frequency conversion in high-Q Gallium Nitride photonic crystal cavities on Silicon

    CERN Document Server

    Mohamed, Mohamed Sabry; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald

    2016-01-01

    We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4$\\times10^{4}$, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving normalized conversion efficiency of 2.4$\\times10^{-3}$ $W^{-1}$, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  18. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    Science.gov (United States)

    Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Gray, R. J.; Rosinski, M.; Deppert, O.; Badziak, J.; Batani, D.; Davies, J. R.; Hassan, S. M.; Lancaster, K. L.; Li, K.; Musgrave, I. O.; Norreys, P. A.; Pasley, J.; Roth, M.; Schlenvoigt, H.-P.; Spindloe, C.; Tatarakis, M.; Winstone, T.; Wolowski, J.; Wyatt, D.; McKenna, P.; Neely, D.

    2014-02-01

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5-30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ˜1 ps.

  19. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C. M. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Gray, R. J.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Rosinski, M.; Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw (Poland); Deppert, O. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Batani, D. [Dipartimento di Fisica G. Occhialini, Universita di Milano Bicocca, 20126 Milan (Italy); Davies, J. R. [Laboratory for Laser Energetics, Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Hassan, S. M.; Tatarakis, M. [Department of Electronics Engineering, Centre for Plasma Physics and Lasers, 73133 Chania, 74100 Rethymno, Crete (Greece); and others

    2014-02-24

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.

  20. Determination of Tensile Properties of Polymers at High Strain Rates

    Directory of Open Access Journals (Sweden)

    Major Z.

    2010-06-01

    Full Text Available In the field of high rate testing of polymers the measured properties are highly dependent on the applied methodology. Hence, the test setup as whole but in particular also the geometrical type of specimen plays a decisive role. The widely used standard for the determination of tensile properties of polymers (ISO527-2 was extended by a novel standard (ISO18872:2007, which is targeted on the determination of tensile properties at high strain rates. In this standard also a novel specimen shape is proposed. Hand in hand with the introduction of new specimen geometry the question of comparability arises. To point out the differences in stress-strain response of the ISO18872 specimen and the ISO527-2 multipurpose specimen tensile tests over a wide loading rate range were conducted in this paper. A digital image correlation system in combination with a high speed camera was used to characterize the local material behaviour. Different parameters like nominal stress, true stress, nominal strain, true strain as well as volumetric strain were determined and used to compare the two specimen geometries.

  1. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn

  2. Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions.

    Science.gov (United States)

    Lukovic, Dunja; Diez Lloret, Andrea; Stojkovic, Petra; Rodríguez-Martínez, Daniel; Perez Arago, Maria Amparo; Rodriguez-Jimenez, Francisco Javier; González-Rodríguez, Patricia; López-Barneo, José; Sykova, Eva; Jendelova, Pavla; Kostic, Jelena; Moreno-Manzano, Victoria; Stojkovic, Miodrag; Bhattacharya, Shomi S; Erceg, Slaven

    2017-04-01

    Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217-1226.

  3. Multiplexed CV quantum teleportation for high rates in quantum communication

    CERN Document Server

    Christ, Andreas; Silberhorn, Christine

    2012-01-01

    A major challenge of today's quantum communication systems lies in the transmission of quantum information with high rates over long distances in the presence of unavoidable losses. Thereby the achievable quantum communication rate is fundamentally limited by the amount of energy that can be transmitted per use of the channel. It is hence vital to develop quantum communication protocols which encode quantum information as energy efficiently as possible. To this aim we investigate continuous-variable quantum teleportation as a method of distributing quantum information. We explore the possibility to encode information on multiple optical modes and derive upper and lower bounds on the achievable quantum channel capacities. This analysis enables us to benchmark single-mode vs. multi-mode entanglement resources. Our research reveals that multiplexing does not only feature an enhanced energy efficiency, significantly increasing the achievable quantum communication rates in comparison to single-mode coding, but als...

  4. High data rate recording: Moving to 2 Gbit/s

    Science.gov (United States)

    Taratorin, A.; Yuan, S.; Nikitin, V.

    2003-05-01

    High data rate recording can be achieved using fast write drivers and fast heads. Advanced short-yoke write heads and write drivers with 450 ps rise time and programmable current overshoot were used to study recording at data rates up to 2 Gbit/s. The head flux rise time causes shifts of recorded transitions. It is well known that current overshoot helps to overcome bandwidth limitations in the write driver, interconnects, and write head. However, excessive overshoot may cause pattern-dependent transition shifts and significant distortions of recorded transitions. We present the data rate performance of short-yoke recording heads, analysis of nonlinear pattern-dependent distortions, and optimization of the write current wave form in the 1-2 Gbit/s range. Simple dibit and tribit patterns were recorded at 2 Gbit/s. Low-distortion recording for arbitrary data patterns was demonstrated at 1.6 Gbit/s after optimization of write current overshoot.

  5. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  6. Investigation of high-rate lithium-thionyl chloride cells

    Science.gov (United States)

    Hayes, Catherine A.; Gust, Steven; Farrington, Michael D.; Lockwood, Judith A.; Donaldson, George J.

    Chemical analysis of a commercially produced high-rate D-size lithium-thionyl cell was carried out, as a function of rate of discharge (1 ohm and 5 ohms), depth of discharge, and temperature (25 C and -40 C), using specially developed methods for identifying suspected minor cell products or impurities which may effect cell performance. These methods include a product-retrieval system which involves solvent extraction to enhance the recovery of suspected semivolatile minor chemicals, and methods of quantitative GC analysis of volatile and semivolatile products. The nonvolatile products were analyzed by wet chemical methods. The results of the analyses indicate that the predominant discharge reaction in this cell is 4Li + 2SOCl2 going to 4LiCl + S + SO2, with SO2 formation decreasing towards the end of cell life (7 to 12 Ah). The rate of discharge had no effect on the product distribution. Upon discharge of the high-rate cell at -40 C, one cell exploded, and all others exhibited overheating and rapid internal pressure rise when allowed to warm up to room temperature.

  7. HIGH RATES OF EVOLUTION PRECEDED THE ORIGIN OF BIRDS

    Science.gov (United States)

    Puttick, Mark N; Thomas, Gavin H; Benton, Michael J; Polly, P David

    2014-01-01

    The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous. PMID:24471891

  8. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  9. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  10. Small cryptopredators contribute to high predation rates on coral reefs

    Science.gov (United States)

    Goatley, Christopher H. R.; González-Cabello, Alonso; Bellwood, David R.

    2017-03-01

    Small fishes suffer high mortality rates on coral reefs, primarily due to predation. Although studies have identified the predators of early post-settlement fishes, the predators of small cryptobenthic fishes remain largely unknown. We therefore used a series of mesocosm experiments with natural habitat and cryptobenthic fish communities to identify the impacts of a range of small potential predators, including several invertebrates, on prey fish populations. While there was high variability in predation rates, many members of the cryptobenthic fish community act as facultative cryptopredators, being prey when small and piscivores when larger. Surprisingly, we also found that smashing mantis shrimps may be important fish predators. Our results highlight the diversity of the predatory community on coral reefs and identify previously unknown trophic links in these complex ecosystems.

  11. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    High frame rate ultrasound imaging can be achieved by simultaneous transmission of multiple focused beams along different directions. However, image quality degrades by the interference among beams. An alternative approach is to transmit spherical waves of a basic short pulse with frequency coding...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d......B. With the proposed imaging strategy of pulse train excitation, a whole image can be formed with only two emissions, making it possible to obtain high quality images at a frame rate of 20 to 25 times higher than that of conventional phased array imaging...

  12. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2007-10-15

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm{sup 2} at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.

  13. Duration of attenuated positive and negative symptoms in individuals at clinical high risk: Associations with risk of conversion to psychosis and functional outcome.

    Science.gov (United States)

    Carrión, Ricardo E; Demmin, Docia; Auther, Andrea M; McLaughlin, Danielle; Olsen, Ruth; Lencz, Todd; Correll, Christoph U; Cornblatt, Barbara A

    2016-10-01

    Research in individuals at clinical high-risk (CHR) for psychosis has focused on subjects with no more than 12 months of present or worsened attenuated positive symptoms. However, the impact of long duration attenuated positive and/or negative prodromal symptoms on outcomes is unclear. Seventy-six CHR subjects with attenuated positive symptoms and at least moderate severity level negative symptoms rated on the Scale of Prodromal Symptoms (SOPS) were prospectively followed for a mean of 3.0 ± 1.6 years. Social and Role functioning was assessed with the Global Functioning: Social and Role scales. Correlations between attenuated positive and negative symptom duration and severity and conversion to psychosis and functional outcomes were analyzed. The average onset of SOPS rated negative symptoms (M = 53.24 months, SD = 48.90, median = 37.27) was approximately twelve months prior to the emergence of attenuated positive symptom (M = 40.15 months, SD = 40.33, median = 24.77, P negative (P = 0.754) symptoms, predicted conversion to psychosis. Neither positive symptom duration (P = 0.181) nor severity (P = 0.469) predicted role or social functioning at study endpoint. Conversely, longer negative symptom duration predicted poor social functioning (P = 0.004). Overall, our findings suggest that the severity of attenuated positive symptoms at baseline may be more important than symptom duration for determining individuals at increased risk of developing psychosis. In contrast, long-standing negative symptoms may be associated with persistent social difficulties and therefore have an important position in the treatment of disability.

  14. Distribution of streaming rates into high-redshift galaxies

    CERN Document Server

    Goerdt, Tobias; Dekel, Avishai; Teyssier, Romain

    2015-01-01

    We study the accretion along streams from the cosmic web into high-redshift massive galaxies using three sets of AMR hydro-cosmological simulations. We find that the streams keep a roughly constant accretion rate as they penetrate into the halo centre. The mean accretion rate follows the mass and redshift dependence predicted for haloes by the EPS approximation, dM / dt is proportional to Mvir^{1.25} (1 + z)^{2.5}. The distribution of the accretion rates can well be described by a sum of two Gaussians, the primary corresponding to "smooth inflow" and the secondary to "mergers". The same functional form was already found for the distributions of specific star formation rates in observations. The mass fraction in the smooth component is 60 - 90 %, insensitive to redshift or halo mass. The simulations with strong feedback show clear signs of re-accretion due to recycling of galactic winds. The mean accretion rate for the mergers is a factor 2 - 3 larger than that of the smooth component. The standard deviation o...

  15. High-rate diamond deposition by microwave plasma CVD

    Science.gov (United States)

    Li, Xianglin

    In this dissertation, the growth of CVD (Chemical Vapor Deposition) diamond thin films is studied both theoretically and experimentally. The goal of this research is to deposit high quality HOD (Highly Oriented Diamond) films with a growth rate greater than 1 mum/hr. For the (100)-oriented HOD films, the growth rate achieved by the traditional process is only 0.3 mum/hr while the theoretical limit is ˜0.45 mum/hr. This research increases the growth rate up to 5.3 mum/hr (with a theoretical limit of ˜7 mum/hr) while preserving the crystal quality. This work builds a connection between the theoretical study of the CVD process and the experimental research. The study is extended from the growth of regular polycrystalline diamond to highly oriented diamond (HOD) films. For the increase of the growth rate of regular polycrystalline diamond thin films, a scaling growth model developed by Goodwin is introduced in details to assist in the understanding of the MPCVD (Microwave Plasma CVD) process. Within the Goodwin's scaling model, there are only four important sub-processes for the growth of diamond: surface modification, adsorption, desorption, and incorporation. The factors determining the diamond growth rate and film quality are discussed following the description of the experimental setup and process parameters. Growth rate and crystal quality models are reviewed to predict and understand the experimental results. It is shown that the growth rate of diamond can be increased with methane input concentration and the amount of atomic hydrogen (by changing the total pressure). It is crucial to provide enough atomic hydrogen to conserve crystal quality of the deposited diamond film. The experimental results demonstrate that for a fixed methane concentration, there is a minimum pressure for growth of good diamond. Similarly, for a fixed total pressure, there is a maximum methane concentration for growth of good diamond, and this maximum methane concentration increases

  16. High Strain Rate Experiments of Energetic Material Binder

    OpenAIRE

    Rangel Mendoza, Roberto; Harr, Michael; Chen, Weinong

    2016-01-01

    Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A bett...

  17. Fast demographic traits promote high diversification rates of Amazonian trees

    OpenAIRE

    Baker, Timothy R.; Pennington, R. Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F.; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J. M. M.; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Roel J.W. Brienen

    2014-01-01

    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits - short turnover times - are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rat...

  18. Data Feature Extraction for High-Rate 3-Phase Data

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-18

    This algorithm processes high-rate 3-phase signals to identify the start time of each signal and estimate its envelope as data features. The start time and magnitude of each signal during the steady state is also extracted. The features can be used to detect abnormal signals. This algorithm is developed to analyze Exxeno's 3-phase voltage and current data recorded from refrigeration systems to detect device failure or degradation.

  19. High rate multiplicity detector for relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D. [Brookhaven National Lab., Upton, NY (United States); Bennett, M.J. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, CT 06511 (United States); Carroll, J.B. [University of California at Los Angeles, Los Angeles, CA (United States); Chiba, J. [KEK National High Energy Physics, Tsukuba (Japan); Chikanian, A. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, CT 06511 (United States); Crawford, H.J. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Cronqvist, M. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Dardenne, Y. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Debbe, R. [Brookhaven National Lab., Upton, NY (United States); Doke, T. [Waseda University, Science and Engineering Research Institute, Waseda (Japan); Engelage, J. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Flores, I. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Greiner, L. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Hayano, R.S. [University of Tokyo, Tokyo (Japan); Hallman, T.J. [University of California at Los Angeles, Los Angeles, CA (United States); Heckman, H.H. [Lawrence Berkeley Lab., CA (United States); Kashiwagi, T. [Waseda University, Science and Engineering Research Institute, Waseda (Japan); Kikuchi, J. [Waseda University, Science and Engineering Research Institute, Waseda (Japan); Kumar, B.S. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, CT 06511 (United States); Kuo, C. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Lindstrom, P.J. [Lawrence Berkeley Lab., CA (United States); Mitchell, J.W. [Universities Space Research Association/Goddard Space Flight Center, Greenbelt, MD (United States); Nagamiya, S.; E878 Collaboration

    1995-04-21

    We have constructed and operated a detector to measure the multiplicity of secondary particles produced in nucleus-nucleus collisions in the E878 experiment at the Brookhaven National Laboratory AGS facility. We describe the operation and performance of the detector in a high rate Au beam environment, and interpret the multiplicity data in terms of the impact parameters of the nucleus-nucleus collisions. ((orig.)).

  20. High-rate measurement-device-independent quantum cryptography

    DEFF Research Database (Denmark)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana

    2015-01-01

    Quantum cryptography achieves a formidable task - the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction...... than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers....

  1. Twinning in copper deformed at high strain rates

    Indian Academy of Sciences (India)

    S Cronje; R E Kroon; W D Roos; J H Neethling

    2013-02-01

    Copper samples having varying microstructures were deformed at high strain rates using a split-Hopkinson pressure bar. Transmission electron microscopy results show deformation twins present in samples that were both annealed and strained, whereas samples that were annealed and left unstrained, as well as samples that were unannealed and strained, are devoid of these twins. These deformation twins occurred at deformation conditions less extreme than previously predicted.

  2. MDT Performance in a High Rate Background Environment

    CERN Document Server

    Aleksa, Martin; Hessey, N P; Riegler, W

    1998-01-01

    A Cs137 gamma source with different lead filters in the SPS beam-line X5 has been used to simulate the ATLAS background radiation. This note shows the impact of high background rates on the MDT efficiency and resolution for three kinds of pulse shaping and compares the results with GARFIELD simulations. Furthermore it explains how the performance can be improved by time slewing corrections and double track separation.

  3. Mechanical properties of transgenic silkworm silk at high rate impact

    Science.gov (United States)

    Chu, Jou-Mei

    Transgenic silkworm silk was created to obtain the quality of spider silk while being mass-producible. Due to the variability in sequencing between the silkworm and spider DNA, the resulting transgenic silkworm silk may have different properties compared to spider silk. Furthermore, the high strain rate mechanical response of this new natural fiber is still unknown and needs to be characterized. In this experimental research, a quasi-static load frame (MTS) and a Kolsky tension bar are used to characterize the tensile stress-strain response of transgenic silkworm silk over a range of strain-rates between 10-3/s to 103/s. The results show that transgenic silkworm silk tends to have high overall elongation and initial stiffness at high strain rates compared to those of spider silk. Furthermore, specimen gage length sensitivity is studied with gage lengths of 3.97 mm (5/32 in), 4.76 mm (3/16 in), and 6.35 mm (1/4 in). Fracture surfaces are examined via Scanning Electron Microscopy (SEM) and reveal that the fracture mode is similar to that of spider silk. Therefore, it may be possible for the tensile properties of transgenic silkworm silk be comparable to that of spider silk.

  4. Semi-solid electrodes having high rate capability

    Science.gov (United States)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-06-07

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  5. Atomistic simulations of high strain rate loading of nanocrystals

    Science.gov (United States)

    Bringa, E. M.; Tramontina, D.; Ruestes, C. J.; Tang, Y.; Meyers, M. A.; Gunkelmann, N.; Urbassek, H. M.

    2013-03-01

    Materials loaded at high strain rates can reach extreme temperature and pressure conditions. Most experiments on loading of simple materials use poly crystals, while most atomistic simulations of shock wave loading deal with single crystals, due to the higher computational cost of running polycrystal samples. Of course, atomistic simulations of polycrystals with micron-sized grains are beyond the capabilities of current supercomputers. On the other hand, nanocrystals (nc) with grain sizes below 50 nm can be obtained experimentally and modeled reasonably well at high strain rates, opening the possibility of nearly direct comparison between atomistic molecular dynamics (MD) simulations and experiments using high power lasers. We will discuss MD simulations and links to experiments for nc Cu and Ni, as model f.c.c. solids, and nc Ta and Fe, as model b.c.c. solids. In all cases, the microstructure resulting from loading depends strongly on grain size, strain rate and peak applied pressure. We will also discuss effects related to target porosity in nc's. E.M.B. thanks funding from PICT2008-1325.

  6. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.

    Science.gov (United States)

    Augustyn, Veronica; Come, Jérémy; Lowe, Michael A; Kim, Jong Woung; Taberna, Pierre-Louis; Tolbert, Sarah H; Abruña, Héctor D; Simon, Patrice; Dunn, Bruce

    2013-06-01

    Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 μm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.

  7. Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes.

    Science.gov (United States)

    Li, Linsen; Jacobs, Ryan; Gao, Peng; Gan, Liyang; Wang, Feng; Morgan, Dane; Jin, Song

    2016-03-02

    Metal fluorides and oxides can store multiple lithium ions through conversion chemistry to enable high-energy-density lithium-ion batteries. However, their practical applications have been hindered by an unusually large voltage hysteresis between charge and discharge voltage profiles and the consequent low-energy efficiency (hysteresis are rarely studied and poorly understood. Here we employ in situ X-ray absorption spectroscopy, transmission electron microscopy, density functional theory calculations, and galvanostatic intermittent titration technique to first correlate the voltage profile of iron fluoride (FeF3), a representative conversion electrode material, with evolution and spatial distribution of intermediate phases in the electrode. The results reveal that, contrary to conventional belief, the phase evolution in the electrode is symmetrical during discharge and charge. However, the spatial evolution of the electrochemically active phases, which is controlled by reaction kinetics, is different. We further propose that the voltage hysteresis in the FeF3 electrode is kinetic in nature. It is the result of ohmic voltage drop, reaction overpotential, and different spatial distributions of electrochemically active phases (i.e., compositional inhomogeneity). Therefore, the large hysteresis can be expected to be mitigated by rational design and optimization of material microstructure and electrode architecture to improve the energy efficiency of lithium-ion batteries based on conversion chemistry.

  8. Discordance and Conversion Rates of Progesterone-, Estrogen-, and HER2/neu-Receptor Status in Primary Breast Cancer and Brain Metastasis Mainly Triggered by Hormone Therapy.

    Science.gov (United States)

    Timmer, Marco; Werner, Jan-Michael; Röhn, Gabriele; Ortmann, Monika; Blau, Tobias; Cramer, Christina; Stavrinou, Pantelis; Krischek, Boris; Mallman, Peter; Goldbrunner, Roland

    2017-09-01

    Knowing the molecular footprint of tumors is a precondition for personalized medicine. For breast cancer, targeted therapies are frequently based on the molecular status of the tissue gained from the primary tumor operation. However, it is unclear whether metastases in different organs maintain the same status. We compared the estrogen- (ER), progesterone- (PgR) and HER2/neu receptor status of the primary tumor with brain metastases in a series of 24 consecutive breast cancer patients. 62.5-75% of patients exhibited a constant receptor status between the primary tumor and the brain metastasis, whereas discordance rates of 25-37.5% were found, depending on the receptor. The rate of ER and PgR expression was each 41.6% in the primary tumors and decreased to 12.5% and 16.6% in the brain metastases. In contrast, the rate for Her2+ tumors increased from 41.6% in primary breast cancer to 65.2% in the respective brain metastases. The Ki-67 proliferation index increased significantly from a mean of 21% at the primary tumor site to 60% in brain metastases (p<0.001). All anti-estrogen treated breast tumors lost the estrogen receptor expression in the brain metastases, whereas no Her2/neu conversions occurred after treatment with trastuzumab. In summary, receptor conversion is frequent during disease progression. Therefore, the receptor status of the primary tumor is invalid for planning a therapy targeted against brain metastases, especially after hormone-therapy. In these cases, new tissue collection by biopsy or resection is mandatory for the selection of adequate therapeutic targets and accurate decision-making for systemic therapies. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Assessment of independent risk factors of conversion into psychosis in the ultra-high risk state group of patients

    Directory of Open Access Journals (Sweden)

    Marta Gawłowska

    2010-12-01

    Full Text Available Background: The aim of this study was the independent psychosis risk factors assessment in a group of subjects fulfilling the criteria of at risk mental state, under specialist outpatient psychiatric care. Participants: Seventy-one patients – 33 women and 38 men, were involved into this study, aged on average 17.34, all under psychiatric care. The patients were recruited into the study in the sequence of their outpatient clinic admission. The criterion to be included into the study was the diagnosis of ultra-high risk state (UHRS – defined according to the Australian research group principles. Subsequently, the patients were divided into subgroups according to the clinical features of their mental state. Method: The author’s demographic questionnaire was applied in the study. Information regarding the family history of psychosis was obtained from patients and/or their relatives or carers. The patients’ mental state was assessed monthly – according to the presence of psychotic symptoms, change of their incidence and duration, presence of depressive symptoms or aggressive behaviour (measured by a three-level scale. On the basis of the obtained information, we evaluated: 1 conversion into psychosis time – measured from diagnosing of UHRS to the development of full-symptom psychosis, 2 therapeutic methods used (psychotherapy, pharmacotherapy or both, 3 use of psychoactive substances after being diagnosed with UHRS, 4 presence of serious life stressors (the patients’ subjective estimation – during the six-month period preceding the conversion into psychosis. Results: 1 In the UHRS group of patients, staying under professional outpatient psychiatric care, the use of marijuana was an independent risk factor of conversion into psychosis. 2 In the investigated group of patients with at risk mental state we did not find any correlation between modulating factors (including: therapeutic methods used, depressive symptoms, aggression or

  10. Development of a high-energy distributed energy source electromagnetic railgun with improved energy conversion efficiency

    Science.gov (United States)

    Tower, M. M.; Haight, C. H.

    1984-03-01

    The development status of a single-pulse distributed-energy-source electromagnetic railgun (ER) based on the design of Tower (1982) is reviewed. The five-stage ER is 3.65 m long, with energy inputs every 30 cm starting at the breech and a 12.7-mm-square bore cross section, and is powered by a 660-kJ 6-kV modular capacitor bank. Lexan cubes weighing 2.5 grams have been accelerated to velocities up to 8.5 km/sec at 500 kA and conversion efficiency up to 20 percent. Design goal for a 20-mm-sq-cross-section ER is acceleration of a 60-g projectile to 3-4 km/sec at 35-percent efficiency. Drawings, photographs, and graphs of performance are provided.

  11. Photon spectrum and polarization for high conversion coefficient in the Compton backscattering process

    Science.gov (United States)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.; Strikhanov, M. N.; Strokov, S. A.

    2017-07-01

    This study looks to simulate the nonlinear Compton backscattering (CBS) process based on the Monte Carlo technique for the conversion coefficient Kc ⩾ 1 , which can be considered as the average number of photons emitted by each electron. The characteristics of the nonlinear CBS process simulated in this work are as follows: the number of absorbed photons of a laser, the distance in the laser pulse in which the electron passes between two collisions, the energy and the polarization of the emitted photon in each collision, and the polarization of the electron before and after collision. The developed approach allows us to find the spectra and polarization characteristics of the final electrons and photons. When Kc > 1 , the spin-flip processes need to be considered for a correct simulation of the polarization of the final photons and electrons for energies typical of a γ- γ collider.

  12. Photon Self-Induced Spin to Orbital Conversion in TGG crystal at high laser power

    CERN Document Server

    Mosca, S; Karimi, E; Piccirillo, B; Marrucci, L; De Rosa, R; Genin, E; Milano, L; Santamato, E

    2010-01-01

    In this paper, we present experimental evidence of a newly discovered third-order nonlinear optical process Self-Induced Spin-to-Orbital Conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium gallium garnet (TGG) rod for an impinging laser power of about 100~W. To study the SISTOC process we used different techniques: polarization analysis, interferometry and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism...

  13. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  14. Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion.

    Science.gov (United States)

    Laiho, K; Cassemiro, K N; Silberhorn, Ch

    2009-12-07

    Parametric down-conversion (PDC) offers the possibility to control the fabrication of non-Gaussian states such as Fock states. However, in conventional PDC sources energy and momentum conservation introduce strict frequency and photon number correlations, which impact the fidelity of the prepared state. In our work we optimize the preparation of single-photon Fock states from the emission of waveguided PDC via spectral filtering. We study the effect of correlations via photon number resolving detection and quantum interference. Our measurements show how the reduction of mixedness due to filtering can be evaluated. Interfering the prepared photon with a coherent state we establish an experimentally measured fidelity of the produced target state of 78%.

  15. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria.

    Science.gov (United States)

    Taher, Edris; Chandran, Kartik

    2013-04-02

    The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH(4)) to methanol (CH3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH(4) to CH(3)OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH(3)OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH(4) to CH(3)OH conversion obtained during this study was 0.82 mg CH(3)OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH(4) oxidation to CH(3)OH by AOB was inhibited by NH(3) (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH(3)OH, itself. Further, oxidation of CH(4) to CH(3)OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH(2)OH) as an electron donor. Therefore, a potential optimum design for promoting CH(4) to CH(3)OH oxidation by AOB could involve supplying NH(3) (needed to maintain AMO activity) uncoupled from the supply of NH(2)OH and CH(4). Partial oxidation of CH(4)-containing gases to CH3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH(3) OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N(2), using an internally produced organic electron donor.

  16. Scale dependence of rock friction at high work rate.

    Science.gov (United States)

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  17. Fine-root carbon and nitrogen concentration of European beech (Fagus sylvatica L. in Italy Prealps: possible implications of coppice conversion to high forest

    Directory of Open Access Journals (Sweden)

    Mattia eTerzaghi

    2013-06-01

    Full Text Available Fine-root systems represent a very sensitive plant compartment to environmental changes. Gaining further knowledge about their dynamics would improve soil carbon input understanding. This paper investigates C and N concentrations in fine roots in relation to different stand characteristics resulting from conversion of coppiced forests to high forests. In order to evaluate possible interferences due to different vegetative stages of vegetation, fine-root sampling was repeated 6 times in each stand during the same 2008 growing season. Fine-root sampling was conducted within three different soil depths (0-10; 10-20; and 20-30 cm. Fine-root traits were measured by means of WinRHIZO software which enable us to separate them into three different diameter classes (0-0.5, 0.5-1.0 and 1.0-2.0 mm. The data collected indicate that N concentration was higher in converted stands than in the coppiced stand whereas C concentration was higher in the coppiced stand than in converted stands. Consequently the fine-root C:N ratio was significantly higher in coppiced than in converted stands and showed an inverse relationship with fine-root turnover rate, confirming a significant change of fine-root status after the conversion of a coppice to high forest.

  18. Fine-root carbon and nitrogen concentration of European beech (Fagus sylvatica L.) in Italy Prealps: possible implications of coppice conversion to high forest.

    Science.gov (United States)

    Terzaghi, Mattia; Montagnoli, Antonio; Di Iorio, Antonino; Scippa, Gabriella S; Chiatante, Donato

    2013-01-01

    Fine-root systems represent a very sensitive plant compartment to environmental changes. Gaining further knowledge about their dynamics would improve soil carbon input understanding. This paper investigates C and N concentrations in fine roots in relation to different stand characteristics resulting from conversion of coppiced forests to high forests. In order to evaluate possible interferences due to different vegetative stages of vegetation, fine-root sampling was repeated six times in each stand during the same 2008 growing season. Fine-root sampling was conducted within three different soil depths (0-10; 10-20; and 20-30 cm). Fine-root traits were measured by means of WinRHIZO software which enable us to separate them into three different diameter classes (0-0.5, 0.5-1.0 and 1.0-2.0 mm). The data collected indicate that N concentration was higher in converted stands than in the coppiced stand whereas C concentration was higher in the coppiced stand than in converted stands. Consequently the fine-root C:N ratio was significantly higher in coppiced than in converted stands and showed an inverse relationship with fine-root turnover rate, confirming a significant change of fine-root status after the conversion of a coppice to high forest.

  19. Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling

    Science.gov (United States)

    Tadros, Nicholas N.; Hedges, Jason C.

    2017-01-01

    Introduction. The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation. We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions. Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure. PMID:28331646

  20. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Toyonaka Municipal Hospital, Osaka (Japan); Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Graduate School of Medicine; Furukawa, Souhei; Kakimoto, Naoya [Osaka Univ., Suita (Japan). Graduate School of Dentistry

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)