WorldWideScience

Sample records for high contrast laser

  1. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-01-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  2. High contrast laser marking of alumina

    Science.gov (United States)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  3. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Science.gov (United States)

    Higginson, Drew Pitney

    The cone-guided fast ignition approach to Inertial Confinement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the first time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of Kalpha x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an effective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser

  4. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  5. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  6. Laser-matter interaction at high intensity and high temporal contrast

    International Nuclear Information System (INIS)

    Doumy, G.

    2006-01-01

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10 18 W/cm 2 ). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  7. Laser-matter interaction at high intensity and high temporal contrast; Interaction laser matiere a haut flux et fort contraste temporel

    Energy Technology Data Exchange (ETDEWEB)

    Doumy, G

    2006-01-15

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10{sup 18} W/cm{sup 2}). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  8. High-contrast laser acceleration of relativistic electrons in solid cone-wire targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sawada, H. [Univ. of California-San Diego, La Jolla, CA (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chawla, S. R. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jarrott, L. C. [Univ. of California-San Diego, La Jolla, CA (United States); Flippo, K. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McLean, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perez, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beg, F. N. [Univ. of California-San Diego, La Jolla, CA (United States); Bartal, T. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wei, M. S. [General Atomics, San Diego, CA (United States)

    2015-12-31

    Optimization of electron coupling into small solid angles is of extreme importance to applications, such as Fast Ignition, that require maximum electron energy deposition within a small volume. To optimize this coupling, we use the ultra-high-contrast Trident laser, which remains below intensity of 1011 W/cm2 until < 0.1 ns before the main pulse, while still attaining high-energy, 75 J, and peak intensity of 5 x 1019 W/cm2. Using a cone-wire target, we find that the coupling into the 40 μm diameter wire is increased by a factor of 2.7x over the low-contrast Titan laser at similar peak intensity. Full-scale simulations are used to model the laser interaction and quantitatively reproduce the experimental results. These show that increase in coupling is due to both a closer interaction, as well as the reduction of laser filamentation and self-focusing.

  9. Current Status and Future Prospects of "J-KAREN" — High Contrast, High Intensity Laser for Studying Relativistic Laser-Matter Interactions

    Science.gov (United States)

    Kiriyama, Hiromitsu; Mori, Michiaki; Okada, Hajime; Shimomura, Takuya; Nakai, Yoshiki; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Yogo, Akifumi; Sagisaka, Akito; Ogura, Koichi; Hayashi, Yukio; Sakaki, Hironao; Pirozhkov, Alexander S.; Kotaki, Hideyuki; Fukuda, Yuji; Nishiuchi, Mamiko; Kando, Masaki; Bulanov, Sergei V.; Yamagiwa, Mitsuru; Kondo, Kiminori; Sugiyama, Akira; Bolton, Paul R.

    We present the design and characterization of a high-contrast, petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser system. Two saturable absorbers and low-gain optical parametric chirped-pulse amplification (OPCPA) preamplifier in the double CPA laser chain have improved the temporal contrast to 1.4 × 1012 on the subnanosecond time scale at 70 terawatt level. Final uncompressed broadband pulse energy is 28 J, indicating the potential for reaching peak power near 600 terawatt. We also discuss the going upgrade to over petawatt level at a 0.1 Hz repetition rate briefly.

  10. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  11. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  12. High-contrast gratings for long-wavelength laser integration on silicon

    Science.gov (United States)

    Sciancalepore, Corrado; Descos, Antoine; Bordel, Damien; Duprez, Hélène; Letartre, Xavier; Menezo, Sylvie; Ben Bakir, Badhise

    2014-02-01

    Silicon photonics is increasingly considered as the most promising way-out to the relentless growth of data traffic in today's telecommunications infrastructures, driving an increase in transmission rates and computing capabilities. This is in fact challenging the intrinsic limit of copper-based, short-reach interconnects and microelectronic circuits in data centers and server architectures to offer enough modulation bandwidth at reasonable power dissipation. In the context of the heterogeneous integration of III-V direct-bandgap materials on silicon, optics with high-contrast metastructures enables the efficient implementation of optical functions such as laser feedback, input/output (I/O) to active/passive components, and optical filtering, while heterogeneous integration of III-V layers provides sufficient optical gain, resulting in silicon-integrated laser sources. The latest ensure reduced packaging costs and reduced footprint for the optical transceivers, a key point for the short reach communications. The invited talk will introduce the audience to the latest breakthroughs concerning the use of high-contrast gratings (HCGs) for the integration of III-V-on-Si verticalcavity surface-emitting lasers (VCSELs) as well as Fabry-Perot edge-emitters (EELs) in the main telecom band around 1.55 μm. The strong near-field mode overlap within HCG mirrors can be exploited to implement unique optical functions such as dense wavelength division multiplexing (DWDM): a 16-λ100-GHz-spaced channels VCSEL array is demonstrated. On the other hand, high fabrication yields obtained via molecular wafer bonding of III-V alloys on silicon-on-insulator (SOI) conjugate excellent device performances with cost-effective high-throughput production, supporting industrial needs for a rapid research-to-market transfer.

  13. High Contrast Coherent Population Trapping Resonances in Cs Vapour Cells with a Simple-Architecture Laser System

    International Nuclear Information System (INIS)

    Liu, Xiaochi

    2013-01-01

    This thesis reports the development of a simple-architecture laser system resonant at 895 nm used for the detection of high-contrast coherent population trapping (CPT) resonances in Cs vapor cells. The laser system combines a distributed feedback-diode (DFB) laser, a pigtailed Mach-Zehnder intensity electro-optic modulator (EOM) driven at 4.596 GHz for the generation of optical sidebands frequency-split by 9.192 GHz and a Michelson delay-line system to produce a bi-chromatic optical field that alternates between right and left circular polarization. This polarization pumping scheme, first proposed by Happer's group in Princeton on K atoms, allows to optically pump a maximum number of Cs atoms into the 0-0 magnetic field insensitive clock transition. Advanced noise reduction techniques were implemented in order to stabilize the laser power, the optical carrier suppression at the output of the EOM and the DFB laser frequency. Using this system, we demonstrated the detection of CPT resonances with a contrast of 80% in cm-scale Cs vapor cells. This contrast was measured to be increased until a saturation effect with the laser power at the expense of the CPT line broadening. To circumvent this issue, we proposed with a simple setup Ramsey spectroscopy of CPT resonances in vapor cells to combine high-contrast and narrow line width of the CPT resonances. In this setup, the EOM is used both for optical sidebands generation and light switch to produce Ramsey interaction. Ramsey fringes of 166 Hz line width with a contrast better than 30% were detected with this setup. This laser system will be in a near future devoted to be used for the development of a high-performance CPT-based atomic clock. (author)

  14. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  15. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  16. Study of x-ray emission enhancement via high contrast femtosecond laser interacting with solid foil

    International Nuclear Information System (INIS)

    Chen, Liming; Kando, Masaki; Bulanov, S.V.; Koga, James K.; Tajima, Toshiki; Xu M.H.; Yuan X.H.; Li Y.T.; Dong Q.L.; Zhang J.

    2007-01-01

    We studied the hard x-ray emission and the Kα x-ray conversion efficiency (η K ) produced by 60 fs high contrast frequency doubled Ti: sapphire laser pulse focused on Cu foil target. Cu Kα photon emission obtained with second harmonic laser pulse is more intense than the case of fundamental laser pulse. The Cu η K shows strong dependence on laser nonlinearly skewed pulse shape and reaches the maximum value 4x10 -4 with 100 fs negatively skewed pulse. It shows the electron spectrum shaping contribute to the increase of η K . (author)

  17. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  18. The TRIDENT laser at LANL: New “dial-a-contrast” and high-contrast experimental capabilities

    Directory of Open Access Journals (Sweden)

    Flippo K.A.

    2013-11-01

    Full Text Available The Trident laser facility at Los Alamos National Laboratory (LANL has served for more than 20 years as an important tool in inertial confinement fusion (ICF and Material Dynamics research. An energy and power upgrade of the short-pulse beam line to 100J / 200 TW was made in 2007 and contrast improvements have been made continually since. The combination of this powerful new short-pulse beamline with the two flexible long pulse beamlines, and a total of three different target areas, makes Trident a highly flexible and versatile research tool for high energy density laboratory plasma (HEDLP research. The newest “Dial-a-Contrast” (DaC features are described, along with nominal performance of the laser at the presently available highest contrast.

  19. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    Science.gov (United States)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  20. Front-End Light Source for aWaveform-Controlled High-Contrast Few-Cycle Laser System for High-Repetition Rate Relativistic Optics

    Directory of Open Access Journals (Sweden)

    Rodrigo Lopez-Martens

    2013-03-01

    Full Text Available We present the current development of an injector for a high-contrast, ultrashort laser system devoted to relativistic laser-plasma interaction in the few-cycle regime. The front-end is based on CEP-stabilized Ti:Sa CPA followed by XPW filter designed at the mJ level for temporal cleaning and shortening. Accurate characterization highlights the fidelity of the proposed injector. Measured CEP drift is 170 mrad rms.

  1. Laser projection using generalized phase contrast

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Rodrigo, Peter John

    2007-01-01

    is introduced. An arbitrary phase shift filter eliminates the need for high-frequency modulation and conjugate phase encoding. This lowers device performance requirements and allows practical implementation with currently available dynamic spatial light modulators. (c) 2007 Optical Society of America.......We demonstrate experimental laser projection of a gray-level photographic image with 74% light efficiency using the generalized phase contrast (GPC) method. In contrast with a previously proposed technique [Alonzo et al., New J. Phys. 9, 132 (2007)], a new approach to image construction via GPC...

  2. Stability of iodinated contrast media in UV-laser irradiation and toxicity of photoproducts

    International Nuclear Information System (INIS)

    Groenewaeller, E.F.; Kehlbach, R.; Claussen, C.D.; Duda, S.H.; Wahl, H.G.; Rodemann, H.P.

    1998-01-01

    Purpose: In XeCl-Excimer laser angioplasty, unintended and possibly harmful interaction of the UV-laser light and the contrast media may occur due to the high concentration of contrast medium proximal to the occlusion or subtotal stenosis. Methods: One ml of three nonionic monomeric contrast agents (iopromide, iomeprol, iopamidol), one nonionic dimetric (jotrolane), and one ionic monomeric (amidotrizoate) X-ray contrast agent were irradiated with a XeCl excimer laser (λ=308 nm, pulse duration 120 ns, 50 Hz) using a 9 French multifiber catheter (12 sectors). Up to 20 000 pulses (106 J) were applied. Using high performance liquid chromatography the amount of liberated iodide as well as the fraction of unchanged contrast media were measured. Cytotoxicity of the photoproducts was tested in a colony formation assay of human skin fibroblasts. The contrast agents were irradiated with 2000 pulses/ml (5.3 mJ/pulse; 10.6 J) and then added to the cell cultures for a period of three hours in a concentration of 10%. Results: Excimer laser irradiation induced iodide liberation of up to 3.3 mg iodide/ml. Up to 19% of the contrast agents changed their original molecular structure. Incubation of irradiated contrast agents resulted in a significantly decreased potential for colony formation (p values ranging from 0.0044 to 0.0102) with significantly higher toxicity of amidotrizoate and iomeprol in comparison to iopromide, iotrolan, and iopamidol. Discussion: Due to the cytotoxic photoproducts and the high level of liberated iodide, it is recommended to flush the artery with physiological saline solution before applying a pulsed excimer laser in human arterial obstructions in order to reduce the contrast agent concentration at the site of irradiation. (orig.) [de

  3. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast

    International Nuclear Information System (INIS)

    Julien, A.

    2006-03-01

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  4. Understanding the exposure-time effect on speckle contrast measurements for laser displays

    Science.gov (United States)

    Suzuki, Koji; Kubota, Shigeo

    2018-02-01

    To evaluate the influence of exposure time on speckle noise for laser displays, speckle contrast measurement method was developed observable at a human eye response time using a high-sensitivity camera which has a signal multiplying function. The nonlinearity of camera light sensitivity was calibrated to measure accurate speckle contrasts, and the measuring lower limit noise of speckle contrast was improved by applying spatial-frequency low pass filter to the captured images. Three commercially available laser displays were measured over a wide range of exposure times from tens of milliseconds to several seconds without adjusting the brightness of laser displays. The speckle contrast of raster-scanned mobile projector without any speckle-reduction device was nearly constant over various exposure times. On the contrary to this, in full-frame projection type laser displays equipped with a temporally-averaging speckle-reduction device, some of their speckle contrasts close to the lower limits noise were slightly increased at the shorter exposure time due to the noise. As a result, the exposure-time effect of speckle contrast could not be observed in our measurements, although it is more reasonable to think that the speckle contrasts of laser displays, which are equipped with the temporally-averaging speckle-reduction device, are dependent on the exposure time. This discrepancy may be attributed to the underestimation of temporal averaging factor. We expected that this method is useful for evaluating various laser displays and clarify the relationship between the speckle noise and the exposure time for a further verification of speckle reduction.

  5. Suppressed speckle contrast of blue light emission out of white lamp with phosphors excited by blue laser diodes for high-brightness lighting applications

    Science.gov (United States)

    Kinoshita, Junichi; Ikeda, Yoshihisa; Takeda, Yuji; Ueno, Misaki; Kawasaki, Yoji; Matsuba, Yoshiaki; Heike, Atsushi

    2012-11-01

    The speckle contrast of blue light emission out of high-brightness white lamps using phosphors excited by InGaN/GaN blue laser diodes is evaluated as a measure of coherence. As a result, speckle contrast of as low as 1.7%, the same level as a blue light emitting diode, is obtained. This implies that the original blue laser light can be converted into incoherent light through lamp structures without any dynamic mechanisms. This unique speckle-free performance is considered to be realized by multiple scattering inside the lamp structure, the multi-longitudinal mode operation of the blue laser diodes, and the use of multiple laser diodes. Such almost-incoherent white lamps can be applied for general lighting without any nuisance of speckle noise and should be categorized as lamps rather than lasers in terms of laser safety regulation.

  6. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast; Generation d'impulsions laser ultra-breves et ultra-intenses a contraste temporel eleve

    Energy Technology Data Exchange (ETDEWEB)

    Julien, A

    2006-03-15

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  7. High-contrast sub-Doppler absorption spikes in a hot atomic vapor cell exposed to a dual-frequency laser field

    International Nuclear Information System (INIS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Boudot, Rodolphe; Brazhnikov, Denis; Taichenachev, Alexei; Yudin, Valeriy; De Clercq, Emeric

    2017-01-01

    The saturated absorption technique is an elegant method widely used in atomic and molecular physics for high-resolution spectroscopy, laser frequency standards and metrology purposes. We have recently discovered that a saturated absorption scheme with a dual-frequency laser can lead to a significant sign reversal of the usual Doppler-free dip, yielding a deep enhanced-absorption spike. In this paper, we report detailed experimental investigations of this phenomenon, together with a full in-depth theoretical description. It is shown that several physical effects can support or oppose the formation of the high-contrast central spike in the absorption profile. The physical conditions for which all these effects act constructively and result in very bright Doppler-free resonances are revealed. Apart from their theoretical interest, results obtained in this manuscript are of great interest for laser spectroscopy and laser frequency stabilization purposes, with applications in laser cooling, matter-wave sensors, atomic clocks or quantum optics. (paper)

  8. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  9. Numerical Investigation of Vertical Cavity Lasers With High-Contrast Gratings Using the Fourier Modal Method

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2016-01-01

    We explore the use of a modal expansion technique, Fourier modal method (FMM), for investigating the optical properties of vertical cavities employing high-contrast gratings (HCGs). Three techniques for determining the resonance frequency and quality factor (Q-factor) of a cavity mode are compared......, the scattering losses of several HCG-based vertical cavities with inplane heterostructures which have promising prospects for fundamental physics studies and on-chip laser applications, are investigated. This type of parametric study of 3D structures would be numerically very demanding using spatial...

  10. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    Science.gov (United States)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  11. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    Science.gov (United States)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  12. MATLAB for laser speckle contrast analysis (LASCA): a practice-based approach

    Science.gov (United States)

    Postnikov, Eugene B.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Laser Speckle Contrast Analysis (LASCA) is one of the most powerful modern methods for revealing blood dynamics. The experimental design and theory for this method are well established, and the computational recipie is often regarded to be trivial. However, the achieved performance and spatial resolution may considerable differ for different implementations. We comprise a minireview of known approaches to the spatial laser speckle contrast data processing and their realization in MATLAB code providing an explicit correspondence to the mathematical representation, a discussion of available implementations. We also present the algorithm based on the 2D Haar wavelet transform, also supplied with the program code. This new method provides an opportunity to introduce horizontal, vertical and diagonal speckle contrasts; it may be used for processing highly anisotropic images of vascular trees. We provide the comparative analysis of the accuracy of vascular pattern detection and the processing times with a special attention to details of the used MATLAB procedures.

  13. Feasibility of LED-Assisted CMOS Camera: Contrast Estimation for Laser Tattoo Treatment

    Directory of Open Access Journals (Sweden)

    Ngot Thi Pham

    2018-04-01

    Full Text Available Understanding the residual tattoo ink in skin after laser treatment is often critical for achieving good clinical outcomes. The current study aims to investigate the feasibility of a light-emitting diode (LED-assisted CMOS camera to estimate the relative variations in tattoo contrast after the laser treatment. Asian mice were tattooed using two color inks (black and red. The LED illumination was a separate process from the laser tattoo treatment. Images of the ink tattoos in skin were acquired under the irradiation of three different LED colors (red, green, and blue for pre- and post-treatment. The degree of contrast variation due to the treatment was calculated and compared with the residual tattoo distribution in the skin. The black tattoo demonstrated that the contrast consistently decreased after the laser treatment for all LED colors. However, the red tattoo showed that the red LED yielded an insignificant contrast whereas the green and blue LEDs induced a 30% (p < 0.001 and 26% (p < 0.01 contrast reduction between the treatment conditions, respectively. The proposed LED-assisted CMOS camera can estimate the relative variations in the image contrast before and after the laser tattoo treatment.

  14. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  15. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  16. Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lemelle, A; Veksler, B; Piletsky, S A; Meglinski, I [Cranfield Health, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Kozhevnikov, I S; Akchurin, G G, E-mail: a.lemelle.s06@cranfield.ac.uk [Physics Faculty, Saratov State University, Saratov 410012 (Russian Federation)

    2009-01-15

    Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres.

  17. Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Lemelle, A; Veksler, B; Piletsky, S A; Meglinski, I; Kozhevnikov, I S; Akchurin, G G

    2009-01-01

    Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres

  18. Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy

    Science.gov (United States)

    Lemelle, A.; Veksler, B.; Kozhevnikov, I. S.; Akchurin, G. G.; Piletsky, S. A.; Meglinski, I.

    2009-01-01

    Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres.

  19. High-contrast, high-intensity petawatt-class laser and applications

    Czech Academy of Sciences Publication Activity Database

    Kiriyama, H.; Mori, M.; Pirozhkov, A.S.; Ogura, K.; Sagisaka, A.; Kon, A.; Esirkepov, T.Z.; Hayashi, Y.; Kotaki, H.; Kanasaki, M.; Sakaki, H.; Fukuda, Y.; Koga, J.; Nishiuchi, M.; Kando, M.; Bulanov, S.; Kondo, K.; Bolton, P.R.; Slezák, Ondřej; Vojna, David; Sawicka-Chyla, Magdalena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomáš

    2015-01-01

    Roč. 21, č. 1 (2015), s. 1601118 ISSN 0018-9197 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : petawatt laser * applications * Ti:saphire * ASE Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.843, year: 2015

  20. Prospects of the high power iodine laser

    International Nuclear Information System (INIS)

    Hohla, K.; Brederlow, G.; Fill, E.; Volk, R.; Witte, K.J.

    1976-09-01

    The characteristic properties of the iodine laser (gaseous laser substance, photolytic pump mechanism, variable stimulated emission cross-section) made it possible in a relatively short time to generate ns pulses in the kJ range. The Asterix II and III iodine laser systems at IPP are working successfully, and the question arises what prospects are afforded for further iodine laser development. What are the problems that have to be clarified in order to build 10 or 100 kJ systems for laser fusion experiments. According to our experience these can be classified as follows: 1) Short pulse generation and contrast ratio, 2) pulse shaping in a high-gain laser and amplification in the coherent time range, 3) non-linear properties at high intensities, 4) scalable pumping schemes and chemical processes. (orig./WL) [de

  1. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime

    Science.gov (United States)

    Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.

    2018-05-01

    The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

  2. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...

  3. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  4. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...

  5. Ultra-short pulse, ultra-high intensity laser improvement techniques for laser-driven quantum beam science

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Kando, Masaki

    2014-01-01

    Recent development activities of the Quantum Beam Research Team in JAEA are reported. The downsized, petawatt and femtosecond pulse laser is described at first. The process of the system development and utilization effort of so-called J-KAREN is explained with its time and space control system. For high contrast, OPCPA (Optical Parametric Chirped Pulse Amplification) preamplifier is adopted by using the titanium-sapphire laser system in which only the seed light pulses can be amplified. In addition, high contrast is obtained by adopting the high energy seed light to the amplifier. The system configuration of J-KAREN laser is illustrated. Typical spectra with and without OPCPA, as well as the spectra with OPCPA adjustment and without one are shown. The result of the recompressed pulses is shown in which the pulse width of 29.5 femtoseconds is close to the theoretical limit. Considering the throughput of the pulse compressor is 64 percent it is possible to generate high power laser beam of about 600 terawatts. In the supplementary budget of 2012, it has been approved to cope with the aging or obsoleteness of the system and at the same time to further sophisticate the laser using system. The upgraded laser system is named as J-KAREN-P in which the repetition rate is improved and another booster amplifier is added to increase the power. The system configuration of J-KAREN-P after the upgrading is illustrated. (S. Funahashi)

  6. Evaluation of dynamic range for LLNL streak cameras using high contrast pulsed and pulse podiatry on the Nova laser system

    International Nuclear Information System (INIS)

    Richards, J.B.; Weiland, T.L.; Prior, J.A.

    1990-01-01

    This paper reports on a standard LLNL streak camera that has been used to analyze high contrast pulses on the Nova laser facility. These pulses have a plateau at their leading edge (foot) with an amplitude which is approximately 1% of the maximum pulse height. Relying on other features of the pulses and on signal multiplexing, we were able to determine how accurately the foot amplitude was being represented by the camera. Results indicate that the useful single channel dynamic range of the instrument approaches 100:1

  7. Efficient quality-eactor estimation of a vertical cavity employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2017-01-01

    Hybrid vertical cavity lasers employing high-contrast grating reflectors are attractive for Si-integrated light source applications. Here, a method for reducing a three-dimensional (3D) optical simulation of this laser structure to lower-dimensional simulations is suggested, which allows for very...... fast and approximate analysis of the quality-factor of the 3D cavity. This approach enables us to efficiently optimize the laser cavity design without performing cumbersome 3D simulations....

  8. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  9. Absorption homogenization at wavy melt films by CO{sub 2}-lasers in contrast to 1 μm-wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexander F.H., E-mail: alexander.kaplan@ltu.se

    2015-02-15

    Highlights: • The absorption distribution of 1 μm wavelength lasers compared to 10 μm CO{sub 2}-lasers across a wavy molten steel surface is calculated, at grazing angle of incidence. • For a wide range of surface waviness parameters the CO{sub 2}-laser shows a much more homogenizing absorption behaviour than 1 μm-lasers. • Although the interaction is very complex and non-linear, it is fundamental and very distinct between CO{sub 2}-lasers and 1 μm-lasers, due to their very different Fresnel-absorption characteristics. • The strong local absorption peaks for 1 μm-lasers can cause very strong local boiling and amplification of surface waves, in good correlation to empirical experimental trends. • Such differences can in turn have strong consequences during laser materials processing like laser keyhole welding, laser drilling or laser remote fusion cutting. - Abstract: For wavy metal melts, across a wide range of their topology parameters, lasers with about 1 μm wavelength experience the highest Fresnel absorption around the shoulders of the waves. Calculations show that this induces a strong peak of the absorbed power density of the laser beam. The high temperature gradients have the potential to cause very local boiling and growth of the valleys. In contrast, for a certain parameter category the small Brewster angle for the CO{sub 2}-laser partially homogenizes the temperatures by elevated absorption at domains of grazing incidence. This has the potential to cause opposite consequences on the process, like wave smoothing.

  10. Laser contrast and other key parameters enhancing the laser conversion efficiency in ion acceleration regime

    Science.gov (United States)

    Torrisi, Lorenzo

    2018-01-01

    Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.

  11. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  12. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    International Nuclear Information System (INIS)

    Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G; Meglinski, I V

    2014-01-01

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  13. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu L; Kalchenko, V V [Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100 (Israel); Astaf' eva, N G [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation); Meglinski, I V [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  14. Laser-plasma harmonics with high-contrast pulses and designed prepulses

    International Nuclear Information System (INIS)

    Marjoribanks, R. S.; Zhao, L.; Budnik, F. W.; Kulcsar, G.; Vitcu, A.; Higaki, H.; Wagner, R.; Maksimchuk, A.; Umstadter, D.; Le Blanc, S. P.; Downer, M. C.

    1998-01-01

    One aspect of the complexity of mid- and high-harmonic generation in high-intensity laser-plasma interactions is that nonlinear hydrodynamics is virtually always folded together with the nonlinear optical conversion process. We have partly dissected this issue in picosecond and subpicosecond interactions with preformed plasma gradients, imaging and spectrally resolving low- and mid-order harmonics. We describe spatial breakup of the picosecond beam in preformed plasmas, concomitant broadening and breakup of the harmonic spectrum, presumably through self-phase modulation, together with data on the sensitivity of harmonics production efficiency to the gradient or extent of preformed plasma. Lastly, we show preliminary data of regular Stokes-like and anti-Stokes-like satellites to the harmonics, accompanied by modification of the forward-scattered beam

  15. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    Science.gov (United States)

    Fujioka, Shinsuke; Arikawa, Yasunobu; Kojima, Sadaoki; Johzaki, Tomoyuki; Nagatomo, Hideo; Sawada, Hiroshi; Lee, Seung Ho; Shiroto, Takashi; Ohnishi, Naofumi; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Zhang, Zhe; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Kondo, Kotaro; Bailly-Grandvaux, Mathieu; Bellei, Claudio; Santos, João Jorge; Azechi, Hiroshi

    2016-05-01

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser-plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >109. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused by imploding

  16. Evaluation of dynamic range for LLNL streak cameras using high contrast pulses and pulse podiatry'' on the Nova laser system

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.B.; Weiland, T.L.; Prior, J.A.

    1990-07-01

    A standard LLNL streak camera has been used to analyze high contrast pulses on the Nova laser facility. These pulses have a plateau at their leading edge (foot) with an amplitude which is approximately 1% of the maximum pulse height. Relying on other features of the pulses and on signal multiplexing, we were able to determine how accurately the foot amplitude was being represented by the camera. Results indicate that the useful single channel dynamic range of the instrument approaches 100:1. 1 ref., 4 figs., 1 tab.

  17. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Restuccia, N.; Cuzzocrea, S.; Paterniti, I.; Ielo, I.; Pergolizzi, S.; Cutroneo, Mariapompea; Kováčik, L.

    2017-01-01

    Roč. 50, č. 1 (2017), s. 51-60 ISSN 0017-1557 R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : Au nanoparticles * Laser * X-ray diagnostic s * medical imaging * contrast medium Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.638, year: 2016

  18. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, Shinsuke, E-mail: sfujioka@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Kojima, Sadaoki; Nagatomo, Hideo; Lee, Seung Ho; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 Japan (Japan); and others

    2016-05-15

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser–plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >10{sup 9}. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused

  19. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    Science.gov (United States)

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  20. The vertical-cavity surface-emitting laser incorporating a high contrast grating mirror as a sensing device

    Science.gov (United States)

    Marciniak, Magdalena; Gebski, Marcin; Piskorski, Łukasz; Dems, Maciej; Wasiak, M.; Panajotov, Krassimir; Lott, James A.; Czyszanowski, Tomasz

    2018-02-01

    We propose a novel optical sensing system based on one device that both emits and detects light consisting of a verticalcavity surface-emitting laser (VCSEL) incorporating an high contrast grating (HCG) as a top mirror. Since HCGs can be very sensitive to the optical properties of surrounding media, they can be used to detect gases and liquid. The presence of a gas or a liquid around an HCG mirror causes changes of the power reflectance of the mirror, which corresponds to changes of the VCSEL's cavity quality factor and current-voltage characteristic. By observation of the current-voltage characteristic we can collect information about the medium around the HCG. In this paper we investigate how the properties of the HCG mirror depend on the refractive index of the HCG surroundings. We present results of a computer simulation performed with a three-dimensional fully vectorial model. We consider silicon HCGs on silica and designed for a 1300 nm VCSEL emission wavelength. We demonstrate that our approach can be applied to other wavelengths and material systems.

  1. Sensibilidade ao contraste na retinopatia diabética tratada por panfotocoagulação com laser de argônio Contrast sensitivity in diabetic retinopathy treated with argon laser panphotocoagulation

    Directory of Open Access Journals (Sweden)

    Otacílio de Oliveira Maia Júnior

    2007-10-01

    Full Text Available OBJETIVO: Avaliar a sensibilidade ao contraste na retinopatia diabética (RD tratada por panfotocoagulação com laser de argônio. MÉTODOS: Estudo prospectivo de portadores de retinopatia diabética e acuidade visual de 20/20, tratados com panfotocoagulação retiniana, conforme critérios do ETDRS. Os pacientes foram submetidos, inicialmente, a exame oftalmológico completo e teste de sensibilidade ao contraste (Vision Contrast Test System. Após 3 meses do tratamento, foram reavaliados por meio da acuidade visual e sensibilidade ao contraste. RESULTADOS: A amostra foi composta por 28 pacientes (28 olhos, todos portadores de diabetes tipo 2. A idade variou entre 45 a 77 anos (média de 57,8 ± 8,0, sendo 19 pacientes (67,9% do sexo masculino e 9 (32,1% do feminino. Quanto ao tipo de retinopatia, 18 (64,3% apresentavam RD proliferativa e 10 (35,7%, RD não proliferativa muito grave. Não foi observada nenhuma alteração na acuidade visual pós-tratamento. Quanto à sensibilidade ao contraste, não houve alteração entre o pré e pós-tratamento em todas freqüências espaciais avaliadas: 1,5 (p=0,191; 3,0 (p=0,850; 6,0 (p=0,374; 12,0 (p=0,674 e 18,0 (p=0,443. CONCLUSÃO: Não foi evidenciada alteração significante na sensibilidade ao contraste de portadores de retinopatia diabética após panfotocoagulação com laser de argônio no período estudado.PURPOSE: To evaluate contrast sensitivity in patients with diabetic retinopathy (DR treated with argon laser panphotocoagulation. METHODS: Prospective study of patients with diabetic retinopathy and 20/20 visual acuity, treated with retinal panphotocoagulation, following ETDRS criteria. The patients were submitted, initially, to complete ophthalmologic evaluation and contrast sensitivity testing (Vision Contrast Test System. After 3 months of treatment, they were reevaluated by means of visual acuity and contrast sensitivity. RESULTS: The sample comprised 28 patients (28 eyes, all with type II

  2. Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Shah, R. C.; Palaniyappan, S.; Fernandez, J. C.; Jung, D.; Hegelich, B. M.

    2011-01-01

    In recent experiments at the Trident laser facility, quasi-monoenergetic ion beams have been obtained from the interaction of an ultraintense, circularly polarized laser with a diamond-like carbon target of nm-scale thickness under conditions of ultrahigh laser pulse contrast. Kinetic simulations of this experiment under realistic laser and plasma conditions show that relativistic transparency occurs before significant radiation pressure acceleration and that the main ion acceleration occurs after the onset of relativistic transparency. Associated with this transition are a period of intense ion acceleration and the generation of a new class of ion solitons that naturally give rise to quasi-monoenergetic ion beams. An analytic theory has been derived for the properties of these solitons that reproduces the behavior observed in kinetic simulations and the experiments.

  3. Reduced-Contrast Approximations for High-Contrast Multiscale Flow Problems

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin

    2010-01-01

    In this paper, we study multiscale methods for high-contrast elliptic problems where the media properties change dramatically. The disparity in the media properties (also referred to as high contrast in the paper) introduces an additional scale that needs to be resolved in multiscale simulations. First, we present a construction that uses an integral equation to represent the highcontrast component of the solution. This representation involves solving an integral equation along the interface where the coefficients are discontinuous. The integral representation suggests some multiscale approaches that are discussed in the paper. One of these approaches entails the use of interface functions in addition to multiscale basis functions representing the heterogeneities without high contrast. In this paper, we propose an approximation for the solution of the integral equation using the interface problems in reduced-contrast media. Reduced-contrast media are obtained by lowering the variance of the coefficients. We also propose a similar approach for the solution of the elliptic equation without using an integral representation. This approach is simpler to use in the computations because it does not involve setting up integral equations. The main idea of this approach is to approximate the solution of the high-contrast problem by the solutions of the problems formulated in reduced-contrast media. In this approach, a rapidly converging sequence is proposed where only problems with lower contrast are solved. It was shown that this sequence possesses the convergence rate that is inversely proportional to the reduced contrast. This approximation allows choosing the reduced-contrast problem based on the coarse-mesh size as discussed in this paper. We present a simple application of this approach to homogenization of elliptic equations with high-contrast coefficients. The presented approaches are limited to the cases where there are sharp changes in the contrast (i.e., the high

  4. Role of laser contrast and foil thickness in target normal sheath acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gizzi, L.A. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Altana, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania (Italy); Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Brandi, F. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, P. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Cristoforetti, G. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan, Milan (Italy); INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Giove, D. [INFN-LASA, Via Fratelli Cervi 201, 20090 Segrate (Italy); Koester, P. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Labate, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Università degli Studi di Enna Kore, Via delle Olimpiadi, 94100 Enna (Italy); Londrillo, P. [INAF–Osservatorio astronomico Bologna (Italy); Mascali, D.; Muoio, A. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Palla, D. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Schillaci, F. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Sinigardi, S. [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN, Sez. di Bologna, Via Irnerio 46, 40126 Bologna (Italy); and others

    2016-09-01

    In this paper we present an experimental investigation of laser driven light-ion acceleration using the ILIL laser at an intensity of 2×10{sup 19} W/cm{sup 2}. In the experiment we focused our attention on the identification of the role of target thickness and resistivity in the fast electron transport and in the acceleration process. Here we describe the experimental results concerning the effect of laser contrast in the laser–target interaction regime. We also show preliminary results on ion acceleration which provide information about the role of bulk target ions and surface ions and target dielectric properties in the acceleration process.

  5. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    Science.gov (United States)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  6. 80-nm-tunable high-index-contrast subwavelength grating long-wavelength VCSEL: Proposal and numerical simulations

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Sirbu, Alexei

    2010-01-01

    A widely-tunable single-mode long wavelength vertical-cavity surface-emitting laser structure employing a MEMStunable high-index-contrast subwavelength grating (HCG) is suggested and numerically investigated. A very large 80- nm linear tuning range was obtained as the HCG was actuated by -220 to ...

  7. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  8. Nanoparticles generated by laser in liquids as contrast medium and radiotherapy intensifiers

    Science.gov (United States)

    Restuccia, Nancy; Torrisi, Lorenzo

    2018-01-01

    The synthesis of Au and Ag nanoparticles (NP) though laser ablation in liquids as a function the laser parameters is presented. Spherical NPs with diameter distribution within 1 and 100 nm were prepared by laser ablation in water. The nanoparticles characterization was performed using optical spectroscopy and electronic microscopy (SEM and TEM) measurements. Studies of the possible use of metallic nanoparticles as intensifier of diagnostics imaging contrast medium and absorbing dose from ionizing radiations in traditional radiotherapy and protontherapy are presented. Examples of in vitro (in tissue equivalent materials) and in vivo (in mice), were conducted thank to simulation programs permitting to evaluate the enhancement of efficiency in imaging and therapy as a function of the NPs concentrations and irradiation conditions.

  9. Nanoparticles generated by laser in liquids as contrast medium and radiotherapy intensifiers

    Directory of Open Access Journals (Sweden)

    Restuccia Nancy

    2018-01-01

    Full Text Available The synthesis of Au and Ag nanoparticles (NP though laser ablation in liquids as a function the laser parameters is presented. Spherical NPs with diameter distribution within 1 and 100 nm were prepared by laser ablation in water. The nanoparticles characterization was performed using optical spectroscopy and electronic microscopy (SEM and TEM measurements. Studies of the possible use of metallic nanoparticles as intensifier of diagnostics imaging contrast medium and absorbing dose from ionizing radiations in traditional radiotherapy and protontherapy are presented. Examples of in vitro (in tissue equivalent materials and in vivo (in mice, were conducted thank to simulation programs permitting to evaluate the enhancement of efficiency in imaging and therapy as a function of the NPs concentrations and irradiation conditions.

  10. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  11. Acceleration of multiply charged ions by a high-contrast femtosecond laser pulse of relativistic intensity from the front surface of a solid target

    Czech Academy of Sciences Publication Activity Database

    Shulyapov, S. A.; Mordvintsev, I. M.; Ivanov, K. A.; Volkov, P. V.; Zarubin, P. I.; Ambrožová, Iva; Turek, Karel; Savelyev, A. B.

    2016-01-01

    Roč. 46, č. 5 (2016), s. 432-436 ISSN 1063-7818 Institutional support: RVO:61389005 Keywords : relativistic intensity * contrast * laser plasma * ion acceleration * multiply charged ions * collision ionisation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.119, year: 2016

  12. Automated aberration correction of arbitrary laser modes in high numerical aperture systems

    OpenAIRE

    Hering, Julian; Waller, Erik H.; Freymann, Georg von

    2016-01-01

    Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture...

  13. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  14. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  15. High temperature semiconductor diode laser pumps for high energy laser applications

    Science.gov (United States)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  16. An estimation of the spatial coherency radius of a multimode laser beam by the spectral contrast

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I

    1983-01-01

    The angular dependency of the spectral contrast behind a diffuser illuminated by an He/Ne laser beam at .63 micrometers on the number of transverse modes is investigated. It is demonstrated that over a wide range of scattering angles, the contrast is determined primarily by the number of transverse modes, i.e. by the radius of the spatial field correlation, and is only slightly dependent on the dimensions and shape of the beam as well as the intensity distribution in the beam. These results may be useful in developing a rapid indication method of the radius of the spatial correlation of laser beams.

  17. Teradiode's high brightness semiconductor lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  18. Development of a large-screen high-definition laser video projection system

    Science.gov (United States)

    Clynick, Tony J.

    1991-08-01

    A prototype laser video projector which uses electronic, optical, and mechanical means to project a television picture is described. With the primary goal of commercial viability, the price/performance ratio of the chosen means is critical. The fundamental requirement has been to achieve high brightness, high definition images of at least movie-theater size, at a cost comparable with other existing large-screen video projection technologies, while having the opportunity of developing and exploiting the unique properties of the laser projected image, such as its infinite depth-of-field. Two argon lasers are used in combination with a dye laser to achieve a range of colors which, despite not being identical to those of a CRT, prove to be subjectively acceptable. Acousto-optic modulation in combination with a rotary polygon scanner, digital video line stores, novel specialized electro-optics, and a galvanometric frame scanner form the basis of the projection technique achieving a 30 MHz video bandwidth, high- definition scan rates (1125/60 and 1250/50), high contrast ratio, and good optical efficiency. Auditorium projection of HDTV pictures wider than 20 meters are possible. Applications including 360 degree(s) projection and 3-D video provide further scope for exploitation of the HD laser video projector.

  19. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  20. CO2 laser imaging heterodyne and phase contrast interferometer for density profile and fluctuation measurements in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Akiyama, T.; Kawahata, K.; Ito, Y.; Vyacheslavov, L.N.; Sanin, A.L.; Okajima, S.

    2007-01-01

    A CO 2 laser heterodyne imaging interferometer (CO 2 HI) and a CO 2 laser phase contrast imaging interferometer (CO 2 PCI) were installed in LHD. The purpose of CO 2 HI is to measure electron density profile at high density (>1x10 20 m -3 ), where the existing far infrared laser (wavelength 118.9 μm) interferometer suffers from fringe jump due to the reduction of signal intensity caused by refraction. In the beginning of 10th LHD experimental campaign (2006-2007), sixty three three of CO 2 HI with 10 channels of YAG HI for vibration compensation, and in the later of 10th LHD experimental campaign. Eighty one channels CO 2 HI and 15 channels YAG HI became available. The purpose of CO 2 PCI is to measure turbulent fluctuation, which can contribute to the energy and particle transport. In order to get local fluctuation information, magnetic shear technique was applied with use of 48 (6 by 8) channel two dimensional detector. (author)

  1. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  2. High efficiency pump combiner fabricated by CO2 laser splicing system

    Science.gov (United States)

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  3. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance.

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Su, Long-Jyun; Ren, Shenqiang; Chang, Huan-Cheng; Yang, Xinmai; Forrest, M Laird

    2013-02-01

    Radiation-damaged nanodiamonds (DNDs) are potentially ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their low toxicity and high optical absorbance. PA imaging contrast agents have been limited to quantum dots and gold particles, since most existing carbon-based nanoparticles, including fluorescent nanodiamonds, do not have sufficient optical absorption in the near-infrared (NIR) range. A new DND by He+ ion beam irradiation with very high NIR absorption was synthesized. These DNDs produced a 71-fold higher PA signal on a molar basis than similarly dimensioned gold nanorods, and 7.1 fmol of DNDs injected into rodents could be clearly imaged 3 mm below the skin surface with PA signal enhancement of 567% using an 820-nm laser wavelength.

  4. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  5. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    Science.gov (United States)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  6. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  7. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  8. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  9. Automated aberration correction of arbitrary laser modes in high numerical aperture systems.

    Science.gov (United States)

    Hering, Julian; Waller, Erik H; Von Freymann, Georg

    2016-12-12

    Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.

  10. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-01-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called hollow atoms must be taken into account for adequate description of plasma radiation

  11. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    Science.gov (United States)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  12. On-shot characterization of single plasma mirror temporal contrast improvement

    Science.gov (United States)

    Obst, L.; Metzkes-Ng, J.; Bock, S.; Cochran, G. E.; Cowan, T. E.; Oksenhendler, T.; Poole, P. L.; Prencipe, I.; Rehwald, M.; Rödel, C.; Schlenvoigt, H.-P.; Schramm, U.; Schumacher, D. W.; Ziegler, T.; Zeil, K.

    2018-05-01

    We report on the setup and commissioning of a compact recollimating single plasma mirror (PM) for temporal contrast enhancement at the Draco 150 TW laser during laser-proton acceleration experiments. The temporal contrast with and without PM is characterized single-shot by means of self-referenced spectral interferometry with extended time excursion at unprecedented dynamic and temporal range. This allows for the first single-shot measurement of the PM trigger point, which is interesting for the quantitative investigation of the complex pre-plasma formation process at the surface of the target used for proton acceleration. As a demonstration of high contrast laser plasma interaction we present proton acceleration results with ultra-thin liquid crystal targets of ∼ 1 μm down to 10 nm thickness. Focus scans of different target thicknesses show that highest proton energies are reached for the thinnest targets at best focus. This indicates that the contrast enhancement is effective such that the acceleration process is not limited by target pre-expansion induced by laser light preceding the main laser pulse.

  13. Fabrication of naphthalocyanine nanoparticles by laser ablation in liquid and application to contrast agents for photoacoustic imaging

    Science.gov (United States)

    Yanagihara, Ryuga; Asahi, Tsuyoshi; Ishibashi, Yukihide; Odawara, Osamu; Wada, Hiroyuki

    2018-03-01

    Naphthalocyanine nanoparticles were prepared by laser ablation in liquid using second-harmonics of nanosecond Nd:YAG laser as an excitation light sauce at various laser fluence, and the properties of naphthalocyanine nanoparticles, such as shape, size, zeta potential, chemical structure and optical absorption were examined. The scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements showed that the particle size of the nanoparticles could be controlled by the laser fluence. The IR spectra of the nanoparticles indicated the formation of carboxylate anion species at laser fluences above 100 mJ/cm2, which will result the zeta potential of the nanoparticles depending on the laser fluence. We also examined the potential application to contrast agents for photoacoustic, and confirmed that the naphthalocyanine nanoparticles generated a strong photoacoustic signal.

  14. High-temperature stability of laser-joined silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Marion, E-mail: marion.herrmann@tu-dresden.de; Lippmann, Wolfgang; Hurtado, Antonio

    2013-11-15

    Silicon carbide is recommended for applications in energy technology due to its good high-temperature corrosion resistance, mechanical durability, and abrasion resistance. The prerequisite for use is often the availability of suitable technologies for joining or sealing the components. A laser-induced process using fillers and local heating of the components represents a possible low-cost option. Investigations in which yttrium aluminosilicate glass was used for laser-induced brazing of SiC components of varying geometry are presented. A four-point bending strength of 112 MPa was found for these joints. In burst tests, laser-joined components were found to withstand internal pressures of up to 54 MPa. Helium leak tests yielded leak rates of less than 10{sup –8} mbar l s{sup −1}, even after 300 h at 900 °C. In contrast, the assemblies showed an increased leak rate after annealing at 1050 °C. The short process time of the laser technique – in the range of a few seconds to a few minutes – results in high temperature gradients and transients. SEM analysis showed that the filler in the seam predominantly solidifies in a glassy state. Crystallization occurred during later thermal loading of the joined components, with chemical equilibrium being established. Differences in seam structures yielded from different cooling rates in the laser process could not be equalized by annealing. The results demonstrated the long-term stability of laser-brazed SiC assemblies to temperatures in the range of glass transformation (900 °C) of the yttrium aluminosilicate filler. In technological investigations, the suitability of the laser joining technique for sealing of SiC components with a geometry approximating that of a fuel element sleeve pin (pin) in a gas-cooled fast reactor was proven.

  15. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  16. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  17. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    Science.gov (United States)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  18. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  19. The high-power iodine laser

    Science.gov (United States)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  20. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  1. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  2. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  3. High contrast vacuum nuller testbed (VNT) contrast, performance, and null control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-09-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal plane region extending from 1 - 4 λ/D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. The VNC is a hybrid interferometric/coronagraphic approach for exoplanet science. It operates with high Lyot stop efficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential future NASA flight telescopes. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop the VNC and its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and its enabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry to unprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a “W” configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, critical technologies and null sensing and control.

  4. Improvements of high-power diode laser line generators open up new application fields

    Science.gov (United States)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  5. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    Science.gov (United States)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  6. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  7. High-energy molecular lasers self-controlled volume-discharge lasers and applications

    CERN Document Server

    Apollonov, V V

    2016-01-01

    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

  8. A contrastive analysis of laser heating between the human and guinea pig cochlea by numerical simulations.

    Science.gov (United States)

    Zhang, Kaiyin; Zhang, Yulong; Li, Ji; Wang, Qiuling

    2016-05-23

    The photo-thermal effect has been hypothesised to be one of the most possible biophysical mechanisms for laser-cochlea stimulation. However, there is a lack of studies to date for direct assessing laser heating in humans due to the large body of evidence required to demonstrate safety and efficacy. Instead, the majority focus on animals like the guinea pig, from which a number of valuable results have been gained. However, in light of the increasing need to improve laser safety, it has became necessary to find out whether studies on animals can shed light on safe laser parameters in the human cochlea. Hence, we conducted this contrastive analysis of laser heating between the human and guinea pig cochlea with the aim of assisting further investigations in this field. In this work, a 3D symmetrical model was adopted to simplify the spiraled cochlea. With attention focused on the effect of heat conduction, the time-dependent heat equation was solved using finite element method with the COMSOL Script. In the simulations, cochleae with different sizes and various boundary thermal conditions were utilized. Laser heating in both cochleae has a similar trend. In the first stage, or at the beginning of the laser heating, both cochleae increased their temperatures rapidly. In the second stage in which the laser heating reached a quasi-steady stage, the peak temperatures began to rise slowly as more laser pulses were applied. However, three differences of the laser heating were observed. The first is regarding the temperature rise. The results show that laser heating in guinea pig is higher than that in human under the same laser parameters. The second difference is the fluctuation of temperature rise at the center of the modiolus. There is a larger fluctuation of temperature rise in the guinea pig cochlea, compared with that in the human cochlea. The third one is the time for reaching a steady thermal state. The results show that the guinea pig cochlea takes longer time to

  9. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  10. Integration of instrumentation and processing software of a laser speckle contrast imaging system

    Science.gov (United States)

    Carrick, Jacob J.

    Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

  11. The utilization of high-intensity lasers

    International Nuclear Information System (INIS)

    Fabre, E.

    1988-01-01

    The 1988 progress report of the laboratory for the Utilization of High-Intensity Lasers (Polytechnic School, France), is presented. The research program is focused on the laser-plasma physics, on the generation of high pressures by means of laser shock heating, on the laser spectroscopy and on the laser implosions. Numerical simulation codes are developed. Concerning the atomic physics, the investigations on dense plasmas and the x-laser research developments are carried out. The research activities of the laboratory teams, the published papers, the national and international cooperations, are given [fr

  12. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  13. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss

    2006-07-01

    Full Text Available stream_source_info Strauss1_2006.pdf.txt stream_content_type text/plain stream_size 3151 Content-Encoding UTF-8 stream_name Strauss1_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Laser Research Institute... University of Stellenbosch www.laser-research.co.za High Power Vanadate lasers H.J.Strauss, Dr. C. Bollig, R.C. Botha, Prof. H.M. von Bergmann, Dr. J.P. Burger Aims 1) To develop new techniques to mount laser crystals, 2) compare the lasing properties...

  14. Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Veintemillas-Verdaguer, Sabino [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Morales, Maria del Puerto [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bomati-Miguel, Oscar [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bautista, Carmen [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Zhao, Xinqing [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bonville, Pierre [CEA, CE Saclay, DSM/DRECAM/SPEC, 91191 Gif-Sur-Yvette (France); Alejo, Rigoberto Perez de [Universidad Complutense de Madrid, Unidad de RMN, Paseo Juan XXIII, 1, 28040 Madrid (Spain); Ruiz-Cabello, Jesus [Universidad Complutense de Madrid, Unidad de RMN, Paseo Juan XXIII, 1, 28040 Madrid (Spain); Santos, Martin [Hospital Universitario Puerta de Hierro, Servicio de Cirugia Experimental. C/San Martin de Porres 4, 28035 Madrid (Spain); Tendillo-Cortijo, Francisco J [Hospital Universitario Puerta de Hierro, Servicio de Cirugia Experimental. C/San Martin de Porres 4, 28035 Madrid (Spain); Ferreiros, Joaquin [Hospital Clinico de Madrid ' San Carlos' , Ciudad Universitaria, 28040 Madrid (Spain)

    2004-08-07

    Biocompatible magnetic dispersions have been prepared from {gamma}-Fe{sub 2}O{sub 3} nanoparticles (5 nm) synthesized by continuous laser pyrolysis of Fe(CO){sub 5} vapours. The feasibility of using these dispersions as magnetic resonance imaging (MRI) contrast agents has been analysed in terms of chemical structure, magnetic properties, {sup 1}H NMR relaxation times and biokinetics. The magnetic nanoparticles were dispersed in a strong alkaline solution in the presence of dextran, yielding stable colloids in a single step. The dispersions consist of particle-aggregates 25 nm in diameter measured using transmission electron microscope and a hydrodynamic diameter of 42 nm measured using photon correlation spectroscopy. The magnetic and relaxometric properties of the dispersions were of the same order of magnitude as those of commercial contrast agents produced using coprecipitation. However, these dispersions, when injected intravenously in rats at standard doses showed a mono-exponential blood clearance instead of a biexponential one, with a blood half-life of 7 {+-} 1 min. Furthermore, an important enhancement of the image contrast was observed after the injection, mainly located at the liver and the spleen of the rat. In conclusion, the laser pyrolysis technique seems to be a good alternative to the coprecipitation method for producing MRI contrast agents, with the advantage of being a continuous synthesis method that leads to very uniform particles capable of being dispersed and therefore transformed in a biocompatible magnetic liquid.

  15. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  16. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  17. Text accessibility by people with reduced contrast sensitivity.

    Science.gov (United States)

    Crossland, Michael D; Rubin, Gary S

    2012-09-01

    Contrast sensitivity is reduced in people with eye disease, and also in older adults without eye disease. In this article, we compare contrast of text presented in print and digital formats with contrast sensitivity values for a large cohort of subjects in a population-based study of older adults (the Salisbury Eye Evaluation). Contrast sensitivity values were recorded for 2520 adults aged 65 to 84 years living in Salisbury, Maryland. The proportion of the sample likely to be unable to read text of different formats (electronic books, newsprint, paperback books, laser print, and LED computer monitors) was calculated using published contrast reserve levels required to perform spot reading, to read with fluency, high fluency, and under optimal conditions. One percent of this sample had contrast sensitivity less than that required to read newsprint fluently. Text presented on an LED computer monitor had the highest contrast. Ninety-eight percent of the sample had contrast sensitivity sufficient for high fluent reading of text (at least 160 words/min) on a monitor. However, 29.6% were still unlikely to be able to read this text with optimal fluency. Reduced contrast of print limits text accessibility for many people in the developed world. Presenting text in a high-contrast format, such as black laser print on a white page, would increase the number of people able to access such information. Additionally, making text available in a format that can be presented on an LED computer monitor will increase access to written documents.

  18. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  19. A diffraction limited nitrogen laser for detector calibration in high energy physics

    International Nuclear Information System (INIS)

    Hartjes, F.G.

    1990-01-01

    This thesis consists of two parts. In part I the operation of a pulsed two-stage nitrogen laser is described. In contrast to most other lasers an optical resonator can not be used in a nitrogen laser because of the very short pulse time (∼ 1 ns). Therefore the emitted beam of a simple nitrogen laser has a large divergence. A nitrogen laser with a small beam divergence however can be constructed via the 'Master Oscillator Power Amplifier' principle. Herein a double nitrogen laser system is employed in which both lasers fire simultaneously. The diameter of the laser beam from the first stage (oscillator) is enlarged by a telescope by which the divergence decreases strongly. In a second stage (amplifier) subsequently the weak laser beam is amplified again. The outcoming beam has an elongated diameter which is changed in an approximately round form by a telescope of two cylindrical lenses. The process leading to the formation of population inversion in the nitrogen causing emission of laser ligth is described. The electric circuit, which delivers the high-voltage pulse causing the electric discharge in the laser cavity, is described. The mechanical construction of the laser, in particular with regard to the choices of the materials, is described. Finally, the optical system of the two-stage nitrogen laser is explained. In part II the application of the two-stage nitrogen laser in high-energy physics is treated. Instructions are given about the practical use of the laser: the usual optical system and the ionization profile to be expected in the detector gas. Herein three different kinds of beams are distinguished: the parallel beam, the weakly focussed, and the strongly focussed beam. Some examples are given of the use of the laser: a time very close to the wire, the outlining of the drift wire chambers with a long parallel beam, and the measurement of optical properties of scintillating plastic fibers. (author). 52 refs.; 76 figs.; 4 tabs

  20. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  1. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan

    2014-01-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  2. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.

    2014-03-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  3. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  4. High power laser research and development at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    Soures, J.M.; McCrory, R.L.; Cerqua, K.A.

    1986-01-01

    As part of its research mission - to investigate the interaction of intense radiation with matter - the Laboratory for Laser Energetics (LLE) of the University of Rochester is developing a number of high-peak power and high-average-power laser systems. In this paper we highlight some of the LLE work on solid-state laser research, development and applications. Specifically, we discuss the performance and operating characteristics of Omega, a twenty-four beam, 4000 Joule, Nd:glass laser system which is frequently tripled using the polarization mismatch scheme. We also discuss progress in efforts to develop high-average-power solid-state laser systems with active-mirror and slab geometries and to implement liquid-crystal devices in high-power Nd:glass lasers. Finally we present results from a program to develop a compact, ultrahigh-peak-power solid-state laser using the concept of frequency chirped pulse amplification

  5. Development of high-power CO2 lasers and laser material processing

    Science.gov (United States)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  6. Vacuum ultraviolet Ar2*laser pumped by a high-intensity laser

    International Nuclear Information System (INIS)

    Kubodera, Shoichi; Kaku, Masanori; Higashiguchi, Takeshi

    2004-01-01

    We observed a small-signal gain of Ar 2 * emission at 126 nm by use of an Ar-filled hollow fiber to guide the ultrashort-pulse high-intensity laser propagation. The small signal gain coefficient was measured to be 0.05 cm -1 at 126 nm. Kinetic analysis revealed that the electrons produced by the high-intensity laser through an optical-field ionization process initiated the Ar 2 * production process. This laser scheme could be combined with high harmonic radiation of the pump laser in the vacuum ultraviolet (VUV), leading to the production of amplified ultrashort VUV pulses. (author)

  7. Design of a high-power, high-brightness Nd:YAG solar laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  8. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  9. Laser safety at high profile projects

    Science.gov (United States)

    Barat, K.

    2011-03-01

    Laser Safety at high profile laser facilities tends to be more controlled than in the standard laser lab found at a research institution. The reason for this is the potential consequences for such facilities from incidents. This ranges from construction accidents, to equipment damage to personnel injuries. No laser user wants to sustain a laser eye injury. Unfortunately, many laser users, most commonly experienced researchers and inexperienced graduate students, do receive laser eye injuries during their careers. . More unforgiveable is the general acceptance of this scenario, as part of the research & development experience. How do senior researchers, safety personnel and management stop this trend? The answer lies in a cultural change that involves institutional training, user mentoring, hazard awareness by users and administrative controls. None of these would inhibit research activities. As a matter of fact, proper implementation of these controls would increase research productivity. This presentation will review and explain the steps needed to steer an institution, research division, group or individual lab towards a culture that should nearly eliminate laser accidents. As well as how high profile facilities try to avoid laser injuries. Using the definition of high profile facility as one who's funding in the million to billions of dollars or Euros and derives form government funding.

  10. Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing.

    Science.gov (United States)

    Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K

    2017-09-20

    Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.

  11. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  12. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  13. Three-Dimensional Dynamics of Breakout Afterburner Ion Acceleration Using High-Contrast Short-Pulse Laser and Nanoscale Targets

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Fernandez, J. C.; Jung, D.; Hegelich, B. M.

    2011-01-01

    Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.

  14. High precision, rapid laser hole drilling

    Science.gov (United States)

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  15. Off-axis holographic laser speckle contrast imaging of blood vessels in tissues

    Science.gov (United States)

    Abdurashitov, Arkady; Bragina, Olga; Sindeeva, Olga; Sergey, Sindeev; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.

    2017-09-01

    Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700 μm of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen.

  16. Analysis of high resolution scatter images from laser damage experiments performed on KDP

    International Nuclear Information System (INIS)

    Runkel, M.; Woods, B.; Yan, M.

    1996-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different open-quotes vintagesclose quotes of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic's resolution to LLNL's standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm 2 (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning

  17. Material Processing with High Power CO2-Lasers

    Science.gov (United States)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  18. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  19. Quality and performance of laser cutting with a high power SM fiber laser

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Selchau, Jacob; Olsen, F. O.

    2013-01-01

    The introduction of high power single mode fiber lasers allows for a beam of high power and a good beam quality factor (M2 ” 1.2), compared to the multimode fiber lasers often utilised in macro laser metal cutting. This paper describes fundamental studies of macro laser metal cutting with a singl...

  20. Development of high power pulsed CO2 laser

    International Nuclear Information System (INIS)

    Nakai, Sadao; Matoba, Masafumi; Fujita, Hisanori; Daido, Hiroyuki; Inoue, Mitsuo

    1982-01-01

    The inertial nuclear fusion research using pellet implosion has rapidly progressed accompanying laser technique improvement and output increase. As the high output lasers for this purpose, Nd glass lasers or CO 2 lasers are used. The CO 2 lasers possess the characteristics required as reactor lasers, i.e., high efficiency, high frequency repetition, possibility of scale-up and economy. So, the technical development of high power CO 2 lasers assuming also as reactor drivers has been performed at a quick pace together with the research on the improvement of efficiency of pellet implosion by 10 μm laser beam. The Institute of Laser Engineering, Osaka University, stated to build a laser system LEKKO No. 8 of 8 beams and 10 kJ based on the experiences in laser systems LEKKO No. 1 and LEKKO No. 2, and the system LEKKO No. 8 was completed in March, 1981. The operation tests for one year since then has indicated as the laser characteristics that the system performance was as designed initially. This paper reviews the structure, problems and present status of the large scale CO 2 lasers. In other words, the construction of laser system, CO 2 laser proper, oscillator, booster amplifier, prevention of parasitic oscillation, non-linear pulse propagation and fairing of output pulse form, system control and beam alignment, and high power problems are described. The results obtained are to be reported in subsequent issues. (Wakatsuki, Y.)

  1. Propagation of highly aberrated laser beams in nonquadratic plasma waveguides

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.; Morris, J.R.

    1977-01-01

    The propagation of a laser beam in a plasma column several meters long with a realistic electron density distribution is examined. The electron density distribution is based on laser-beam heating at z=0, but is otherwise uncoupled to the laser beam. The aberrated nature of the resulting lenslike medium leads to essentially aperiodic beam properties, which contrast with the completely periodic properties of Gaussian beams propagating in quadratic lenslike media. The beam is nonetheless stably trapped. These aberrated-beam properties also help to stabilize the beam against axial variations in refractive index

  2. Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings

    Science.gov (United States)

    Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun

    2018-03-01

    Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.

  3. Interaction of ultra high intensity laser pulse with structured target and fast particle generation in a stable mode

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A. [Max-Born Institute, Berlin (Germany); Platonov, K.Yu. [Vavilov State Optical Institute, St. Petersburg (Russian Federation)

    2013-02-15

    It is shown that the relief structure with optimum parameters can significantly increase the short-pulse laser absorption, which is connected with the enhancement of moving electrons between relief ledges. Analytical modeling and numerical simulations confirm this argumentation. In the considered cases, degradation of a structure by a laser pre-pulse is the most important factor and for this scheme to work, one needs a very high-contrast laser-pulse and a nanosecond laser pre-pulse duration. The limitation on laser pulse duration is not so strong because after destruction of a first relief a secondary dynamic structure of ion density appears. Thus, high absorption connected with a relief existence continues during a long time that gives a possibility for structure targets to be more efficient compared to a plane one. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Fiber laser front end for high energy petawatt laser systems

    International Nuclear Information System (INIS)

    Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J; Siders, C; Lucianetti, A; Crane, J K; Barty, C J

    2006-01-01

    We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 (micro)J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces ∼1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier

  5. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...

  6. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration

    Science.gov (United States)

    Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.

    2018-02-01

    Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.

  7. Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Visco, A.M.; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Boody, F.P

    2004-04-15

    Pulsed laser ablation of ultra-high-molecular-weight-polyethylene (UHMWPE) is investigated at Prague Asterix Laser System (PALS) Laboratory. The high ablation yield as a function of laser energy is presented at 438 nm laser wavelength. The mechanisms of the polymer ablation are studied on the base of ''in situ'' analysis, such as mass quadrupole spectrometry and time-of-flight measurements, and ''ex situ'' analysis, such as SEM investigations and Raman spectroscopy. Results show that the laser irradiation induces a strong polymer dehydrogenation and molecular emission due to different C{sub x}H{sub y} groups having high kinetic energy and high charge state. At a laser pulse energy of 150 J the H{sup +}, C{sup n+} ions (n=1 to 6) are emitted from the plasma with velocities of the order of 10{sup 8} cm/s, while the C{sub x}H{sub y} groups and the carbon clusters, detected up to C{sub 16}, have a velocity about one or two order magnitude lower. The laser ablation process produces a deep crater in the polymer, which depth depends on the laser pulse energy and it is of the order of 500 {mu}m. The crater volume increases with the laser pulse energy. Results demonstrated that the laser radiation modifies the polymer chains because dehydrogenated material and carbon-like structures are detected in the crater walls and in the bottom of the crater, respectively. A comparison of the experimental results with the data available in literature is presented and discussed.

  8. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  9. Advancing High Contrast Adaptive Optics

    Science.gov (United States)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  10. High-power planar dielectric waveguide lasers

    International Nuclear Information System (INIS)

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  11. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  12. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    Science.gov (United States)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  13. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.

    Science.gov (United States)

    Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A

    2001-10-01

    Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption profiles, a 44.1% +/- 11.3% greater absorption increase was seen in tumor tissue compared with normal tissue. The laser wavelength lambda1 of the prototype laser mammography device was not situated at maximum absorption of the contrast agent NIR96010 but on the descending shoulder of the absorption spectrum. This implies a 20

  14. High-power fiber-coupled pump lasers for fiber lasers

    Science.gov (United States)

    Kasai, Yohei; Aizawa, Takuya; Tanaka, Daiichiro

    2018-02-01

    We present high-power fiber-coupled pump modules utilized effectively for ultra-high power single-mode (SM) fiber lasers. Maximum output power of 392 W was achieved at 23 A for 915 nm pump, and 394 W for 976 nm pump. Fiber core diameter is 118 μm and case temperature is 25deg. C. Polarization multiplexing technique was newly applied to our optical system. High-reliability of the laser diodes (LD) at high-power operation has been demonstrated by aging tests. Advanced package structure was developed that manages uncoupled light around input end of the fiber. 800 hours continuous drive with uncoupled light power of 100 W has been achieved.

  15. Development of a high power femtosecond laser

    CSIR Research Space (South Africa)

    Neethling, PH

    2010-10-01

    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  16. Laser ablation of dental calculus at 400 nm using a Ti:sapphire laser

    Science.gov (United States)

    Schoenly, Joshua E.; Seka, Wolf; Rechmann, Peter

    2009-02-01

    A Nd:YAG laser-pumped, frequency-doubled Ti:sapphire laser is used for selective ablation of calculus. The laser provides calculus removal. This is in stark contrast with tightly focused Gaussian beams that are energetically inefficient and lead to irreproducible results. Calculus is well ablated at high fluences >=2J/cm2 stalling occurs below this fluence because of photobleaching. Healthy hard tissue is not removed at fluences <=3 J/cm2.

  17. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  18. High-energy krypton fluoride lasers for inertial fusion.

    Science.gov (United States)

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  19. Research with high-power short-wavelength lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Campbell, E.M.; Lindl, J.D.; Storm, E.

    1985-01-01

    Three important high-temperature, high-density experiments were conducted recently using the 10-TW, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. These experiments demonstrated successful solutions to problems that arose during previous experiments with long wavelength lasers (lambda greater than or equal to 1μm) in which inertial confinement fusion (ICF), x-ray laser, and other high-temperature physics concepts were being tested. The demonstrations were: (1) large-scale plasmas (typical dimensions of up to 1000 laser wavelengths) were produced in which potentially deleterious laser-plasma instabilities were collisionally damped. (2) Deuterium-tritium fuel was imploded to a density of 20 g/cm 3 and a pressure of 10 10 atm. (3) A 700-fold amplification of soft x rays by stimulated emission at 206 and 209 A (62 eV) from Se +24 ions was observed in a laser-generated plasma. Isoelectronic scaling to 155 A (87 eV) in Y +29 was also demonstrated

  20. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  1. Development of high power chemical oxygen lodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Choi, Y. D.; Chung, C. M.; Kim, M. S.; Baik, S. H.; Kwon, S. O.; Park, S. K.; Kim, T. S

    2001-10-01

    This project is directed to construct 10kW Chemical Oxygen Iodine Laser (COIL) for decommissioning of old nuclear facilities, and to get the key technology that can be used for the development of high energy laser weapon. COIL is possible up to MW class in proportion to the amount of chemical reaction. For this reason, high energy laser weapon including Airborne Laser (ABL) and Airborne Tactical Laser (ATL) has been developed as a military use in USA. Recently, many research group have been doing a development study of COIL for nuclear and industrial use in material processing such as cutting and decommissioning by combining laser beam delivery through optical fiber. The Chemical Oxygen Iodine Laser of 6 kW output power has been developed in this project. The main technologies of chemical reaction and supersonic fluid control were developed. This technology can be applied for construction of 10 kW laser system. This laser can be used for old nuclear facilities and heavy industry by combining laser beam delivery through optical fiber. The development of High Energy Laser (HEL) weapon is necessary as a military use, and we conclude that Airborne Tactical Laser should be developed in our country.

  2. One year follow-up of contrast sensitivity following conventional laser in situ keratomileusis and laser epithelial keratomileusis.

    Science.gov (United States)

    Townley, Deirdre; Kirwan, Caitriona; O'Keefe, Michael

    2012-02-01

    To determine the effect of conventional laser in situ keratomileusis (LASIK) and laser epithelial keratomileusis (LASEK) for myopia on contrast sensitivity (CS) using the Pelli-Robson and Vector Vision CSV-1000E CS tests. A prospective, comparative study was conducted on 36 eyes of 36 patients with myopia undergoing LASIK (18 eyes) and LASEK (18 eyes). Surgery was performed using the Technolas 217z laser (Bausch & Lomb). CS was recorded preoperatively and at 3, 6 and 12 months postoperatively. No statistically significant difference was found in LogMAR uncorrected visual acuity post-LASIK (-0.02 ± 0.16) and LASEK (-0.04 ± 0.14). Using the Pelli-Robson, CS was significantly lower in the LASIK group 3 and 6 months postoperatively. No significant postoperative reduction in CS was observed in either treatment group. Using the CSV-1000E test, CS was significantly reduced post-LASIK at 3 (p = 0.05) and 6 (p = 0.05) cycles/degree under photopic conditions. No significant postoperative change occurred in the LASEK group under photopic or scotopic conditions. There was no significant difference in postoperative CS between the LASIK and LASEK groups at 3, 6, 12 or 18 cycles/degree using the CSV-1000E test. One year postoperatively, there was no difference in CS between both treatment groups using the Pelli-Robson and CSV-1000E tests. CS was reduced postoperatively in the LASIK group at the lower spatial frequencies under photopic conditions. No postoperative change was detected in CS following LASIK or LASEK using the Pelli-Robson test. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  3. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  4. High-powered CO2 -lasers and noise control

    Science.gov (United States)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  5. A plasma microlens for ultrashort high power lasers

    Science.gov (United States)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  6. A plasma microlens for ultrashort high power lasers

    International Nuclear Information System (INIS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-01-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  7. High-power laser diodes with high polarization purity

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  8. High-energy 4ω probe laser for laser-plasma experiments at Nova

    International Nuclear Information System (INIS)

    Glenzer, S.H.; Weiland, T.L.; Bower, J.; MacKinnon, A.J.; MacGowan, B.J.

    1999-01-01

    For the characterization of inertial confinement fusion plasmas, we implemented a high-energy 4ω probe laser at the Nova laser facility. A total energy of >50 J at 4ω, a focal spot size of order 100 μm, and a pointing accuracy of 100 μm was demonstrated for target shots. This laser provides intensities of up to 3x10 14 Wcm -2 and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4ω probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n e >2x10 21 cm -3 which represents the highest density plasma so far being diagnosed with Thomson scattering. copyright 1999 American Institute of Physics

  9. Laser Giant Ion Source and the Prepulse Effects for Picosecond Interaction for High Gain Laser Fusion

    International Nuclear Information System (INIS)

    Hora, Heinrich; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Boody, F.P.; Hoepfl, R.; Jungwirth, K.; Ullschmied, J.; Kralikova, B.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Skala, J.; Perina, V.

    2003-01-01

    By studying laser driven ion sources which produce giant ion emission current densities exceeding the few mA/cm2 of classical ion sources (MEVVA or ECR) by more than six orders of magnitude, we unexpectedly measured an anomalous low ion energy with ps laser pulses.The emission is basically different from that with the fastest ion energies in the MeV to GeV range due to relativistic self focusing and from the second fastest ion group due to quiver-thermalization processes. We report on specifically designed experiments with gold targets where 0.5 ns laser pulses produce MeV Au-ions in accordance with relativistic self focusing in strong contrast to ps pulses where a 400 times higher intensity from TW pulses is needed to arrive at the same ion energies. These can be explained by a basically new model without self-focusing as a skin layer effect where the absence of a prepulse is essential. This has consequences for the application of laser driven ion sources and may improve the hitherto highest published laser fusion gains with 50 TW-ps laser pulses without the usual spherical precompression

  10. Reproducibility of non-invasive assessment of skin endothelial function using laser Doppler flowmetry and laser speckle contrast imaging.

    Directory of Open Access Journals (Sweden)

    Cyril Puissant

    Full Text Available Endothelial dysfunction precedes atherosclerosis. Vasodilation induced by acetylcholine (ACh is a specific test of endothelial function. Reproducibility of laser techniques such as laser-Doppler-flowmetry (LDF and Laser-speckle-contrast-imaging (LSCI to detect ACh vasodilation is debated and results expressions lack standardization. We aimed to study at a 7-day interval (i the inter-subject reproducibility, (ii the intra-subjects reproducibility, and (iii the effect of the results expressions over variability.Using LDF and LSCI simultaneously, we performed two different ACh-iontophoresis protocols. The maximal ACh vasodilation (peak-ACh was expressed as absolute or normalized flow or conductance values. Inter-subject reproducibility was expressed as coefficient of variation (inter-CV,%. Intra-subject reproducibility was expressed as within subject coefficients of variation (intra-CV,%, and intra-class correlation coefficients (ICC. Fifteen healthy subjects were included. The inter-subject reproducibility of peak-ACh depended upon the expression of the results and ranged from 55% to 162% for LDF and from 17% to 83% for LSCI. The intra-subject reproducibility (intra-CV/ICC of peak-ACh was reduced when assessed with LSCI compared to LDF no matter how the results were expressed and whatever the protocol used. The highest intra-subject reproducibility was found using LSCI. It was 18.7%/0.87 for a single current stimulation (expressed as cutaneous vascular conductance and 11.4%/0.61 for multiple current stimulations (expressed as absolute value.ACh-iontophoresis coupled with LSCI is a promising test to assess endothelial function because it is reproducible, safe, and non-invasive. N°: NCT01664572.

  11. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  12. Modelling and optimisation of fs laser-produced Kα sources

    International Nuclear Information System (INIS)

    Gibbon, P.; Masek, M.; Teubner, U.; Lu, W.; Nicoul, M.; Shymanovich, U.; Tarasevitch, A.; Zhou, P.; Sokolowski-Tinten, K.; Linde, D. von der

    2009-01-01

    Recent theoretical and numerical studies of laser-driven femtosecond K α sources are presented, aimed at understanding a recent experimental campaign to optimize emission from thin coating targets. Particular attention is given to control over the laser-plasma interaction conditions defined by the interplay between a controlled prepulse and the angle of incidence. It is found that the x-ray efficiency for poor-contrast laser systems in which a large preplasma is suspected can be enhanced by using a near-normal incidence geometry even at high laser intensities. With high laser contrast, similar efficiencies can be achieved by going to larger incidence angles, but only at the expense of larger X-ray spot size. New developments in three-dimensional modelling are also reported with the goal of handling interactions with geometrically complex targets and finite resistivity. (orig.)

  13. Contrasting the beam interaction characteristics of selected lasers with a partially stabilized zirconia bio-ceramic

    International Nuclear Information System (INIS)

    Lawrence, J.

    2002-01-01

    Differences in the beam interaction characteristics of a CO 2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilized zirconia bio-ceramic have been studied. A derivative of Beer-Lambert's law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55x10 -3 cm for the CO 2 laser, 18.22x10 -3 cm for the Nd : YAG laser, 17.17x10 -3 cm for the HPDL and 8.41x10 -6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO 2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J cm -2 , 97 J cm -2 , 115 J cm -2 and 0.48 J cm -2 , respectively. The thermal loading value for the CO 2 laser, the Nd : YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ cm -3 , 5.32 kJ cm 3 , 6.69 kJ cm -3 and 57.04 kJ cm -3 , respectively. (author)

  14. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  15. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  16. In-vivo brain blood flow imaging based on laser speckle contrast imaging and synchrotron radiation microangiography

    International Nuclear Information System (INIS)

    Miao, Peng; Feng, Shihan; Zhang, Qi; Lin, Xiaojie; Xie, Bohua; Liu, Chenwei; Yang, Guo-Yuan

    2014-01-01

    Abstract In-vivo imaging of blood flow in the cortex and sub-cortex is still a challenge in biological and pathological studies of cerebral vascular diseases. Laser speckle contrast imaging (LSCI) only provides cortex blood flow information. Traditional synchrotron radiation micro-angiography (SRA) provides sub-cortical vasculature information with high resolution. In this study, a bolus front-tracking method was developed to extract blood flow information based on SRA. Combining LSCI and SRA, arterial blood flow in the ipsilateral cortex and sub-cortex was monitored after experimental intracerebral hemorrhage of mice. At 72 h after injury, a significant blood flow increase was observed in the lenticulostriate artery along with blood flow decrease in cortical branches of the middle cerebral artery. This combined strategy provides a new approach for the investigation of brain vasculature and blood flow changes in preclinical studies. (paper)

  17. New generation of compact high power disk lasers

    Science.gov (United States)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  18. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  19. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  20. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  1. High-order harmonics from bow wave caustics driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    2012-01-01

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  2. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  3. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan

    2015-01-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  4. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  5. Atmospheric Propagation and Combining of High-Power Lasers

    Science.gov (United States)

    2015-09-08

    Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when

  6. Variation of contrast sensitivity after femtosecond laser in situ keratomileusis in changes environments

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2015-01-01

    Full Text Available AIM: To evaluate the difference of contrast sensitivity(CSin photopic and scotopic environments in eyes with myopia and myopic astigmatism operated with femtosecond laser in situ keratomileusis(femto-LASIKand laser in situ keratomileusis(LASIK.METHODS: In a prospective study 160 myopia and myopic astigmatism patients' eyes were involved, which accepted femto-LASIK or LASIK in our hospital from January 2010 to February 2012. The myopia degree was -1.50~-10.00D, the astigmatism degree ≤-6.0D. Eighty eyes were treated with femto-LASIK in group A, and 80 eyes were treated with LASIK in group B, All patients in the treatment group completed the final 6mo of follow-up. The uncorrected visual acuity(UCVAand the best spectacle-corrected visual acuity(BSCVA, objective and manifest refractions, results of slit-lamp examination, the side effects, intraocular pressure, corneal topography, CS in photopic and scotopic environments were noted.RESULTS: All of operations on 160 cases were successful without severe complication after 6 mo follow-up. CS of femto-LASIK group(group Aat each spatial frequency environment were higher than that of LASIK group(group B. In group A, after 1mo the photopic CS, after 3mo of scotopic CS recovered to the preoperative level, 6mo after surgery improved than before the operation. In group B, after 3mo photopic CS to the preoperative level, scotopic CS at 6mo after operation was still not recovered to the preoperative level.CONCLUSION:Femto-LASIK for correction of myopia and myopic astigmatism, in improving the postoperative contrast sensitivity under shade environment has more advantages than LASIK.

  7. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  8. Characterization of High-power Quasi-cw Laser Diode Arrays

    Science.gov (United States)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  9. Halftoning for high-contrast imaging

    Directory of Open Access Journals (Sweden)

    Kasper M.

    2011-07-01

    Full Text Available High-contrast instruments, such as SPHERE (upcoming planet finder instrument for the ESO-VLT, or EPICS (planet hunter project for the future E-ELT, will require customized components with spatially varying transmission (e.g. coronagraphs, optical components that reduce the contrast between a companion and its parent star. The goal of these sub-systems is to control the spatial transmission, either in a pupil plane (pupil apodization, or in a focal plane of the instrument (occulting mask, i.e. low-frequency filter. Reliably producing components with spatially varying transmission is not trivial, and different techniques have been already investigated for application to astronomy (e.g. metal deposition with spatially-varying thickness, or high-energy beam sensitive glass using e-beam lithography. We present some results related to the recent development of components with spatially varying transmission using a relatively simple technique analogous to the digital halftoning process used for printing applications.

  10. Department of Defense high power laser program guidance

    Science.gov (United States)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  11. Sandia high-power atomic iodine photodissociation laser

    International Nuclear Information System (INIS)

    Palmer, R.E.; Padrick, T.D.

    1975-01-01

    One of the more promising candidates for a laser to demonstrate the feasibility of laser fusion is the 1.315 μ atomic iodine laser. In a relatively short time it has been developed into a viable subnanosecond, high energy laser. Although at present the iodine laser cannot equal the output capabilities of a large Nd:glass laser system, there are no foreseeable obstacles in the construction of a 100 psec, 10 KJ or greater atomic iodine laser system. A 100 joule system being constructed at Sandia to investigate many of the scaling parameters essential to the design of a 10 KJ or greater system is described. (U.S.)

  12. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.P. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Lopes, G.O. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Tibirica, E. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Laboratório de Investigação Cardiovascular, Departamento Osório de Almeida, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ (Brazil)

    2016-09-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  13. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Borges, J.P.; Lopes, G.O.; Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A.; Tibirica, E.

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men

  14. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M M [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A; Jovanovic, M

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  15. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  16. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy.

    Science.gov (United States)

    Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P

    2016-06-01

    Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements

  17. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  18. Optical engineering for high power laser applications

    International Nuclear Information System (INIS)

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  19. Latest advances in high brightness disk lasers

    Science.gov (United States)

    Kuhn, Vincent; Gottwald, Tina; Stolzenburg, Christian; Schad, Sven-Silvius; Killi, Alexander; Ryba, Tracey

    2015-02-01

    In the last decade diode pumped solid state lasers have become an important tool for many industrial materials processing applications. They combine ease of operation with efficiency, robustness and low cost. This paper will give insight in latest progress in disk laser technology ranging from kW-class CW-Lasers over frequency converted lasers to ultra-short pulsed lasers. The disk laser enables high beam quality at high average power and at high peak power at the same time. The power from a single disk was scaled from 1 kW around the year 2000 up to more than 10 kW nowadays. Recently was demonstrated more than 4 kW of average power from a single disk close to fundamental mode beam quality (M²=1.38). Coupling of multiple disks in a common resonator results in even higher power. As an example we show 20 kW extracted from two disks of a common resonator. The disk also reduces optical nonlinearities making it ideally suited for short and ultrashort pulsed lasers. In a joint project between TRUMPF and IFSW Stuttgart more than 1.3 kW of average power at ps pulse duration and exceptionally good beam quality was recently demonstrated. The extremely low saturated gain makes the disk laser ideal for internal frequency conversion. We show >1 kW average power and >6 kW peak power in multi ms pulsed regime from an internally frequency doubled disk laser emitting at 515 nm (green). Also external frequency conversion can be done efficiently with ns pulses. >500 W of average UV power was demonstrated.

  20. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    Science.gov (United States)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  1. Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study

    Science.gov (United States)

    Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.

    2012-02-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.

  2. High-power fiber lasers for photocathode electron injectors

    Directory of Open Access Journals (Sweden)

    Zhi Zhao

    2014-05-01

    Full Text Available Many new applications for electron accelerators require high-brightness, high-average power beams, and most rely on photocathode-based electron injectors as a source of electrons. To achieve such a photoinjector, one requires both a high-power laser system to produce the high average current beam, and also a system at reduced repetition rate for electron beam diagnostics to verify high beam brightness. Here we report on two fiber laser systems designed to meet these specific needs, at 50 MHz and 1.3 GHz repetition rate, together with pulse pickers, second harmonic generation, spatiotemporal beam shaping, intensity feedback, and laser beam transport. The performance and flexibility of these laser systems have allowed us to demonstrate electron beam with both low emittance and high average current for the Cornell energy recovery linac.

  3. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  4. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  5. High-Power Lasers for Science and Society

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haefner, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-05

    Since the first demonstration of the laser in 1960 by Theodore Maiman at Hughes Research Laboratories, the principal defining characteristic of lasers has been their ability to focus unprecedented powers of light in space, time, and frequency. High-power lasers have, over the ensuing five and a half decades, illuminated entirely new fields of scientific endeavor as well as made a profound impact on society. While the United States pioneered lasers and their early applications, we have been eclipsed in the past decade by highly effective national and international networks in both Europe and Asia, which have effectively focused their energies, efforts, and resources to achieve greater scientific and societal impact. This white paper calls for strategic investment which, by striking an appropriate balance between distributing our precious national funds and establishing centers of excellence, will ensure a broad pipeline of people and transformative ideas connecting our world-leading universities, defining flagship facilities stewarded by our national laboratories, and driving innovation across industry, to fully exploit the potential of high-power lasers.

  6. Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.

    Science.gov (United States)

    Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J

    2003-05-01

    In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.

  7. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  8. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  9. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  10. Survey on modern pulsed high power lasers

    International Nuclear Information System (INIS)

    Witte, K.J.

    1985-01-01

    The requirements to be met by lasers for particle acceleration are partially similar to those already known for fusion lasers. The power level wanted in both caes is up to 100 TW or even more. The pulse durations favourable for laser accelerators are in the range from 1 ps to 1000 ps whereas fusion lasers require several ns. The energy range for laser accelerators is thus correspondingly smaller than that for fusion lasers: 1-100 kJ versus several 100 kJ. The design criteria of lasers meeting the requirements are discussed in the following. The CO 2 , iodine, Nd:glass and excimer lasers are treated in detail. The high repetition rate aspect will not be particularly addressed since for the present generation of lasers the wanted rates of far above 1 Hz are completely out of scope. Moreover, for the demonstration of principle these rates are not needed. (orig./HSI)

  11. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  12. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  13. Implementation of laser speckle contrast analysis as connection kit for mobile phone for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Spigulis, Janis

    2014-05-01

    Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.

  14. Feasibility of High Energy Lasers for Interdiction Activities

    Science.gov (United States)

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS FEASIBILITY OF HIGH ENERGY LASERS FOR INTERDICTION ACTIVITIES by Carlos Abel Javier Romero... ENERGY LASERS FOR INTERDICTION ACTIVITIES 5. FUNDING NUMBERS 6. AUTHOR(S) Carlos Abel Javier Romero Chero 7. PERFORMING ORGANIZATION NAME(S) AND...the people or cargo. High Energy Laser (HEL) weapons are an effective way to deliver energy precisely from a relative long range. This thesis studies

  15. Study of 2ω and 3/2ω harmonics in ultrashort high-intensity laser ...

    Indian Academy of Sciences (India)

    Intense laser pulses from such laser systems may have many pre-pulses like picosecond ... ultrashort laser–matter interaction, as well as to control the source parameters. In situ monitoring of ultrashort ... central wavelength of 790 nm with a bandwidth of 16 ± 2 nm after the compressor. The picosecond intensity contrast ...

  16. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  17. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  18. Laser innovated manufacturing technology; Laser ga seisan gijutsu wo kakushinshita

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, I. [Honda Motor Co. Ltd., Tokyo (Japan)

    1996-11-01

    This paper looks back the history of applications of laser processing in the automobile industry, and introduces contents of some particularly unique applications from among them. The CO2 laser and YAG laser that are used mainly have increased their outputs with the times, and 50-kW CO2 laser and 4-kW YAG laser have now become available commercially. The laser processing has become used widely for cutting purpose in Japan, which is in contrast with their high application to welding in Europe and America. Cutting thick plates has been developed recently, which is applicable to plates as thick as about 25 mm. A flexible system in which YAG laser is combined with an optical fiber/articulated robot is operating for three-dimensional shape processing. Automobile makers are adopting laser processing for welding in place of the electron beam welding that has been used conventionally. The process is used also for a number of other applications including surface reformation, such as surface quenching for cylinder liner, and valve seat padding. 8 refs., 8 figs.

  19. Industrial application of high power disk lasers

    Science.gov (United States)

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  20. High power laser downhole cutting tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  1. Next-generation fiber lasers enabled by high-performance components

    Science.gov (United States)

    Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.

    2018-02-01

    Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.

  2. Modeling of high energy laser ignition of energetic materials

    International Nuclear Information System (INIS)

    Lee, Kyung-cheol; Kim, Ki-hong; Yoh, Jack J.

    2008-01-01

    We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers the effect of irradiating a steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultrashort (femto- and picosecond) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine, triaminotrinitrobenzene, and octahydrotetranitrotetrazine are compared to experimental results. The experimental and numerical results are in good agreement

  3. High energy XeBr electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  4. Technology of discharge and laser resonators for high power CO2 lasers. Koshutsuryoku CO2 laser ni tsukawareru hoden reiki laser kyoshinki gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Y.; Kuzumoto, M. (Mitsubishi Electric Corp., Tokyo (Japan))

    1994-03-20

    This paper describes discharge excitation technology and resonator technology as basic technologies for high power CO2 lasers. As a result of progress in high-frequency power element techniques, the discharge excitation technology now generally uses laser excitation using AC discharge of capacity coupling type. Its representative example is silent discharge (SD) excitation. This is a system to excite laser by applying high voltages with as high frequency as 100 kHz to 1 MHz across a pair of electrodes covered with a dielectric material. The system maintains stability in discharge even if power supply voltage amplitude is modulated, and easily provides pulse outputs. Discharge excitation for diffusion cooled type CO2 laser generates a discharge in a gap with a gap length of about 2 mm, and can perform gas cooling by means of thermal conduction of gas, whereas a compact resonator can be fabricated. A resonator for the diffusion cooled type CO2 laser eliminates gas circulation and cooling systems, hence the device can be made more compact. A report has been given that several of these compact resonators were combined, from which a laser output of 85W was obtained by using RF discharge of 2kW. 43 refs., 21 figs.

  5. QED studies using high-power lasers

    International Nuclear Information System (INIS)

    Mattias Marklund

    2010-01-01

    Complete text of publication follows. The event of extreme lasers, which intensities above 10 22 W/cm 2 will be reached on a routine basis, will give us opportunities to probe new aspects of quantum electrodynamics. In particular, the non-trivial properties of the quantum vacuum can be investigated as we reach previously unattainable laser intensities. Effects such as vacuum birefringence and pair production in strong fields could thus be probed. The prospects of obtaining new insights regarding the non-perturbative structure of quantum field theories shows that the next generation laser facilities can be important tool for fundamental physical studies. Here we aim at giving a brief overview of such aspects of high-power laser physics.

  6. The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

    Directory of Open Access Journals (Sweden)

    David C. Brown

    2016-01-01

    Full Text Available Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.

  7. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    Science.gov (United States)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  8. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  9. Advances in high field laser physics

    CERN Document Server

    Sheng, Zhengming; Chen, Liming; Lu, Wei; Shen, Baifei

    2019-01-01

    High field laser physics emerged with the advent of ultrashort intense lasers about 25 years ago. It has developed into a frontier of cross-disciplinary studies, covering attosecond X-ray physics, particle accelerator physics, and physics of inertial confined fusion, etc., with prospects of wide applications. Because this is a new and rapidly developing field, so far there are only 2-3 related books available. There are a few review articles in some journals, which are limited to specific topics in high field physics. There are quite a few conference proceedings in this field, which are the collections of papers presented at conferences. In this book, a few leading experts working on different subjects in this field are invited to introduce the key topics in high field laser physics, which cover the involved fundamental physics, the recent advances, as well as the prospects of future applications. It shall be very useful to graduate students, young researchers, and people who want to have an overview of thi...

  10. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  11. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  12. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  13. In-plane laser forming for high precision alignment

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Huis in 't Veld, Bert

    2014-01-01

    Laser microforming is extensively used to align components with submicrometer accuracy, often after assembly. While laser-bending sheet metal is the most common laser-forming mechanism, the in-plane upsetting mechanism is preferred when a high actuator stiffness is required. A three-bridge planar

  14. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  15. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  16. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    Science.gov (United States)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  17. Study on the high-frequency laser measurement of slot surface difference

    Science.gov (United States)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  18. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  19. Recent progress in high-power slab lasers in Japan

    International Nuclear Information System (INIS)

    Fujii, Y.

    1988-01-01

    Recently, many solid-state lasers have been widely employed in Japanese industries, especially in the electronics industries for precise and reliable processing. To expand the use of solid-state lasers and to achieve higher processing speed, the authors are developing slab lasers of high power, high repetition rate, and high beam quality. Metal processing systems with optical fibers for large and complex 3-D work, multiwork station systems linked to only one laser with optical fibers, and compact x-ray sources for lithography are promising areas for such lasers. Surnitomo Metal Mining is growing Nd:GGG and Nd:YAG crystals 60 mm in diameter and 200 mm long. From 2 at.% Nd-doped GGG crystals without central core regions. The authors obtained two slab materials with dimensions of 35 X 9 X 192 and 55 X 15 X 213 mm/sup 3/. By using the smaller slab, they constructed a slab laser and obtained 370-W laser output power at 24-kW lamp input power and 10-pps repetition rate. Now they are constructing a 1-kW slab laser using the other larger size slab

  20. Wavelength dependency in high power laser cutting and welding

    Science.gov (United States)

    Havrilla, David; Ziermann, Stephan; Holzer, Marco

    2012-03-01

    Laser cutting and welding have been around for more than 30 years. Within those three decades there has never been a greater variety of high power laser types and wavelengths to choose from than there is today. There are many considerations when choosing the right laser for any given application - capital investment, cost of ownership, footprint, serviceability, along with a myriad of other commercial & economic considerations. However, one of the most fundamental questions that must be asked and answered is this - "what type of laser is best suited for the application?". Manufacturers and users alike are realizing what, in retrospect, may seem obvious - there is no such thing as a universal laser. In many cases there is one laser type and wavelength that clearly provides the highest quality application results. This paper will examine the application fields of high power, high brightness 10.6 & 1 micron laser welding & cutting and will provide guidelines for selecting the laser that is best suited for the application. Processing speed & edge quality serve as key criteria for cutting. Whereas speed, seam quality & spatter ejection provide the paradigm for welding.

  1. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  2. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  3. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  4. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  5. Simultaneous Confocal Scanning Laser Ophthalmoscopy Combined with High-Resolution Spectral-Domain Optical Coherence Tomography: A Review

    Directory of Open Access Journals (Sweden)

    Verônica Castro Lima

    2011-01-01

    Full Text Available We aimed to evaluate technical aspects and the clinical relevance of a simultaneous confocal scanning laser ophthalmoscope and a high-speed, high-resolution, spectral-domain optical coherence tomography (SDOCT device for retinal imaging. The principle of confocal scanning laser imaging provides a high resolution of retinal and choroidal vasculature with low light exposure. Enhanced contrast, details, and image sharpness are generated using confocality. The real-time SDOCT provides a new level of accuracy for assessment of the angiographic and morphological correlation. The combined system allows for simultaneous recordings of topographic and tomographic images with accurate correlation between them. Also it can provide simultaneous multimodal imaging of retinal pathologies, such as fluorescein and indocyanine green angiographies, infrared and blue reflectance (red-free images, fundus autofluorescence images, and OCT scans (Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany. The combination of various macular diagnostic tools can lead to a better understanding and improved knowledge of macular diseases.

  6. PHELIX - Petawatt high-energy laser for heavy ion experiments

    International Nuclear Information System (INIS)

    Backe, H.; Bock, R.; Caird, J.

    1998-12-01

    A high-power laser facility will be installed at the GSI heavy-ion accelerator. It will deliver laser pulses up to one kilojoule (with an option of a later upgrade to several kJ) at a pulse length of 1 - 10 nanoseconds (high-energy mode). In a high-intensity mode, laser pulses with a power of one petawatt (10 15 Watt) will be generated by chirped pulse amplification at a pulse length of typically 500 femtoseconds. Details of the laser system as well as time schedule and costs are given in Section B. In combination with the heavy-ion beams available at GSI - which will be further improved in intensity by the presently on-going upgrade program - a large number of unique experiments will become possible by the high-power laser facility described in this report. As outlined in Section A, novel research opportunities are expected in a wide range of basic-research topics spanning from the study of ion-matter interaction, through challenging new experiments in atomic, nuclear, and astrophysics, into the virgin field of relativistic plasma physics. Foreseeable topics in applied science are the development of new sources for highly charged ions and of X-ray lasers, new concepts for laser-based particle acceleration and the research in the field of inertial confinement fusion. (orig.)

  7. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  8. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    Science.gov (United States)

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  9. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  10. High power visible diode laser for the treatment of eye diseases by laser coagulation

    Science.gov (United States)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  11. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  12. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....

  13. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  14. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza

    2015-01-01

    into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has......We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  15. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.

    1979-01-01

    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  16. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  17. High-power CO laser and its potential applications

    International Nuclear Information System (INIS)

    Sato, Shunichi; Takahashi, Kunimitsu; Shimamoto, Kojiro; Takashima, Yoichi; Matsuda, Keiichi; Kuribayashi, Shizuma; Noda, Osamu; Imatake, Shigenori; Kondo, Motoe.

    1995-01-01

    The R and D program for the development of a high-power CO laser and its application technologies is described. Based on a self-sustained discharge excitation scheme, the available laser output has been successfully scaled to over 20 kW. The CO laser cutting experiments for thick metals have been performed in association with the decommissioning technologies development. Other potential applications, which include those based on photo chemical process, are reviewed. Recently demonstrated high-power tunable operation and room-temperature operation are also reported. (author)

  18. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats.

    Science.gov (United States)

    Gunji, Hidemi; Kunimatsu, Ryo; Tsuka, Yuji; Yoshimi, Yuki; Sumi, Keisuke; Awada, Tetsuya; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Hirose, Naoto; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-02-05

    Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. This study demonstrates that high-frequency near-infrared diode laser

  19. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  20. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  1. Picosecond high power laser systems and picosecond diagnostic technique in laser produced plasma

    International Nuclear Information System (INIS)

    Kuroda, Hiroto; Masuko, H.; Maekawa, Shigeru; Suzuki, Yoshiji; Sugiyama, Masaru.

    1979-01-01

    Highly repetitive, high power YAG and Glass laser systems have been developed and been successfully used for the studies of laser-plasma interactions. Various picosecond diagnostic techniques have been developed for such purposes in the regions from optical to X-ray frequency. Recently highly sensitive X-ray (1 - 10 KeV) streak camera for highly repetitive operations have been developed. Preliminary experiment shows the achievement of 28ps temporal resolution (100μm slit) and good sensitivity with detectable minimum number of 10E3-1KeV photons/shot/slit area. (author)

  2. High-Intensity Laser Diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.-W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Junquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP is a new high-energy petawatt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from <1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy petawatt laser at full energy

  3. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  4. Embedded high-contrast distributed grating structures

    Science.gov (United States)

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  5. Photo-preionization stabilized high-pressure glow-discharge lasers

    International Nuclear Information System (INIS)

    Von Bergmann, H.M.

    1980-07-01

    Simple nanosecond stabilization and pulsing techniques were developed to excite high-pressure gas-discharge lasers at high overvoltages and high specific power loadings. The techniques were applied to a variety of ultraviolet and visible laser systems employing fast transmission line pulsers and conventional LC generators. The stabilization procedures are evaluated and the parameters which control the geometry and uniformity of the high-pressure glow discharges are investigated. A detailed study of the formation, distribution and spectral characteristics of the fast surface corona discharges is provided. The stabilization and pulsing techniques were used for the corona and glow discharge excitation of high-pressure ultraviolet N 2 lasers. A detailed spectrally- and temporally-resolved study of the gain, fluorescence and energy extraction characteristics of the atmospheric pressure N 2 plasmas is provided

  6. Laser prostatectomy in high-risk patients

    International Nuclear Information System (INIS)

    Tayib, Abdulmalik M.

    2008-01-01

    Objective was to evaluate the short-term tolerability and outcome of high power green light potassium titanyl phosphate laser prostatectomy in high-risk patients with symptomatic benign prostatic hyperplasia. Eleven high risk operative patients were included in this study at the International Medical Center, Jeddah, Kingdom of Saudi Arabia, between January and September 2007. Patients enrolled in this study underwent preoperative and postoperative, cardiac and anesthesia evaluation. Clinical presentations, ultrasound of urinary tract and preoperative laboratory investigation were recorded. All patients underwent high power green light laser prostatectomy using the green light photo vaporization system with setting of 120 watts. The intraoperative and postoperative complications and follow-up were recorded. The patient's age varied between 65-82 years with a mean age of 75.3+-8.6 years old. Seven patients presented with refractory acute urinary retention and 4 patients presented with severe lower urinary tract symptoms. The average prostate volume was 61.22 cc. All patients had uneventful intra- and postoperative course, without the intensive care. The average blood loss was insignificant and only one of the patients required blood transfusion. Foley catheters were removed one day after the procedure. All patients voided satisfactorily after removal of catheter and 8 patients complained of urgency. High power green light laser prostatectomy is a safe and effective method of treating symptomatic benign prostatic hyperplasia in patients with high operative risk. (author)

  7. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  8. Ultra high speed framing photographs of laser produced plasmas using a picosecond optical shutter

    International Nuclear Information System (INIS)

    Gillman, G.B.; Ramsden, S.A.

    1975-01-01

    A study has been carried out of the spatial transmission properties of the optical Kerr effect shutter and it has been used to take ultra high speed framing photographs of laser produced plasmas in air and from solid targets. With a 1cm long CS 2 cell of aperture 5cm 2 a transmission of approximately 5% and an on/off contrast ratio of 10 4 was obtained. An image intensifier was necessary to obtain adequately exposed photographs of the plasma and the overall spatial resolution of the system was approximately 2μ. (author)

  9. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  10. Characterization of diode-laser stacks for high-energy-class solid state lasers

    Science.gov (United States)

    Pilar, Jan; Sikocinski, Pawel; Pranowicz, Alina; Divoky, Martin; Crump, P.; Staske, R.; Lucianetti, Antonio; Mocek, Tomas

    2014-03-01

    In this work, we present a comparative study of high power diode stacks produced by world's leading manufacturers such as DILAS, Jenoptik, and Quantel. The diode-laser stacks are characterized by central wavelength around 939 nm, duty cycle of 1 %, and maximum repetition rate of 10 Hz. The characterization includes peak power, electrical-to-optical efficiency, central wavelength and full width at half maximum (FWHM) as a function of diode current and cooling temperature. A cross-check of measurements performed at HiLASE-IoP and Ferdinand-Braun-Institut (FBH) shows very good agreement between the results. Our study reveals also the presence of discontinuities in the spectra of two diode stacks. We consider the results presented here a valuable tool to optimize pump sources for ultra-high average power lasers, including laser fusion facilities.

  11. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  12. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  13. High power lasers

    CERN Document Server

    Niku-Lari, A

    1989-01-01

    The use of lasers for the working and treatment of materials is becoming increasingly common in industry. However, certain laser applications, for example, in welding, cutting and drilling, are more widely exploited than others. Whilst the potential of lasers for the surface treatment of metals is well recognised, in practice, this particular application is a relative newcomer. The 24 papers in this volume present the latest research and engineering developments in the use of lasers for processes such as surface melting, surface alloying and cladding, and machining, as well as discussing th

  14. Control system for high power laser drilling workover and completion unit

    Science.gov (United States)

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  15. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  16. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  17. Combining high power diode lasers using fiber bundles for beam delivery in optoacoustic endoscopy applications

    Science.gov (United States)

    Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio

    2016-05-01

    Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.

  18. Quantum energy duplication using super high output pulse laser

    International Nuclear Information System (INIS)

    Sugisaki, Kiwamu; Koyama, Kazuyoshi; Tanimoto, Mitsumori; Saito, Naoaki

    2000-01-01

    This study aims at elucidation on phenomena induced by strong electric field of super high output ultra short laser pulse to carry out development of basic technology required for promotion of a study on generation of high energy particle and photon using them, in order to contribute to application of super high output ultra short laser pulse and high energy plasma formed by it. In 1998 fiscal year of the last fiscal year in this study, by intending to increase the output by narrowing pulse width of the super high output laser, some basic experiments such as verification due to experiment on relativity theoretical self-convergence, generation of high energy particles, and so forth were carried out to establish a forecasting on future application. And, by conducting plasma generation experiment, self-guide and high energy particle formation experiment in plasma of super high intensity laser pulse important for its applications, and so forth, various technologies constituting foundation of future developments were developed, and more results could be obtained than those at proposal of this study. (G.K.)

  19. High power CO2 laser development with AOM integration for ultra high-speed pulses

    Science.gov (United States)

    Bohrer, Markus; Vaupel, Matthias; Nirnberger, Robert; Weinberger, Bernhard; Jamalieh, Murad

    2017-01-01

    There is a 500 billion USD world market for packaging expected to grow to a trillion in 2030. Austria plays an important role world wide for high speed laser engraving applications — especially when it comes to high end solutions. Such high end solutions are fundamental for the production of print forms for the packaging and decorating industry (e. g. cans). They are additionally used for security applications (e. g. for printing banknotes), for the textile printing industry and for creating embossing forms (e. g. for the production of dashboards in the automotive industry). High speed, high precision laser engraving needs laser resonators with very stable laser beams (400 - 800W) especially in combination with AOMs. Based upon a unique carbon fiber structure - stable within the sub-micrometer range - a new resonator has been developed, accompanied by most recent thermo-mechanical FEM calculations. The resulting beam is evaluated on an automated optical bench using hexapods, allowing to optimize the complete beam path with collimators and AOM. The major steps related to laser engraving of dry offset printing plates during the full workflow from the artists design to the printed result on an aluminum can is presented in this paper as well as laser characteristics, AOM integration and correlative CLSM and SEM investigation of the results.

  20. High-power random distributed feedback fiber laser: From science to application

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xueyuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Naval Academy of Armament, Beijing 100161 (China); Zhang, Hanwei; Xiao, Hu; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-10-15

    A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high-power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high-efficiency/high-power generation, which makes it competitive with conventional high-power laser sources. In addition, high-power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high-quality imaging. It is believed that the high-power random distributed feedback fiber laser could become a promising light source with simple and economic configurations. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Preliminary investigation into laser high voltage interaction in the case of streamer-to-leader process using a high power CO2 laser

    CSIR Research Space (South Africa)

    West, NJ

    2006-01-01

    Full Text Available This paper describes the preliminary small-scale experiments conducted in order to investigate the influence of intensely focused laser light produced by a CO2 laser on high voltage fields. The laser used operated at a maximum energy of 430 mJ per...

  2. High-intensity laser diagnostics for OMEGA EP

    Energy Technology Data Exchange (ETDEWEB)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  3. High-intensity laser diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  4. Trends in high power laser applications in civil engineering

    Science.gov (United States)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  5. Soft apertures to shape high-power laser beams

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Pashinin, P.P.; Batygov, S.K.; Terentiev, B.M.

    1989-01-01

    Soft or apodized apertures with smooth decreasing from center to edges transmission profiles are used in laser physics for beam shaping. This paper gives the results of the studies of four types of these units for UV, visible and IR lasers. They are made of glasses or crystals with the use of one of the following technologies: absorption induced by ionizing radiation; photodestruction of color centers or photooxidation of impurities ions; additive coloration; frustrated total internal reflection. The special feature of such apertures is their high optical damage resistance under the irradiation of single-pulse laser radiation. They are approximately 3-50 mm in diameter by the methods of making them give the possibility to create near-Gaussian and flat-top beams with dimensions less than 1 mm and larger than 200 mm. The results of using them in high-power single-pulse lasers are presented. Damage thresholds of these apertures in such types of lasers have been defined

  6. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  7. Target isolation system, high power laser and laser peening method and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  8. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  9. Stretchers and compressors for ultra-high power laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  10. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  11. High-intensity fibre laser design for micro-machining applications

    Science.gov (United States)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  12. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    Science.gov (United States)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  13. High power YAG laser cutting; Koshutsuryoku YAG laser ni yoru setsudan gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-08-01

    This paper describes features of high power YAG cutting. The optical fiber transmission YAG laser machining system has some advantages in which optical path length compensation unit is not required and measures for low power loss and dust are not required, when compared with the CO2 laser system. Its application to the cutting of stainless steel plates has attracted attention. Cutting tests of SUS304 were conducted using high power YAG laser. Cutting of SUS304 plate with a thickness of 40 mm could be successfully done at the power of 3.5 kW. Cutting tests of SUS304 pipes with a thickness of 8 mm in water under the depth of 20 m were also conducted using air as assist gas at the power of 2.5 kW. Excellent results were obtained without scale deposition. For the tests by the composite beam using 3 kW and 4 kW systems, SUS304 plate with a thickness of 50 mm could be cut at the cutting speed of 0.1 m/min. Laser cutting of pipes from the internal surface was conducted using a newly developed small machining head which can rotate in the peripheral direction. Excellent quality for welding was confirmed. Cutting speed and plate thickness were improved by combining water jet cutter and YAG laser unit. 6 refs., 10 figs.

  14. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    International Nuclear Information System (INIS)

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10 12 watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10 9 watts) and can be focussed to intensities of /approximately/10 16 W/cm 2 . Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs

  15. Uv laser triggering of high-voltage gas switches

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Frost, C.A.; Green, T.A.

    1982-01-01

    Two different techniques are discussed for uv laser triggering of high-voltage gas switches using a KrF laser (248 nm) to create an ionized channel through the dielectric gas in a spark gap. One technique uses an uv laser to induce breakdown in SF 6 . For this technique, we present data that demonstrate a 1-sigma jitter of +- 150 ps for a 0.5-MV switch at 80% of its self-breakdown voltage using a low-divergence KrF laser. The other scheme uses additives to the normal dielectric gas, such as tripropylamine, which are selected to undergo resonant two-step ionization in the uv laser field

  16. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  17. Efficacy of high iodine concentration contrast medium with saline pushing in hepatic CT in patients with chronic liver disease. Comparison of high doses-standard contrast medium concentration

    International Nuclear Information System (INIS)

    Matoba, Munetaka; Kondo, Tamaki; Nishikawa, Takahiro; Kuginuki, Yasuaki; Yokota, Hajime; Higashi, Kotaro; Tonami, Hisao

    2006-01-01

    The aim of this study was to compare the enhancement of liver parenchyama with high iodine concentration contrast medium with saline pushing to that with high doses standard iodine concentration in hepatic CT in patients with chronic liver disease. There was no statistically significant difference regarding to the enhancement of liver parenchyama between the 370 mgI/ml of contrast medium with saline pushing and high doses standard iodine concentration contrast medium. (author)

  18. Spectrally high performing quantum cascade lasers

    Science.gov (United States)

    Toor, Fatima

    emits at lambda = 10.8 mum for positive and lambda = 8.6 mum for negative polarity current with microsecond time delay is presented. Such a system is the first demonstration of a time and wavelength multiplexed system that uses a single QC laser. Fourth, work on the design and fabrication of a single-mode distributed feedback (DFB) QC laser emitting at lambda ≈ 7.7 mum to be used in a QC laser based photoacoustic sensor is presented. The DFB QC laser had a temperature tuning co-efficient of 0.45 nm/K for a temperature range of 80 K to 320 K, and a side mode suppression ratio of greater than 30 dB. Finally, study on the lateral mode patterns of wide ridge QC lasers is presented. The results include the observation of degenerate and non-degenerate lateral modes in wide ridge QC lasers emitting at lambda ≈ 5.0 mum. This study was conducted with the end goal of using wide ridge QC lasers in a novel technique to spatiospectrally combine multiple transverse modes to obtain an ultra high power single spot QC laser beam.

  19. Laser beams in high energy physics

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1976-01-01

    Back-scattered ruby laser light from energetic electrons has facilitated a family of bubble chamber experiments in the interactions of highly polarized and quasi-monochromatic photons up to 10 GeV with 4π acceptance at the 100 to 200 event/μb level. Further studies of this sort demand the use of high-repetition-rate track chambers. To exploit the polarization and energetic purity intrinsic to the back-scattered beam one must achieve nearly two orders of magnitude increase in the average input optical power, and preferably also higher quantum energies. Prospects for this technique and its applications given modern laser capabilities and new accelerator developments are discussed

  20. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  1. High pressure gas laser technology for atmospheric remote sensing

    Science.gov (United States)

    Javan, A.

    1980-01-01

    The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.

  2. R and D toward highly repetitive laser fusion demonstration

    International Nuclear Information System (INIS)

    Satoh, Nakahiro; Matsukado, Koji; Watari, Takeshi; Sekine, Takashi; Takeuchi, Yasuki; Kawashima, Toshiyuki

    2017-01-01

    Hamamatsu Photonics conducts research on a unique continuous neutron generation method by integrating and utilizing elemental technologies such as laser, target, and measurement for laser nuclear fusion research. In addition, in collaboration with the Graduate School for the Creation of New Photonics Industries, Toyota Motor Corporation, and others, it is conducting research on laser fusion. As a high power laser of element technology, it constructed an ultrahigh intensity laser system by combining glass slab laser KURE-I and ultrahigh intensity femtosecond laser MATSU-I equipped with titanium sapphire transmitter, and achieved a peak output of 20 TW, It plans to further increase this to 100 TW. As other element technologies, it is also considering nuclear fusion fuel - target technology and light - high energy particle measurement technology. Regarding the demonstration of continuous generation of laser fusion neutrons, it performed 100 times of continuous laser beam irradiation at 1 Hz, and actually measured the number of neutrons generated. It measured 4.5x10 4 pieces of neutrons on average (maximum 10 5 ) with a frequency of 98%. Since 100% of neutron generation should occur in principle, in the future it will be necessary to enhancing laser collecting intensity and to improve solid particle number density in order to put this process into practical use as a neutron source. (A.O.)

  3. High-brightness fiber-coupled pump laser development

    Science.gov (United States)

    Price, Kirk; Karlsen, Scott; Leisher, Paul; Martinsen, Robert

    2010-02-01

    We report on the continued development of high brightness laser diode modules at nLIGHT Photonics. These modules, based on nLIGHT's PearlTM product platform, demonstrate excellence in output power, brightness, wavelength stabilization, and long wavelength performance. This system, based on 14 single emitters, is designed to couple diode laser light into a 105 μm fiber at an excitation NA of under 0.14. We demonstrate over 100W of optical power at 9xx nm with a diode brightness exceeding 20 MW/cm2-str with an operating efficiency of approximately 50%. Additional results show over 70W of optical coupled at 8xx nm. Record brilliance at wavelengths 14xx nm and longer will also be demonstrated, with over 15 W of optical power with a beam quality of 7.5 mm-mrad. These results of high brightness, high efficiency, and wavelength stabilization demonstrate the pump technology required for next generation solid state and fiber lasers.

  4. Parametric Study and Multi-Criteria Optimization in Laser Cladding by a High Power Direct Diode Laser

    Science.gov (United States)

    Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.

  5. Recent results in mirror based high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Nielsen, Jakob Skov; Elvang, Mads

    2004-01-01

    In this paper, recent results in high power laser cutting, obtained in reseach and development projects are presented. Two types of mirror based focussing systems for laser cutting have been developed and applied in laser cutting studies on CO2-lasers up to 12 kW. In shipyard environment cutting...... speed increase relative to state-of-the-art cutting of over 100 % has been achieved....

  6. High-efficient Nd:YAG microchip laser for optical surface scanning

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  7. Development in high speed and high quality laser cutting process in fiber reinforced plastics; FRP no laser ni yoru kosoku, kohinshitsu setsudan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishide, T.; Shirota, H.; Matsumoto, O. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-06-01

    Trimming was performed and studied by cutting KFRP, an epoxy matrix with Kevlar fiber woven thereinto, using various laser beams. The CO2 laser is capable of high-speed cutting but the product is low in quality. The surface of a cut by the YAG laser is not high in quality even with its peak output elevated. The thermally affected area is smaller under the excimer laser but it is low in cutting speed. The ablation properties of the excimer laser were investigated and the beam was shaped into a linear beam for another experiment, but it failed to attain the target speed of cutting. Next, a combination of excimer laser and CO2 laser was used for cutting. It was so designed that the preceding CO2 laser cuts the KFRP at a high speed to leave behind a carbonized layer, which is followed by a linear beam which vaporizes the carbonized layer for removal. An optical system is adopted for reshaping the excimer oscillated beam into a tube-like beam. Optical conditions were determined for a fluence value required for the removal of the carbonized layer. When the CO2 laser was set at 160W and the excimer laser at 20W, a 1mm-thick sheet was successfully cut at a speed of 16.7mm/sec. 3 refs., 7 figs.

  8. Nuclear based diagnostics in high-power laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc; Sonnabend, Kerstin; Harres, Knut; Otten, Anke; Roth, Markus [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Vogt, Karsten; Bagnoud, Vincent [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2010-07-01

    High-power lasers allow focused intensities of >10{sup 18} W/cm{sup 2}. During the laser-solid interaction, an intense relativistic electron current is injected from the plasma into the target. One challenge is to characterize the electron dynamic close to the interaction region. Moreover, next generation high-power laser proton acceleration leads to high proton fluxes, which require novel, nuclear diagnostic techniques. We present an activation-based nuclear pyrometry for the investigation of electrons generated in relativistic laser-solid interactions. We use novel activation targets consisting of several isotopes with different photo-neutron disintegration thresholds. The electrons are decelerated inside the target via bremsstrahlung processes. The high-energy bremsstrahlung induces photo-nuclear reactions. In this energy range no disturbing low energy effects are important. Via the pyrometry the Reconstruction of the absolute yield, spectral and spatial distribution of the electrons is possible. For the characterization of proton beams we present a nuclear activation imaging spectroscopy (NAIS). The diagnostic is based on proton-neutron disintegration reactions of copper stacked in consecutive layers. An autoradiography of copper layers leads to spectrally and spatially reconstruction of the beam profile.

  9. High-intensity laser application in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant’Anna

    Full Text Available ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT and high-intensity laser therapy (HILT are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  10. Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies

    Science.gov (United States)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep Babu; Dadrasnia, Ehsan; Sánchez, Miguel; Rodríguez, Sergio; González, Marta; Carpintero, Guillermo; Osiński, Marek; Lamela, Horacio

    2016-03-01

    During the last two decades, optoacoustic imaging has been developed as a novel biomedical imaging technique based on the generation of ultrasound waves by means of laser light. In this work, we investigate the optoacoustic response from graphene-based solutions by using a compact and cost-effective system based on an assembly of several 905-nm pulsed high-power diode lasers coupled to a bundle of 200-μm diameter- core optical fibers. The coupled light is conveyed into a lens system and focused on an absorber consisting of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and reduced graphene-oxide/gold-nanoparticle hybrid, respectively) diluted in ethanol and hosted in slightly scattering optical phantoms. The high absorption of these graphene-based solutions suggests their potential future use in optoacoustic applications as contrast agents.

  11. Impedance-match experiments using high intensity lasers

    International Nuclear Information System (INIS)

    Holmes, N.C.; Trainor, R.J.; Anderson, R.A.; Veeser, L.R.; Reeves, G.A.

    1981-01-01

    The results of a series of impedance-match experiments using copper-aluminum targets irradiated using the Janus Laser Facility are discussed. The results are compared to extrapolations of data obtained at lower pressures using impact techniques. The sources of errors are described and evaluated. The potential of lasers for high accuracy equation of state investigations are discussed

  12. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    International Nuclear Information System (INIS)

    Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D

    2012-01-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  13. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  14. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Zhao Jun; Ma Lianying; Yi Aiping; Liu Jingru

    2011-01-01

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  15. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  16. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NARCIS (Netherlands)

    Ocelik, V.; Janssen, Niels; Smith, Stefan; De Hosson, J. Th M.

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with

  17. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  18. Generalized Phase Contrast

    CERN Document Server

    Glückstad, Jesper

    2009-01-01

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than the restrictive assumptions of conventional Zernike phase contrast analysis and achieves an expanded range of validity beyond weak phase perturbations. The generalized analysis yields design criteria for tuning experimental parameters to achieve optimal performance in terms of accuracy, fidelity and light efficiency. Optimization can address practical issues, such as finding an optimal spatial filter for the chosen application, ...

  19. High-contrast MacNeille-PBS-based LCOS projection systems

    Science.gov (United States)

    Chen, Jianmin; Robinson, Michael G.; Sharp, Gary D.

    2005-04-01

    Contrast limits are investigated for MacNeille PBS based LCOS projection systems that use retarder stack filters (RSF). The two contributing factors are considered separately; namely the color management system and the panel port. To enhance performance of the former, skew ray compensated RSFs are introduced. For the latter, a general methodology is presented to optimize contrast by compensating the LCOS panel. It is shown that the orientation of the LCOS panel and compensator, relative to the MacNeille PBS, is critical. The significant impact of AR coating performance on system contrast is also revealed. A high contrast architecture will be presented by way of example.

  20. Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser

    Science.gov (United States)

    Sakadić, Sava; Demirbas, Umit; Mempel, Thorsten R.; Moore, Anna; Ruvinskaya, Svetlana; Boas, David A.; Sennaroglu, Alphan; Kartner, Franz X.; Fujimoto, James G.

    2009-01-01

    Multi-photon microscopy (MPM) is a powerful tool for biomedical imaging, enabling molecular contrast and integrated structural and functional imaging on the cellular and subcellular level. However, the cost and complexity of femtosecond laser sources that are required in MPM are significant hurdles to widespread adoption of this important imaging modality. In this work, we describe femtosecond diode pumped Cr:LiCAF laser technology as a low cost alternative to femtosecond Ti:Sapphire lasers for MPM. Using single mode pump diodes which cost only $150 each, a diode pumped Cr:LiCAF laser generates ~70-fs duration, 1.8-nJ pulses at ~800 nm wavelengths, with a repetition rate of 100 MHz and average output power of 180 mW. Representative examples of MPM imaging in neuroscience, immunology, endocrinology and cancer research using Cr:LiCAF laser technology are presented. These studies demonstrate the potential of this laser source for use in a broad range of MPM applications. PMID:19065223

  1. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  2. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    Science.gov (United States)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  3. Gd-HOPO Based High Relaxivity MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ankona; Raymond, Kenneth

    2008-11-06

    Tris-bidentate HOPO-based ligands developed in our laboratory were designed to complement the coordination preferences of Gd{sup 3+}, especially its oxophilicity. The HOPO ligands provide a hexadentate coordination environment for Gd{sup 3+} in which all he donor atoms are oxygen. Because Gd{sup 3+} favors eight or nine coordination, this design provides two to three open sites for inner-sphere water molecules. These water molecules rapidly exchange with bulk solution, hence affecting the relaxation rates of bulk water olecules. The parameters affecting the efficiency of these contrast agents have been tuned to improve contrast while still maintaining a high thermodynamic stability for Gd{sup 3+} binding. The Gd- HOPO-based contrast agents surpass current commercially available agents ecause of a higher number of inner-sphere water molecules, rapid exchange of inner-sphere water molecules via an associative mechanism, and a long electronic relaxation time. The contrast enhancement provided by these agents is at least twice that of commercial contrast gents, which are based on polyaminocarboxylate ligands.

  4. New horizons for high-power lasers: applications in civil engineering

    Science.gov (United States)

    Wignarajah, Sivakumaran

    2000-01-01

    Although material processing with high power lasers has found widespread use in a variety of industries such as the automotive industry, electrical and electronics industries, aerospace industry etc., civil engineering construction is one field that has lagged behind in the use of lasers for material processing. This is in spite of the fact that a large variety of materials including ceramics, metals and plastics are used in very large quantities for civil engineering construction. The main reasons for the delay in the adopting of laser for processing construction material seem to be the high costs involved and the lack of sufficient power for processing heavy and thick materials. However, with the advent of more compact lasers with higher powers, higher efficiencies and lower photon costs, greater interest has been shown in recent years in the possible uses of high power lasers for material processing in the construction industry. The author traces some of the past work carried out both in Japan and abroad on the use of lasers in civil engineering, specially with respect to the processing of inorganic material such as concrete, natural stones, tiles and rocks. Recent developments regarding laser decontamination and laser assisted rock excavation are also introduced.

  5. Generation of highly collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Badziak, J.; Jablonski, S.; Glowacz, S.

    2006-01-01

    Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser

  6. The Beam Characteristics of High Power Diode Laser Stack

    Science.gov (United States)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  7. Everlasting Dark Printing on Alumina by Laser

    Science.gov (United States)

    Penide, J.; Quintero, F.; Arias-González, F.; Fernández, A.; del Val, J.; Comesaña, R.; Riveiro, A.; Lusquiños, F.; Pou, J.

    Marks or prints are needed in almost every material, mainly for decorative or identification purposes. Despite alumina is widely employed in many different industries, the need of printing directly on its surface is still a complex problem. In this sense, lasers have largely demonstrated their high capacities to mark almost every material including ceramics, but performing dark permanent marks on alumina is still an open challenge. In this work we present the results of a comprehensive experimental analysis on the process of marking alumina by laser. Four different laser sources were used in this study: a fiber laser (1075 nm) and three diode pumped Nd:YVO4 lasers emitting at near-infrared (1064 nm), visible (532 nm) and ultraviolet (355 nm) wavelengths, respectively. The results obtained with the four lasers were compared and physical processes involved were explained in detail. Colorimetric analyses allowed to identify the optimal parameters and conditions to produce everlasting and high contrast marks on alumina.

  8. Highly efficient solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  9. Highly-reliable laser diodes and modules for spaceborne applications

    Science.gov (United States)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  10. High-current electron accelerator for gas-laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  11. High contrast computed tomography with synchrotron radiation

    Science.gov (United States)

    Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami

    1995-02-01

    This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.

  12. Tubular depressed cladding waveguide laser realized in Yb: YAG by direct inscription of femtosecond laser

    International Nuclear Information System (INIS)

    Tang, Wenlong; Zhang, Wenfu; Liu, Xin; Liu, Shuang; Cheng, Guanghua; Stoian, Razvan

    2015-01-01

    We report on the fabrication of tubular depressed cladding waveguides in single crystalline Yb:YAG by the direct femtosecond laser writing technique. Full control over the confined light spatial distribution is demonstrated by the photoinscription of high index contrast waveguides with tubular configuration. Under optical pumping, highly efficient laser oscillation in depressed cladding waveguide at 1030 nm is demonstrated. The maximum output power obtained is 68 mW with a slope efficiency of 35% for an outcoupling transmission of 50%. A slope efficiency as high as 44% is realized when the coupling output ratio is 91% and a low lasing threshold of 70 mW is achieved with the output coupling mirror of 10%. (paper)

  13. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  14. Quantum Entanglement and High Brightness Laser Source

    Data.gov (United States)

    National Aeronautics and Space Administration — Our focus is on demonstrating high precision (sub-micron) laser ranging for Navigation using a unique high-sensitivity optical correlation receiver with both...

  15. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  16. Thermal Response to High-Power Holmium Laser Lithotripsy.

    Science.gov (United States)

    Aldoukhi, Ali H; Ghani, Khurshid R; Hall, Timothy L; Roberts, William W

    2017-12-01

    The aim of this study was to investigate "caliceal" fluid temperature changes during holmium laser activation/lithotripsy using settings up to 40 W power output with different irrigation flow rates. The experimental system consisted of a glass test tube (diameter 10 mm/length 75 mm) filled with deionized water, to mimic a calix. Real-time temperature was recorded using a thermocouple (Physitemp, NJ) positioned 5 mm from the bottom of the tube. A 200 μm laser fiber (Flexiva; Boston Scientific, MA) was introduced through the working channel of a disposable ureteroscope (LithoVue; Boston Scientific) and the laser fiber tip was positioned 15 mm above the bottom of the test tube. Deionized water irrigation (room temperature) through the working channel of the ureteroscope was delivered at flow rates of 0, 7-8, 14-15, and 38-40 mL/minute. A 120-W holmium laser (pulse 120; Lumenis, CA) was used. The following settings were explored: 0.5 J × 10 Hz, 1.0 J × 10 Hz, 0.5 J × 20 Hz, 1.0 J × 20 Hz, 0.5 J × 40 Hz, 1.0 J × 40 Hz, and 0.5 J × 80 Hz. During each experiment, the laser was activated continuously for 60 seconds. Temperature increased with increasing laser power output and decreasing irrigation flow rate. The highest temperature, 70.3°C (standard deviation 2.7), occurred with laser setting of 1.0 J × 40 Hz and no irrigation after 60 seconds of continuous laser firing. None of the tested laser settings and irrigation parameters produced temperature exceeding 51°C when activated for only 10 seconds of continuous laser firing. High-power holmium settings fired in long bursts with low irrigation flow rates can generate high fluid temperatures in a laboratory "caliceal" model. Awareness of this risk allows urologist to implement a variety of techniques (higher irrigation flow rates, intermittent laser activation, and potentially cooled irrigation fluid) to control and mitigate thermal

  17. Evaluation of microvascular endothelial function in patients with infective endocarditis using laser speckle contrast imaging and skin video-capillaroscopy: research proposal of a case control prospective study.

    Science.gov (United States)

    Barcelos, Amanda; Lamas, Cristiane; Tibiriça, Eduardo

    2017-07-28

    Infective endocarditis is a severe condition with high in-hospital and 5-year mortality. There is increasing incidence of infective endocarditis, which may be related to healthcare and changes in prophylaxis recommendations regarding oral procedures. Few studies have evaluated the microcirculation in patients with infective endocarditis, and so far, none have utilized laser-based technology or evaluated functional capillary density. The aim of the study is to evaluate the changes in the systemic microvascular bed of patients with both acute and subacute endocarditis. This is a cohort study that will include adult patients with confirmed active infective endocarditis according to the modified Duke criteria who were admitted to our center for treatment. A control group of sex- and age-matched healthy volunteers will be included. Functional capillary density, which is defined as the number of spontaneously perfused capillaries per square millimeter of skin, will be assessed by video-microscopy with an epi-illuminated fiber optic microscope. Capillary recruitment will be evaluated using post-occlusive reactive hyperemia. Microvascular flow will be evaluated in the forearm using a laser speckle contrast imaging system for the noninvasive and continuous measurement of cutaneous microvascular perfusion changes. Laser speckle contrast imaging will be used in combination with skin iontophoresis of acetylcholine, an endothelium-dependent vasodilator, or sodium nitroprusside (endothelium independent) to test microvascular reactivity. The present study will contribute to the investigation of microcirculatory changes in infective endocarditis and possibly lead to an earlier diagnosis of the condition and/or determination of its severity and complications. Trial registration ClinicalTrials.gov ID: NCT02940340.

  18. Interaction of intense femtosecond laser pulses with high-Z solids

    International Nuclear Information System (INIS)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Yoshida, Masatake; Kondo, Kenichi

    2000-01-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, ∼20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  19. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  20. Research activities in our laser R and D group (present and future)

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Kondo, Kiminori; Kiriyama, Hiromitsu; Ochi, Yoshihiro; Tanaka, Momoko; Nakai, Yoshiki; Sasao, Hajime; Tateno, Ryo; Okada, Hajime; Koike, Masato

    2010-01-01

    Our group has been newly established in this April to develop next high peak power laser systems which can be used for innovative applications. We have developed essential technologies for the upgrade of laser performances in J-KAREN and TOPAZ laser systems in order to supply these advanced laser beams for application studies such as laser acceleration, high optical field science, highly intense X-ray generation, and so on. In the development of J-KAREN laser, we achieved high contrast ratio of over 10 10 by employing OPCPA technique. While in the TOPAZ laser, 0.1 Hz operation was realized with a development of zigzag slab type glass laser which can reduce thermal distortion inside the excited laser medium. This repetition rate was increased by two orders of magnitude compared to previous rod type glass laser system. Using the TOPAZ laser, we have succeeded to generate 13.9-nm x-ray laser beam with beam divergence less than 0.5 mrad at a repetition rate of 0.1 Hz. (author)

  1. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  2. High power diode laser remelting of metals

    International Nuclear Information System (INIS)

    Chmelickova, H; Tomastik, J; Ctvrtlik, R; Supik, J; Nemecek, S; Misek, M

    2014-01-01

    This article is focused on the laser surface remelting of the steel samples with predefined overlapping of the laser spots. The goal of our experimental work was to evaluate microstructure and hardness both in overlapped zone and single pass ones for three kinds of ferrous metals with different content of carbon, cast iron, non-alloy structural steel and tool steel. High power fibre coupled diode laser Laserline LDF 3600-100 was used with robotic guided processing head equipped by the laser beam homogenizer that creates rectangular beam shape with uniform intensity distribution. Each sample was treated with identical process parameters - laser power, beam diameter, focus position, speed of motion and 40% spot overlap. Dimensions and structures of the remelted zone, zone of the partial melting, heat affected zone and base material were detected and measured by means of laser scanning and optical microscopes. Hardness progress in the vertical axis of the overlapped zone from remelted surface layer to base material was measured and compared with the hardness of the single spots. The most hardness growth was found for cast iron, the least for structural steel. Experiment results will be used to processing parameters optimization for each tested material separately.

  3. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  4. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  5. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  6. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... In this article, a review of Yb-doped CW and pulsed fibre lasers along with our study on self-pulsing dynamics in CW fibre lasers to find its role in high-power fibre laser development and the physical ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  7. Numerical simulations of novel high-power high-brightness diode laser structures

    Science.gov (United States)

    Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter

    2001-07-01

    One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.

  8. Progress in high index contrast integrated optics

    NARCIS (Netherlands)

    Baets, R.G.F.; Bienstman, P.; Bogaerts, W.; Brouckaert, J.; De Backere, P.; Dumon, P.; Roelkens, G.; Scheerlinck, S.; Smit, M.K.; Taillaert, D.; Van Campenhout, J.; Van Laere, F.; Thourhout, Van D.

    2007-01-01

    A large fraction of the recent innovation in integrated optics is enabled by the use of high index contrast structures and devices. The strong confinement achievable in such devices allows for dramatic performance benefits and downscaling. In this paper the progress in this field is reviewed.

  9. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  10. Powerful lasers for thermonuclear fusion

    International Nuclear Information System (INIS)

    Basov, N.; Krokhin, O.; Sklizkov, G.; Fedotov, S.

    1977-01-01

    The parameters are discussed of the radiation of powerful lasers (internal energy of the plasma determined by the volume, density and temperature of the plasma, duration of the heating pulse, focusing of the laser pulse energy in a small volume of matter, radiation contrast) for attaining an effective thermonuclear fusion at minimum microexplosion energy. A survey is given of the methods of shaping laser pulses with limit parameters, and the principle of the construction of powerful laser systems is described. The general diagram and parameters are given of the Delfin thermonuclear apparatus and a diagram is presented of the focusing system of high luminosity for spherical plasma heating using spherical mirrors. A diagram is presented of the vacuum chamber and of the complex diagnostic apparatus for determining the basic parameters of thermonuclear plasma in the Delfin apparatus. The prospects are indicated of the further development of thermonuclear laser apparatus with neodymium and CO 2 lasers. (B.S.)

  11. High volume fabrication of laser targets using MEMS techniques

    International Nuclear Information System (INIS)

    Spindloe, C; Tomlinson, S; Green, J; Booth, N.; Tolley, M K; Arthur, G; Hall, F; Potter, R; Kar, S; Higginbotham, A

    2016-01-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed. (paper)

  12. Cutting and drilling studies using high power visible lasers

    International Nuclear Information System (INIS)

    Kautz, D.D.; Dragon, E.P.; Werve, M.E.; Hargrove, R.S.; Warner, B.E.

    1993-01-01

    High power and radiance laser technologies developed at Lawrence Livermore National Laboratory such as copper-vapor and dye lasers show great promise for material processing tasks. Evaluation of models suggests significant increases in welding, cutting, and drilling capabilities, as well as applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper lasers currently operate at 1.8 kW output at approximately three times the diffraction limit and achieve mean time between failures of more than 1,000 hours. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratios (> 60:1) and features with micron scale (5-50 μm) sizes. The paper gives a description of the equipment; discusses cutting theory; and gives experimental results of cutting and drilling studies on Ti-6Al-4V and 304 stainless steel

  13. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    Science.gov (United States)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  14. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...... lasers emerge as the next generation of compact lasers that have the potential of replacing conventional high power laser systems in many existing applications....

  15. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    Science.gov (United States)

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  16. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    Science.gov (United States)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  17. Development of high-power dye laser chain

    Science.gov (United States)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  18. Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System.

    Science.gov (United States)

    Namgung, Bumseok; Ng, Yan Cheng; Nam, Jeonghun; Leo, Hwa Liang; Kim, Sangho

    2015-01-01

    This study examined the effect of dextran-induced RBC aggregation on the venular flow in microvasculature. We utilized the laser speckle contrast imaging (LSCI) as a wide-field imaging technique to visualize the flow distribution in venules influenced by abnormally elevated levels of RBC aggregation at a network-scale level, which was unprecedented in previous studies. RBC aggregation in rats was induced by infusing Dextran 500. To elucidate the impact of RBC aggregation on microvascular perfusion, blood flow in the venular network of a rat cremaster muscle was analyzed with a stepwise reduction of the arterial pressure (100 → 30 mmHg). The LSCI analysis revealed a substantial decrease in the functional vascular density after the infusion of dextran. The relative decrease in flow velocity after dextran infusion was notably pronounced at low arterial pressures. Whole blood viscosity measurements implied that the reduction in venular flow with dextran infusion could be due to the elevation of medium viscosity in high shear conditions (> 45 s-1). In contrast, further augmentation to the flow reduction at low arterial pressures could be attributed to the formation of RBC aggregates (networks.

  19. The 1989 progress report: Laboratory for the Utilization of High-Intensity Laser

    International Nuclear Information System (INIS)

    Fabre, E.

    1989-01-01

    The 1989 progress report of the laboratory for the Utilization of High-Intensity Lasers of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: laser-matter interactions in fusion experiments, particles' laser acceleration, picoseconds and femtoseconds interactions, low-flux interactions, development of hydrodynamic codes, laser chocks simulation codes, x-ray lasers, generation of high pressures, implosion physics at 0.26 microns, dense plasmas, material's hardening by laser radiation. The published papers, the conferences and the Laboratory staff are listed [fr

  20. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    Science.gov (United States)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  1. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  2. High energy KrCl electric discharge laser

    Science.gov (United States)

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  3. High power CO2 lasers and their applications in nuclear industry

    International Nuclear Information System (INIS)

    Nath, A.K.

    2002-01-01

    Carbon dioxide laser is one of the most popular lasers in industry for material processing applications. It has very high power capability and high efficiency, can be operated in continuous wave (CW), modulated and pulsed modes, and has relatively low cost. Due to these characteristics high power CO 2 lasers are being used worldwide in different industries for a wide variety of materials processing operations. In nuclear industry, CO 2 laser has made its way in many applications. Some of the tasks performed by multikilowatt CO 2 laser are cutting operations necessary to remove unprocessible hardware from reactor fuel assemblies, sealing/fixing/removing radioactive contaminations onto/from concrete surfaces and surface modification of engineering components for improved surface mechanical and metallurgical characteristics. We have developed various models of CW CO 2 lasers of power up to 12 kW and a high repetitive rate TEA (Transversely Excited Atmospheric pressure) CO 2 laser of 500 W average power operating at 500 Hz repetition rates. We have carried many materials processing applications of direct relevance to DAE. Recent work includes laser welding of end plug PFBR fuel tubes, martensitic stainless steel and titanium alloy, surface cladding of turbine blades made of Ni-super alloy with stellite 694, fabrication on graded material of stainless steel and stellite, and laser scabbling, drilling and cutting of concrete which have potential application in decontamination and decommissioning of nuclear facilities. A brief overview of these indigenous developments will be presented. (author)

  4. High-power frequency-stabilized laser for laser cooling of metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Hogervorst, W.; Vassen, W.

    2005-01-01

    A high-power, frequency-stabilized laser for cooling of metastable helium atoms using the 2 S13 →3 P23 transition at 389 nm has been developed. The 389 nm light is generated by frequency doubling of a titanium:sapphire laser in an external enhancement cavity containing a lithium-triborate nonlinear

  5. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  6. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  7. Improvements in gastric diagnosis by using high density contrast media with low viscosity

    International Nuclear Information System (INIS)

    Toischer, H.P.

    1983-01-01

    In a retrospective clinical study, 150 unselected double contrast examinations of the stomach using conventional contrast media (100 g/100 ml barium sulphate) were compared with a similar number of examinations using a high density contrast medium of flow viscosity (250 g/100 ml barium sulphate). The high density contrast medium was distinctly better for demonstrating detail of the gastric mucosa. The uneveness of coating and instability of the older high density contrast media was observed in 15.5% of cases and, in no instance, did this make it impossible to reach a diagnosis. (orig.) [de

  8. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  9. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  10. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  11. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  12. Visible high power fiber coupled diode lasers

    Science.gov (United States)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  13. High pressure X-ray preionized TEMA-CO2 laser

    Science.gov (United States)

    Bonnie, R. J. M.; Witteman, W. J.

    1987-09-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5-20 atm, yielding a specific laser output in the order of 35 J/l.

  14. Characterization of a plasma produced using a high power laser with a gas puff target for x-ray laser experiments

    International Nuclear Information System (INIS)

    Fiedorowicz, H.; Bartnik, A.; Gac, K.; Parys, P.; Szczurek, M.; Tyl, J.

    1995-01-01

    A high temperature, high density plasma can be produced by using a nanosecond, high-power laser with a gas puff target. The gas puff target is formed by puffing a small amount of gas from a high-pressure reservoir through a nozzle into a vacuum chamber. In this paper we present the gas puff target specially designed for x-ray laser experiments. The solenoid valve with the nozzle in the form of a slit 0.3-mm wide and up to 40-mm long, allows to form an elongated gas puff suitable for the creation of an x-ray laser active medium by its perpendicular irradiation with the use of a laser beam focused to a line. Preliminary results of the experiments on the laser irradiation of the gas puff targets, produced by the new valve, show that hot plasma suitable for x-ray lasers is created

  15. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  16. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Science.gov (United States)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  17. High Power Laser Laboratory at the Institute of Plasma Physics and Laser Microfusion: equipment and preliminary research

    Directory of Open Access Journals (Sweden)

    Zaraś-Szydłowska Agnieszka

    2015-06-01

    Full Text Available The purpose of this paper is to present the newly-opened High Power Laser Laboratory (HPLL at the Institute of Plasma Physics and Laser Microfusion (IPPLM. This article describes the laser, the main laboratory accessories and the diagnostic instruments. We also present preliminary results of the first experiment on ion and X-ray generation from laser-produced plasma that has been already performed at the HPLL.

  18. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  19. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  20. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  1. High-frequency strontium vapor laser for biomedical applications

    Science.gov (United States)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  2. Regular self-microstructuring on CR39 using high UV laser dose

    International Nuclear Information System (INIS)

    Parvin, P.; Refahizadeh, M.; Mortazavi, S.Z.; Silakhori, K.; Mahdiloo, A.; Aghaii, P.

    2014-01-01

    The UV laser induced replicas in the form of self-lining microstructures are created by high dose (with high fluence) ArF laser irradiation on CR39. Microstructures as the self-induced contours, in the form of concentric circles, appear when the laser fluence is well above the ablation threshold. It leads to the regular periodic parallel lines, i.e. circles with large radii having spatial separation 100–200 nm and line width 300–600 nm, where the number of shots increases to achieve higher UV doses. The surface wettability is also investigated after laser texturing to exhibit that a notable hydrophilicity takes place at high doses.

  3. A NASA high-power space-based laser research and applications program

    Science.gov (United States)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  4. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  5. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  6. Development of high repetition rate ultra-short pulse solid state lasers pumped by laser diodes

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi; Lu, Jianren; Takaichi, Kazunori; Yagi, Hideki; Yanagitani, Takakimi; Kaminskii, Alexander; Kawanaka, Junji

    2004-01-01

    A novel technique for ceramic lasers has been developed recently. Self-energy-driven sintering of nano-and micro particles created the fully transparent Nd:YAG ceramics. The ceramic YAG demonstrated high efficiency operation (optical-to-optical conversion of 60% in end pumping) and solid-phase crystals growth and the possible scaling were investigated principally. Typical performance of ceramic YAG laser has been reviewed. The present status and future prospect of the ceramic lasers technologies were discussed. (author)

  7. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  8. Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media

    KAUST Repository

    Galvis, Juan; Efendiev, Yalchin

    2010-01-01

    In this paper, we study domain decomposition preconditioners for multiscale flows in high-contrast media. We consider flow equations governed by elliptic equations in heterogeneous media with a large contrast in the coefficients. Our main goal is to develop domain decomposition preconditioners with the condition number that is independent of the contrast when there are variations within coarse regions. This is accomplished by designing coarse-scale spaces and interpolators that represent important features of the solution within each coarse region. The important features are characterized by the connectivities of high-conductivity regions. To detect these connectivities, we introduce an eigenvalue problem that automatically detects high-conductivity regions via a large gap in the spectrum. A main observation is that this eigenvalue problem has a few small, asymptotically vanishing eigenvalues. The number of these small eigenvalues is the same as the number of connected high-conductivity regions. The coarse spaces are constructed such that they span eigenfunctions corresponding to these small eigenvalues. These spaces are used within two-level additive Schwarz preconditioners as well as overlapping methods for the Schur complement to design preconditioners. We show that the condition number of the preconditioned systems is independent of the contrast. More detailed studies are performed for the case when the high-conductivity region is connected within coarse block neighborhoods. Our numerical experiments confirm the theoretical results presented in this paper. © 2010 Society for Industrial and Applied Mathematics.

  9. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole

    Directory of Open Access Journals (Sweden)

    Wenyi Huo

    2016-01-01

    Full Text Available The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion. While, in contrast to the cylindrical hohlraums, the narrow space between the laser beams and the spherical hohlraum wall is usually commented. In this Letter, we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole (LEH can dramatically improve the laser propagation inside the spherical hohlraums. In addition, the laser beam deflection in the hohlraum is observed for the first time in the experiments. Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs. Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.

  10. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  11. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  12. High energy laser facilities at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Holmes, N.C.

    1981-06-01

    High energy laser facilities at Lawrence Livermore National Laboratory are described, with special emphasis on their use for equation of state investigations using laser-generated shockwaves. Shock wave diagnostics now in use are described. Future Laboratory facilities are also discussed

  13. High voltage switch triggered by a laser-photocathode subsystem

    Science.gov (United States)

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  14. Laser cutting of high manganese cast steel; Komangan chuko no laser setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Tokunaga, T. [University of Industrial Technology, Kanagawa (Japan); Miyazaki, T. [Chiba Institute of Technology, Chiba (Japan)

    1994-08-25

    This paper discusses applicability of CO2 laser to cut high manganese cast steel, and investigates the cutting conditions and characteristics. The tested material is made of steel scrap, ferro Mn and ferro Cr of 50 kg in total, which was deoxidized by using pure aluminum and injected into CO2 die by means of the ordinary casting method to make a circular rod with a diameter of 28 mm. The rod was given a heating and water toughening treatment in a muffle furnace maintaining N2 atmosphere. The base structure is an austenite system of Mn 12.4% by mass with hardness of MHV 220 to 230. The paper describes discussions on test pieces (with a thickness of 2 mm) fabricated under a laser beam frequency of 150 Hz, power outputs of 250, 350 and 500 W, and cutting speeds of 100, 300 and 500 mm/min. The cutting width increases as the laser power is increased, but is not governed by the cutting speed. Increased cutting speed roughens the surface of a cut face. The laser cutting has caused no change in hardness of the base material, and no processing deterioration has been recognized. As described, the laser cutting can be applied to finish-cutting if the cutting condition is selected properly. Simplification of the cutting process and improvement of working environment can be expected from the laser cutting. 14 refs., 12 figs., 2 tabs.

  15. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    International Nuclear Information System (INIS)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-01-01

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  16. High repetition rate driver circuit for modulation of injection lasers

    International Nuclear Information System (INIS)

    Dornan, B.R.; Goel, J.; Wolkstein, H.J.

    1981-01-01

    An injection laser modulator comprises a self-biased field effect transistor (FET) and an injection laser to provide a quiescent state during which lasing of the injection laser occurs in response to a high repetition rate signal of pulse coded modulation (pcm). The modulator is d.c. coupled to an input pulse source of pcm rendering it compatible with an input pulse referenced to ground and not being subject to voltage level shifting of the input pulse. The modulator circuit in its preferred and alternate embodiments provides various arrangements for high impedance input and low impedance output matching. In addition, means are provided for adjusting the bias of the FET as well as the bias of the injection laser

  17. Risks and injuries in laser and high-frequency applications

    Science.gov (United States)

    Giering, K.; Philipp, Carsten M.; Berlien, Hans-Peter

    1995-01-01

    An analysis of injuries and risks using high frequency (HF) and lasers in medicine based on a literature search with MEDLINE was performed. The cases reported in the literature were classified according to the following criteria: (1) Avoidable in an optimal operational procedure. These kind of injuries are caused by a chain of unfortunate incidents. They are in principle avoidable by the 'right action at the right time' which presupposes an appropriate training of the operating team, selection of the optimal parameters for procedure and consideration of all safety instructions. (2) Avoidable, caused by malfunction of the equipment and/or accessories. The injuries classified into this group are avoidable if all safety regulations were fulfilled. This includes a pre-operational check-up and the use of medical lasers and high frequency devices only which meet the international safety standards. (3) Avoidable, caused by misuse/mistake. Injuries of this group were caused by an inappropriate selection of the procedure, wrong medical indication or mistakes during application. (4) Unavoidable, fateful. These injuries can be caused by risks inherent to the type of energy used, malfunction of the equipment and/or accessories though a pre-operational check-up was done. Some risks and complications are common to high frequency and laser application. But whereas these risks can be excluded easily in laser surgery there is often a great expenditure necessary or they are not avoidable if high frequency if used. No unavoidable risks due to laser energy occur.

  18. 2 W high efficiency PbS mid-infrared surface emitting laser

    Science.gov (United States)

    Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H.

    2011-09-01

    High efficiency laser operation with output power exceeding 2 W was obtained for vertical external-cavity PbS based IV-VI compound surface emitting quantum-well structures. The laser showed external quantum efficiency as high as 16%. Generally, mid-infrared III-V or II-VI semiconductor laser operation utilizing interband electron transitions are restricted by Auger recombination and free carrier absorption. Auger recombination is much lower in the IV-VI semiconductors, and the free-carrier absorption is significantly reduced by an optically pumped laser structure including multi-step optical excitation layers.

  19. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  20. Application of laser cutting technology to high radiation environments

    International Nuclear Information System (INIS)

    Pauley, K.A.; Mitchell, M.R.; Saget, S.N.

    1996-01-01

    A 2 kW Nd:YAG laser system manufactured by the Lumonics Corporation will be used to cut various metals during the fall of 1996 as part of a United States Department of Energy (DOE)-funded technology demonstration at the Hanford Site. The laser cutting demonstration will focus on an evaluation of two issues as the technology applies to the decontamination and decommissioning (D ampersand D) of aging nuclear facilities. An assessment will be made as to the ability of laser end effectors to be operated using electromechanical remote manipulators and the ability of both end effector and fiber optics to withstand the damage created by a high radiation field. The laser cutting demonstration will be conducted in two phases. The first phase will be a non-radioactive test to ensure the ability of hot cell remote manipulators to use the laser end effector to successfully cut the types of materials and geometries found in the hot cell. The second phase will introduce the laser end effector and the associated fiber optic cable into the hot cell radiation environment. The testing in the hot cell will investigate the degradation of the optical portions of the end effector and transmission cable in the high radiation field. The objective of the demonstration is to assess the cutting efficiency and life limitations of a laser cutting system for radioactive D ampersand D operations. A successful demonstration will, therefore, allow the laser cutting technology to be integrated into the baseline planning for the D ampersand D of DOE facilities throughout the nation

  1. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    Science.gov (United States)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  2. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    Science.gov (United States)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  3. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  4. Propagation Characteristics of High-Power Vortex Laguerre-Gaussian Laser Beams in Plasma

    Directory of Open Access Journals (Sweden)

    Zhili Lin

    2018-04-01

    Full Text Available The propagation characteristics of high-power laser beams in plasma is an important research topic and has many potential applications in fields such as laser machining, laser-driven accelerators and laser-driven inertial confined fusion. The dynamic evolution of high-power Laguerre-Gaussian (LG beams in plasma is numerically investigated by using the finite-difference time-domain (FDTD method based on the nonlinear Drude model, with both plasma frequency and collision frequency modulated by the light intensity of laser beam. The numerical algorithms and implementation techniques of FDTD method are presented for numerically simulating the nonlinear permittivity model of plasma and generating the LG beams with predefined parameters. The simulation results show that the plasma has different field modulation effects on the two exemplified LG beams with different cross-sectional patterns. The self-focusing and stochastic absorption phenomena of high-power laser beam in plasma are also demonstrated. This research also provides a new means for the field modulation of laser beams by plasma.

  5. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  6. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  7. Microstructural evolution and control in laser material processing

    International Nuclear Information System (INIS)

    Kaul, R.; Nath, A.K.

    2005-01-01

    Laser processing, because of its characteristic features, often gives rise to unique microstructure and properties not obtained with other conventional processes. We present various diverse laser processing case studies involving control of microstructure through judicious selection of processing parameters carried out with indigenously developed high power CO 2 lasers. The first study describes microstructural control during end plug laser welding of PFBR fuel pin, involving crack pone alloy D9 tube and type 316 M stainless steel (SS) plug, through preferential displacement of focused laser beam. Crater and associated cracks were eliminated by suitable laser power ramping. Another case study describes how low heat input characteristics of laser cladding process has been exploited for suppressing dilution in 'Colomony 6' deposits on austenitic SS. The results are in sharp contrast to extensive dilution noticed in Colmony 6 hard faced deposits made by GTAW. A novel laser surface melting (LSM) treatment for type 316 (N) SS weld metal has been developed to generate a sensitization-resistant microstructure which leads to enhanced resistance against intergranular corrosion (IGC). IGC resistance of laser treated surface has been found to be critically dependent on laser processing parameters. Experimental observations have been analyzed with thermal simulation. We have also studied the effect of laser beam spatial intensity profile on the microstructure in LSM. We have developed laser-assisted graded hard facing of austenitic SS substrate with Stellite 6 which, in contrast to direct deposition either by laser or GTAW, produced smooth transition in chemical composition and hardness used to control grain coarsening and martensite formation in type 430 SS weldment. Laser rapid manufacturing (LRM) is emerging as a new rapid and cost effective process for low volume fabrication, esp. of expensive materials. The talk will also present microstructural characteristics of laser

  8. Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Colombant, D.G.; Karasik, M.; Pawley, C.J.; Serlin, V.; Schmitt, A.J.; Weaver, J.L.; Gardner, J.H.; Phillips, L.; Aglitskiy, Y.; Chan, Y.; Dahlburg, J.P.; Klapisch, M.

    2002-01-01

    Experimental results and simulations that study the effects of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of laser accelerated plastic targets are presented. These experiments employ a laser pulse with a low-intensity foot that rises into a high-intensity main pulse. This pulse shape simulates the generic shape needed for high-gain fusion implosions. Imprint of laser nonuniformity during start up of the low intensity foot is a well-known seed for hydrodynamic instability. Large reductions are observed in hydrodynamic instability seeded by laser imprint when certain minimum thickness gold or palladium layers are applied to the laser-illuminated surface of the targets. The experiment indicates that the reduction in imprint is at least as large as that obtained by a 6 times improvement in the laser uniformity. Simulations supported by experiments are presented showing that during the low intensity foot the laser light can be nearly completely absorbed by the high-Z layer. X rays originating from the high-Z layer heat the underlying lower-Z plastic target material and cause large buffering plasma to form between the layer and the accelerated target. This long-scale plasma apparently isolates the target from laser nonuniformity and accounts for the observed large reduction in laser imprint. With onset of the higher intensity main pulse, the high-Z layer expands and the laser light is transmitted. This technique will be useful in reducing laser imprint in pellet implosions and thereby allow the design of more robust targets for high-gain laser fusion

  9. High brightness diode lasers controlled by volume Bragg gratings

    Science.gov (United States)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  10. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  11. High-power laser delocalization in plasmas leading to long-range beam merging

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsutsumi, M; Marques, J R; Antici, P; Bourgeois, N; Romagnani, L; Audebert, P; Fuchs, J [UPMC, CEA, CNRS, LULI, Ecole Polytech, F-91128 Palaiseau (France); Nakatsutsumi, M; Kodama, R [Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871 (Japan); Antici, P [Univ Roma La Sapienza, Dipartimento SBAI, I-00161 Rome (Italy); Feugeas, J L; Nicolai, P [Univ Bordeaux 1, CNRS, CEA, Ctr Lasers Intenses and Applicat, F-33405 Talence (France); Lin, T [Fox Chase Canc Ctr, Philadelphia, PA 19111 (United States)

    2010-07-01

    Attraction and fusion between co-propagating light beams, mutually coherent or not, can take place in nonlinear media as a result of the beam power modifying the refractive index of the medium. In the context of high-power light beams, induced modifications of the beam patterns could potentially impact many topics, including long-range laser propagation, the study of astrophysical colliding blast waves and inertial confinement fusion. Here, through experiments and simulations, we show that in a fully ionized plasma, which is a nonlinear medium, beam merging can take place for high-power and mutually incoherent beams that are initially separated by several beam diameters. This is in contrast to the usual assumption that this type of interaction is limited to beams separated by only one beam diameter. This effect, which is orders of magnitude more significant than Kerr-like nonlinearity in gases, demonstrates the importance of potential cross-talk amongst multiple beams in plasma. (authors)

  12. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  13. Development of high-power diode lasers with beam parameter product below 2 mm×mrad within the BRIDLE project

    Science.gov (United States)

    Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.

    2015-03-01

    High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (BPP 50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.

  14. An Evaluation of the Cutting Potential of Different Types of High Power Lasers

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2006-01-01

    Laser cutting is a widespread industrial process. The boundaries for the performance of the lasers in terms of cutting capabilities is steadily moving towards higher cutting rates and thicker section cutting. In this paper the potential of different high power laser sources in cutting is evaluated...... based upon the historical development, the available cutting mechanisms understanding and the critical parameters involved in high power laser cutting. From the theoretical point of view, the new laser sources, the Disc-laser and the Fibre laser possess a potential of changing dramatically the limits...... for cutting performance. These theoretical considerations are evaluated against available cutting data....

  15. High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)

    Science.gov (United States)

    Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.

    2005-04-01

    Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are

  16. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  17. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  18. Toward high brightness, multi-kilowatt solid state lasers

    International Nuclear Information System (INIS)

    Zapata, L.E.; Manes, K.R.

    1990-11-01

    High average power (HAP) solid state laser output with improved beam quality has introduced new capabilities in materials processing. At the 500 W level and with a beam quality of a ''few'' times the diffraction limit, the General Electric NY slab is able to drill 5 cm of stainless steel in a few seconds. We expect that 2--3 kW of near infrared laser output in a low order spatial mode would enable metal working now unknown to industry. The HAP output of slab lasers is limited by the size of the available laser crystals and the pump power. Core free, six cm diameter NY boules have been grown on an experimental basis. High optical quality NG can be obtained up to 10 cm in diameter. We present the results of our modeling based on these crystals pumped by advanced arc-lamps or laser diode arrays. We project HAP laser outputs of 1.6 kW from an existing Vortek pumped NG oscillator and about 2 kW from diode pumped NY device. Several kW of laser output can be expected from two such slabs in a MOPA configuration before optical damage limits are reached. The three dimensional stress-optic code which we used to optimize our designs, was normalized to available experimental data obtained with the above NG slab at the 500 W level and a 40 W diode pumped NY test bed. Our calculations indicate the essential parameters for attainment of high beam quality. Cooling uniformity across the pumped faces of the slab is critical and the location of the transition between pumped and un-pumped regions towards the slab tips is very important. A flat pumping profile was found to be desirable and predicted one wave of distortion which should be correctable over about 75% of the aperture however, an even better wavefront was predicted over 90% of the aperture when the regions near the edges of the slab were slightly over-pumped relative to the central regions and the regions near to the ends were tapered to compensate for transition effects

  19. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry; Matthews, Manyalibo; Rubenchik, Alexander; Rotter, Mark; Beach, Ray; Wu, Sheldon

    2017-01-01

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode laser power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.

  20. High-brightness electron source driven by laser

    International Nuclear Information System (INIS)

    Zhao Kui; Geng Rongli; Wang Lifang

    1996-01-01

    A DC high-brightness laser driven by photo emissive electron gun is being developed at Beijing University, in order to produce 50∼100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathode, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. 100 kV DC high voltage is fed to the anode through a careful designed ceramic insulator. The laser system is a mode locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelength (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is discussed

  1. High efficiency and high-energy intra-cavity beam shaping laser

    International Nuclear Information System (INIS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-01-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%. (paper)

  2. High efficiency and high-energy intra-cavity beam shaping laser

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  3. Centimeter-scale MEMS scanning mirrors for high power laser application

    Science.gov (United States)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  4. Development of high power lasers and their applications for nuclear engineering in IHI

    International Nuclear Information System (INIS)

    Kanazawa, H.; Uehara, M.; Mori, M.; Taniu, Y.; Yamaguchi, S.; Harashina, H.

    1995-01-01

    High power laser technologies developed in IHI are summarized. A discharge-excited CO laser of 3 kW and an arc lamp pumped cw YAG laser of 3 kW with a flexible optical fiber delivery have been developed for material processing use. An ablation processing using a high intensity pulse laser has also been investigated. (author)

  5. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  6. High-energy glass lasers

    International Nuclear Information System (INIS)

    Glaze, J.A.

    1975-01-01

    In order to investigate intense pulse propagation phenomena, as well as problems in laser and system design, a prototype single chain laser called CYCLOPS was constructed. This laser employs a 20-cm clear aperture disk amplifier in its final stage and produces a terawatt pulse whose brightness exceeds 10 18 watts/cm 2 -ster. The CYCLOPS system is summarized and aspects of nonlinear propagation phenomena that are currently being addressed are discussed. (MOW)

  7. High-contrast coronagraph performance in the presence of DM actuator defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-09-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfilment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  8. High-Contrast Coronagraph Performance in the Presence of DM Actuator Defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-01-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfillment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  9. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  10. High-contrast x-ray microtomography in dental research

    Science.gov (United States)

    Davis, Graham; Mills, David

    2017-09-01

    X-ray microtomography (XMT) is a well-established technique in dental research. The technique has been used extensively to explore the complex morphology of the root canal system, and to qualitatively and quantitatively evaluate root canal instrumentation and filling efficacy in extracted teeth; enabling different techniques to be compared. Densitometric information can be used to identify and map demineralized tissue resulting from tooth decay (caries) and, in extracted teeth, the method can be used to evaluate different methods of excavation. More recently, high contrast XMT is being used to investigate the relationship between external insults to teeth and the pulpal reaction. When such insults occur, fluid may flow through dentinal tubules as a result of cracking or porosity in enamel. Over time, there is an increase in mineralization along the paths of the tubules from the pulp to the damaged region in enamel and this can be visualized using high contrast XMT. The scanner used for this employs time-delay integration to minimize the effects of detector inhomogeneity in order to greatly increase the upper limit on signal-to-noise ratio that can be achieved with long exposure times. When enamel cracks are present in extracted teeth, the presence of these pathways indicates that the cracking occurred prior to extraction. At high contrast, growth lines are occasionally seen in deciduous teeth which may have resulted from periods of maternal illness. Various other anomalies in mineralization resulting from trauma or genetic abnormalities can also be investigated using this technique.

  11. Fractional laser skin resurfacing.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  12. High speed surface cleaning by a high repetition rated TEA-CO2 laser

    International Nuclear Information System (INIS)

    Tsunemi, Akira; Hirai, Ryo; Hagiwara, Kouji; Nagasaka, Keigo; Tashiro, Hideo

    1994-01-01

    We demonstrated the feasibility of high speed cleaning of solid surfaces by the laser ablation technique using a TEA-CO 2 laser. The laser pulses with the repetition rate of 1 kHz were applied to paint, rust, moss and dirt attached on the surfaces. The attachments were effectively removed without the damage of bulk surfaces by the irradiation of line-focused sequential pulses with an energy of 300 mJ/pulse. A cleaning rate reached to 17 m 2 /hour for the case of paint removal from iron surfaces. (author)

  13. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  14. Fundamentals and industrial applications of high power laser beam cladding

    International Nuclear Information System (INIS)

    Bruck, G.J.

    1988-01-01

    Laser beam cladding has been refined such that clad characteristics are precisely determined through routine process control. This paper reviews the state of the art of laser cladding optical equipment, as well as the fundamental process/clad relationships that have been developed for high power processing. Major categories of industrial laser cladding are described with examples chose to highlight particular process attributes

  15. Low-confinement high-power semiconductor lasers

    NARCIS (Netherlands)

    Buda, M.

    1999-01-01

    This thesis presents the results of studies related to optimisation of high power semiconductor laser diodes using the low confinement concept. This implies a different approach in designing the transversal layer structure before growth and in processing the wafer after growth, for providing the

  16. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  17. Polarization-Independent Wideband High-Index-Contrast Grating Mirror

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Park, Gyeong Cheol; Malureanu, Radu

    2015-01-01

    Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ∼192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show...

  18. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  19. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  20. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  1. Method of high precision interval measurement in pulse laser ranging system

    Science.gov (United States)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  2. The optimal use of contrast agents at high field MRI

    International Nuclear Information System (INIS)

    Trattnig, Siegfried; Pinker, Kathia; Ba-Ssalamah, Ahmed; Noebauer-Huhmann, Iris-Melanie

    2006-01-01

    The intravenous administration of a standard dose of conventional gadolinium-based contrast agents produces higher contrast between the tumor and normal brain at 3.0 Tesla (T) than at 1.5 T, which allows reducing the dose to half of the standard one to produce similar contrast at 3.0 T compared to 1.5 T. The assessment of cumulative triple-dose 3.0 T images obtained the best results in the detection of brain metastases compared to other sequences. The contrast agent dose for dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging at 3.0 T can be reduced to 0.1 mmol compared to 0.2 mmol at 1.5 T due to the increased susceptibility effects at higher magnetic field strengths. Contrast agent application makes susceptibility-weighted imaging (SWI) at 3.0 T clinically attractive, with an increase in spatial resolution within the same scan time. Whereas a double dose of conventional gadolinium-based contrast agents was optimal in SWI with respect to sensitivity and image quality, a standard dose of gadobenate dimeglumine, which has a two-fold higher T1-relaxivity in blood, produced the same effect. For MR-arthrography, optimized concentrations of gadolinium-based contrast agents are similar at 3.0 and 1.5 T. In summary, high field MRI requires the optimization of the contrast agent dose in different clinical applications. (orig.)

  3. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  4. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  5. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  6. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  7. Method and apparatus for obtaining very high energy laser pulses: photon cyclotron

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Goldstein, R.

    1975-01-01

    Apparatus is arranged in selected embodiments of several combinations, each sometimes being referred to as a system, and each embodiment establishing a large enclosable chamber containing a laser energy reacting medium through which a laser beam is created. When laser energy pulses of such a beam are created, they are guided in a continuous path using reflectors in this chamber, and they receive supplemental energy units from multiple spaced laser pumps. Each laser pump is effective in respect to its own inverted population laser energy source, and each laser pump is triggered by an overall excitation control system. The laser beam is thereby supplemented to a higher level at each laser pump. Yet at all times the laser energy reacting medium remains at a level below super radiance. A working unit or working pulse of a laser beam is allowed to escape from each large enclosable chamber through an escape exit only when a preselected very high energy level is reached. The escape exit of this chamber may be designed to be destroyed by the exiting high level pulse energy of the laser beam. Also an escape exit may be opened upon the operation of a piezoelectric decoupler. (U.S.)

  8. A highly efficient Ho:YAG laser in-band pumped by a linewidth-narrowed Tm:YLF laser

    International Nuclear Information System (INIS)

    Duan, X M; Yang, C H; Yao, B Q; Wang, Y Z; Zhang, W S

    2013-01-01

    A highly efficient Tm:YLF-Ho:YAG laser system is presented in this paper. To obtain the narrow linewidth 1908 nm laser output, a volume Bragg grating combined with a Fabry–Perot (FP) etalon were used as wavelength selection devices. The maximum output power of 28.7 W was obtained with a slope efficiency of 42.3% in the Tm:YLF laser. An output wavelength of 1908.1 nm and FWHM linewidth of 60 pm were achieved at the maximum output level. Using this Tm:YLF laser as the pump source, high efficiency continuous wave and Q-switched operation of a Ho:YAG laser was demonstrated. Operating at continuous wave mode, up to 73.3% slope efficiency and 67.4% optical conversion efficiency were obtained in the Ho:YAG laser, corresponding to a diode-to-Ho optical conversion efficiency of 23.7%. For the Q-switched mode, when the incident Tm power was 27.3 W, the maximum single pulse energy of 3.4 mJ, pulse width of 15 ns and peak power of 229.3 kW were achieved at the pulse repetition rate of 5 kHz. The maximum average power of 18.3 W, pulse width of 18 ns and peak power of 103.6 kW were obtained at the pulse repetition rate of 10 kHz. (paper)

  9. High-power fiber laser cutting parameter optimization for nuclear Decommissioning

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Lopez

    2017-06-01

    Full Text Available For more than 10 years, the laser process has been studied for dismantling work; however, relatively few research works have addressed the effect of high-power fiber laser cutting for thick sections. Since in the nuclear sector, a significant quantity of thick material is required to be cut, this study aims to improve the reliability of laser cutting for such work and indicates guidelines to optimize the cutting procedure, in particular, nozzle combinations (standoff distance and focus position, to minimize waste material. The results obtained show the performance levels that can be reached with 10 kW fiber lasers, using which it is possible to obtain narrower kerfs than those found in published results obtained with other lasers. Nonetheless, fiber lasers appear to show the same effects as those of CO2 and ND:YAG lasers. Thus, the main factor that affects the kerf width is the focal position, which means that minimum laser spot diameters are advised for smaller kerf widths.

  10. High-power fiber laser cutting parameter optimization for nuclear decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ana Beatriz; Assuncao, Eurico; Quintino, Luisa [IDMEC, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa (Portugal); Khan, Ali; Blackbun, Jonathan [TWI Ltd., Cambridge (United States)

    2017-06-15

    For more than 10 years, the laser process has been studied for dismantling work; however, relatively few research works have addressed the effect of high-power fiber laser cutting for thick sections. Since in the nuclear sector, a significant quantity of thick material is required to be cut, this study aims to improve the reliability of laser cutting for such work and indicates guidelines to optimize the cutting procedure, in particular, nozzle combinations (standoff distance and focus position), to minimize waste material. The results obtained show the performance levels that can be reached with 10 kW fiber lasers, using which it is possible to obtain narrower kerfs than those found in published results obtained with other lasers. Nonetheless, fiber lasers appear to show the same effects as those of CO{sub 2} and ND:YAG lasers. Thus, the main factor that affects the kerf width is the focal position, which means that minimum laser spot diameters are advised for smaller kerf widths.

  11. An investigation of laser processing of silica surfaces

    International Nuclear Information System (INIS)

    Weber, A.J.; Stewart, A.F.; Exarhos, G.J.; Stowell, W.K.

    1988-01-01

    An initial set of experiments has been conducted to determine the practicality of laser processing of optical substrates. In contrast to earlier work, a high average power CO 2 laser was used to flood load the entire surface of each test sample. Fused silica substrates were laser polished on both surfaces at power densities ranging from 150 to 350 W/cm 2 . During each test sequence sample surface temperatures were recorded using a thermal imaging system. Extensive pre- and post-test characterization revealed that surface roughness and scattering of bare silica surfaces were reduced while internal stress increased. Laser damage thresholds were found to increase only for certain conditions. Changes in the microstructure were observed. These preliminary experiments demonstrate that laser processing can dramatically improve the optical properties of fused silica substrates

  12. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    Science.gov (United States)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  13. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    Science.gov (United States)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  14. High-average-power diode-pumped Yb: YAG lasers

    International Nuclear Information System (INIS)

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  15. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  16. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  17. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Science.gov (United States)

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  18. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    Science.gov (United States)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  19. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  20. Multi-focus beam shaping of high power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  1. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    Science.gov (United States)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  2. High-speed microjet generation using laser-induced vapor bubbles

    Science.gov (United States)

    Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2011-11-01

    The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.

  3. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  4. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  5. The interactions of laser beam with high Z solid target

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-01-01

    The 1-D non-LTE radiative hydrodynamic laser irradiated code JB-19 is used to calculate the laser-produced plasma conditions of high z gold disk. Following physical processes are considered: bremsstrahlung effect, radiative ionization and recombination, collisional ionization by electrons and three-body recombination, collisional excitation and de-excitation by electrons, radiative line emission and absorption and Compton scattering. A gaussian laser pulse with wavelength 1.06 μm, FWHM 600 ps and peak intensity 3 x 10 14 W/cm 2 is used to irradiate 20 μm thick gold disk. The computational results for laser-produced plasma conditions and the absorption efficiency and laser-x-rays conversion efficiency for gold disk are shown

  6. High-Voltage Power Supply System for Laser Isotope Separation

    Energy Technology Data Exchange (ETDEWEB)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-06-26

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

  7. High-Voltage Power Supply System for Laser Isotope Separation

    International Nuclear Information System (INIS)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-01-01

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  8. Iodine laser of high efficiency and fast repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Hohla, K; Witte, K J

    1976-07-01

    The scaling laws of an iodine laser of high efficiency and fast repetition rate are reported. The laser is pumped with a new kind of low pressure Hg-UV-lamps which convert 32% of the electrical input in UV-light in the absorption band of the iodine laser and which can be fired up to 100 Hz. Details of a 10 kJ/1 nsec system as dimensions, energy density, repetition rate, flow velocity, gas composition and gas pressure and the overall efficiency are given which is expected to be about 2%.

  9. High-quality laser-accelerated ion beams for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); American University of Sharjah (United Arab Emirates)

    2009-07-01

    Cancer radiation therapy requires accelerated ion beams of high energy sharpness and a narrow spatial profile. As shown recently, linearly and radially polarized, tightly focused and thus extremely strong laser beams should permit the direct acceleration of light atomic nuclei up to energies that may offer the potentiality for medical applications. Radially polarized beams have better emittance than their linearly polarized counterparts. We put forward the direct laser acceleration of ions, once the refocusing of ion beams by external fields is solved or radially polarized laser pulses of sufficient power can be generated.

  10. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    Science.gov (United States)

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  11. Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers

    Science.gov (United States)

    2017-08-09

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0043 TR-2017-0043 CONTROLLING STIMULATED BRILLOUIN/RAMAN SCATTERING IN HIGH POWER FIBER LASERS Cody Mart Ben...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research addressed suppression of stimulated Brillouin/Raman scattering in high power fiber lasers

  12. Distance Support In-Service Engineering for the High Energy Laser

    Science.gov (United States)

    2015-03-01

    FEL only) o Isoplanatic angle (if available) o Fried coherence length o Object distance o Dwell time o Laser spot size While many of the items...system and the HEL system. Acquisition Sensor Laser Subsystem Beam Shaping Sensor Suile . Range Finder -. Coarse Tracker . Fine Tracker Optical...distribution is unlimited DISTANCE SUPPORT IN-SERVICE ENGINEERING FOR THE HIGH ENERGY LASER by Team Raising HEL from a Distance Cohort 311-133O March

  13. High power excimer laser

    International Nuclear Information System (INIS)

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  14. High power diode lasers emitting from 639 nm to 690 nm

    Science.gov (United States)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  15. Use of high-power diode lasers for hardening and thermal conduction welding of metals

    Science.gov (United States)

    Klocke, Fritz; Demmer, Axel; Zaboklicki, A.

    1997-08-01

    CO2 and Nd:YAG high power lasers have become established as machining tools in industrial manufacturing over the last few years. The most important advantages compared to conventional processing techniques lie in the absence of forces introduced by the laser into the workpiece and in the simple arid highly accurate control in terms ofpositioning and timing making the laser a universally applicable, wear-free and extremely flexible tool /1,2/. The laser can be utilised costeffectively in numerous manufacturing processes but there are also further applications for the laser which produce excellent results from a technical point of view, but are not justified in terms of cost. The extensive use of lasers, particularly in small companies and workshops, is hindered by two main reasons: the complexity and size ofthe laser source and plant and the high investment costs /3/. A new generation of lasers, the high power diode lasers (HDL), combines high performance with a compact design, making the laser a cheap and easy to use tool with many applications /3,4,5,6/. In the diode laser, the laser beam is generated by a microelectronic diode which transforms electrical energy directly into laser energy. Diode lasers with low power outputs have, for some time, been making their mark in our everyday lives: they are used in CD players, laser printers and scanners at cash tills. Modern telecommunications would be impossible without these lasers which enable information to be transmitted in the form oflight impulses through optical fibres. They can also be found in compact precision measurement instrumentation - range fmders, interferometers and pollutant analysis devices /3,6/. In the field of material processing, the first applications ofthe laser, such as for soldering, inscribing, surface hardening and plastic or heat conduction welding, will exceed the limits ofthe relatively low performance output currently available. The diode laser has a shorter wavelength than the CO2 and

  16. Research on high performance mirrors for free electron lasers

    International Nuclear Information System (INIS)

    Kitatani, Fumito

    1996-01-01

    For the stable functioning of free electron laser, high performance optical elements are required because of its characteristics. In particular in short wavelength free electron laser, since its gain is low, the optical elements having very high reflectivity are required. Also in free electron laser, since high energy noise light exists, the optical elements must have high optical breaking strength. At present in Power Reactor and Nuclear Fuel Development Corporation, the research for heightening the performance of dielectric multi-layer film elements for short wavelength is carried out. For manufacturing such high performance elements, it is necessary to develop the new materials for vapor deposition, new vapor deposition process, and the techniques of accurate substrate polishing and inspection. As the material that satisfies the requirements, there is diamond-like carbon (DLC) film, of which the properties are explained. As for the manufacture of the DLC films for short wavelength optics, the test equipment for forming the DLC films, the test of forming the DLC films, the change of the film quality due to gas conditions, discharge conditions and substrate materials, and the measurement of the optical breaking strength are reported. (K.I.)

  17. Droplet printing through bubble contact in the laser forward transfer of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.

  18. Droplet printing through bubble contact in the laser forward transfer of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Fernandez-Pradas, J.M., E-mail: jmfernandez@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Morenza, J.L.; Serra, P. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-01-15

    The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.

  19. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  20. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  1. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  2. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    Science.gov (United States)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  3. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  4. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO 2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  5. Annual progress and future plans of laser R and D group

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Kiriyama, Hiromitsu; Ochi, Yoshihiro; Tanaka, Momoko; Nakai, Yoshiki; Sasao, Hajime; Tateno, Ryo; Okada, Hajime; Kosuge, Atsushi; Tsubouchi, Masaaki

    2010-01-01

    Main subjects of our group in this middle term program are upgrade of J-KAREN and TOPAZ laser systems. The J-KAREN achieves the potential for generating a peak power of 500 TW, and exceeds a contrast ratio of 10E10. The TOPAZ achieves pulse power of 15 J at a repetition rate of 0.1 Hz. We also started a development of laser system named QUADRA (Quality Ultra ADvanced RAdiation Source) in C-Phost program. The QUADRA system aims a high averaged short pulse laser pumped by high power LD at kHz-class repetition rate. This development is essential for the elemental technology for the other new laser systems in the next 5-year program of JAEA. (author)

  6. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S A; Marone, F; Hintermueller, C; Stampanoni, M [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bensadoun, J-C; Aebischer, P, E-mail: samuel.mcdonald@psi.c [EPFL, School of Life Sciences, Station 15, 1015 Lausanne (Switzerland)

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  7. Features of laser spectroscopy and diagnostics of plasma ions in high magnetic fields

    International Nuclear Information System (INIS)

    Semerok, A F; Fomichev, S V

    2003-01-01

    Laser induced fluorescence and laser absorption spectroscopies of plasma ions in high magnetic fields have been investigated. Both the high degree of Zeeman splitting of the resonant transitions and the ion rotational movement drastically change the properties of the resonance interaction of the continuous wave laser radiation with ions in highly magnetized plasma. Numerical solution of the density matrix equation for a dissipative two-level system with time-dependent detuning from resonance was used to analyse this interaction. A theoretical simulation was performed and compared with the experimental results obtained from the laser spectroscopy diagnostics of barium plasma ions in high magnetic fields in the several tesla range

  8. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  9. The V-SHARK high contrast imager at LBT

    Science.gov (United States)

    Pedichini, F.; Ambrosino, F.; Centrone, M.; Farinato, J.; Li Causi, G.; Pinna, E.; Puglisi, A.; Stangalini, M.; Testa, V.

    2016-08-01

    In the framework of the SHARK project the visible channel is a novel instrument synergic to the NIR channel and exploiting the performances of the LBT XAO at visible wavelengths. The status of the project is presented together with the design study of this innovative instrument optimized for high contrast imaging by means of high frame rate. Its expected results will be presented comparing the simulations with the real data of the "Forerunner" experiment taken at 630nm.

  10. 2.097μ Cth:YAG flashlamp pumped high energy high efficiency laser operation (patent pending)

    Science.gov (United States)

    Bar-Joseph, Dan

    2018-02-01

    Flashlamp pumped Cth:YAG lasers are mainly used in medical applications (urology). The main laser transition is at 2.13μ and is called a quasi-three level having an emission cross-section of 7x10-21 cm2 and a ground state absorption of approximately 5%/cm. Because of the relatively low absorption, combined with a modest emission cross-section, the laser requires high reflectivity output coupling, and therefore high intra-cavity energy density which limits the output to approximately 4J/pulse for reliable operation. This paper will describe a method of efficiently generating high output energy at low intra-cavity energy density by using an alternative 2.097μ transition having an emission cross-section of 5x10-21 cm2 and a ground level absorption of approximately 14%/cm.

  11. High resolution laser patterning of ITO on PET substrate

    Science.gov (United States)

    Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.

    2013-03-01

    Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.

  12. A high-repetition rate LWFA for studies of laser propagation and electron generation

    Science.gov (United States)

    He, Zhaohan; Easter, James; Hou, Bixue; Krushelnick, Karl; Nees, John; Thomas, Alec

    2010-11-01

    Advances in ultrafast optics today have enabled laser systems to deliver ever shorter and more intense pulses. When focused, such laser pulses can easily exceed relativistic intensities where the wakefield created by the strong laser electric field can be used to accelerate electrons. Laser wakefield acceleration of electrons holds promise for future compact electron accelerators or drivers of other radiation sources in many scientific, medical and engineering applications. We present experimental studies of laser wakefield acceleration using the λ-cubed laser at the University of Michigan -- a table-top high-power laser system operating at 500 Hz repetition rate. The high repetition rate allows statistical studies of laser propagation and electron acceleration which are not accessible with typical sub-0.1 Hz repetition rate systems. In addition, we compare the experiments with particle-in-cell simulations using the code OSIRIS.

  13. Molecular-beam epitaxy growth of high-performance midinfrared diode lasers

    International Nuclear Information System (INIS)

    Turner, G.W.; Choi, H.K.; Calawa, D.R.

    1994-01-01

    Recent advances in the performance of GaInAsSb/AlGaAsSb quantum-well diode lasers have been directly related to improvements in the quality of the molecular-beam epitaxy (MBE)-grown epitaxial layers. These improvements have been based on careful measurement and control of lattice matching and intentional strain, changes in shutter sequencing at interfaces, and a generally better understanding of the growth of Sb-based epitaxial materials. By using this improved MBE-grown material, significantly enhanced performance has been obtained for midinfrared lasers. These lasers, which are capable of ∼2-μm emission at room temperature, presently exhibit threshold current densities of 143 A/cm 2 , continuous wave powers of 1.3 W, and diffraction-limited powers of 120 mW. Such high-performance midinfrared diode lasers are of interest for a wide variety of applications, including eye-safe laser radar, remote sensing of atmospheric contaminants and wind turbulence, laser surgery, and pumping of solid-state laser media. 12 refs., 3 figs

  14. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    Science.gov (United States)

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  15. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    Science.gov (United States)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  16. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  17. Contrast-enhanced CT with a High-Affinity Cationic Contrast Agent for Imaging ex Vivo Bovine, Intact ex Vivo Rabbit, and in Vivo Rabbit Cartilage

    OpenAIRE

    Stewart, Rachel C.; Bansal, Prashant N.; Entezari, Vahid; Lusic, Hrvoje; Nazarian, Rosalynn M.; Snyder, Brian D.; Grinstaff, Mark W.

    2013-01-01

    The high affinity of a cationic iodinated contrast agent for cartilage provides better tissue visualization, easier segmentation, higher contrast-to-noise ratios, and longer usable imaging windows and requires a lower dose of injected contrast agent compared with an anionic contrast agent.

  18. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  19. Novel High Power Type-I Quantum Well Cascade Diode Lasers

    Science.gov (United States)

    2017-08-30

    Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved

  20. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings.

    Science.gov (United States)

    Palmer, Guido; Gross, Simon; Fuerbach, Alexander; Lancaster, David G; Withford, Michael J

    2013-07-15

    We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).