WorldWideScience

Sample records for high concentration range

  1. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  2. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  3. Lessons learned from a review of post-accident sampling systems, high range effluent monitors and high concentration particulate iodine samplers

    International Nuclear Information System (INIS)

    Hull, A.P.; Knox, W.H.; White, J.R.

    1987-01-01

    Post-accident sampling systems (PASS), high range gaseous effluent monitors and sampling systems for particulates and iodine in high concentrations have been reviewed at twenty-one licensee sites in Region I of the US Nuclear Regulatory Commission which includes fifteen BWR's and fourteen PWR's. Although most of the installed PASS met the criteria, the highest operational readiness was found in on-line systems that were also used for routine sampling and analysis. The detectors used in the gaseous effluent monitors included external ion chambers, GM tubes, organic scintillators and Cd-Te solid state crystals. Although all were found acceptable, each had its own inherent limitations in the conversion of detector output to the time varying concentration of a post-accident mixture of noble gases. None of the installed particulate and iodine samplers fully met all of the criteria. Their principal limitations included a lack of documentation showing that they could obtain a representative sample and that many of them would collect of an excessive amount of activity at the design criteria. 10 refs., 4 figs., 5 tabs

  4. Normal lactate concentration range in the neonatal brain.

    Science.gov (United States)

    Tomiyasu, Moyoko; Aida, Noriko; Shibasaki, Jun; Tachibana, Yasuhiko; Endo, Mamiko; Nozawa, Kumiko; Shimizu, Eiji; Tsuji, Hiroshi; Obata, Takayuki

    2016-11-01

    Lactate peaks are occasionally observed during in vivo magnetic resonance spectroscopy (MRS) scans of the neonatal brain, even in healthy patients. The purpose of this study was to investigate the normal range of neonatal brain lactate concentration, as a definitive normal range would be clinically valuable. Using a clinical 3T scanner (echo/repetition times, 30/5000ms), single-voxel MRS data were obtained from the basal ganglia (BG) and centrum semiovale (CS) in 48 healthy neonates (postconceptional age (PCA), 30-43weeks), nine infants (age, 1-12months old), and 20 children (age, 4-15years). Lactate concentrations were calculated using an MRS signal quantification program, LCModel. Correlations between regional lactate concentration and PCA (neonates), or age (all subjects) were investigated. Absolute lactate concentrations of the BG and CS were as follows: neonates, 0.77mM (0-2.02) [median (range)] and 0.77 (0-1.42), respectively; infants, 0.38 (0-0.79) and 0.49 (0.17-1.17); and children, 0.17 (0-0.76) and 0.22 (0-0.80). Overall, subjects' lactate concentrations decreased significantly with age (Spearman: BG, n=61, ρ=-0.38, p=0.003; CS, n=68, ρ=-0.57, p<0.001). However, during the neonatal period no correlations were detected between lactate concentration in either region and PCA. We determined normal ranges of neonatal lactate concentration, which may prove useful for diagnostic purposes. Further studies regarding changes in brain lactate concentration during development would help clarify the reasons for higher concentrations observed during the neonatal period, and contribute to improvements in diagnoses. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  6. Electrical resistivity of Y(Fe1-x Alx)2 in the spin glass concentration range

    International Nuclear Information System (INIS)

    Cunha, S.F. da; Souza, G.P. de; Takeushi, A.Y.

    1986-01-01

    The temperature dependence of the electrical resistivity of the Y(Fe 1-x Al x ) 2 system (0.125 ≤ x ≤ 0.25) was measured. This system exhibits a minimum at low temperatures for the concentration range where the phase diagram presents a spin glass-ferromagnetic transition. A negative temperature coefficient is observed at high temperatures for x > 0.18 and was attributed to the high value of the electrical resistivity in this concentration range. (Author) [pt

  7. Development of a wide-range tritium-concentration detector

    International Nuclear Information System (INIS)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-01-01

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10 4 Bq/ml - 5*10 8 Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10 -14 A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R 2 = 0.998

  8. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  9. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  10. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.

    2015-05-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.

  11. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity - Critical re-assessment and application to indoor 222Rn concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.

    2015-04-01

    The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for

  12. Determination of thorium in the range of low concentrations

    International Nuclear Information System (INIS)

    Hill, R.; Lieser, K.H.

    1992-01-01

    Methods for the determination of Th in the range of low concentrations are compiled and discussed. Application of spectrophotometry and voltammetry is investigated. Spectrophotometry is applicable down to concentrations of the order of 0.1 μg/l as long as the ratio U:Th is low. Voltammetric determination of Th is not possible in the presence of Al. (orig.)

  13. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range.

    Science.gov (United States)

    Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L

    2013-04-18

    In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).

  14. Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal

    Science.gov (United States)

    Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana

    2014-05-01

    The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling

  15. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    Science.gov (United States)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  16. Extremely high concentration of folates in premature newborns.

    Science.gov (United States)

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  17. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Yoshida, Takahiro

    2011-01-01

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 o C. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14 C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  18. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  19. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity

    International Nuclear Information System (INIS)

    Donner, R.V.; Potirakis, S.M.; Barbosa, S.M.; Matos, J.A.O.; Pereira, A.J.S.C.; Neves, L.J.M.F.

    2015-01-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. (authors)

  20. Cure of tuberculosis despite serum concentrations of antituberculosis drugs below published reference ranges.

    Science.gov (United States)

    Meloni, Monica; Corti, Natascia; Müller, Daniel; Henning, Lars; Gutteck, Ursula; von Braun, Amrei; Weber, Rainer; Fehr, Jan

    2015-01-01

    Therapeutic target serum concentrations of first-line antituberculosis drugs have not been well defined in clinical studies in tuberculosis (TB) patients. We retrospectively investigated the estimated maximum serum concentrations (eC max) of antituberculosis drugs and clinical outcome of TB patients with therapeutic drug monitoring performed between 2010-2012 at our institution, and follow-up until March 2014. The eC max was defined as the highest serum concentration during a sampling period (2, 4 and 6 hours after drug ingestion). We compared the results with published eC max values, and categorised them as either "within reference range", "low eC max", or "very low eC max".Low/very low eC max-levels were defined as follows: isoniazid 2-3/max levels were classified as "low" or "very low". The eC max was below the relevant reference range in 80% of isoniazid, 95% of rifampicin, 30% of pyrazinamide, and 30% of ethambutol measurements. All but one patient were cured of tuberculosis. Although many antituberculosis drug serum concentrations were below the widely used reference ranges, 16 of 17 patients were cured of tuberculosis. These results challenge the use of the published reference ranges for therapeutic drug monitoring.

  1. Gravitational settling of a highly concentrated system of solid spherical particles

    Science.gov (United States)

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  2. Highly Specific and Wide Range NO2 Sensor with Color Readout.

    Science.gov (United States)

    Fàbrega, Cristian; Fernández, Luis; Monereo, Oriol; Pons-Balagué, Alba; Xuriguera, Elena; Casals, Olga; Waag, Andreas; Prades, Joan Daniel

    2017-11-22

    We present a simple and inexpensive method to implement a Griess-Saltzman-type reaction that combines the advantages of the liquid phase method (high specificity and fast response time) with the benefits of a solid implementation (easy to handle). We demonstrate that the measurements can be carried out using conventional RGB sensors; circumventing all the limitations around the measurement of the samples with spectrometers. We also present a method to optimize the measurement protocol and target a specific range of NO 2 concentrations. We demonstrate that it is possible to measure the concentration of NO 2 from 50 ppb to 300 ppm with high specificity and without modifying the Griess-Saltzman reagent.

  3. Actinide concentrations in tissues from cattle grazing a contaminated range

    International Nuclear Information System (INIS)

    Smith, D.D.; Bernhardt, D.E.

    1977-01-01

    Actinide concentrations in the tissues of beef animals periodically sacrificed and sampled during a 3-year grazing study on a plutonium-contaminated range of the Nevada Test Site are discussed. Actinide concentrations in the skeletons of the cows originally introduced into the study areas showed little increase with increased time of exposure, while those of animals born in the study areas showed a continued upward trend with time. Plutonium-239/americium-241 ratios in tissues and ingesta suggest little differentiation in the uptake of these radionuclides. However, the plutonium-239/plutonium-238 ratios indicate that plutonium-238 is more readily absorbed. The gonadal concentrations of the actinides were significantly higher than those of blood and muscle and approached those of bone. These data indicate that consideration should be given to the plutonium-239 dose to gonads as well as that to bone, liver, and lungs of man

  4. A compact spectrum splitting concentrator for high concentration photovoltaics based on the dispersion of a lens

    Science.gov (United States)

    He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.

    2018-06-01

    Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.

  5. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system.

    Science.gov (United States)

    Jopling, Jeffery; Henry, Erick; Wiedmeier, Susan E; Christensen, Robert D

    2009-02-01

    "Reference ranges" are developed when it is impossible or inappropriate to establish "normal ranges" by drawing blood on healthy normal volunteers. Reference ranges for the hematocrit and the blood hemoglobin concentration of newborn infants have previously been reported from relatively small sample sizes by using measurement methods that now are considered outmoded. We sought to develop reference ranges for hematocrit and hemoglobin during the neonatal period (28 days) by using very large sample sizes and modern hematology analyzers, accounting for gestational and postnatal age and gender. Data were assembled from a multihospital health care system after exclusion of patients with a high likelihood of an abnormal value and those who were receiving blood transfusions. During the interval from 22 to 40 weeks' gestation, the hematocrit and blood hemoglobin concentration increased approximately linearly. For every week advance in gestational age, the hematocrit increased by 0.64% and the hemoglobin concentration increased by 0.21 g/dL. No difference was seen on the basis of gender. During the 4-hour interval after birth, hematocrit/hemoglobin values of late preterm and term neonates (35-42 weeks' gestation) increased by 3.6% +/- 0.5% (mean +/- SD), those of neonates of 29 to 34 weeks' gestation remained unchanged, and those of hematocrit/hemoglobin occurred. The figures presented herein describe reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period, accounting for gestational and postnatal age.

  6. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    2011-01-01

    Full Text Available The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA at the low concentration range (5–25 g/mL for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29% increased with the increase of n-HA concentration (5, 15, and 25 g/mL and become significantly higher than the control. Total intracellular protein content decreased with n-HA concentration increase, showing significant difference between 25 g/mL and the control, and no significant change of ALP activity was observed at the 5th day. The results revealed that the cell growth was inhibited by n-HA in a concentration-dependent manner, and the obvious biological effects of MG-63 cells on n-HA existed at the low concentration range from 5 to 25 g/mL.

  7. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  8. HEVC for high dynamic range services

    Science.gov (United States)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  9. Plasma lactate concentrations in free-ranging moose (Alces alces) immobilized with etorphine.

    Science.gov (United States)

    Haga, Henning A; Wenger, Sandra; Hvarnes, Silje; Os, Oystein; Rolandsen, Christer M; Solberg, Erling J

    2009-11-01

    To investigate plasma lactate concentrations of etorphine-immobilized moose in relation to environmental, temporal and physiological parameters. Prospective clinical study. Fourteen female and five male moose (Alces alces), estimated age range 1-7 years. The moose were darted from a helicopter with 7.5 mg etorphine per animal using projectile syringes and a dart gun. Once immobilized, the moose were approached, a venous blood sample was obtained and vital signs including pulse oximetry were recorded. Diprenorphine was administered to reverse the effects of etorphine. Timing of events, ambient temperature and snow depth were recorded. Blood samples were cooled and centrifuged before plasma was harvested and frozen. The plasma was thawed later and lactate analysed. Data were analysed using descriptive statistics and regression analysis. All animals recovered uneventfully and were alive 12 weeks after immobilization. Mean +/- SD plasma lactate was found to be 9.2 +/- 2.1 mmol L(-1). Plasma lactate concentrations were related positively to snow depth and negatively to time from induction of immobilization to blood sampling. The model that best described the variability in plasma lactate concentrations used induction time (time from firing the dart to the moose being immobilized). The second best model included induction time and snow depth. Plasma lactate concentrations in these etorphine-immobilized moose were in the range reported for other immobilized wild ruminants. Decreasing induction time, which may be related to a more profound etorphine effect, and increasing snow depth possibly may increase plasma lactate concentrations in etorphine-immobilized moose.

  10. Structure and ionic conductivity of block copolymer electrolytes over a wide salt concentration range

    Science.gov (United States)

    Chintapalli, Mahati; Le, Thao; Venkatesan, Naveen; Thelen, Jacob; Rojas, Adriana; Balsara, Nitash

    Block copolymer electrolytes are promising materials for safe, long-lasting lithium batteries because of their favorable mechanical and ion transport properties. The morphology, phase behavior, and ionic conductivity of a block copolymer electrolyte, SEO mixed with LiTFSI was studied over a wide, previously unexplored salt concentration range using small angle X-ray scattering, differential scanning calorimetry and ac impedance spectroscopy, respectively. SEO exhibits a maximum in ionic conductivity at twice the salt concentration that PEO, the homopolymer analog of the ion-containing block, does. This finding is contrary to prior studies that examined a more limited range of salt concentrations. In SEO, the phase behavior of the PEO block and LiTFSI closely resembles the phase behavior of homopolymer PEO and LiTFSI. The grain size of the block copolymer morphology was found to decrease with increasing salt concentration, and the ionic conductivity of SEO correlates with decreasing grain size. Structural effects impact the ionic conductivity-salt concentration relationship in block copolymer electrolytes. SEO: polystyrene-block-poly(ethylene oxide); also PS-PEO LiTFSI: lithium bis(trifluoromethanesulfonyl imide

  11. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2007-08-01

    Full Text Available Soils and forests in the boreal region of the Northern Hemisphere are recognised as having a large capacity for storing air-borne Persistent Organic Pollutants (POPs, such as the polychlorinated biphenyls (PCBs. Following reductions of primary emissions of various legacy POPs, there is an increasing interest and debate about the relative importance of secondary re-emissions on the atmospheric levels of POPs. In spring of 2006, biomass burning emissions from agricultural fires in Eastern Europe were transported to the Zeppelin station on Svalbard, where record-high levels of many air pollutants were recorded (Stohl et al., 2007. Here we report on the extremely high concentrations of PCBs that were also measured during this period. 21 out of 32 PCB congeners were enhanced by more than two standard deviations above the long-term mean concentrations. In July 2004, about 5.8 million hectare of boreal forest burned in North America, emitting a pollution plume which reached the Zeppelin station after a travel time of 3–4 weeks (Stohl et al., 2006. Again, 12 PCB congeners were elevated above the long-term mean by more than two standard deviations, with the less chlorinated congeners being most strongly affected. We propose that these abnormally high concentrations were caused by biomass burning emissions. Based on enhancement ratios with carbon monoxide and known emissions factors for this species, we estimate that 130 and 66 μg PCBs were released per kilogram dry matter burned, respectively. To our knowledge, this is the first study relating atmospheric PCB enhancements with biomass burning. The strong effects on observed concentrations far away from the sources, suggest that biomass burning is an important source of PCBs for the atmosphere.

  12. Detection of saliva-range glucose concentrations using organic thin-film transistors

    International Nuclear Information System (INIS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-01-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  13. Detection of saliva-range glucose concentrations using organic thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  14. PKU: high plasma phenylalanine concentrations are associated with increased prevalence of mood swings.

    Science.gov (United States)

    Anjema, Karen; van Rijn, Margreet; Verkerk, Paul H; Burgerhof, Johannes G M; Heiner-Fokkema, M Rebecca; van Spronsen, Francjan J

    2011-11-01

    In phenylketonuria, knowledge about the relation between behavior and plasma phenylalanine is scarce. The aim of this study was to determine whether high phenylalanine is associated with disturbed behavior noticed by the patient and or close environment (parents or partners). 48 early treated PKU patients (median age 8.5, range 0-35 years) participated (median phenylalanine concentration in total sample 277 (range 89-1171) μmol/l; and in patients introvert or extravert behavior. The interviewer as well as the respondents were blinded with regard to the phenylalanine concentration. Patients reported less deviant behavior compared to close environment. Mood swings were positively associated with phenylalanine concentrations in the total group (P=0.039) and patients introvert and extravert behavior were not statistically significant. there is a positive association between phenylalanine concentrations and mood swings. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Cementification for radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide

    International Nuclear Information System (INIS)

    Miyamoto, Shinya; Sato, Tatsuaki; Sasoh, Michitaka; Sakurai, Jiro; Takada, Takao

    2005-01-01

    For the cementification of radioactive waste that has large concentrations of sodium sulfate and radioactive nuclide, a way of fixation for sulfate ion was studied comprising the pH control of water in contact with the cement solid, and the removal of the excess water from the cement matrix to prevent hydrogen gas generation with radiolysis. It was confirmed that the sulfate ion concentration in the contacted water with the cement solid is decreased with the formation of ettringite or barium sulfate before solidification, the pH value of the pore water in the cement solid can control less than 12.5 by the application of zeolite and a low-alkali cement such as alumina cement or fly ash mixed cement, and removal of the excess water from the cement matrix by heating is possible with aggregate addition. Consequently, radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide can be solidified with cementitious materials. (author)

  16. Applichation of the sulphate ceric dosimetric in the high doses range

    International Nuclear Information System (INIS)

    Prieto Miranda, F.

    1991-01-01

    The ceric-cerous dosimetric system is one of the system more employed in the high dose dosimetry. The spectrophotometric procedure to measure the ceric-concentration is an usual analityc method to determine the absorbed dose. On the other hand, due at increase employ of the irradiation process control. In this paper is realized the ceric-cerous dosimetric calibration in the dose range of 0,6 - 5 kGy and the application in the irradiation process control to differents absorbed dose values

  17. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  18. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  19. Automatic Echographic Detection of Halloysite Clay Nanotubes in a Low Concentration Range.

    Science.gov (United States)

    Conversano, Francesco; Pisani, Paola; Casciaro, Ernesto; Di Paola, Marco; Leporatti, Stefano; Franchini, Roberto; Quarta, Alessandra; Gigli, Giuseppe; Casciaro, Sergio

    2016-04-11

    Aim of this work was to investigate the automatic echographic detection of an experimental drug delivery agent, halloysite clay nanotubes (HNTs), by employing an innovative method based on advanced spectral analysis of the corresponding "raw" radiofrequency backscatter signals. Different HNT concentrations in a low range (5.5-66 × 10 10 part/mL, equivalent to 0.25-3.00 mg/mL) were dispersed in custom-designed tissue-mimicking phantoms and imaged through a clinically-available echographic device at a conventional ultrasound diagnostic frequency (10 MHz). The most effective response (sensitivity = 60%, specificity = 95%), was found at a concentration of 33 × 10 10 part/mL (1.5 mg/mL), representing a kind of best compromise between the need of enough particles to introduce detectable spectral modifications in the backscattered signal and the necessity to avoid the losses of spectral peculiarity associated to higher HNT concentrations. Based on theoretical considerations and quantitative comparisons with literature-available results, this concentration could also represent an optimal concentration level for the automatic echographic detection of different solid nanoparticles when employing a similar ultrasound frequency. Future dedicated studies will assess the actual clinical usefulness of the proposed approach and the potential of HNTs for effective theranostic applications.

  20. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species.

    Science.gov (United States)

    Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George

    2012-01-01

    Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.

  1. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  2. Origin of methane and sources of high concentrations in Los Angeles groundwater

    Science.gov (United States)

    Kulongoski, Justin; McMahon, Peter B.; Land, Michael; Wright, Michael; Johnson, Theodore; Landon, Matthew K.

    2018-01-01

    In 2014, samples from 37 monitoring wells at 17 locations, within or near oil fields, and one site >5 km from oil fields, in the Los Angeles Basin, California, were analyzed for dissolved hydrocarbon gas isotopes and abundances. The wells sample a variety of depths of an aquifer system composed of unconsolidated and semiconsolidated sediments under various conditions of confinement. Concentrations of methane in groundwater samples ranged from 0.002 to 150 mg/L—some of the highest concentrations reported in a densely populated urban area. The δ13C and δ2H of the methane ranged from −80.8 to −45.5 per mil (‰) and −249.8 to −134.9‰, respectively, and, along with oxidation‐reduction processes, helped to identify the origin of methane as microbial methanogenesis and CO2 reduction as its main formation pathway. The distribution of methane concentrations and isotopes is consistent with the high concentrations of methane in Los Angeles Basin groundwater originating from relatively shallow microbial production in anoxic or suboxic conditions. Source of the methane is the aquifer sediments rather than the upward migration or leakage of thermogenic methane associated with oil fields in the basin.

  3. Individual and environmental risk factors for high blood lead concentrations in Danish indoor shooters.

    Science.gov (United States)

    Grandahl, Kasper; Suadicani, Poul; Jacobsen, Peter

    2012-08-01

    International studies have shown blood lead at levels causing health concern in recreational indoor shooters. We hypothesized that Danish recreational indoor shooters would also have a high level of blood lead, and that this could be explained by shooting characteristics and the physical environment at the shooting range. This was an environmental case study of 58 male and female shooters from two indoor shooting ranges with assumed different ventilation and cleaning conditions. Information was obtained on general conditions including age, gender, tobacco and alcohol use, and shooting conditions: weapon type, number of shots fired, frequency of stays at the shooting range and hygiene habits. A venous blood sample was drawn to determine blood lead concentrations; 14 non-shooters were included as controls. Almost 60% of the shooters, hereof five out of 14 women, had a blood lead concentration above 0.48 micromol/l, a level causing long-term health concern. All controls had blood lead values below 0.17 micromol/l. Independent significant associations with blood lead concentrations above 0.48 micromol/l were found for shooting at a poorly ventilated range, use of heavy calibre weapons, number of shots and frequency of stays at the shooting range. A large proportion of Danish recreational indoor shooters had potentially harmful blood lead concentrations. Ventilation, amounts of shooting, use of heavy calibre weapons and stays at the shooting ranges were independently associated with increased blood lead. The technical check at the two ranges was performed by the Danish Technological Institute and costs were defrayed by the Danish Rifle Association. To pay for the analyses of blood lead, the study was supported by the The Else & Mogens Wedell-Wedellsborg Foundation. The Danish Regional Capital Scientific Ethics Committee approved the study, protocol number H-4-2010-130.

  4. Haptoglobin concentrations in free-range and temporarily captive juvenile steller sea lions.

    Science.gov (United States)

    Thomton, Jamie D; Mellish, Jo-Ann E

    2007-04-01

    Haptoglobin (Hp) is an acute-phase protein synthesized in the liver that circulates at elevated concentrations in response to tissue damage caused by inflammation, infection, and trauma. As part of a larger study, sera Hp concentrations were measured in temporarily captive (n = 21) and free-range (n = 38) western stock juvenile Steller sea lions (Eumetopias jubatus) sampled from 2003 to 2006. Baseline Hp concentration at time of capture was 133.3 +/- 17.4 mg/dl. Temporarily captive animals exhibited a 3.2-fold increase in Hp concentrations during the first 4 wk of captivity, followed by a return to entry levels by week 5. Haptoglobin levels were not influenced by age, season, or parasite load. There was a significant positive correlation between Hp concentrations and white blood cell count (P < 0.001) and globulin levels (P < 0.001) and a negative correlation to red blood cell count and hematocrit (P < 0.001 for both). There was no correlation between Hp levels and platelet count (P = 0.095) or hemoglobin (P = 0.457). Routine blubber biopsies collected under gas anesthesia did not produce a measurable Hp response. One animal with a large abscess had an Hp spike of 1,006.0 mg/dl that returned to entry levels after treatment. In conclusion, serum Hp levels correlate to the stable clinical health status observed during captivity, with moderate Hp response during capture and initial acclimation to captivity and acute response to inflammation and infection.

  5. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    CERN Document Server

    Moll, Michael; Lindström, G

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2*10/sup 14/ to 9*10/sup 17/ cm/sup -3/ have been irradiated with fast neutrons up to a fluence of 2*10/sup 15/ cm/sup -2/. Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10601130f the initial doping concentration for [O/sub i/]=9*10/sup 17/ cm/sup -3/, while for normal detector grade material with [O/sub i/] below 5*10/sup 16/ cm /sup -3/ that value is 60-90Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentratio...

  6. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  7. Development of automatic high-concentration boron measurement technique; Konodo hoso jido sokutei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T.; Honda, S.; Ito, A. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-03-01

    The technology that can automatically measure the boron concentration in boric acid water was developed. A high-concentration boric acid solution must be held at a high temperature to prevent the deposition. Skill and precision ({plus_minus}0.2 to 0.3% for 10 to 2500 ppm as boron concentration, and {plus_minus}2 to 3% for 2500 to 25,000 ppm) are required to analyze the boric acid solution manually. In theory, the boron concentration in a wide range can be measured, and boron has a constant-temperature function. A density hydrometer method that facilitates the treatment and calibration in high precision and at low cost was chosen. The vibration period generated when vibration is given to the solution specimen put in a U-tube is higher as the density is lower. On the basis of this theory, the density of a specimen can be obtained according to the relation with the same data of the known-concentration boric acid water. The high-concentration boric acid water that cannot be measured by the existing boron densitometer can be measured directly. It can also be measured in a low-concentration area. The technique can be used in a laboratory as the simplified method that is replaced by the current manual analysis. The reduction effect of analytical chemical`s waste liquid can also be expected. In the electric power industry, automated equipment is required for high efficiency and labor saving. 13 figs., 3 tabs.

  8. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  9. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  10. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  11. High Dynamic Range Imaging Using Multiple Exposures

    Science.gov (United States)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  12. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  13. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  14. Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia.

    Science.gov (United States)

    Ramli, A Termizi; Hussein, A Wahab M A; Wood, A Khalik

    2005-01-01

    Concentrations of uranium-238 and thorium-232 in soil, water, grass, moss and oil-palm fruit samples collected from an area of high background radiation were determined using neutron activation analysis (NAA). U-238 concentration in soil ranged from 4.9 mg kg(-1) (58.8 Bq kg(-1)) to 40.4 mg kg(-1) (484.8 Bq kg(-1)), Th-232 concentration ranged from 14.9 mg kg(-1) (59.6 Bq kg(-1)) to 301.0 mg kg(-1) (1204 Bq kg(-1)). The concentration of U-238 in grass samples ranged from below the detection limit to 0.076 mg kg(-1) (912 mBq kg(-1)), and Th-232 ranged from 0.008 mg kg(-1) (32 mBq kg(-1)) to 0.343 mg kg(-1) (1.372 Bq kg(-1)). U-238 content in water samples ranged from 0.33 mg kg(-1) (4.0 Bq L(-1)) to 1.40 mg kg(-1) (16.8 Bq L(-1)), and Th-232 ranged from 0.19 mg kg(-1) (0.76 Bq L(-1)) to 0.66 mg kg(-1) (2.64 Bq L(-1)). It can be said that the concentrations of environmental U-238 and Th-232 in grass and water samples in the study area are insignificant. Mosses were found to be possible bio-radiological indicators due to their high absorption of the heavy radioelements from the environment.

  15. Case study of elevated layers of high sulfate concentration

    International Nuclear Information System (INIS)

    McNaughton, D.J.; Orgill, M.M.

    1979-01-01

    During studies in August 1976 that were part of the Multi-State Atmospheric Power Production Pollutant Study (MAP3S), Alkezweeny et al., (1977) noted that in the Milwaukee urban plume, layers of relatively high sulfate concentrations occurred at high altitudes with respect to the boundary layer. This paper represents a progress report on studies undertaken to investigate possible causes for a bimodel vertical profile of sulfate concentrations. Data presented by Alkezweeny et al., (1977) serve as a basis for this study. Data from August 23, 1976, and August 24, 1978, indicate concentrations relatively high in sulfate, at 1000 and 6000 ft, respectively, with lower concentrations at lower altitudes. Concentrations of trace metals also indicate no peaks in the vertical concentration profiles above the surface. Initial studies of the high, elevated sulfate concentrations have centered on the August 23 measurements taken over southeast Wisconsin using synoptic data from the national weather service, emissions data from the national emissions data bank system (EPA), air quality data from the national air surveillance network (EPA), and satellite photographs from the EROS Data Center

  16. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    Science.gov (United States)

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  17. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    Science.gov (United States)

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  18. Optimizing Taq polymerase concentration for improved signal-to-noise in the broad range detection of low abundance bacteria.

    Directory of Open Access Journals (Sweden)

    Rudolph Spangler

    Full Text Available BACKGROUND: PCR in principle can detect a single target molecule in a reaction mixture. Contaminating bacterial DNA in reagents creates a practical limit on the use of PCR to detect dilute bacterial DNA in environmental or public health samples. The most pernicious source of contamination is microbial DNA in DNA polymerase preparations. Importantly, all commercial Taq polymerase preparations inevitably contain contaminating microbial DNA. Removal of DNA from an enzyme preparation is problematical. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that the background of contaminating DNA detected by quantitative PCR with broad host range primers can be decreased greater than 10-fold through the simple expedient of Taq enzyme dilution, without altering detection of target microbes in samples. The general method is: For any thermostable polymerase used for high-sensitivity detection, do a dilution series of the polymerase crossed with a dilution series of DNA or bacteria that work well with the test primers. For further work use the concentration of polymerase that gave the least signal in its negative control (H(2O while also not changing the threshold cycle for dilutions of spiked DNA or bacteria compared to higher concentrations of Taq polymerase. CONCLUSIONS/SIGNIFICANCE: It is clear from the studies shown in this report that a straightforward procedure of optimizing the Taq polymerase concentration achieved "treatment-free" attenuation of interference by contaminating bacterial DNA in Taq polymerase preparations. This procedure should facilitate detection and quantification with broad host range primers of a small number of bona fide bacteria (as few as one in a sample.

  19. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    . A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... were degraded resulting in acceleration factors in the range of 19-55. This shows that concentrated sunlight can be used as qualitatively to determine the lifetime of polymers under highly accelerated conditions....

  20. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate.

    Directory of Open Access Journals (Sweden)

    Anatoli Y Kabakov

    Full Text Available Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS. Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19-75 μM and high (300-1200 μM glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV remained constant in the 10 μM-10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might

  1. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  2. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  3. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    Science.gov (United States)

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  5. Adaptive sensor-based ultra-high accuracy solar concentrator tracker

    Science.gov (United States)

    Brinkley, Jordyn; Hassanzadeh, Ali

    2017-09-01

    Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.

  6. Diffusion of ion-implanted B in high concentration P- and As-doped silicon

    International Nuclear Information System (INIS)

    Fair, R.B.; Pappas, P.N.

    1975-01-01

    The diffusion of ion-implanted B in Si in the presence of a uniform background of high concentration P or As was studied by correlating numerical profile calculations with profiles determined by secondary-ion mass spectrometry (SIMS). Retarded B diffusion is observed in both As- and P-doped Si, consistent with the effect of the local Fermi-level position in the Si band gap on B diffusivity, D/sub B/. It is shown that D/sub B/ is linearly dependent on the free hole concentration, p, over the range 0.1 less than p/n/sub ie/ less than 30, where n/sub ie/ is the effective intrinsic electron concentration. This result does not depend on the way in which the background dopant has been introduced (implantation predeposition or doped-oxide source), nor the type of dopant used (P or As). (U.S.)

  7. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan

    2016-01-01

    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  8. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, we achieve 10 Gbps over 400 m and then conrm the approach in an optimized system at 25 Gbps over 300 m. The techniques described in this thesis leverage additional degrees of freedom to better utilize the available resources of short-range links. The proposed schemes enable higher speeds and longer...

  9. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    Directory of Open Access Journals (Sweden)

    Caroline Schultealbert

    2018-03-01

    Full Text Available Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR. For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude for four different reducing gases (CO, H2, ammonia and benzene using randomized gas exposures.

  10. Ultra-wide detectable concentration range of GMR biosensors using Fe{sub 3}O{sub 4} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jie [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); School of Chemical Science and Engineering, Qingdao University, Qingdao 266071 (China); Li, Qiang [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Zong, Weihua [Shandong Provincial Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071 (China); Zhang, Yongcheng [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Li, Shandong, E-mail: lishd@qdu.edu.cn [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Exchange-biased GMR sensors were employed for biodetection using a DC in-plane measuring method and a magnetic label of Fe{sub 3}O{sub 4} microspheres. It was revealed that an ultra-wide concentration span covering five orders from 10 ng/mL to 1000 μg/mL was achieved in a home-made biodetection device. The concentration x dependence of output voltage difference |ΔV| between with and without magnetic labels, exhibits nonlinear futures, which undergoes two functions depending on the concentration region. For the low concentration region from 10 ng/mL to 10 μg/mL, a logarithmic relation of |ΔV|=26.3lgx+91.4 fits well, while for the high concentration region, a negative exponential function of |ΔV|=3113(1−e{sup −x/250}) describes the |ΔV|~x relation better. For the former, the “coffee ring” effect, formed during the solvent evaporation, was considered as the main reason for the nonlinear relation. While for the latter with high concentration, the overlap among the particles and the enhanced interaction of the magnetic dipole were responsible for the nonlinear |ΔV|~x relationship. Moreover, the calculated detectable concentration limit is agreed well with the experimental data. - Highlights: • Ultra-wide concentration span covering five orders from 0.01 to 1000 μg/mL. • A logarithmic function well describes the relation of |ΔV|~x at low concentration. • An exponential function well describes the relation of |ΔV|~x at high concentration.

  11. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  12. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  13. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  14. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  15. High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought

    Science.gov (United States)

    Van Metre, Peter C.; Frey, Jeffrey W.; Musgrove, MaryLynn; Nakagaki, Naomi; Qi, Sharon L.; Mahler, Barbara J.; Wieczorek, Michael; Button, Daniel T.

    2016-01-01

    Nitrogen sources in the Mississippi River basin have been linked to degradation of stream ecology and to Gulf of Mexico hypoxia. In 2013, the USGS and the USEPA characterized water quality stressors and ecological conditions in 100 wadeable streams across the midwestern United States. Wet conditions in 2013 followed a severe drought in 2012, a weather pattern associated with elevated nitrogen concentrations and loads in streams. Nitrate concentrations during the May to August 2013 sampling period ranged from nitrate concentrations at the 100 sites were compared with May to June concentrations predicted from a regression model developed using historical nitrate data. Observed concentrations for 17 sites, centered on Iowa and southern Minnesota, were outside the 95% confidence interval of the regression-predicted mean, indicating that they were anomalously high. The sites with a nitrate anomaly had significantly higher May to June nitrate concentrations than sites without an anomaly (means, 19.8 and 3.6 mg L−1, respectively) and had higher antecedent precipitation indices, a measure of the departure from normal precipitation, in 2012 and 2013. Correlations between nitrate concentrations and watershed characteristics and nitrogen and oxygen isotopes of nitrate indicated that fertilizer and manure used in crop production, principally corn, were the dominant sources of nitrate. The anomalously high nitrate levels in parts of the Midwest in 2013 coincide with reported higher-than-normal nitrate loads in the Mississippi River.

  16. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  17. Reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period defined from over 63 000 records in a multihospital health-care system.

    Science.gov (United States)

    Christensen, R D; Jensen, J; Maheshwari, A; Henry, E

    2010-08-01

    Blood concentrations of eosinophils and monocytes are part of the complete blood count. Reference ranges for these concentrations during the neonatal period, established by very large sample sizes and modern methods, are needed for identifying abnormally low or high values. We constructed reference ranges for eosinophils per microl and monocytes per microl among neonates of 22 to 42 weeks of gestation, on the day of birth, and also during 28 days after birth. Data were obtained from archived electronic records over an eight and one-half-year period in a multihospital health-care system. In keeping with the reference range concept, values were excluded from neonates with a diagnosis of infection or necrotizing enterocolitis (NEC). Eosinophils and monocytes per microl of blood were electronically retrieved from 96 162 records, of which 63 371 that lacked a diagnosis of infection or NEC were included in this reference range report. The mean value for eosinophils per microl on the day of birth increased linearly between 22 and 42 weeks of gestation, as did the 5 and 95% values. The reference range at 40 weeks was 140 to 1300 microl(-1) (mean 550 microl(-1)). Similarly, the mean value for monocytes increased linearly over this interval, with a reference range at 40 weeks of 300 to 3300 microl(-1) (mean 1400 microl(-1)). Over the first 4 weeks after birth, no appreciable change was observed in 5% limit and mean eosinophil count, with a slight increase in the 95% limit in week 4. A slight increase in monocyte count was observed during the first 2 weeks after birth. The results of this analysis describe reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period. Additional study is needed for determining the relevance of values falling outside the reference range.

  18. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  19. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  20. Video-rate or high-precision: a flexible range imaging camera

    Science.gov (United States)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  1. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    Science.gov (United States)

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  2. High dynamic range imaging sensors and architectures

    CERN Document Server

    Darmont, Arnaud

    2013-01-01

    Illumination is a crucial element in many applications, matching the luminance of the scene with the operational range of a camera. When luminance cannot be adequately controlled, a high dynamic range (HDR) imaging system may be necessary. These systems are being increasingly used in automotive on-board systems, road traffic monitoring, and other industrial, security, and military applications. This book provides readers with an intermediate discussion of HDR image sensors and techniques for industrial and non-industrial applications. It describes various sensor and pixel architectures capable

  3. Investigation on the improved radiation hardness of silicon detectors with high oxygen concentration

    International Nuclear Information System (INIS)

    Moll, M.; Fretwurst, E.; Lindstroem, G.

    2000-01-01

    We present an investigation on the influence of the oxygen concentration on radiation-induced changes in the effective doping concentration of silicon detectors. Diodes fabricated from silicon with interstitial oxygen content ranging from below 2x10 14 to 9x10 17 cm -3 have been irradiated with fast neutrons up to a fluence of 2x10 15 cm -2 . Our main interest focused on the so-called stable damage component in the change of the effective doping concentration being of prime importance for the application of silicon detectors in high-energy physics experiments. We demonstrate, that with a high oxygen enrichment the donor removal is appreciably reduced, reaching a value of only 10% of the initial doping concentration for [O i ]=9x10 17 cm -3 , while for normal detector grade material with [O i ] below 5x10 16 cm -3 that value is 60-90%. Furthermore, we show that the fluence proportional introduction of stable acceptors is independent of the oxygen concentration with an averaged introduction rate of (1.49±0.03)x10 -2 cm -1 . Only one material was found exhibiting a significantly smaller value of about 0.6x10 -2 cm -1 and thus indicating the possibility to suppress the radiation-induced acceptor creation by material modification. Finally, we show that the experimental findings disagree in several important aspects with predictions made by microscopic defect kinetics models, leaving the physical background of some of the measured data as an open question

  4. Applications of nonimaging optics for very high solar concentrations

    International Nuclear Information System (INIS)

    O'Gallagher, J.; Winston, R.

    1997-01-01

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy

  5. Rheological behavior of high-concentration sodium caseinate dispersions.

    Science.gov (United States)

    Loveday, Simon M; Rao, M Anandha; Creamer, Lawrence K; Singh, Harjinder

    2010-03-01

    Apparent viscosity and frequency sweep (G', G'') data for sodium caseinate dispersions with concentrations of approximately 18% to 40% w/w were obtained at 20 degrees C; colloidal glass behavior was exhibited by dispersions with concentration >or=23% w/w. The high concentrations were obtained by mixing frozen powdered buffer with sodium caseinate in boiling liquid nitrogen, and allowing the mixtures to thaw and hydrate at 4 degrees C. The low-temperature G'-G'' crossover seen in temperature scans between 60 and 5 degrees C was thought to indicate gelation. Temperature scans from 5 to 90 degrees C revealed gradual decrease in G' followed by plateau values. In contrast, G'' decreased gradually and did not reach plateau values. Increase in hydrophobicity of the sodium caseinate or a decrease in the effective volume fraction of its aggregates may have contributed to these phenomena. The gelation and end of softening temperatures of the dispersions increased with the concentration of sodium caseinate. From an Eldridge-Ferry plot, the enthalpy of softening was estimated to be 29.6 kJ mol(-1). The results of this study should be useful for creating new products with high concentrations of sodium caseinate.

  6. Regional and local meteorology influences high-resolution tropospheric ozone concentration in the Los Angeles Basin

    Science.gov (United States)

    Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.

    2017-12-01

    Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local

  7. Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration

    International Nuclear Information System (INIS)

    Pokrovsky, O.S.; Probst, A.; Leviel, E.; Liao, B.

    2012-01-01

    Highlights: ► Adsorption experiments of Cd and Pb in acid soils (China, France). ► Large pH conditions and large range of metal concentrations were considered. ► Similar dependencies between metals concentration in solution and metal adsorbed on the surface were predicted using Langmuir and Freundlich equations and surface complexation model (SCM). ► No competition between Cd and Pb detected at pH 5. ► Metal adsorption capacity is two orders of magnitude higher than limit value for soil protection. - Abstract: The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25 °C as a function of the pH (3.5–8) and a large range of metal concentrations in solution (10 −9 –10 −4 mol l −1 ). We studied the adsorption kinetics using a Cd 2+ -selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 ± 0.5 μmol/g Cd and 20 ± 2 μmol/g Pb). A constant slope of adsorbed–dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil protection since metal toxicity depends on metal availability.

  8. The role of silicon interstitials in the deactivation and reactivation of high concentration boron profiles

    Energy Technology Data Exchange (ETDEWEB)

    Aboy, Maria [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain)]. E-mail: marabo@tel.uva.es; Pelaz, Lourdes [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Marques, Luis A. [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Lopez, Pedro [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Barbolla, Juan [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Venezia, V.C. [Philips Research Leuven, Leuven (Belgium); Duffy, R. [Philips Research Leuven, Leuven (Belgium); Griffin, Peter B. [Stanford University, Stanford, CA (United States)

    2004-12-15

    Boron cluster formation and dissolution in high concentration B profiles and the role of Si interstitials in these processes are analyzed by kinetic non-lattice Monte Carlo atomistic simulations. For this purpose, we use theoretical structures as simplifications of boron implants into preamorphized Si, followed by low-temperature solid phase epitaxial (SPE) regrowth or laser thermal annealing process. We observe that in the presence of high B concentrations (above 10{sup 20} cm{sup -3}), significant deactivation occurs during high temperature anneal, even in the presence of only equilibrium Si interstitials. The presence of additional Si interstitials from an end of range (EOR) damage region accelerates the deactivation process and makes B deactivation slightly higher. We show that B deactivation and reactivation processes can be clearly correlated to the evolution of Si interstitial defects at the EOR. The minimum level of activation occurs when the Si interstitial defects at EOR dissolve or form very stable defects.

  9. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  10. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  11. Analysis of serotonin concentrations in human milk by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Tairabune, Tomohiko; Tomita, Takashi; Sanbe, Atsushi; Takeda, Rika; Kikuchi, Akihiko; Kudo, Kenzo

    2017-03-25

    Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in milk volume homeostasis in the mammary gland during lactation; 5-HT in milk may also affect infant development. However, there are few reports on 5-HT concentrations in human breast milk. To address this issue, we developed a simple method based on high-performance liquid chromatography with fluorescence detection (HPLC-FD) for measuring 5-HT concentrations in human breast milk. Breast milk samples were provided by four healthy Japanese women. Calibration curves for 5-HT in each sample were prepared with the standard addition method between 5 and 1000 ng/ml, and all had correlation coefficients >0.999. The recovery of 5-HT was 96.1%-101.0%, with a coefficient of variation of 3.39%-8.62%. The range of 5-HT concentrations estimated from the calibration curves was 11.1-51.1 ng/ml. Thus, the HPLC-FD method described here can effectively extract 5-HT from human breast milk with high reproducibility. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Novel approach in k0-NAA for highly concentrated REE Samples.

    Science.gov (United States)

    Abdollahi Neisiani, M; Latifi, M; Chaouki, J; Chilian, C

    2018-04-01

    The present paper presents a new approach for k 0 -NAA for accurate quantification with short turnaround analysis times for rare earth elements (REEs) in high content mineral matrices. REE k 0 and Q 0 values, spectral interferences and nuclear interferences were experimentally evaluated and improved with Alfa Aesar Specpure Plasma Standard 1000mgkg -1 mono-rare earth solutions. The new iterative gamma-ray self-attenuation and neutron self-shielding methods were investigated with powder standards prepared from 100mg of 99.9% Alfa Aesar mono rare earth oxide diluted with silica oxide. The overall performance of the new k 0 -NAA method for REEs was validated using a certified reference material (CRM) from Canadian Certified Reference Materials Project (REE-2) with REE content ranging from 7.2mgkg -1 for Yb to 9610mgkg -1 for Ce. The REE concentration was determined with uncertainty below 7% (at 95% confidence level) and proved good consistency with the CRM certified concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    Directory of Open Access Journals (Sweden)

    Lorena V Escudero

    Full Text Available The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V to As (III in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V as electron acceptor, was found in all the systems studied. The As (III oxidation gene aioA and the As (III transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.

  14. Highly concentrating Fresnel lenses

    International Nuclear Information System (INIS)

    Kritchman, E.M.; Friesem, A.A.; Yekutieli, G.

    1979-01-01

    A new type of concave Fresnel lens capable of concentrating solar radiation very near the ultimate concentration limit is considered. The differential equations that describe the lens are solved to provide computed solutions which are then checked by ray tracing techniques. The performance (efficiency and concentration) of the lens is investigated and compared to that of a flat Fresnel lens, showing that the new lens is preferable for concentrating solar radiation. (author)

  15. Observations of high droplet number concentrations in Southern Ocean boundary layer clouds

    Directory of Open Access Journals (Sweden)

    T. Chubb

    2016-01-01

    Full Text Available Cloud physics data collected during the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER Pole-to-Pole Observations (HIPPO campaigns provide a snapshot of unusual wintertime microphysical conditions in the boundary layer over the Southern Ocean. On 29 June 2011, the HIAPER sampled the boundary layer in a region of pre-frontal warm air advection between 58 and 48° S to the south of Tasmania. Cloud droplet number concentrations were consistent with climatological values in the northernmost profiles but were exceptionally high for wintertime in the Southern Ocean at 100–200 cm−3 in the southernmost profiles. Sub-micron (0.06  < D <  1 µm aerosol concentrations for the southern profiles were up to 400 cm−3. Analysis of back trajectories and atmospheric chemistry observations revealed that while conditions in the troposphere were more typical of a clean remote ocean airmass, there was some evidence of continental or anthropogenic influence. However, the hypothesis of long-range transport of continental aerosol fails to explain the magnitude of the aerosol and cloud droplet concentration in the boundary layer. Instead, the gale force surface winds in this case (wind speed at 167 m above sea level was  > 25 m s−1 were most likely responsible for production of sea spray aerosol which influenced the microphysical properties of the boundary layer clouds. The smaller size and higher number concentration of cloud droplets is inferred to increase the albedo of these clouds, and these conditions occur regularly, and are expected to increase in frequency, over windy parts of the Southern Ocean.

  16. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  17. Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air.

    Science.gov (United States)

    Mallik, Arun Kumar; Farrell, Gerald; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Semenova, Yuliya

    2018-01-26

    A silica gel coated microsphere resonator is proposed and experimentally demonstrated for measurements of ammonia (NH 3 ) concentration in air with ultra-high sensitivity. The optical properties of the porous silica gel layer change when it is exposed to low (parts per million (ppm)) and even ultra-low (parts per billion (ppb)) concentrations of ammonia vapor, leading to a spectral shift of the WGM resonances in the transmission spectrum of the fiber taper. The experimentally demonstrated sensitivity of the proposed sensor to ammonia is estimated as 34.46 pm/ppm in the low ammonia concentrations range from 4 ppm to 30 ppm using an optical spectrum analyser (OSA), and as 800 pm/ppm in the ultra-low range of ammonia concentrations from 2.5 ppb to 12 ppb using the frequency detuning method, resulting in the lowest detection limit (by two orders of magnitude) reported to date equal to 0.16 ppb of ammonia in air. In addition, the sensor exhibits excellent selectivity to ammonia and very fast response and recovery times measured at 1.5 and 3.6 seconds, respectively. Other attractive features of the proposed sensor are its compact nature, simplicity of fabrication.

  18. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    Science.gov (United States)

    Sakaguchi, T.; Ehara, K.

    2011-02-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 102 to 2 × 106 particles g-1. When the concentration of the suspension is higher than 2 × 103 particles g-1, the suspension is first diluted to about 1 × 103 particles g-1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 106 particles g-1, the concentration values determined by the T-FCM and SEM methods were 1.042 × 106 and 1.035 × 106 particles g-1, respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%.

  19. A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film

    International Nuclear Information System (INIS)

    Mani, Ganesh Kumar; Rayappan, John Bosco Balaguru

    2015-01-01

    Graphical abstract: - Highlights: • Cobalt doped nanostructured ZnO thin films were spray deposited on glass substrates. • Co-doped ZnO film was highly selective towards ammonia than ethanol, methanol, etc. • The range of ammonia detection was improved significantly by doping cobalt in ZnO. - Abstract: Ammonia sensing characteristics of undoped and cobalt (Co)-doped nanostructured ZnO thin films were investigated. Polycrystalline nature with hexagonal wurtzite structure and high crystalline quality with dominant (0 0 2) plane orientation of Co-doped ZnO film were confirmed by the X-ray diffractogram. Scanning electron micrographs of the undoped film demonstrated the uniform deposition of sphere-shaped grains. But, smaller particles with no clear grain boundaries were observed for Co-doped ZnO thin film. Band gap values were found to be 3.26 eV and 3.22 eV for undoped and Co-doped ZnO thin films. Ammonia sensing characteristics of Co-doped ZnO film at room temperature were investigated in the concentration range of 15–1000 ppm. Variation in the sensing performances of Co-doped and pure ZnO thin films has been analyzed and compared

  20. Ultra flat ideal concentrators of high concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio [IST, Physics Dept., Lisboa (Portugal); INETI-DER, Lisboa (Portugal); Collares-Pereira, Manuel [INETI-DER, Lisboa (Portugal)

    2000-07-01

    A new method for the design of nonimaging devices is presented. Its application to the design of ultra flat compact concentrators is analysed. These new concentrators are based on a combination of two stages: the first one is composed of a large number of small structures placed side by side and the second one is a very compact single device concentrating the radiation to the limit. These devices are ideal for 2D. These compact designs are much more compact than the traditional ones like lens-mirror combinations or parabolic primaries with nonimaging secondaries. Besides, they can be designed for any acceptance angle, while the traditional ones are limited to small acceptance angles. (Author)

  1. Honeybee males use highly concentrated nectar as fuel for mating flights.

    Science.gov (United States)

    Hayashi, Masaki; Nakamura, Jun; Sasaki, Ken; Harano, Ken-Ichi

    Honeybees use nectar held in the crop as their main source of energy for flight but the mass of the crop nectar load may be a cost burden. This study investigated whether males of the honeybee Apis mellifera adjust their nectar fuel load and concentration to enhance the success of mating flights. When the crop content was compared between males staying in the hive and those departing, the latter group had the larger volume (median, 5.0μl; range, 0.0-17.8μl) and higher concentration (median, 71.6%; range, 49.0%-77.6%), indicating that departing males load concentrated nectar as fuel before mating flights. Moreover, the crop nectar concentration was significantly higher in departing males than in departing workers. These results suggest that concentrated nectar is advantageous to males because it provides more sugar for energy at lower mass and secures longer or more effective mating flights for higher chance of reproductive success. No significant effect of age was detected in crop volume, and concentration and amount of dissolved sugars in the crop content. In addition, laboratory experiments showed that males had only about 5μl of nectar in the crop soon after feeding, irrespective of fed volume (5-15μl), suggesting they do not hold much nectar in the crop but send it rapidly to the midgut, unlike workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan

    International Nuclear Information System (INIS)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-01-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM 2.5 ) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM 2.5 , the sampling days were classified into high PM 2.5 concentration event days (PM 2.5 >35 μg m −3 ) and non-event days (PM 2.5 <35 μg m −3 ). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl − and NO 3 − increased when a high PM 2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM 2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM 2.5 concentration event days. In order to reduction of high PM 2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. - Highlights: • The mass fractions of NH 4 + , K + , Cl − and NO 3 − increased during PM 2.5 event days. • Reduction of coal combustion/urban waste incineration emissions should be prioritized. • The control of vehicle emission is important in the locally emitted periods. • Secondary

  3. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  4. Efficacy of high iodine concentration contrast medium with saline pushing in hepatic CT in patients with chronic liver disease. Comparison of high doses-standard contrast medium concentration

    International Nuclear Information System (INIS)

    Matoba, Munetaka; Kondo, Tamaki; Nishikawa, Takahiro; Kuginuki, Yasuaki; Yokota, Hajime; Higashi, Kotaro; Tonami, Hisao

    2006-01-01

    The aim of this study was to compare the enhancement of liver parenchyama with high iodine concentration contrast medium with saline pushing to that with high doses standard iodine concentration in hepatic CT in patients with chronic liver disease. There was no statistically significant difference regarding to the enhancement of liver parenchyama between the 370 mgI/ml of contrast medium with saline pushing and high doses standard iodine concentration contrast medium. (author)

  5. Study on high concentration solar concentrator using a Fresnel lens with a secondary concentrator; Fresnel lens to niji shukokei wo mochiita solar chemistry yo kobairitsu shukokei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, T; Suzuki, A; Fujibayashi, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    A high concentration light collection system for solar chemistry was devised by using an inexpensive Fresnel lens in a primary concentration system and a conical type concentrator in a secondary concentration system. A Fresnel lens alone would not achieve sufficiently high light collecting magnification to attain high temperatures because of restrictions in the opening angle as seen from a focus. Therefore, a secondary concentration system was installed on a focus for an attempt of stopping. Reflection plane of a three-dimensional compound parabolic concentrator (CPC) is a rotary parabolic plane, whose process is expensive because of its surface processing accuracy. Therefore, a conical type concentrator was employed as a secondary concentration system. This system may not be capable of achieving as high concentration as in the CPC, but its shape is simple and it is inexpensive. In its optimization, a complete black body surface placed in vacuum atmosphere was hypothesized as a light concentrating part for the secondary concentration system to calculate heat collecting efficiencies at respective temperature settings. Using simultaneously the secondary concentration system, rather than collecting heat by using a Fresnel lens alone, has attained as high value as from 5.99% (500 degC) to 43.47% (1400 degC). Economical high-temperature heat collection of solar chemistry level may be possible by using a Fresnel lens and a conical secondary concentration system. 1 ref., 7 figs., 2 tabs.

  6. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  7. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  8. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other monosa...

  9. Quantitative SIMS measurement of high concentration of boron in silicon (up to 20 at.%) using an isotopic comparative method

    International Nuclear Information System (INIS)

    Dubois, Christiane; Prudon, Gilles; Gautier, Brice; Dupuy, Jean-Claude

    2008-01-01

    Highly boron doped (up to 20 at.%) silicon samples have been analysed by SIMS with the aim of quantifying the boron concentration in a range where the dilute regime may not be valid any more. An original method is used based on the simultaneous analysis of two different isotopes, namely 10 B and 11 B, in order that the known concentration of the first isotope (initially present with a far lower, constant concentration) is the basis of the quantification of the concentration of the second, present with a very high dose. Argon and oxygen beams have been used and conclusions are drawn about the presence of matrix effects in the case of the analysis of highly doped samples. It appears that only the use of a 8 keV O 2 + beam leads to a significant matrix effect, whereas it is nearly absent in the case of an analysis under 8 keV Ar + beam. The proposed method may be applied to any element showing at least two isotopes in any binary alloys under any primary beam

  10. Atmospheric concentration of 210Pb in East Asia

    International Nuclear Information System (INIS)

    Doi, T.; Sato, S.; Sato, J.

    2003-01-01

    Concentrations of 210 Pb and 7 Be in the surface air were measured at Tsukuba, Japan. The air concentrations of 210 Pb and 7 Be ranged from 0.2 to 0.7 mBq/m 3 and from 1 to 6 mBq/m 3 , respectively. Seasonal variation of 210 Pb concentration was similar to that of 7 Be, showing a 'two-peak' variation pattern: high concentrations appeared in spring and fall. Atmospheric concentrations of 210 Pb and their variations over Urumqi, Lanzhou and Baotou, cities located inland area of the Eurasian Continent, were observed. The monthly average concentrations ranged from 0.27 to 4.57 mBq/m 3 . The concentrations over these cities in winter were several times higher than that observed at Tsukuba, and the range of variation was also larger. The variations in concentration over the 3 localities resembled well with each other, showing the similar seasonal variation pattern: low concentration appeared in summer and high in winter. This variation pattern was different from that observed at Tsukuba. The variations in concentration over the Eurasian Continent, where precipitation is extremely smaller than that of Japan, inversely correlated quite well with the variation in the precipitation. The atmospheric concentrations of 210 Pb ranged from 0.9 to 4.6 mBq/m 3 at Beijing and from 1.4 to 7.8 mBq/m 3 at Chengdu and from 0.5 to 4.9 mBq/m 3 at Seoul, respectively, which were in the similar level to those observed previously in the inland area of the Eurasian Continent. Seasonal variations of the 210 Pb concentration showed the 'one-peak' variation pattern: the maximum levels were recorded in winter season. Small additional rises in the atmospheric 210 Pb concentrations observed in the period from spring to fall seasons may be due to complicated meteorology with high pressure systems at Beijing and Seoul and due to the topographical situation at Chengdu. Long range transport from the Eurasian Continent to the Japanese Islands was also assessed. The air mass from continent reached the

  11. Multiphysics modelling and experimental validation of high concentration photovoltaic modules

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Sumner, Mike; O'Donovan, Tadhg S.

    2017-01-01

    Highlights: • A multiphysics modelling approach for concentrating photovoltaics was developed. • An experimental campaign was conducted to validate the models. • The experimental results were in good agreement with the models. • The multiphysics modelling allows the concentrator’s optimisation. - Abstract: High concentration photovoltaics, equipped with high efficiency multijunction solar cells, have great potential in achieving cost-effective and clean electricity generation at utility scale. Such systems are more complex compared to conventional photovoltaics because of the multiphysics effect that is present. Modelling the power output of such systems is therefore crucial for their further market penetration. Following this line, a multiphysics modelling procedure for high concentration photovoltaics is presented in this work. It combines an open source spectral model, a single diode electrical model and a three-dimensional finite element thermal model. In order to validate the models and the multiphysics modelling procedure against actual data, an outdoor experimental campaign was conducted in Albuquerque, New Mexico using a high concentration photovoltaic monomodule that is thoroughly described in terms of its geometry and materials. The experimental results were in good agreement (within 2.7%) with the predicted maximum power point. This multiphysics approach is relatively more complex when compared to empirical models, but besides the overall performance prediction it can also provide better understanding of the physics involved in the conversion of solar irradiance into electricity. It can therefore be used for the design and optimisation of high concentration photovoltaic modules.

  12. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  13. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    Science.gov (United States)

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; Carter, Emily A.

    2016-01-01

    Because of lithium’s possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. We predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDβ , β =0.25 , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid-solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. We also observe formation of some D2 molecules at high D concentrations.

  14. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    International Nuclear Information System (INIS)

    Sakaguchi, T; Ehara, K

    2011-01-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 10 2 to 2 × 10 6 particles g −1 . When the concentration of the suspension is higher than 2 × 10 3 particles g −1 , the suspension is first diluted to about 1 × 10 3 particles g −1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 10 6 particles g −1 , the concentration values determined by the T-FCM and SEM methods were 1.042 × 10 6 and 1.035 × 10 6 particles g −1 , respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%

  15. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  16. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.

    Science.gov (United States)

    Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven

    2015-11-01

    We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer

  17. Method of high precision interval measurement in pulse laser ranging system

    Science.gov (United States)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  18. Use of high concentration contrast media: principles and rationale--vascular district

    International Nuclear Information System (INIS)

    Fleischmann, Dominik.

    2003-01-01

    Optimal contrast medium delivery remains a crucial issue in CT angiography and it will become even more critical with continuously evolving, faster CT scanner technology. This review article first explains the fundamentals of arterial enhancement using mathematical models of early contrast medium dynamics. The relationship of contrast medium volume, injection flow rates and injection duration are explicitly illustrated. Next, current techniques of contrast medium application are reviewed, with particular attention to methods of accurate timing of the scanning delay (test-bolus and automated bolus triggering), tools for automated saline-flushing of the veins (double-syringe power injectors) and the use of high-concentration contrast medium. From there, rational CT angiographic injection protocols for a wide range of selectable acquisition times for 4-, 8- and 16-channel MDCT are proposed

  19. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    Science.gov (United States)

    Inchang Choi; Seung-Hwan Baek; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  20. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  1. High pressure inertial focusing for separating and concentrating bacteria at high throughput

    Science.gov (United States)

    Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.

    2017-08-01

    Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.

  2. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were 6 km.

  3. Highly efficient and concentration-insensitive organic light-emitting devices based on self-quenching-resistant orange–red iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yige; Wang, Xu [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu 610064 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-11-15

    Orange–red phosphorescent organic light-emitting devices (PHOLEDs) with high efficiency and concentration insensitivity based on a novel iridium complex, bis[2-(biphenyl-4-yl)benzothiazole-N,C{sup 2}′]iridium(III) (acetylacetonate) [(4Phbt){sub 2}Ir(acac)], were fabricated. With the heavily doped emissive layer (EML) of 4,4′-N,N′-dicarbazolylbiphenyl (CBP): (4Phbt){sub 2}Ir(acac) in a wide and easily controlled dopant concentration range from 12 wt% to 24 wt%, a maximum power efficiency of 29 lm/W and an external quantum efficiency of >16% of the PHOLEDs were obtained, implying the insensitivity of electroluminescence (EL) properties to doping concentration. Meanwhile, a maximum power efficiency of 5.0 lm/W was achieved from a non-doped device with neat (4Phbt){sub 2}Ir(acac) as the EML, indicating a superior property of self-quenching resistance. The mechanism of direct exciton formation, in which exciton-formation regions are distributed throughout the EML, is responsible for the significant alleviation of triplet–triplet annihilation and superior EL performance. - Highlights: • Highly efficient and concentration-insensitive PHOLEDs were obtained. • The high efficiency of non-doped PHOLEDs indicated a quenching-resistant property. • The independence of EL spectra on doping concentration was observed. • The heavily doped devices were dominated by mechanism of direct exciton formation.

  4. Translocation of Cd and Mn from Bark to Leaves in Willows on Contaminated Sediments: Delayed Budburst Is Related to High Mn Concentrations

    Directory of Open Access Journals (Sweden)

    Bart Vandecasteele

    2015-04-01

    Full Text Available Changes in the hydrology of sediments in tidal marshes or landfills may affect the uptake of metals in the vegetation. Leaf and stem samples of Salix cinerea (grey sallow were collected during four consecutive growing seasons at six contaminated plots on a polluted dredged sediment landfill and one plot on an uncontaminated reference site. The first three contaminated plots were already emerged in the first half of the first growing season, while the other three were submerged in the first year, but became increasingly dry over the study period. Foliar and stem cutting concentrations for Cd, Zn and Mn increased on the latter three plots over the four years. Willow bark contained high concentrations of Cd, Zn and Mn. In two consecutive greenhouse experiments with willow cuttings from different origins (uncontaminated and contaminated sites and grown under different soil conditions (uncontaminated and contaminated, we observed an important translocation of Mn from bark to shoots. In a third experiment with willow cuttings collected on soils with a range of heavy metal concentrations and, thus, with a broad range of Cd (4–67 mg/kg dry matter, Zn (247–660 mg/kg dry matter and Mn (38–524 mg/kg dry matter concentrations in the bark, high Mn concentrations in the bark were found to affect the budburst of willow cuttings, while no association of delayed budburst with Cd and Zn concentrations in the bark was found. We conclude that wood and, especially, bark are not a sink for metals in living willows. The high Mn concentrations in the bark directly or indirectly caused delayed or restricted budburst of the willow cuttings.

  5. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    Science.gov (United States)

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  6. Polyaspartic Acid Concentration Controls the Rate of Calcium Phosphate Nanorod Formation in High Concentration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Daniel V. [Biosystems and; Wang, Dongbo [Biosystems and; Lin-Gibson, Sheng [Biosystems and

    2017-08-31

    Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.

  7. Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region

    International Nuclear Information System (INIS)

    Asikainen, M.; Kahlos, H.

    1979-01-01

    The concentrations of uranium, 226 Ra and 222 Rn were determined in 308 drilled and 58 dug wells in the Helsinki region. The study area was about 400 km 2 and geologically highly variable, with granites, amphibolites and migmatites the dominant rocks. The radioactivity of water in the dug wells was on a 'normal' level, but in numerous drilled wells it was anomalously high. In 14 drilled wells the concentration of uranium exceeded 1000 μg/l, the highest concentration being 14,870 μg/l. For 222 Rn the maximum concentration was 880,000 pCi/l. The 226 Ra/ 228 Ra and 230 Th/ 232 Th activity ratios showed the isotopes of the uranium series to be dominant in the study area. A state of disequilibrium between 238 U and 234 U was very common in the samples. The 234 U/ 238 U activity ratios varied in the range 1.0 to 4.0 regardless of the amount of uranium in the water. The conclusion can be drawn from the isotopic data that the high radioactivity of water is in some cases caused by primary uranium mineralizations, but mostly by uranium deposited in fissures of the bedrock. The paper includes a summary of the results of two studies carried out between 1967 and 1977. (author)

  8. Forensic analysis of high explosives residues in post-blast water samples employing solid phase extraction for analyte pro-concentration

    International Nuclear Information System (INIS)

    Umi Kalsom Ahmad; Rajendran, Sumathy; Ling, Lee Woan

    2008-01-01

    Nitro aromatic, nitramine and nitrate ester compounds are a major group of high order explosive or better known as military explosives. Octahydro-1,3,5,7-tetrazocine (HMX), 1,3,5-hexahydro-1,3,5-trinitro triazine (RDX), 2,4,6-trinitro-toluene (TNT), pentaerythritol tetranitrate (PETN) and 2,4-dinitrotoluene (2,4-DNT) are secondary high explosives classified as most commonly used explosives components. There is an increasing demand for pre-concentration of these compounds in water samples as the sensitivity achieved by instrumental analytical methods for these high explosives residues are the main drawback in the application at trace levels for forensic analysis. Hence, a simple cartridge solid phase extraction (SPE) procedure was optimized as the off-line extraction and pre-concentration method to enhance the detection limit of high explosive residues using micellar electrokinetic chromatography (MEKC) and gas chromatography with electron-capture detection (GC-ECD) methods. The SPE cartridges utilized LiChrolut EN as the SPE adsorbent. By emplying pre-concentration using SPE, the detection limits of the target analytes in water sample were lowered by more than 1000 times with good percentage recovery (>87%) for MEKC method and lowered by 120 times with more than 2 % percentage recovery for GC-ECD methods. In order to test the feasibility of the developed method to real cases, post-blast water samples were analyzed. The post-blast water samples which were collected from Baling Bom training range, Ulu Kinta, Perak contained RDX and PETN in the range of 0.05 - 0.17 ppm and 0.0124 - 0.0390 ppm respectively. (author)

  9. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  10. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  11. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Ye Weiguo; Han Hui; Li Pengyu

    2003-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronic is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  12. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Li Pengyu; Han Hui; Ye Yanlin

    2005-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronics is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  13. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan.

    Science.gov (United States)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-07-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Baseline reference range for trace metal concentrations in whole blood of wild and managed West Indian Manatees (Trichechus manatus) in Florida and Belize

    Science.gov (United States)

    Takeuchi, Noel Y.; Walsh, Michael T; Bonde, Robert K.; Powell, James A.; Bass, Dean A.; Gaspard, Joseph C.; Barber, David S.

    2016-01-01

    The West Indian manatee (Trichechus manatus) is exposed to a number of anthropogenic influences, including metals, as they inhabit shallow waters with close proximity to shore. While maintaining homeostasis of many metals is crucial for health, there is currently no baseline reference range that can be used to make clinical and environmental decisions for this endangered species. In this study, whole blood samples from 151 manatees were collected during health assessments performed in Florida and Belize from 2008 through 2011. Whole blood samples (n = 37) from managed care facilities in Florida and Belize from 2009 through 2011 were also used in this study. The concentrations of 17 metals in whole blood were determined, and the data were used to derive a baseline reference range. Impacts of capture location, age, and sex on whole blood metal concentrations were examined. Location and age were related to copper concentrations as values were significantly higher in habitats near urban areas and in calves. Copper may also be a husbandry concern as concentrations were significantly higher in managed manatees (1.17 ± 0.04 ppm) than wild manatees (0.73 ± 0.02 ppm). Zinc (11.20 ± 0.30 ppm) was of special interest as normal concentrations were two to five times higher than other marine mammal species. Arsenic concentrations were higher in Belize (0.43 ± 0.07 ppm), with Placencia Lagoon having twice the concentration of Belize City and Southern Lagoon. Selenium concentrations were lower (0.18 ± 0.09 ppm) than in other marine mammal species. The lowest selenium concentrations were observed in rehabilitating and managed manatees which may warrant additional monitoring in managed care facilities. The established preliminary baseline reference range can be used by clinicians, biologists, and managers to monitor the health of West Indian manatees.

  15. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    Science.gov (United States)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  16. Mitochondrial uncouplers with an extraordinary dynamic range.

    Science.gov (United States)

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy.

  17. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  19. Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

    International Nuclear Information System (INIS)

    Rawal, Ishpal; Kaur, Amarjeet

    2014-01-01

    The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ∼52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level

  20. Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

    Science.gov (United States)

    Rawal, Ishpal; Kaur, Amarjeet

    2014-01-01

    The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ˜52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level.

  1. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  2. Investigation of the areas of high radon concentration in Gyeongju

    International Nuclear Information System (INIS)

    Lee, Jung Min; Park, Chan Hee; Kim, Shin Jae; Moon, Joo Hyun

    2013-01-01

    The aim of this study was to survey the radon concentrations at 21 elementary schools in Gyeongju, Republic of Korea, to identify those schools with high radon concentrations. Considering their geological characteristics and the preliminary survey results, three schools were finally placed under close scrutiny. For these three schools, continuous measurements over 48 h were taken at the principal's and administration office. The radon concentrations at one school, Naenam, exceeded the action level (148 Bq/m 3 ) established by the U.S. EPA, while those at the other two schools were below that level. - Highlights: • Preliminary measurements of the indoor radon concentrations were performed at the auditoriums in 23 elementary schools in Gyeongju. • Considering the geological characteristics and preliminary survey results, three elementary schools were screened for closer scrutiny. • For the three schools, continuous measurements were made at their principal's and administration offices over 48-h period. • The scrutiny revealed one elementary school of high radon concentration much higher than the U.S. EPA action level

  3. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    The radon content of drinking water samples was determined with Alpha Guard Pro equipped with an appropriate unit (Aqua Kit). The samples were collected from water taps in dwellings located at various cities in Greece and Cyprus. In addition, surface water samples from rivers, lakes and seas as well as potable underground and hot spring water samples from Greece and Cyprus were also collected. For a precise determination of radon concentration in water samples, special procedures were followed both for sampling and transportation, as well as for measurement. Intercomparison experiments were designed and implemented before and during the study. Radon concentrations in drinking water samples in Greece ranged between 1.1 ± 0.5 Bq/L and 410±50 Bq/L. The corresponding concentrations in Cyprus ranged between 1.3 ± 0.8 Bq/L and 15±4 Bq/L. Three samples collected from the city of Arnea Chalkidikis (Northern Greece) exhibited high concentrations of 120±20 Bq/L, 320±40 Bq/L and 410±50 Bq/L. This city is identified as a high radon potential area. One water sample located in Lesvos Island (North-East part of Greece) exhibited radon concentration 140±20 Bq/L. Additional six samples displayed high concentrations in potable hot spring water samples. These samples which were collected from the city of Loutraki (Peloponnesus) ranged between 220-230 Bq/L. In addition, two samples characterized as 'medicinal drinking water' gave concentrations between 320 Bq/L and 340 Bq/L. For underground water samples the radon concentrations ranged between 1.2±0.7 Bq/L and 15±4 Bq/L, while for surface water samples the range was 2.7±0.8 Bq/L to 24±6 Bq/L. The observed concentrations of radon gas in potable water samples in Greece were found to be largely low. In Cyprus, they were all well below 15 Bq/L

  4. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  5. The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration

    International Nuclear Information System (INIS)

    Solovyova, Anna Y.; Goldina, Olga A.; Ivanov, Alexey O.; Elfimova, Ekaterina A.; Lebedev, Aleksandr V.

    2016-01-01

    Temperature dependencies of the static initial magnetic susceptibility for ferrofluids at various concentrations are studied using experiment and statistical-mechanical theories. Magnetic susceptibility measurements are carried out for twelve samples of magnetite-based fluids stabilized with oleic acid over a wide range of temperatures (210 K ≲T ≲ 390 K); all samples have the same granulometric composition but different volume ferroparticle concentrations (0.2 ≲ φ ≲ 0.5). Experimental results are analyzed using three theories: the second-order modified mean-field theory (MMF2) [A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 41405 (2001)]; its correction for polydisperse ferrofluids arising from Mayer-type cluster expansion and taking into account the first terms of the polydisperse second virial coefficient [A. O. Ivanov and E. A. Elfimova, J. Magn. Magn. Mater 374, 327 (2015)]; and a new theory based on MMF2 combined with the first terms of the polydisperse second and third virial contributions to susceptibility. It turns out that the applicability of each theory depends on the experimental sample density. If twelve ferrofluid samples are split into three groups of strong, moderate, and low concentrated fluids, the temperature dependences of the initial magnetic susceptibility in each group are very precisely described by one of the three theories mentioned above. The determination of a universal formula predicting a ferrofluid susceptibility over a broad range of concentrations and temperatures remains as a challenge.

  6. High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke

    International Nuclear Information System (INIS)

    Böhlandt, Antje; Schierl, Rudolf; Diemer, Juergen; Koch, Christoph; Bolte, Gabriele; Kiranoglu, Mandy; Fromme, Hermann; Nowak, Dennis

    2012-01-01

    Background: Environmental tobacco smoke (ETS) is one of the most important sources for indoor air pollution and a substantial threat to human health, but data on the concentrations of the trace metals cerium (Ce) and lanthanum (La) in context with ETS exposure are scarce. Therefore the aim of our study was to quantify Ce and La concentrations in indoor air with high ETS load. Methods: In two subsequent investigations Ce, La and cadmium (Cd) in 3 smokers' (11 samples) and 7 non-smokers' (28 samples) households as well as in 28 hospitality venues in Southern Germany were analysed. Active sampling of indoor air was conducted continuously for seven days in every season in the smokers' and non-smokers' residences, and for 4 h during the main visiting hours in the hospitality venues (restaurants, pubs, and discotheques). Results: In terms of residences median levels of Cd were 0.1 ng/m 3 for non-smokers' and 0.8 ng/m 3 for smokers' households. Median concentrations of Ce were 0.4 ng/m 3 and 9.6 ng/m 3 , and median concentrations of La were 0.2 ng/m 3 and 5.9 ng/m 3 for non-smokers' and for smokers' households, respectively. In the different types of hospitality venues median levels ranged from 2.6 to 9.7 ng/m 3 for Cd, from 18.5 to 50.0 ng/m 3 for Ce and from 10.6 to 23.0 ng/m 3 for La with highest median levels in discotheques. Conclusions: The high concentrations of Ce and La found in ETS enriched indoor air of smokers' households and hospitality venues are an important finding as Ce and La are associated with adverse health effects and data on this issue are scarce. Further research on their toxicological, human and public health consequences is urgently required. - Highlights: ► We quantified cer, lanthanum and cadmium concentrations in indoor air. ► Cer and lanthanum concentrations were high in tobacco smoke enriched locations. ► Both elements can be considered as good markers for indoor air quality.

  7. High feather mercury concentrations in the wandering albatross are related to sex, breeding status and trophic ecology with no demographic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Paco, E-mail: pbustama@univ-lr.fr [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Carravieri, Alice [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, 79360 Villiers-en-Bois (France); Goutte, Aurélie [Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, 79360 Villiers-en-Bois (France); École Pratique des Hautes Études (EPHE), SPL, UPMC Université Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Barbraud, Christophe; Delord, Karine; Chastel, Olivier; Weimerskirch, Henri; Cherel, Yves [Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du Centre National de la Recherche Scientifique-Université de La Rochelle, 79360 Villiers-en-Bois (France)

    2016-01-15

    Hg can affect physiology of seabirds and ultimately their demography, particularly if they are top consumers. In the present study, body feathers of >200 wandering albatrosses from Possession Island in the Crozet archipelago were used to explore the potential demographic effects of the long-term exposure to Hg on an apex predator. Variations of Hg with sex, age class, foraging habitat (inferred from δ{sup 13}C values), and feeding habits (inferred from δ{sup 15}N values) were examined as well as the influence of Hg on current breeding output, long-term fecundity and survival. Wandering albatrosses displayed among the highest Hg feather concentrations reported for seabirds, ranging from 5.9 to 95 µg g{sup −1}, as a consequence of their high trophic position (δ{sup 15}N values). These concentrations fall within the same range of those of other wandering albatross populations from subantarctic sites, suggesting that this species has similar exposure to Hg all around the Southern Ocean. In both immature and adult albatrosses, females had higher Hg concentrations than males (28 vs. 20 µg g{sup −1} dw on average, respectively), probably as a consequence of females foraging at lower latitudes than males (δ{sup 13}C values). Hg concentrations were higher in immature than in adult birds, and they remained fairly constant across a wide range of ages in adults. Such high levels in immature individuals question (i) the frequency of moult in young birds, (ii) the efficiency of Hg detoxification processes in immatures compared to adults, and (iii) importantly the potential detrimental effects of Hg in early life. Despite very high Hg concentrations in their feathers, neither effects on adults' breeding probability, hatching failure and fledgling failure, nor on adults' survival rate were detected, suggesting that long-term bioaccumulated Hg was not under a chemical form leading to deleterious effects on reproductive parameters in adult individuals

  8. High feather mercury concentrations in the wandering albatross are related to sex, breeding status and trophic ecology with no demographic consequences

    International Nuclear Information System (INIS)

    Bustamante, Paco; Carravieri, Alice; Goutte, Aurélie; Barbraud, Christophe; Delord, Karine; Chastel, Olivier; Weimerskirch, Henri; Cherel, Yves

    2016-01-01

    Hg can affect physiology of seabirds and ultimately their demography, particularly if they are top consumers. In the present study, body feathers of >200 wandering albatrosses from Possession Island in the Crozet archipelago were used to explore the potential demographic effects of the long-term exposure to Hg on an apex predator. Variations of Hg with sex, age class, foraging habitat (inferred from δ 13 C values), and feeding habits (inferred from δ 15 N values) were examined as well as the influence of Hg on current breeding output, long-term fecundity and survival. Wandering albatrosses displayed among the highest Hg feather concentrations reported for seabirds, ranging from 5.9 to 95 µg g −1 , as a consequence of their high trophic position (δ 15 N values). These concentrations fall within the same range of those of other wandering albatross populations from subantarctic sites, suggesting that this species has similar exposure to Hg all around the Southern Ocean. In both immature and adult albatrosses, females had higher Hg concentrations than males (28 vs. 20 µg g −1 dw on average, respectively), probably as a consequence of females foraging at lower latitudes than males (δ 13 C values). Hg concentrations were higher in immature than in adult birds, and they remained fairly constant across a wide range of ages in adults. Such high levels in immature individuals question (i) the frequency of moult in young birds, (ii) the efficiency of Hg detoxification processes in immatures compared to adults, and (iii) importantly the potential detrimental effects of Hg in early life. Despite very high Hg concentrations in their feathers, neither effects on adults' breeding probability, hatching failure and fledgling failure, nor on adults' survival rate were detected, suggesting that long-term bioaccumulated Hg was not under a chemical form leading to deleterious effects on reproductive parameters in adult individuals. - Highlights: • Immature

  9. Plutonium solution in concentration range from 8 to 17 G/liter

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1997-06-01

    This paper very briefly discusses the need for a fundamental criticality study of low concentrations of plutonium solutions. Examples of the occurrence of such solutions, which are characteristic of waste, are cited. Due to the prevalence of decontaminating and decommissioning activities, low concentration solutions are expected to become an important concern. Technical deficiencies in previous calculations are also discussed as a reason for performing low concentration criticality studies. 3 refs.

  10. Plutonium solution in concentration range from 8 to 17 G/liter

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-01-01

    This paper very briefly discusses the need for a fundamental criticality study of low concentrations of plutonium solutions. Examples of the occurrence of such solutions, which are characteristic of waste, are cited. Due to the prevalence of decontaminating and decommissioning activities, low concentration solutions are expected to become an important concern. Technical deficiencies in previous calculations are also discussed as a reason for performing low concentration criticality studies. 3 refs

  11. High-dynamic-range imaging for cloud segmentation

    Science.gov (United States)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  12. Highly concentrated zinc oxide nanocrystals sol with strong blue emission

    International Nuclear Information System (INIS)

    Vafaee, M.; Sasani Ghamsari, M.; Radiman, S.

    2011-01-01

    Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications. - Research highlights: → Novel sol-gel route has been employed to prepare highly concentrated ZnO colloidal nanocrystals. → Water has been used to control the sources of emission in synthesized material. → A strong blue luminescent material has been obtained.

  13. Numerical simulation on range of high-energy electron moving in accelerator target

    International Nuclear Information System (INIS)

    Shao Wencheng; Sun Punan; Dai Wenjiang

    2008-01-01

    In order to determine the range of high-energy electron moving in accelerator target, the range of electron with the energy range of 1 to 100 MeV moving in common target material of accelerator was calculated by Monte-Carlo method. Comparison between the calculated result and the published data were performed. The results of Monte-Carlo calculation are in good agreement with the published data. Empirical formulas were obtained for the range of high-energy electron with the energy range of 1 to 100 MeV in common target material by curve fitting, offering a series of referenced data for the design of targets in electron accelerator. (authors)

  14. Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau

    International Nuclear Information System (INIS)

    Xiao Hang; Shen Li; Su, Yushan; Barresi, Enzo; DeJong, Maryl; Hung, Hayley; Lei, Ying-Duan; Wania, Frank; Reiner, Eric J.; Sverko, Ed; Kang, Shi-Chang

    2012-01-01

    Atmospheric concentrations of halogenated flame retardants (FRs) were monitored for approximately one year at two remote stations, namely Nam Co on the Tibetan Plateau and Alert in the Canadian High Arctic. BDE-47 and 99 were the dominant polybrominated diphenyl ether (PBDE) congeners at both sites. Atmospheric PBDE concentrations in Nam Co were generally lower than those at Alert. While significant seasonal variations were observed for PBDEs at Alert, the FR concentrations at Nam Co showed no significant seasonality, even though air masses originated from distinctly different regions during different seasons. This suggests that FRs in Tibet do not have regional sources, but are reflective of truly global background contamination. Three new FRs, namely 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (EHTeBB) and bis(2-ethyl-1-hexyl)tetrabromophthalate (TBPH) were detected at relatively high concentrations at both sites. This is the first report of these FRs in the remote global atmosphere and suggests significant potential for long-range atmospheric transport. - Highlights: ► First year-round measurements of FRs in the atmosphere of the Tibetan Plateau. ► PBDEs in Tibet are reflective of truly global background levels. ► Orographic precipitation limits the transport of particle-bound chemicals. ► First study of BTBPE, EHTeBB and TBPH in the Arctic and Tibetan air. ► These new FRs may have significant long-range atmospheric transport potential. - Several brominated flame retardants (BTBPE, EHTeBB, TBPH) were present in the atmosphere of the Arctic and the Tibetan Plateau at levels similar to those of the PBDEs.

  15. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm and soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.

  16. Mesquite Gum as a Novel Reducing and Stabilizing Agent for Modified Tollens Synthesis of Highly Concentrated Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maira Berenice Moreno‐Trejo

    2016-10-01

    Full Text Available The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular, confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular, confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.

  17. Efficient purification and concentration of viruses from a large body of high turbidity seawater.

    Science.gov (United States)

    Sun, Guowei; Xiao, Jinzhou; Wang, Hongming; Gong, Chaowen; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method:•The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation.•Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater.•The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles.

  18. A wide range and high speed automatic gain control

    International Nuclear Information System (INIS)

    Tacconi, E.; Christiansen, C.

    1993-05-01

    Automatic gain control (AGC) techniques have been largely used since the beginning of electronics, but in most of the applications the dynamic response is slow compared with the carrier frequency. The problem of developing an automatic gain control with high dynamic response and wide control range simultaneously is analyzed in this work. An ideal gain control law, with the property that the total loop gain remains constant independent of the carrier amplitude, is obtained. The resulting AGC behavior is compared by computer simulations with a linear multiplier AGC. The ideal gain control law can be approximated using a transconductance amplifier. A practical circuit that has been used at CERN in the radio frequency loops of the Booster Synchrotron is presented. The circuit has high speed and 80-dB gain control range

  19. Nominal Range Sensitivity Analysis of peak radionuclide concentrations in randomly heterogeneous aquifers

    International Nuclear Information System (INIS)

    Cadini, F.; De Sanctis, J.; Cherubini, A.; Zio, E.; Riva, M.; Guadagnini, A.

    2012-01-01

    Highlights: ► Uncertainty quantification problem associated with the radionuclide migration. ► Groundwater transport processes simulated within a randomly heterogeneous aquifer. ► Development of an automatic sensitivity analysis for flow and transport parameters. ► Proposal of a Nominal Range Sensitivity Analysis approach. ► Analysis applied to the performance assessment of a nuclear waste repository. - Abstract: We consider the problem of quantification of uncertainty associated with radionuclide transport processes within a randomly heterogeneous aquifer system in the context of performance assessment of a near-surface radioactive waste repository. Radionuclide migration is simulated at the repository scale through a Monte Carlo scheme. The saturated groundwater flow and transport equations are then solved at the aquifer scale for the assessment of the expected radionuclide peak concentration at a location of interest. A procedure is presented to perform the sensitivity analysis of this target environmental variable to key parameters that characterize flow and transport processes in the subsurface. The proposed procedure is exemplified through an application to a realistic case study.

  20. Estimating concentrations of fine-grained and total suspended sediment from close-range remote sensing imagery

    Science.gov (United States)

    Mosbrucker, Adam; Spicer, Kurt R.; Christianson, Tami; Uhrich, Mark A.

    2015-01-01

    data range among sensors. Of greatest interest to many programs is a hysteresis in the relationship between turbidity and SSC, attributed to temporal variation of particle size distribution (Landers and Sturm, 2013; Uhrich et al., 2014). This phenomenon causes increased uncertainty in regression-estimated values of SSC, due to changes in nephelometric reflectance off the varying grain sizes in suspension (Uhrich et al., 2014). Here, we assess the feasibility and application of close-range remote sensing to quantify SSC and particle size distribution of a disturbed, and highly-turbid, river system. We use a consumer-grade digital camera to acquire imagery of the river surface and a depth-integrating sampler to collect concurrent suspended-sediment samples. We then develop two empirical linear regression models to relate image spectral information to concentrations of fine sediment (clay to silt) and total suspended sediment. Before presenting our regression model development, we briefly summarize each data-acquisition method.

  1. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  2. Concentration and temperature dependence of short-range order in Ni-Ta solid solution using X-ray diffraction method

    International Nuclear Information System (INIS)

    Khwaja, F.A.; Alam, A.

    1980-09-01

    Diffuse X-ray scattering investigations about the existence of short-range order (SRO) have been carried out in the Ni-Ta system for different concentrations and annealing temperatures. It is observed that the values of the SRO parameters for the first co-ordination shell have anomalously large negative values for all the samples studied. These values of the α 1 depend upon the annealing temperatures and the concentration of Ta atoms in the Ni-Ta system. The results of the theoretical predictions of the ordering potential obtained using the formulae of the electronic theory of SRO, confirm the existence of very strong attractive correlation between the atoms of the different species in this system. (author)

  3. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    Science.gov (United States)

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  4. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O' Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  5. Thin-source concentration dependent diffusion

    International Nuclear Information System (INIS)

    Eng, G.

    1978-01-01

    The diffusion of (Ca ++ ) in NaCl has been measured for various diffusion times and for the temperature range (575 0 to 775 0 C), using a thin-source of 45 Ca tracer, rectangular geometry, and serial sectioning. The pre-diffusion surface concentration was approximately 3 x 10 16 (Ca)-atoms/cm 2 , which, for an average penetration depth of 100 to 300 μm, produces a maximum (post-diffusion) impurity concentration comparable to or greater than the intrinsic cation vacancy concentration. The high-temperature function closely matches the D 0 (T) function obtained from low impurity concentration experiments. The lower-temperature function, combined with the sudden failure of the D(C) = D 0 (1 + [C] + 0.5[C] 2 ) function at these lower temperatures, indicates the onset of a second diffusion process, one which would operate only at extremely high impurity concentrations. This low-temperature behavior is shown to be consistent with a breakdown of the conditions assumed for vacancy equilibrium

  6. PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event.

    Science.gov (United States)

    Chi, Kai Hsien; Lin, Chuan-Yao; Yang, Chang-Feng Ou; Wang, Jia-Lin; Lin, Neng-Heui; Sheu, Guey-Rong; Lee, Chung-Te

    2010-04-15

    Recent biomass burning in Southeast Asia has raised global concerns over its adverse effects on visibility, human health, and global climate. The concentrations of total suspended particles (TSPs) and other vapor-phase pollutants (CO and ozone) were monitored at Lulin, an atmospheric background station in central Taiwan in 2008. To evaluate the long-range transport of persistent organic pollutants (POPs) during the Southeast Asia biomass burning event, the atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were also measured at Lulin station. The atmospheric PCDD/F and TSP concentrations measured at Lulin station ranged from 0.71-3.41 fg I-TEQ/m(3) and 5.32-55.6 microg/m(3), respectively, during the regular sampling periods. However, significantly higher concentrations of PCDD/Fs, TSPs, CO, and ozone were measured during the spring season. These high concentrations could be the result of long-range transport of the products of Southeast Asia biomass burning. During the Southeast Asia biomass burning event (March 18-24, 2008), an intensive observation program was also carried out at the same station. The results of this observation program indicated that the atmospheric PCDD/F concentration increased dramatically from 2.33 to 390 fg I-TEQ/m(3) (March 19, 2008). The trace gas (CO) of biomass burning also significantly increased to 232 ppb during the same period, while the particle-bound PCDD/Fs in the TSP increased from 28.7 to 109 pg I-TEQ/g-TSP at Lulin station during the burning event. We conclude that there was a significant increase in the PCDD/F concentration in ambient air at a high-altitude background station in central Taiwan during the Southeast Asia biomass burning event.

  7. Electrical resistivity of liquid iron with high concentration of light element impurities

    Science.gov (United States)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  8. Use of high concentrations of carbon dioxide for stunning rabbits reared for meat production

    Directory of Open Access Journals (Sweden)

    A. Dalmau

    2016-03-01

    Full Text Available Abstract: An investigation was performed to determine whether high concentrations of carbon dioxide (CO2 at 70-98% in atmospheric air are a suitable alternative for stunning rabbits compared to conventional approaches such as electronarcosis. Aversion to the gas and efficacy in causing prolonged unconsciousness and death were studied in a total of 480 rabbits by means of behavioural parameters, physiological indicators (presence of rhythmic breathing and corneal reflex and electroencephalography (EEG, brain function. The use of any of the 4 studied concentrations of the gas caused more nasal discomfort and vocalisations than the use of atmospheric air (P<0.001. EEG activity confirmed that loss of posture is a good indicator of the onset of unconsciousness in rabbits exposed to CO2, occurring earlier (P<0.05 at 90 and 98% than at 70 and 80%. Rabbits showed signs of aversion for 15 s before the onset of unconsciousness, which occurred around 30 s after the beginning of the exposure to the gas, similar to species such as swine in which high concentrations of CO2 are also used for stunning. CO2 at 80 to 98% is suggested as a reasonable concentration range to induce a long state of unconsciousness and death in rabbits, while 70% CO2 is not recommended because it requires too long duration of exposure (more than 360 s to ensure effectiveness. Despite the advantages in terms of pre-stun handling and irreversibility, CO2 is not free of animal welfare concerns. In consequence, a debate is necessary to ascertain if CO2 can be considered a suitable alternative to stun rabbits, considering the advantages and drawbacks cited, quantified in the present study as 15 s of aversion (nasal discomfort and vocalisations before losing posture.

  9. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions

    Science.gov (United States)

    Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur

    2004-01-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  10. IMPACT OF OXYGEN CONCENTRATION ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2003-01-27

    These tests have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels in environments having dissolved oxygen (DO) concentrations ranging from very low to very high. The results suggest that the highest mussel kill can be achieved in moderately to highly aerated environments, while kill may be 0-20% lower under conditions of very low oxygen. For example, under highly oxygenated conditions 97% kill was achieved while conditions having low DO produced 79% mussel kill. Service water measured in a local power plant indicated that DO concentrations were in the range of 8-9 ppm (e.g., highly aerated) within their pipes. Therefore, we will not expect to see decreases in the efficacy of CL0145A treatments due to oxygen levels within such power plant pipes.

  11. IMPACT OF OXYGEN CONCENTRATION ON ZEBRA MUSSEL MORTALITY

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2003-01-01

    These tests have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels in environments having dissolved oxygen (DO) concentrations ranging from very low to very high. The results suggest that the highest mussel kill can be achieved in moderately to highly aerated environments, while kill may be 0-20% lower under conditions of very low oxygen. For example, under highly oxygenated conditions 97% kill was achieved while conditions having low DO produced 79% mussel kill. Service water measured in a local power plant indicated that DO concentrations were in the range of 8-9 ppm (e.g., highly aerated) within their pipes. Therefore, we will not expect to see decreases in the efficacy of CL0145A treatments due to oxygen levels within such power plant pipes

  12. Mitigation of houses with extremely high indoor radon concentrations

    International Nuclear Information System (INIS)

    Jiranek, M.; Neznal, M.

    2006-01-01

    Full text of publication follows: The paper reports on the experience of the Czech Technical University in dealing with mitigation of houses in which unusually high indoor radon concentrations were found. The whole process of remediation is illustrated by example of an old single-family house that was built in the area formed by highly permeable soils with high radon content in the soil air. T he house has a small cellar located under 1/5 of the ground floor area. Two types of floors, i.e. timber floors and cracked concrete slabs were found in the house. As a result of extremely high radon concentration in the sub-floor region (up to 600 kBq/m 3 ) and leaky structures in contact with soil, radon concentrations around 100 kBq/m 3 in the cellar and up to 60 kBq/m 3 in the living rooms on the ground floor were measured prior to mitigation. Mitigation measures that were carried out in the house consist of reconstruction of timber floors and installation of active soil depressurization. Timber floors were replaced with concrete slab fitted with damp proof membrane, thermal insulation and floor covering. The soil depressurization system was made up of two sections. The first section is composed of the network of perforated pipes inserted in the drainage layer placed under the new floors and four perforated tubes drilled under the existing floors. The soil air from this section is extracted by means of a roof fan installed at the top of the vertical exhaust pipe running inside the living space and terminating above the roof. The second section was designed to withdraw by means of a small fan radon-laden air from the filling in the floor above the cellar and from perforated tubes drilled into the sub-floor region under the rooms adjacent to the cellar. It serves also for the active ventilation of the cellar. Pressure, temperature and radon concentration sensors were installed into the drainage layer during the reconstruction of floors to record variations in these

  13. Concentration of High Level Radioactive Liquid Waste. Basic data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Juvenelle, A.; Masson, M.; Garrido, M.H. [DEN/VRH/DRCP/SCPS/LPCP, BP 17171 - 30207 Bagnols sur Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: In order to enhance its knowledge about the concentration of high level liquid waste (HLLW) from the nuclear fuel reprocessing process, a program of studies was defined by Cea. In a large field of acidity, it proposes to characterize the concentrated solution and the obtained precipitates versus the concentration factor. Four steps are considered: quantification of the salting-out effect on the concentrate acidity, acquisition of solubility data, precipitates characterisation versus the concentration factor through aging tests and concentration experimentation starting from simulated fission products solutions. The first results, reported here, connect the acidity of the concentrated solution to the concentration factor and allow us to precise the field of acidity (4 to 12 N) for the next experiments. In this field, solubility data of various elements (Ba, Sr, Zr...) are separately measured at room temperature, in nitric acid in a first time, then in the presence of various species present in medium (TBP, PO{sub 4}{sup 3-}). The reactions between these various elements are then investigated (formation of insoluble mixed compounds) by following the concentration cations in solution and characterising the precipitates. (authors)

  14. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  15. Rheology of dilute acid hydrolyzed corn stover at high solids concentration.

    Science.gov (United States)

    Ehrhardt, M R; Monz, T O; Root, T W; Connelly, R K; Scott, C T; Klingenberg, D J

    2010-02-01

    The rheological properties of acid hydrolyzed corn stover at high solids concentration (20-35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

  16. Gamut mapping in a high-dynamic-range color space

    Science.gov (United States)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  17. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach

    KAUST Repository

    Williamson, Curtis B.

    2015-12-23

    © 2015 American Chemical Society. Realizing the promise of nanoparticle-based technologies demands more efficient, robust synthesis methods (i.e., process intensification) that consistently produce large quantities of high-quality nanoparticles (NPs). We explored NP synthesis via the heat-up method in a regime of previously unexplored high concentrations near the solubility limit of the precursors. We discovered that in this highly concentrated and viscous regime the NP synthesis parameters are less sensitive to experimental variability and thereby provide a robust, scalable, and size-focusing NP synthesis. Specifically, we synthesize high-quality metal sulfide NPs (<7% relative standard deviation for Cu2-xS and CdS), and demonstrate a 10-1000-fold increase in Cu2-xS NP production (>200 g) relative to the current field of large-scale (0.1-5 g yields) and laboratory-scale (<0.1 g) efforts. Compared to conventional synthesis methods (hot injection with dilute precursor concentration) characterized by rapid growth and low yield, our highly concentrated NP system supplies remarkably controlled growth rates and a 10-fold increase in NP volumetric production capacity (86 g/L). The controlled growth, high yield, and robust nature of highly concentrated solutions can facilitate large-scale nanomanufacturing of NPs by relaxing the synthesis requirements to achieve monodisperse products. Mechanistically, our investigation of the thermal and rheological properties and growth rates reveals that this high concentration regime has reduced mass diffusion (a 5-fold increase in solution viscosity), is stable to thermal perturbations (64% increase in heat capacity), and is resistant to Ostwald ripening.

  18. Concentration of bisphenol A in highly consumed canned foods on the U.S. market.

    Science.gov (United States)

    Noonan, Gregory O; Ackerman, Luke K; Begley, Timothy H

    2011-07-13

    Metal food and drink cans are commonly coated with epoxy films made from phenolic polymers produced from bisphenol A (BPA). It is well established that residual BPA monomer migrates into can contents during processing and storage. While a number of studies have reported BPA concentrations in foods from foreign markets and specialty foods on the U.S. market, very few peer-reviewed data for the BPA concentrations in canned food from the U.S. market were available. This study quantified BPA concentrations in 78 canned and two frozen food products from the U.S. market using an adaptation of a previously reported liquid chromatography-tandem mass spectrometry method. The tested products represented 16 different food types that are from the can food classifications that constitute approximately 65% of U.S. canned food sales and canned food consumption. BPA was detected in 71 of the 78 canned food samples but was not detected in either of the two frozen food samples. Detectable BPA concentrations across all foods ranged from 2.6 to 730 ng/g. Large variations in BPA concentrations were found between different products of the same food type and between different lots of the same product. Given the large concentration ranges, the only distinguishable trend was that fruits and tuna showed the lowest BPA concentrations. Experiments with fortified frozen vegetables and brine solutions, as well as higher BPA concentrations in canned food solids over liquid portions, clearly indicated that BPA partitions into the solid portion of foods.

  19. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  20. Interacting Frenkel defects at high concentration and the superionic transition in fluorite crystals

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-11-01

    A spherical cell model is proposed to account for the explicit concentration dependence of Frenkel defects in an ionic system. In the model, the linearized Debye-Hueckel equation is soluble exactly, subject to the boundary condition that the electric field is zero at the cell boundary R, related to the concentration α of defects by R proportional to csup(-1/3). This screened field is used to calculate the chemical potential, which in turn leads to a condition for the instability of the interacting defect assembly. This condition allows one to calculate the enhancement of the concentration of defects above its Arrhenius value at the point of instability in terms of (a) the critical concentration csub(c), (b) a/R, where a is the radius of defect and (c) the Debye-Hueckel screening length kappasub(c). It is clear from the cell model that this enhancement factor is reduced somewhat in the relevant range of parameters in some of the fluorites from its value in extended Debye-Hueckel theory. It is anticipated that the instability discussed here should afford an upper bound to csub(c) at the superionic transition, within the range of validity of the model. The excess he at capacity csub(p) is also discussed briefly. (author)

  1. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was <9% and <16% lower than U.S. Geological Survey's (USGS) estimates using their LOADEST or composite methods, respectively. USGS methods generally overestimated nitrate loads during rising stages and underestimated the loads during falling stages. While changes in nitrate concentrations in large rivers are generally not as responsive to alterations in diurnal inputs and/or watershed hydrology as small rivers, high-frequency water quality sampling would help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  2. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    Fehringer, D.J.

    1985-10-01

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  3. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  4. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration.

    Science.gov (United States)

    Ye, Qing; Wiera, Boguslaw; Steudle, Ernst

    2004-02-01

    Isolated internodes of Chara corallina have been used to study the gating of aquaporins (water channels) in the presence of high concentrations of osmotic solutes of different size (molecular weight). Osmolytes were acetone and three glycol ethers: ethylene glycol monomethyl ether (EGMME), diethylene glycol monomethyl ether (DEGMME), and triethylene glycol monoethyl ether (TEGMEE). The 'osmotic efficiency' of osmolytes was quite different. Their reflection coefficients ranged between 0.15 (acetone), 0.59 (EGMME), 0.78 (DEGMME), and 0.80 (TEGMEE). Bulk water permeability (Lp) and diffusive permeabilities (Ps) of heavy water (HDO), hydrogen peroxide (H2O2), acetone, and glycol ethers (EGMME, DEGMME, and TEGMEE) were measured using a cell pressure probe. Cells were treated with different concentrations of osmotic solutes of up to 800 mM ( approximately 2.0 MPa of osmotic pressure). Inhibition of aquaporin activity increased with both increasing concentration and size of solutes (reflection coefficients). As cell Lp decreased, Ps increased, indicating that water and solutes used different passages across the plasma membrane. Similar to earlier findings of an osmotic gating of ion channels, a cohesion/tension model of the gating of water channels in Chara internodes by high concentration is proposed. According to the model, tensions (negative pressures) within water channels affected the open/closed state by changing the free energy between states and favoured a distorted/collapsed rather than the open state. They should have differed depending on the concentration and size of solutes that are more or less excluded from aquaporins. The bigger the solute, the lower was the concentration required to induce a reversible closure of aquaporins, as predicted by the model.

  5. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  6. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  7. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  8. Starch source in high concentrate rations does not affect rumen pH, histamine and lipopolysaccharide concentrations in dairy cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakom, C.; Everts, H.; Hendriks, W.H.

    2012-01-01

    The replacement of ground corn by cassava meal on rumen pH, lipopolysaccharide (LPS) and histamine concentrations under typical Thai feeding conditions (high concentrate diets and rice straw as the sole source of roughage) was investigated. Four rumen-fistulated crossbred Holstein, non-pregnant, dry

  9. Plasma capric acid concentrations in healthy subjects determined by high-performance liquid chromatography.

    Science.gov (United States)

    Shrestha, Rojeet; Hui, Shu-Ping; Imai, Hiromitsu; Hashimoto, Satoru; Uemura, Naoto; Takeda, Seiji; Fuda, Hirotoshi; Suzuki, Akira; Yamaguchi, Satoshi; Hirano, Ken-Ichi; Chiba, Hitoshi

    2015-09-01

    Capric acid (FA10:0, decanoic acid) is a medium-chain fatty acid abundant in tropical oils such as coconut oil, whereas small amounts are present in milk of goat, cow, and human. Orally ingested FA10:0 is transported to the liver and quickly burnt within it. Only few reports are available for FA10:0 concentrations in human plasma. Fasting (n = 5, male/female = 3/2, age 31 ± 9.3 years old) and non-fasting (n = 106, male/female = 44/62, age 21.9 ± 3.2 years old) blood samples were collected from apparently healthy Japanese volunteers. The total FA10:0 in the plasma were measured by high-performance liquid chromatography after derivatization with 2-nitrophenylhydrazine followed by UV detection. Inter and intra-assay coefficient of variation of FA10:0 assay at three different concentrations ranged in 1.7-3.9 and 1.3-5.4%, respectively, with an analytical recovery of 95.2-104.0%. FA10:0 concentration was below detection limit (0.1 µmol/L) in each fasting human plasma. FA10:0 was not detected in 50 (47.2%) of 106 non-fasting blood samples, while 29 (27.4%) plasma samples contained FA10:0 less than or equal to 0.5 µmol/L (0.4 ± 0.1), and 27 (25.5%) contained it at more than 0.5 µmol/L (0.9 ± 0.3). A half of the non-fasting plasma samples contained detectable FA10:0. This simple, precise, and accurate high-performance liquid chromatography method might be useful for monitoring plasma FA10:0 during medium-chain triglycerides therapy. © The Author(s) 2015.

  10. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    CERN Document Server

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...

  11. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  12. Resting serum concentration of high-sensitivity C-reactive protein ...

    African Journals Online (AJOL)

    Resting serum concentration of high-sensitivity C-reactive protein (hs-CRP) in sportsmen and untrained male adults. F.A. Niyi-Odumosu, O. A. Bello, S.A. Biliaminu, B.V. Owoyele, T.O. Abu, O.L. Dominic ...

  13. High arsenic and boron concentrations in groundwaters related to mining activity in the Bigadic borate deposits (Western Turkey)

    International Nuclear Information System (INIS)

    Gemici, Unsal; Tarcan, Gueltekin; Helvaci, Cahit; Somay, A. Melis

    2008-01-01

    This study documents the environmental impacts of borate mines in Bigadic district, which are the largest colemanite and ulexite deposits in the world. Borate-bearing formations have affected the concentrations of some contaminants in groundwater. Groundwater quality is directly related to the borate zones in the mines as a result of water-rock interaction processes. Calcium is the dominant cation and waters are Ca-SO 4 and HCO 3 type in the mine (Tuelue borate mine) from which colemanite is produced. However in the Simav and Acep Borate Mines, ulexite and colemanite minerals are produced and waters from these open pit mines are Na-HCO 3 -SO 4 types. High SO 4 concentrations (reaching 519 mg/L) might be explained by the existence of anhydrite, gypsum and celestite minerals in the borate zone. Groundwater from tuff and borate strata showed relatively low pH values (7-8) compared to surface and mine waters (>8). EC values ranged from 270 to 2850 μS/cm. Boron and As were the two important contaminants determined in the groundwaters around the Bigadic borate mines. Arsenic is the major pollutant and it ranged from 33 to 911 μg/L in the groundwater samples. The concentrations of B in the study area ranged from 0.05 to 391 mg/L. The highest B concentrations were detected at the mine areas. The extension of the borate zones in the aquifer systems is the essential factor in the enrichment of B and As, and some major and trace elements in groundwaters are directly related to the leaching of the host rock which are mainly composed of tuffs and limestones. According to drinking water standards, all of the samples exceed the tolerance limit for As. Copper, Mn, Zn and Li values are enriched but do not exceed the drinking water standards. Sulfate, Al and Fe concentrations are above the drinking water standard for the groundwater samples

  14. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations

    DEFF Research Database (Denmark)

    Pétursdóttir, Una; Kirkelund, Gunvor Marie; Press-Kristensen, Kåre

    2017-01-01

    The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d < 100 nm) in the town Sisimiut and two nearby settlements, Sarfann......The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d ..., Sarfannguit and Itilleq, in West Greenland. Measurements were carried out during three weeks in April and May 2016. Air temperatures during the measurements ranged from −4.4 to +8.7 °C. A portable condensation particle counter (P-Trak) was used for the measurements. Results showed that the lowest...... in Sisimiut, while subsequent measurements at the same location showed much lower PNCs. The presence of heavy machinery elevated PNCs highly during two measurement events, giving PNCs up to 270,993 cm−3 but dropping to 1180 cm−3 10 min later, after the vehicle had passed by. A measurement event in Sisimiut...

  15. Development of Concentration and Calcination Technology For High Level Liquid Waste

    International Nuclear Information System (INIS)

    Pande, D.P.

    2006-01-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  16. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    Science.gov (United States)

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  17. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  18. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication

    Directory of Open Access Journals (Sweden)

    Takaaki Kasuga

    2018-02-01

    Full Text Available Nanopaper prepared from holocellulose pulp is one of the best substrates for flexible electronics because of its high thermal resistance and high clear transparency. However, the clearness of nanopaper decreases with increasing concentration of the starting cellulose nanofiber dispersion—with the use of a 2.2 wt % dispersion, for example—resulting in translucent nanopaper with a high haze of 44%. To overcome this problem, we show that the dilution of this high-concentration dispersion with water followed by sonication for 10 s reduces the haze to less than 10% while maintaining the high thermal resistance of the nanopaper. Furthermore, the combination of water dilution and a short sonication treatment improves the clearness of the nanopaper, which would translate into cost savings for the transportation and storage of this highly concentrated cellulose nanofiber dispersion. Finally, we demonstrate the improvement of the electrical conductivity of clear transparent nanopaper prepared from an initially high-concentration dispersion by dropping and heating silver nanowire ink on the nanopaper. These achievements will pave the way toward the realization of the mass production of nanofiber-based flexible devices.

  19. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  20. Absorption kinetics of two highly concentrated preparations of growth hormone: 12 IU/ml compared to 56 IU/ml

    DEFF Research Database (Denmark)

    Laursen, Torben; Susgaard, Søren; Jensen, Flemming Steen

    1994-01-01

    was to compare the relative bioavailability of two highly concentrated (12 IU/ml versus 56 IU/ml) formulations of biosynthetic human growth hormone administered subcutaneously. After pretreatment with growth hormone for at least four weeks, nine growth hormone deficient patients with a mean age of 26.2 years......AbstractSend to: Pharmacol Toxicol. 1994 Jan;74(1):54-7. Absorption kinetics of two highly concentrated preparations of growth hormone: 12 IU/ml compared to 56 IU/ml. Laursen T1, Susgaard S, Jensen FS, Jørgensen JO, Christiansen JS. Author information Abstract The purpose of this study...... (range 17-43) were studied two times in a randomized design, the two studies being separated by at least one week. At the start of each study period (7 p.m.), growth hormone was injected subcutaneously in a dosage of 3 IU/m2. The 12 IU/ml preparation of growth hormone was administered on one occasion...

  1. Resonance absorption measurements of atom concentrations in reacting gas mixtures. II. Calibration of microwave sources over a wide temperature range

    International Nuclear Information System (INIS)

    Chiang, C.; Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1979-01-01

    A series of experiments was carried out to calibrate three different microwave discharge lamps for analysis for D or H atoms, using Lyman-α absorption. Known concentrations of D atoms were produced in a shock tube by the reaction of 0.05--4 ppm D 2 with N 2 O in argon at 1800--3000 K. H atoms were produced by dissociation of 2,2,3,3-tetramethylbutane (10 ppm in argon) at 980--1140 K. These absorption data were compared with the absorption calculated from Lyman-α line shapes reported in an earlier paper, good agreement being found. These experiments provide a sound basis for obtaining the temperature and concentration dependence of the absorption coefficient over a wide temperature range, for H and D concentrations between 10 -12 and 10 -10 mole/cc

  2. Delineation of concentration ranges and longitudinal changes of human plasma protein variants.

    Directory of Open Access Journals (Sweden)

    Olgica Trenchevska

    Full Text Available Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

  3. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  4. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  5. High-concentration mirror-based Kohler integrating system for tandem solar cells

    Science.gov (United States)

    Winston, R.; Benitez, P.; Cvetkovic, A.

    2006-06-01

    A novel two-mirror high concentration nonimaging optic has been designed that shares the advantages of present two mirror aplanatic imaging concentrators but also overcomes their main limitation of trade-off between acceptance angle and irradiance uniformity. A system concept has been defined, and a first prototype in under development.

  6. Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process.

    Science.gov (United States)

    Arrizon, Javier; Gschaedler, Anne

    2002-11-01

    In the tequila industry, fermentation is traditionally achieved at sugar concentrations ranging from 50 to 100 g x L(-1). In this work, the behaviour of the Saccharomyces cerevisiae yeast (isolated from the juices of the Agave tequilana Weber blue variety) during the agave juice fermentation is compared at different sugar concentrations to determine if it is feasible for the industry to run fermentation at higher sugar concentrations. Fermentation efficiency is shown to be higher (above 90%) at a high concentration of initial sugar (170 g x L(-1)) when an additional source of nitrogen (a mixture of amino acids and ammonium sulphate, different than a grape must nitrogen composition) is added during the exponential growth phase.

  7. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    Science.gov (United States)

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  8. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  9. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  10. Fungi outcompete bacteria under increased uranium concentration in culture media

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2013-01-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. -- Highlights: ► Fungi outcompete bacteria under increased uranium concentration in culture media. ► Soil microorganisms isolated from the Ranger Land Application Areas (LAAs) were resistant to uranium. ► Bacillus was the most abundant cultivable genus retrieved from the Ranger LAAs soils. ► Uranium in LAAs soils is

  11. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation.

    Science.gov (United States)

    Feyerabend, Frank; Witte, Frank; Kammal, Michael; Willumeit, Regine

    2006-12-01

    The effect of unphysiologically high extracellular magnesium concentrations on chondrocytes, induced by the supplementation of magnesium sulfate, was studied using a 3-phase tissue engineering model. The experiments showed that chondrocyte proliferation and redifferentiation, on the gene and protein expression level, are enhanced. A negative influence was found during chondrogenesis where an inhibition of extracellular matrix formation was observed. In addition, a direct impact on chondrocyte metabolism, elevated magnesium concentrations also affected growth factor effectiveness by consecutive influences during chondrogenesis. All observations were dosage dependent. The results of this study indicate that magnesium may be a useful tool for cartilage tissue engineering.

  12. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun; Kavusi, Sam; Salama, Khaled N.

    2012-01-01

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo

  13. High serum uric acid concentration predicts poor survival in patients with breast cancer.

    Science.gov (United States)

    Yue, Cai-Feng; Feng, Pin-Ning; Yao, Zhen-Rong; Yu, Xue-Gao; Lin, Wen-Bin; Qian, Yuan-Min; Guo, Yun-Miao; Li, Lai-Sheng; Liu, Min

    2017-10-01

    Uric acid is a product of purine metabolism. Recently, uric acid has gained much attraction in cancer. In this study, we aim to investigate the clinicopathological and prognostic significance of serum uric acid concentration in breast cancer patients. A total of 443 female patients with histopathologically diagnosed breast cancer were included. After a mean follow-up time of 56months, survival was analysed using the Kaplan-Meier method. To further evaluate the prognostic significance of uric acid concentrations, univariate and multivariate Cox regression analyses were applied. Of the clinicopathological parameters, uric acid concentration was associated with age, body mass index, ER status and PR status. Univariate analysis identified that patients with increased uric acid concentration had a significantly inferior overall survival (HR 2.13, 95% CI 1.15-3.94, p=0.016). In multivariate analysis, we found that high uric acid concentration is an independent prognostic factor predicting death, but insufficient to predict local relapse or distant metastasis. Kaplan-Meier analysis indicated that high uric acid concentration is related to the poor overall survival (p=0.013). High uric acid concentration predicts poor survival in patients with breast cancer, and might serve as a potential marker for appropriate management of breast cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition

    Directory of Open Access Journals (Sweden)

    Dan Luo

    2017-06-01

    Full Text Available To understand the effects of niacin on the ruminal microbial ecology of cattle under high-concentrate diet condition, Illumina MiSeq sequencing technology was used. Three cattle with rumen cannula were used in a 3 × 3 Latin-square design trial. Three diets were fed to these cattle during 3 periods for 3 days, respectively: high-forage diet (HF; forage-to-concentrate ratio = 80:20, high-concentrate diet (HC; forage-to-concentrate ratio = 20:80, and HC supplemented with 800 mg/kg niacin (HCN. Ruminal pH was measured before feeding and every 2 h after initiating feeding. Ruminal fluid was sampled at the end of each period for microbial DNA extraction. Overall, our findings revealed that subacute ruminal acidosis (SARA was induced and the α-diversity of ruminal bacterial community decreased in the cattle of HC group. Adding niacin in HC could relieve the symptoms of SARA in the cattle but the ruminal pH value and the Shannon index of ruminal bacterial community of HCN group were still lower than those of HF group. Whatever the diet was, the ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes and Proteobacteria. High-concentrate diet significantly increased the abundance of Prevotella, and decreased the abundance of Paraprevotella, Sporobacter, Ruminococcus and Treponema than HF. Compared with HC, HCN had a trend to decrease the percentage of Prevotella, and to increase the abundance of Succiniclasticum, Acetivibrio and Treponema. Increasing concentrate ratio could decrease ruminal pH value, and change the ruminal microbial composition. Adding niacin in HC could increase the ruminal pH value, alter the ruminal microbial composition.

  15. The virucidal spectrum of a high concentration alcohol mixture

    NARCIS (Netherlands)

    van Engelenburg, F. A. C.; Terpstra, F. G.; Schuitemaker, H.; Moorer, W. R.

    2002-01-01

    The virucidal spectrum of a high concentration alcohol mixture (80% ethanol and 5% isopropanol) was determined for a broad series of lipid-enveloped (LE) and non-lipid-enveloped (NLE) viruses covering all relevant blood-borne viruses. LE viruses were represented by human immunodeficiency virus

  16. Highly efficient holograms based on c-Si metasurfaces in the visible range.

    Science.gov (United States)

    Martins, Augusto; Li, Juntao; da Mota, Achiles F; Wang, Yin; Neto, Luiz G; do Carmo, João P; Teixeira, Fernando L; Martins, Emiliano R; Borges, Ben-Hur V

    2018-04-16

    This paper reports on the first hologram in transmission mode based on a c-Si metasurface in the visible range. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high tolerance to both fabrication and wavelength variations demonstrate that holograms based on c-Si metasurfaces are quite attractive for diffractive optics applications, and particularly for full-color holograms.

  17. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  18. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  19. Studies on γ-ray induced structural changes in Nd{sup 3+} doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges

    Energy Technology Data Exchange (ETDEWEB)

    Sundara Rao, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Gandhi, Y. [Department of Physics, Kakani Venkata Ratnam College, Nandigama 521 185, A.P. (India); Sanyal, Bhaskar [Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Bhargavi, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Piasecki, M. [Institute of Physics, J. Dlugosz University, Ul. Armii Krajowej 13/15, 42-201 Czestochowa (Poland); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India)

    2014-12-15

    Graphical abstract: TL glow curves of PbO–SiO{sub 2}:Nd{sup 3+} glasses mixed with different concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose 5.0 kGy. - Highlights: • TL studies of Nd{sup 3+} ions doped lead alumino silicate glasses were carried out. • Highest TL output was observed in the glasses mixed with 10 mol% of Al{sub 2}O{sub 3}. • Different mechanisms responsible for TL emission were discussed. • Near linearity of the dose response was observed in the dose range of 1.0–3.0 kGy. • These glasses may be useful as dosimeters in processing perishable food commodities. - Abstract: Thermoluminescence (TL) studies on PbO–Al{sub 2}O{sub 3}–SiO{sub 2}:Nd{sup 3+} glasses mixed with varying concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose in the range 0–5.0 kGy were carried out. The TL emission exhibited a dosimetric peak at about 185 °C. The TL output under the glow peak increased with increasing Al{sub 2}O{sub 3} and also with the γ-ray dose. The mechanisms responsible for TL emission and enhancement of TL output with increase in the concentration of Al{sub 2}O{sub 3} were quantitatively discussed in terms of induced structural defects in the vicinity of Nd{sup 3+} ions due to interaction of γ-rays with the glass network in the scenario of varying concentration of Al{sub 2}O{sub 3}. The dose response of these glass samples exhibited linear behavior in the medium dose range viz., 1.0–3.0 kGy. Finally, it is concluded that the glass containing the highest concentration of Al{sub 2}O{sub 3} exhibits high TL output and such glasses are useful for dosimetry in the range 1.0–3.0 kGy and hence these glasses may be useful for dosimetry in such high range of doses required for commercial radiation processing of perishable food commodities to extend their shelf-lives.

  20. Mechanism of de-activation and clustering of B in Si at extremely high concentration

    International Nuclear Information System (INIS)

    Romano, L.; Piro, A.M.; Privitera, V.; Rimini, E.; Fortunato, G.; Svensson, B.G.; Foad, M.; Grimaldi, M.G.

    2006-01-01

    It is known that B deactivation and clustering occur in the presence of an excess of Si self-interstitials (Is). First principle calculations predicted the path of clusters growth, but the precursor complexes are too small to be visible even by the highest resolution microscopy. Channeling with nuclear reaction analyses allowed to detect the location of small B-Is complexes into the lattice formed as a consequence of the B interaction with the Is. In this work we extend this method to determine the complexes formed during the initial stage of B precipitation in Si doped at extremely high concentration (4 at%) and subjected to thermal treatment. The samples were prepared by excimer laser annealing (ELA) of Si implanted with 1 keV B. The thickness of the molten layer was 100 nm and the B profile was boxlike with a maximum hole concentration of ∼2 x 10 21 cm -3 . The electrical deactivation and carrier mobility of this metastable system has been studied as a function of subsequent annealing in the temperature range between 200 and 850 deg. C. Channeling analyses have been performed to investigate the B lattice location at the initial stage of precipitation. The difference, with respect to previous investigations, is the very small distance (<1 nm) between adjacent B atoms substitutional located in the lattice and the absence of Is that can be released during annealing, since the end of range defects were completely dissolved by ELA. In this way, information on the B complex evolution in a free-of-defects sample have been obtained

  1. Effects of high concentration of chromium stress on physiological ...

    African Journals Online (AJOL)

    We studied the effects of high concentration of chromium (Cr) stress on physiological and biochemical characters and accumulation of Cr in Pingyang Tezao tea [Camellia sinensis (L) O. Kutze 'Pingyangtezao'] through a pot experiment. The results show that the indicators of photosynthesis were all suppressed with ...

  2. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  3. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Alameda, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Colmenero Sujo, L.; Montero Cabrera, M.E. E-mail: elena.montero@cimav.edu.mx; Villalba, L.; Renteria Villalobos, M.; Torres Moye, E.; Garcia Leon, M.; Garcia-Tenorio, R.; Mireles Garcia, F.; Herrera Peraza, E.F.; Sanchez Aroche, D

    2004-07-01

    High-resolution gamma spectrometry was used to determine the concentration of {sup 40}K, {sup 238}U and {sup 232}Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m{sup 3}; the radon concentrations detected exceeded 148 Bq/m{sup 3} in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m{sup 3}. The high activity of {sup 238}U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  4. Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama, Chihuahua, Mexico.

    Science.gov (United States)

    Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D

    2004-01-01

    High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.

  5. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  6. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  7. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Cottonwood project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 15 groundwater samples, 79 stream sediment samples, and 85 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from 0.25 to 3.89 ppB. The highest concentrations are from groundwaters from the Little Cottonwood and Ferguson Stocks. Variables that appear to be associated with uranium in groundwater include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent, molybdenum and strontium. This association is attributed to the Monzonitic Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes, and known sulfide deposits. Soluble uranium concentrations (U-FL) in stream sediments range from 0.31 to 72.64 ppM. Total uranium concentrations (U-NT) range from 1.80 to 75.20 ppM. Thorium concentrations range from <2 to 48 ppM. Anomalous values for uranium and thorium are concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks. Variables which are areally associated with high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock are barium, copper, molybdenum, and zinc. High concentrations of these variables are located near sulfide deposits within the Little Cottonwood Stock

  8. Aircraft micro-doppler feature extraction from high range resolution profiles

    CSIR Research Space (South Africa)

    Berndt, RJ

    2015-10-01

    Full Text Available The use of high range resolution measurements and the micro-Doppler effect produced by rotating or vibrating parts of a target has been well documented. This paper presents a technique for extracting features related to helicopter rotors...

  9. Reversible chemical restraint of free-range cattle with a concentrated combination of tiletamine–zolazepam, ketamine, and detomidine

    Science.gov (United States)

    Re, Michela; Blanco-Murcia, Francisco J.; San Miguel, José Maria; Gómez de Segura, Ignacio A.

    2013-01-01

    The aim of this study was to determine the efficacy of a concentrated combination of tiletamine–zolazepam [TZ, 0.53 mg/kg body weight (BW)], ketamine (Ket, 0.53 mg/kg BW), and detomidine (Det, 0.04 mg/kg BW) in the immobilization of free-range cattle for clinical procedures. The combination was administered intramuscularly to 53 animals. Anesthesia was reversed with the α2-adrenoceptor antagonist atipamezole. Locoregional anesthesia was provided with lidocaine when required. The TZKD combination induced suitable immobilization for minor surgical procedures or medical treatments. Anesthetic onset was rapid, taking a mean of 6.1 min [standard deviation (SD) 2.8 min]. The duration of anesthesia depended on the time of administration of the antagonist; the animals recovered in the standing position in 12.9 ± 8.9 min after the administration of atipamezole. The quality of anesthesia and analgesia were satisfactory. In conclusion, this TZKD combination can be used for both immobilization and minor surgical procedures in free-range cattle. PMID:24124271

  10. Reversible chemical restraint of free-range cattle with a concentrated combination of tiletamine-zolazepam, ketamine, and detomidine.

    Science.gov (United States)

    Re, Michela; Blanco-Murcia, Francisco J; San Miguel, José Maria; Gómez de Segura, Ignacio A

    2013-10-01

    The aim of this study was to determine the efficacy of a concentrated combination of tiletamine-zolazepam [TZ, 0.53 mg/kg body weight (BW)], ketamine (Ket, 0.53 mg/kg BW), and detomidine (Det, 0.04 mg/kg BW) in the immobilization of free-range cattle for clinical procedures. The combination was administered intramuscularly to 53 animals. Anesthesia was reversed with the α2-adrenoceptor antagonist atipamezole. Locoregional anesthesia was provided with lidocaine when required. The TZKD combination induced suitable immobilization for minor surgical procedures or medical treatments. Anesthetic onset was rapid, taking a mean of 6.1 min [standard deviation (SD) 2.8 min]. The duration of anesthesia depended on the time of administration of the antagonist; the animals recovered in the standing position in 12.9 ± 8.9 min after the administration of atipamezole. The quality of anesthesia and analgesia were satisfactory. In conclusion, this TZKD combination can be used for both immobilization and minor surgical procedures in free-range cattle.

  11. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    International Nuclear Information System (INIS)

    Han, H.-S.; Chen, D.-R.; Pui, David Y.H.; Anderson, Bruce E.

    2000-01-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po 210 ), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below

  12. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  13. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection.

    Science.gov (United States)

    Bowen, Mayumi; Armstrong, Nick; Maa, Yuh-Fun

    2012-12-01

    Developing high-concentration monoclonal antibody (mAb) liquid formulations for subcutaneous (s.c.) administration is challenging because increased viscosity makes injection difficult. To overcome this obstacle, we investigated a nonaqueous powder suspension approach. Three IgG1 mAbs were spray dried and suspended at different concentrations in Miglyol® 840, benzyl benzoate, or ethyl lactate. Suspensions were characterized for viscosity, particle size, and syringeability; physical stability was visually inspected. Suspensions generally outperformed liquid solutions for injectability despite higher viscosity at the same mAb concentrations. Powder formulations and properties had little effect on viscosity or injectability. Ethyl lactate suspensions had lowest viscosity (Miglyol® 840 improved overall performance in high mAb concentration suspensions. This study demonstrated the viability of high mAb concentration (>300 mg/mL) in suspension formulations for s.c. administration. Copyright © 2012 Wiley Periodicals, Inc.

  14. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Directory of Open Access Journals (Sweden)

    Yoshio Makino

    Full Text Available Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  15. Storage in high-barrier pouches increases the sulforaphane concentration in broccoli florets.

    Science.gov (United States)

    Makino, Yoshio; Nishimura, Yuto; Oshita, Seiichi; Mizosoe, Takaharu; Akihiro, Takashi

    2018-01-01

    Sulforaphane is a phytochemical that is usually found in cruciferous vegetables and is known to have a depressive effect on gastric cancer. Preliminary investigations showed that the sulforaphane concentration in broccoli (Brassica oleracea var. italica) florets increased under anoxia. Therefore, in the present study, we examined the effect of different atmospheric conditions on the sulforaphane concentration in broccoli and also tested whether there are concurrent effects on the concentration of ethanol, which is an unfavorable byproduct of fermentation. The sulforaphane concentration in broccoli florets was significantly elevated by 1.9- to 2.8-fold after 2 d of storage under hypoxia at ca. 0% O2 and ca. 24% CO2 at 20°C, whereas no such increase was observed following storage under normoxia at ca. 0% O2 without CO2 at 20°C. Furthermore, after 2 d, the sulforaphane concentration under hypoxia was 1.6- to 2.3-fold higher than that under normoxia. These results suggest that storage under hypoxia with high CO2 levels can elevate the sulforaphane concentration in broccoli florets. However, the elevated sulforaphane concentration could not be maintained beyond 2 d. There was no significant difference in the concentration of ethanol between florets that were stored under hypoxia with/without CO2 or normoxia at 2 d. However, the ethanol concentrations inside the pouches significantly increased between 2 d and 7 d. These findings indicate that the quality of broccoli florets can be improved through storage under hypoxia with high CO2 levels at 20°C for 2 d.

  16. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  17. ICRF [Ion Cyclotron Range of Frequencies] heating and antenna coupling in a high beta tokamak

    International Nuclear Information System (INIS)

    Elet, R.S.

    1988-01-01

    Maxwell's Equations are solved in two-dimensions for the electromagnetic fields in a toroidal cavity using the cold plasma fluid dielectric tensor in the Ion Cyclotron Range of Frequencies (ICRF). The Vector Wave Equation is transformed to a set of two, coupled second-order partial differential equations with inhomogeneous forcing functions which model a wave launcher. The resulting equations are finite differenced and solved numerically with a complex banded matrix algorithm on a Cray-2 computer using a code described in this report. This code is used to study power coupling characteristics of a wave launcher for low and high beta tokamaks. The low and high beta equilibrium tokamak magnetic fields applied in this model are determined from analytic solutions to the Grad-Shafranov equation. The code shows good correspondence with the results of low field side ICRF heating experiments performed on the Tokamak of Fontenay-Aux-Roses (TFR). Low field side and high field side antenna coupling properties for ICRF heating in the Columbia High Beta Tokamak (HBT) experiment are calculated with this code. Variations of antenna position in the tokamak, ionic concentration and plasma density, and volume-averaged beta have been analyzed for HBT. It is found that the location of the antenna with respect to the plasma has the dominant role in the design of an ICRF heating experiment in HBT. 10 refs., 52 figs., 13 tabs

  18. Determination of plasma concentrations of levofloxacin by high performance liquid chromatography for use at a multidrug-resistant tuberculosis hospital in Tanzania.

    Science.gov (United States)

    Ebers, Andrew; Stroup, Suzanne; Mpagama, Stellah; Kisonga, Riziki; Lekule, Isaack; Liu, Jie; Heysell, Scott

    2017-01-01

    Therapeutic drug monitoring may improve multidrug-resistant tuberculosis (MDR-TB) treatment outcomes. Levofloxacin demonstrates significant individual pharmacokinetic variability. Thus, we sought to develop and validate a high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection for levofloxacin in patients on MDR-TB treatment. The HPLC-UV method is based on a solid phase extraction (SPE) and a direct injection into the HPLC system. The limit of quantification was 0.25 μg/mL, and the assay was linear over the concentration range of 0.25-15 μg/mL (y = 0.5668x-0.0603, R2 = 0.9992) for the determination of levofloxacin in plasma. The HPLC-UV methodology achieved excellent accuracy and reproducibility along a clinically meaningful range. The intra-assay RSD% of low, medium, and high quality control samples (QC) were 1.93, 2.44, and 1.90, respectively, while the inter-assay RSD% were 3.74, 5.65, and 3.30, respectively. The mean recovery was 96.84%. This method was then utilized to measure levofloxacin concentrations from patients' plasma samples from a retrospective cohort of consecutive enrolled subjects treated for MDR-TB at the national TB hospital in Tanzania during 5/3/2013-8/31/2015. Plasma was collected at 2 hours after levofloxacin administration, the time of estimated peak concentration (eCmax) treatment. Forty-one MDR-TB patients had plasma available and 39 had traceable programmatic outcomes. Only 13 (32%) patients had any plasma concentration that reached the lower range of the expected literature derived Cmax with the median eCmax being 5.86 (3.33-9.08 μg/ml). Using Classification and Regression Tree analysis, an eCmax ≥7.55 μg/mL was identified as the threshold which best predicted cure. Analyzing this CART derived threshold on treatment outcome, the time to sputum culture conversion was 38.3 ± 22.7 days vs. 47.8 ± 26.5 days (p = 0.27) and a greater proportion were cured, in 10 out of 15 (66.7%) vs. 6 out of 18 (33.3%) (p

  19. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specification

    Science.gov (United States)

    2010-07-01

    ... Measurements Required, and Maximum Discrepancy Specification C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges..., June 22, 2010, table C-1 to subpart C was revised, effective Aug. 23, 2010. For the convenience of the...

  20. Hydrogen-bonded structure in highly concentrated aqueous LiBr solutions

    International Nuclear Information System (INIS)

    Imano, Masahiro; Kameda, Yasuo; Usuki, Takeshi; Uemura, Osamu

    2001-01-01

    Neutron diffraction measurements were carried out for H/D isotopically substituted aqueous 10, 25 and 33 mol% LiBr solutions in order to obtain structural information on the intermolecular hydrogen bonds among water molecules in highly concentrated aqueous solutions. Observed scattering cross sections for D 2 O (99.9 % D), 0 H 2 O(35.9 % D) and 0-2 H 2 O(68.0 % D) solutions were combined to deduce partial structure factors, a HH (Q), a XH (Q) and a XX (Q) (X: O, Br and Li). The least squares fitting analysis was applied to the observed partial structure factors to determine the nearest neighbor interatomic distance, root-mean-square amplitude and coordination number. Intermolecular distances, r OH =1.91(1) A, r HH =2.38(1) A and r OO =3.02(1) A, between the nearest neighbor water molecules, were obtained for the 10 mol% LiBr solution. On the other hand, the intermolecular O···H interaction was found to almost disappear in concentrated 25 and 33 mol% LiBr solutions. The result implies that the hydrogen-bonded network is completely broken in highly concentrated aqueous LiBr solutions. (author)

  1. The protective role of low-concentration alcohol in high-fructose induced adverse cardiovascular events in mice.

    Science.gov (United States)

    Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie

    2018-01-01

    Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high

  2. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  3. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  4. High fluence effects on ion implantation stopping and range

    International Nuclear Information System (INIS)

    Selvi, S.; Tek, Z.; Oeztarhan, A.; Akbas, N.; Brown, I.G.

    2005-01-01

    We have developed a code STOPPO which can be used to modify the more-widely used ion implantation codes to more accurately predict the mean nuclear and electronic stopping power, preferential sputtering and range of heavy ions in monatomic target materials. In our simulations an effective atomic number and effective atomic mass are introduced into conveniently available analytical stopping cross-sections and a better fitting function for preferential sputtering yield is carefully evaluated for each ion implantation. The accuracy of the code confirmed experimentally by comparison with measured Rutherford backscattering spectrometry (RBS) concentration profiles for 130 keV Zr ions implanted into Be to fluences of 1 x 10 17 , 2 x 10 17 and 4 x 10 17 ions/cm 2 . We find a steady increase in the mean nuclear and electronic stopping powers of the target; the increase in nuclear stopping power is much greater than the increase in electronic stopping power

  5. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    A total of 35 measurements in Greece and 15 in Cyprus were performed. Radon concentrations in drinking water in Greece were from (1.1±0.5) to (410±50) Bq/L. The corresponding concentrations in underground potable waters in Cyprus ranged between (0.4±0.3) Bq/L and (15±4) Bq/L. High concentrations, viz. (120±20), (320±40) and (410±50) Bq/L, were observed in three samples collected from the city of Arnea Chalkidekis in northern Greece. One water sample from Lesvos Island (north-eastern part of Greece) exhibited a radon concentration of (140±20) Bq/L. Six samples of hot spring water from the city of Loutraki (Attica prefecture), characterized as 'medicinal drinking water', contained concentrations of radon between (220±10) and (340±20) Bq/L. Radon concentrations in potable and non-potable underground water in Greece and Cyprus ranged between (0.4±0.3) and (15±4) Bq/L, whereas in surface water the range was from (2.7±0.8) to (24±6) Bq/L. (P.A.)

  6. Highly Concentrated Alginate-Gellan Gum Composites for 3D Plotting of Complex Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Ashwini Rahul Akkineni

    2016-04-01

    Full Text Available In tissue engineering, additive manufacturing (AM technologies have brought considerable progress as they allow the fabrication of three-dimensional (3D structures with defined architecture. 3D plotting is a versatile, extrusion-based AM technology suitable for processing a wide range of biomaterials including hydrogels. In this study, composites of highly concentrated alginate and gellan gum were prepared in order to combine the excellent printing properties of alginate with the favorable gelling characteristics of gellan gum. Mixtures of 16.7 wt % alginate and 2 or 3 wt % gellan gum were found applicable for 3D plotting. Characterization of the resulting composite scaffolds revealed an increased stiffness in the wet state (15%–20% higher Young’s modulus and significantly lower volume swelling in cell culture medium compared to pure alginate scaffolds (~10% vs. ~23%. Cytocompatibility experiments with human mesenchymal stem cells (hMSC revealed that cell attachment was improved—the seeding efficiency was ~2.5–3.5 times higher on the composites than on pure alginate. Additionally, the composites were shown to support hMSC proliferation and early osteogenic differentiation. In conclusion, print fidelity of highly concentrated alginate-gellan gum composites was comparable to those of pure alginate; after plotting and crosslinking, the scaffolds possessed improved qualities regarding shape fidelity, mechanical strength, and initial cell attachment making them attractive for tissue engineering applications.

  7. Effect of thermal processing on retinol levels of free-range and caged hen eggs.

    Science.gov (United States)

    Ramalho, Héryka M M; Santos, Videanny V A; Medeiros, Vanessa P Q; Silva, Keith H D; Dimenstein, Roberto

    2006-01-01

    Purpose Eggs are a food item of high nutritional value, a source of vitamin A and readily accessible to the general population. Methods This paper analysed the effect of cooking on the retinol levels of free-range and caged hen eggs, using high performance liquid chromatography (HPLC). The retinol levels of hen and quail eggs were also compared. Results The raw egg yolk retinol concentrations of free-range and caged hen eggs were 476.53+/-39.44 and 474.93+/-41.10 microg/100 g and cooked egg yolk concentrations were 393.53+/-24.74 and 379.01+/-30.78 microg/100 g, respectively; quail egg concentration was 636.56+/-32.71 microg retinol/100 g. No significant difference was found between the retinol of free-range and caged hen egg yolks; however, cooking diminished retinol levels, causing a loss of 17 and 20% in the free-range and caged hen egg yolks, respectively. Quail egg retinol concentration was significantly higher than that of the hens. Conclusion The retinol found in 100 g of hen and quail egg yolks could supply around 42 and 70.7% of the vitamin A requirements of an adult man, and is accordingly considered an excellent source of this vitamin.

  8. Heterogeneous processing of biomass burning aerosol proxies by OH radicals for a wide range of OH concentrations and detection of volatilization products

    Science.gov (United States)

    Slade, J. H.; Knopf, D. A.

    2012-12-01

    Biomass burning aerosol (BBA) constitutes the majority of primary organic aerosol found in the atmosphere, with emission rates comparable to fossil-fuel burning. BBA affects earth's radiative budget directly through absorption and scattering of radiation or indirectly by modifying cloud radiative properties, and impacts air quality. Quantifying BBA source strength and thus its effects on air quality, human health, and climate can be difficult since these organic particles can chemically transform during atmospheric transport, a process also termed aging, due to heterogeneous reactions with oxidants and radicals such as OH. In this work we investigate the reactive uptake of OH radicals by typical BBA compounds that also serve as molecular markers for source apportionment studies. Organic substrates of cellulose pyrolysis products such as levoglucosan (1,6-anhydro-β-glucopyranose, C6H10O5), resin acids such as abietic acid (1-phenanthrenecarboxylic acid, C20H30O2), and lignin decomposition products such as 5-nitroguaiacol (2-methoxy-5-nitrophenol, C7H7NO4) have been exposed to a wide range of OH concentrations (~107-1011 cm-3), in presence of O2 in a rotating wall flow reactor operated at 2-6 mbar coupled to a custom built chemical ionization mass spectrometer (CIMS). OH radicals were generated through H2 dissociation in an Evenson microwave resonant cavity operated at 2.45 GHz followed by reaction with O2 or NO2. In addition, potential volatilization of organic material due to heterogeneous oxidation by OH has been determined in-situ by monitoring the volatile organic compounds using a high resolution-proton transfer reaction-time of flight-mass spectrometer (HR-PTR-ToF-MS). The volatilization studies are conducted at 1 atm and OH is generated by O3 photolysis in the presence of H2O vapor and quantified using a photochemical box model as well as through reaction with a known concentration of isoprene (2-methyl-1,3-butadiene, C5H8). Reactive uptake validation

  9. Hierarchical tone mapping for high dynamic range image visualization

    Science.gov (United States)

    Qiu, Guoping; Duan, Jiang

    2005-07-01

    In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.

  10. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  11. Influence of vibration on structure rheological properties of a highly concentrated suspension

    Science.gov (United States)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  12. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  13. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  14. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  15. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  16. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    Science.gov (United States)

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  18. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-02-01

    Full Text Available In this paper, we proposed an interdigitated capacitor (IDC-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye. These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC] and N,N-Dimethylacetamide (DMAC solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  19. Fast neutron-induced changes in net impurity concentration of high-resistivity silicon

    International Nuclear Information System (INIS)

    Tsveybak, I.; Bugg, W.; Harvey, J.A.; Walter, J.

    1992-01-01

    Resistivity changes produced by 1 MeV neutron irradiation at room temperature have been measured in float-zone grown n and p-type silicon with initial resistivities ranging from 1.8 to 100 kΩcm. Observed changes are discussed in terms of net electrically active impurity concentration. A model is presented which postulates escape of Si self-interstitials and vacancies from damage clusters and their subsequent interaction with impurities and other pre-existing defects in the lattice. These interactions lead to transfer of B and P from electrically active substitutional configurations into electrically inactive positions (B i , Pi i , and E-center), resulting in changes of net electrically active impurity concentration. The changes in spatial distribution of resistivity are discussed, and the experimental data are fit by theoretical curves. Differences in the behavior of n-type and p-type material are explained on the basis of a faster removal of substitutional P and a more nonuniform spatial distribution of the original P concentration

  20. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  1. Dissipative Effects on Inertial-Range Statistics at High Reynolds Numbers.

    Science.gov (United States)

    Sinhuber, Michael; Bewley, Gregory P; Bodenschatz, Eberhard

    2017-09-29

    Using the unique capabilities of the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, we report experimental measurements in classical grid turbulence that uncover oscillations of the velocity structure functions in the inertial range. This was made possible by measuring extremely long time series of up to 10^{10} samples of the turbulent fluctuating velocity, which corresponds to O(10^{7}) integral length scales. The measurements were conducted in a well-controlled environment at a wide range of high Reynolds numbers from R_{λ}=110 up to R_{λ}=1600, using both traditional hot-wire probes as well as the nanoscale thermal anemometry probe developed at Princeton University. An implication of the observed oscillations is that dissipation influences the inertial-range statistics of turbulent flows at scales significantly larger than predicted by current models and theories.

  2. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    OpenAIRE

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability fo...

  3. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    Science.gov (United States)

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  4. Practical design constraints for using secondary concentrators at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.J.; Winston, R.

    1999-07-01

    The optical advantages of using nonimaging secondary concentrators in two-stage solar thermal dish systems are well understood. However, practical questions having to do with the thermal behavior of any secondary and its possible effects on the performance of cavity type receivers have only recently begun to be investigated. A few years ago an experimental demonstration of a trumpet type nonimaging secondary concentrator was carried out with a cavity receiver operating 660 C in combination with the Cummins Power Generation CPG-460 7.5 kWe concentrator system. Lessons learned from this and previous experiments are reviewed. The tests alleviated any operational concerns about the effectiveness of active water cooling and have shown that secondaries can be operated successfully at high temperatures without significant problems. There was no evidence of direct heat loss from the hot receiver to the cooled trumpet. The optical quality of any primary can be expected to fall well below design goals and to deteriorate further with time. This expectation should be taken into account in planning future experiments and developing new concentrating systems.

  5. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  6. Determination of the activity concentration levels of the artificial radionuclide137Cs in soil samples collected from Qatar using high-resolution gamma-ray spectrometry

    Science.gov (United States)

    Al-Sulaiti, Huda; Nasir, Tabassum; Al Mugren, K. S.; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Regan, P. H.; Santawamaitre, T.; Malain, D.; Habib, A.; Al-Dosari, Hanan; Daar, Eman

    2016-09-01

    The goal of this study was to establish the first baseline measurements for radioactivity concentration of the artificial radionuclide 137Cs in soil samples collected from the Qatarian peninsula. The work focused on the determination of the activity concentrations levels of man-made radiation in 129 soil samples collected across the landscape of the State of Qatar. All the samples were collected before the most recent accident in Japan, “the 2011 Fukushima Dai-ichi nuclear power plant accident”. The activity concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A radiological map showing the activity concentrations of 137Cs is presented in this work. The concentration wasfound to range from 0.21 to 15.41 Bq/kg. The highest activity concentration of 137Cs was observed in sample no. 26 in North of Qatar. The mean value was found to be around 2.15 ± 0.27 Bq/kg. These values lie within the expected range relative to the countries in the region. It is expected that this contamination is mainly due to the Chernobyl accident on 26 April 1986, but this conclusion cannot be confirmed because of the lack of data before this accident.

  7. Extremely high hole concentrations in c-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Trybus, Elaissa; Moseley, Michael; Henderson, Walter; Billingsley, Daniel [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Namkoong, Gon [Old Dominion University, Applied Research Center, Newport News, VA (United States); Look, David C. [Wright State University, Semiconductor Research Center, Dayton, OH (United States); Doolittle, W.A.

    2009-06-15

    Metal Modulated Epitaxy (S. D. Burnham et al., J. Appl. Phys. 104, 024902 (2008)[1]) is extended to include modulation of both the shutters of Ga and Mg, the Mg being delivered from a Veeco corrosive series valved cracker (S. D. Burnham et al., Mater. Res. Soc. Proc. 798, Y8.11 (2003)[2]). The Ga fluxes used are sufficiently large that droplets rapidly form when the Ga shutter opens and are subsequently depleted when the Ga shutter closes. The result is the ability to limit surface faceting while predominantly growing under average N-rich growth conditions and thus, possibly reduce N-vacancy defects. N-vacancy defects are known to result in compensation. This ability to grow higher quality materials under N-rich conditions results in very high hole concentrations and low resistivity p-type materials. Hole concentrations as high as 2 x 10{sup 19} cm{sup -3} have been achieved on c-plane GaN resulting in resistivities as low as 0.38 ohm-cm. The dependence on Ga flux, shutter timing, the corresponding RHEED images for each condition is detailed and clearly show minimization of faceting and crystal quality variations as determined by X-ray diffraction. Quantification of the Mg incorporation and residual impurities such as hydrogen, oxygen, and carbon by SIMS, eliminates co-doping, while temperature dependent hall measurements show reduced activation energies. X-ray diffraction data compares crystalline quality with hole concentration. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Phenomenon of energy concentration in super-high energy γ-hadron families

    International Nuclear Information System (INIS)

    Dai Zhiqiang; Xue Liang; Li Jinyu; Zhang Xueyao; Feng Cunfeng; Fu Yu; Li Jie; Cao Peiyuan; Zhang Naijian; He Mao; Wang Chengrui; Ren Jingru; Lu Suiling

    2000-01-01

    The family events observed with iron emulsion chambers at Mt. Kanbala are analyzed and compared with the simulations by the COSMOS code and CORSIKA code respectively. A detailed study on the production of super-high energy γ-hadron families with energy concentration behavior is carried out. The preliminary conclusions are: 1) the energy concentration behavior of super-high energy γ-hadron families is the external embodiment of high energy central shower clusters contained in the families. 2) the mean lateral spread of these clusters is about 0.37 cm. 3) the frequency of this phenomenon appeared under the conditions of R≤10 mm and X 10 ≥90% is (20.5 +- 3.1)%. 4) compared to the COSMOS code based on the phenomenological multi-cluster model, the simulation by the CORSIKA code that adopts SIBYLL model is closer to the analytical results of experiment

  9. Maternal exposure to metals—Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Callan, A.C.; Hinwood, A.L.; Ramalingam, M.; Boyce, M.; Heyworth, J.; McCafferty, P.; Odland, J.Ø.

    2013-01-01

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations of metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01–0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01–0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: • High concentrations of uranium with respect to international literature. • Environmental concentrations of Al, Cu and Li influenced urinary concentrations. • Exposure to mechanics/welding hobbies increased blood Mn concentrations. • Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn

  10. Maternal exposure to metals—Concentrations and predictors of exposure

    Energy Technology Data Exchange (ETDEWEB)

    Callan, A.C., E-mail: a.callan@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Hinwood, A.L.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J.Ø. [Department of Community Medicine, University of Tromsø, N-9037 Tromsø (Norway)

    2013-10-15

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations of metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01–0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01–0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: • High concentrations of uranium with respect to international literature. • Environmental concentrations of Al, Cu and Li influenced urinary concentrations. • Exposure to mechanics/welding hobbies increased blood Mn concentrations. • Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn.

  11. High-dimensional orbital angular momentum entanglement concentration based on Laguerre–Gaussian mode selection

    International Nuclear Information System (INIS)

    Zhang, Wuhong; Su, Ming; Wu, Ziwen; Lu, Meng; Huang, Bingwei; Chen, Lixiang

    2013-01-01

    Twisted photons enable the definition of a Hilbert space beyond two dimensions by orbital angular momentum (OAM) eigenstates. Here we propose a feasible entanglement concentration experiment, to enhance the quality of high-dimensional entanglement shared by twisted photon pairs. Our approach is started from the full characterization of entangled spiral bandwidth, and is then based on the careful selection of the Laguerre–Gaussian (LG) modes with specific radial and azimuthal indices p and ℓ. In particular, we demonstrate the possibility of high-dimensional entanglement concentration residing in the OAM subspace of up to 21 dimensions. By means of LabVIEW simulations with spatial light modulators, we show that the Shannon dimensionality could be employed to quantify the quality of the present concentration. Our scheme holds promise in quantum information applications defined in high-dimensional Hilbert space. (letter)

  12. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  13. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    Energy Technology Data Exchange (ETDEWEB)

    Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Climate and Environm. Physics, Physics Inst., Univ. Bern, CH-3012 Bern, (Switzerland); Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Oeschger Centre for Climate Change Research, Univ. Bern, CH-3012 Bern, (Switzerland); Le Floch, M; Barnola, J M; Raynaud, D [LGGE, CNRS-Univ. Grenoble 1, F-38402 Saint Martin d' Heres, (France); Jouzel, J [Inst. Pierre Simon Laplace, LSCE, CEA-CNRS-Universite Versailles-Saint Quentin, CEA Saclay, F-91191 Gif sur Yvette (France); Fischer, H [Alfred Wegener Inst. for Polar and Maine Research, D-27568 Bremerhaven, (Germany)

    2008-07-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v. (authors)

  14. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  15. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    OpenAIRE

    M. Orikawa; H. Kamahara; Y. Atsuta; H. Daimon

    2013-01-01

    Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS) dewatered sludge). The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic...

  16. Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices.

    Science.gov (United States)

    Fayiga, A O; Saha, U K

    2016-09-01

    The total lead (Pb) concentrations of the surface soil, sub surface soil, vegetation and surface waters of outdoor shooting ranges are extremely high and above regulatory limits. Lead is dangerous at high concentrations and can cause a variety of serious health problems. Shooters and range workers are exposed to lead dust and can even take Pb dust home to their families while some animals around the shooting range can ingest the Pb bullets. The toxicity of Pb depends on its bioavailability which has been determined to be influenced greatly by the geochemical properties of each site. The bioavailability of Pb in shooting ranges has been found to be higher than other metal contaminated soils probably because of its very low residual Pb (soil, migration of Pb within shooting ranges and offsite has been reported in literature. Best management practices to reduce mobility of Pb in shooting ranges involve an integrated Pb management program which has been described in the paper. The adoption of the non-toxic "green bullet" which has been developed to replace Pb bullets may reduce or prevent environmental pollution at shooting ranges. However, the contaminated soil resulting from decades of operation of several shooting ranges still needs to be restored to its natural state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Investigation of the fluctuation range of activity concentrations of natural radionuclides in surface air

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.

    1985-01-01

    Daily and seasonal concentration fluctuations of short-lived Rn fission products observed and the seasonal and long-term concentration fluctuations of Pb-210, Po-210, Ra-226, Ra-228, K-40 and Be-7 are discussed; the frequency distributions of the concentration values are illustrated. For a period of several years, the following mean values of activity concentrations were found (μBq/m 3 ): Pb-210: 600 Ra-226: 1.3 K-40: 13, Po-210: 33 Ra-228: 0.5 Be-7: 3700. In accordance with the origin from the soil, there is a significant correlation between the respective activity concentration and air-borne dust concentration for Ra-226, Ra-228, and K-40. The investigation revealed a most significant correlation between the Pb-210 concentration and the stagnancy index, the latter being a measure for the degree of blending of the surface layer of air. The resuspension factors found for Ra-226 and Pb-210 are discussed. (orig./HP) [de

  18. Tracking integration in concentrating photovoltaics using laterally moving optics.

    Science.gov (United States)

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  19. Long-range transport of air pollution under light gradient wind conditions

    International Nuclear Information System (INIS)

    Kurita, H.; Sasaki, K.; Muroga, H.; Ueda, H.; Wakamatsu, S.

    1985-01-01

    The long-range transport of air pollution on clear days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. Surface-level wind and pressure distributions over a 300 x 300 km area were analyzed, together with concentration isopleths of oxidants and suspended particles produced by photochemical reactions

  20. Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes

    Science.gov (United States)

    Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.

    2018-05-01

    From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.

  1. In-Vivo High Dynamic Range Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    example with a high dynamic velocity range. Velocities with an order of magnitude apart are detected on the femoral artery of a 41 years old healthy individual. Three distinct heart cycles are captured during a 3 secs acquisition. The estimated vector velocities are compared against each other within...... the heart cycle. The relative standard deviation of the measured velocity magnitude between the three peak systoles was found to be 5.11% with a standard deviation on the detected angle of 1.06◦ . In the diastole, it was 1.46% and 6.18◦ , respectively. Results proves that the method is able to estimate flow...

  2. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  3. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  4. Indoor concentrations of radon 222 and its daughters: sources, range, and environmental influences

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1985-04-01

    The author here reviews what is presently known about factors affecting indoor concentrations of radon 222 and its daughters. In US single-family homes, radon concentrations are found to average about 1.5 pCi/1, but substantially higher concentrations occur frequently: perhaps a million US homes have concentrations exceeding 8 pCi/1 (from which occupants receive radiation doses comparable to those now experienced by uranium miners). The major contributor to indoor radon is ordinary soil underlying homes, with this radon being transported indoors primarily by the slight depressurization that occurs toward the bottom of a house interior (due to indoor-outdoor temperature differences and winds). Water from underground sources contributes significantly in a minority of cases, primarily residences with private wells, with public water supplies contributing only a few percent of indoor radon, even when drawn from wells. The strong variability in indoor concentrations is associated primarily with variability in the amount of radon entering homes from these various sources, and secondarily with differences in ventilation rates. However, for a given entry rate, the ventilation rate is the key determinant of indoor concentrations. Human doses are also influenced strongly by the chemical behavior of the daughters (i.e., decay products of radon), and considerable progress has been made recently in investigating a major aspect of this behavior, i.e., the manner in which daughters attach to airborne particles, to walls, and - indeed - to the lining of the lung itself, where the key radiation dose occurs

  5. Clinical characteristics and treatment outcomes of patients with low- and high-concentration isoniazid-monoresistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Tsai-Yu Wang

    Full Text Available BACKGROUND: Isoniazid (INH resistance is now the most common type of tuberculosis (TB infection resistance worldwide. The aim of this study was to evaluate the clinical characteristics and treatment outcomes of patients with low- and high-concentration INH-monoresistant TB. METHODS: One hundred and thirty-four patients with culture-confirmed INH-monoresistant TB during 2006 January to 2007 December were retrospectively enrolled. INH resistance was classified as either low-concentration or high-concentration resistance according to the critical concentrations of 0.2 µg/mL or 1 µg/mL of INH, respectively. The patients' clinical outcomes, treatment regimens, and treatment duration were analyzed. RESULTS: The treatment success rates between low- and high-concentration INH-resistant TB were similar (81.8% vs. 86.7%. The treatment regimens and treatment duration were similar between both groups. Only a minor percentage of the patients in both groups received 6-month treatment regimens (low vs. high concentration resistance, 9.1% vs. 13.3%; respectively, p = 0.447 The most common reason for treatment duration longer than 6 months was pyrazinamide given for less than 6 months, followed by a delay in clinical response to treatment. Multivariable analysis showed that prior tuberculosis treatment (Odds ratio, 2.82, 95% C.I., 1.02-7.77, p = 0.045 was the only independent risk factor for unsuccessful treatment outcome. CONCLUSION: Different levels of INH resistance did not affect the treatment outcomes of patients with INH-monoresistant tuberculosis. Prolonged Rifampin-containing regimens may achieve those good outcomes in patients with low- and high-concentration INH-monoresistant TB.

  6. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    Science.gov (United States)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  7. Measurement of bulk etch rates for poly-allyl-diglycol carbonate (PADC) and cellulose nitrate in a broad range of concentration and temperature of NaOH etching solution

    International Nuclear Information System (INIS)

    Hermsdorf, D.; Hunger, M.; Starke, S.; Weickert, F.

    2007-01-01

    In the present work the dependence of the bulk etch rate v B for solid state nuclear track detectors (SSNTD) on the concentration c and the temperature T of the NaOH etching solution has been studied for material types PADC and cellulose nitrate. As commonly applied exponents of PADC and cellulose nitrate material, the commercial products CR-39 and LR-115 were investigated. The concentration and temperature have been varied in the ranges 0.5moll -1 -1 and 313 -1 and T between 313 and 333K for cellulose nitrate, respectively. The application of a simple Arrhenius-law of chemical reactions fails in the interpretation of the dependence on the concentration. A constant activation energy cannot describe the behaviour of v B (c,T) over the whole range of concentration. To understand the deviation, more qualified models treating the superposition of chemical and physical processes including reaction kinetics and material transport phenomena by diffusion have to be developed and tested

  8. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  9. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    International Nuclear Information System (INIS)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-01-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  10. High Concentrations of Measles Neutralizing Antibodies and High-Avidity Measles IgG Accurately Identify Measles Reinfection Cases

    Science.gov (United States)

    Rota, Jennifer S.; Hickman, Carole J.; Mercader, Sara; Redd, Susan; McNall, Rebecca J.; Williams, Nobia; McGrew, Marcia; Walls, M. Laura; Rota, Paul A.; Bellini, William J.

    2016-01-01

    In the United States, approximately 9% of the measles cases reported from 2012 to 2014 occurred in vaccinated individuals. Laboratory confirmation of measles in vaccinated individuals is challenging since IgM assays can give inconclusive results. Although a positive reverse transcription (RT)-PCR assay result from an appropriately timed specimen can provide confirmation, negative results may not rule out a highly suspicious case. Detection of high-avidity measles IgG in serum samples provides laboratory evidence of a past immunologic response to measles from natural infection or immunization. High concentrations of measles neutralizing antibody have been observed by plaque reduction neutralization (PRN) assays among confirmed measles cases with high-avidity IgG, referred to here as reinfection cases (RICs). In this study, we evaluated the utility of measuring levels of measles neutralizing antibody to distinguish RICs from noncases by receiver operating characteristic curve analysis. Single and paired serum samples with high-avidity measles IgG from suspected measles cases submitted to the CDC for routine surveillance were used for the analysis. The RICs were confirmed by a 4-fold rise in PRN titer or by RT-quantitative PCR (RT-qPCR) assay, while the noncases were negative by both assays. Discrimination accuracy was high with serum samples collected ≥3 days after rash onset (area under the curve, 0.953; 95% confidence interval [CI], 0.854 to 0.993). Measles neutralizing antibody concentrations of ≥40,000 mIU/ml identified RICs with 90% sensitivity (95% CI, 74 to 98%) and 100% specificity (95% CI, 82 to 100%). Therefore, when serological or RT-qPCR results are unavailable or inconclusive, suspected measles cases with high-avidity measles IgG can be confirmed as RICs by measles neutralizing antibody concentrations of ≥40,000 mIU/ml. PMID:27335386

  11. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.

    Science.gov (United States)

    Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

    2013-10-01

    A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Volume higher; spot price ranges widen

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the October 1994 uranium market summary. During this reporting period, volume on the spot concentrates market doubled. Twelve deals took place: three in the spot concentrates market, one in the medium and long-term market, four in the conversion market, and four in the enrichment market. The restricted price range widened due to higher prices at the top end of the range, while the unrestricted price range widened because of lower prices at the bottom end. Spot conversion prices were higher, and enrichment prices were unchanged

  13. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  14. Characterisation of PM2.5 concentrations and turbulent fluxes on a island of the Venice lagoon using high temporal resolution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Donateo, A.; Contini, D.; Cesari, D. [CNR-ISAC, Istituto di Scienze dell' Atmosfera e del Clima, Lecce (Italy); Belosi, F.; Santachiara, G.; Prodi, F. [CNR-ISAC, Istituto di Scienze dell' Atmosfera e del Clima, Bologna (Italy); Gambaro, A. [Venice Univ. (Italy). Environmental Sciences Dept.

    2012-08-15

    This work presents an analysis of PM2.5 concentrations and vertical turbulent fluxes on an island of the Venice lagoon. Data were collected during three measurement campaigns in spring, summer and winter periods. Measurements were taken with a high-resolution optical PM2.5 detector, coupled with a micrometeorological station that allowed the evaluation of the vertical turbulent fluxes of PM2.5 using the eddy-correlation technique. The main objective of this paper is to analyse the daily and seasonal pattern in PM2.5 concentrations and fluxes and to discuss their correlation with the main meteorological and micrometeorological parameters using high temporal resolution measurements. Observed data showed a seasonal pattern in turbulent fluxes with daytime average positive value during winter and negative during summer. Deposition velocities, ranged from -60 to 20 mm/s, appeared to be mainly influenced by atmospheric stability. There were larger emissions in cases of high wind velocities blowing from water sector indicating a significant potential contribution of sea spray to PM2.5 fluxes. The local atmospheric circulation, due to the orography of the area, was characterised by diurnal winds coming from the Adriatic Sea and nocturnal wind coming from the Alps. This circulation influenced deposition velocity creating an increase of negative fluxes in the morning at the starting of the sea breeze. A diurnal pattern in concentration has been observed and it is similar for all three measurement campaigns, with higher concentrations in nocturnal periods. The daily pattern was investigated in terms of its correlation with meteorological and micro-meteorological parameters, and was found highly correlated with the diurnal pattern of boundary layer height (BLH) and with relative humidity. (orig.)

  15. High summertime aerosol organic functional group concentrations from marine and seabird sources at Ross Island, Antarctica, during AWARE

    Directory of Open Access Journals (Sweden)

    J. Liu

    2018-06-01

    Full Text Available Observations of the organic components of the natural aerosol are scarce in Antarctica, which limits our understanding of natural aerosols and their connection to seasonal and spatial patterns of cloud albedo in the region. From November 2015 to December 2016, the ARM West Antarctic Radiation Experiment (AWARE measured submicron aerosol properties near McMurdo Station at the southern tip of Ross Island. Submicron organic mass (OM, particle number, and cloud condensation nuclei concentrations were higher in summer than other seasons. The measurements included a range of compositions and concentrations that likely reflected both local anthropogenic emissions and natural background sources. We isolated the natural organic components by separating a natural factor and a local combustion factor. The natural OM was 150 times higher in summer than in winter. The local anthropogenic emissions were not hygroscopic and had little contribution to the CCN concentrations. Natural sources that included marine sea spray and seabird emissions contributed 56 % OM in summer but only 3 % in winter. The natural OM had high hydroxyl group fraction (55 %, 6 % alkane, and 6 % amine group mass, consistent with marine organic composition. In addition, the Fourier transform infrared (FTIR spectra showed the natural sources of organic aerosol were characterized by amide group absorption, which may be from seabird populations. Carboxylic acid group contributions were high in summer and associated with natural sources, likely forming by secondary reactions.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Lime Hills and Tyonek NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Jacobsen, S.I.; Aamodt, P.L.; Sharp, R.R. Jr.

    1979-01-01

    The U contents of the 671 waters from the Lime Hills quadrangle range from below 0.02 ppB to a high of 11.29 ppB. U contents of the 667 sediments from this quadrangle range from a low of 0.1 ppM to a high of 94.9 ppM. Both waters and sediments containing relatively high U concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tired Pup batholith and Mount Estelle pluton. The U contents of 575 waters from the Tyonek quadrangle range from below the detection limit to 13.13 ppB. Relatively high U concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 to 58 ppM. Most sediment samples having high U concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean U concentration (0.85 ppB) than those from the Western Lowland (0.34 ppB) or the Susitna Lowland (0.51 ppB). The mean U concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean U concentration (7.00 ppM) than sediment samples from either the Western Lowland (2.46 ppM) or the Susitna Lowland area

  17. Scattering Solar Thermal Concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  18. Possible source term of high concentrations of mecoprop-p in leachate and water quality: impact of climate change, public use and disposal.

    Science.gov (United States)

    Idowu, I A; Alkhaddar, R M; Atherton, W

    2014-08-01

    Mecoprop-p herbicide is often found in wells and water abstractions in many areas around Europe, the UK inclusive. There is a growing environmental and public health concern about mecoprop-p herbicide pollution in ground and surface water in England. Reviews suggest that extensive work has been carried out on the contribution of mecoprop-p herbicides from agricultural use whilst more work needs to be carried out on the contribution of mecoprop-p herbicide from non-agricultural use. The study covers two landfill sites in Weaver/Gowy Catchment. Mecoprop-p herbicide concentrations in the leachate quality range between 0.06 and 290 microg l1 in cells. High concentration ofmecoprop-p herbicide in the leachate quality suggests that there is a possible source term in the waste stream. This paper addresses the gap by exploring possible source terms of mecoprop-p herbicide contamination on landfill sites and evaluates the impact of public purchase, use and disposal alongside climate change on seasonal variations in mecoprop-p concentrations. Mecoprop-p herbicide was found to exceed the EU drinking water quality standards at the unsaturated zone/aquifer with observed average concentrations ranging between 0.005 and 7.96 microg l1. A route map for mecoprop-p herbicide source term contamination is essential for mitigation and pollution management with emphasis on both consumer and producer responsibility towards use of mecoprop-p product. In addition, improvement in data collection on mecoprop-p concentrations and detailed seasonal herbicide sales for non-agricultural purposes are needed to inform the analysis and decision process.

  19. Fibrinogen and thrombin concentrations are critical for fibrin glue adherence in rat high-risk colon anastomoses

    Directory of Open Access Journals (Sweden)

    Eliseo Portilla-de Buen

    2014-04-01

    Full Text Available OBJECTIVE: Fibrin glues have not been consistently successful in preventing the dehiscence of high-risk colonic anastomoses. Fibrinogen and thrombin concentrations in glues determine their ability to function as sealants, healers, and/or adhesives. The objective of the current study was to compare the effects of different concentrations of fibrinogen and thrombin on bursting pressure, leaks, dehiscence, and morphology of high-risk ischemic colonic anastomoses using fibrin glue in rats. METHODS: Colonic anastomoses in adult female Sprague-Dawley rats (weight, 250-350 g treated with fibrin glue containing different concentrations of fibrinogen and thrombin were evaluated at post-operative day 5. The interventions were low-risk (normal or high-risk (ischemic end-to-end colonic anastomoses using polypropylene sutures and topical application of fibrinogen at high (120 mg/mL or low (40 mg/mL concentrations and thrombin at high (1000 IU/mL or low (500 IU/mL concentrations. RESULTS: Ischemia alone, anastomosis alone, or both together reduced the bursting pressure. Glues containing a low fibrinogen concentration improved this parameter in all cases. High thrombin in combination with low fibrinogen also improved adherence exclusively in low-risk anastomoses. No differences were detected with respect to macroscopic parameters, histopathology, or hydroxyproline content at 5 days post-anastomosis. CONCLUSIONS: Fibrin glue with a low fibrinogen content normalizes the bursting pressure of high-risk ischemic left-colon anastomoses in rats at day 5 after surgery.

  20. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Abreu, Carlos, E-mail: carlos.rodriguez@inl.int [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)

    2011-10-17

    Highlights: {yields} Polystyrene-divinylbenzene-iron oxide nanocomposites. {yields} Porous magnetic nanocomposites from highly concentrated emulsions. {yields} Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m{sup -3}, which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  1. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    International Nuclear Information System (INIS)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita; Rodriguez-Abreu, Carlos

    2011-01-01

    Highlights: → Polystyrene-divinylbenzene-iron oxide nanocomposites. → Porous magnetic nanocomposites from highly concentrated emulsions. → Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m -3 , which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  2. [Detection of rifampicin concentration in cerebrospinal fluid by online enrichment and restricted-access media coupled with high-performance liquid chromatography].

    Science.gov (United States)

    Yang, Xiaoping; Zhang, Xiaohui; Huang, Yanping; Wang, Rong; Xia, Hua; Li, Wenbin; Guo, YouMin

    2015-11-01

    To establish a method for detecting rifampicin in human cerebrospinal fluid (CSF) with restricted access media coupled with high-performance liquid chromatography that allows online direct sample injection and enrichment. We used the column of restricted access media as the pre-treatment column and a C18 column as the analytical column. The mobile phase of pre-treatment column was water-methanol (95:5,V/V) and the flow rate was 1 mL/min; the mobile phase of the analytical column was methanol-acetonitrile-10 mmol/L ammonuium acetate (volume ratio of 60:5:35). The detection wavelength was 254 nm and the column temperature was set at 25 degrees celsius;. For an injection volume of 100 µL, the peak area of rifampicin was 5.33 times that for an injection volume of 20 µL, and the limit of detection was effectively improved. The calibration curve showed an excellent linear relationship (r=0.9997) between rifampicin concentrations and peak areas within the concentration range of 0.25 to 8 µg/mL in CSF. The limits of detection and quantification was 0.07 µg/mL and 0.25 µg/mL, respecetively, with intra-day and inter-day assay precisions and relative standard deviation (RSD%) all below 5%. The recoveries of rifampicin at 3 blank spiked levels (low, medium, and high) ranged from 87.69% to 102.11%. In patients taking oral rifampicin at the dose of 10 mg/kg, the average rifampicin concentration was 0.29 in the CSF at 2 h after medication. The method we established is simple and fast for detecting rifampicin in CSF and allows direct online injection and enrichment with good detection precisions and accuracies.

  3. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  4. Indoor radon concentrations in Vushtrri, Kosovo

    International Nuclear Information System (INIS)

    Xhafa, B.; Jonuzaj, A.; ); Bekteshi, S.; Ahmetaj, S.; Kabashi, S.; )

    2009-01-01

    Indoor air radon concentration was measured by exposing trac ketch detectors in the two elementary schools, one high school, a kindergarten and the hospital in the city of Vushtrri. Measurements were performed with the radon monitor PRM-145, which uses alpha scintillation cells and serves to determine the current concentration of radon. The results we obtained are in the range between the average values of radon for the interior spaces, and values that pose a potential risk for lung cancer. Measuring the concentration of radon was done in total of 34 rooms and came up with values which are between 28Bqm -3 and 398Bqm -3 . In order to reduce the concentration of radon, we have built a ventilation pump, then we performed repeated measurements and finally came with results between 130-145Bqm -3 .

  5. High and distinct range-edge genetic diversity despite local bottlenecks.

    Directory of Open Access Journals (Sweden)

    Jorge Assis

    Full Text Available The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines.

  6. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  7. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations.

    Science.gov (United States)

    Yu, Qing; Wang, Hong-Zhu; Li, Yan; Shao, Jian-Chun; Liang, Xiao-Min; Jeppesen, Erik; Wang, Hai-Jun

    2015-10-15

    Eutrophication of lakes leading to loss of submersed macrophytes and higher turbidity is a worldwide phenomenon, attributed to excessive loading of phosphorus (P). However, recently, the role of nitrogen (N) for macrophyte recession has received increasing attention. Due to the close relationship between N and P loading, disentanglement of the specific effects of these two nutrients is often difficult, and some controversy still exists as to the effects of N. We studied the effects of N on submersed macrophytes represented by Vallisneria natans (Lour.) Hara in pots positioned at three depths (0.4 m, 0.8 m, and 1.2 m to form a gradient of underwater light conditions) in 10 large ponds having moderate concentrations of P (TP 0.03 ± 0.04 mg L(-1)) and five targeted concentrations of total nitrogen (TN) (0.5, 2, 10, 20, and 100 mg L(-1)), there were two ponds for each treatment. To study the potential shading effects of other primary producers, we also measured the biomass of phytoplankton (ChlaPhyt) and periphyton (ChlaPeri) expressed as chlorophyll a. We found that leaf length, leaf mass, and root length of macrophytes declined with increasing concentrations of TN and ammonium, while shoot number and root mass did not. All the measured growth indices of macrophytes declined significantly with ChlaPhyt, while none were significantly related to ChlaPeri. Neither ChlaPhyt nor ChlaPeri were, however, significantly negatively related to the various N concentrations. Our results indicate that shading by phytoplankton unrelated to the variation in N loading and perhaps toxic stress exerted by high nitrogen were responsible for the decline in macrophyte growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Vitamin E concentrations in adults with HIV/AIDS on highly active antiretroviral therapy.

    Science.gov (United States)

    Itinoseki Kaio, Daniella J Itinoseki; Rondó, Patricia Helen C; Luzia, Liania Alves; Souza, José Maria P; Firmino, Aline Vale; Santos, Sigrid Sousa

    2014-09-15

    HIV/AIDS patients are probably more predisposed to vitamin E deficiency, considering that they are more exposed to oxidative stress. Additionally, there are an extensive number of drugs in the highly active antiretroviral therapy (HAART) regimens that may interfere with vitamin E concentrations. The objective of this study was to compare serum concentrations of alpha-tocopherol in 182 HIV/AIDS patients receiving different HAART regimens. The patients were divided into three groups according to regimen: nucleoside analog reverse-transcriptase inhibitors (NRTIs) + non-nucleoside analog reverse-transcriptase inhibitors (NNRTIs); NRTIs + protease inhibitors + ritonavir; NRTIs + other classes. Alpha-tocopherol was assessed by high-performance liquid chromatography. Multiple linear regression analysis was used to evaluate the effects of HAART regimen, time of use, and compliance with the regimen on alpha-tocopherol concentrations. Alpha-tocopherol concentrations were on average 4.12 μmol/L lower for the NRTIs + other classes regimen when compared to the NRTIs + NNRTIs regimen (p = 0.037). A positive association (p < 0.001) was observed between alpha-tocopherol and cholesterol concentrations, a finding due, in part, to the relationship between liposoluble vitamins and lipid profile. This study demonstrated differences in alpha-tocopherol concentrations between patients using different HAART regimens, especially regimens involving the use of new drugs. Long-term prospective cohort studies are needed to monitor vitamin E status in HIV/AIDS patients since the beginning of treatment.

  9. Scattering by a plane-parallel layer with high concentration of optically soft particles

    International Nuclear Information System (INIS)

    Loiko, Valery A.; Berdnik, Vladimir V.

    2009-01-01

    A method describing light propagation in a plane-parallel light-scattering layer with large concentration of homogeneous particles is developed. It is based on the radiative transfer equation and the doubling method. The interference approximation is used to take into account collective scattering effects. Spectral dependence of transmitted light for a layer of nonabsorbing optically soft particles with subwavelength-sized particles is investigated. At small volume concentration of the particles the weak spectral dependences of wave exponents for coherently transmitted and diffuse light are observed. It is shown that in a layer with large volume concentration of the subwavelength-sized particles the wave exponent can exceed considerably the value of four, which takes place for the Rayleigh particles. The dependence of wave exponents for coherently transmitted and diffuse light on the refractive index and concentration of particles is investigated in detail. Multiple scattering of light results in the reduction of the exponent. The quantitative results are presented and discussed. It is shown that there is a range of wavelengths where the negative values of the wave exponent at the regime of multiple scattering are implemented.

  10. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  11. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  12. Fiber Optic Displacement Sensor for Measuring Cholesterol Concentration

    Directory of Open Access Journals (Sweden)

    Moh. Budiyanto

    2017-11-01

    Full Text Available A simple design of a cholesterol concentration detection is proposed and demonstrated using a fiber optic displacement sensor based on an intensity modulation technique. The proposed sensor uses a bundled plastic optical fiber (POF as a probe in conjunction with a flat mirror as a target. It is obtained that the peak voltage reduces with increasing cholesterol concentration. The sensor is capable of measuring the cholesterol concentration ranging from 0 to 300 ppm in a distilled water with a measured sensitivity of 0.01 mV/ppm, a linearity of more than 99.62 % and a resolution of 3.9188 ppm. The proposed sensor also shows a high degree of stability and good repeatability. The simplicity of design, accuracy, flexible dynamic range, and the low cost of fabrication are favorable attributes of the sensor and beneficial for real- field applications. Fiber optic sensors

  13. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses...... are the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol high...... solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...

  14. Highly Sensitive Multi-Channel IDC Sensor Array for Low Concentration Taste Detection

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2015-06-01

    Full Text Available In this study, we designed and developed an interdigitated capacitor (IDC-based taste sensor array to detect different taste substances. The designed taste sensing array has four IDC sensing elements. The four IDC taste sensing elements of the array are fabricated by incorporating four different types of lipids into the polymer, dioctyl phenylphosphonate (DOPP and tetrahydrofuran (THF to make the respective dielectric materials that are individually placed onto an interdigitated electrode (IDE via spin coating. When the dielectric material of an IDC sensing element comes into contact with a taste substance, its dielectric properties change with the capacitance of the IDC sensing element; this, in turn, changes the voltage across the IDC, as well as the output voltage of each channel of the system. In order to assess the effectiveness of the sensing system, four taste substances, namely sourness (HCl, saltiness (NaCl, sweetness (glucose and bitterness (quinine-HCl, were tested. The IDC taste sensor array had rapid response and recovery times of about 12.9 s and 13.39 s, respectively, with highly stable response properties. The response property of the proposed IDC taste sensor array was linear, and its correlation coefficient R2 was about 0.9958 over the dynamic range of the taste sensor array as the taste substance concentration was varied from 1 μM to 1 M. The proposed IDC taste sensor array has several other advantages, such as real-time monitoring capabilities, high sensitivity 45.78 mV/decade, good reproducibility with a standard deviation of about 0.029 and compactness, and the circuitry is based on readily available and inexpensive electronic components. The proposed IDC taste sensor array was compared with the potentiometric taste sensor with respect to sensitivity, dynamic range width, linearity and response time. We found that the proposed IDC sensor array has better performance. Finally, principal component analysis (PCA was applied

  15. Risk factors associated with high linezolid trough plasma concentrations.

    Science.gov (United States)

    Morata, L; De la Calle, C; Gómez-Cerquera, J M; Manzanedo, L; Casals, G; Brunet, M; Cobos-Trigueros, N; Martínez, J A; Mensa, J; Soriano, A

    2016-06-01

    The major concern of linezolid is the adverse events. High linezolid trough serum concentration (Cmin) has been associated with toxicity. The aim of this study was to analyze factors associated with high Cmin. Main clinical characteristics of 104 patients treated with 600 mg/12 hours of linezolid were retrospectively reviewed. Samples were obtained just before the next dose after at least three doses and within the first 8 days of treatment. High Cmin was considered when it was >8 mg/L. Univariate and multivariate analysis were performed. 34.6% patients had a Cmin >8 mg/L, and they were older and had more frequently an estimated glomerular filtration by MDRD 8 was the renal function. Patients with an eGF 80 mL/min (OR: 4.273) and there was a trend towards a high Cmin in patients with eGF between 40-80 mL/min (OR: 2.109). High Cmin were frequent, especially in patients with MDRD <40 mL/min. Therapeutic drug monitoring could be useful to avoid toxicity in patients with renal dysfunction.

  16. Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density

    International Nuclear Information System (INIS)

    Kogelschatz, U.; Baessler, P.

    1987-01-01

    Infrared absorption spectroscopy is utilized to identify and measure different nitrogen oxide species in the output of air-fed ozone generators. The concentrations of nitrous oxide (N 2 O) and dinitrogen pentoxide (N 2 O 5 ) were determined over a wide parameter range of modern high power medium-frequency ozone generators. With a typical ozonation dose of 1 mg ozone per liter of drinking water, less than 10 μ N 2 O and about 20 μ N 2 O 5 are introduced into one liter of drinking water

  17. A high-gain, compact, nonimaging concentrator: RXI.

    Science.gov (United States)

    Miñano, J C; Gonźlez, J C; Benítez, P

    1995-12-01

    The design procedure of a new nonimaging concentrator (called an RXI) is explained. Rays that impinge on the concentrator aperture, within the acceptance angle, are directed to the receiver by means of one refraction, one reflection, and one total internal reflection. The concentrator can be made as a single dielectric piece (in which the receiver is immersed) whose aspect ratio (thickness/aperture diameter) is close to 1/3. Ray-tracing analysis of a rotational symmetric RXI shows total transmissions of greater than 94.5% (no absorption or reflection losses are considered) when the acceptance angle of the incoming rays is small (<3°) and when the receiver area is the smallest possible (maximal concentration.).

  18. Estimating background denudation rates and delivery of landslide sediment from a time series of 10Be concentrations in landslide dominated basins in the southern Central Range of Taiwan

    Science.gov (United States)

    Chen, C. Y.; Willett, S.; West, A. J.; Dadson, S. J.; Hovius, N.; Christl, M.; Shyu, J. B. H.

    2017-12-01

    The southern Central Range of Taiwan is located at a tectonic transition zone between an oceanic subduction zone and the arc-continent collision forming the Taiwan orogen. The rapidly evolving tectonic setting, tropical climate and frequent typhoons result in a complex uplift pattern, transient landscapes and extensive landslides. For this study, we obtained a series of 10Be concentrations over the last decade for 13 major drainage basins in the southern Central Range, bracketing the occurrence of a major typhoon, Morakot, which hit Taiwan in 2009 and triggered thousands of landslides. This time series allows us to simultaneously estimate the background erosion rate and assess the impact of Morakot-triggered landslides on 10Be concentrations. The time series of 10Be concentrations shows temporally lower concentrations of 10Be indicating dilution following the Morakot event in most basins. The diluted 10Be concentrations imply erosion rates up to three times higher than the lowest measured rates in the same basins. We constructed a simple sediment-mixing model parameterized by a sudden input of sediment supplied from landslides superimposed on a background denudation rate. This model was calibrated to measured landslide inventories and the series of 10Be data. We obtain a range of permissible background erosion rate and fraction of landslide sediments over time for each basin. The inferred background erosion rate reveals a northward increasing trend, reflecting the initial stage of the mountain building and indicating tectonic forcing is the main driver of the landscape evolution in the southern Central Range. The temporal changes in fraction of landslide sediments show that the available landslide material generated by the Morakot event is decreasing over time with a timescale of several years.

  19. Reference ranges for blood concentrations of nucleated red blood cells in neonates.

    Science.gov (United States)

    Christensen, Robert D; Henry, Erick; Andres, Robert L; Bennett, Sterling T

    2011-01-01

    Previous studies reported a relationship between high nucleated red blood cells (NRBC) in neonates and the development of intraventricular hemorrhage (IVH) and/or retinopathy of prematurity (ROP). We sought to (1) establish reference ranges for NRBC in neonates based on a large data set, (2) compare NRBC from automated versus manual counts, (3) determine the effect of an elevated NRBC, on the day of birth, on the odds of developing grade ≥3 IVH or ROP. We analyzed all NRBC obtained during 8.5 years in a multihospital system, displaying the 5th and 95th percentile limits according to gestational age and postnatal age. NRBC counts were retrieved from 61,932 neonates, 26,536 of which were excluded from the data set. Comparing 9,000 samples run simultaneously on manual versus automated methods, the manual counts yielded slightly higher counts, but the difference is likely insignificant clinically. Altitude of the birth hospital did not correlate with NRBC, and no correlations were observed with cord pH or 1- or 5-min Apgar. An NRBC count >95th percentile limit was associated with higher odds of developing a grade ≥3 IVH (OR 4.28; 95% CI 3.17-5.77) and grade ≥3 ROP (OR 4.18; 95% CI 2.74-6.38). The figures of this report display reference ranges for NRBC according to gestational age and postnatal age. An NRBC count above the 95% limit at birth is associated with a higher risk of subsequently developing severe IVH and severe ROP. We speculate that this association is because an elevated NRBC count is a marker for prenatal hypoxia. Copyright © 2010 S. Karger AG, Basel.

  20. Multi-exposure high dynamic range image synthesis with camera shake correction

    Science.gov (United States)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  1. Struvite Crystallization of Anaerobic Digestive Fluid of Swine Manure Containing Highly Concentrated Nitrogen

    Directory of Open Access Journals (Sweden)

    Eun Young Lee

    2015-07-01

    Full Text Available In this study, the optimal operation factors for struvite crystallization for removing and recovering nitrogen and phosphorus from anaerobic digestive fluid of swine manure containing highly concentrated nitrogen was determined. Every experiment for the struvite crystallization reaction was conducted by placing 1,000 mL of digestion fluid in a 2,000 mL Erlenmeyer flask at various temperatures, pH, and mixing speed. Except for special circumstances, the digestion fluid was centrifuged (10,000 rpm, 10 min and then the supernatant was used for the experiment at room temperature and 100 rpm. The optimal mole ratio of PO43−:Mg2+ was 1:1.5, and the pH effect ranging from 9 to 11 was similar, when mixed for 1 hour. Under this condition, the removal efficiency of NH4+-N and PO43−-P was 40% and 88.6%, respectively. X-shaped crystal was observed by light and scanning electron microscopy. In addition, struvite crystal structure was confirmed through X-ray diffraction analysis.

  2. Research on high-temperature heat receiver in concentrated solar radiation system

    Directory of Open Access Journals (Sweden)

    Estera Przenzak

    2017-01-01

    Full Text Available The article presents the results of experimental and computer simulations studies of the high temperature heat receiver working in the concentrated solar radiation system. In order to study the radiation absorption process and heat exchange, the two types of computer simulations were carried out. The first one was used to find the best location for absorber in the concentrating installation. Ray Tracing Monte Carlo (RTMC method in Trace Pro software was used to perform the optical simulations. The results of these simulations were presented in the form of the solar radiation distribution map and chart. The data obtained in RTMC simulations were used as a second type boundary conditions for Computational Fluid Dynamics (CFD simulations. These studies were used to optimize the internal geometry of the receiver and also to select the most effective flow parameters of the working medium. In order to validate the computer simulations, high temperature heat receiver was tested in experimental conditions. The article presents the results of experimental measurements in the form of temperature, radiation intensity and power graphs. The tests were performed for varied flow rate and receiver location. The experimental and computer simulation studies presented in this article allowed to optimize the configuration of concentrating and heat receiving system.

  3. Variations of surface ozone concentration across the Klang Valley, Malaysia

    Science.gov (United States)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  4. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation

    Directory of Open Access Journals (Sweden)

    Ichim Christine V

    2011-08-01

    Full Text Available Abstract Background Viral vectors provide a method of stably introducing exogenous DNA into cells that are not easily transfectable allowing for the ectopic expression or silencing of genes for therapeutic or experimental purposes. However, some cell types, in particular bone marrow cells, dendritic cells and neurons are difficult to transduce with viral vectors. Successful transduction of such cells requires preparation of highly concentrated viral stocks, which permit a high virus concentration and multiplicity of infection (MOI during transduction. Pseudotyping with the vesicular stomatitis virus G (VSV-G envelope protein is common practice for both lentiviral and retroviral vectors. The VSV-G glycoprotein adds physical stability to retroviral particles, allowing concentration of virus by high-speed ultracentrifugation. Here we describe a method report for concentration of virus from large volumes of culture supernatant by means of successive rounds of ultracentrifugation into the same ultracentrifuge tube. Method Stable retrovirus producer cell lines were generated and large volumes of virus-containing supernatant were produced. We then tested the transduction ability of virus following varying rounds of concentration by ultra-centrifugation. In a second series of experiments lentivirus-containing supernatant was produced by transient transfection of 297T/17 cells and again we tested the transduction ability of virus following multiple rounds of ultra-centrifugation. Results We report being able to centrifuge VSV-G coated retrovirus for as many as four rounds of ultracentrifugation while observing an additive increase in viral titer. Even after four rounds of ultracentrifugation we did not reach a plateau in viral titer relative to viral supernatant concentrated to indicate that we had reached the maximum tolerated centrifugation time, implying that it may be possible to centrifuge VSV-G coated retrovirus even further should it be necessary

  5. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  6. Determination of serum free thyroxine concentration (FT4) by means of fT4-fraction and total thyroxine concentration

    International Nuclear Information System (INIS)

    Passath, A.; Leb, G.

    1985-01-01

    A new equilibrium assay for the determination of serum free thyroxine was evaluated in 514 patients. The assay comprises a two-vial-procedure to measure total thyroxine and free thyroxine fraction by use of monoclonal antibodies. Free thyroxine concentrations are calculated from fT 4 -fraction and total thyroxine concentration readings. In euthyroidism the average free thyroxine fraction (%fT 4 ) was 0.011%, in hyperthyroidism this fraction was elevated, in hypothyroidism it was below normal. In patients with TBG anomalies, TBG values were inversely correlated with fT 4 fraction readings. The 'euthyroid reference range' of FT 4 (SPAC ET) was between 0.70 to 1.78ng/dl. This euthyroid range of FT 4 was determined from TT 4 concentrations measured by T 4 -RIA (SPAC T 4 MONO) which were 30% above TT 4 values measured by conventional T 4 -RIA (SPAC T 4 POLY; polyclonal antibodies). However, a different euthyroid range of FT 4 between 0.55 to 1.30 ng/dl was observed as well as by other investigators when conventional T 4 -RIA measurements were used for calculation of FT 4 values. Our results indicate that calculated FT 4 concentration values are highly dependent on the methods used for determination of total thyroxine concentrations. Precision and reproducability of this two vial equilibrium assay did not meet the requirements mandatory for the application as a clinical routine diagnostic procedure, and its general use for this purpose can as yet not be recommended. (Author)

  7. A high-resolution full-field range imaging system

    Science.gov (United States)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  8. Leaching of copper concentrates with high arsenic content in chlorine-chloride media

    International Nuclear Information System (INIS)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-01-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs

  9. Is a high serum copper concentration a risk factor for implantation failure?

    Science.gov (United States)

    Matsubayashi, Hidehiko; Kitaya, Kotaro; Yamaguchi, Kohei; Nishiyama, Rie; Takaya, Yukiko; Ishikawa, Tomomoto

    2017-08-10

    Copper-containing contraceptive devices may deposit copper ions in the endometrium, resulting in implantation failure. The deposition of copper ions in many organs has been reported in patients with untreated Wilson's disease. Since these patients sometimes exhibit subfertility and/or early pregnancy loss, copper ions were also considered to accumulate in the uterine endometrium. Wilson's disease patients treated with zinc successfully delivered babies because zinc interfered with the absorption of copper from the gastrointestinal tract. These findings led to the hypothesis that infertile patients with high serum copper concentrations may have implantation failure due to the excess accumulation of copper ions. The relationship between implantation (pregnancy) rates and serum copper concentrations has not yet been examined. The Japanese government recently stated that actual copper intake was higher among Japanese than needed. Therefore, the aim of the present study was to investigate whether serum copper concentrations are related to the implantation (pregnancy) rates of human embryos in vivo. We included 269 patients (age copper, and zinc concentrations were measured 16 days after the first date of progesterone replacement. We compared 96 women who were pregnant without miscarriage at 10 weeks of gestation (group P) and 173 women who were not pregnant (group NP). No significant differences were observed in age or BMI between the groups. Copper concentrations were significantly higher in group NP (average 193.2 μg/dL) than in group P (average 178.1 μg/dL). According to the area under the curve (AUC) on the receiver operating characteristic curve for the prediction of clinical pregnancy rates, the Cu/Zn ratio (AUC 0.64, 95% CI 0.54-0.71) was a better predictor than copper or zinc. When we set the cut-off as 1.59/1.60 for the Cu/Zn ratio, sensitivity, specificity, the positive predictive value, and negative predictive value were 0.98, 0.29, 0.71, and 0

  10. A high gain wide dynamic range transimpedance amplifier for optical receivers

    International Nuclear Information System (INIS)

    Liu Lianxi; Zou Jiao; Liu Shubin; Niu Yue; Zhu Zhangming; Yang Yintang; En Yunfei

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the −3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the −3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage. (semiconductor integrated circuits)

  11. Nitrogen concentration profiles in oxy-nitrited high-speed steel

    International Nuclear Information System (INIS)

    Barcz, A.; Turos, A.; Wielunski, L.

    1976-01-01

    Nuclear microanalysis has been applied for the determination of in-depth concentration profiles of nitrogen in oxy-nitrided high-speed steel. The concentration profiles were deduced from measurements of the nitrogen content, determined by means of the 14 N(d,α) 12 C reaction for the set of initially identical samples after the removal of surface layers of sequentially increasing thicknesses. The 1.2 MeV deuterons were obtained from the Institute of Nuclear Research Van de Graaf accelerator LECH. The α-particles produced in the 14 N(d,α) 12 C reaction were detected by means of silicon surface barrier detector mounted at 150 deg C. Strong blocking of the nitrogen diffusion due to the presence of oxygen has been observed. The accuracy of nitrogen detection is of the order of 5% for nitrogen-rich regions and 10% for the matrix. However, the local non-uniformity of the steel may cause a spread of about 20% of the measured values. (T.G.)

  12. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  13. An assessment of a spiral duct centrifuge using standard and high concentration aerosols

    International Nuclear Information System (INIS)

    Smith, A.D.

    1982-12-01

    The Stoeber spiral duct centrifuge has been calibrated by means of polystyrene latex microspheres for the subsequent measurement of aerosol particle size distributions. Intermediate (1 g m -3 ) ad high (100 g m -3 ) sodium chloride aerosol concentrations have been sampled by the centrifuge to determine possible limitations in the equipment. Corrections have to be made for the effect of Coriolis forces, and aerosol concentrations above 1 g m -3 should be diluted before sampling. The spiral duct centrifuge is an extremely versatile instrument for aerosol analysis, and shows a high degree of reliability when operated under well-defined conditions. (author)

  14. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  15. Degadation of semiconducting polymers by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manceau, Matthieu; Petersen, Martin Helgesen

    2011-01-01

    infra-red spectra of MEH-PPV degraded at 1 sun intensity and at high solar concentration only showed minor deviations in degradation mechanisms. The acceleration factor was found to vary linearly with the solar concentration. Finally, a comparison of the degradation rates at 1 sun and 100 suns...... was carried out in a materials study employing five different conjugated polymers relevant to polymer solar cells for which acceleration factors in the range 19–55 were obtained.......A lens based sunlight concentration setup was used to accelerate the degradation of semiconducting polymers. Sunlight was collected outdoor and focused into an optical fiber bundle allowing for indoor experimental work. Photo-degradation of several polymers was studied by UV–vis absorbance...

  16. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  17. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  18. Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Hsu YH

    2014-09-01

    Full Text Available Yung-Heng Hsu,1,2 Dave Wei-Chih Chen,1 Chun-Der Tai,3 Ying-Chao Chou,1,2 Shih-Jung Liu,2 Steve Wen-Neng Ueng,1 Err-Cheng Chan4 1Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Guishan Township, 2Department of Mechanical Engineering, Chang Gung University, Guishan Township, 3Graduate Institute of Medical Mechatronics, Chang Gung University, Guishan Township, 4School of Medical Technology, Chang Gung University, Guishan Township, Taiwan Abstract: We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics. Keywords: biodegradable nanofiber-enveloped plates, electrospinning, antibiotics, release characteristics

  19. Protective effect of high concentrations of vitamin C on the radiation response of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    O'Connor, M.K.; Malone, J.F.; Moriarty, M.

    1977-01-01

    The interaction of radiation with various chemical and physical agents has been studied with a view to finding safe reliable methods of altering radiosensitivity, as well as acquiring a deeper understanding of the chemical and physiological processes involved in the development of radiation damage. The agents most frequently studied include oxygen, known radiosensitisers, metabolic inhibitors and cytotoxic drugs. Because of toxicity, and related problems, manipulation of the concentrations of these substances in vivo is difficult. However many substances, whose importance in normal physiology is well established, have not been well studied from the point of view of their influence on radiation response. The influence of Vitamin C on the survival of mammalian cells (CHO - Clone A) after irradiation is reported. High concentrations of the vitamin (0.3 mg/ml) had a profound effect on radiosensitivity, giving a survival 7 times larger than untreated cells, at the highest dose used. Survival curves demonstrate that the effect is mainly, but not exclusively, due to an increase in the D 0 by a factor of about 1.5. The protective effect occurs in a concentration region that overlaps the physiological range, but the relationship between Vitamin C levels in the cells and in the medium, is complex. These observations could be of importance in reducing biological consequences of accidental radiation exposure, or deliberate diagnostic medical exposures. They may also be important in radiotherapy

  20. High dynamic range vision sensor for automotive applications

    Science.gov (United States)

    Grenet, Eric; Gyger, Steve; Heim, Pascal; Heitger, Friedrich; Kaess, Francois; Nussbaum, Pascal; Ruedi, Pierre-Francois

    2005-02-01

    A 128 x 128 pixels, 120 dB vision sensor extracting at the pixel level the contrast magnitude and direction of local image features is used to implement a lane tracking system. The contrast representation (relative change of illumination) delivered by the sensor is independent of the illumination level. Together with the high dynamic range of the sensor, it ensures a very stable image feature representation even with high spatial and temporal inhomogeneities of the illumination. Dispatching off chip image feature is done according to the contrast magnitude, prioritizing features with high contrast magnitude. This allows to reduce drastically the amount of data transmitted out of the chip, hence the processing power required for subsequent processing stages. To compensate for the low fill factor (9%) of the sensor, micro-lenses have been deposited which increase the sensitivity by a factor of 5, corresponding to an equivalent of 2000 ASA. An algorithm exploiting the contrast representation output by the vision sensor has been developed to estimate the position of a vehicle relative to the road markings. The algorithm first detects the road markings based on the contrast direction map. Then, it performs quadratic fits on selected kernel of 3 by 3 pixels to achieve sub-pixel accuracy on the estimation of the lane marking positions. The resulting precision on the estimation of the vehicle lateral position is 1 cm. The algorithm performs efficiently under a wide variety of environmental conditions, including night and rainy conditions.

  1. Radon concentration measurements in therapeutic spring water

    International Nuclear Information System (INIS)

    Deak, N.; Horvath, A.; Sajo B, L.; Marx, G.

    1996-01-01

    It is believed that people undergoing a curative cycle in a given spa, may receive a dose in the range of 400 mSv/year which is many times the average annual dose so that their risk of lung cancer may increase by 3% or more. To determine the risk due to the natural radioactivity, of the most frequented spas in Budapest (H), we selected four and some others located on the country side being of particular interest. Results of the radon concentration in spring water are presented, with the evidence that some spas have a high radon concentration. We conclude that patients receiving treatment may be exposed to an additional dose in the range of 29-76 mSv/year that at the bronchia could be between 445-1182 mSv/year. (authors). 6 refs., 2 figs., 2 tabs

  2. Pressure leaching of chalcopyrite concentrate

    Science.gov (United States)

    Aleksei, Kritskii; Kirill, Karimov; Stanislav, Naboichenko

    2018-05-01

    The results of chalcopyrite concentrate processing using low-temperature and high-temperature sulfuric acid pressure leaching are presented. A material of the following composition was used, 21.5 Cu, 0.1 Zn, 0.05 Pb, 0.04 Ni, 26.59 S, 24.52 Fe, 16.28 SiO2 (in wt.%). The influence of technological parameters on the degree of copper and iron extraction into the leach solution was studied in the wide range of values. The following conditions were suggested as the optimal for the high-temperature pressure leaching: t = 190 °C, PO2 = 0.5 MPa, CH2SO4 = 15 g/L, L:S = 6:1. At the mentioned parameters, it is possible to extract at least 98% Cu from concentrate into the leaching solution during 100 minutes. The following conditions were suggested as optimal for the low-temperature pressure leaching: t = 105 °C, PO2 = 1.3-1.5 MPa, CH2SO4 = 90 g/L, L:S = 10:1. At the mentioned parameters, it is possible to extract up to 83% Cu from the concentrate into the leach solution during 300-360 minutes.

  3. Arsenic, gold and mercury concentration levels in freshwater fish by neutron activation analysis

    International Nuclear Information System (INIS)

    Ndiokwere, C.L.

    1983-01-01

    Elemental concentrations of arsenic, gold and mercury have been determined in flesh tissues of freshwater fish species from some Nigerian rivers. The technique of neutron activation followed by radiochemical separation of the isotopes of interest has been applied. The concentrations of 0.04 to 0.87 μg g -1 and 0.4 to 1.33 μg g -1 obtained for gold and mercury, respectively, in the samples are much higher than the values reported in the literature for freshwater fish. The arsenic concentration range of 0.07 to 0.42 μg g -1 is within the reported range. The high concentration levels of these heavy metals can be attributed to local contamination of the rivers. (author)

  4. The effect of high concentration additive on chiral separations in supercritical fluid chromatography.

    Science.gov (United States)

    Speybrouck, David; Doublet, Charline; Cardinael, Pascal; Fiol-Petit, Catherine; Corens, David

    2017-08-11

    Supercritical Fluid Chromatography is frequently used to efficiently handle separations of enantiomers. The separation of basic analytes usually requires the addition of a basic additive in the mobile phase to improve the peak shape or even to elute the compounds. The effect of increasing the concentration of 2-propylamine as additive on the elution of a series of basic compounds on a Chiralpak-AD stationary phase was studied. In this study, unusual additive concentrations ranging from 0.3% to 10% of 2-propylamine 2-propylaminein the modifier were explored and the effect on retention, peak shape, selectivity and resolution was evaluated. The addition of a large quantity of additive allowed to drastically improve the selectivity and the resolution, and even enantiomers elution order reversal was observed by changing the concentration of basic additive. The role of the ratio additive/modifier appeared a key to tune the enantioselectivity. Finally, the impact of these drastic conditions on the column material was evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sex, Diet, and the Social Environment: Factors Influencing Hair Cortisol Concentration in Free-Ranging Black Bears (Ursus americanus).

    Science.gov (United States)

    Lafferty, Diana J R; Laudenslager, Mark L; Mowat, Garth; Heard, Doug; Belant, Jerrold L

    2015-01-01

    Increasingly, measures of glucocorticoid levels (e.g., cortisol), key components of the neuroendocrine stress axis, are being used to measure past hypothalamic-pituitary-adrenal (HPA) activity to index psychological and physiological stress exhibited by wildlife for assessing individual and population-level well-being. However, many intrinsic and extrinsic factors affect HPA activity in animals. Using American black bears (Ursus americanus; n = 116) as an ecological model and hair cortisol concentration (HCC) as an integrative measure of past HPA activity, we evaluated the influence of diet, sex and the social environment on black bear HCC in a free-ranging population that spanned adjoining ecoregions with differing densities of potential conspecific and heterospecific competitors. HCC varied by sex, with female HCC ranging from 0.6 to 10.7 pg/mg (median = 4.5 ± 1.2 mean absolute deviation [MAD]) and male HCC ranging from 0.5 to 35.1 pg/mg (median = 6.2 ± 2.6 MAD). We also observed a three-way interaction among sex, δ14C and ecoregion, which may indicate that some differences in HCC between female and male black bears results from variability in the nutritional needs of larger-bodied males relative to smaller-bodied females, slight differences in food resources use between ecoregions as well as sex-based differences regarding the social environment. Once we understand what drives sex-specific differences in HCC, HCC may aid our understanding of the physiological responses by bears and other wildlife to diverse environmental challenges.

  6. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    Science.gov (United States)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  7. Sparse Representation Denoising for Radar High Resolution Range Profiling

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise ratio of the return, leading to a high-quality profile.

  8. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

    Science.gov (United States)

    Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike

    2018-03-01

    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

  9. Evaluation of high-frequency mean streamwater transit-time estimates using groundwater age and dissolved silica concentrations in a small forested watershed

    Science.gov (United States)

    Peters, Norman E.; Burns, Douglas A.; Aulenbach, Brent T.

    2014-01-01

    Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.

  10. Variation of atmospheric 210Pb concentration in the inland area of Chinese continent

    International Nuclear Information System (INIS)

    Doi, Taeko; Sato, Jun.

    1995-01-01

    Atmospheric concentrations of 210 Pb and their variations over Urumqi, Lanzhou and Baotou, cities located in inland area of Chinese continent, were observed for a period of 1 year in 1992. The monthly average concentrations ranged from 0.27 to 4.57 mBq/m 3 . The concentrations over these cities in winter were several times higher than that observed at Tsukuba Science City, Japan, and the range of variation was also larger. The variations in concentration over the 3 localities were similar to each other, showing the same seasonal variation pattern: low concentration appeared in summer and high in winter. This variation pattern was different from that observed at Tsukuba Science City. The variations in concentration over Chinese continent, where precipitation is much lower than that in Japan, correlated quite well with the variation in precipitation. (author)

  11. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  12. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Directory of Open Access Journals (Sweden)

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  13. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    Science.gov (United States)

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility

  14. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  15. Lead pollution of shooting range soils | Sehube | South African ...

    African Journals Online (AJOL)

    Atotal of eight military shooting ranges were used for this study. Soil samples were collected at each of the eight shooting ranges at the berm, target line, 50 and 100 m from berm. In all of the shooting ranges investigated the highest total lead (Pb) concentrations were found in the bermsoils. Elevated Pb concentrations of 38 ...

  16. High fetal plasma adenosine concentration: a role for the fetus in preeclampsia?

    LENUS (Irish Health Repository)

    Espinoza, Jimmy

    2012-02-01

    OBJECTIVE: Clinical observations suggest a role for the fetus in the maternal manifestations of preeclampsia, but the possible signaling mechanisms remain unclear. This study compares the fetal plasma concentrations of adenosine from normal pregnancies with those from preeclampsia. STUDY DESIGN: This secondary data analysis included normal pregnancies (n = 27) and patients with preeclampsia (n = 39). Patients with preeclampsia were subclassified into patients with (n = 25) and without (n = 14) abnormal uterine artery Doppler velocimetry (UADV). RESULTS: Fetal plasma concentrations of adenosine were significantly higher in patients with preeclampsia (1.35 +\\/- 0.09 mumol\\/L) than in normal pregnancies (0.52 +\\/- 0.06 mumol\\/L; P < .0001). Fetal plasma concentrations of adenosine in patients with preeclampsia with abnormal UADV (1.78 +\\/- 0.15 mumol\\/L), but not with normal UADV (0.58 +\\/- 0.14 mumol\\/L), were significantly higher than in normal pregnancies (P < .0001). CONCLUSION: Patients with preeclampsia with sonographic evidence of chronic uteroplacental ischemia have high fetal plasma concentrations of adenosine.

  17. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-05-15

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.

  18. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    International Nuclear Information System (INIS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-01-01

    The free hole carriers in GaN have been limited to concentrations in the low 10 18 cm -3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ∼10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ∼1.5x10 19 cm -3

  19. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Adrovic, F.; Vuckovic, B.; Ninkovic, M.

    2004-01-01

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m 3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m 3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  20. Identification of long-range transport of air pollutants using a Potential Source Contribution Function in Baengyeong Island, Korea

    Science.gov (United States)

    Ban, J.; Park, T.; Atwood, S. A.; Soo, C. J.; Ahn, J.; Lee, T.

    2017-12-01

    To understand the influence of long-range transport, Potential Source Contribution Function (PSCF) analysis is widely used in many studies. PSCF is a region containing a source for a particular constituent estimated by looking at the percentage of back-trajectories that pass over that region which contain high concentrations of the constituent. Aerosol concentration, wind direction, wind speed and back trajectory from NOAA HYSPLIT model in Baengyeong Island were used as input data for PSCF to consider the retention time of aerosol. Non-refractory PM1 (NR-PM1) concentrations were measured by an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and meteorological variables were also measured in Baengnyeong Island, Korea during 2013 to 2015. We will investigate the influence of long-range transport and compare with AMS data from eastern China in November 2013. It will be provided the overview of long-range transport of NR-PM1 including inorganics and organics species to South Korea.

  1. Effects of meals rich in either monounsaturated or saturated fat on lipid concentrations and on insulin secretion and action in subjects with high fasting triglyceride concentrations.

    Science.gov (United States)

    Lopez, Sergio; Bermudez, Beatriz; Ortega, Almudena; Varela, Lourdes M; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G

    2011-03-01

    The nature of dietary fats and fasting concentrations of triglycerides affect postprandial hypertriglyceridemia and glucose homeostasis. The objectives were to examine the effects of meals enriched in monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) on postprandial lipid, glucose, and insulin concentrations and to examine the extent of β cell function and insulin sensitivity in subjects with high fasting triglyceride concentrations. Fourteen men with fasting hypertriglyceridemia and normal glucose tolerance were given meals (≈10 kcal/kg body weight) containing MUFAs, SFAs, or no fat. Blood samples were collected at baseline and hourly over 8 h for analysis. The high-fat meals significantly increased postprandial concentrations of triglycerides, nonesterified fatty acids, and insulin and postprandial indexes of β cell function. However, postprandial indexes of insulin sensitivity decreased significantly. These effects were significantly attenuated with MUFAs relative to SFAs. MUFAs postprandially buffered β cell hyperactivity and insulin intolerance relative to SFAs in subjects with high fasting triglyceride concentrations. These data suggest that, in contrast with SFAs, MUFA-based strategies may provide cardiovascular benefits to persons at risk by limiting lipid and insulin excursions and may contribute to optimal glycemic control after meal challenges.

  2. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  3. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  4. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  5. Characterizing the range of children's air pollutant exposure during school bus commutes.

    Science.gov (United States)

    Sabin, Lisa D; Behrentz, Eduardo; Winer, Arthur M; Jeong, Seong; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A

    2005-09-01

    Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with

  6. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  7. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  8. In vitro fermentation pattern and acidification potential of different sources of carbohydrates for ruminants given high concentrate diets

    Energy Technology Data Exchange (ETDEWEB)

    Amanzougarene, Z.; Yuste, S.; Vega, A. De; Fondevila, M.

    2017-07-01

    The in vitro fermentation pattern of five sources of carbohydrates of differing nature (maize grain, MZ; sucrose, SU; wheat bran, WB; sugarbeet pulp, BP; and citrus pulp, CT) under conditions of high concentrate diets for ruminants was studied. A first 8 h incubation trial was performed under optimal pH using inoculum from ewes given a fibrous diet, to compare fermentative characteristics of substrates. As planned, incubation pH ranged within 6.3 to 6.6. The gas produced from CT was higher than MZ, SU and BP from 4 and 6 h onwards, and at 8 h, respectively (p<0.05). There were no differences (p>0.05) on total volatile fatty acid (VFA) concentration, nor on acetate or propionate proportions, but butyrate was lowest (p<0.05) with CT and BP. The second incubation trial was performed in a poorly-buffered medium, with inoculum from ewes given a concentrate diet. All substrates showed a gradual drop of pH, being lowest with SU after 4 h (p<0.05). Throughout the incubation, gas production was highest with CT and lowest with MZ and BP (p<0.05). Total 8 h VFA concentration was higher with CT than BP, SU and MZ (p<0.05). Acetate proportion was higher, and that of propionate lower, with BP than WB (p<0.05), butyrate proportion being higher with MZ and WB than with BP and CT (p<0.05). Lactic acid concentration was higher (p<0.05) with SU than WB and BP. Fermentation characteristics and acidification potential of feeds depend on the nature of their carbohydrate fraction, and must be considered for practical applications.

  9. High concentrations of lead and barium in hair of the rural population caused by water pollution in the Thar Jath oilfields in South Sudan.

    Science.gov (United States)

    Pragst, Fritz; Stieglitz, Klaus; Runge, Hella; Runow, Klaus-Dietrich; Quig, David; Osborne, Robert; Runge, Christian; Ariki, John

    2017-05-01

    In the oil fields of Thar Jath, South Sudan, increasing salinity of drinking water was observed together with human incompatibilities and rise in livestock mortalities. Hair analysis was used to characterize the toxic exposure of the population. Hair samples of volunteers from four communities with different distance from the center of the oil field (Koch 23km, n=24; Leer 50km, n=26; Nyal 110km, n=21; and Rumbek 220km, n=25) were analyzed for altogether 39 elements by inductively coupled plasma-mass spectrometry. Very high concentrations and a toxic health endangerment were assessed for lead and barium. The concentration of lead increased steadily with decreasing distance from the oil field from Rumbek (mean 2.8μg/g) to Koch (mean 18.7μg/g) and was there in the same range as in highly contaminated mining regions in Kosovo, China or Bolivia. The weighting materials in drilling muds barite (BaSO 4 ) and galena (PbS) were considered to be the sources of drinking water pollution and high hair values. The high concentrations of lead and barium in hair demonstrate clearly the health risk caused by harmful deposition of toxic industrial waste but cannot be used for diagnosis of a chronic intoxication of the individuals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... than CPV-only system. The results indicate that contribution of the TEG in power generation enhances at high sun concentrations. Depending to critical design parameters of the CPV and the TEG, there are optimal values for heat transfer coefficient in the heat sink that offer minimum energy cost....... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  11. Sex, Diet, and the Social Environment: Factors Influencing Hair Cortisol Concentration in Free-Ranging Black Bears (Ursus americanus)

    Science.gov (United States)

    Lafferty, Diana J. R.; Laudenslager, Mark L.; Mowat, Garth; Heard, Doug; Belant, Jerrold L.

    2015-01-01

    Increasingly, measures of glucocorticoid levels (e.g., cortisol), key components of the neuroendocrine stress axis, are being used to measure past hypothalamic-pituitary-adrenal (HPA) activity to index psychological and physiological stress exhibited by wildlife for assessing individual and population-level well-being. However, many intrinsic and extrinsic factors affect HPA activity in animals. Using American black bears (Ursus americanus; n = 116) as an ecological model and hair cortisol concentration (HCC) as an integrative measure of past HPA activity, we evaluated the influence of diet, sex and the social environment on black bear HCC in a free-ranging population that spanned adjoining ecoregions with differing densities of potential conspecific and heterospecific competitors. HCC varied by sex, with female HCC ranging from 0.6 to 10.7 pg/mg (median = 4.5 ± 1.2 mean absolute deviation [MAD]) and male HCC ranging from 0.5 to 35.1 pg/mg (median = 6.2 ± 2.6 MAD). We also observed a three-way interaction among sex, δ14C and ecoregion, which may indicate that some differences in HCC between female and male black bears results from variability in the nutritional needs of larger-bodied males relative to smaller-bodied females, slight differences in food resources use between ecoregions as well as sex-based differences regarding the social environment. Once we understand what drives sex-specific differences in HCC, HCC may aid our understanding of the physiological responses by bears and other wildlife to diverse environmental challenges. PMID:26529405

  12. Sex, Diet, and the Social Environment: Factors Influencing Hair Cortisol Concentration in Free-Ranging Black Bears (Ursus americanus.

    Directory of Open Access Journals (Sweden)

    Diana J R Lafferty

    Full Text Available Increasingly, measures of glucocorticoid levels (e.g., cortisol, key components of the neuroendocrine stress axis, are being used to measure past hypothalamic-pituitary-adrenal (HPA activity to index psychological and physiological stress exhibited by wildlife for assessing individual and population-level well-being. However, many intrinsic and extrinsic factors affect HPA activity in animals. Using American black bears (Ursus americanus; n = 116 as an ecological model and hair cortisol concentration (HCC as an integrative measure of past HPA activity, we evaluated the influence of diet, sex and the social environment on black bear HCC in a free-ranging population that spanned adjoining ecoregions with differing densities of potential conspecific and heterospecific competitors. HCC varied by sex, with female HCC ranging from 0.6 to 10.7 pg/mg (median = 4.5 ± 1.2 mean absolute deviation [MAD] and male HCC ranging from 0.5 to 35.1 pg/mg (median = 6.2 ± 2.6 MAD. We also observed a three-way interaction among sex, δ14C and ecoregion, which may indicate that some differences in HCC between female and male black bears results from variability in the nutritional needs of larger-bodied males relative to smaller-bodied females, slight differences in food resources use between ecoregions as well as sex-based differences regarding the social environment. Once we understand what drives sex-specific differences in HCC, HCC may aid our understanding of the physiological responses by bears and other wildlife to diverse environmental challenges.

  13. Analysis on concentration of VEGF in aqueous humor in patients with wAMD after Ranibizumab treating at high altitude

    Directory of Open Access Journals (Sweden)

    Rui-Juan Guan

    2017-05-01

    Full Text Available AIM: To study the concentration of vascular endothelial growth factor(VEGFin aqueous humor in patients with wet age-related macular degeneration(wAMDbefore and after Ranibizumab treating at high altitude and the correlation of VEGF concentration with central fovea macula thickness. METHODS: The patients with wAMD in our hospital from Jun. 2014. to Oct. 2015 were retrospectively analyzed, diagnosed after best corrected visual acuity, intraocular pressure, fundus examination, fundus color photography, fluorescence fundus angiography(FFAand optical coherence tomography(OCTinspection. Seventy- six patients with cataract without choroidal neovascularization(CNVwere selected as control group. In the 76 patients(76 eyes, 46 were male, 30 were female, aged 40-80(55±11.18. The course was 0.3-6mo. The corrected visual acuity was 0.01-0.6. The intraocular press was 15.24±3.12mmHg. The CNV in all cases was within the range of the 500μm in diameter. Under surface anesthesia, Ranibizumab(0.5mgwas injected into vitreous cavity. Before and after injection, aqueous humor was obtained and used to detect the concentration of VEGF through ELISA. Best corrected visual acuity, slit lamp microscope, intraocular pressure, OCT and FFA were observed after treatment. RESULTS:The clinical curative effect is the best at 1mo after treatment with statistical significance(PPPCONCLUSION: For wAMD patients, Ranibizumab injection is effective for it reduces the concentration of VEGF in aqueous humor and the central fovea macula thickness. The VEGF concentration in aqueous humor and foveal retinal thickness has a positive correlation.

  14. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  15. Context-dependent JPEG backward-compatible high-dynamic range image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  16. Analgesic efficacy of local anaesthetic wound administration in knee arthroplasty: volume vs concentration

    DEFF Research Database (Denmark)

    Andersen, L Ø; Gaarn-Larsen, L; Kristensen, B B

    2010-01-01

    arthroplasty were randomly assigned to receive either a high volume/low concentration solution of ropivacaine (20 ml, 0.5%) or a low volume/high concentration solution of ropivacaine (10 ml, 1%), 6 and 24 h postoperatively through an intracapsular catheter. Pain was assessed for 2 h after administration. Pain...... was reduced in both groups with ropivacaine administration 24 h postoperatively (p ropivacaine injection 6 h postoperatively. The median (IQR [range]) dose of oxycodone administered...

  17. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  18. Effect of concentrate feeder design on performance, eating and animal behavior, welfare, ruminal health, and carcass quality in Holstein bulls fed high-concentrate diets.

    Science.gov (United States)

    Verdú, M; Bach, A; Devant, M

    2015-06-01

    A total of 240 Holstein bulls (121 ± 2.0 kg initial BW; 99 ± 1.0 d of age), from 2 consecutive fattening cycles, were randomly allocated in 1 of 6 pens and assigned to 1 of the 3 treatments consisting of different concentrate feeder designs: a control feeder with 4 feeding spaces (CF), a feeder with less concentrate capacity (CFL), and a single-space feeder with lateral protections (SF). Each pen had a straw feeder and a drinker. All animals were fed a high-concentrate diet for ad libitum intake. Concentrate consumption was recorded daily using a computerized feeder, straw consumption was recorded weekly, and BW was recorded every 14 d. Animal behavior was registered on d 1, 3, 5, 8, and 14 and every 28 d by scan sampling. Eating behavior at concentrate feeders was filmed on d 12, 125, and 206. On d 7, 120, and 204, samples of rumen contents were collected for measurement of pH and VFA and blood samples were obtained to analyze NEFA, haptoglobin, glucose, and insulin. Animals were slaughtered after 223 d, and HCW and lesions of the rumen wall and liver were recorded. The accumulative concentrate consumption per animal tended (P = 0.09) to be greater with CF than with CFL and SF. Also, CV of concentrate consumption was greater (P carcass data. Also, no differences among treatments in rumen wall evaluation and liver abscesses were observed. At 7 and 204 d of study, SF bulls had greater (P animal welfare in Holstein bulls fed high-concentrate diets. However, at the beginning, there was evidence that animals fed using SF had problems with adaptation.

  19. Groundwater radon, radium and uranium concentrations in Regiao dos Lagos, Rio de Janeiro State, Brazil

    International Nuclear Information System (INIS)

    Almeida, R.M.R.; Lauria, D.C.; Ferreira, A.C.; Sracek, O.

    2004-01-01

    Ground water from Regiao dos Lagos, a coastal area of Rio de Janeiro state, was analysed for 226 Ra, 228 Ra, 222 Rn, 238 U, major ion concentrations, and physico-chemical parameters were also measured. Concentrations values ranged from -1 for 226 Ra, from -1 for 228 Ra and from -4 to 8.0x10 -2 Bq l -1 for 238 U. Detectable 222 Rn concentrations (>3 Bq l -1 ) were found only in two samples. The spatial distribution of Ra concentration delineated one distinct area and some hot spots with high Ra concentration. Low pH value is the most important water parameter linked to high radium concentration. This is probably related to limited adsorption of radium on soil ferric oxides and hydroxides at low pH range. There was a significant correlation between uranium concentrations and electrical conductivity values, and also between uranium concentrations and concentrations of Ca, Mg, Na, K, and Cl, indicating sea water impact. Uranium concentrations were lower than maximum contaminant level for drinking water, whereas 17 out of the 88 ground water samples had levels of radium that exceeded the maximum contaminant level for tap water. The total annual effective dose for adult due to the water consumption reaches values up to 0.8 mSv

  20. Human parvovirus B19 infection in hemophiliacs first infused with two high-purity, virally attenuated factor VIII concentrates.

    Science.gov (United States)

    Azzi, A; Ciappi, S; Zakvrzewska, K; Morfini, M; Mariani, G; Mannucci, P M

    1992-03-01

    Human parvovirus B19 can be transmitted by coagulation factor concentrates and is highly resistant to virucidal methods. To evaluate whether the additional removal of virus by chromatographic methods during the manufacture of high-purity concentrates reduces the risk of B19 transmission, we have prospectively evaluated the rate of anti-B19 seroconversion in two groups of susceptible (anti-B19 negative) hemophiliacs infused with high-purity, heated (pasteurized) or solvent-detergent-treated factor VIII concentrates. Both products infected a relatively high proportion of patients (nine of 20).

  1. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...... component of such validation studies is the selection of a challenging and balanced set of source (reference) HDR content. In order to facilitate this, we present an objective method based on the premise that a more challenging HDR scene encapsulates higher contrast, and as a result will show up more...

  2. Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells.

    Science.gov (United States)

    Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo

    2017-04-10

    We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.

  3. Effect of high Xe-concentration in a plasma display panel with a SrCaO cold cathode

    International Nuclear Information System (INIS)

    Uchida, Giichiro; Kajiyama, Hiroshi; Shinoda, Tsutae; Uchida, Satoshi; Akiyama, Toshiyuki

    2010-01-01

    We present here measurements of high Xe-contents plasma display panel (PDP) with SrCaO cold cathode. Luminous efficacy (η) shows a two-step increase with Xe-concentration in Ne/Xe gas mixture: η drastically increases up to Xe-concentration of 30% (Xe: 30%), and then attains 5 lm/W at the highest Xe-concentration of Xe: 100%. The high performance PDP with Xe: 100% can be operated at low applied voltage between 230 and 377 V due to the high secondary electron emission from the SrCaO cathode. Emission measurements clearly show the change in discharge characteristics at Xe: 30%, where the discharge changes from a Ne/Xe mixture discharge to an almost pure Xe discharge, and the vacuum ultraviolet (VUV) radiation from the combination of resonance and excimer radiations to only excimer radiation. Theoretical analysis solving Boltzmann equation for electron demonstrates that increasing Xe-concentration enhances the collision frequency for electron impact excitation directly from ground state to lower levels concerned with the VUV radiation, resulting in a drastic increase in luminous efficacy up to Xe: 30%. Also, one-dimensional fluid simulation of a Ne/Xe dielectric barrier discharge clearly shows that a combination of high secondary electron emission cathode and high Xe-concentration is quite effective for high VUV radiation efficiency because it induces a drastic increase in electron-heating efficiency.

  4. Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin

    2016-01-01

    Highlights: • The highly concentrated PV-TE hybrid system is studied. • The performances of different cooling systems are analyzed and compared. • Sandwiching a copper plate between the PV and TE can improve the efficiency. • Four thermal design principles of the system are proposed. - Abstract: A thermal analysis of a highly concentrated photovoltaic-thermoelectric (PV-TE) hybrid system is carried out in this paper. Both the output power and the temperature distribution in the hybrid system are calculated by means of a three-dimensional numerical model. Three possible approaches for designing the highly concentrated PV-TE hybrid system are presented by analyzing the thermal resistance of the whole system. First, the sensitivity analysis shows that the thermal resistance between the TE module and the environment has a more great effect on the output power than the thermal resistance between the PV and the TE. The influence of the natural convection and the radiation can be ignored for the highly concentrated PV-TE hybrid system. Second, it is necessary to sandwich a copper plate between the PV and the TE for decreasing the thermal resistance between the PV and the TE. The role of the copper plate is to improve the temperature uniformity. Third, decreasing the area of PV cells can improve the efficiency of the highly concentrated PV-TE hybrid system. It should be pointed out that decreasing the area of PV cells also increases the total thermal resistance, but the raise of the efficiency is caused by the reduction of the heat transfer rate of the system. Therefore, the principle of minimizing the total thermal resistance may not be suitable for optimizing the area of PV cells.

  5. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  6. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I., E-mail: isoltani@mit.edu; Youcef-Toumi, K.

    2014-11-15

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube.

  7. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    International Nuclear Information System (INIS)

    Soltani Bozchalooi, I.; Youcef-Toumi, K.

    2014-01-01

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube

  8. Study on direct-contact phase-change liquid immersion cooling dense-array solar cells under high concentration ratios

    International Nuclear Information System (INIS)

    Kang, Xue; Wang, Yiping; Huang, Qunwu; Cui, Yong; Shi, Xusheng; Sun, Yong

    2016-01-01

    Highlights: • Direct-contact phase-change liquid immersion cooling for solar cells was proposed. • A self-regulating system investigated the feasibility in temperature control. • Temperature was well controlled between 87.3 °C and 88.5 °C. • Surface heat transfer coefficient was up to 23.49 kW/(m"2·K) under 398.4×. • A model illustrated the interface function was the main reason to affect light. - Abstract: A new cooling method by directly immersing the solar cells into phase-change liquid was put forward to cool dense-array solar cells in high concentrating photovoltaic system. A self-running system was built to study the feasibility of temperature control and the effect of bubbles generated by ethanol phase change under concentration ratio ranged between 219.8× and 398.4×. The results show that the cooling system is self-regulating without consuming extra energy and ethanol flow rate reaches up to 180.6 kg/(s·m"2) under 398.4×. The temperature of solar cells distributes in the range between 87.3 °C and 88.5 °C, the surface heat transfer coefficient of electric heating plate is up to 23.49 kW/(m"2·K) under 398.4×. The bubble effect on electrical performance of triple-junction solar cells is reported and the results show that I_s_c and P_m_a_x decline 10.2% and 7.3%, respectively. A model based on bubble images illustrates that light loss at the interface between ethanol and bubble is the main reason to cut down the electrical performance.

  9. Parallel sort with a ranged, partitioned key-value store in a high perfomance computing environment

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron; Poole, Stephen W.

    2016-01-26

    Improved sorting techniques are provided that perform a parallel sort using a ranged, partitioned key-value store in a high performance computing (HPC) environment. A plurality of input data files comprising unsorted key-value data in a partitioned key-value store are sorted. The partitioned key-value store comprises a range server for each of a plurality of ranges. Each input data file has an associated reader thread. Each reader thread reads the unsorted key-value data in the corresponding input data file and performs a local sort of the unsorted key-value data to generate sorted key-value data. A plurality of sorted, ranged subsets of each of the sorted key-value data are generated based on the plurality of ranges. Each sorted, ranged subset corresponds to a given one of the ranges and is provided to one of the range servers corresponding to the range of the sorted, ranged subset. Each range server sorts the received sorted, ranged subsets and provides a sorted range. A plurality of the sorted ranges are concatenated to obtain a globally sorted result.

  10. Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I.; Careaga Houck, A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); AlGhamdi, J. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Department of Chemistry, College of Science, University of Dammam, Dammam (Saudi Arabia); Youcef-Toumi, K. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-01-15

    This paper presents the design and control of a high-speed and large-range atomic force microscopy (AFM). A multi-actuation scheme is proposed where several nano-positioners cooperate to achieve the range and speed requirements. A simple data-based control design methodology is presented to effectively operate the AFM scanner components. The proposed controllers compensate for the coupled dynamics and divide the positioning responsibilities between the scanner components. As a result, the multi-actuated scanner behavior is equivalent to that of a single X–Y–Z positioner with large range and high speed. The scanner of the designed AFM is composed of five nano-positioners, features 6 μm out-of-plane and 120 μm lateral ranges and is capable of high-speed operation. The presented AFM has a modular design with laser spot size of 3.5 μm suitable for small cantilever, an optical view of the sample and probe, a conveniently large waterproof sample stage and a 20 MHz data throughput for high resolution image acquisition at high imaging speeds. This AFM is used to visualize etching of calcite in a solution of sulfuric acid. Layer-by-layer dissolution and pit formation along the crystalline lines in a low pH environment is observed in real time. - Highlights: • High-speed AFM imaging is extended to large lateral and vertical scan ranges. • A general multi-actuation approach to atomic force microscopy is presented. • A high-speed AFM is designed and implemented based on the proposed method. • Multi-actuator control is designed auxiliary to a PID unit to maintain flexibility. • Influence of calcite crystal structure on dissolution is visualized in video form.

  11. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.

    Science.gov (United States)

    Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon

    2018-05-22

    Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.

  12. Intravenous administration of high-dose Paclitaxel reduces gut-associated lymphoid tissue cell number and respiratory immunoglobulin A concentrations in mice.

    Science.gov (United States)

    Moriya, Tomoyuki; Fukatsu, Kazuhiko; Noguchi, Midori; Okamoto, Koichi; Murakoshi, Satoshi; Saitoh, Daizoh; Miyazaki, Masaru; Hase, Kazuo; Yamamoto, Junji

    2014-02-01

    Chemotherapy remains a mainstay of treatment for cancer patients. However, anti-cancer drugs frequently cause a wide range of side effects, including leukopenia and gastrointestinal toxicity. These adverse effects can lead to treatment delays or necessitate temporary dose reductions. Although chemotherapy-related changes in gut morphology have been demonstrated, the influences of chemotherapeutic regimens on gut immunity are understood poorly. This study aimed to examine whether the anti-cancer drug paclitaxel (PTX) impairs gut immunity in mice. Male ICR mice were randomized into three groups: Control, low-dose PTX (low PTX; 2 mg/kg), or high-dose PTX (high PTX; 4 mg/kg). A single intravenous dose was given. On day seven after the injection, lymphocytes from Peyer patches (PP), intraepithelial (IE) spaces, and the lamina propria (LP) were counted and analyzed by flow cytometry (CD4(+), CD8(+), αβTCR(+), γδTCR(+), B220(+)). Immunoglobulin A (IgA) concentrations were measured in small intestinal and respiratory tract washings. Total, CD4(+) and γδTCR(+) lymphocyte numbers in PPs were significantly lower in the high PTX than in the control group. The CD4(+) lymphocyte numbers in the IE spaces were significantly lower in both PTX groups than in the control group. Respiratory tract IgA concentrations were lower in the high PTX than in the control group. The present data suggest high-dose PTX impairs mucosal immunity, possibly rendering patients more vulnerable to infection. Careful dose selection and new therapies may be important for maintaining mucosal immunity during PTX chemotherapy.

  13. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  14. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  15. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  16. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  17. High-speed Imaging of Global Surface Temperature Distributions on Hypersonic Ballistic-Range Projectiles

    Science.gov (United States)

    Wilder, Michael C.; Reda, Daniel C.

    2004-01-01

    The NASA-Ames ballistic range provides a unique capability for aerothermodynamic testing of configurations in hypersonic, real-gas, free-flight environments. The facility can closely simulate conditions at any point along practically any trajectory of interest experienced by a spacecraft entering an atmosphere. Sub-scale models of blunt atmospheric entry vehicles are accelerated by a two-stage light-gas gun to speeds as high as 20 times the speed of sound to fly ballistic trajectories through an 24 m long vacuum-rated test section. The test-section pressure (effective altitude), the launch velocity of the model (flight Mach number), and the test-section working gas (planetary atmosphere) are independently variable. The model travels at hypersonic speeds through a quiescent test gas, creating a strong bow-shock wave and real-gas effects that closely match conditions achieved during actual atmospheric entry. The challenge with ballistic range experiments is to obtain quantitative surface measurements from a model traveling at hypersonic speeds. The models are relatively small (less than 3.8 cm in diameter), which limits the spatial resolution possible with surface mounted sensors. Furthermore, since the model is in flight, surface-mounted sensors require some form of on-board telemetry, which must survive the massive acceleration loads experienced during launch (up to 500,000 gravities). Finally, the model and any on-board instrumentation will be destroyed at the terminal wall of the range. For these reasons, optical measurement techniques are the most practical means of acquiring data. High-speed thermal imaging has been employed in the Ames ballistic range to measure global surface temperature distributions and to visualize the onset of transition to turbulent-flow on the forward regions of hypersonic blunt bodies. Both visible wavelength and infrared high-speed cameras are in use. The visible wavelength cameras are intensified CCD imagers capable of integration

  18. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  19. Infinite-range Heisenberg model and high-temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  20. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  1. High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power, CRADA Number: CRD-14-554

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL will design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.

  2. Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study

    Science.gov (United States)

    2014-01-01

    Introduction Severe infections in intensive care patients show high morbidity and mortality rates. Linezolid is an antimicrobial drug frequently used in critically ill patients. Recent data indicates that there might be high variability of linezolid serum concentrations in intensive care patients receiving standard doses. This study was aimed to evaluate whether standard dosing of linezolid leads to therapeutic serum concentrations in critically ill patients. Methods In this prospective observational study, 30 critically ill adult patients with suspected infections received standard dosing of 600 mg linezolid intravenously twice a day. Over 4 days, multiple serum samples were obtained from each patient, in order to determine the linezolid concentrations by liquid chromatography tandem mass spectrometry. Results A high variability of serum linezolid concentrations was observed (range of area under the linezolid concentration time curve over 24 hours (AUC24) 50.1 to 453.9 mg/L, median 143.3 mg*h/L; range of trough concentrations (Cmin) linezolid concentrations over 24 hours and at single time points (defined according to the literature as AUC24  400 mg*h/L and Cmin > 10 mg/L) were observed for 7 of the patients. Conclusions A high variability of linezolid serum concentrations with a substantial percentage of potentially subtherapeutic levels was observed in intensive care patients. The findings suggest that therapeutic drug monitoring of linezolid might be helpful for adequate dosing of linezolid in critically ill patients. Trial registration Clinicaltrials.gov NCT01793012. Registered 24 January 2013. PMID:25011656

  3. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  4. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization

    Directory of Open Access Journals (Sweden)

    Essam Hebishy

    2017-02-01

    Full Text Available In this study, the effect of ultra-high-pressure homogenization (UHPH: 100 or 200 MPa at 25 °C, in comparison to colloid mill (CM: 5000 rpm at 20 °C and conventional homogenization (CH: 15 MPa at 60 °C, on the stability of oil-in-water emulsions with different oil concentrations (10, 30 or 50 g/100 g emulsified by whey protein isolate (4 g/100 g was investigated. Emulsions were characterized for their microstructure, rheological properties, surface protein concentration (SPC, stability to creaming and oxidative stability under light (2000 lux/m2. UHPH produced emulsions containing lipid droplets in the sub-micron range (100–200 nm and with low protein concentrations on droplet surfaces. Droplet size (d3.2, µm was increased in CH and UHPH emulsions by increasing the oil concentration. CM emulsions exhibited Newtonian flow behaviour at all oil concentrations studied; however, the rheological behaviour of CH and UHPH emulsions varied from Newtonian flow (n ≈ 1 to shear-thinning (n ˂ 1 and thixotropic behaviour in emulsions containing 50% oil. This was confirmed by the non-significant differences in the d4.3 (µm value between the top and bottom of emulsions in tubes left at room temperature for nine days and also by a low migration velocity measured with a Turbiscan LAB instrument. UHPH emulsions showed significantly lower oxidation rates during 10 days storage in comparison to CM and CH emulsions as confirmed by hydroperoxides and thiobarbituric acid-reactive substances (TBARS. UHPH emulsions treated at 100 MPa were less oxidized than those treated at 200 MPa. The results from this study suggest that UHPH treatment generates emulsions that have a higher stability to creaming and lipid oxidation compared to colloid mill and conventional treatments.

  5. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  6. Rolling estimations of long range dependence volatility for high frequency S&P500 index

    Science.gov (United States)

    Cheong, Chin Wen; Pei, Tan Pei

    2015-10-01

    This study evaluates the time-varying long range dependence behaviors of the S&P500 volatility index using the modified rescaled adjusted range (R/S) statistic. For better computational result, a high frequency rolling bipower variation realized volatility estimates are used to avoid possible abrupt jump. The empirical analysis findings allow us to understand better the informationally market efficiency before and after the subprime mortgage crisis.

  7. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  8. High concentrations of heavy metals in PM from ceramic factories of Southern Spain

    Science.gov (United States)

    Sánchez de la Campa, Ana M.; de la Rosa, Jesús D.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío; Alastuey, Andrés; Querol, Xavier; Pio, Casimiro

    2010-06-01

    In this study, physicochemical characterization of Atmospheric Particulate Matter (PM) was performed in an urban-industrial site background (Bailén, Southern Spain), highly influenced by the impact of emission plumes from ceramic factories. This area is considered one of the towns with the highest PM 10 levels and average SO 2 concentration in Spain. A three stages methodology was used: 1) real-time measurements of levels of PM 10 and gaseous pollutants, and sampling of PM; 2) chemical characterization using ICP-MS, ICP-OES, CI and TOT, and source apportionment analysis (receptor modelling) of PM; and 3) chemical characterization of emission plumes derived from representative factories. High ambient air concentrations were found for most major components and trace elements compared with other industrialized towns in Spain. V and Ni are considered fingerprints of PM derived from the emissions of brick factories in this area, and were shown to be of particular interest. This highlights the high V and Ni concentrations in PM 10 (122 ngV/m 3 and 23.4 ngNi/m 3), with Ni exceeding the 2013 annual target value for the European Directive 2004/107/EC (20 ng/m 3). The methodology of this work can be used by Government departments responsible for Environment and Epidemiology in planning control strategies for improving air quality.

  9. Black carbon concentrations in the highly polluted Kathmandu Valley, Nepal: a three year monitoring with a dual-spot Aethalometer

    Science.gov (United States)

    Rupakheti, Maheswar; Drinovec, Luka; Puppala, SivaPraveen; Mahata, Khadak; Rupakheti, Dipesh; Kathayat, Bhogendra; Singdan, Pratik; Panday, Arnico; Lawrence, Mark

    2016-04-01

    Our knowledge about ambient black carbon (BC) in the vast Himalayan region, a region vulnerable to impacts of global warming, is very limited due to unavailability of a long-term ambient monitoring. Here we present results from a continuous monitoring of ambient BC concentrations, with a new generation Aethalometer (AE33), over a three year period (January 2013- January 2016) at a semi-urban site in the highly polluted Kathmandu Valley in the foothills of the central Himalaya, one of the most polluted cities in the world. This is the longest time series of BC concentrations that have been monitored with AE33 (which uses the dual-spot technique for a real-time filter loading compensation) in highly polluted ambient environment. The measurements were carried out under the framework of project SusKat (Sustainable Atmosphere for the Kathmandu Valley). BC concentrations were found to be extremely high, especially in winter and the pre-monsoon period, with the hourly-averaged values often exceeding 50 μg/m3. BC concentrations showed a clear diurnal cycle with a prominent peak around 8-9 am and a second peak around 8-9 pm local time in all four seasons. Night-time BC was also fairly high. The diurnal cycle was driven by a combination of increased emissions from traffic, cooking activities, garbage burning, and lower mixing heights (˜200 m) and reduced horizontal ventilation in the mornings and evenings. BC concentrations showed significant seasonal variations - a maximum in winter season and minimum during the monsoon (rainy) season, with monthly average values in the range 5-30 μg/m3. An increase in emissions from the operation of over 100 brick kilns in winter and spring, and an increase in the use of small but numerous diesel power generators during hours with power cuts contributed significantly to ambient BC concentrations in the valley. Fractional contributions of biomass burning and fossil fuel combustion to BC was estimated based on a real-time method for

  10. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.

    Science.gov (United States)

    Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes

    2014-01-01

    Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Root based responses account for Psidium guajava survival at high nickel concentration.

    Science.gov (United States)

    Bazihizina, Nadia; Redwan, Mirvat; Taiti, Cosimo; Giordano, Cristiana; Monetti, Emanuela; Masi, Elisa; Azzarello, Elisa; Mancuso, Stefano

    2015-02-01

    The presence of Psidium guajava in polluted environments has been reported in recent studies, suggesting that this species has a high tolerance to the metal stress. The present study aims at a physiological characterization of P. guajava response to high nickel (Ni) concentrations in the root-zone. Three hydroponic experiments were carried out to characterize the effects of toxic Ni concentrations on morphological and physiological parameters of P. guajava, focusing on Ni-induced damages at the root-level and root ion fluxes. With up to 300μM NiSO4 in the root-zone, plant growth was similar to that in control plants, whereas at concentrations higher than 1000μM NiSO4 there was a progressive decline in plant growth and leaf gas exchange parameters; this occurred despite, at all considered concentrations, plants limited Ni(2+) translocation to the shoot, therefore avoiding shoot Ni(2+) toxicity symptoms. Maintenance of plant growth with 300μM Ni(2+) was associated with the ability to retain K(+) in the roots meanwhile 1000 and 3000μM NiSO4 led to substantial K(+) losses. In this study, root responses mirror all plant performances suggesting a direct link between root functionality and Ni(2+) tolerance mechanisms and plant survival. Considering that Ni was mainly accumulated in the root system, the potential use of P. guajava for Ni(2+) phytoextraction in metal-polluted soils is limited; nevertheless, the observed physiological changes indicate a good Ni(2+) tolerance up to 300μM NiSO4 suggesting a potential role for the phytostabilization of polluted soils. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Remote Sensing of Sub-Surface Suspended Sediment Concentration by Using the Range Bias of Green Surface Point of Airborne LiDAR Bathymetry

    Directory of Open Access Journals (Sweden)

    Xinglei Zhao

    2018-04-01

    Full Text Available Suspended sediment concentrations (SSCs have been retrieved accurately and effectively through waveform methods by using green-pulse waveforms of airborne LiDAR bathymetry (ALB. However, the waveform data are commonly difficult to analyze. Thus, this paper proposes a 3D point-cloud method for remote sensing of SSCs in calm waters by using the range biases of green surface points of ALB. The near water surface penetrations (NWSPs of green lasers are calculated on the basis of the green and reference surface points. The range biases (ΔS are calculated by using the corresponding NWSPs and beam-scanning angles. In situ measured SSCs (C and range biases (ΔS are used to establish an empirical C-ΔS model at SSC sampling stations. The SSCs in calm waters are retrieved by using the established C-ΔS model. The proposed method is applied to a practical ALB measurement performed by Optech Coastal Zone Mapping and Imaging LiDAR. The standard deviations of the SSCs retrieved by the 3D point-cloud method are less than 20 mg/L.

  13. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  14. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  15. Investigations into the penetration and pressure drop of HEPA filter media during loading with submicron particle aerosols at high concentrations

    International Nuclear Information System (INIS)

    Leibold, H; Wilhelm, J.G.

    1991-01-01

    High Efficiency Particulate Air (HEPA) filters are typically employed in particle removal and retention within the air cleaning systems of clean rooms in the pharmaceutical, nuclear and semiconductor industries for dust concentrations of some μg/m 3 . Their extremely high removal efficiencies for submicron particles make them attractive candidates in complying with increasingly lower emission limits for industrial processes that involve dust concentrations of up to several g/m 3 . Cost-effective operation under such conditions requires the filter units to be recleanable. The recleanability of HEPA filter media depends not only on the operating conditions during the cleaning process but also on the filtration conditions during particle loading. The structure and location of the particles captured by the glass fiber matrix greatly affect the degree to which they can be subsequently dislodged and removed from the filter medium. Changes in filtration efficiency with service time for various particle diameters in the critical submicron size range, as well as the effects of filtration velocity on the increase in pressure drop, are important criteria with regard to recleaning HEPA filter units. Of special significance for the recleanability of HEPA filter media is knowledge of how operating conditions affect dust cake formation. (author)

  16. Quality evaluation of moluodan concentrated pill using high-performance liquid chromatography fingerprinting coupled with chemometrics.

    Science.gov (United States)

    Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong

    2016-12-01

    In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C 18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phenomenon of energy concentration in high-energy family events of cosmic rays

    CERN Document Server

    Wang He; Dai Zhi Qiang; Xue Liang; Feng Cun Feng; Zhang Xue Yao; Li Jin; Zhang Nai Jian; He Mao; Wang Cheng Rui; Ren Jing Ru; Lu Sui Ling

    2002-01-01

    The phenomenon of energy concentration in high-energy family events of cosmic rays is studied by comparing the results of family events of total visible energies 100-400 TeV observed in the Kanbala emulsion chamber experiment with the Monte Carlo simulation data. The simulation is made by the program CORSIKA in which QGSJET is applied as the hadronic interaction model, and the chemical composition of primary cosmic rays is obtained from the rigidity-cut model and the extrapolation of new results of direct measurements. This shows that the whole distribution tendency of the rate of energy concentration of simulated family events is basically consistent with that of the experiment

  18. Studies on rheological and leaching characteristics of heavy metals through selective additive in high concentration ash slurry.

    Science.gov (United States)

    Senapati, P K; Mohapatra, R; Pani, G K; Mishra, B K

    2012-08-30

    The generation and disposal level of thermal power plant ash in India is a challenging task. The conventional mode of dilute phase ash slurry (10-20% solids by weight) transport through pipelines being practiced in majority of these plants not only consumes huge amount of precious water and pumping energy but also causes serious environmental problem at the disposal site. The present study investigates the rheological and leaching characteristics of an Indian ash samples at high solids concentrations (>50% by weight) using sodium silicate as an additive. The flow behaviour of ash slurry in the concentration range of 50-60% by weight is described by a Bingham-plastic model. It was indicated that the addition of sodium silicate (0.2-0.6% of the total solids) could able to reduce both the slurry viscosity and the yield stress. The analysis of the ash samples for the presence of heavy metals such as Fe, Cd, Ni, Pb, Zn, Cu, Co, As and Hg were carried out following Hansen and Fisher procedure. The addition of sodium silicate affected the leaching characteristics of the ash samples over a period of 300 days resulting in the reduction of leaching of heavy metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Feeding a high-concentrate corn straw diet induced epigenetic alterations in the mammary tissue of dairy cows.

    Directory of Open Access Journals (Sweden)

    Guozhong Dong

    Full Text Available The objective of this study was to investigate the effects of feeding a high-concentrate corn straw (HCS diet (65% concentrate+35% corn straw on the epigenetic changes in the mammary tissue of dairy cows in comparison with a low-concentrate corn straw (LCS diet (46% concentrate+54% corn straw and with a low-concentrate mixed forage (LMF diet (46% concentrate+54% mixed forage.Multiparous mid-lactation Chinese Holstein cows were fed one of these three diets for 6 weeks, at which time blood samples and mammary tissue samples were collected. Mammary arterial and venous blood samples were analyzed for lipopolysaccharide (LPS concentrations while mammary tissue samples were assayed for histone H3 acetylation and the methylation of specific genes associated with fat and protein synthesis.Extraction of histones and quantification of histone H3 acetylation revealed that acetylation was significantly reduced in cows fed the HCS diet, as compared with cows fed the LCS diet. Cows fed the HCS diet had significantly higher LPS concentrations in the mammary arterial blood, as compared with cows fed the LCS diet. We found that the extent of histone H3 acetylation was negatively correlated with LPS concentrations. The methylation of the stearoyl-coenzyme A desaturase gene associated with milk fat synthesis was increased in cows fed the HCS diet. By contrast, methylation of the gene encoding the signal transducer and activator of transcription 5A was reduced in cows fed the HCS diet, suggesting that feeding a high-concentrate corn straw diet may alter the methylation of specific genes involved in fat and protein synthesis in the mammary tissue of dairy cows.Feeding the high-concentrate diet induced epigenetic changes in the mammary tissues of dairy cows, possibly through effecting the release of differing amounts of LPS into the mammary blood.

  20. Using fractional extraction method to separate Mo from U in high concentration solution

    International Nuclear Information System (INIS)

    Zhao Pinzhi; Cheng Guangrong; Ma Xiuhua

    1996-01-01

    The author presents investigation on separating Mo from U in acid high concentration lixivium with fractional extraction of secondary amine (7203) and D2EHPA and preparing qualified products of ammonium molybdate and sodium diuranate

  1. Plasma methylphenidate concentrations in youths treated with high-dose osmotic release oral system formulation.

    Science.gov (United States)

    Stevens, Jonathan R; George, Robert A; Fusillo, Steven; Stern, Theodore A; Wilens, Timothy E

    2010-02-01

    Children and adolescents are being treated increasingly for attention-deficit/hyperactivity disorder (ADHD) with a variety of stimulants in higher than Food and Drug Administration (FDA)-approved doses and in combination with other medications. We sought to determine methylphenidate (MPH) concentrations in children and adolescents treated with high-dose, extended-release osmotic release oral system (OROS) MPH plus concomitant medications, and to examine MPH concentrations with respect to the safety and tolerability of treatment. Plasma MPH concentrations were measured by liquid chromatography-mass spectrometry 4-5 hours after administration of medication in a sample of youths diagnosed with ADHD. These youths were treated naturalistically with higher than FDA-approved doses of OROS MPH in addition to their concomitant medications. Markers of safety and tolerability (e.g., measures of blood pressure and heart rate) were also examined. Among the 17 patients (with a mean age of 16.2 +/- 2 years and a mean number of concurrent medications of 2.23 +/- 0.94), the mean plasma MPH concentration was 28 +/- 9.1 ng/mL, despite a mean daily dose of OROS MPH of 169 +/- 5 mg (3.0 +/- 0.8 mg/kg per day). No patient had a plasma MPH level >or=50 ng/mL or clinical signs of stimulant toxicity. No correlation was found between plasma MPH concentrations and OROS MPH dose or changes in vital signs. High-dose OROS MPH, used in combination with other medications, was not associated with either unusually elevated plasma MPH concentrations or with clinically meaningful changes in vital signs. Study limitations include a single time-point sampling of MPH concentrations, a small sample size, and a lack of outcome measures to address treatment effectiveness.

  2. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    Science.gov (United States)

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  3. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  4. Analysis of antibody aggregate content at extremely high concentrations using sedimentation velocity with a novel interference optics.

    Science.gov (United States)

    Schilling, Kristian; Krause, Frank

    2015-01-01

    Monoclonal antibodies represent the most important group of protein-based biopharmaceuticals. During formulation, manufacturing, or storage, antibodies may suffer post-translational modifications altering their physical and chemical properties. Such induced conformational changes may lead to the formation of aggregates, which can not only reduce their efficiency but also be immunogenic. Therefore, it is essential to monitor the amount of size variants to ensure consistency and quality of pharmaceutical antibodies. In many cases, antibodies are formulated at very high concentrations > 50 g/L, mostly along with high amounts of sugar-based excipients. As a consequence, all routine aggregation analysis methods, such as size-exclusion chromatography, cannot monitor the size distribution at those original conditions, but only after dilution and usually under completely different solvent conditions. In contrast, sedimentation velocity (SV) allows to analyze samples directly in the product formulation, both with limited sample-matrix interactions and minimal dilution. One prerequisite for the analysis of highly concentrated samples is the detection of steep concentration gradients with sufficient resolution: Commercially available ultracentrifuges are not able to resolve such steep interference profiles. With the development of our Advanced Interference Detection Array (AIDA), it has become possible to register interferograms of solutions as highly concentrated as 150 g/L. The other major difficulty encountered at high protein concentrations is the pronounced non-ideal sedimentation behavior resulting from repulsive intermolecular interactions, for which a comprehensive theoretical modelling has not yet been achieved. Here, we report the first SV analysis of highly concentrated antibodies up to 147 g/L employing the unique AIDA ultracentrifuge. By developing a consistent experimental design and data fit approach, we were able to provide a reliable estimation of the minimum

  5. Possible manifestation of long range forces in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kuraev, Eh.A.; Ferro, P.; Trentadue, L.

    1997-01-01

    Pion-pion and photon-photon scattering are discussed.. We obtain, starting from the impact representation introduced by Cheng and Wu a new contribution to the high energy hadron-hadron scattering amplitude for small transferred momentum q 2 of the form is (q 2 /m 4 )ln(-q 2 /m 2 ). This behaviour may be interpreted as a manifestation of long transverse-range forces between hadrons which, for ρ>> m -1 fall off as ρ -4 . We consider the examples of pion and photon scattering with photons converted in the intermediate state to two pairs of quarks interacting by exchanging two gluon colorless state. A phenomenological approach for proton impact factor is used to analyze proton-proton scattering. The analysis of the lowest order radiative corrections for the case of photon-photon scattering is done. We discuss the possibility of observing the effects of these long range forces

  6. Evidence for chronic stress in captive but not free-ranging cheetahs (Acinonyx jubatus) based on adrenal morphology and function.

    Science.gov (United States)

    Terio, Karen A; Marker, Laurie; Munson, Linda

    2004-04-01

    The cheetah (Acinonyx jubatus) is highly endangered because of loss of habitat in the wild and failure to thrive in captivity. Cheetahs in zoos reproduce poorly and have high prevalences of unusual diseases that cause morbidity and mortality. These diseases are rarely observed in free-ranging cheetahs but have been documented in cheetahs that have been captured and held in captive settings either temporarily or permanently. Because captivity may be stressful for this species and stress is suspected as contributing to poor health and reproduction, this study aimed to measure chronic stress by comparing baseline concentrations of fecal corticoid metabolites and adrenal gland morphology between captive and free-ranging cheetahs. Additionally, concentrations of estradiol and testosterone metabolites were quantified to determine whether concentrations of gonadal steroids correlated with corticoid concentration and to assure that corticosteroids in the free-ranging samples were not altered by environmental conditions. Concetntrations of fecal corticoids, estradiol, and testosterone were quantified by radioimmunoassay in 20 free-ranging and 20 captive cheetahs from samples collected between 1994 and 1999. Concentrations of baseline fecal corticoids were significantly higher (p = 0.005) in captive cheetahs (196.08 +/- 36.20 ng/g dry feces) than free-ranging cheetahs (71.40 +/- 14.35 ng/g dry feces). Testosterone concentrations were lower in captive male cheetahs (9.09 +/- 2.84 ng/g dry feces) than in free-ranging cheetahs (34.52 +/- 12.11 ng/g dry feces), which suggests suppression by elevated corticoids in the captive males. Evidence for similar sulppression of estradiol concentrations in females was not present. Adrenal corticomedullary ratios were determined on midsagittal sections of adrenal glands from 13 free-ranging and 13 captive cheetahs obtained between 1991 and 2002. The degree of vacuolation of cortical cells in the zona fasciculata was graded for each animal

  7. Circulating adiponectin concentration and body composition are altered in response to high-intensity interval training.

    Science.gov (United States)

    Shing, Cecilia M; Webb, Jessica J; Driller, Matthew W; Williams, Andrew D; Fell, James W

    2013-08-01

    Adiponectin influences metabolic adaptations that would prove beneficial to endurance athletes, and yet to date there is little known about the response of adiponectin concentrations to exercise, and, in particular, the response of this hormone to training in an athlete population. This study aimed to determine the response of plasma adiponectin concentrations to acute exercise after 2 different training programs and to determine the influence of the training on body composition. Seven state-level representative rowers (age: 19 ± 1.2 years [mean ± SD], height: 1.77 ± 0.10 m, body mass: 74.0 ± 10.7 kg, VO2peak 62.1 ± 7.0 ml·kg·min) participated in the double-blind, randomized crossover investigation. Rowers performed an incremental graded exercise test before and after completing 4 weeks of high-intensity interval ergometer training and 4 weeks of traditional ergometer rowing training. Rowers' body composition was assessed at baseline and after each training program. Significant increases in plasma adiponectin concentration occurred in response to maximal exercise after completion of the high-intensity interval training (p = 0.016) but not after traditional ergometer rowing training (p = 0.69). The high-intensity interval training also resulted in significant increases in mean 4-minute power output (p = 0.002) and VO2peak (p = 0.05), and a decrease in body fat percentage (p = 0.022). Mean 4-minute power output, VO2peak, and body fat percentage were not significantly different after 4 weeks of traditional ergometer rowing training (p > 0.05). Four weeks of high-intensity interval training is associated with an increase in adiponectin concentration in response to maximal exercise and a reduction in body fat percentage. The potential for changes in adiponectin concentration to reflect positive training adaptations and athlete performance level should be further explored.

  8. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  9. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  10. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    OpenAIRE

    Caroline Schultealbert; Tobias Baur; Andreas Schütze; Tilman Sauerwald

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can ...

  11. Influence of a High-Pressure Comminution Technology on Concentrate Yields in Copper Ore Flotation Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2014-10-01

    Full Text Available The article concerns the issues of flotation process effectiveness in relationship to the operating conditions of a high-pressure comminution process course. Experimental programme covering a flotation laboratory batch tests was a verification technique of a high-pressure crushing operations course. The most favorable values of flotation concentrate weight recoveries were obtained for the pressing force 6 kN and 4% of the feed moisture. It was also determined the model of the concentrate weight recovery as a function of pressing force in the press and feed moisture content. This model was the basis for the optimization of effects of copper ore flotation processes preceded in high-pressure crushing operation in roller presses.

  12. Clinical evaluation of a medical high dynamic range display

    International Nuclear Information System (INIS)

    Marchessoux, Cedric; Paepe, Lode de; Vanovermeire, Olivier; Albani, Luigi

    2016-01-01

    Purpose: Recent new medical displays do have higher contrast and higher luminance but do not have a High Dynamic Range (HDR). HDR implies a minimum luminance value close to zero. A medical HDR display prototype based on two Liquid Crystal layers has been developed. The goal of this study is to evaluate the potential clinical benefit of such display in comparison with a low dynamic range (LDR) display. Methods: The study evaluated the clinical performance of the displays in a search and detection task. Eight radiologists read chest x-ray images some of which contained simulated lung nodules. The study used a JAFROC (Jacknife Free Receiver Operating Characteristic) approach for analyzing FROC data. The calculated figure of merit (FoM) is the probability that a lesion is rated higher than all rated nonlesions on all images. Time per case and accuracy for locating the center of the nodules were also compared. The nodules were simulated using Samei’s model. 214 CR and DR images [half were “healthy images” (chest nodule-free) and half “diseased images”] were used resulting in a total number of nodules equal to 199 with 25 images with 1 nodule, 51 images with 2 nodules, and 24 images with 3 nodules. A dedicated software interface was designed for visualizing the images for each session. For the JAFROC1 statistical analysis, the study is done per nodule category: all nodules, difficult nodules, and very difficult nodules. Results: For all nodules, the averaged FoM HDR is slightly higher than FoM LDR with 0.09% of difference. For the difficult nodules, the averaged FoM HDR is slightly higher than FoM LDR with 1.38% of difference. The averaged FoM HDR is slightly higher than FoM LDR with 0.71% of difference. For the true positive fraction (TPF), both displays (the HDR and the LDR ones) have similar TPF for all nodules, but looking at difficult and very difficult nodules, there are more TP for the HDR display. The true positive fraction has been also computed in

  13. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    Science.gov (United States)

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore

  14. Advanced Oxidation Processes (AOPs for Refinery Wastewater Treatment Contains High Phenol Concentration

    Directory of Open Access Journals (Sweden)

    Azizah Alif Nurul

    2018-01-01

    Full Text Available Petroleum Refinery wastewater is characterized by a high phenol content. Phenol is toxic and resistant to biological processes for treatment of the petroleum refinery wastewater. The combination of an AOP and a biological process can be used for treatment of the refinery wastewater. It is necessary to conduct a study to determine the appropriate condition of AOP to meet the phenol removal level. Two AOP configurations were investigated: H2O2 / UV and H2O2 / UV / O3. From each process samples, COD, phenol and pH were measured. The oxidation was carried out until the targeted phenol concentration of treated effluent were obtained. The better result obtained by using process H2O2 / UV / O3 with the H2O2 concentration 1000 ppm. After 120 minutes, the final target has been achieved in which phenol concentration of 37.5 mg/L or phenol degradation of 93.75%.

  15. Grape juice concentrate modulates p16 expression in high fat diet-induced liver steatosis in Wistar rats.

    Science.gov (United States)

    Ferreira, Andressa Orlandeli; Gollücke, Andréa Pittelli Boiago; Noguti, Juliana; da Silva, Victor Hugo Pereira; Yamamura, Elsa Tiemi Hojo; Ribeiro, Daniel Araki

    2012-04-01

    The goal of this study was to investigate whether subchronic treatment with grape juice concentrate is able to protect the liver from high fat diet injury in rats. The effects of grape juice concentrate treatment on histopathological changes, and immunohistochemistry for p53, p16 and p21 were evaluated. Male Wistar rats (n = 18) were distributed into three groups: group 1: negative control; group 2: cholesterol at 1% (w/w) in their diet, treated during 5 weeks; and group 3: cholesterol at 1% in their chow during 5 weeks, and grape juice concentrate at 222 mg per day in their drinking-water in the last week only. The results pointed out that treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in the cholesterol-exposed group when compared to group 2. However, grape juice concentrate was able to modulate p16 immunoexpression when compared to high fat diet group. p53 and p21 did not show any significant statistical differences among groups. Taken together, our results suggest that subchronic grape juice concentrate administration was able to modulate cell cycle control by downregulation of p16 immunoexpression in high fat diet-induced liver steatosis in rats.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Newcastle NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.; Talcott, C.L.; Martinez, R.G.; Minor, M.E.; Mills, C.F.

    1980-06-01

    Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales

  17. High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations.

    LENUS (Irish Health Repository)

    McNally, P

    2012-02-01

    BACKGROUND: Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated. METHODS: This was a cross-sectional case-control study. BAL fluid was collected from individuals with CF (n=31) and healthy controls (n=7). Interleukin-8 (IL-8), pepsin, neutrophil numbers and neutrophil elastase activity levels were measured in all samples. Clinical, microbiological and lung function data were collected from medical notes. RESULTS: The pepsin concentration in BAL fluid was higher in the CF group than in controls (mean (SD) 24.4 (27.4) ng\\/ml vs 4.3 (4.0) ng\\/ml, p=0.03). Those with CF who had raised pepsin concentrations had higher levels of IL-8 in the BAL fluid than those with a concentration comparable to controls (3.7 (2.7) ng\\/ml vs 1.4 (0.9) ng\\/ml, p=0.004). Within the CF group there was a moderate positive correlation between pepsin concentration and IL-8 in BAL fluid (r=0.48, p=0.04). There was no association between BAL fluid pepsin concentrations and age, sex, body mass index z score, forced expiratory volume in 1 s or Pseudomonas aeruginosa colonisation status. CONCLUSIONS: Many children with CF have increased levels of pepsin in the BAL fluid compared with normal controls. Increased pepsin levels were associated with higher IL-8 concentrations in BAL fluid. These data suggest that aspiration of gastric contents occurs in a subset of patients with CF and is associated with more pronounced lung inflammation.

  18. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  19. A survey of indoor radon and particular concentration

    International Nuclear Information System (INIS)

    Ohta, Yukiko

    1993-01-01

    Lung disease risk from inhalation of radon can be enhanced by the presence of particular pollutants in indoor air. The indoor concentration of radon and particulates were measured in homes, a department store, and offices in a high building in Tokyo metropolis, as well as in homes in both northern and western Japan. Passive radon monitors were located in living rooms and offices for more than three months at 99 sites during the winter of 1988 and 1989. Indoor radon concentration ranged from 11.1 Bq/m 3 to 148 Bq/m 3 (n=99) and averaged value S.D. was 36.5±14.2 Bq/m 3 . However, the average concentration in air conditional buildings was 21.8±9.51 Bq/m 3 (n=17). Simultaneously at 65 of the radon sites, indoor particulates were collected using personal dust samplers by impaction methods. Deposited particulate concentrations on the sampler were measured and calculated in a unit of μm/m 3 . Concentrations were determined for particle sizes above and below 2.5 μm, for both smoking or non smoking sites. Consequently, concentration of particle size below 2.5 μm was high in smoking rooms. Finally, it was considered that smoking was a complex indoor pollutant as adherence of radon daughter to aerosols. (author)

  20. Experimental characterization of Fresnel-Köhler concentrators

    Science.gov (United States)

    Zamora, Pablo; Benítez, Pablo; Mohedano, Rubén; Cvetković, Aleksandra; Vilaplana, Juan; Li, Yang; Hernández, Maikel; Chaves, Julio; Miñano, Juan C.

    2012-01-01

    Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f-numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.

  1. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2016-02-01

    Full Text Available Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3 concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between

  2. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  3. Estimated effects of temperature on secondary organic aerosol concentrations.

    Science.gov (United States)

    Sheehan, P E; Bowman, F M

    2001-06-01

    The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.

  4. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    Science.gov (United States)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of

  5. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study.

    Science.gov (United States)

    Çuhadar, Serap; Köseoğlu, Mehmet; Çinpolat, Yasemin; Buğdaycı, Güler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Baseline (group I) serum pool with glucose concentration of 5.55 (5.44-5.61) mmol/L was prepared from patient sera. Spiking with 20% dextrose solution, sample groups were obtained with glucose concentrations: 17.09, 34.52, and 50.95 mmol/L (group II, III, IV, respectively). Total of 21 biochemistry analytes and thyroid tests were studied on Abbott c8000 and i2000sr with commercial reagents. Bias from baseline value was checked statistically and clinically. Creatinine increased significantly by 8.74%, 31.66%, 55.31% at groups II, III, IV, respectively with P values of < 0.001. At the median glucose concentration of 50.95 mmol/L, calcium, albumin, chloride and FT4 biased significantly clinically (-0.85%, 1.63%, 0.65%, 7.4% with P values 0.138, 0.214, 0.004, < 0.001, respectively). Remaining assays were free of interference. Among the numerous biochemical parameters studied, only a few parameters are affected by dramatically increased glucose concentration. The creatinine measurements obtained in human sera with the Jaffe alkaline method at high glucose concentrations should be interpreted with caution. Other tests that were affected with extremely high glucose concentrations were calcium, albumin, chloride and FT4, hence results should be taken into consideration in patients with poor diabetic control.

  6. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.

    Science.gov (United States)

    Han, Jianqiu; Chen, Fengzhen; Zhou, Yumei; Wang, Chaohua

    2015-01-01

    When constructed wetlands are used to treat high-Pb wastewater, Pb may become a stress to wetland plants, which subsequently reduces treatment performance and the other ecosystem services. To facilitate the design and operation of constructed wetlands for treatment of Pb-rich wastewater, we investigated the irreversible inhibitory level of Pb for Typha latifolia through experiments in microcosm wetlands. Seven horizontal subsurface flow constructed wetlands were built with rectangular plastic tanks and packed with marble chips and sand. All wetlands were transplanted with nine stems of Typha latifolia each. The wetlands were batch operated in a greenhouse with artificial wastewater (10 L each) for 12 days. Influent to the seven wetlands had different concentrations of Pb: 0 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, and 500 mg/L, respectively. The results suggested that leaf chlorophyll relative content, relative growth rate, photosynthetic characteristics, activities of superoxide dismutase, peroxidase, and content of malondialdehyde were not affected when initial Pb concentration was at 100 mg/L and below. But when initial Pb concentration was above 100 mg/L, all of them were seriously affected. We conclude that high Pb concentrations wastewater could inhibit the growth of Typha latifolia and decrease the removal rate of wetlands.

  7. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  8. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  9. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  10. The relationship between heavy metal concentration and soil mycoflora in the Gizan region, Saudi Arabia

    OpenAIRE

    Falih, A. M. [عبد الله مساعد خلف الفالح

    1997-01-01

    Soil samples were collected from different places from the Gizan region, Saudi Arabia, and analyzed mechanically and chemically for mineral content. The soils were highly alkaline and sandy in texture in all cases. The concentration of Zn, Pb and Cu were within the ranges reported earlier for some Saudi Arabian soils, while Fe, Co and Al occurred in high concentrations. There was a high content of total soluble salts in the samples tested. There was a marked decrease in bacterial counts, a...

  11. Variation in caffeine concentration in single coffee beans.

    Science.gov (United States)

    Fox, Glen P; Wu, Alex; Yiran, Liang; Force, Lesleigh

    2013-11-13

    Twenty-eight coffee samples from around the world were tested for caffeine levels to develop near-infrared reflectance spectroscopy (NIRS) calibrations for whole and ground coffee. Twenty-five individual beans from five of those coffees were used to develop a NIRS calibration for caffeine concentration in single beans. An international standard high-performance liquid chromatography method was used to analyze for caffeine content. Coffee is a legal stimulant and possesses a number of heath properties. However, there is variation in the level of caffeine in brewed coffee and other caffeinated beverages. Being able to sort beans on the basis of caffeine concentration will improve quality control in the level of caffeine in those beverages. The range in caffeine concentration was from 0.01 mg/g (decaffeinated coffee) to 19.9 mg/g (Italian coffee). The majority of coffees were around 10.0-12.0 mg/g. The NIRS results showed r(2) values for bulk unground and ground coffees were >0.90 with standard errors coffee beans. One application of this calibration could be sorting beans on caffeine concentration to provide greater quality control for high-end markets. Furthermore, bean sorting may open new markets for novel coffee products.

  12. High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System

    Science.gov (United States)

    Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.

    2017-01-01

    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.

  13. Generalization of the Nernst-Einstein equation for self-diffusion in high-defect-concentration solids

    International Nuclear Information System (INIS)

    McKee, R.A.

    1981-01-01

    It is shown that the Nernst-Einstein equation can be generalized for a high defect concentration solid to relate the mobility or conductivity to the self-diffusion coefficient. This relationship is derived assuming that the diffusing particles interact strongly and that the mobility is concentration-dependent. It is derived for interstitial disordered structures, but it is perfectly general to any mechanism of self diffusion as long as diffusion in a pure system is considered

  14. Influence of pre-hydration and pharmacogenetics on plasma methotrexate concentration and renal dysfunction following high-dose methotrexate therapy.

    Science.gov (United States)

    Yanagimachi, Masakatsu; Goto, Hiroaki; Kaneko, Tetsuji; Naruto, Takuya; Sasaki, Koji; Takeuchi, Masanobu; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Kajiwara, Ryosuke; Fujii, Hisaki; Tanaka, Fumiko; Goto, Shoko; Takahashi, Hiroyuki; Mori, Masaaki; Kai, Sumio; Yokota, Shumpei

    2013-12-01

    High-dose methotrexate therapy (HD-MTX) has been well established for the treatment of childhood acute lymphoblastic leukemia (ALL). The aims of this study were to investigate whether clinical and pharmacogenetic factors influence plasma MTX concentration and renal dysfunction in patients treated with HD-MTX. In a total of 127 courses of HD-MTX in 51 patients with childhood ALL, influence of clinical and pharmacogenetic factors on plasma MTX concentration and HD-MTX-related renal dysfunction was evaluated. Clinical factors included age, gender, duration of HD-MTX continuous-infusion and duration of pre-hydration before HD-MTX. Pharmacogenetic factors included 5 gene polymorphisms within the MTX pathway genes, namely, SLC19A1, MTHFR, ABCC2 and ABCG2. Short duration of pre-hydration before HD-MTX is the most important risk factor for prolonged high MTX concentration (p < 0.001, OR 6.40, 95 % CI 2.39-17.16) and renal dysfunction (p = 0.013, OR 3.15, 95 % CI 1.27-7.80). The T allele at MTHFR C677T was the risk factor for prolonged high MTX concentration (p = 0.009, OR 5.54, 95 % CI 1.54-19.85), but not for renal dysfunction. We found the influence of MTHFR C677T polymorphism on prolonged high MTX concentration. We reconfirmed the importance of adequate pre-hydration before HD-MTX to prevent prolonged high MTX concentration and MTX-related renal dysfunction.

  15. Optimization of a Point Focus Concentration Photovoltaic System with Passive Cooling

    International Nuclear Information System (INIS)

    Chenlo, F.

    2015-01-01

    The objective of this work is modeling the temperature of photovoltaic (PV) solar cells operating in concentration systems with circular geometry and coupled to a heat sink plate for passive cooling. The proposed thermal behavior model analyses the temperature surface distribution of both PV solar cell and heat sink plate as function of light concentration. The model also allows analyzing the influence of other parameters such as uniform and non-uniform variation of the heat sink plate thickness or variation of the thermal transmission coefficient. The optimal range of the concentration factor is studied using simple models for the PV solar cell efficiency and Fresnel lens concentrator performance together with a function of costs applied to medium concentration silicon crystalline PV cells and high efficiency and high concentration multi-junction PV cells. Finally, experimental main parameters and its procedures measurement for concentration systems are presented. Modeling results show that the use of a high conductivity disk thermally coupled between the rear side of the cell and the cooling plate reduces the working cell temperature. Results also indicates that use of a light redirecting prism by total internal reflection of sunlight, reduces optical losses due to concentrator defects and chromatic aberration and increases the angle tracking error acceptance without having to increase the area of the PV solar cell

  16. A view on thermodynamics of concentrated electrolytes: Modification necessity for electrostatic contribution of osmotic coefficient

    Science.gov (United States)

    Sahu, Jyoti; Juvekar, Vinay A.

    2018-05-01

    Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.

  17. The obtaining a high-grade gadolinium concentrate

    International Nuclear Information System (INIS)

    Soltysiak, I.; Ozga, W.

    1982-01-01

    Gadolinium concentrates obtained by the fractional precipitation of lanthanon-potassium double chromates were separated by ion exchange with 0,4 M lactic acid solution in the presence of 0,1 M ammonium nitrate at pH of the medium 2,95-3,4. It was found out, that using the fractional precipitation of lanthanon-potassium double chromates (as the fast and cheap method that does not need special equipment) together with ion exchange separation with lactic acid solution as the eluent gave a highgrade gadolinium concentrate in a quick and economical way. (author)

  18. Effects of the addition of different nitrogen sources in the tequila fermentation process at high sugar concentration.

    Science.gov (United States)

    Arrizon, J; Gschaedler, A

    2007-04-01

    To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.

  19. Feasibility of recording high frequency oscillations with tripolar concentric ring electrodes during pentylenetetrazole-induced seizures in rats.

    Science.gov (United States)

    Makeyev, Oleksandr; Liu, Xiang; Wang, Liling; Zhu, Zhenghan; Taveras, Aristides; Troiano, Derek; Medvedev, Andrei V; Besio, Walter G

    2012-01-01

    As epilepsy remains a refractory condition in about 30% of patients with complex partial seizures, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via novel tripolar concentric ring electrodes (TCREs) on the scalp of rats after inducing seizures with pentylenetetrazole (PTZ). We developed a close-loop system to detect seizures and automatically trigger the stimulation and evaluated its effect on the electrographic activity recorded by TCREs in rats. In our previous work the detectors of seizure onset were based on seizure-induced changes in signal power in the frequency range up to 100 Hz, while in this preliminary study we assess the feasibility of recording high frequency oscillations (HFOs) in the range up to 300 Hz noninvasively with scalp TCREs during PTZ-induced seizures. Grand average power spectral density estimate and generalized likelihood ratio tests were used to compare power of electrographic activity at different stages of seizure development in a group of rats (n= 8). The results suggest that TCREs have the ability to record HFOs from the scalp as well as that scalp-recorded HFOs can potentially be used as features for seizure onset detection.

  20. Chromium concentrations in ruminant feed ingredients.

    Science.gov (United States)

    Spears, J W; Lloyd, K E; Krafka, K

    2017-05-01

    Chromium (Cr), in the form of Cr propionate, has been permitted for supplementation to cattle diets in the United States at levels up to 0.50 mg of Cr/kg of DM since 2009. Little is known regarding Cr concentrations naturally present in practical feed ingredients. The present study was conducted to determine Cr concentrations in feed ingredients commonly fed to ruminants. Feed ingredients were collected from dairy farms, feed mills, grain bins, and university research farms. Mean Cr concentrations in whole cereal grains ranged from 0.025 mg/kg of DM for oats to 0.041 mg/kg of DM for wheat. Grinding whole samples of corn, soybeans, and wheat through a stainless steel Wiley mill screen greatly increased analyzed Cr concentrations. Harvested forages had greater Cr concentrations than concentrates, and alfalfa hay or haylage had greater Cr concentrations than grass hay or corn silage. Chromium in alfalfa hay or haylage (n = 13) averaged 0.522 mg/kg of DM, with a range of 0.199 to 0.889 mg/kg of DM. Corn silage (n = 21) averaged 0.220 mg of Cr/kg of DM with a range of 0.105 to 0.441 mg of Cr/kg of DM. By-product feeds ranged from 0.040 mg of Cr/kg of DM for cottonseed hulls to 1.222 mg of Cr/kg of DM for beet pulp. Of the feed ingredients analyzed, feed grade phosphate sources had the greatest Cr concentration (135.0 mg/kg). Most ruminant feedstuffs and feed ingredients had less than 0.50 mg of Cr/kg of DM. Much of the analyzed total Cr in feed ingredients appears to be due to Cr contamination from soil or metal contact during harvesting, processing, or both. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  2. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  3. Cooking decreases observed perfluorinated compound concentrations in fish.

    Science.gov (United States)

    Del Gobbo, Liana; Tittlemier, Sheryl; Diamond, Miriam; Pepper, Karen; Tague, Brett; Yeudall, Fiona; Vanderlinden, Loren

    2008-08-27

    Dietary intake is a major route of exposure to perfluorinated compounds (PFCs). Although fish and seafood contribute significantly to total dietary exposure to these compounds, there is uncertainty with respect to the effect of cooking on PFC concentrations in these foods. Eighteen fish species purchased from markets in Toronto, Mississauga, and Ottawa, Canada were analyzed for perfluorooctanesulfonamide (PFOSAs)-based fluorochemicals and perfluorinated acids (PFAs) in raw and cooked (baked, boiled, fried) samples. Of 17 analytes, perfluorooctanesulfonic acid (PFOS) was detected most frequently; concentrations ranged from 0.21 to 1.68 ng/g ww in raw and cooked samples. PFOSAs were detected only in scallops at concentrations ranging from 0.20 ng/g ww to 0.76 ng/g ww. Total concentrations of PFAs in samples were 0.21 to 9.20 ng/g ww, respectively, consistent with previous studies. All cooking methods reduced PFA concentrations. Baking appeared to be the most effective cooking method; after baking samples for 15 min at 163 C (325 degrees F), PFAs were not detected in any of the samples. The margin of exposures (MOE) between the toxicological points of reference and the dietary intake of perfluorocarboxylates (PFCAs) and PFOS in fish and seafood muscle tissue were greater than 4 orders of magnitude. This indicates that reducing consumption of fish muscle tissue is not warranted on the basis of PFC exposure concerns at the reported levels of contamination, even for high fish consuming populations.

  4. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    International Nuclear Information System (INIS)

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-01-01

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  5. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    Science.gov (United States)

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as

  6. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  7. Element patterns in albatrosses and petrels: Influence of trophic position, foraging range, and prey type

    International Nuclear Information System (INIS)

    Anderson, O.R.J.; Phillips, R.A.; Shore, R.F.; McGill, R.A.R.; McDonald, R.A.; Bearhop, S.

    2010-01-01

    We investigated the concentrations of 22 essential and non-essential elements among a community of Procellariiformes (and their prey) to identify the extent to which trophic position and foraging range governed element accumulation. Stable isotope analysis (SIA) was used to characterise trophic (δ 15 N) and spatial patterns (δ 13 C) among species. Few consistent patterns were observed in element distributions among species and diet appeared to be highly influential in some instances. Arsenic levels in seabird red blood cells correlated with δ 15 N and δ 13 C, demonstrating the importance of trophic position and foraging range for arsenic distribution. Arsenic concentrations in prey varied significantly across taxa, and in the strength of association with δ 15 N values (trophic level). In most instances, element patterns in Procellariiformes showed the clearest separation among species, indicating that a combination of prey selection and other complex species-specific characteristics (e.g. moult patterns) were generally more important determining factors than trophic level per se. - Trophic position, foraging range, and prey type were found to influence element compositions and concentrations in Procellariiformes from South Georgia.

  8. One-carbon (bio ?) Geochemistry in Subsurface Waters of the Serpentinizing Coast Range Ophiolite

    Science.gov (United States)

    Hoehler, Tori M.; Mccollom, Tom; Schrenk, Matt; Cardace, Dawn

    2011-01-01

    Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.

  9. Stationary nonimaging lenses for solar concentration.

    Science.gov (United States)

    Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay

    2010-09-20

    A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.

  10. Insurer Market Power Lowers Prices In Numerous Concentrated Provider Markets.

    Science.gov (United States)

    Scheffler, Richard M; Arnold, Daniel R

    2017-09-01

    Using prices of hospital admissions and visits to five types of physicians, we analyzed how provider and insurer market concentration-as measured by the Herfindahl-Hirschman Index (HHI)-interact and are correlated with prices. We found evidence that in the range of the Department of Justice's and Federal Trade Commission's definition of a moderately concentrated market (HHI of 1,500-2,500), insurers have the bargaining power to reduce provider prices in highly concentrated provider markets. In particular, hospital admission prices were 5 percent lower and cardiologist, radiologist, and hematologist/oncologist visit prices were 4 percent, 7 percent, and 19 percent lower, respectively, in markets with high provider concentration and insurer HHI above 2,000, compared to such markets with insurer HHI below 2,000. We did not find evidence that high insurer concentration reduced visit prices for primary care physicians or orthopedists, however. The policy dilemma that arises from our findings is that there are no insurer market mechanisms that will pass a portion of these price reductions on to consumers in the form of lower premiums. Large purchasers of health insurance such as state and federal governments, as well as the use of regulatory approaches, could provide a solution. Project HOPE—The People-to-People Health Foundation, Inc.

  11. Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

    KAUST Repository

    Ouda, Mahmoud

    2016-11-01

    the dynamic range of conventional rectifiers. Unlike the continuously self-biased rectifier proposed in the second part, this adaptive rectifier extends the dynamic range while maintaining both the high PCE peak and the sensitivity advantage of the conventional cross-coupled scheme, and can operates in the GHz range.

  12. In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength

    International Nuclear Information System (INIS)

    Shahbazi-Gahrouei, D.; Williams, M.; Allen, B.J.

    2001-01-01

    Although gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) has been used as a contrast material in MRI, it is known that the contrast enhancement effect is not uniform for high concentrations of Gd-DTPA. In order to evaluate the proper pulse sequences for dynamic MRI in aqueous solutions of Gd-DTPA, blood samples and melanoma cells, the signal intensity for several concentrations of Gd-DTPA were measured under inversion recovery T 1 -weighted) at high magnetic field strength (7.0 Tesla). For aqueous solutions of Gd-DTPA, signal intensity correlated linearly with the concentration of Gd-DTPA between 0 mmol/L and 4 mmol/L. Using blood and melanoma cells, signal intensity correlated non-linearly with the concentration of Gd-DTPA between 0 mmol/L and 1.5 mmol/L. For concentrations of more than 4 mmol/L in aqueous solutions of Gd-DTPA, 1 mmol/L in blood and 1.5 mmol/L in melanoma, signal intensity decreased with increased Gd-DTPA concentration. Copyright (2001) Blackwell Science Pty Ltd

  13. The ability of fungus Mucor racemosus Fresenius to degrade high concentration of detergent

    Directory of Open Access Journals (Sweden)

    Jakovljević Violeta D.

    2014-01-01

    Full Text Available The ability of fungus Mucor racemosus Fresenius to decompose high concentration of commercial detergent (MERIX, Henkel, Serbia was investigated in this study. Fungus was cultivated in liquid growth medium by Czapek with addition of detergent at concentration 0.5% during 16 days. The biochemical changes of pH, redox potential, amount of free and total organic acids, and activity of alkaline phosphatase were evaluated by analysis of fermentation broth. Simultaneously, biodegradation percentage of anionic surfactant of tested detergent was confirmed by MBAS assay. At the same time, the influence of detergent on fungal growth and total dry weight biomass was determined. Detergent at concentration 0.5% influenced on decreasing of pH value and increasing of redox potential as well as increasing of free and total organic acids. Enzyme activity of alkaline phosphatase was reduced by detergent at concentration 0.5%. The fungus was decomposed about 62% of anionic surfactant during 16 day. Due to fungus was produced higher dry weight biomass (53% in relation to control. [Projekat Ministarstva nauke Republike Srbije, br. III 43004

  14. Metabolic Potential and Activity in Fluids of the Coast Range Ophiolite Microbial Observatory, California, USA

    Science.gov (United States)

    Hoehler, T.; Som, S.; Schrenk, M.; McCollom, T.; Cardace, D.

    2016-01-01

    Metabolic potential and activity associated with hydrogen and carbon monoxide were characterized in fluids sampled from the the Coast Range Ophiolite Microbial Observatory (CROMO). CROMO consists of two clusters of science-dedicated wells drilled to varying depths up to 35m in the actively serpentinizing, Jurassic-age Coast Range Ophiolite of Northern California, along with a suite of pre-existing monitoring wells at the same site. Consistent with the fluid chemistry observed in other serpentinizing systems, CROMO fluids are highly alkaline, with pH up to 12.5, high in methane, with concentrations up 1600 micromolar, and low in dissolved inorganic carbon (DIC), with concentrations of 10's to 100's of micromolar. CROMO is conspicuous for fluid H2 concentrations that are consistently sub-micromolar, orders of magnitude lower than is typical of other systems. However, higher H2 concentrations (10's -100's of micromolar) at an earlier stage of fluid chemical evolution are predicted by, or consistent with: thermodynamic models for fluid chemistry based on parent rock composition equivalent to local peridotite and with water:rock ratio constrained by observed pH; the presence of magnetite at several wt% in CROMO drill cores; and concentrations of formate and carbon monoxide that would require elevated H2 if formed in equilibrium with H2 and DIC. Calculated Gibbs energy changes for reaction of H2 and CO in each of several metabolisms, across the range of fluid composition encompassed by the CROMO wells, range from bioenergetically feasible (capable of driving ATP synthesis) to thermodynamically unfavorable. Active consumption relative to killed controls was observed for both CO and H2 during incubation of fluids from the pre-existing monitoring wells; in incubations of freshly cored solids, consumption was only observed in one sample set (corresponding to the lowest pH) out of three. The specific metabolisms by which H2 and CO are consumed remain to be determined.

  15. Eye safe high power laser diode in the 1410-1550nm range

    Science.gov (United States)

    Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert

    2010-02-01

    The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.

  16. A range of newly developed mobile generators to dynamically produce SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations

    Science.gov (United States)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2017-04-01

    Three new mobile facilities have been developed at METAS to dynamically generate SI-traceable reference gas mixtures for a variety of reactive compounds at atmospheric amount of substance fractions and at very low levels of uncertainty (Ux balance. The carrier gas is previously purified from the compounds of interest using commercially available purification cartridges. The permeation chambers of ReGaS2 and ReGaS3 have multiple individual cells allowing for the generation of mixtures containing up to 5 different components if required. ReGaS1 allows for the generation of one-component mixtures only. These primary mixtures are then diluted to the required amount of substance fractions using thermal mass flow controllers for full flexibility and adaptability of the generation process over the entire range of possible concentrations. In order to considerably reduce adsorption/desorption processes and thus stabilisation time, all electro-polished stainless steel parts of ReGaS1 and ReGaS2 in contact with the reference gas mixtures are passivated with SilcoNert2000® surface coating. These three state-of-the-art mobile reference gas generators are applicable under both, laboratory and field conditions. Moreover the dynamic generation method can be adapted and applied to a large variety of molecules (e.g. BTEX, CFCs, HCFCs, HFCs and other refrigerants) and is particularly suitable for reactive gas species and/or at concentration ranges which are unstable when stored in pressurised cylinders. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

  17. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  18. Measurements of natural 41Ca concentrations

    International Nuclear Information System (INIS)

    Steinhof, A.

    1989-05-01

    Atomic mass spectroscopic examinations on 41 Ca were carried out in the UNILAC accelerator. A sensitivity of about 10 -15 was achieved. This would allow the measurement of present natural 41 Ca concentrations as soon as the problem of the transmission determination is solved. In this respect suggestions were worked out and their feasibility discussed. The detection of 41 Ca-ions is especially free of background when high UNILAC-energies are applied. An estimation showed a background level corresponding with a 41 Ca concentration of less then 10 -17 referred to 40 Ca. Besides an independent concept for the electromagnetic concentration of 41 Ca with variable concentration factors was developed. After being concentrated up to 50 respectively 25 times the initial concentration in the GSI mass separator, the 41 Ca concentration of three recent deer bones found in the Odenwald was measured by atomic mass spectroscopy in the 14UD-Pelletron Tandem in Rehovot (Israel). The measured 41 Ca concentrations ranged between 10 -14 to 10 -13 with consideration of the concentration factor. A theoretical study of the 41 Ca production in the earth's surface based on cosmic radiation illustrates the influence of trace elements on the neutron flux and thus on the 41 Ca production. This influence might be a possible explanation for the observed amplitude of variation of the 41 Ca concentration in recent bones which are of decisive importance for the feasibility of 41 Ca-related dating. In this work a method is suggested that does not depend on the amplitude of variation mentioned above and which would allow the determination of the erosion rate of rocks by its 41 Ca concentrations. (orig./HP) [de

  19. Uncertainty of pesticide residue concentration determined from ordinary and weighted linear regression curve.

    Science.gov (United States)

    Yolci Omeroglu, Perihan; Ambrus, Árpad; Boyacioglu, Dilek

    2018-03-28

    Determination of pesticide residues is based on calibration curves constructed for each batch of analysis. Calibration standard solutions are prepared from a known amount of reference material at different concentration levels covering the concentration range of the analyte in the analysed samples. In the scope of this study, the applicability of both ordinary linear and weighted linear regression (OLR and WLR) for pesticide residue analysis was investigated. We used 782 multipoint calibration curves obtained for 72 different analytical batches with high-pressure liquid chromatography equipped with an ultraviolet detector, and gas chromatography with electron capture, nitrogen phosphorus or mass spectrophotometer detectors. Quality criteria of the linear curves including regression coefficient, standard deviation of relative residuals and deviation of back calculated concentrations were calculated both for WLR and OLR methods. Moreover, the relative uncertainty of the predicted analyte concentration was estimated for both methods. It was concluded that calibration curve based on WLR complies with all the quality criteria set by international guidelines compared to those calculated with OLR. It means that all the data fit well with WLR for pesticide residue analysis. It was estimated that, regardless of the actual concentration range of the calibration, relative uncertainty at the lowest calibrated level ranged between 0.3% and 113.7% for OLR and between 0.2% and 22.1% for WLR. At or above 1/3 of the calibrated range, uncertainty of calibration curve ranged between 0.1% and 16.3% for OLR and 0% and 12.2% for WLR, and therefore, the two methods gave comparable results.

  20. Influence of land use on metal concentrations in playa sediments and amphibians in the Southern High Plains

    Energy Technology Data Exchange (ETDEWEB)

    Venne, Louise S. [Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, MS 1163, Lubbock, TX 79409 (United States)]. E-mail: louise.venne@tiehh.ttu.edu; Cobb, George P. [Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, MS 1163, Lubbock, TX 79409 (United States); Coimbatore, Gopal [Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, MS 1163, Lubbock, TX 79409 (United States); Smith, Loren M. [Wildlife and Fisheries Management Institute, Texas Tech University, MS 2125, Lubbock, TX 79409 (United States); McMurry, Scott T. [Department of Environmental Toxicology, Institute of Environmental and Human Health, Texas Tech University, MS 1163, Lubbock, TX 79409 (United States)

    2006-11-15

    The Southern High Plains (SHP) is a semi-arid region in which playa wetlands are the focal points of biodiversity. Playas are highly influenced by surrounding land use. Most of the SHP is in agricultural production (primarily cotton) with a history of arsenic-containing herbicide use. Metals influence reproduction and development in amphibians. We analyzed metal residues in playa sediment and whole body tissue of Spea spp. and Bufo cognatus metamorphs from two land uses: cropland and native grassland. Cd and Ni concentrations in B. cognatus tissues differed between land uses. Metal concentrations in Spea spp. tissues did not differ between land uses. Ba was higher in Spea spp. than B. cognatus collected from the same grassland playas, indicating differential habitat use. No correlations between sediment and tissue concentrations were found. Land use appeared to have little influence on metal concentrations and levels were below those known to cause effects in amphibians. - Land use surrounding playas has little effect on metal concentrations in sediments.

  1. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    Science.gov (United States)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  2. Influence of Doping Concentration on Dielectric, Optical, and Morphological Properties of PMMA Thin Films

    Directory of Open Access Journals (Sweden)

    Lyly Nyl Ismail

    2012-01-01

    Full Text Available PMMA thin films were deposited by sol gel spin coating method on ITO substrates. Toluene was used as the solvent to dissolve the PMMA powder. The PMMA concentration was varied from 30 ~ 120 mg. The dielectric properties were measured at frequency of 0 ~ 100 kHz. The dielectric permittivity was in the range of 7.3 to 7.5 which decreased as the PMMA concentration increased. The dielectric loss is in the range of 0.01 ~ –0.01. All samples show dielectric characteristics which have dielectric loss is less than 0.05. The optical properties for thin films were measured at room temperature across 200 ~ 1000 nm wavelength region. All samples are highly transparent. The energy band gaps are in the range of 3.6 eV to 3.9 eV when the PMMA concentration increased. The morphologies of the samples show that all samples are uniform and the surface roughness increased as the concentration increased. From this study, it is known that, the dielectric, optical, and morphology properties were influenced by the amount of PMMA concentration in the solution.

  3. Extended Near-Infrared Optoacoustic Spectrometry for Sensing Physiological Concentrations of Glucose

    Directory of Open Access Journals (Sweden)

    Ara Ghazaryan

    2018-03-01

    Full Text Available Glucose sensing is pursued extensively in biomedical research and clinical practice for assessment of the carbohydrate and fat metabolism as well as in the context of an array of disorders, including diabetes, morbid obesity, and cancer. Currently used methods for real-time glucose measurements are invasive and require access to body fluids, with novel tools and methods for non-invasive sensing of the glucose levels highly desired. In this study, we introduce a near-infrared (NIR optoacoustic spectrometer for sensing physiological concentrations of glucose within aqueous media and describe the glucose spectra within 850–1,900 nm and various concentration ranges. We apply the ratiometric and dictionary learning methods with a training set of data and validate their utility for glucose concentration measurements with optoacoustics in the probe dataset. We demonstrate the superior signal-to-noise ratio (factor of ~3.9 achieved with dictionary learning over the ratiometric approach across the wide glucose concentration range. Our data show a linear relationship between the optoacoustic signal intensity and physiological glucose concentration, in line with the results of optical spectroscopy. Thus, the feasibility of detecting physiological glucose concentrations using NIR optoacoustic spectroscopy is demonstrated, enabling the sensing glucose with ±10 mg/dl precision.

  4. The refractive index of human hemoglobin in the visible range

    International Nuclear Information System (INIS)

    Zhernovaya, O; Tuchin, V; Sydoruk, O; Douplik, A

    2011-01-01

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l -1 . This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l -1 . The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  5. Gold and arsenic concentrations in plants as an indication of gold mineralisation

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.; Minski, M.J.

    1978-01-01

    A range of plant species growing on derelict gold mines and a lead-silver mine (background site) in Merionethshire, Wales, United Kingdom, was analysed simultaneously for Au and As by neutron activation analysis. The γ-emitting 198 Au and 76 As isotopes were determined in dried compact plant material following irradiation. Many plant species collected from the gold mines contained Au concentrations significantly above background values, but the extent of Au accumulation varied between and within species. Grasses, and herbs associated with the equatic environment contained the most Au, the highest value recorded was 95 ppb (dry weight) in the leaves of the grass Festuca rubra L. Species which contained high concentrations of Au also contained high concentrations of As. (Auth.)

  6. In vitro-in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro

    International Nuclear Information System (INIS)

    Guelden, Michael; Seibert, Hasso

    2003-01-01

    In the present study an extrapolation model for estimating serum concentrations of chemicals equivalent to in vitro effective concentrations is developed and applied to median cytotoxic concentrations (EC 50 ) determined in vitro. Nominal concentrations of a chemical in serum and in vitro are regarded as equivalent, if they result in the same aqueous concentration of the unbound form. The algorithm used is based on equilibrium distribution and requires albumin binding data, the octanol-water partition coefficient (K ow ), and the albumin concentrations and lipid volume fractions in vitro and in serum. The chemicals studied cover wide ranges of cytotoxic potency (EC 50 : 2.5-530000 μM) and lipophilicity (log K ow : -5 to 7). Their albumin binding characteristics have been determined by means of an in vitro cytotoxicity test as described previously. The equivalent serum concentrations of 19 of the 33 compounds investigated, having high protein binding and/or lipophilicity, were substantially higher than the EC 50 -values, by factors of 2.5-58. Prominent deviations between the equivalent nominal concentrations in serum and in vitro were largely restricted to chemicals with higher cytotoxic potency (EC 50 ≤1000 μM). The results suggest that estimates of equivalent serum concentrations based on in vitro data are robust for chemicals with low lipophilicity (log K ow ≤2) and low potency (EC 50 >1000 μM). With more potent chemicals or those with higher lipophilicity partitioning into lipids and/or binding to serum proteins have to be taken into account when estimating in vivo serum concentrations equivalent to in vitro effective concentrations

  7. Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, Nao; Uchida, Shigeo; Tagami, Keiko; Satta, Naoya

    2011-01-01

    The soil-soil solution distribution coefficient (K d ) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that K d is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which K d is valid. The objective of this study was to determine if the K d for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63 Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant K d becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat K d for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)

  8. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Science.gov (United States)

    Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső

    2018-02-01

    The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).

  9. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Directory of Open Access Journals (Sweden)

    Mónika Valiskó

    2018-02-01

    Full Text Available The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ϵ = 78.5, and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson’s equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 − 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm−2. The anions are monovalent with a fixed diameter d− = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K. We provide all the raw data in the supplementary material.

  10. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  11. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.

    2016-05-13

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  12. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.; Rowe, Arthur J.

    2016-01-01

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  13. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  14. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene

    International Nuclear Information System (INIS)

    Esmaeili, Elaheh; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Rashidi, Ali Morad; Rashidzadeh, Mehdi

    2012-01-01

    Highlights: ► Synthesis of highly active tin-promoted catalysts by polyol method for selective hydrogenation of high concentration of acetylene. ► A positive change in the catalytic activities of tin-promoted catalysts results from distinct geometric and electronic effects. ► Change in the coverage of acetylenic overlayers for different temperature regions corresponds to the change of the number of isolated adsorption sites. ► The isolated adsorption sites are responsible for the enhancement of selectivity to ethylene with increased temperatures, via the management of the carbonaceous species over the catalyst surface. - Abstract: In the present study, Pd/MWNTs are synthesized using polyol process and modified by tin as a promoter for selective hydrogenation of high concentrated acetylene feedstock. Polyol method results in highly dispersed nanoparticles with a depletion of particle size for tin-promoted Pd catalysts as characterized by TEM. Tin promoter plays a considerable role in hydrogenation of pure acetylene stream. This is attributed to formation of Pd 2 Sn structural phase, confirmed by XRD and TPR techniques, composed mainly of intermetallic species. Catalytic behavior of tin-promoted Pd catalysts is affected by geometric and electronic factors which are more pronounced in the case of Sn/Pd = 0.25. A discontinuity in Arrhenius plots for the Sn-promoted catalysts is appeared, which seems to be due to a kinetic factor as a result of change in acetylene coverage on Pd metallic ensembles at low and high temperature ranges. Higher selectivity of the catalysts to ethylene is attributed to the presence of more isolated adsorption sites on the catalyst surface originated from both intermetallic compounds confirmed by XPS and the ones formed via the carbonaceous species upon the acetylene hydrogenation reaction.

  15. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  16. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes.

    Science.gov (United States)

    Besio, Walter G; Martínez-Juárez, Iris E; Makeyev, Oleksandr; Gaitanis, John N; Blum, Andrew S; Fisher, Robert S; Medvedev, Andrei V

    2014-01-01

    Epilepsy is the second most prevalent neurological disorder ([Formula: see text]% prevalence) affecting [Formula: see text] million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos.

  17. Chlorophyll-a concentration estimation with three bio-optical algorithms: correction for the low concentration range for the Yiam Reservoir, Korea

    Science.gov (United States)

    Bio-optical algorithms have been applied to monitor water quality in surface water systems. Empirical algorithms, such as Ritchie (2008), Gons (2008), and Gilerson (2010), have been applied to estimate the chlorophyll-a (chl-a) concentrations. However, the performance of each algorithm severely degr...

  18. Stopping power and range relations for low and high Z ions in solids: a critical analysis

    International Nuclear Information System (INIS)

    Virk, H.S.; Randhawa, G.S.

    1997-01-01

    A critical analysis of various stopping power and range formulations has been made by comparing the calculated stopping power and range values with corresponding experimental values for different low Z (1≤Z≤8) and high Z projectiles (54≤Z≤92) in different targets, e.g. Be, C, Al, Au, Pb, CR-39, Lexan, Mylar, LR-115, CH, (CH)n, TRIFOL-TN, etc. atvarious low and high energies. A comparative study has been made by taking into consideration different target and projectile combinations, e.g., heavy ion-light target, light ion-heavy target and light ion -light target etc., Overall the Ziegler formulation (TRIM-95) provides the best agreement with the experimental results for all projectile and target combinations except for heavy ion-light target combination where it underestimates the stopping power data and overestimates the range data in the range, 2-50 MeV/u. Mukherjee and Nayak formulation totally fails at relativistic and low energies of the projectile, irrespective of the projectile-target combination. Northcliffe and Schilling formulation does not show any particular trend. Benton and Henke formulation gives good agreement between experimental and theoretical data within the range of experimental errors. (orig.)

  19. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  20. Characterization of blood donors with high haemoglobin concentration

    DEFF Research Database (Denmark)

    Magnussen, K; Hasselbalch, H C; Ullum, H

    2013-01-01

    Background and Objectives  The literature contains little on the prevalence and causes of high predonation haemoglobin levels among blood donors. This study aimed to characterize and develop an algorithm to manage would-be donors with polycythaemia. Materials and Methods  Between November 2009...... and November 2011, we offered haematology consultations to blood donors with repeated haemoglobin concentration (Hb) above the WHO limit for polycythaemia vera (PV) (10·2 and 11·5 mm/16·5 and 18·5 g/dl for women and men, respectively). Investigation of such donors included Hb, haematocrit, mean cell volume......, erythropoietin, ferritin, platelet count and leucocyte count, JAK2 V617 and JAK2 exon12 analysis, as well as other routine measurements. Results  Among 46 such donors, 39 had a history of smoking, which contributes to erythrocytosis. Two had PV, five had severe hypertension, one of them because of renal artery...