WorldWideScience

Sample records for high cm energy

  1. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  2. Elucidating Dark Energy with Future 21 cm Observations

    CERN Document Server

    Kohri, Kazunori; Sekiguchi, Toyokazu; Takahashi, Tomo

    2016-01-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  3. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xinchuan, E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov [SETI Institute, 189 Bernardo Ave, Suite No. 100, Mountain View, California 94043 (United States); Schwenke, David W., E-mail: David.W.Schwenke@nasa.gov [MS T27B-1, NAS Facility, NASA Ames Research Center, Moffett Field, California 94035 (United States); Lee, Timothy J., E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov [MS 245-1, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, California 94035 (United States)

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins, higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.

  4. Fission-product yields for thermal-neutron fission of /sup 243/Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    Energy Technology Data Exchange (ETDEWEB)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of /sup 243/Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of /sup 243/Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references.

  5. LIQUIDARMOR CM Flashing and Sealant, High Impact Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E [ORNL; Bhandari, Mahabir S [ORNL

    2016-12-01

    Air leakage is responsible for about 1.1 quads of energy or 6% of the total energy used by commercial buildings in the US. Consequently, infiltration and exfiltration are among the largest envelope-related contributors to the heating, ventilation, and air conditioning loads in commercial buildings. New air sealing technologies have recently emerged that aim to improve the performance of air barrier systems by simplifying their installation procedure. LIQUIDARMORTM CM Flashing and Sealant is an example of these new advanced material technologies. This technology is a spray-applied sealant and liquid flashing and can span gaps that are up to ¼ in. wide without a supporting material. ORNL verified the performance of LIQUIDARMORTM CM with field tests and energy simulations from a building in which LIQUIDARMORTM CM was one of components of the air barrier system. The Homeland Security Training Center (HTC) at the College of DuPage in Glen Ellyn, IL, served as the demonstration site. Blower door test results show the average air leakage rate in the demonstration site to be 0.15 cfm/ft2 at 1.57 psf, or 63% lower than the 0.4 cfm at 1.57 psf specified in the 2015 International Energy Conservation Code (IECC). According to simulation results, HTC lowered its annual heating and cooling cost by about $3,000 or 9% compared to a similar building that lacked an air barrier system. This demonstration project serves as an example of the level of building envelope airtightness that can be achieved by using air barrier materials that are properly installed, and illustrates the energy and financial savings that such an airtight envelope could attain.

  6. Fission-fragment energy correlation measurements for the spontaneous fission of /sup 244/Cm

    Energy Technology Data Exchange (ETDEWEB)

    Caitucoli, F.; Leroux, B.; Barreau, G.; Sicre, A.; Doan, T.P. (Bordeaux-1 Univ., 33 - Gradignan (France). Centre d' Etudes Nucleaires); Asghar, M.; Hamadache, K.; Allab, M. (Centre des Sciences et de la Technologie Nucleaires, Algiers (Algeria))

    1983-02-28

    Fission-fragment mass and kinetic energy distributions and their correlations have been measured for the spontaneous fission of /sup 244/Cm. About 3.54 x 10/sup 5/ fission events were collected. The global mass distribution shows shoulders at ..mu..sub(H) approx.= 134 and ..mu..sub(H) approx.= 143-144. The peak/valley ratio is 86. The dip ..delta..Esub(K) value at symmetry is 13.4 +- 1.5 MeV. In the yields for high-kinetic-energy selected events, the masses 139 and 144 dominate. The results of /sup 244/Cm are compared with the other isotopes of Cm and discussed in terms of the structures present in the potential energy surface of the fissioning system caused by the structures in the nascent fragments.

  7. High-resolution absorption measurements of NH3 at high temperatures: 2100-5500 cm-1

    Science.gov (United States)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2017-03-01

    High-resolution absorption spectra of NH3 in the region 2100-5500 cm-1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work.

  8. A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications

    Science.gov (United States)

    Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Geisler, M.; Reboud, J. L.

    2016-04-01

    This paper presents a small-scale airflow energy harvester built on an axial turbine architecture and exploiting an electret-based electrostatic converter. When the airflow velocity is high enough, the windmill starts rotating and creates a periodic relative motion between a stator and a rotor which induces variations of capacitance. These ones are directly converted into electricity thanks to the use of Teflon electrets charged at -1400 V which polarize the variable capacitors. We focus our study on a 4-blade axial turbine with a diameter of D = 40 mm, a depth of W = 10 mm, for a total volume of 12.6 cm3. This windmill has been tested with various blade angles and different types of electrostatic converters and output powers up to 90 μW at 1.5 m s-1 (7.5 μW cm-3) and 1.8 mW at 10 m s-1 (111 μW cm-3) have been obtained so far. The coefficient of power reaches C p = 5.8% and among the small-scale airflow energy harvesters previously reported, this one has the lowest cut-in speed (1.5 m s-1).

  9. High reliability organizing at the boundary of the CM domain

    NARCIS (Netherlands)

    Olde Scholtenhuis, Léon L.; Dorée, André G.

    2014-01-01

    The construction management (CM) domain regularly develops and explores new theories and perspectives. These new insights can shift the existing paradigm radically, they can be assimilated smoothly, or they can stall as they are debated at CM’s domain boundary. During our current research, we experi

  10. CT dose equilibration and energy absorption in polyethylene cylinders with diameters from 6 to 55 cm

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2015-06-15

    Purpose: ICRU Report No. 87 Committee and AAPM Task Group 200 designed a three-sectional polyethylene phantom of 30 cm in diameter and 60 cm in length for evaluating the midpoint dose D{sub L}(0) and its rise-to-the-equilibrium curve H(L) = D{sub L}(0)/D{sub eq} from computed tomography (CT) scanning, where D{sub eq} is the equilibrium dose. To aid the use of the phantom in radiation dose assessment and to gain an understanding of dose equilibration and energy absorption in polyethylene, the authors evaluated the short (20 cm) to long (60 cm) phantom dose ratio with a polyethylene diameter of 30 cm, assessed H(L) in polyethylene cylinders of 6–55 cm in diameters, and examined energy absorption in these cylinders. Methods: A GEANT4-based Monte Carlo program was used to simulate the single axial scans of polyethylene cylinders (diameters 6–55 cm and length 90 cm, as well as diameter 30 cm and lengths 20 and 60 cm) on a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare). Axial dose distributions were computed on the phantom central and peripheral axes. An average dose over the central 23 or 100 mm region was evaluated for modeling dose measurement using a 0.6 cm{sup 3} thimble chamber or a 10 cm long pencil ion chamber, respectively. The short (20 cm) to long (90 cm) phantom dose ratios were calculated for the 30 cm diameter polyethylene phantoms scanned at four tube voltages (80–140 kV) and a range of beam apertures (1–25 cm). H(L) was evaluated using the dose integrals computed with the 90 cm long phantoms. The resultant H(L) data were subsequently used to compute the fraction of the total energy absorbed inside or outside the scan range (E{sub in}/E or E{sub out}/E) on the phantom central and peripheral axes, where E = LD{sub eq} was the total energy absorbed along the z axis. Results: The midpoint dose in the 60 cm long polyethylene phantom was equal to that in the 90 cm long polyethylene phantom. The short-to-long phantom dose

  11. 21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal

    OpenAIRE

    Mesinger, Andrei; Furlanetto, Steven; Cen, Renyue

    2010-01-01

    We introduce a powerful semi-numeric modeling tool, 21cmFAST, designed to efficiently simulate the cosmological 21-cm signal. Our code generates 3D realizations of evolved density, ionization, peculiar velocity, and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, we compare our results to a state-of-the-art large-scale hydrodynamic simulation, and find good agreement on scales pe...

  12. 21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal

    Science.gov (United States)

    Mesinger, Andrei; Furlanetto, Steven; Cen, Renyue

    2011-02-01

    21cmFAST is a powerful semi-numeric modeling tool designed to efficiently simulate the cosmological 21-cm signal. The code generates 3D realizations of evolved density, ionization, peculiar velocity, and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, the results were compared to a state-of-the-art large-scale hydrodynamic simulation, and the findings indicate good agreement on scales pertinent to the upcoming observations (>~ 1 Mpc). The power spectra from 21cmFAST agree with those generated from the numerical simulation to within 10s of percent, down to the Nyquist frequency. Results were shown from a 1 Gpc simulation which tracks the cosmic 21-cm signal down from z=250, highlighting the various interesting epochs. Depending on the desired resolution, 21cmFAST can compute a redshift realization on a single processor in just a few minutes. The code is fast, efficient, customizable and publicly available, making it a useful tool for 21-cm parameter studies.

  13. 21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal

    CERN Document Server

    Mesinger, Andrei; Cen, Renyue

    2010-01-01

    We introduce a powerful semi-numeric modeling tool, 21cmFAST, designed to efficiently simulate the cosmological 21-cm signal. Our code generates 3D realizations of evolved density, ionization, peculiar velocity, and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, we compare our results to a state-of-the-art large-scale hydrodynamic simulation, and find good agreement on scales pertinent to the upcoming observations (>~ 1 Mpc). The power spectra from 21cmFAST agree with those generated from the numerical simulation to within 10s of percent, down to the Nyquist frequency. We show results from a 1 Gpc simulation which tracks the cosmic 21-cm signal down from z=250, highlighting the various interesting epochs. Depending on the desired resolution, 21cmFAST can compute a redshift realization on a single processor in just a few minutes. Our code is fast, efficient, customizable and publicly available, m...

  14. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  15. Energy transportation via MITL by the linear current flow density up to 7 MA/cm

    Science.gov (United States)

    Korolev, V. D.; Bakshaev, Yu. L.; Bartov, A. V.; Blinov, P. I.; Bryzgunov, V. A.; Chernenko, A. S.; Dan'ko, S. A.; Kalinin, Yu. G.; Kingsep, A. S.; Kazakov, E. D.; Smirnov, V. P.; Smirnova, E. A.; Ustroev, G. I.

    2006-10-01

    The transmission properties of the magnetically self-insulated vacuum transporting line (MITL) were studied on the S-300 pulsed power machine (3 MA, 100 ns) at the high linear current flow density up to dI/db = 7 MA/cm. Experiments were carried out with the short line sections with 10 ÷ 15 mm length and 3 ÷ 5 mm vacuum gap. For measuring of the plasma parameters, the frame ICT photography with the nanosecond temporal resolution in the SXR range and ICT (Image Converter Tube) chronography in visible range were used. The X-ray radiation in various ranges was recorded by the XRD with thin filters (SXR) and by the semiconductor detectors (HXR). The information about current transmission efficiency was obtained by means of magnetic loops and low-inductance shunt. It was determined that dense plasma arose on both anode and cathode when the linear current flow density was low enough, dI/db ≤ 1 MA/cm. A dense plasma moves across the vacuum gap with the velocity (1 ÷ 2) × 106 cm/s. By recording the current and hard X-ray radiation it was found that electron losses in the current front did not exceed 10 ÷ 100 kA. Under strong magnetization of electrons r H = mvc/eB Conceptual Project of fusion reactor on the base of fast Z-pinch has been brought about.

  16. High resolution quantum cascade laser spectroscopy of the simplest Criegee intermediate, CH2OO, between 1273 cm-1 and 1290 cm-1

    Science.gov (United States)

    Chang, Yuan-Pin; Merer, Anthony J.; Chang, Hsun-Hui; Jhang, Li-Ji; Chao, Wen; Lin, Jim-Min, Jr.

    2017-06-01

    The region 1273-1290 cm-1 of the ν4 fundamental of the simplest Criegee intermediate, CH2OO, has been measured using a quantum cascade laser transient absorption spectrometer, which offers greater sensitivity and spectral resolution (works based on thermal light sources. Gas phase CH2OO was generated from the reaction of CH2I + O2 at 298 K and 4 Torr. The analysis of the absorption spectrum has provided precise values for the vibrational frequency and the rotational constants, with fitting errors of a few MHz. The determined ratios of the rotational constants, A'/A″ = 0.9986, B'/B″ = 0.9974, and C'/C″ = 1.0010, and the relative intensities of the a- and b-type transitions, 90:10, are in good agreement with literature values from a theoretical calculation using the MULTIMODE approach, based on a high-level ab initio potential energy surface. The low-K (=Ka) lines can be fitted extremely well, but rotational perturbations by other vibrational modes disrupt the structure for K = 4 and K ≥ 6. Not only the spectral resolution but also the detection sensitivity of CH2OO IR transitions has been greatly improved in this work, allowing for unambiguous monitoring of CH2OO in kinetic studies at low concentrations.

  17. A 5 cm single-discharge CO2 laser having high power output

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    A single-discharge self-sustained CO2 laser has been constructed with a gap distance of 5 cm. The system has a very simple construction; it produces a very uniform discharge with an output power of 50 Joules per liter for a CO2 : N2 : He = 1 : 1 : 3 mixture. The efficiency can be as high as 19%.

  18. The Global 21-cm Signal in the Context of the High-z Galaxy Luminosity Function

    CERN Document Server

    Mirocha, Jordan; Sun, G

    2016-01-01

    Motivated by recent progress in studies of the high-$z$ Universe, we build a new model for the global 21-cm signal that is explicitly calibrated to measurements of the galaxy luminosity function (LF) and further tuned to match the Thomson scattering optical depth of the cosmic microwave background, $\\tau_e$. Assuming that the $z \\lesssim 8$ galaxy population can be smoothly extrapolated to higher redshifts, the recent decline in best-fit values of $\\tau_e$ and the inefficient heating induced by X-ray binaries (HMXBs; the presumptive sources of the X-ray background at high-$z$) imply that the entirety of cosmic reionization and reheating occurs at redshifts $z \\lesssim 12$. In contrast to past global 21-cm models, whose $z \\sim 20$ ($\

  19. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    CERN Document Server

    Raccanelli, Alvise; Dai, Liang; Kamionkowski, Marc

    2015-01-01

    We investigate the possibility to detect the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies, in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as...

  20. High resolution analysis of C2D4 in the region of 600-1150 cm-1

    Science.gov (United States)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Fomchenko, A. L.; Zhang, Fangce; Sydow, C.; Maul, C.; Bauerecker, S.

    2016-10-01

    High-accurate Fourier-transform infrared spectra of C2D4 were recorded and analyzed in the region of 600-1150 cm-1 where the bands ν7(B1u), ν10(B2u), ν12(B3u) are located as well as the ν4(Au) band which is forbidden by the symmetry of the molecule. The ground state rotational structure was re-analyzed by the use of ground state combination differences obtained on the basis of infrared transitions of the ν12 and ν7 absorption bands. This gave us the possibility to considerably improve the rotational and centrifugal parameters of the ground vibrational state. The analysis of the experimental data and the subsequent weighted-fit procedure of the Hamiltonian parameters allowed us to reproduce the initial 4405 "experimental" ro-vibrational energy values with the drms = 2.1 ×10-4cm-1.

  1. The global 21-cm signal in the context of the high- z galaxy luminosity function

    Science.gov (United States)

    Mirocha, Jordan; Furlanetto, Steven R.; Sun, Guochao

    2017-01-01

    We build a new model for the global 21-cm signal that is calibrated to measurements of the high-z galaxy luminosity function (LF) and further tuned to match the Thomson scattering optical depth of the cosmic microwave background, τe. Assuming that the z ≲ 8 galaxy population can be smoothly extrapolated to higher redshifts, the recent decline in best-fitting values of τe and the inefficient heating induced by X-ray binaries (the presumptive sources of the high-z X-ray background) imply that the entirety of cosmic reionization and reheating occurs at z ≲ 12. In contrast to past global 21-cm models, whose z ˜ 20 (ν ˜ 70 MHz) absorption features and strong ˜25 mK emission features were driven largely by the assumption of efficient early star formation and X-ray heating, our new models peak in absorption at ν ˜ 110 MHz at depths ˜-160 mK and have negligible emission components. Current uncertainties in the faint-end of the LF, binary populations in star-forming galaxies, and UV and X-ray escape fractions introduce ˜20 MHz (˜50 mK) deviations in the trough's frequency (amplitude), while emission signals remain weak (≲10 mK) and are confined to ν ≳ 140 MHz. These predictions, which are intentionally conservative, suggest that the detection of a 21-cm absorption minimum at frequencies below ˜90 MHz and/or emission signals stronger than ˜10mK at ν ≲ 140 MHz would provide strong evidence for `new' sources at high redshifts, such as Population III stars and their remnants.

  2. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Mau-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Jian, Sheng-Rui, E-mail: srjian@gmail.com [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Yeh, An-Chou [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kuo, Chen-Ming [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-02-08

    This study explores the effects of cooling rate after solution heat treatment on the high temperature/low stress (982 °C/200 MPa) creep properties of CM-247LC Nickel base superalloy. Cooling rate was controlled by blowing argon gas, air cooling, and furnace cooling, which, in turn, gave rise to corresponding cooling rates (from 1260 °C to 800 °C) of 18.7, 7.4, and 0.19 °C/s, respectively. The results indicated that higher cooling rate from the solution heat treatment temperature led to finer γ′ precipitates and much improved tertiary creep as well as rupture life time in high-temperature creep test. The microstructural analyses using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that finer γ′ precipitates and narrower γ channel width could result in denser rafting structure which might have hindered the climb of dislocations across the precipitates rafts.

  3. High energy astrophysical neutrinos

    OpenAIRE

    Athar, H.

    2002-01-01

    High energy neutrinos with energy typically greater than tens of thousands of GeV may originate from several astrophysical sources. The sources may include, for instance, our galaxy, the active centers of nearby galaxies, as well as possibly the distant sites of gamma ray bursts. I briefly review some aspects of production and propagation as well as prospects for observations of these high energy astrophysical neutrinos.

  4. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    OpenAIRE

    Evoli, Carmelo; Mesinger, Andrei; Ferrara, Andrea

    2014-01-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysic...

  5. High-Grade Partial and Retracted (<2 cm) Proximal Hamstring Ruptures

    Science.gov (United States)

    Piposar, Jonathan R.; Vinod, Amrit V.; Olsen, Joshua R.; Lacerte, Edward; Miller, Suzanne L.

    2017-01-01

    Background: High-grade partial proximal hamstring tears and complete tears with retraction less than 2 cm are a subset of proximal hamstring injuries where, historically, treatment has been nonoperative. It is unknown how nonoperative treatment compares with operative treatment. Hypothesis: The clinical and functional outcomes of nonoperative and operative treatment of partial/complete proximal hamstring tears were compared. We hypothesize that operative treatment of these tears leads to better clinical and functional results. Study Design: Case series; Level of evidence, 4. Methods: A retrospective review identified patients with a high-grade partial or complete proximal hamstring rupture with retraction less than 2 cm treated either operatively or nonoperatively from 2007 to 2015. All patients had an initial period of nonoperative treatment. Surgery was offered if patients had continued pain and/or limited function refractory to nonoperative treatment with physical therapy. Outcome measures were each patient’s strength perception, ability to return to activity, Lower Extremity Functional Scale (LEFS) score, Short Form–12 (SF-12) physical and mental component outcome scores, distance traversed by a single-leg hop, and Biodex hamstring strength testing. Results: A total of 25 patients were enrolled in the study. The 15 patients who were treated nonoperatively sustained injuries at a mean age of 55.73 ± 14.83 years and were evaluated 35.47 ± 30.35 months after injury. The 10 patients who elected to have surgery sustained injuries at 50.40 ± 6.31 years of age (P = .23) and were evaluated 30.11 ± 19.43 months after surgery. LEFS scores were significantly greater for the operative group compared with the nonoperative group (77/80 vs 64.3/80; P = .01). SF-12 physical component scores for the operative group were also significantly greater (P = .03). Objectively, operative and nonoperative treatment modalities showed no significant difference in terms of single

  6. Generation and diagnostics of pulsed intense ion beams with an energy density of 10 J/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Isakova, Yu., E-mail: isakova-yulia@tpu.ru; Pushkarev, A.; Khailov, I. [Tomsk Polytechnic University, 30, Lenin Ave., 634050 Tomsk (Russian Federation); Zhong, H., E-mail: zhonghaowen@buaa.edu.cn [Beihang University, Beijing 100191 (China)

    2015-07-15

    The paper presents the results of a study on transportation and focusing of a pulsed ion beam at gigawatt power level, generated by a diode with explosive-emission cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (120 ns, 200-250 kV). To reduce the beam divergence, we modified the construction of the diode. The width of the anode was increased compared to that of the cathode. We studied different configurations of planar and focusing strip diodes. It was found that the divergence of the ion beam formed by a planar strip diode, after construction modification, does not exceed 3° (half-angle). Modification to the construction of a focusing diode made it possible to reduce the beam divergence from 8° to 4°-5°, as well as to increase the energy density at the focus up to 10-12 J/cm{sup 2}, and decrease the shot to shot variation in the energy density from 10%-15% to 5%-6%. When measuring the ion beam energy density above the ablation threshold of the target material (3.5-4 J/cm{sup 2}), we used a metal mesh with 50% transparency to lower the energy density. The influence of the metal mesh on beam transport has been studied.

  7. A High Resolution Spectrograph for the 72 cm Waltz Telescope at Landessternwarte, Heidelberg

    CERN Document Server

    Tala, M; Grill, M; Harris, R J; Stürmer, J; Schwab, C; Gutcke, T; Reffert, S; Quirrenbach, A; Seifert, W; Mandel, H; Geuer, L; Schäffner, L; Thimm, G; Seemann, U; Tietz, J; Wagner, K

    2016-01-01

    The Waltz Spectrograph is a fiber-fed high-resolution \\'echelle spectrograph for the 72 cm Waltz Telescope at the Landessternwarte, Heidelberg. It uses a 31.6 lines/mm 63.5$^{\\circ}$ blaze angle \\'echelle grating in white-pupil configuration, providing a spectral resolving power of $R\\sim$65,000 covering the spectral range between 450$-$800\\,nm in one CCD exposure. A prism is used for cross-dispersion of \\'echelle orders. The spectrum is focused by a commercial apochromat onto a 2k$\\times$2k CCD detector with 13.5$\\mu$m per pixel. An exposure meter will be used to obtain precise photon-weighted midpoints of observations, which will be used in the computation of the barycentric corrections of measured radial velocities. A stabilized, newly designed iodine cell is employed for measuring radial velocities with high precision. Our goal is to reach a radial velocity precision of better than 5 m/s, providing an instrument with sufficient precision and sensitivity for the discovery of giant exoplanets. Here we descr...

  8. Energy at high altitude.

    Science.gov (United States)

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  9. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  10. Evaporation of metals by high-density (107 A · cm-2) electrical currents

    Science.gov (United States)

    Rakhel, A. D.

    1996-09-01

    In the present work, the problem of time evolution of pressure and temperature profiles across a wire through which an electrical current with a density of the order of 107 A · cm-2 flows is solved. The correct boundary conditions for a metal surface are obtained for the case when this metal is rapidly evaporated as a result of high-power Joule heating. The pressure profile appears under these conditions due to pinch-effect and inertia of thermal expansion of the metal; the temperature profile arises because of intensive evaporation from the surface of the wire. The conditions under which a liquid metal is superheated are formulated. On the basis of the analysis of the experimental results on exploding wires, the conclusion is drawn that decay of the metastable state takes place near the binodal. It is shown that the distribution of fine dispersed vapor bubbles is strongly nonuniform across the wire and the process of expansion of the two-phase mixture is very similar to the motion of a wave.

  11. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    Science.gov (United States)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  12. New assignments and a rare peculiarity in the high sensitivity CRDS spectrum of acetylene near 8000 cm-1

    Science.gov (United States)

    Kassi, S.; Lyulin, O. M.; Béguier, S.; Campargue, A.

    2016-08-01

    The absorption spectrum of acetylene has been recorded at room temperature (296 K) using high sensitivity Cavity Ring Down Spectroscopy in the 7914 and 8252 cm-1 interval. The noise equivalent absorption of the spectra is αmin ∼ 5×10-11 cm-1. A list of about 5600 absorption features was constructed. The smallest intensities are on the order of 10-29 cm/molecule. A total of 1325 rovibrational lines of 12C2H2 were assigned by comparison with accurate predictions provided by a global effective operator model. In addition, 132 rovibrational lines of 12C13CH2 present in natural isotopic abundance were assigned on the basis of their published positions. The assigned 12C2H2 lines belong to 12 new and 6 already known bands, for which additional J-lines were assigned. The line intensities of the three cold bands of 12C13CH2 are reported for the first time. The new data will be valuable to refine the parameters of the global effective Hamiltonian and dipole moments of 12C2H2 in the region. Spectroscopic parameters of the 12C2H2 and 12C13CH2 upper vibrational levels were derived from a band-by-band fit of the line positions (typical rms values are on the order of 0.001 cm-1). A few of the analyzed bands were found to be affected by rovibrational perturbations, which are discussed. In particular, the rotational structure of the 2ν1 + (ν4 + ν5)0 Σu+-Σg+ band near 7994 cm-1 exhibits a particularly surprising intensity distribution: while the P(19) and R(17) transitions share the same J = 18 upper level, the R(17) line has an intensity about 4 orders of magnitude smaller than the P(19) line. This unusual situation is quantitatively interpreted as resulting from a Coriolis interaction between the ν1 + 2ν2 + ν51 and 2ν1 + (ν4 + ν5)0 bands with a energy crossing at J = 18. The accidental nearly perfect cancelation of the two terms contributing to the line strength of the R(17) line leads to the near disappearance of this line.

  13. Intramolecular Vibrational Energy Redistribution (ivr) in Selected S_{1} Levels above 1000 cm^{-1} in Para-Fluorotoluene

    Science.gov (United States)

    Whalley, Laura E.; Gardner, Adrian M.; Tuttle, William Duncan; Davies, Julia A.; Reid, Katharine L.; Wright, Timothy G.

    2017-06-01

    With increasing vibrational wavenumber, the density of states of a molecule is expected to rise dramatically, especially so when low wavenumber torsions (internal rotations) are present, as in the case of para-fluorotoluene (pFT). This in turn is expected to lead to more opportunities for coupling between vibrational modes, which is the driving force for intramolecular vibrational energy redistribution (IVR). Previous studies at higher energies have focussed on the two close lying vibrational levels at 1200 cm^{-1} in the S_{1} electronic state of pFT which were assigned to two zero-order bright states (ZOBSs), whose characters predominantly involve C-CH_{3} and C-F stretching modes. A surprising result of these studies was that the photoelectron spectra showed evidence that IVR is more extensive following excitation of the C-F mode than it is following excitation of the C-CH_{3} mode, despite these levels being separated by only 35 cm^{-1}. This observation provides evidence that the IVR dynamics are mode-specific, which in turn may be a consequence of the IVR route being dependent on couplings to nearby states that are only available to the C-F mode. In this work, in order to further investigate this behaviour, we have employed resonance-enhanced multiphoton ionisation (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy to probe S_{1} levels above 1000 cm^{-1} in pFT. Such ZEKE spectra have been recorded via a number of S_{1} intermediate levels allowing the character and coupling between vibrations to be unravelled; the consequence of this coupling will be discussed with a view to understanding any IVR dynamics seen. C. J. Hammond, V. L. Ayles, D. E. Bergeron, K. L. Reid and T. G. Wright, J. Chem. Phys., 125, 124308 (2006) J. A. Davies, A. M. Green, A. M. Gardner, C. D. Withers, T. G. Wright and K. L. Reid, Phys. Chem. Chem. Phys., 16, 430 (2014)

  14. Theoretical Analysis of Ionic Autoionization Spectra of Lanthanum in the Energy Region of 90650-91500 cm-1

    Institute of Scientific and Technical Information of China (English)

    张新峰; 彭永伦; 钟志萍; 屈一至; 孙玮; 夏丹; 薛平; 许祥源

    2003-01-01

    Eigenquantum defects μα and transformation matrix Uiα of La+ are calculated from the first principles by relativistic multichannel theory, and dipole matrix elements Dα axe obtained by fitting the experimental spectra.With these parameters, ionic autoionization spectra of lanthanum via an intermediate state (Xe)5d6d 1P1 of La+in the energy region of 90650-91500 cm -1 are calculated within the framework of multichannel quantum defect theory. Our calculated spectra are in general agreement with the experimental data.

  15. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  16. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    CERN Document Server

    Evoli, Carmelo; Ferrara, Andrea

    2014-01-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysical sources of X-rays. This leaves several unambiguous, qualitative signatures in the redshift evolution of the large-scale ($k\\approx0.1$ Mpc$^{-1}$) 21 cm power amplitude: (i) the local maximum (peak) associated with IGM heating can be lower than the other maxima; (ii) the heating peak can occur while the IGM is in emission against the cosmic microwave background (CMB); (iii) there can be a dramatic drop in power (a global minimum) corresponding to the epoch when the IGM temperature is comparable to the CMB temperature. ...

  17. High quality beams of MV/cm THz pulses generated from DSTMS

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2015-01-01

    A beam characterization of a THz beam generated from the organic crystal DSTMS is presented. The simple, collinear phase-matching geometry for this crystal results in an M2 factor below 1.5, resulting in a focused field strength of more than 4 MV/cm.......A beam characterization of a THz beam generated from the organic crystal DSTMS is presented. The simple, collinear phase-matching geometry for this crystal results in an M2 factor below 1.5, resulting in a focused field strength of more than 4 MV/cm....

  18. High-Energy Physics.

    Science.gov (United States)

    Creutz, Michael

    1983-01-01

    Experimentalists in particle physics have long regarded computers as essential components of their apparatus. Theorists are now finding that significant advances in some areas can be accomplished only in partnership with a machine. Needs of experimentalists, interests of theorists, and specialized computers for high-energy experiments are…

  19. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  20. 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal

    Science.gov (United States)

    Mesinger, Andrei; Furlanetto, Steven; Cen, Renyue

    2011-02-01

    We introduce a powerful seminumeric modelling tool, 21CMFAST, designed to efficiently simulate the cosmological 21-cm signal. Our code generates 3D realizations of evolved density, ionization, peculiar velocity and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, we compare our results to a state-of-the-art large-scale hydrodynamic simulation, and find good agreement on scales pertinent to the upcoming observations (≳1 Mpc). The power spectra from 21CMFAST agree with those generated from the numerical simulation to within 10s of per cent, down to the Nyquist frequency. We show results from a 1-Gpc simulation which tracks the cosmic 21-cm signal down from z= 250, highlighting the various interesting epochs. Depending on the desired resolution, 21CMFAST can compute a redshift realization on a single processor in just a few minutes. Our code is fast, efficient, customizable and publicly available, making it a useful tool for 21-cm parameter studies.

  1. A deep search for 21-cm absorption in high redshift damped Lyman-alpha systems

    NARCIS (Netherlands)

    Kanekar, N; Chengalur, JN

    2003-01-01

    We present deep GMRT 21-cm absorption spectra of 10 damped Lyman-alpha systems (DLAs), of which 8 are at redshifts zgreater than or similar to1.3. HI absorption was detected in only one DLA, the z=0.5318 absorber toward PKS 1629+12. This absorber has been identified with a luminous spiral galaxy; th

  2. Ethanol injection is highly effective for hepatocellular carcinoma smaller than 2 cm

    Institute of Scientific and Technical Information of China (English)

    Maurizio Pompili; Gian Ludovico Rapaccini; Erica Nicolardi; Valeria Abbate; Luca Miele; Laura Riccardi; Marcello Covino; Nicoletta De Matthaeis; Antonio Grieco; Raffaele Landolfi

    2011-01-01

    AIM: To analyze the long-term prognosis in a cohort of western cirrhotic patients with single hepatocellular carcinoma treated with ethanol injection. METHODS: One-hundred forty-eight patients with solitary hepatocellular carcinoma were enrolled. The tumor diameter was lower than 2 cm in 47 patients but larger in the remaining 101 patients. The impact of some pretreatment clinical and laboratory parameters and of tumor recurrence on patients' survival was assessed. RESULTS: Among the pre-treatment parameters, only a tumor diameter of less than 2 cm was an independent prognostic factor of survival. The occurrence of new nodules in other liver segments and the neoplastic portal invasion were linked to a poorer prognosis at univariate analysis. Patients with a single hepatocellular carcinoma smaller than 2 cm showed a better 5-year cumulative survival (73.0% vs 47.9%) (P = 0.009), 3-year local recurrence rate (29.1% vs 51.5%) (P = 0.011), and 5-year distant intrahepatic recurrence rate (52.9% vs 62.8%) (P = 0.054) compared to patients with a larger tumor. CONCLUSION: The 5-year survival rate of patients with single hepatocellular carcinoma < 2 cm undergoing ethanol injection is excellent and comparable to that achieved using radiofrequency ablation.

  3. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  4. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  5. Atmospheric gamma ray angle and energy distributions from sea level to 3.5 g/sq cm and 2 to 25 MeV

    Science.gov (United States)

    Ryan, J. M.; Jennings, M. C.; Radwin, M. D.; Zych, A. D.; White, R. S.

    1979-01-01

    Differential fluxes of gamma rays were calculated for energies of 2-25 MeV, zenith angles of 0-50 deg and 180-130 deg, and atmospheric depths from nominal sea level, 1000 g/sq cm, to float altitude, 3.5 g/sq cm residual atmosphere. Above 100 g/sq cm growth curves were constructed to estimate the contribution of the extraterrestrial gamma ray flux to the total downward-moving flux, while the upward-moving gamma rays were taken to be strictly of atmospheric origin. Below 100 g/sq cm, all gamma rays originate in the atmosphere. The downward atmospheric flux increases by almost two orders of magnitude between float altitude and the Pfotzer maximum, while the extraterrestrial flux is attenuated exponentially. Gamma rays produced by neutron interactions with the carbon in the scintillator liquid are eliminated by constructing growth curves for downward-moving gamma rays at high altitudes and are negligible compared with downward-moving gamma rays at lower altitudes and upward-moving gamma rays at all altitudes.

  6. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  7. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  8. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  9. 232Th、233U、238Pu、240Pu、242Pu、241Am、242Cm、243Cm和244Cm的裂变释放热能研究%Thermal Energy Released in Fission of 232 Th,233 U,238 Pu, 240 Pu,242 Pu,241 Am,242 Cm,243 Cm and 244 Cm

    Institute of Scientific and Technical Information of China (English)

    赵艳飞; 马续波; 陈义学

    2013-01-01

    In the nuclear reactor design ,the precise calculation of thermal fission energy is of great significance .In the pressurized water reactor ,high energy neutron-induced fission rarely occurs ,the isotopes including 233 U ,241 Am and 243 Cm are mostly induced by thermal neutrons ,while the other isotopes such as 232Th ,238Pu ,240Pu ,242Pu ,242Cm and 244 Cm are by fast neutron . In order to carry out this work , the nuclear data extracted from the latest evaluated nuclear data file (ENDF/B-Ⅶ ) were adopted ,and the energy-conservation law for the calculation of total fission energy were used , meanw hile ,with the consideration of capture energy and the correction of βand γ ,the thermal fission energy of nine isotopes was obtained .Compared with the data excerpted from IAEA issued WIMS-D database ,the results are reasonable .The thermal fission energy and its uncertainties of the nine isotopes are :(193.939 ± 0.176) MeV for 232 Th , (200.063 ± 0.084) MeV for 233 U ,(208.786 ± 1.133 ) MeV for 238 Pu ,(211.266 ± 0.220 ) MeV for 240 Pu ,(213.862 ± 0.299 ) MeV for 242 Pu ,(215.077 ± 0.210 ) MeV for 241 Am ,(218.821 ± 0.159) MeV for 242Cm ,(218.525 ± 0.388) MeV for 243Cm ,and (220.067 ± 0.131) MeV for 244 Cm ,respectively .%在核反应堆设计中,对每次裂变释放热能进行精确计算具有重要意义。在压水堆内,高能中子诱发核裂变份额很小,233 U、241 Am、243 Cm主要由热中子诱发裂变,232 T h、238 Pu、240 Pu、242 Pu、242 Cm、244 Cm主要由快中子诱发裂变。本文采用最新的核评价数据库 ENDF/B-Ⅶ,利用质量守恒法计算裂变释放总能,同时研究了中微子带走的能量,中子俘获能及β、γ修正项,最终给出了9种核素裂变释放热能。与IAEA颁布的WIMS-D格式数据库中的裂变释放热能数据的对比表明,本文所用方法计算结果合理。9种核素每次裂变释放热能分别为:232 Th ,(193.939±0.176) MeV ;233 U ,(200.063

  10. Radiative Transfer Effect on Ultraviolet Pumping of the 21cm Line in the High Redshift Universe

    CERN Document Server

    Chuzhoy, Leonid

    2007-01-01

    During the epoch of reionization the 21cm signal is sensitive to the scattering rate of the ultraviolet photons, redshifting across the Lyman_alpha resonance. Here we calculate the photon scattering rate profile for a single ultraviolet source. After taking into account previously neglected natural broadening of the resonance line, we find that photons approach the resonance frequency and experience most scatterings at a significantly smaller distance from the source than naively expected r=(dnu/nu_0)(c/H), where dnu=nu-nu_0 is the initial frequency offset, and the discrepancy increases as the initial frequency offset decreases. As a consequence, the scattering rate P(r) drops much faster with increasing distance than the previously assumed 1/r^2 profile. Near the source (r<1Mpc comoving), the scattering rate of photons that redshift into the Ly_alpha resonance converges to P(r) \\propto r^{-7/3}. The scattering rate of Ly_alpha photons produced by splitting of photons that redshift into a higher resonance ...

  11. Wouthuysen-Field coupling strength and application to high-redshift 21 cm radiation

    CERN Document Server

    Hirata, C M

    2006-01-01

    The first UV sources in the universe are expected to have coupled the HI spin temperature to the gas kinetic temperature via scattering in the Lyman-alpha resonance [the Wouthuysen-Field (WF) effect]. By establishing an HI spin temperature different from the temperature of the CMB, the WF effect should allow observations of HI during the reionization epoch in the redshifted 21 cm line. This paper investigates four mechanisms that can affect the strength of the WF effect that were not previously considered: (1) Photons redshifting into the HI Lyman resonances may excite an H atom and result in a radiative cascade terminating in two-photon 2s->1s emission, rather than always degrading to Lyman-alpha as usually assumed. (2) The fine structure of the Lyman-alpha resonance alters the photon frequency distribution and leads to a suppression of the scattering rate. (3) The spin-flip scatterings change the frequency of the photon and cause the photon spectrum to relax not to the kinetic temperature of the gas but to ...

  12. The Impact of Foregrounds on Redshift Space Distortion Measurements With the Highly-Redshifted 21 cm Line

    CERN Document Server

    Pober, Jonathan C

    2014-01-01

    The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is effected by redshift space distortion effects, and is inherently anisotropic between the line-of-sight and transverse directions. A full measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects at high redshifts. However, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground "wedge". Although techniques to subtract foregrounds are actively being developed, a "foreground avoidance" approach of simply ignoring cont...

  13. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  14. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  15. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 700 and 820 cm-1

    Science.gov (United States)

    McKellar, A. R. W.; Billinghurst, B. E.

    2015-09-01

    The weak combination bands ν12 + ν18 and ν17 + ν18 of trans-acrolein in the 700-760 cm-1 region are observed at high resolution (facility. A detailed rotational analysis of the 121181 and 171181 upper states is made which includes the nearby perturbing states 185, 132181, and 131183. Taking the results of this 5-state fit, together with earlier results on lower lying vibrations, we now have experimental characterization for all 15 excited vibrational states of acrolein lying below 820 cm-1.

  16. A High Galactic Latitude HI 21 cm-line Absorption Survey using the GMRT: I. Observations and Spectra

    Indian Academy of Sciences (India)

    Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan

    2004-09-01

    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|| > 15°) Galactic latitudes. The Declination coverage of the present survey is ≳ -45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.

  17. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  18. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance.

    Science.gov (United States)

    Karunker, Iris; Morou, Evangelia; Nikou, Dimitra; Nauen, Ralf; Sertchook, Rotem; Stevenson, Bradley J; Paine, Mark J I; Morin, Shai; Vontas, John

    2009-10-01

    The neonicotinoid imidacloprid is one of the most important insecticides worldwide. It is used extensively against the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), an insect pest of eminent importance globally, which was also the first pest to develop high levels of resistance against imidacloprid and other neonicotinoids in the field. Recent reports indicated that in both the B and Q biotypes of B. tabaci, the resistant phenotype is associated with over-expression of the cytochrome P450 gene CYP6CM1. In this study, molecular docking and dynamic simulations were used to analyze interactions of imidacloprid with the biotype Q variant of the CYP6CM1 enzyme (CYP6CM1vQ). The binding mode with the lowest energy in the enzyme active site, the key amino acids involved (i.e. Phe-130 and Phe-226), and the putative hydroxylation site (lowest distance to carbon 5 of the imidazolidine ring system of imidacloprid) were predicted. Heterologous expression of the CYP6CM1vQ confirmed the accuracy of our predictions and demonstrated that the enzyme catalyses the hydroxylation of imidacloprid to its less toxic 5-hydroxy form (K(cat) = 3.2 pmol/min/pmol P450, K(m) = 36 microM). The data identify CYP6CM1vQ as a principle target for inhibitor design, aimed at inactivating insecticide-metabolizing P450s in natural insect pest populations.

  19. Constraining High Redshift X-ray Sources with Next Generation 21 cm Power Spectrum Measurements

    CERN Document Server

    Ewall-Wice, Aaron; Mesinger, Andrei; Dillon, Joshua S; Liu, Adrian; Pober, Jonathan

    2015-01-01

    We use the Fisher matrix formalism and semi-numerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high redshift intergalactic medium. Incorporating observations between $z=5$ and $z=25$, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing $\\lesssim 10\\%$ constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated "wedge" or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of ...

  20. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  1. Long RE123 coated conductors with high critical current over 500 A/cm by IBAD/PLD technique

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, K., E-mail: kkakimoto@fujikura.co.jp [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan); Igarashi, M.; Hanyu, S.; Sutoh, Y.; Takemoto, T.; Hayashida, T.; Hanada, Y.; Nakamura, N.; Kikutake, R.; Kutami, H.; Iijima, Y.; Saitoh, T. [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan)

    2011-11-15

    We have developed long RE123 coated conductors with large current capacity by IBAD and HW-PLD technique. We could fabricate an 8 m-long Gd123 coated wire with the I{sub c} of over 900 A/cm-w at 77 K, 0 T. We set the new world record of I{sub c} x L value as 374535 A m (= 609 A x 615 m). We have developed long RE{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-X} (RE123) coated conductors with large current capacity by the ion beam assisted deposition (IBAD) and the pulsed laser deposition using hot wall heating (HW-PLD) technique. As a result, we could fabricate an 8 m-long Gd{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-X} (Gd123) coated wire with the minimum and maximum critical current (I{sub c}) of 951 A/cm-w and 1003 A/cm-w at 77 K, 0 T, respectively, measured in 0.7 m-long sections by the standard 4-probe technique. Furthermore, we succeeded in preparation of over 600 m-long Gd123 coated wire with the uniform I{sub c} distribution over 600 A/cm-w. It had average, maximum and minimum I{sub c} of 665, 698, 609 A/cm-w, respectively. The n-values of the sample showed the maximum I{sub c} and minimum I{sub c} were 40 and 36, respectively. As a result, we set the new world record of I{sub c} x L value as 374535 A m (= 609 A x 615 m). The in-field performance of this long wire was quite high as well; the minimum I{sub c} exceeded 50 A/cm-w at 77 K, 3 T.

  2. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  3. Results from EDGES High-band. I. Constraints on Phenomenological Models for the Global 21 cm Signal

    Science.gov (United States)

    Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.

    2017-09-01

    We report constraints on the global 21 cm signal due to neutral hydrogen at redshifts 14.8≥slant z≥slant 6.5. We derive our constraints from low-foreground observations of the average sky brightness spectrum conducted with the EDGES High-band instrument between 2015 September 7 and October 26. Observations were calibrated by accounting for the effects of antenna beam chromaticity, antenna and ground losses, signal reflections, and receiver parameters. We evaluate the consistency between the spectrum and phenomenological models for the global 21 cm signal. For tanh-based representations of the ionization history during the epoch of reionization, we rule out, at ≥slant 2σ significance, models with duration of up to {{Δ }}z=1 at z≈ 8.5 and higher than {{Δ }}z=0.4 across most of the observed redshift range under the usual assumption that the 21 cm spin temperature is much larger than the temperature of the cosmic microwave background during reionization. We also investigate a “cold” intergalactic medium (IGM) scenario that assumes perfect Lyα coupling of the 21 cm spin temperature to the temperature of the IGM, but that the latter is not heated by early stars or stellar remants. Under this assumption, we reject tanh-based reionization models of duration {{Δ }}z≲ 2 over most of the observed redshift range. Finally, we explore and reject a broad range of Gaussian models for the 21 cm absorption feature expected in the First Light era. As an example, we reject 100 mK Gaussians with duration (full width at half maximum) {{Δ }}z≤slant 4 over the range 14.2≥slant z≥slant 6.5 at ≥slant 2σ significance.

  4. Renewable Energy Riding High

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    China is putting greater emphasis on green energy as it tries to clean up industry and meet target for cuts in carbon emissions over the past two years, China has already leapfrogged competitors from Denmark, Germany, Spain and the United States to become the world's largest maker of wind turbines and solar panels. At the same time, the country is also taking steps to build more nuclear reactors and energy-efficient coal power plants.

  5. Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?

    CERN Document Server

    Iliev, Ilian T; Shapiro, Paul R; Pen, Ue-Li; Mao, Yi; Koda, Jun; Ahn, Kyungjin

    2011-01-01

    The prospect of detecting the first galaxies by observing their impact on the intergalactic medium as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxies were most responsible for reionization. We attempt to answer this by considering a set of large-scale radiative transfer simulations of reionization in sufficiently large volumes to make statistically meaningful predictions of observable signatures, while also directly resolving all atomically-cooling halos down to 10^8 M_solar. We focus here on predictions of the 21-cm background, to see if upcoming observations are capable of distinguishing a universe ionized primarily by high-mass halos from one in which both high-mass and low-mass halos are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first generation EoR/21-cm radio interferometer arrays should be able t...

  6. Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?

    Science.gov (United States)

    Iliev, Ilian T.; Mellema, Garrelt; Shapiro, Paul R.; Pen, Ue-Li; Mao, Yi; Koda, Jun; Ahn, Kyungjin

    2012-07-01

    The prospect of detecting the first galaxies by observing their impact on the intergalactic medium (IGM) as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxies were most responsible for reionization. We attempt to answer this with new large-scale radiative transfer simulations of reionization including the entire mass range of atomically cooling haloes (M > 108 M⊙). We divide these haloes into two groups, high-mass, atomically cooling haloes, or HMACHs (M > 109 M⊙), and low-mass, atomically cooling haloes, or LMACHs (108 regulation. We focus here on predictions of the redshifted 21-cm emission, to see if upcoming observations are capable of distinguishing a universe ionized primarily by HMACHs from one in which both HMACHs and LMACHs are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first-generation Epoch of Reionization 21-cm radio interferometer arrays should be able to distinguish the case of reionization by HMACHs alone from that by both HMACHs and LMACHs, together. Some reionization scenarios, e.g. one with abundant low-efficiency sources versus one with self-regulation, yield very similar power spectra and rms evolution and thus can only be discriminated by their different mean reionization history and 21-cm probability distribution function (PDF) distributions. We also find that the skewness of the 21-cm PDF distribution smoothed with Low Frequency Array (LOFAR)-like resolution shows a clear feature correlated with the rise of the rms due to patchiness. This is independent of the reionization scenario and thus provides a new approach for detecting the rise of large-scale patchiness. The peak epoch of the 21-cm rms fluctuations depends significantly on the beam and bandwidth smoothing size as well as on the reionization scenario and can occur for ionized

  7. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. At high specific...

  8. Precision timing measurements for high energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin, E-mail: djanders@caltech.edu [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States)

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm{sup 3} lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm{sup 3} LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  9. Precision timing measurements for high energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin [California Inst. of Technology (CalTech), Pasadena, CA (United States); Apreysan, Artur [California Inst. of Technology (CalTech), Pasadena, CA (United States); Bornheim, Adi [California Inst. of Technology (CalTech), Pasadena, CA (United States); Duarte, Javier [California Inst. of Technology (CalTech), Pasadena, CA (United States); Newman, Harvey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Pena, Cristian [California Inst. of Technology (CalTech), Pasadena, CA (United States); Ronzhin, Anatoly [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Spiropulu, Maria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trevor, Jason [California Inst. of Technology (CalTech), Pasadena, CA (United States); Xie, Si [California Inst. of Technology (CalTech), Pasadena, CA (United States); Zhu, Ren-Yuan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  10. Flare physics at high energies

    Science.gov (United States)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  11. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. New thin film solar...

  12. Energy spectra of high energy atmospheric neutrinos

    Science.gov (United States)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  13. In Situ Observation of Carbonaceous Material in the Matrices of CV and CM Carbonaceous Chondrites: Preliminary Results from Energy Filtered Transmission Electron Microscopy

    Science.gov (United States)

    Brearley, A. J.; Abreu, N. M.

    2001-01-01

    Energy filtered transmission electron microscopy shows that organic matter can be detected in situ in the matrices of carbonaceous chondrites at a spatial resolution of at least 1 nm. In CM chondrites, carbon is often associated with sulfide particles. Additional information is contained in the original extended abstract.

  14. Ultra High Energy Nuclei Propagation

    CERN Document Server

    Aloisio, Roberto

    2008-01-01

    We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.

  15. A High Galactic Latitude HI 21 cm-line Absorption Survey using the GMRT: II. Results and Interpretation

    Indian Academy of Sciences (India)

    Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan

    2004-09-01

    We have carried out a sensitive high-latitude (|| > 15°) HI 21 cm-line absorption survey towards 102 sources using the GMRT. With a 3 detection limit in optical depth of ∼ 0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at lsr ∼ 0 km s−1 with velocity dispersions of 7.6 ± 0.3 km s-1 and 21 ± 4 km s-1 respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 ± 0.19, a mean HI column density of (1.46 ± 1.03) × 1020 cm-2, and a mean spin temperature of 121 ± 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 ± 0.02, a mean HI column density of (4.3 ± 3.4)× 1019 cm-2, and a mean spin temperature of 125 ± 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.

  16. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  17. Ultra High Energy Cosmic Rays: Strangelets?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 吴飞

    2003-01-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of Te V-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3 × 1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  18. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  19. Very high energy neutrinos

    Science.gov (United States)

    Moscoso, Luciano; Spiering, Christian

    2000-03-01

    A sky survey with neutrinos may considerably extend our understanding of cosmic phenomena. Due to the low interaction cross section of neutrinos with matter and due to the high cosmic ray background the detector must be very large (of the order of 1 km 3) and must be shielded. These new devices consist of a network of photo-tubes which are deployed in the depth of the ocean, of a lake or of the ice of South Pole. The detection of the Cherenkov light emitted by muons produced in muon neutrino interactions with the matter surrounding the detector will allow the reconstruction of the neutrino direction with an angular resolution of the order or lower than one degree. Several projects are underway. Their status will be reviewed in this paper.

  20. Simulating the 21cm forest detectable with LOFAR and SKA in the spectra of high-z GRBs

    CERN Document Server

    Ciardi, B; Abdalla, F B; Asad, K; Bernardi, G; Bolton, J S; Brentjens, M; de Bruyn, A G; Chapman, E; Daiboo, S; Fernandez, E R; Ghosh, A; Graziani, L; Harker, G J A; Iliev, I T; Jelic, V; Jensen, H; Kazemi, S; Koopmans, L V E; Martinez, O; Maselli, A; Mellema, G; Offringa, A R; Pandey, V N; Schaye, J; Thomas, R; Vedantham, H; Yatawatta, S; Zaroubi, S

    2015-01-01

    We investigate the feasibility of detecting 21cm absorption features in the afterglow spectra of high redshift long Gamma Ray Bursts (GRBs). This is done employing simulations of cosmic reionization, together with the instrumental characteristics of the LOw Frequency ARray (LOFAR). We find that absorption features could be marginally (with a S/N larger than a few) detected by LOFAR at z>7 if the GRB originated from PopIII stars, while the detection would be easier if the noise were reduced by one order of magnitude, i.e. similar to what is expected for the first phase of the Square Kilometer Array (SKA1-low). On the other hand, more standard GRBs are too dim to be detected even with ten times the sensitivity of SKA1-low, and only in the most optimistic case can a S/N larger than a few be reached at z>9.

  1. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  2. Calibration of the EDGES High-band Receiver to Observe the Global 21 cm Signature from the Epoch of Reionization

    Science.gov (United States)

    Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.

    2017-01-01

    The EDGES High-Band experiment aims to detect the sky-average brightness temperature of the 21 cm signal from the epoch of reionization in the redshift range 14.8≳ z≳ 6.5. To probe this redshifted signal, EDGES High-Band conducts single-antenna measurements in the frequency range 90–190 MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper, we describe the current strategy for calibration of the EDGES High-Band receiver and report calibration results for the instrument used in the 2015–2016 observational campaign. We propagate uncertainties in the receiver calibration measurements to the antenna temperature using a Monte Carlo approach. We define a performance objective of 1 mK residual rms after modeling foreground subtraction from a fiducial temperature spectrum using a five-term polynomial. Most of the calibration uncertainties yield residuals of 1 mK or less at 95 % confidence. However, current uncertainties in the antenna and receiver reflection coefficients can lead to residuals of up to 20 mK even in low-foreground sky regions. These dominant residuals could be reduced by (1) improving the accuracy in reflection measurements, especially their phase, (2) improving the impedance match at the antenna-receiver interface, and (3) decreasing the changes with frequency of the antenna reflection phase.

  3. Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration

    OpenAIRE

    Lee, Martin R.; Lindgren, Paula; Sofe, Mahmood R.

    2014-01-01

    Carbonate minerals in CM carbonaceous chondrite meteorites, along with the silicates and sulphides with which they are intergrown, provide a detailed record of the nature and evolution of parent body porosity and permeability, and the chemical composition, temperature and longevity of aqueous solutions. Fourteen meteorites were studied that range in petrologic subtype from mildly aqueously altered CM2.5 to completely hydrated CM2.0. All of them contain calcite, whereas aragonite occurs only i...

  4. The AAVSO High Energy Network

    Science.gov (United States)

    Price, Aaron

    2004-06-01

    The AAVSO is expanding its International Gamma-Ray Burst Network to incorporate other high energy objects such as blazars and magnetic cataclysmic variables (polars). The new AAVSO High Energy Network will be collaborating with the Global Telescope Network (GTN) to observe bright blazars in support of the upcoming GLAST mission. We also will be observing polars in support of the XMM mission. This new network will involve both visual and CCD obsrvers and is expected to last for many years.

  5. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  6. High-energy astroparticle physics

    CERN Document Server

    Semikoz, A

    2010-01-01

    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gammaray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review t...

  7. Detections of 2 cm formaldehyde emissions towards Galactic star-forming regions with 6 cm counterpart

    Science.gov (United States)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Li, Juan; Wang, Jun-Zhi; Wu, Ya-Jun; Zhao, Rong-Bin; Wang, Jin-Qing; Dong, Jian; Jiang, Dong-Rong; Li, Bin

    2017-01-01

    We report the detections of H2CO emission at the 2 cm transition towards Galactic star-forming regions with known 6 cm counterpart using the Shanghai Tianma Radio Telescope (TMRT). One significant detection (in NGC7538) and two possible detections (in G23.01-0.41 and G29.96-0.02) were made. Comparing with previous observations, we found that there is a time lag of appearance of 2 cm and 6 cm emissions detected in NGC7538, contradicting with the prediction of radiative pumping via radio continuum radiation. Combinations of the variability of 6 cm masers in NGC7538 suggest that collisional pumping via high-velocity shocks could better explain the 6 cm H2CO maser emission. Under this scheme, excitation of the 2 cm maser may require a higher collision energy compared to the 6 cm transition.

  8. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  9. Achieving high carrier mobility exceeding 70 cm2/Vs in amorphous zinc tin oxide thin-film transistors

    Science.gov (United States)

    Kim, Sang Tae; Shin, Yeonwoo; Yun, Pil Sang; Bae, Jong Uk; Chung, In Jae; Jeong, Jae Kyeong

    2017-09-01

    This paper proposes a new defect engineering concept for low-cost In- and Ga-free zinc tin oxide (ZTO) thin-film transistors (TFTs). This concept is comprised of capping ZTO films with tantalum (Ta) and a subsequent modest thermal annealing treatment at 200 °C. The Ta-capped ZTO TFTs exhibited a remarkably high carrier mobility of 70.8 cm2/Vs, low subthreshold gate swing of 0.18 V/decade, threshold voltage of -1.3 V, and excellent ION/OFF ratio of 2 × 108. The improvement (> two-fold) in the carrier mobility compared to the uncapped ZTO TFT can be attributed to the effective reduction of the number of adverse tailing trap states, such as hydroxyl groups or oxygen interstitial defects, which stems from the scavenging effect of the Ta capping layer on the ZTO channel layer. Furthermore, the Ta-capped ZTO TFTs showed excellent positive and negative gate bias stress stabilities. [Figure not available: see fulltext.

  10. High-energy neutrino astrophysics

    Science.gov (United States)

    Halzen, Francis

    2017-03-01

    The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

  11. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 850 and 1020 cm-1

    Science.gov (United States)

    McKellar, A. R. W.; Billinghurst, B. E.; Xu, Li-Hong; Lees, R. M.

    2015-11-01

    Using spectra obtained at the Canadian Light Source synchrotron radiation facility, a previously unobserved out-of-plane vibration of trans-acrolein (propenal) is reliably assigned for the first time. Its origin is at 1002.01 cm-1, which is about 20 cm-1 higher than usually quoted in the past. This mode is thus labelled as v14, leaving the label v15 for the known vibration at 992.66 cm-1. Weak combination bands 171182 ← 182, 171131 ← 131, 121182 ← 181, and 171182 ← 181 are studied for the first time, and assignments in the known v11, v16, and v15 fundamental bands are also extended. The seven excited vibrations involved in these bands are analyzed, together with five more unobserved vibrations in the same region (850-1020 cm-1), in a large 12-state simultaneous fit which accounts for most of the many observed perturbations in the spectra.

  12. Simulation of High Energy Muons

    CERN Document Server

    Mashtakov, Konstantin

    2015-01-01

    Under the scope of a CERN summer student project, a Geant4 physical model has been developed and committed to the Geant4 repository to allow precise simulation of high-energy muons and hadrons transport inside a material. Resulted angular distributions produced by this model have small deviations from those that were obtained by the Geant4 model used by default. High-energetic muons energy losses inside the CMS tracker have also been estimated and may vary from 0.05% up to 2.5%.

  13. High Energy Astrophysics Program (HEAP)

    Science.gov (United States)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  14. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  15. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  16. Mexican High Energy Physics Network

    Science.gov (United States)

    D'Olivo, J. C.; Napsuciale, M.; Pérez-Angón, M. A.

    2016-10-01

    The Mexican High Energy Physics Network is one of CONACYT's thematic research networks, created with the aim of increasing the communication and cooperation of the scientific and technology communities of Mexico in strategic areas. In this report we review the evolution, challenges, achievements and opportunities faced by the network.

  17. Table of charged particle energies versus magnetic field strength x orbit radius (B{rho}) for A = 1 to 7 (100< (B{rho}) < 1200 kG.cm); Table des energies des particules chargees en fonction de la rigidite magnetique (B{rho}) pour A = 1 a 7 (100< (B{rho}) < 1200 kG.cm)

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A table of charged particle energies versus magnetic field strength x orbit radius (B{sub {rho}}) is presented. Particles p, d, t, {sup 3}He{sup ++}, {sup 4}He{sup +}, {sup 4}He{sup ++}, {sup 6}Li{sup +}, {sup 6}Li{sup ++}, {sup 6}Li{sup +++}, {sup 7}Li{sup +}, {sup 7}Li{sup ++}, {sup 7}Li{sup +++}. Values of B{sub {rho}}: 100 to 1200 kG.cm by steps of 0.5 kG.cm. Values of energies are given in keV. (author) [French] Nous presentons une table des energies de protons, deutons, tritons, {sup 3}He{sup ++}, {sup 4}He{sup +}, {sup 4}He{sup ++}, {sup 6}Li{sup +}, {sup 6}Li{sup ++}, {sup 6}Li{sup +++}, {sup 7}Li{sup +}, {sup 7}Li{sup ++}, {sup 7}Li{sup +++} en fonction de leur rigidite magnetique (B{sub {rho}}). Les valeurs de B{sub {rho}} sont comprises entre 100 et 1200 kG.cm par pas de 0.5 kG.cm. Les valeurs des energies sont donnees en keV. (auteur)

  18. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  19. High-energy atmospheric neutrinos

    CERN Document Server

    Sinegovsky, S I; Sinegovskaya, T S

    2010-01-01

    High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

  20. Polarized beams in high energy circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1979-05-01

    In recent years, high energy physicists have become increasingly interested in the possible spin effects at high energies. To study those spin effects, it is desirable to have beams with high energy, high intensity and high polarization. In this talk, we briefly review the present status and the prospects for the near future of high energy polarized beams. 30 refs.

  1. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  2. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  3. A high energy physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  4. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  5. INTERPRETING THE GLOBAL 21-cm SIGNAL FROM HIGH REDSHIFTS. II. PARAMETER ESTIMATION FOR MODELS OF GALAXY FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, Jordan; Burns, Jack O. [Center for Astrophysics and Space Astronomy and Department of Astrophysical and Planetary Science, University of Colorado, Campus Box 389, Boulder, CO 80309 (United States); Harker, Geraint J. A., E-mail: mirocha@astro.ucla.edu [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2015-11-01

    Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic data set, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hr of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Lyα, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to ∼0.1 dex in each dimension) so long as all three spectral features expected to occur between 40 ≲ ν/MHz ≲ 120 are detected. Several important conclusions follow naturally from this basic numerical result, namely that measurements of the global 21-cm signal can in principle (i) identify the characteristic halo mass threshold for star formation at all redshifts z ≳ 15, (ii) extend z ≲ 4 upper limits on the normalization of the X-ray luminosity star formation rate (L{sub X}–SFR) relation out to z ∼ 20, and (iii) provide joint constraints on stellar spectra and the escape fraction of ionizing radiation at z ∼ 12. Though our approach is general, the importance of a broadband measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer, which will have a clean view of the global 21-cm signal from ∼40 to 120 MHz from its vantage point above the radio-quiet, ionosphere-free lunar far-side.

  6. Developments in high energy theory

    Indian Academy of Sciences (India)

    Sunil Mukhi; Probir Roy

    2009-07-01

    This non-technical review article is aimed at readers with some physics back-ground, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical paradigm of String Theory – have been made to go beyond the Standard Model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors.

  7. Photoproduction at High Energy and High Intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  8. High energy neutrinos from astrophysical sources

    CERN Document Server

    Perrone, L

    2002-01-01

    Summary form only given. High energy muon neutrinos coming from astrophysical sources could be detected as upward-going muons produced in charged-current interactions of nu /sub mu /'s with the matter surrounding the detector. About 1300 events have been analyzed. We present the results of a search for either a diffuse astrophysical neutrino flux or a point-like source of neutrinos in the sample of upward-going muons gathered by MACRO. We find no evidence for either type of signal. The muon flux upper limit for the diffuse signal has been set at the level of 1.5*10/sup -14/cm/sup -2/ s/sup -1/ sr/sup -1/. (1 refs).

  9. High-energy Physics with Hydrogen Bubble Chambers

    Science.gov (United States)

    Alvarez, L. W.

    1958-03-07

    Recent experience with liquid hydrogen bubble chambers of 25 and 40 cm dia. in high-energy physics experiments is discussed. Experiments described are: interactions of K{sup -} mesons with protons, interactions of antiprotons with protons, catalysis of nuclear fusion reactions by muons, and production and decay of hyperons from negative pions. (W.D.M.)

  10. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  11. High Energy Gas Fracturing Test

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, R.

    2001-02-27

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  12. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    Science.gov (United States)

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  13. Interpreting the Global 21-cm Signal from High Redshifts. II. Parameter Estimation for Models of Galaxy Formation

    CERN Document Server

    Mirocha, Jordan; Burns, Jack O

    2015-01-01

    Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic dataset, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hours of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Lyman-$\\alpha$, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to $\\sim 0.1$ dex in each dimension) so long as all three spectral features expected to occur between $40 \\lesssim \

  14. Probing QCD at high energy

    CERN Document Server

    Voutilainen, Mikko

    2012-01-01

    We review recent experimental work on probing QCD at high $p_{T}$ at the Tevatron and at the LHC. The Tevatron has just finished a long and illustrious career at the forefront of high energy physics, while the LHC now has its physics program in full swing and is producing results at a quick rate in a new energy regime. Many of the LHC measurements extend well into the TeV range, with potential sensitivity to new physics. The experimental systematics at the LHC are also becoming competitive with the Tevatron, making precision measurements of QCD possible. Measurements of inclusive jet, dijet and isolated prompt photon production can be used to test perturbative QCD predictions and to constrain parton distribution functions, as well as to measure the strong coupling constant. More exclusive topologies are used to constrain aspects of parton shower modeling, initial and final state radiation. Interest in boosted heavy resonances has resulted in novel studies of jet mass and subjet structure that also test pertu...

  15. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  16. 21 cm Intensity Mapping

    CERN Document Server

    Peterson, Jeffrey B; Ansari, Reza; Bandura, Kevin; Bond, Dick; Bunton, John; Carlson, Kermit; Chang, Tzu-Ching; DeJongh, Fritz; Dobbs, Matt; Dodelson, Scott; Darhmaoui, Hassane; Gnedin, Nick; Halpern, Mark; Hogan, Craig; Goff, Jean-Marc Le; Liu, Tiehui Ted; Legrouri, Ahmed; Loeb, Avi; Loudiyi, Khalid; Magneville, Christophe; Marriner, John; McGinnis, David P; McWilliams, Bruce; Moniez, Marc; Palanque-Delabruille, Nathalie; Pasquinelli, Ralph J; Pen, Ue-Li; Rich, Jim; Scarpine, Vic; Seo, Hee-Jong; Sigurdson, Kris; Seljak, Uros; Stebbins, Albert; Steffen, Jason H; Stoughton, Chris; Timbie, Peter T; Vallinotto, Alberto; Wyithe, Stuart; Yeche, Christophe

    2009-01-01

    Using the 21 cm line, observed all-sky and across the redshift range from 0 to 5, the large scale structure of the Universe can be mapped in three dimensions. This can be accomplished by studying specific intensity with resolution ~ 10 Mpc, rather than via the usual galaxy redshift survey. The data set can be analyzed to determine Baryon Acoustic Oscillation wavelengths, in order to address the question: 'What is the nature of Dark Energy?' In addition, the study of Large Scale Structure across this range addresses the questions: 'How does Gravity effect very large objects?' and 'What is the composition our Universe?' The same data set can be used to search for and catalog time variable and transient radio sources.

  17. A Compact High-Energy Neutron Spectrometer

    CERN Document Server

    Brooks, F D; Buffler, A; Dangendorf, V; Herbert, M S; Jones, D T L; Nchodu, M R; Nolte, R; Smit, F D

    2007-01-01

    A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.

  18. Optical imaging and high spatial resolution 21 cm H I observations of the peculiar galaxy NGC 2782 (Arp 215)

    Science.gov (United States)

    Smith, Beverly J.

    1994-01-01

    We have used the Very Large Array (VLA) B and C Arrays to make 21 cm H I observations of the peculiar galaxy NGC 2782 (Arp 215). These observations are complementary to previously published D Array VLA data, which revealed the presence of a long (5 min to 54 kpc) H I plume near the western side of this galaxy. We have also obtained BVRI H alpha images of the main body of this galaxy using the McDonald Observatory 30 inch telescope. The optical images of this galaxy show a strong stellar tail extending to the east, opposite the H I plume. Within the disk of NGC 2782, unsharp masking of the optical images at all 4 broadband wavelengths reveals three bright 'ripples', separated by approximately 15 sec. The light profiles across these ripples are symmetric, without a sharp outer edge. H alpha is strong at the starburst nucleus and along the northern and western sections of the inner ripple. The new higher resolution H I data show that the atomic gas is very clumpy. We have identified ten H I clumps in the long western plume, with H I masses of approximately 10(exp 8) solar mass, similar to those of dwarf galaxies, and column densities of approximately 10(exp 21) cm(exp -2) over surface areas of approximately 10 kpc(exp 2). No CO (1-0) emission has been detected from this plume, suggesting that it is material stripped from the outer edge of a disk galaxy. The H alpha peaks, in contrast, are generally not coincident with H I peaks. No H I is seen at the tip of the eastern extension. The H I distribution near this structure is ring-like rather than tail-like as in the optical data. We have detected redshifted H I absorption toward the central continuum source, indicating gas infall into the nuclear region. Using a restricted 3-body dynamical model, we have successfully reproduced the basic properties of NGC 2782 with an off-center collision between two galaxies, where a lower mass disk companion (M(sub 2)/M(sub 1) approximately 0.25) collides almost head-on with a larger

  19. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  20. High energy electron beams for ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  1. High-Resolution Fourier Transform Infrared Spectroscopy of Vinyl Alcohol: Rotational Analysis of the nu(13) CH(2) Wagging Fundamental at 817 cm(-1).

    Science.gov (United States)

    Joo; Merer; Clouthier

    1999-09-01

    The first high-resolution infrared spectra of the unstable molecule vinyl alcohol are reported. The spectra have been obtained using a new precursor, 2-chloroethanol, which when pyrolyzed at 1050 degrees C gives strong infrared spectra of vinyl alcohol free of interfering hydrocarbon absorption bands. In this work, we have analyzed the strong nu(13) fundamental at 817 cm(-1) and substantially improved the ground state rotational constants by a simultaneous fitting of previous microwave data and a large number of infrared combination differences. The 13(1) upper state was found to be perturbed by the 15(2) "dark" state at 775.7 cm(-1), and a complete analysis of the perturbed rotational structure has been achieved using an interacting two-state model. Further small perturbations at high K(a) and J have been identified as interactions with the nu(10) and nu(12) fundamentals at 948 and 960 cm(-1), respectively. Copyright 1999 Academic Press.

  2. High-energy high-luminosity {mu}{sup +}{mu}{sup {minus}} collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Fernow, R.; Gallardo, J.C.; Lee, Y.Y.; Torun, Y. [Brookhaven National Lab., Upton, NY (United States); Neuffer, D. [CEBAF, Newport News, VA (United States); Winn, D. [Fairfield Univ., Fairfield, CT (United States)

    1995-07-01

    We discuss the design of a high luminosity (l0{sup 35} cm-{sup {minus}2} s{sup {minus}1}), high energy (2 + 2 TeV) {mu}{sup +}{mu}{sup {minus}} collider, starting from the proton accelerator needed to generate the muon beams and proceeding through the muon storage ring.

  3. High-energy high-luminosity µ+ µ- collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Robert B. [Brookhaven National Lab., Upton, NY; Fernow, Richard [Brookhaven National Lab., Upton, NY; Gallardo, Juan C. [Brookhaven National Lab., Upton, NY; Lee, Y. Y. [Brookhaven National Lab., Upton, NY; Torun, Yagmur [Brookhaven National Lab., Upton, NY; Neuffer, David [CEBAF, Newport News, VA; Winn, David [Fairfield Univ., CT

    1996-01-01

    We discuss the design of a high luminosity (1035 cm-2 s-1), high energy (2 + 2 TeV) µ+µ- collider, starting from the proton accelerator needed to generate the muon beams and proceeding through the muon storage ring.

  4. High Energy Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  5. High Energy Laser for Space Debris Removal

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and

  6. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  7. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  8. The $_{40 x 40 cm^{2}}$ gaseous microstrip detector Micromegas for the high-luminosity COMPASS experiment at CERN

    CERN Document Server

    Bernet, C; Ball, J; Bedfer, Y; Delagnes, E; Giganon, Arnaud; Kunne, Fabienne; Le Goff, J M; Magnon, A; Marchand, C; Neyret, D; Panebianco, S; Pereira, H; Platchkov, S; Procureur, S; Rebourgeard, P C; Tarte, Gérard; Thers, D

    2005-01-01

    The measurements in the COMPASS experiment at CERN require high- resolution tracking detectors, with low radiation length and high- rate capability. For this purpose we have developed and optimized a gaseous microstrip detector 'Micromegas'. Twelve planes with 1024 strips each, assembled in 3 stations of 4 views XYUV, are now being operated with success in the COMPASS environment. We describe here the performances and results obtained.

  9. The 40x40cm2 gaseous microstrip detector Micromegas for the high-luminosity COMPASS experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Bernet, C. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Abbon, P. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Ball, J. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Bedfer, Y. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Delagnes, E. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Giganon, A. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Kunne, F. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France)]. E-mail: f.kunne@cea.fr; Le Goff, J.-M. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Magnon, A. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Marchand, C. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Neyret, D. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Panebianco, S. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Pereira, H. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Platchkov, S. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Procureur, S. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Rebourgeard, P. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Tarte, G. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France); Thers, D. [CEA Saclay DSM/DAPNIA, F91191 Gif sur Yvette (France)

    2005-01-01

    The measurements in the COMPASS experiment at CERN require high-resolution tracking detectors, with low radiation length and high-rate capability. For this purpose we have developed and optimized a gaseous microstrip detector 'Micromegas'. Twelve planes with 1024 strips each, assembled in 3 stations of 4 views XYUV, are now being operated with success in the COMPASS environment. We describe here the performances and results obtained.

  10. Air-stable π-conjugated amorphous copolymer field-effect transistors with high mobility of 0.3 cm2/Vs

    DEFF Research Database (Denmark)

    Georgakopoulos, S.; Gu, Y.; Nielsen, Martin Meedom

    2012-01-01

    We have fabricated organic bottom-contact top-gate field-effect transistors with an indenofluorene-phenanthrene co-polymer semiconductor, exhibiting ON/OFF ratio of 10(7) and uncommonly high mobility for an amorphous conjugated polymer of up to 0.3 cm(2)/Vs. Lack of crystallinity in this material...

  11. The significance of unrecognized histological high-risk features on response to therapy in papillary thyroid carcinoma measuring 1-4 cm: implications for completion thyroidectomy following lobectomy.

    Science.gov (United States)

    Lang, Brian H-H; Shek, Tony W H; Wan, Koon Y

    2017-02-01

    Although lobectomy is an alternative to total thyroidectomy (TT) for 1-4 cm papillary thyroid carcinoma (PTC) without high-risk features (HRFs) such as aggressive histology, vascular invasion, lymphovascular invasion (LVI), microscopic extrathyroidal extension, positive margin, nodal metastasis >5 mm and multifocality, these HRFs are not recognized until after surgery. Therefore, the chance of completion TT being required following lobectomy might be high. We evaluated the frequency of unrecognized HRFs and how they affected the response to therapy following TT and radioiodine (RAI). Altogether, 1513 patients were analysed. Only 1-4 cm PTCs without recognizable HRFs were included. For response-to-therapy evaluation, only patients who had TT and post-RAI-stimulated thyroglobulin were analysed. Patients without an excellent response were defined as having 'incomplete response'. A multivariate analysis for incomplete response was performed. Of the 600 patients eligible for lobectomy, 257 (42·8%) had ≥1 unrecognized histological HRF before surgery. The prevalence of unrecognized HRFs was similar between 1-2 cm and >2-4 cm PTCs (P = 0·393). Of the 330 patients eligible for response-to-therapy evaluation, 260 (78·8%) had an excellent response while 70 (21·2%) had an incomplete response. LVI was the only independent unrecognized HRF for incomplete response (P = 0·021). The prevalence of unrecognized histological HRFs under the current recommendations is relatively high among 1-4 cm PTCs. Among the unrecognized histological HRFs, LVI was the only one which independently associated with an incomplete response (i.e. posing an increased risk of persistent/recurrent disease after curative surgery). These findings may have implications for patients who undergo lobectomy for 1-4 cm PTCs with no clinically recognizable HRFs under the current recommendations. © 2016 John Wiley & Sons Ltd.

  12. High net modal gain (>100 cm(-1)) in 19-stacked InGaAs quantum dot laser diodes at 1000 nm wavelength band.

    Science.gov (United States)

    Tanoue, Fumihiko; Sugawara, Hiroharu; Akahane, Kouichi; Yamamoto, Naokatsu

    2013-07-01

    An InGaAs quantum dot (QD) laser diode with 19-stacked QDs separated by 20 nm-thick GaAs spacers was fabricated using an ultrahigh-rate molecular beam epitaxial growth technique, and the laser characteristics were evaluated. A 19-stacked simple broad area QD laser diode was lased at the 1000 nm waveband. A net modal gain of 103 cm(-1) was obtained at 2.25 kA/cm(2), and the saturated modal gain was 145.6 cm(-1); these are the highest values obtained to our knowledge. These results indicate that using this technique to highly stack QDs is effective for improving the net modal gain of QD lasers.

  13. High sensitivity fluid energy harvester

    CERN Document Server

    Morarka, Amit

    2016-01-01

    An ambient energy harvesting device was design and fabricated. It can harness kinetic energy of rain droplets and low velocity wind flows. The energy converted into electrical energy by using a single device. The technique used by the device was based on the principles of electromagnetic induction and cantilever. Readily available materials were characterized and used for the fabrication of cantilever. Under the laboratory conditions, water droplets having diameter 4mm and wind with speed 0.5m/s were used as the two distinct sources. Without making any changes in the geometry or the materials used, the device was able to convert kinetic energy from both the sources to provide voltage in the range of 0.7-1VAC. The work was conceptualized to provide an autonomous device which can harness energy from both the renewable energy sources.

  14. The 21cm "Outer Arm" and the Outer-Galaxy High-Velocity Clouds: Connected by Kinematics, Metallicity, and Distance

    CERN Document Server

    Tripp, Todd M

    2011-01-01

    We compare and discuss the metallicity, kinematics, and distance of the gaseous "Outer Arm" (OA) and the high-velocity clouds (HVCs) in the outer Galaxy. Using high-resolution ultraviolet spectra obtained with the HST Space Telescope Imaging Spectrograph (STIS) and FUSE, we detect the OA in a variety of absorption lines toward two QSOs, H1821+643 and HS0624+6907. We show that the OA is not detected in absorption in STIS spectra of several stars in the OA direction, consistent with the OA distance constraint of Lehner & Howk, which brackets the Galactocentric radius to 9-18 kpc. We also show that HVC Complex G, which is near the OA at a similar velocity, is detected in absorption toward the two stars; this HVC is in the solar vicinity at R(G)=8.3-10.2 kpc. HVC Complex C is known to be at a similar distance. Comparison of the low- and high-ion absorption profiles clearly shows that the OA is a multiphase cloud. Toward H1821+643, the low-ionization metals lines are composed of multiple narrow components, ind...

  15. High Energy Computed Tomographic Inspection of Munitions

    Science.gov (United States)

    2016-11-01

    UNCLASSIFIED UNCLASSIFIED AD-E403 815 Technical Report AREIS-TR-16006 HIGH ENERGY COMPUTED TOMOGRAPHIC INSPECTION OF MUNITIONS...REPORT DATE (DD-MM-YYYY) November 2016 2. REPORT TYPE Final 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE HIGH ENERGY COMPUTED...otherwise be accomplished by other nondestructive testing methods. 15. SUBJECT TERMS Radiography High energy Computed tomography (CT

  16. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  17. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    Science.gov (United States)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  18. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  19. High-voltage thin-film GaN LEDs fabricated on ceramic substrates: the alleviated droop effect at 670 W/cm(2).

    Science.gov (United States)

    Tsai, M L; Liao, J H; Yeh, J H; Hsu, T C; Hon, S J; Chung, T Y; Lai, K Y

    2013-11-04

    High-voltage thin-film GaN LEDs with the emission wavelength of 455 nm were fabricated on ceramic substrates (230 W/m · K). The high-voltage operation was achieved by three cascaded sub-LEDs with dielectric passivation and metal bridges conformally deposited on the side walls. Under the driving power of 670 W/cm(2), the high-voltage LEDs exhibit much alleviated efficiency droop and the operative temperature below 80 °C. The excellent performances were attributed to the improved current spreading within each sub-LED and the superior heat sinking of the ceramic substrate.

  20. High-Energy Astrophysics: An Overview

    Science.gov (United States)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  1. Ultra high energy cosmic rays: the highest energy frontier

    CERN Document Server

    Neto, João R T de Mello

    2015-01-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to $10^{20}$ eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determ...

  2. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters

    Science.gov (United States)

    Mallick, D.; Amann, A.; Roy, S.

    2016-11-01

    Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

  3. On high energy tails in inelastic gases

    OpenAIRE

    Lambiotte, R.; Brenig, L.; Salazar, J. M.

    2005-01-01

    We study the formation of high energy tails in a one-dimensional kinetic model for granular gases, the so-called Inelastic Maxwell Model. We introduce a time- discretized version of the stochastic process, and show that continuous time implies larger fluctuations of the particles energies. This is due to a statistical relation between the number of inelastic collisions undergone by a particle and its average energy. This feature is responsible for the high energy tails in the model, as shown ...

  4. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    Science.gov (United States)

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-09

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  5. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  6. High energy hadrons in extensive air showers

    Science.gov (United States)

    Tonwar, S. C.

    1985-01-01

    Experimental data on the high energy hadronic component in extensive air showers of energies approx. 10 to the 14 to 10 to the 16 eV when compared with expectations from Monte Carlo simulations have shown the observed showers to be deficient in high energy hadrons relative to simulated showers. An attempt is made to understand these anomalous features with more accurate comparison of observations with expectations, taking into account the details of the experimental system. Results obtained from this analysis and their implications for the high energy physics of particle interactions at energy approx. 10 to the 15 eV are presented.

  7. Theory of high-energy messengers

    CERN Document Server

    Dermer, Charles D

    2016-01-01

    Knowledge of the distant high-energy universe comes from photons, ultra-high energy cosmic rays (UHECRs), high-energy neutrinos, and gravitational waves. The theory of high-energy messengers reviewed here focuses on the extragalactic background light at all wavelengths, cosmic rays and magnetic fields in intergalactic space, and neutrinos of extragalactic origin. Comparisons are drawn between the intensities of photons and UHECRs in intergalactic space, and the high-energy neutrinos recently detected with IceCube at about the Waxman-Bahcall flux. Source candidates for UHECRs and high-energy neutrinos are reviewed, focusing on star-forming and radio-loud active galaxies. HAWC and Advanced LIGO are just underway, with much anticipation.

  8. Theory of high-energy messengers

    Science.gov (United States)

    Dermer, Charles D.

    2016-05-01

    Knowledge of the distant high-energy universe comes from photons, ultra-high energy cosmic rays (UHECRs), high-energy neutrinos, and gravitational waves. The theory of high-energy messengers reviewed here focuses on the extragalactic background light at all wavelengths, cosmic rays and magnetic fields in intergalactic space, and neutrinos of extragalactic origin. Comparisons are drawn between the intensities of photons and UHECRs in intergalactic space, and the high-energy neutrinos recently detected with IceCube at about the Waxman-Bahcall flux. Source candidates for UHECRs and high-energy neutrinos are reviewed, focusing on star-forming and radio-loud active galaxies. HAWC and Advanced LIGO are just underway, with much anticipation.

  9. High Energy Sources Observed with OMC

    CERN Document Server

    Risquez, D; Mas-Hesse, J M; Kuulkers, E

    2008-01-01

    The INTEGRAL Optical Monitoring Camera, OMC, has detected many high energy sources. We have obtained V-band fluxes and light curves for their counterparts. In the cases of previously unknown counterparts, we have searched for characteristic variations in optical sources around the high-energy target position. Results about the Galactic Bulge Monitoring, INTEGRAL Gamma-Ray sources (IGR), and other high energy sources are presented.

  10. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  11. Fast Electronics in High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, Clyde

    1958-08-08

    A brief review of fast electronics is given, leading up to the present state of the art. Cherenkov counters in high-energy physics are discussed, including an example of a velocity-selecting Cherenkov counter. An electronic device to aid in aligning external beams from high-energy accelerators is described. A scintillation-counter matrix to identify bubble chamber tracks is discussed. Some remarks on the future development of electronics in high-energy physics experiments are included.

  12. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  13. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  14. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  15. The Lamb Shift and Ultra High Energy Cosmic Rays

    CERN Document Server

    Xue, S S

    2002-01-01

    On the analogy with the Lamb shift, we study the vacuum effects that a proton interacts with virtual particles when it travels through the vacuum. We find that a moving proton is accelerated by gaining the zero-point energy from the vacuum (~10^{-5} eV/cm). Such an effect possibly accounts for the mysterious origin and spectrum of ultra high-energy cosmic ray events above 10^{20}eV, and explains the puzzle why the GZK cutoff is absent. The candidates of these events could be protons from early Universe.

  16. Ubiquitous CM and DM

    Science.gov (United States)

    Crowley, Sandra L.

    2000-01-01

    Ubiquitous is a real word. I thank a former Total Quality Coach for my first exposure some years ago to its existence. My version of Webster's dictionary defines ubiquitous as "present, or seeming to be present, everywhere at the same time; omnipresent." While I believe that God is omnipresent, I have come to discover that CM and DM are present everywhere. Oh, yes; I define CM as Configuration Management and DM as either Data or Document Management. Ten years ago, I had my first introduction to the CM world. I had an opportunity to do CM for the Space Station effort at the NASA Lewis Research Center. I learned that CM was a discipline that had four areas of focus: identification, control, status accounting, and verification. I was certified as a CMIl graduate and was indoctrinated about clear, concise, and valid. Off I went into a world of entirely new experiences. I was exposed to change requests and change boards first hand. I also learned about implementation of changes, and then of technical and CM requirements.

  17. Radiative Return Capabilities of a High-Energy, High-Luminosity $e^+e^-$ Collider

    CERN Document Server

    Karliner, Marek; Rosner, Jonathan L; Wang, Lian-Tao

    2015-01-01

    An electron-positron collider operating at a center-of-mass energy $E_{CM}$ can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at $E_{CM}$ = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy $e^+e^-$ colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  18. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  19. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  20. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  1. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  2. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...

  3. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...

  4. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.

    Science.gov (United States)

    Huang, Yan; Hu, Hong; Huang, Yang; Zhu, Minshen; Meng, Wenjun; Liu, Chang; Pei, Zengxia; Hao, Chonglei; Wang, Zuankai; Zhi, Chunyi

    2015-05-26

    Wearable electronic textiles that store capacitive energy are a next frontier in personalized electronics. However, the lack of industrially weavable and knittable conductive yarns in conjunction with high capacitance, limits the wide-scale application of such textiles. Here pristine soft conductive yarns are continuously produced by a scalable method with the use of twist-bundle-drawing technique, and are mechanically robust enough to be knitted to a cloth by a commercial cloth knitting machine. Subsequently, the reduced-graphene-oxide-modified conductive yarns covered with a hierarchical structure of MnO2 nanosheets and a polypyrrole thin film were used to fabricate weavable, knittable and wearable yarn supercapacitors. The resultant modified yarns exhibit specific capacitances as high as 36.6 mF cm(-1) and 486 mF cm(-2) in aqueous electrolyte (three-electrode cell) or 31 mF cm(-1) and 411 mF cm(-2) in all solid-state two-electrode cell. The symmetric solid-state supercapacitor has high energy densities of 0.0092 mWh cm(-2) and 1.1 mWh cm(-3) (both normalized to the whole device) with a long cycle life. Large energy storage textiles are fabricated by weaving our flexible all-solid-state supercapacitor yarns to a 15 cm × 10 cm cloth on a loom and knitting in a woollen wrist band to form a pattern, enabling dual functionalities of energy storage capability and wearability.

  5. Attempts to produce superheavy elements by fusion of /sup 48/Ca with /sup 248/Cm in the bombarding energy range of 4. 5--5. 2 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.; Agarwal, Y.K.; Bruechle, W.; Bruegger, M.; Dufour, J.P.; Gaggeler, H.; Hessberger, F.P.; Hofmann, S.; Lemmertz, P.; Muenzenberg, G.; Poppensieker, K.; Reisdorf, W.; Schadel, M.; Schmidt, K.; Schneider, J.H.R.; Schneider, W.F.W.; Suemmerer, K.; Vermeulen, D.; Wirth, a.G.; Ghiorso, A.; Gregorich, K.E.; Lee, D.; Leino, M.; Moody, K.J.; Seaborg, G.T.; Welch, R.B.; Wilmarth, P.; Yashita, S.; Frink, C.; Greulich, N.; Herrmann, G.; Hickmann, U.; Hildebrand, N.; Kratz, J.V.; Trautman, N.; Fowler, M.M.; Hoffman, D.C.; Daniels, W.R.; von Gunten, H.R.; Dornhoefer, H.

    1985-02-04

    A search for superheavy elements was made in bombardments of /sup 248/Cm with /sup 48/Ca ions performed at projectile energies close to the interaction barrier in order to keep the excitation energy of the compound nucleus Z = 116, A = 296 as low as possible. No evidence for superheavy nuclei was obtained in a half-life region from 1 ..mu..s to 10 yr with a production cross section greater than 10/sup -34/ to 10/sup -35/ cm/sup 2/. .AE

  6. Far-infrared spectroscopy of CH3OD in highly excited torsional states and the atlas of the Fourier transform spectra in the range 200-350 cm(-1).

    Science.gov (United States)

    Mukhopadhyay, I; Mellau, G C; Klee, S

    2000-10-01

    The high resolution Fourier transform far-infrared (FIR) spectrum of the torsion rotation band of CH3OD has been analyzed for the highly excited torsion states (n > or = 2) in the vibrational ground state. The spectrum shows splitting of the lines due to strong torsional-rotational-vibrational interactions in the molecule. Assignments were possible for rotational sub-bands in the torsional state as high as n = 4 and for K values up to 8 and J values of up to approximately 30 in most cases, for all the symmetry species. For the third excited torsional state n = 3 assignments were possible to K = 10. The data were analyzed with the help of the energy expansion model, which has been proven very successful in methanol. The state dependent expansion parameters are presented. These molecular parameters were able to reproduce the observed wavenumbers almost to within experimental accuracy of 0.0002 cm(-1) for clean unblended lines. These expansion coefficients should prove valuable in the calculation of precise energy values for excited torsional states up to n = 4, which is way above the torsional barrier. The detailed high-resolution spectral atlas of CH3OD has been presented in the range 200-350 cm(-1). This atlas is an extension of our earlier atlas in the range 20-205 cm(-1). The availability of this atlas in the journal will be very valuable for spectroscopists and astrophysicists seeking information in the infrared (IR) region in the laboratory and in outer space.

  7. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  8. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  9. Investigation of $pp\\bar$ Events at 540 GeV c.m. Energy with a Streamer Chamber Detection System

    CERN Multimedia

    2002-01-01

    The SPS Collider offers an opportunity to study hadronically-produced events in an entirely new energy domain. The UA5 Collaboration is investigating many features of the physics of 540 GeV proton-antiproton collisions, including 1) charged particle production; pseudorapidity and multiplicity distributions 2) photon production; pseudorapidity distributions 3) charged-charged and charged-neutral particle correlations 4) neutral and charged strange particle production and their p^t-distributions 5)~~a special study of high multiplicity events; search for Centauro events,~etc. .in;.sk; The basic detector consists of two large (6m) streamer chambers, triggered by hodoscopes at either end and at 90|0, and viewed by cameras via image intensifiers. Charged tracks can be observed down to 3/4|0, and hence over most of the pseudorapidity range (!@h!$<$5.0) in which they are produced; photons are observed over the same pseudorapidity range. Neutral and charged particle decays are identified over !@h!$<$3. New comp...

  10. Ultra high energy cosmic rays: the highest energy frontier

    Science.gov (United States)

    de Mello Neto, João R. T.

    2016-04-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to 1020 eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  11. $S_{e}$ -scaling of lattice parameter change in high ion-velocity region ($v\\geq 2.6 x 10^{9} cm/s$) in ion-irradiated EuBa$_{2}$ Cu$ _{3}$ O$_{y}$

    CERN Document Server

    Ishikawa, N; Chimi, Y; Michikami, O; Wakana, H; Hashimoto, T; Kambara, T; Müller, C; Neumann, R

    2002-01-01

    Swift heavy ions ( sup 3 sup 5 Cl- sup 2 sup 3 sup 8 U) with wide energy range of 80 MeV-3.84 GeV have been irradiated to EuBa sub 2 Cu sub 3 O sub y oxide superconductor films, and the lattice parameter change due to electronic excitation has been measured. In the high ion-velocity region (v>=2.6x10 sup 9 cm/s), the change in crystallographic c-axis lattice parameter per unit ion-fluence varies as the 4th power of S sub e. However, in the low ion-velocity region (v<=1.7x10 sup 9 cm/s), the deviation from the 4th power dependence is observed. The S sub e scaling in the high ion-velocity region cannot be explained by the thermal spike model that is based on a radial distribution of energy deposition by secondary electrons. The change in c-axis lattice parameter per unit ion-fluence varies as the 4th power of the primary-ionization rate, dJ/dx, in the whole ion-velocity region. The result supports that the Coulomb explosion triggers the atomic displacements.

  12. Impact of high energy electron irradiation on high voltage Ni/4H-SiC Schottky diodes

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2017-02-01

    We report the results of the high energy (0.9 MeV) electron irradiation impact on the electrical properties of high voltage Ni/4H-SiC Schottky diodes. Within the range of the irradiation dose from 0.2 × 1016 cm-2 to 7 × 1016 cm-2, electron irradiation led to 6 orders of magnitude increase in the base resistance, appearance of slow relaxation processes at pico-ampere current range, and increase in the ideality factor.

  13. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm(-3)), highly conductive (39 S cm(-1)), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm(-3) at 2 mV s(-1) in a three-electrode cell and 300 F cm(-3) at 175.7 mA cm(-3) (568 mF cm(-2) at 0.5 mA cm(-2)) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm(-3) with a maximum power density of 1600 mW cm(-3), outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  14. 1015 cm-3 eV-1 level detection of density of states of a p-type polymer by hν-dependent high-sensitivity ultraviolet photoemission spectroscopy

    Science.gov (United States)

    Sato, Tomoya; Kinjo, Hiroumi; Yamazaki, Junki; Ishii, Hisao

    2017-01-01

    We propose a method, called hν-dependent high-sensitivity ultraviolet photoemission spectroscopy, to observe the density of states (DOS) in a very wide range from HOMO to extremely weak gap states (1022 to 1015 cm-3 eV-1 in density of states). The method was applied to a p-type semiconducting polymer. A series of spectra for hν = 4.4-7.7 eV were recorded, and the DOS was obtained by overlapping the spectral part with a similar line shape between adjacent photon energy spectra to eliminate the photon energy dependence of the photoionization cross section. This method can be applied to both organic and inorganic materials, providing useful information about the DOS of functional materials.

  15. High Energy Two-Body Deuteron Photodisintegration

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, Bart Paul [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1999-07-31

    The differential cross section for two-­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles θcm =37°, 53°, 70°, and 90° as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90°. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70° and 90° show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37° and 53°g data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  16. High Energy Two-Body Deuteron Photodisintegration

    Energy Technology Data Exchange (ETDEWEB)

    Terburg, Bart

    1999-07-31

    The differential cross section for two­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles theta_cm =37deg, 53deg, 70deg, and 90deg as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90deg. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70deg and 90deg show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37deg and 53deg data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  17. New accelerators in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  18. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  19. High Energy Physics Research at Louisiana Tech

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Lee [Louisiana State Univ., Baton Rouge, LA (United States); Greenwood, Zeno [Louisiana State Univ., Baton Rouge, LA (United States); Wobisch, Marcus [Louisiana State Univ., Baton Rouge, LA (United States)

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  20. CERN and the high energy frontier

    Science.gov (United States)

    Tsesmelis, Emmanuel

    2014-04-01

    This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC), this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  1. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  2. 5 × 5 cm2 silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields

    Science.gov (United States)

    Becker, C.; Wyss, P.; Eisenhauer, D.; Probst, J.; Preidel, V.; Hammerschmidt, M.; Burger, S.

    2014-07-01

    Crystalline silicon photonic crystal slabs are widely used in various photonics applications. So far, the commercial success of such structures is still limited owing to the lack of cost-effective fabrication processes enabling large nanopatterned areas (>> 1 cm2). We present a simple method for producing crystalline silicon nanohole arrays of up to 5 × 5 cm2 size with lattice pitches between 600 and 1000 nm on glass and flexible plastic substrates. Exclusively up-scalable, fast fabrication processes are applied such as nanoimprint-lithography and silicon evaporation. The broadband light trapping efficiency of the arrays is among the best values reported for large-area experimental crystalline silicon nanostructures. Further, measured photonic crystal resonance modes are in good accordance with light scattering simulations predicting strong near-field intensity enhancements greater than 500. Hence, the large-area silicon nanohole arrays might become a promising platform for ultrathin solar cells on lightweight substrates, high-sensitive optical biosensors, and nonlinear optics.

  3. 5 × 5 cm² silicon photonic crystal slabs on glass and plastic foil exhibiting broadband absorption and high-intensity near-fields.

    Science.gov (United States)

    Becker, C; Wyss, P; Eisenhauer, D; Probst, J; Preidel, V; Hammerschmidt, M; Burger, S

    2014-07-30

    Crystalline silicon photonic crystal slabs are widely used in various photonics applications. So far, the commercial success of such structures is still limited owing to the lack of cost-effective fabrication processes enabling large nanopatterned areas (≫ 1 cm(2)). We present a simple method for producing crystalline silicon nanohole arrays of up to 5 × 5 cm(2) size with lattice pitches between 600 and 1000 nm on glass and flexible plastic substrates. Exclusively up-scalable, fast fabrication processes are applied such as nanoimprint-lithography and silicon evaporation. The broadband light trapping efficiency of the arrays is among the best values reported for large-area experimental crystalline silicon nanostructures. Further, measured photonic crystal resonance modes are in good accordance with light scattering simulations predicting strong near-field intensity enhancements greater than 500. Hence, the large-area silicon nanohole arrays might become a promising platform for ultrathin solar cells on lightweight substrates, high-sensitive optical biosensors, and nonlinear optics.

  4. EULEB EUropean high quality Low Energy Buildings

    OpenAIRE

    2006-01-01

    ABSTRACT: The EULEB-Project is intended to supply information to architects and engineers throughout Europe and beyond it. Within the EU it will support the new Energy Directive on Buildings through providing design and engineering details of European public high quality buildings with low energy consumption. By providing a CD containing information on architecture, energy consumption and economical efficiency as well as the comfort of these innovative buildings in use, the lac...

  5. Cosmic absorption of ultra high energy particles

    Science.gov (United States)

    Ruffini, R.; Vereshchagin, G. V.; Xue, S.-S.

    2016-02-01

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  6. High Energy Processes in Pulsar Wind Nebulae

    CERN Document Server

    Bednarek, W

    2006-01-01

    Young pulsars produce relativistic winds which interact with matter ejected during the supernova explosion and the surrounding interstellar gas. Particles are accelerated to very high energies somewhere in the pulsar winds or at the shocks produced in collisions of the winds with the surrounding medium. As a result of interactions of relativistic leptons with the magnetic field and low energy radiation (of synchrotron origin, thermal, or microwave background), the non-thermal radiation is produced with the lowest possible energies up to $\\sim$100 TeV. The high energy (TeV) gamma-ray emission has been originally observed from the Crab Nebula and recently from several other objects. Recent observations by the HESS Cherenkov telescopes allow to study for the first time morphology of the sources of high energy emission, showing unexpected spectral features. They might be also interpreted as due to acceleration of hadrons. However, theory of particle acceleration in the PWNe and models for production of radiation ...

  7. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    Science.gov (United States)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  8. A comparison of the updated very high resolution model RegCM3_10km with the previous version RegCM3_25km over the complex terrain of Greece: present and future projections

    Science.gov (United States)

    Tolika, Konstantia; Anagnostopoulou, Christina; Velikou, Kondylia; Vagenas, Christos

    2016-11-01

    The ability of a fine resolution regional climate model (10 × 10 km) in simulating efficiently the climate characteristics (temperature, precipitation, and wind) over Greece, in comparison to the previous version of the model with a 25 × 25 km resolution, is examined and analyzed in the present study. Overall, the results showed that the finer resolution model presented a better skill in generating low winter temperatures at high altitudinal areas, the temperature difference between the islands and the surrounding sea, high rainfall totals over the mountainous areas, the thermal storms during summer, and the wind maxima over the Aegean Sea. Regarding the future projections, even though the two models agree on the climatic signal, differences are found mainly to the magnitude of change of the selected parameters. Finally, it was found that at higher pressure levels, the present day projections of the two models do not show significant differences since the topography and terrain does not play such an important role as the general atmospheric circulation.

  9. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.

    Science.gov (United States)

    Goodhead, D T; Berry, R J; Bance, D A; Gray, P; Stedeford, J B

    1977-10-01

    A high energy fast neutron beam potentially suitable for radiotherapy was built at the Harwell variable energy cyclotron. The beam line is described and results are given of physical measurements on the fast neutron beams produced by 42 MeV deuterons on thick (4 mm) and thin (2 mm) beryllium targets. With 20 muA beam current the entrance dose rate in a phantom 150 cm from the target was about 130 rad min-1 with the thick target and about 60 rad min-1 with the thin target. Therefore, it is possible to use both the thin target and the relatively large target-skin distance of 150 cm to improve depth dose for radiotherapy or radiobiology. With this arrangement the dose rate decreased to 50% at depths in the phantom of 11.3-15.4 cm, depending on the field size. The use of primarily hydrogenous materials for shielding and collimation provided beam edge definition similar to that of 60Co teletherapy units, and off-axis radiation levels of approximately 1% which compare favorably with 14 MeV deuteron-tritium generators. The copper backing of the thin target became highly radioactive and an alterative material may be preferable. Biologic characteristics of the beam are described in a companion paper.

  10. Rationally designed polyimides for high-energy density capacitor applications.

    Science.gov (United States)

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-01

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  11. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  12. 1570 nm High Energy Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  13. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  14. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  15. High-Mileage Runners Expend Less Energy

    Science.gov (United States)

    ... news/fullstory_163289.html High-Mileage Runners Expend Less Energy Extra movement seems to lead to changes ... efficient at running compared to those who run less, a new study finds. Jasper Verheul and colleagues ...

  16. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  17. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  18. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  19. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  20. Future of high energy physics some aspects

    CERN Document Server

    Prokofiev, Kirill

    2017-01-01

    This book comprises 26 carefully edited articles with well-referenced and up-to-date material written by many of the leading experts. These articles originated from presentations and dialogues at the second HKUST Institute for Advanced Study Program on High Energy Physics are organized into three aspects, Theory, Accelerator, and Experiment, focusing on in-depth analyses and technical aspects that are essential for the developments and expectations for the future high energy physics.

  1. A unified treatment of high energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Hladik, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[SAP AG, Berlin (Germany); Ostapchenko, S. [Moscow State Univ. (Russian Federation). Inst. of Nuclear Physics]|[Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1999-11-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author) 19 refs.

  2. High Energy Particles in the Solar Corona

    CERN Document Server

    Widom, A; Larsen, L

    2008-01-01

    Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

  3. Identifying the nature of high energy Astroparticles

    CERN Document Server

    Mora, Karen Salomé Caballero

    2016-01-01

    High energy Astroparticles include Cosmic Ray, gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (up to $10^{20}$ eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  4. Cosmic Physics: The High Energy Frontier

    CERN Document Server

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies $10^8$ times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violation of Lorentz invariance, as well as Planck scale physics and quantum gravity.

  5. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M T

    2015-01-01

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  6. H(t Vector,t)H scattering at low energies. [Differential cross sections, vector analyzing powers, 1. 26 to 3. 71 MeV cm

    Energy Technology Data Exchange (ETDEWEB)

    Haglund, R.F. Jr.; Fick, D.; Schmelzbach, P.A.; Ohlsen, G.G.; Jarmie, N.; Brown, R.E.

    1977-03-01

    Angular distributions of the differential cross section and vector analyzing power for H + t approaches elastic scattering, at center-of-mass energies 1.26, 1.68, 2.19, 2.70, 3.21, and 3.71 MeV are presented. A preliminary phase-shift analysis of the data confirms the importance of the odd-parity tensor and even-parity spin-orbit nucleon-nucleon forces in model calculations for the /sup 4/He system in this energy range.

  7. High energy density in multisoliton collisions

    Science.gov (United States)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  8. Energy spectra of cosmic-ray nuclei at high energies

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Barbier, L; Beatty, J J; Bigongiari, G; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Maestro, P; Malinine, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, S W; Nutter, S; Park, I H; Park, N H; Seo, E S; Sina, R; Walpole, P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2009-01-01

    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to $\\sim 10^{14}$ eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an $E^{-2.66 \\pm 0.04}$ power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/$n$ energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be $0.080 \\pm 0.025 $(stat.)$ \\pm 0.025 $(sys.) at $\\sim $800 GeV/$n$, in good agreement with a recent result from the first CREAM flight.

  9. A High Energy Nuclear Database Proposal

    CERN Document Server

    Brown, D A; Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interace. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for intertial confinement fusion and target a...

  10. Proposal for a High Energy Nuclear Database

    CERN Document Server

    Vogt, D A B R

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and ...

  11. The first interdisciplinary experiments at the IMP high energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Guo, Na; Liu, Wenjing; Ye, Fei; Sheng, Lina; Li, Qiang [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou (China); Li, Huiyun [Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China)

    2015-04-01

    The high energy beam of tens to hundred MeV/u ions possesses mm-to-cm penetration depth in materials and can be easily extracted into air without significant energy loss and beam scattering. Combination of high energy ions and microbeam technology facilitates the microprobe application to many practical studies in large scale samples. The IMP heavy ion microbeam facility has recently been integrated with microscopic positioning and targeting irradiation system. This paper introduced the first interdisciplinary experiments performed at the IMP microbeam facility using the beam of 80.5 MeV/u carbon ions. Bystander effect induction via medium transferring was not found in the micro-irradiation study using HeLa cells. The mouse irradiation experiment demonstrated that carbon irradiation of 10 Gy dose to its tuberomammillary nucleus did not impair the sleep nerve system. The fault injection attack on RSA (Rivest–Shamir–Adleman) decryption proved that the commercial field-programmable gate array chip is vulnerable in single event effect to low linear-energy-transfer carbon irradiation, and the attack can cause the leakage of RSA private key. This work demonstrates the potential of high energy microbeam in its application to biology, biomedical, radiation hardness, and information security studies.

  12. High stored energy of metallic glasses induced by high pressure

    Science.gov (United States)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  13. Aromatic Polyurea Possessing High Electrical Energy Density and Low Loss

    Science.gov (United States)

    Thakur, Yash; Lin, Minren; Wu, Shan; Zhang, Q. M.

    2016-10-01

    We report the development of a dielectric polymer, poly (ether methyl ether urea) (PEMEU), which possesses a dielectric constant of 4 and is thermally stable up to 150°C. The experimental results show that the ether units are effective in softening the rigid polymer and making it thermally processable, while the high dipole moment of urea units and glass structure of the polymer leads to a low dielectric loss and low conduction loss. As a result, PEMEU high quality thin films can be fabricated which exhibit exceptionally high breakdown field of >1.5 GV/m, and a low conduction loss at fields up to the breakdown. Consequently, the PEMEU films exhibit a high charge-discharge efficiency of 90% and a high discharged energy density of 36 J/cm3.

  14. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  15. High-energy neutron dosimetry with superheated drop detectors

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, F.; Agosteo, S.; Sannikov, A.V.; Silari, M

    2002-07-01

    A systematic analysis of the response of dichlorodifluoromethane superheated drop detectors was performed in the 46-133 MeV energy range. Experiments with quasi-monoenergetic neutron beams were performed at the Universite Catholique de Leuvain-la-Neuve, Belgium and the Svedberg Laboratory, Sweden, while tests in a broad field were performed at CERN. To determine the response of the detectors to the high-energy beams, the spectra of incident neutrons were folded over functions modelled after the cross sections for the production of heavy ions from the detector elements. The cross sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade exciton model of nuclear interactions. The new response data permit the interpretation of measurements at high-energy accelerators and on high-altitude commercial flights, where a 30-50% under-response had been consistently recorded with respect to neutron dose equivalent. The introduction of a 1 cm lead shell around the detectors effectively compensates most of the response defect. (author)

  16. Three-dimensional model of a 50 cm{sup 2} high temperature PEM fuel cell. Study of the flow channel geometry influence

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Pinar, F. Javier; Mena, Esperanza; Ubeda, Diego [Chemical Enginnering Department, University of Castilla-La Mancha. Enrique Costa Novella Building, Avda. Camilo Jose Cela, n 12, 13071, Ciudad Real (Spain)

    2010-06-15

    In this work, a three-dimensional half-cell model for a 50 cm{sup 2} high temperature polyelectrolyte membrane fuel cell (HTPEMFC) has been implemented in a Computational Fluid Dynamics (CFD) application. It was solved for three different flow channel geometries: 4-step serpentine, parallel and pin-type. Each geometry leads to a very well defined current density profile which indicates that current density distribution is directly linked to the way reactants are spread over the electrode surface. The model predicts that parallel flow channels present a significant lower performance probably due to the existence of preferential paths which makes the reactant gases not to be well distributed over the whole electrode surface. This results in lower output current densities when this geometry is used, especially at high oxygen demand conditions. This behavior was also detected by experimental measurement. Serpentine and pin-type flow channels were found to perform very similarly, although slightly higher limit current densities are predicted when using serpentine geometry. Inlet flow rate as well as temperature influence were also studied. The model predicts mass transfer problems and low limit current densities when the fuel cell is fed with small oxygen flow rates, whereas no differences regarding average flow rates are noticed if it is over increased. Better fuel cell performance is predicted while temperature grows as it could be expected. (author)

  17. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  18. Introduction to High-Energy Astrophysics

    Science.gov (United States)

    Rosswog, Stephan; Bruggen, Marcus

    2003-04-01

    High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject

  19. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago (main); Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  20. The High Energy Particle Detector (HEPD) for the CSES satellite

    Science.gov (United States)

    Sparvoli, Roberta

    2016-04-01

    of precipitating particles). The East-West or West-East drift direction is an essential information to retrieve the longitude of the starting point of the burst precipitation and then to reconstruct the geographical area where the interaction between particles and seismo-electromagnetic emissions occurred. HEPD has been designed to provide good energy resolution and high angular resolution for electrons (3 - 100 MeV) and proton (30 - 200 MeV). The detector consists of two layers of segmented plastic scintillators and a calorimeter, constituted by a tower of scintillator counters. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger scintillator planes to limit the effect of Coulomb multiple scattering on the direction measurement. The electron angular resolution varies between 13° at 2.5 MeV and ≤ 1° for energies above 35 MeV. The detector has a wide angular acceptance (>60°) over the full energy range 2.5-100 MeV. The angle-integrated, total acceptance is larger than 100 cm2sr between 2.5 and 35 MeV, decreasing at higher energies (about 40 cm2sr at 100 MeV). The proton angular resolution is ≤1° over the full detection range. The proton integrated-angle, total acceptance is larger than 100 cm2sr between 30 MeV and 150 MeV, decreasing to 60 cm2sr at 200 MeV. The good energy-loss measurement of the silicon track, combined with the energy resolution of the scintillators and calorimeter, allows identifying electrons with acceptable proton background levels (10-5-10-3).

  1. Causality, renormalizability and ultra-high energy gravitational scattering

    Science.gov (United States)

    Hollowood, Timothy J.; Shore, Graham M.

    2016-05-01

    The amplitude { A }(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift {{{\\Theta }}}{{scat}}(\\hat{s}), where the single variable \\hat{s}={Gs}/{m}2{b}d-2 contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of {{{\\Theta }}}{{scat}}(\\hat{s}) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly discussed.

  2. Causality, Renormalizability and Ultra-High Energy Gravitational Scattering

    CERN Document Server

    Hollowood, Timothy J

    2016-01-01

    The amplitude A(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift Theta_scat(hat_s},, where the single variable hat_s = Gs/m^2 b^(d-2) contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of Theta_scat(hat_s) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly disc...

  3. Why is High Energy Physics Lorentz Invariant?

    CERN Document Server

    Afshordi, Niayesh

    2015-01-01

    Despite the tremendous empirical success of equivalence principle, there are several theoretical motivations for existence of a preferred reference frame (or aether) in a consistent theory of quantum gravity. However, if quantum gravity had a preferred reference frame, why would high energy processes enjoy such a high degree of Lorentz symmetry? While this is often considered as an argument against aether, here I provide three independent arguments for why perturbative unitarity (or weak coupling) of the Lorentz-violating effective field theories put stringent constraints on possible observable violations of Lorentz symmetry at high energies. In particular, the interaction with the scalar graviton in a consistent low-energy theory of gravity and a (radiatively and dynamically) stable cosmological framework, leads to these constraints. The violation (quantified by the relative difference in maximum speed of propagation) is limited to $\\lesssim 10^{-10} E({\\rm eV})^{-4}$ (superseding all current empirical bound...

  4. Future high energy colliders symposium. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [Univ. of California, Santa Barbara, CA (United States). Institute for Theoretical Physics]|[Brookhaven National Lab., Upton, CA (United States)

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  5. [High Energy Physics: Research in high energy physics]. Annual report, FY 1982

    Energy Technology Data Exchange (ETDEWEB)

    Barish, B C

    1982-12-31

    This report discusses high energy physics research on: Quantum chromodynamics; neutrinos; multiparticle spectrometers; inclusive scattering; Mark III detector; and cascade decays of phi resonances. (LSP)

  6. Sensitivity studies of high-resolution RegCM3 simulations of precipitation over the European Alps: the effect of lateral boundary conditions and domain size

    Science.gov (United States)

    Nadeem, Imran; Formayer, Herbert

    2016-11-01

    A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.

  7. Gas-Phase Oxidation of Cm+ and Cm2+ -- Thermodynamics of neutral and ionized CmO

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K; Haire, Richard G.; Santos, Marta; Pires de Matos, Antonio; Marcalo, Joaquim

    2008-12-08

    Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O](M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+](M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO]= 6.4+-0.2 eV; IE[CmO+]= 15.8+-0.4 eV; D[Cm-O]= 710+-45 kJ mol-1; D[Cm+-O]= 670+-40 kJ mol-1; and D[Cm2+-O]= 342+-55 kJ mol-1. Estimates for the M2+-O bond energies for M = Cm, La, Gd and Lu are all intermediate between D[N2-O]and D[OC-O]--i.e., 167 kJ mol-1< D[M2+-O]< 532 kJ mol-1 -- such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic O-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+ and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O2 when the intermediate, CmO+, was not collisionally cooled -- although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species.

  8. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  9. High Resolution 8 mm and 1 cm Polarization of IRAS 4A from the VLA Nascent Disk and Multiplicity (VANDAM) Survey

    CERN Document Server

    Cox, Erin G; Looney, Leslie W; Segura-Cox, Dominique M; Tobin, John; Li, Zhi-Yun; Tychoniec, Łukasz; Chandler, Claire J; Dunham, Michael M; Kratter, Kaitlin; Melis, Carl; Perez, Laura M; Sadavoy, Sarah I

    2015-01-01

    Magnetic fields can regulate disk formation, accretion and jet launching. Until recently, it has been difficult to obtain high resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ~ 0.2'' (50 AU) resolution at {\\lambda} = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with {\\beta} ~ 1.3, suggesting that mm/cm-sized grains h...

  10. Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2015-01-01

    The objective of the work is validation of HITEMP-2010 at atmospheric pressures and temperatures reaching 1770K. To this end, spectral transmissivities at 1cm-1 resolution and excellent signal-to-noise-ratio have been measured for 22 CO2/H2O/N2 mixtures. In this paper we consider the 450cm-1-7600...... absorption lines listed in HITEMP-2010 have not been observed in the measured spectra and/or are wrongly scaled with temperature. The complete (there are no missing bands) spectra spanning the 450-7600cm-1 range are appended as Supplementary Material....

  11. High Energy Sources Monitored with OMC

    CERN Document Server

    Risquez, D; Caballero-Garcia, M D; Alfonso-Garzon, J; Mas-Hesse, J M

    2008-01-01

    The Optical Monitoring Camera on-board INTEGRAL (OMC) provides Johnson V band photometry of any potentially variable source within its field of view. Taking advantage of the INTEGRAL capabilities allowing the simultaneous observation of different kind of objects in the optical, X and gamma rays bands, we have performed a study of the optical counterparts of different high-energy sources. Up to now, OMC has detected the optical counterpart for more than 100 sources from the High Energy Catalog (Ebisawa et al., 2003). The photometrically calibrated light curves produced by OMC can be accessed through our web portal at: http://sdc.laeff.inta.es/omc

  12. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  13. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  14. Propagation and Source Energy Spectra of Cosmic-Ray Nuclei at High Energies

    CERN Document Server

    Ave, M; Hoeppner, C; Marshall, J; Müller, D

    2008-01-01

    A recent measurement of the TRACER instrument on long-duration balloon has determined the individual energy spectra of the major primary cosmic-ray nuclei from oxygen (Z=8) to iron (Z=26). The measurements cover a large range of energies and extend to energies beyond 10^14 eV. We investigate if the data set can be described by a simple but plausible model for acceleration and propagation of cosmic rays. The model assumes a power-law energy spectrum at the source with a common spectral index alpha for all nuclear species, and an energy dependent propagation pathlength (Lambda proportional to E^-0.6) combined with an energy-independent residual pathlength Lambda_0. We find that the data can be fit with a fairly soft source spectrum alpha=2.3-2.4), and with a residual pathlength Lambda_0 as high as 0.3 g cm^-2. We discuss this model in the context of other pertinent information, and we determine the relative abundances of the elements at the cosmic-ray source.

  15. Interdisciplinary Aspects of High-Energy Astrophysics

    CERN Document Server

    Sigl, Guenter

    2011-01-01

    Modern astrophysics, especially at GeV energy scales and above is a typical example where several disciplines meet: The location and distribution of the sources is the domain of astronomy. At distances corresponding to significant redshift cosmological aspects such as the expansion history come into play. Finally, the emission mechanisms and subsequent propagation of produced high energy particles is at least partly the domain of particle physics, in particular if new phenomena beyond the Standard Model are probed that require base lines and/or energies unattained in the laboratory. In this contribution we focus on three examples: Highest energy cosmic rays, tests of the Lorentz symmetry and the search for new light photon-like states in the spectra of active galaxies.

  16. High energy electron beam joining of ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A. [and others

    1997-07-01

    High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

  17. Transverse Diagnostics For High Energy Hadron Colliders

    CERN Document Server

    Castro Carballo, Maria Elena

    2007-01-01

    The Large Hadron Collider (LHC) is a circular synchrotron accelerator that will explore new Physics at the higher energies ever achieved, aiming to find the Higgs boson. The LHC is being built at CERN and by 2007 it will be ready to produce head-on collisions of protons at a centre-of-mass energy of 14 TeV. The employment of superconducting magnets for achieving high energies, the high luminosity required for physics, the limited dynamic aperture and the large energy stored in the beams will make the machine very challenging to operate, especially during the injection process and the energy ramp. Two particular problems will be a high sensitivity to beam losses and a relatively poor field quality requiring the use of many types of magnetic correction elements. This may lead to the inclusion of certain beam measurements in feedback loops, making special demands on the control system. The injection and acceleration of the LHC proton beams without particle losses and emittance blow up will require an accurate co...

  18. Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes

    Science.gov (United States)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.

    2016-03-01

    Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.

  19. Coupled-channel analysis of the $\\omega$-meson production in $\\pi N$ and $\\gamma N$ reactions for c.m. energies up to 2 GeV

    CERN Document Server

    Shklyar, V; Mosel, U; Penner, G

    2004-01-01

    The pion- and photon induced reactions for the final states $\\gamma N$, $\\pi N$, $2\\pi N$, $\\eta N$, and $\\omega N$ are studied within a coupled-channel effective Lagrangian approach in the energy region from the pion threshold up to 2 GeV. To investigate the role of the nucleon resonances in the different reactions we include all known states with spin-$\\foh$,-$\\fth$, and -$\\ffh$ and masses below 2 GeV. We find a strong contribution from the $D_{15}(1675)$ resonance to the $\\pi N \\to \\omega N$ reaction. While the $F_{15}(1680)$ state only slightly influences the $\\omega $ meson production in the $\\pi N$ scattering its role is enhanced in the $\\omega$ photoproduction due to the large electromagnetic coupling of this resonance. We predict the beam asymmetry $\\Sigma_X$ to be a negative in the $\\gamma p \\to \\omega p$ reaction near to the threshold. Above the 1.85 GeV the asymmetry is found to change its sign and becomes positive at forward directions. The presented findings can be experimentally tested at GRAAL,...

  20. Cosmic ray antiprotons at high energies

    Science.gov (United States)

    Winkler, Martin Wolfgang

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available for independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.

  1. AMBITION-cm: intermittent high dose AmBisome on a high dose fluconazole backbone for cryptococcal meningitis induction therapy in sub-Saharan Africa: study protocol for a randomized controlled trial

    OpenAIRE

    Molefi, M; Chofle, AA; Molloy, SF; Kalluvya, S; Changalucha, JM; Cainelli, F; Leeme, T; Lekwape, N; Goldberg, DW; Haverkamp, M; Bisson, GP; Perfect, JR; Letang, E.; Fenner, L.; Meintjes, G

    2015-01-01

    Background Cryptococcal meningitis (CM) is a leading cause of mortality among HIV-infected individuals in Africa. Poor outcomes from conventional antifungal therapies, unavailability of flucytosine, and difficulties administering 14 days of amphotericin B are key drivers of this mortality. Novel treatment regimes are needed. This study examines whether short-course high-dose liposomal amphotericin B (AmBisome), given with high dose fluconazole, is non-inferior (in terms of microbiological and...

  2. Density Estimation Trees in High Energy Physics

    CERN Document Server

    Anderlini, Lucio

    2015-01-01

    Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

  3. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut

  4. Technology arising from High-Energy Physics

    CERN Multimedia

    1974-01-01

    An exibition was held as a part of the Meeting on Technology arising from High- Energy Physics (24-26 April 1974). The Proceedings (including a list of stands) were published as Yellow Report, CERN 74-9, vol. 1-2.

  5. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  6. High-energy, high-rate materials processing

    Science.gov (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  7. High energy bosons do not propagate

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, M.A., E-mail: Kurkov@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Lizzi, Fedele, E-mail: fedele.lizzi@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Catalonia (Spain); Vassilevich, Dmitri, E-mail: dvassil@gmail.com [CMCC, Universidade Federal do ABC, Santo André, S.P. (Brazil)

    2014-04-04

    We discuss the propagation of bosons (scalars, gauge fields and gravitons) at high energy in the context of the spectral action. Using heat kernel techniques, we find that in the high-momentum limit the quadratic part of the action does not contain positive powers of the derivatives. We interpret this as the fact that the two-point Green functions vanish for nearby points, where the proximity scale is given by the inverse of the cutoff.

  8. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  9. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan

    Institute of Scientific and Technical Information of China (English)

    QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong

    2006-01-01

    Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.

  10. Study of the energy response of high pressure ionization chamber for high energy gamma-ray

    Institute of Scientific and Technical Information of China (English)

    HUA Zheng-Dong; XU Xun-Jiang; WANG Jian-Hua; LIU Shu-Dong; LI Jian-Ping

    2008-01-01

    The energy response calibration of the commonly used high pressure ionization chamber is very difficult to obtain when the gamma-ray energy is more than 3 MeV.In order to get the calibration of the higher part of the high pressure ionization chamber,we use the Fluka Monte Carlo program to perfclrm the energy response in both the spherical and the cylindrical high pressure ionization chamber which are full of argon gas.The results compared with prior study when the gamma-ray energy is less than 1.25 MeV.Our result of Monte Carlo calculation shows agreement with those obtained by measurement within the uncertainty of the respective methods.The calculation of this study is significant for the high pressure ionization chamber to measure the high energy gamma-ray.

  11. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  12. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  13. High T/sub c/ superconductornoble-metal contacts with surface resistivities in the 10/sup -10/. cap omega. cm/sup 2/ range

    Energy Technology Data Exchange (ETDEWEB)

    Ekin, J.W.; Larson, T.M.; Bergren, N.F.; Nelson, A.J.; Swartzlander, A.B.; Kazmerski, L.L.; Panson, A.J.; Blankenship, B.A.

    1988-05-23

    Contact surface resistivities (product of contact resistance and area) in the 10/sup -10/ ..cap omega.. cm/sup 2/ range have been obtained for both silver and gold contacts to high T/sub c/ superconductors. This is a reduction by about eight orders of magnitude from the contact resistivity of indium solder connections. The contact resistivity is low enough to be considered for both on-chip and package interconnect applications. The contacts were formed by sputter depositing either silver or gold at low temperatures (<100 /sup 0/C) on a clean surface of Y/sub 1/ Ba/sub 2/ Cu/sub 3/ O/sub 7/..sqrt../sub delta/ (YBCO) and later annealing the contacts in oxygen. Annealing temperature characteristics show that for bulk-sintered YBCO samples there is a sharp decrease in contact resistivity after annealing silverYBCO contacts in oxygen for 1 h at temperatures above approx.500 /sup 0/C and goldYBCO contacts for 1 h above approx.600 /sup 0/C. Oxygen annealing for longer times (8 h) did not reduce the contact resistivity of silver contacts as much as annealing for 1 h. Auger microprobe analysis shows that indiumYBCO contacts contain a significant concentration of oxygen in the indium layer adjacent to the YBCO interface. Silver and gold contacts, on the other hand, contain almost no oxygen and have favorable interfacial chemistry with low oxygen affinity. Silver also acts as a ''switchable'' passivation buffer, allowing oxygen to penetrate to the YBCO interface at elevated temperatures, but protecting the YBCO surface at room temperature

  14. High energy H- ion transport and stripping

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  15. Proposal for a High Energy Nuclear Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  16. High energy photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  17. High energy cosmic ray and neutrino astronomy

    CERN Document Server

    Waxman, E

    2011-01-01

    Cosmic-rays with energies exceeding 10^{19} eV are referred to as Ultra High Energy Cosmic Rays (UHECRs). The sources of these particles and their acceleration mechanism are unknown, and for many years have been the issue of much debate. The first part of this review describes the main constraints, that are implied by UHECR observations on the properties of candidate UHECR sources, the candidate sources, and the related main open questions. In order to address the challenges of identifying the UHECR sources and of probing the physical mechanisms driving them, a "multi-messenger" approach will most likely be required, combining electromagnetic, cosmic-ray and neutrino observations. The second part of the review is devoted to a discussion of high energy neutrino astronomy. It is shown that detectors, which are currently under construction, are expected to reach the effective mass required for the detection of high energy extra-Galactic neutrino sources, and may therefore play a key role in the near future in re...

  18. High Energy Polarization of Blazars : Detection Prospects

    CERN Document Server

    Chakraborty, Nachiketa; Fields, Brian

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (wit...

  19. Advances in High Energy Materials (Review Paper

    Directory of Open Access Journals (Sweden)

    U. R. Nair

    2010-03-01

    Full Text Available Research and development efforts for realizing higher performance levels of high energy materials (HEMs are continued unabated all over the globe. Of late, it is becoming increasingly necessary to ensure that such materials are also eco-friendly. This has provided thrust to research in the area of force multiplying HEMs and compounds free from pollution causing components. Enhancement of the performance necessitates introduction of strained structure or increase in oxygen balance to achieve near stoichiometry. The search for environment friendly molecules is focused on chlorine free propellant compositions and lead free primary explosives. Energetic polymers offer added advantage of partitioning of energy and thus not necessitating the concentration of only solid components (HEMs and metal fuels in the formulations, to achieve higher performance, thereby leading to improvement in energetics without adversely affecting the processability and mechanical properties. During recent times, research in the area of insensitive explosives has received impetus particularly with the signature of STANAG. This paper gives a review of the all-round advances in the areas of HEMs encompassing oxidizers, high-energy dense materials, insensitive high-energy materials, polymers and plasticizers. Selected formulations based on these materials are also included.Defence Science Journal, 2010, 60(2, pp.137-151, DOI:http://dx.doi.org/10.14429/dsj.60.327

  20. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  1. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  2. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, N. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Pavlidou, V. [Department of Physics, University of Crete, 71003 Heraklion (Greece); Fields, B. D. [Department of Astronomy and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  3. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  4. High-energy x-ray imaging spectrometer (HEXIS)

    Science.gov (United States)

    Matteson, James L.; Gruber, Duane E.; Heindl, William A.; Pelling, Michael R.; Peterson, Laurence E.; Rothschild, Richard E.; Skelton, Robert E.; Hink, Paul L.; Slavis, Kimberly R.; Binns, W. Robert

    1998-11-01

    HEXIS is a MIDEX-class mission concept for x-ray astronomy. Its objectives are to improve our knowledge of the high energy x-ray sky by increasing the number of sources above 20 keV to > 2,000, discovering transient sources such as x-ray novae and gamma-ray bursts, and making spectral and temporal studies of the sources. With mission life > 3 years, a 1-year all-sky survey sensitivity of approximately 0.3 mCrab, and continuous monitoring of the entire visible sky, HEXIS will provide unprecedented capabilities. Source positions will be determined to accuracies of a few arcmin or better. Spectra will be determined with an energy resolution of a few keV and source variability will be studied on time scales from CZT detectors operating from approximately 5 keV to 200 keV. Detector planes are built with 41 cm(superscript 2) CZT detector modules which employ crossed-strip readout to obtain a pixel size of 0.5 mm. Nine modules are grouped in a 369 cm(superscript 2) array for each imager. In the past 2 years significant progress has been made on techniques requires for HEXIS: position-sensitive CZT detectors and ASIC readout, coded mask imaging, and background properties at balloon altitudes. Scientific and technical details of HEXIS are presented together with result form tests of detectors and a coded mask imager.

  5. Metrology, applications and methods with high energy CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, N.; Voland, V.; Salamon, M.; Hebele, S.; Boehnel, M.; Reims, N.; Schmitt, M.; Kasperl, S. [Fraunhofer IIS/EZRT, Development Center X-Ray Technology, Flugplatzstrasse 75, 90768 Fürth (Germany); Hanke, R. [Chair of X-ray Microscopy, University of Würzburg - Physics and Astronomy (Germany)

    2014-02-18

    The increase of Computed Tomography (CT) as an applicable metrology and Non Destructive Testing (NDT) method raises interest on developing the application fields to larger objects, which were rarely used in the past due to their requirements on the imaging system. Especially the classical X-ray generation techniques based on standard equipment restricted the applications of CT to typical material penetration lengths of only a few cm of steel. Even with accelerator technology that offers a suitable way to overcome these restrictions just the 2D radioscopy technique found a widespread application. Beside the production and detection of photons in the MeV range itself, the achievable image quality is limited using standard detectors due to the dominating absorption effect of Compton Scattering at high energies. Especially for CT reconstruction purposes these effects have to be considered on the development path from 2D to 3D imaging. Most High Energy CT applications are therefore based on line detectors shielding scattered radiation to a maximum with an increase in imaging quality but with time consuming large volume scan capabilities. In this contribution we present the High-Energy X-ray Imaging project at the Fraunhofer Development Centre for X-ray Technology with the characterization and the potential of the CT-system according to metrological and other application capabilities.

  6. High Energy Cosmic Rays From Supernovae

    CERN Document Server

    Morlino, Giovanni

    2016-01-01

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around $\\sim 10^{17}$ eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerate...

  7. Low to high temperature energy conversion system

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  8. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Norbert; Blazhev, Andrey; Jolie, Jan [Institut fuer Kernphysik, Universitaet Koeln (Germany); Boutachkov, Plamen; Gorska, Magda; Grawe, Hubert; Pietri, Stephane [GSI, Darmstadt (Germany); Brock, Tim; Nara Singh, B.S.; Wadsworth, Robert [Department of Physics, University of York, York (United Kingdom); Liu, Zhong [University of Edinburgh, Edinburgh (United Kingdom)

    2009-07-01

    Studies of isomerism in the proton-rich N {approx_equal}Z nuclei around {sup 100}Sn give important insights into the role of proton-neutron pairing and also serve as testing grounds for nuclear models. In summer 2008, an experiment on {sup 96,97,98}Cd was performed using the FRS fragment separator and the RISING germanium array at GSI. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u {sup 124}Xe beam on a 4 g/cm{sup 2} {sup 9}Be target and finally implanted into an active stopper consisting of 9 double-sided silicon strip detectors. In {sup 98}Cd, a new high-energy isomeric transition was identified. Preliminary results on {sup 98}Cd are presented and their implications for the high-excitation level scheme are discussed.

  9. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  10. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  11. Development of a high-energy distributed energy source electromagnetic railgun with improved energy conversion efficiency

    Science.gov (United States)

    Tower, M. M.; Haight, C. H.

    1984-03-01

    The development status of a single-pulse distributed-energy-source electromagnetic railgun (ER) based on the design of Tower (1982) is reviewed. The five-stage ER is 3.65 m long, with energy inputs every 30 cm starting at the breech and a 12.7-mm-square bore cross section, and is powered by a 660-kJ 6-kV modular capacitor bank. Lexan cubes weighing 2.5 grams have been accelerated to velocities up to 8.5 km/sec at 500 kA and conversion efficiency up to 20 percent. Design goal for a 20-mm-sq-cross-section ER is acceleration of a 60-g projectile to 3-4 km/sec at 35-percent efficiency. Drawings, photographs, and graphs of performance are provided.

  12. High Energy Neutrino Astronomy: Status and Perspectives

    CERN Document Server

    Spiering, Christian

    2008-01-01

    The year 2008 has witnessed remarkable steps in developing high energy neutrino telescopes. IceCube at the South Pole has been deployed with 40 of its planned 80 strings and reached half a cubic kilometer instrumented volume, in the Mediterranean Sea the "first-stage" neutrino telescope ANTARES has been completed and takes data with 12 strings. The next years will be key years for opening the neutrino window to the high energy universe. IceCube is presently entering a region with realistic discovery potential. Early discoveries (or non-discoveries) with IceCube will strongly influence the design and the estimated discovery chances of the Northern equivalent KM3NeT. Following theoretical estimates, cubic kilometer telescopes may just scratch the regions of discovery. Therefore detectors presently planned should reach sensitivities substantially beyond those of IceCube.

  13. High-energy ion implantation for ULSI

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, K.; Komori, S.; Kuroi, T.; Akasaka, Y. (LSI R and D Lab., Mitsubishi Electric Corp., Itami (Japan))

    1991-07-01

    The ''well engineering'' of a retrograde twin well formed by high-energy ion implantation for 0.5 {mu}m CMOS is demonstrated to be quite useful in improving many device characteristics, such as leakage current reduction, soft-error immunity, low latchup susceptibility, smaller device isolation dimensions, etc. In forming a heavily doped buried layer by high-energy ion implantation, a drastic reduction in leakage current has been found. This would be caused by gettering of impurities or microdefects by secondary defects which are induced either by implantation of dopant itself (''self-gettering'') or by an additional implantation of oxygen, carbon or fluorine (''proximity gettering''). (orig.).

  14. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  15. High energy physics at UC Riverside

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  16. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  17. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  18. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  19. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    Science.gov (United States)

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the

  20. CREAM: High Energy Frontier of Cosmic Ray Elemental Spectra

    Science.gov (United States)

    Seo, Eun-Suk

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from 10 (10) to 10 (15) eV at an average altitude of 38.5 km with 3.9 g/cm (2) atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  1. Data Unfolding Methods in High Energy Physics

    CERN Document Server

    Schmitt, Stefan

    2016-01-01

    A selection of unfolding methods commonly used in High Energy Physics is compared. The methods discussed here are: bin-by-bin correction factors, matrix inversion, template fit, Tikhonov regularisation and two examples of iterative methods. Two procedures to choose the strength of the regularisation are tested, namely the L-curve scan and a scan of global correlation coefficients. The advantages and disadvantages of the unfolding methods and choices of the regularisation strength are discussed using a toy example.

  2. Surface spectroscopy using high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, B.L.; Cocke, C.L.; Gray, T.J.; Justiniano, E.; Peercy, P.S.

    1983-04-01

    Surface atoms ionized by high energy heavy ions have been detected by time-of-flight and quadrupole mass spectroscopic techniques. The experimental arrangements are described and potential applications are suggested. Both techniques are demonstrated to produce significant improvements in the detection of atomic hydrogen, with the TOF method producing a nine order of magnitude increase in the sensitivity of atomic hydrogen compared to standard nuclear analysis methods.

  3. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  4. A Low Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Li, Xianfeng; Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin

    2017-10-05

    Flow battery (FB) is one of the most promising stationary energy storage devices for storing renewable energies. However, commercial progress of the FBs is limited by their high cost and low energy density. Here we report a neutral zinc-iron FB with very low cost and high energy density. By using highly soluble FeCl2/ZnBr2 species, a charge energy density of 56.30 Wh/L can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe3+/Fe2+. The results indicated that an energy efficiency of 86.66% can be obtained at 40 mA/cm2 and the battery can run stably for more than 100 cycles. Furthermore, a porous membrane with low cost was employed to lower the capital cost to less than 50 $/kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB becomes a promising candidate for stationary energy storage applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  6. Data Preservation in High Energy Physics

    CERN Document Server

    Kogler, Roman; Steder, Michael

    2011-01-01

    Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and pre...

  7. A 200 cm x 50 cm large multigap resistive plate chamber based neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, Dmitry; Elekes, Zoltan; Bemmerer, Daniel; Kempe, Mathias; Sobiella, Manfred; Stach, Daniel; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Roeder, Marko; Zuber, Kai [TU Dresden (Germany); Cowan, Thomas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); TU Dresden (Germany)

    2012-07-01

    A prototype for a multigap resistive plate chamber (MRPC) based detector of 200 cm x 50 cm size for 1 GeV neutrons has been developed, built and tested. The principle of operation is the conversion of the high-energy neutron to a charged particle in an iron converter, and the detection of the charged particle in the MRPC. Experiments using the single-electron mode of operation of the ELBE 40 MeV electron accelerator showed that a time resolution of {sigma}{sub t}<100 ps was reached for minimum-ionizing particles, at nearly full efficiency. Extensive simulations show that it is feasible to construct a time-of-flight detector for GeV neutrons based on such a principle.

  8. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  9. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  10. Reliable pump sources for high-energy class lasers

    Science.gov (United States)

    Wölz, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Wolf, Jürgen; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-05-01

    High-energy class laser systems operating at high average power are destined to serve fundamental research and commercial applications. System cost is becoming decisive, and JENOPTIK supports future developments with the new range of 500 W quasi-continuous wave (QCW) laser diode bars. In response to different strategies in implementing high-energy class laser systems, pump wavelengths of 880 nm and 940 nm are available. The higher power output per chip increases array irradiance and reduces the size of the optical system, lowering system cost. Reliability testing of the 880 nm laser diode bar has shown 1 Gshots at 500 W and 300 μs pulse duration, with insignificant degradation. Parallel operation in eight-bar diode stacks permits 4 kW pulse power operation. A new high-density QCW package is under development at JENOPTIK. Cost and reliability being the design criteria, the diode stacks are made by simultaneous soldering of submounts and insulating ceramic. The new QCW stack assembly technology permits an array irradiance of 12.5 kW/cm². We present the current state of the development, including laboratory data from prototypes using the new 500 W laser diode in dense packaging.

  11. VLA-Max '91 tests of high energy flare physics

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.

    1989-01-01

    The potential for the Very Large Array (VLA) contributions during the coming maximum in solar activity is illustrated by unpublished observations of solar flares on 28 May, 8 June, 24 June, and 30 September 1988. Some of this data appears in the two papers by Willson et al., referenced in this article. The VLA can be used to spatially resolve flaring active regions and their magnetic fields. These results can be compared with simultaneous x ray and gamma ray observations from space. Examples are provided in which spatially separated radio sources are resolved for the pre-burst, impulsive and decay phases of solar flares. The emergence of precursor coronal loops probably triggers the release of stored magnetic energy in adjacent coronal loops. Noise storm enhancements can originate in large-scale coronal loops on opposite sides of the visible solar disk. An interactive feedback mechanism may exist between activity in high-lying 90 cm coronal loops and lower-lying 20 cm ones.

  12. CVD Diamond Sensors In Detectors For High Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00334150; Trischuk, William

    At the end of the next decade an upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC (HL-LHC) is planned which requires the development of new radiation tolerant sensor technology. Diamond is an interesting material for use as a particle detector in high radiation environments. The large band gap ($5.47\\,\\text{eV}$) and the large displacement energy suggest that diamond is a radiation tolerant detector material. In this Thesis the capability of Chemical Vapor Deposition (CVD) diamond as such a sensor technology is investigated. The radiation damage constant for $800\\,\\text{MeV}$ protons is measured using single crystalline CVD (scCVD) and polycrystalline CVD (pCVD) diamonds irradiated to particle fluences up to $12 \\times 10^{15}\\,\\text{p/cm}^2$. In addition the signal response of a pCVD diamond detector after an irradiation to $12 \\times 10^{15}\\,\\text{p/cm}^2$ is investigated to determine if such a detector can be operated efficiently in the expected HL-LHC environment. By using electrodes em...

  13. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  14. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors

    Science.gov (United States)

    Cheng, Zhaoxi; Lin, Minren; Wu, Shan; Thakur, Yash; Zhou, Yue; Jeong, Dae-Yong; Shen, Qundong; Zhang, Q. M.

    2015-05-01

    Developing dielectric polymers with higher dielectric constant without sacrificing loss and thermal stability is of great importance for next generation of high energy density capacitors. We show here that by replacing the CH2 group in the aromatic polyurea (ArPU) with the polar ether group, thus raising the dipole moment of the molecular unit, poly(arylene ether urea) (PEEU) shows an increased dielectric constant of 4.7, compared with 4.2 of ArPU. Moreover, PEEU maintains the low dielectric loss and is thermally stable up to 250 °C. As a result, the polymer delivers 13 J/cm3 discharged energy density at room temperature and 9 J/cm3 at 120 °C. The high quality films perform well in terms of both breakdown strength (at 700 MV/m at room temperature) and leakage current from room temperature to elevated temperature. At 120 °C, the breakdown strength is 600 MV/m and the conductivity is 1.58 × 10-14 S/cm measured under 100 MV/m.

  15. Particle decay in the early universe: predictions for 21 cm

    CERN Document Server

    Shchekinov, Yu A; Shchekinov, Yu. A.

    2006-01-01

    The influence of ultra-high energy cosmic rays (UHECRs) and decaying dark matter particles on the emission and absorption characteristics of neutral hydrogen in 21 cm at redshifts $z = 10-50$ is considered. In presence of UHECRs 21 cm can be seen in absorption with the brightness temperature $T_b=-(5\\div 10)$ mK in the range $z=10-30$. Decayng particles can stimulate a 21 cm signal in emission with $T_b\\sim 50-60$~mK at $z =50$, and $T_b \\simeq 10$~mK at $z \\sim 20$. Observational possibilities to detect manifestations of UHECRs and/or decaying particles in 21 cm with the future radio telescopes (LOFAR, PAST and SKA), and to distinguish contributions from them are briefly discussed.

  16. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  17. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  18. High-energy kink in high-temperature superconductors

    Science.gov (United States)

    Johnson, Peter; Valla, Tonica; Kidd, Tim; Yin, W. G.; Gu, Genda; Pan, Z.-H.; Fedorov, Alexei

    2007-03-01

    Photoemission studies show the presence of a high energy anomaly in the observed band dispersion for two families of cuprate superconductors, Bi2Sr2CaCu2O4+δand La2-xBaxCuO4. The anomaly, which occurs at a binding energy of approximately 340 meV, is found to be doping and momentum independent. The magnitude of the effect is momentum dependent. Scattering from short range or nearest neighbour spin excitations is found to supply an adequate description of the observed phenomena.

  19. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  20. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  1. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  2. High-Order Energy Stable WENO Schemes

    Science.gov (United States)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2008-01-01

    A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.

  3. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  4. Development of high energy density electrical double layer capacitors

    Science.gov (United States)

    Devarajan, Thamarai selvi

    potential at 1mA/cm 2. A brief study on non-polar co-solvents for EDLC was studied. Among the solvents studied, fluorinated solvents had low melting point and viscosity due to incorporation of asymmetry. However, because of low dielectric constant, TEABF4 is insoluble and had to be mixed with other solvents. The mixed fluorinated solvents had slightly higher voltage window due to decreased donicity of lone pairs of electrons. The second approach to increasing energy density is to increase capacitance. Capacitance is mainly dependent on surface area and porosity of electrodes. Nanostructured materials which can offer multiple charge storage are currently of interest. Hence, novel NiSi nanotubes were studied as electrodes for supercapacitor applications. Silicon material has high capacity and these inert electrodes can enable higher capacitance by controlling the porosity and functional groups in specific electrolytes. The Silicon wafers were made porous by anodization using hydrofluoric acid. In order to improve the conductivity, the porous silicon was doped, then plated with Ni using electroless plating method and annealed to form nickel mono silicide. Gold was deposited on the back side of the electrode to enhance conductivity. Our porous NiSi electrodes gave capacitance of about 1185muF /cm2 in 0.5 M H 2SO4. Further investigation of oxide formation and modification of functional groups will help achieve higher capacitance.

  5. High energy ion beam analysis at ARRONAX

    Energy Technology Data Exchange (ETDEWEB)

    Koumeir, C.; Haddad, F.; Michel, N. [Subatech, Nantes (France); GIP ARRONAX, Saint-Herblain (France); Guertin, A.; Metivier, V.; Michel, N.; Ragreb, D.; Servagent, N. [Subatech, Nantes (France)

    2013-07-01

    Full text: ARRONAX, acronym for 'Accelerator for Research in Radiochemistry and Oncology at Nantes' is a high energy cyclotron. It is characterized by the acceleration of several types of particle beams: 68 MeV alpha, 15-35 MeV deuterons and 30-68 MeV protons. A platform was implemented on ARRONAX to perform non-destructive materials analysis with X and gamma rays emission (PIXE-PIGE). A proper selection of the projectile type and beam energy allows to analyze heavy and light elements in thin and thick samples. Our research activities are oriented along three axes: 1) Measurements of K X-ray production cross section for various elements to complement the databases at high energy. A first experiment has been conducted to measure these cross sections for copper and gold with protons energy between 34 and 68 MeV. 2) Study of the detection sensitivity which depends on the nuclear background and the Bremsstrahlung radiations. A dedicated shielding has been developed and detection limits below tens of μg/g/μC have been assessed using different referenced samples from IAEA. 3) Determination of concentration profile as function of the depth in a thick target. Using layered samples, we have showed for a target consisting of three different layers, the possibility to determine the sequence and thickness of each layer by using X and gamma rays measured respectively during and after irradiation. During this talk, I will present the characteristics and the capabilities of our platform. In the near future we intend to install the PIGE technique and use it with 15 MeV deuterons to analyze lightweight elements. (author)

  6. High energy protons generation by two sequential laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  7. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  8. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  9. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  10. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  11. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury

    2016-01-01

    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  12. High energy sideband on the magnetic polaron related luminescence in EuTe

    Science.gov (United States)

    Heredia, E.; Motisuke, P.; de Oliveira Rappl, P. H.; Brasil, M. J. S. P.; Iikawa, F.

    2012-08-01

    We investigated the near band gap luminescence of EuTe thin films grown by molecular beam epitaxy, using excitation intensities up to 2 × 105 W/cm2. Besides the previously reported high energy emissions MX1 and MX2, we observed an additional emission band at higher energies. This higher-energy band is only detected when high excitation intensities, over 2 kW/cm2, are used. With increasing externally applied magnetic field, this additional emission band shifts to lower energies at a rate even higher than the MX1. The two bands, however, have different temperature dependences and decay times, suggesting that distinct electronic states are involved in their emission.

  13. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  14. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  15. Computing support for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, P.; Yelton, J. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    This computing proposal (Task S) is submitted separately but in support of the High Energy Experiment (CLEO, Fermilab, CMS) and Theory tasks. The authors have built a very strong computing base at Florida over the past 8 years. In fact, computing has been one of the main contributions to their experimental collaborations, involving not just computing capacity for running Monte Carlos and data reduction, but participation in many computing initiatives, industrial partnerships, computing committees and collaborations. These facts justify the submission of a separate computing proposal.

  16. The High Energy Radiation Pattern from BFKLex

    CERN Document Server

    Chachamis, G

    2016-01-01

    We discuss a recent study on high-energy jet production in the multi-Regge limit done with the use of the Monte Carlo event generator BFKLex which includes collinear improvements in the form of double-log contributions. We will show results for the average transverse momentum and azimuthal angle of the final state jets when at least one of them is very forward in rapidity and another one is very backward. We also discuss the introduction of a new observable which accounts for the average rapidity ratio among subsequent emissions.

  17. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  18. Siberian Snakes in high-energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S R [Convergent Computing Inc, PO Box 561, Shoreham, NY 11786 (United States); Shatunov, Yu M [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Yokoya, K [National Laboratory for High-Energy Physics (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-09-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  19. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  20. Reclustering of high energy physics data

    CERN Document Server

    Schaller, M

    1999-01-01

    The coming high energy physics experiments will store Petabytes of data into object databases. Analysis jobs will frequently traverse collections containing millions of stored objects. Clustering is one of the most effective means $9 to enhance the performance of these applications. The paper presents a reclustering algorithm for independent objects contained in multiple possibly overlapping collections on secondary storage. The algorithm decomposes the stored $9 objects into a number of independent chunks and then maps these chunks to a traveling salesman problem. Under a set of realistic assumptions, the number of disk seeks is reduced almost to the theoretical minimum. Experimental results $9 obtained from a prototype are included. (17 refs).

  1. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  2. Horndeski/Galileon in High Energy Collisions

    CERN Document Server

    Latosh, B N

    2016-01-01

    Horndeski/Galileons may be considered as a proper generalization of General Relativity in high energy regime. Thus one may search for manifestation of Galileons interaction in collision experiments. In this paper we give arguments supporting this thesis. Galileon scalar field do not interact with matter via Standard Model interactions, we discuss a mechanism that allows Galileons to have influence on particle collisions. We give reasons to narrow the whole class of Horndeski/Galileons models to one particular term - John term from Fab Four subclass - for this particular issue. We were able to establish the constraint on the model coupling constant.

  3. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  4. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the + charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  5. Very-high energy emission from pulsars

    CERN Document Server

    Breed, M; Harding, A K

    2016-01-01

    The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 GeV, assuming curvature radiation. It was therefore not expected that pulsars would be visible in the very-high energy (VHE) regime (>100 GeV). The VERITAS announcement of the detection of pulsed emission from the Crab pulsar at energies up to 400 GeV (and now up to 1.5 TeV as detected by MAGIC) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar down to tens of GeV, making this the second pulsar detected by a ground-based Cherenkov telescope. Deep upper limits have also been obtained by VERITAS and MAGIC for the Geminga pulsar. We will review the latest developments in VHE pulsar science, including an overview of the latest observations, ...

  6. Highly Efficient Contactless Electrical Energy Transmission System

    Science.gov (United States)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  7. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  8. Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sylla, Mouhamadou Bamba [Cheikh Anta Diop University, Laboratory for Atmospheric Physics, Simeon Fongang (LPASF), Polytechnic School, BP 5085, Dakar (Senegal); Coppola, E.; Giorgi, F.; Bi, X. [International Centre for Theoretical Physics (ICTP), Physics of Weather and Climate Group, Earth System Physics Section, Trieste (Italy); Mariotti, L. [International Centre for Theoretical Physics (ICTP), Physics of Weather and Climate Group, Earth System Physics Section, Trieste (Italy); University of L' Aquila, Department of Physics, Centre of Excellence CETEMPS, L' Aquila (Italy); Ruti, P.M.; Dell' Aquila, A. [Casaccia Center, Ente per le Nuove Technologie, l' Energia e l' Ambiente (ENEA), Climate Section, Rome (Italy)

    2010-07-15

    This study examines the ability of the latest version of the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM3) to reproduce seasonal mean climatologies, annual cycle and interannual variability over the entire African continent and different climate subregions. The new European Center for Medium Range Weather Forecast (ECMWF) ERA-interim reanalysis is used to provide initial and lateral boundary conditions for the RegCM3 simulation. Seasonal mean values of zonal wind profile, temperature, precipitation and associated low level circulations are shown to be realistically simulated, although the regional model still shows some deficiencies. The West Africa monsoon flow is somewhat overestimated and the Africa Easterly Jet (AEJ) core intensity is underestimated. Despite these biases, there is a marked improvement in these simulated model variables compared to previous applications of this model over Africa. The mean annual cycle of precipitation, including single and multiple rainy seasons, is well captured over most African subregions, in some cases even improving the quality of the ERA-interim reanalysis. Similarly, the observed precipitation interannual variability is well reproduced by the regional model over most regions, mostly following, and sometimes improving, the quality of the ERA-interim reanalysis. It is assessed that the performance of this model over the entire African domain is of sufficient quality for application to the study of climate change and climate variability over the African continent. (orig.)

  9. Gravitational Lensing of Pregalactic 21 cm Radiation

    CERN Document Server

    Metcalf, R Benton

    2008-01-01

    Low-frequency radio observations of neutral hydrogen during and before the epoch of cosmic reionization will provide hundreds of quasi-independent source planes, each of precisely known redshift, if a resolution of ~ 1 arcminutes or better can be attained. These planes can be used to reconstruct the projected mass distribution of foreground material. A wide-area survey of 21 cm lensing would provide very sensitive constraints on cosmological parameters, in particular on dark energy. These are up to 20 times tighter than the constraints obtainable from comparably sized, very deep surveys of galaxy lensing although the best constraints come from combining data of the two types. Any radio telescope capable of mapping the 21cm brightness temperature with good frequency resolution (~ 0.05 MHz) over a band of width ~> 10 MHz should be able to make mass maps of high quality. If the reionization epoch is at z ~ 9 very large amounts of cosmological information will be accessible. The planned Square Kilometer Array (SK...

  10. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  11. CM: Becoming a technology firm (teaching case)

    NARCIS (Netherlands)

    Burg, van J.C.; Reymen, I.M.M.J.; Dolmans, S.A.M.

    2011-01-01

    Founded in 2000 as a Short Message Service (SMS) marketing company for discos (clubs), CM evolved into a technology provider for SMS services. By 2008, CM was market leader in The Netherlands, a position won by offering high quality services at low prices. In 2010, the founders of the company were l

  12. Pie-like electrode design for high-energy density lithium-sulfur batteries

    Science.gov (United States)

    Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming; Li, Ju; Lou, Xiong Wen (David)

    2015-11-01

    Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a `pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers `filling' and amino-functionalized graphene `crust', the free-standing paper electrode (S mass loading: 3.6 mg cm-2) delivers high specific capacity of 1,314 mAh g-1 (4.7 mAh cm-2) at 0.1 C (0.6 mA cm-2) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm-2 by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm-2.

  13. High-energy astrophysics with neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chiarusi, T.; Spurio, M. [Universita di Bologna, Dipartimento di Fisica, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy)

    2010-02-15

    Neutrino astrophysics offers new perspectives on the Universe investigation: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos with respect to photons. While the small interaction cross section of neutrinos allows them to come from the core of astrophysical objects, it is also a drawback, as their detection requires a large target mass. This is why it is convenient to put huge cosmic neutrino detectors in natural locations, like deep underwater or under-ice sites. In order to supply for such extremely hostile environmental conditions, new frontier technologies are under development. The aim of this work is to review the motivations for high-energy neutrino astrophysics, the present status of experimental results and the technologies used in underwater/ice Cherenkov experiments, with a special focus on the efforts for the construction of a km{sup 3}-scale detector in the Mediterranean Sea. (orig.)

  14. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  15. HELIX: The High Energy Light Isotope Experiment

    Science.gov (United States)

    Wakely, Scott

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  16. Low energy, high power hydrogen neutral beam for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su; Mishagin, V.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Prospect Lavrentieva 11, 630090 Novosibirsk (Russian Federation); Korepanov, S.; Smirnov, A. [Tri Alpha Energy, Inc., Foothill Ranch, California 92610 (United States)

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  17. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  18. High Precision Metrology on the Ultra-Lightweight W 50.8 cm f/1.25 Parabolic SHARPI Primary Mirror using a CGH Null Lens

    Science.gov (United States)

    Antonille, Scott

    2004-01-01

    For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to +/-3nm using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.

  19. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  20. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  1. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  2. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  3. Gamma-ray bursts at high and very high energies

    Science.gov (United States)

    Piron, Frédéric

    2016-06-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence of a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future. xml:lang="fr"

  4. Gamma-Ray Bursts at high and very high energies

    CERN Document Server

    Piron, F

    2015-01-01

    Gamma-Ray Bursts (GRBs) are extra-galactic and extremely energetic transient emissions of gamma rays, which are thought to be associated with the death of massive stars or the merger of compact objects in binary systems. Their huge luminosities involve the presence a newborn stellar-mass black hole emitting a relativistic collimated outflow, which accelerates particles and produces non-thermal emissions from the radio domain to the highest energies. In this article, I review recent progresses in the understanding of GRB jet physics above 100 MeV, based on Fermi observations of bright GRBs. I discuss the physical implications of these observations and their impact on GRB modeling, and I present some prospects for GRB observation at very high energies in the near future.

  5. Double charge exchange at high impact energies

    Science.gov (United States)

    Belkić, Dževad

    1994-03-01

    In fast ion-atom collisions, double ionization always dominates the two-electron transfer. For this reason, an adequate description of double charge exchange requires proper inclusion of intermediate ionization channels. This is even more important in two- than in one-electron transitions. First-order Born-type perturbation theories ignore throughout these electronic continuum intermediate states and hence provide utterly unreliable high energy cross sections for two-electron capture processes. Therefore, it is essential to use second- and higher-order theories, which include the intermediate ionization continua of the two electrons in an approximate manner. In the present paper, a new second-order theory called the Born distorted wave (BDW) approximation is introduced and implemented in the case of symmetric resonant double electron capture from the ground state of helium by fast alpha particles. A genuine four-body formalism is adopted, in contrast to the conventional independent particle model of atomic scattering theory. The obtained results for the total cross sections are compared with the available experimental data, and satisfactory agreement is recorded. As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BDW approximation, since the latter closely follows the measurement, whereas the former overestimates the observed total cross sections by two orders of magnitude. This strongly indicates that the role of continuum intermediate states is decisive, even at those incident energies for which the Thomas double scattering effects are not important. This is in sharp contrast to the case of one-electron transfer atomic reactions.

  6. Feasibility of ceramic joining with high energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si{sub 3}N{sub 4}-Mo-Si{sub 3}N{sub 4}. These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase.

  7. High Energy Physics. Ultimate Structure of Matter and Energy.

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. covered are the mounting energy scale, discoveries at thigh energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included.

  8. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  9. High Energy Emissions from Young Stellar Objects

    Indian Academy of Sciences (India)

    A. C. Das; Ashok Ambastha

    2012-03-01

    X-ray emissions from Young Stellar Objects (YSO) are detected by many X-ray missions that are providing important information about their properties. However, their emission processes are not fully understood. In this research note, we propose a model for the generation of emissions from a YSO on the basis of a simple interaction between the YSO and its surrounding circumstellar accretion disc containing neutral gas and charged dust. It is assumed that the YSO has a weak dipole type magnetic field and its field lines are threaded into the circumstellar disc. Considering the motion of ions and charged dust particles in the presence of neutral gas, we show that the sheared dust-neutral gas velocities can lead to a current along the direction of ambient magnetic field. Magnitude of this current can become large and is capable of generating an electric field along the magnetic field lines. It is shown how the particles can gain energy up to MeV range and above, which can produce high-energy radiations from the YSO.

  10. High-energy astroparticle physics with CALET

    CERN Document Server

    Maestro, Paolo

    2013-01-01

    The CALorimetric Electron Telescope (CALET) will be installed on the Exposure Facility of the Japanese Experiment Module (JEM-EF) on the International Space Station (ISS) in 2014 where it will measure the cosmic-ray fluxes for five years. Its main scientific goals are to search for dark matter, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument, under construction, consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 X$_0$-thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 X$_0$-thick lead-tungstate calorimeter (TASC). The CHD can provide single-element separation in the interval of atomic number Z from 1 to 40, while IMC and TASC can measure the energy of cosmic-ray particles with excellent resolution in the range from few GeV up to several hundreds of TeV. Moreover, IMC and TASC provide the longitudin...

  11. Ultra-High Energy Probes of Classicalization

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupat...

  12. The KLOE-2 High Energy Tagger Detector

    CERN Document Server

    Babusci, D; Iafolla, L; Iannarelli, M; Mascolo, M; Messi, R; Moricciani, D; Saputi, A; Turri, E

    2012-01-01

    In order to fully reconstruct to the reaction e+e- to e+e- gamma-gamma in the energy region of the phi meson production, new detectors along the DAFNE beam line have to be installed in order to detect the scattered e+e-. The High Energy Tagger (HET) detector measures the deviation of leptons from their main orbit by determining their position and timing so to tag gamma-gamma physics events and disentangle them from background. The HET detectors are placed at the exit of the DAFNE dipole magnets, 11 m away from the IP, both on positron and electron lines. The HET sensitive area is made up of a set of 28 plastic scintillators. A dedicated DAQ electronics board based on a Xilinx Virtex-5 FPGA have been developed for this detector. It provides a MultiHit TDC with a time resolution of the order of 500 ps and the possibility to acquire data any 2.5 ns, thus allowing to clearly identify the correct bunch crossing. First results of the commissioning run are presented.

  13. High Energy Activation Data Library (HEAD-2009)

    CERN Document Server

    Korovin, Yury A; Konobeyev, Alexander Yu; Stankovskiy, Alexey Yu; Mashnik, Stepan G

    2010-01-01

    A proton activation data library for 682 nuclides from 1-H to 210-Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed: A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the fin...

  14. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  15. High Energy Astrophysics with the HAWC Observatory

    Science.gov (United States)

    Weisgarber, Thomas

    2014-08-01

    The High Altitude Water Cherenkov (HAWC) Observatory detects astrophysical gamma rays and cosmic rays in the energy range from 100 GeV to 100 TeV. Located at an elevation of 4100 meters on the slopes of Sierra Negra in the Mexican state of Puebla, HAWC comprises an array of 300 water Cherenkov tanks covering an area of 22000 square meters and is scheduled for completion in 2014. Using 1200 upward-facing photomultiplier tubes distributed throughout the tanks, HAWC measures the Cherenkov radiation generated by air-shower particles, from which the direction and energy of the primary particle may be determined. The detector has been taking data as a partial array for more than a year. I will highlight cosmic-ray and gamma-ray observations from this initial data set, including measurements of the cosmic-ray anisotropy and searches for transient sources. I will also discuss the expected contributions of HAWC to gamma-ray science as the detector enters full operation in the coming year.

  16. High-intensity sweeteners and energy balance.

    Science.gov (United States)

    Swithers, Susan E; Martin, Ashley A; Davidson, Terry L

    2010-04-26

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance.

  17. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  18. Conducting Retrospective Ontological Clinical Trials in ICD-9-CM in the Age of ICD-10-CM

    Science.gov (United States)

    Venepalli, Neeta K; Shergill, Ardaman; Dorestani, Parvaneh; Boyd, Andrew D

    2014-01-01

    OBJECTIVE To quantify the impact of International Classification of Disease 10th Revision Clinical Modification (ICD-10-CM) transition in cancer clinical trials by comparing coding accuracy and data discontinuity in backward ICD-10-CM to ICD-9-CM mapping via two tools, and to develop a standard ICD-9-CM and ICD-10-CM bridging methodology for retrospective analyses. BACKGROUND While the transition to ICD-10-CM has been delayed until October 2015, its impact on cancer-related studies utilizing ICD-9-CM diagnoses has been inadequately explored. MATERIALS AND METHODS Three high impact journals with broad national and international readerships were reviewed for cancer-related studies utilizing ICD-9-CM diagnoses codes in study design, methods, or results. Forward ICD-9-CM to ICD-10-CM mapping was performing using a translational methodology with the Motif web portal ICD-9-CM conversion tool. Backward mapping from ICD-10-CM to ICD-9-CM was performed using both Centers for Medicare and Medicaid Services (CMS) general equivalence mappings (GEMs) files and the Motif web portal tool. Generated ICD-9-CM codes were compared with the original ICD-9-CM codes to assess data accuracy and discontinuity. RESULTS While both methods yielded additional ICD-9-CM codes, the CMS GEMs method provided incomplete coverage with 16 of the original ICD-9-CM codes missing, whereas the Motif web portal method provided complete coverage. Of these 16 codes, 12 ICD-9-CM codes were present in 2010 Illinois Medicaid data, and accounted for 0.52% of patient encounters and 0.35% of total Medicaid reimbursements. Extraneous ICD-9-CM codes from both methods (Centers for Medicare and Medicaid Services general equivalent mapping [CMS GEMs, n = 161; Motif web portal, n = 246]) in excess of original ICD-9-CM codes accounted for 2.1% and 2.3% of total patient encounters and 3.4% and 4.1% of total Medicaid reimbursements from the 2010 Illinois Medicare database. DISCUSSION Longitudinal data analyses post-ICD-10

  19. Transverse Lambda polarization at high energy colliders

    CERN Document Server

    Boer, Daniel

    2010-01-01

    Measurements of transverse polarization of Lambda hyperons produced in high energy pp collisions may help to address several open issues about Lambda production and polarization mechanisms, such as the amount of SU(3) breaking, the importance of gluons and sea quarks, and the origin of spontaneous Lambda polarization. The process p + p -> Lambda^\\uparrow + jet + X at midrapidity is ideally suited for this purpose, for instance at LHC's ALICE experiment. New expressions and predictions are presented for the transverse Lambda polarization in this process, within a factorized description which involves transverse momentum and spin dependence in the fragmentation process. Uncertainties from the unpolarized Lambda fragmentation functions, due to the unknown magnitude of SU(3) breaking and the apparent inconsistency between pp and e^+ e^- data, are investigated.

  20. Dipoles for High-Energy LHC

    CERN Document Server

    Todesco, E; De Rijk, G; Rossi, L

    2014-01-01

    For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.

  1. High energy physics, past, present and future

    Science.gov (United States)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  2. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  3. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  4. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  5. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  6. High energy flare physics group summary

    Science.gov (United States)

    Ryan, J. M.; Kurfess, J. D.

    1989-01-01

    The contributions of the High Energy Flare Physics Special Session in the American Astronomical Society Solar Physics Division Meeting are reviewed. Oral and poster papers were presented on observatories and instruments available for the upcoming solar maximum. Among these are the space-based Gamma Ray Observatory, the Solar Flare and Cosmic Burst Gamma Ray Experiment on the Ulysses spacecraft, the Soft X Ray Telescope on the spacecraft Solar-A, and the balloon-based Gamma Ray Imaging Device. Ground based observatories with new capabilities include the BIMA mm-wave interferometer (Univ. of California, Berkeley; Univ. of Illinois; Univ. of Maryland), Owens Valley Radio Observatory and the Very Large Array. The highlights of the various instrument performances are reported and potential data correlations and collaborations are suggested.

  7. Stochastic cooling of a high energy collider

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  8. High energy reactions and string theory

    CERN Document Server

    Peschanski, R

    2002-01-01

    String theory has long ago been initiated by the quest for a theoretical explanation of the observed high-energy ``Reggeization'' of strong interaction amplitudes. In terms of quantum field theory, it is the so-called ``soft'' regime, where the coupling constant is expected to be large and thus perturbative calculations inadequate. However, since then, no convincing derivation of the link between gauge field theory at strong coupling and string theory has come out. This 35-years-old puzzle is thus still unsolved. We discuss how modern tools like the AdS/CFT correspondence give a new insight on the problem by applying it to two-body elastic and inelastic scattering amplitudes. We obtain a geometrical interpretation of Reggeization and its relation with confinement in gauge theory.

  9. High-energy evolution to three loops

    CERN Document Server

    Caron-Huot, Simon

    2016-01-01

    The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.

  10. Non-collinearity in high energy processes

    Indian Academy of Sciences (India)

    P J Mulders

    2009-01-01

    We discuss the treatment of intrinsic transverse momenta in high energy scattering processes. Within the field theoretical framework of QCD, the process is described in terms of correlators containing quark and gluon fields. The correlators, parametrized in terms of distribution and fragmentation functions, contain matrix elements of nonlo-cal field configurations requiring a careful treatment to assure colour gauge invariance. It leads to nontrivial gauge links connecting the parton fields. For the transverse momentum- dependent correlators the gauge links give rise to time reversal odd phenomena, showing up as single spin and azimuthal asymmetries. The gauge links, arising from multi-gluon initial and final state interactions, depend on the colour flow in the process, challenging universality.

  11. Experiments with high-energy neutrino beams.

    Science.gov (United States)

    Steinberger, J

    1989-09-15

    Experiments in which high-energy neutrinos were used as projectiles have made substantial contributions to our understanding of both weak and strong interactions, as well as the structure of hadrons. This article offers some illustrations. It recalls the discovery of the neutral weak current and some experiments on its nature. The sections on charged-current inclusive scattering recall the important role of these experiments in the understanding of the quark structure of the nucleon and the validity of quantum chromodynamics. The section on dimuon production illustrates the role of neutrino experiments in establishing the Glashow-Iliopoulos-Maiani current as well as the measurement of the structure function of the strange quark in the nucleon.

  12. Development of a two arm, high energy, high power laser for plasma research in India

    Science.gov (United States)

    Joshi, A. S.; Kamath, M. P.; Sharma, A. K.; Raghuramaiah, M. R.; Patidar, R. K.; Ansari, M. S.; Sreedhar, N.; Chandra, R.; Navathe, C. P.; Naik, P. A.; Gupta, P. D.

    2013-11-01

    We report here work done towards development of a two arm, high energy, high power Nd:phosphate glass laser system. One arm of the laser is proposed to be operated in a long pulse (˜1.5ns pulse duration) with an energy of ˜400 J. Presently, this arm of the laser is operating at energy of ˜100 J after a disc amplifier that amplifies the laser beam of diameter ˜94 mm. After the addition of two more disc amplifiers which are nearing completion, the laser beam will have energy of ˜400 J, with a beam diameter 140 mm, at an intensity of ˜2 GW/cm2. This beam will be converted to its second harmonic using a 2 × 2 array KDP crystals. The second arm, under development, will operate with a hybrid amplification scheme using optical parametric chirped pulse amplification (OPCPA) and conventional amplification using the existing Nd:glass amplifiers to produce 50 TW, 25 J, 500 fs pulse. A tiled triangular pulse compressor is under development for compressing the stretched pulse.

  13. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  14. Electrical Characterization of High Energy Electron Irradiated Ni/4 H-SiC Schottky Barrier Diodes

    Science.gov (United States)

    Paradzah, A. T.; Omotoso, E.; Legodi, M. J.; Auret, F. D.; Meyer, W. E.; Diale, M.

    2016-08-01

    The effect of high energy electron irradiation on Ni/4 H-SiC Schottky barrier diodes was evaluated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements at room temperature. Electron irradiation was achieved by using a radioactive strontium source with peak emission energy of 2.3 MeV. Irradiation was performed in fluence steps of 4.9 × 1013 cm-2 until a total fluence of 5.4 × 1014 cm-2 was reached. The Schottky barrier height determined from I- V measurements was not significantly changed by irradiation while that obtained from C- V measurements increased with irradiation. The ideality factor was obtained before irradiation as 1.05 and this value did not significantly change as a result of irradiation. The series resistance increased from 47 Ω before irradiation to 74 Ω after a total electron fluence of 5.4 × 1014 cm-2. The net donor concentration decreased with increasing irradiation fluence from 4.6 × 1014 cm-3 to 3.0 × 1014 cm-3 from which the carrier removal rate was calculated to be 0.37 cm-1.

  15. High-resolution 17-75 keV backlighters for high energy density experiments

    Science.gov (United States)

    Park, H.-S.; Maddox, B. R.; Giraldez, E.; Hatchett, S. P.; Hudson, L. T.; Izumi, N.; Key, M. H.; Le Pape, S.; MacKinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Phillips, T. W.; Remington, B. A.; Seely, J. F.; Tommasini, R.; Town, R.; Workman, J.; Brambrink, E.

    2008-07-01

    17-75keV one- and two-dimensional high-resolution (1017W /cm2. High-resolution point projection one- and two-dimensional radiography has been achieved using microfoil and microwire targets attached to low-Z substrate materials. The microwire size was 10μm×10μm×300μm on a 300μm×300μm×5μm polystyrene substrate. The radiography experiments were performed using the Titan laser at Lawrence Livermore National Laboratory. The results show that the resolution is dominated by the microwire target size and there is very little degradation from the plasma plume, implying that the high-energy x-ray photons are generated mostly within the microwire volume. There are enough Kα photons created with a 300J, 1-ω, 40ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density experiments at many new high-power laser facilities.

  16. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  17. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  18. Optimization of a Ranchero driven high energy liner driver system

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, Walter L [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Rousculp, Chris L [Los Alamos National Laboratory; Watt, Robert G [Los Alamos National Laboratory

    2008-01-01

    An experimental series is planned to implode a dense heavy liner to a velocity in excess of 1 cm/microsecond (10 mm/microsecond) using a RANCHERO coaxial explosive flux compression generator. The goal of this study is to choose the liner mass and starting radius that will deliver the greatest amount of kinetic energy to a target at 1 cm final radius. In this study we used the 1D-MHD simulation code RA YEN to search for the proper initial conditions. The results will be used as a starting point for 2-D simulations and preliminary designs for the first experiments planned in the 2009/2010 time frame. The preliminary results indicate that a liner velocity of 1.25 cm/microsecond and a kinetic energy of greater than 4 megajoules may be possible.

  19. Identification of vacancy type defects in low and high energy nitrogen ion implanted InP

    Energy Technology Data Exchange (ETDEWEB)

    Santhakumar, K [Department of Nuclear Physics, University of Madras, Chennai - 600025 (India); Rao, G Venugopal [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Amarendra, G [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Abhaya, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Sastry, V Sankara [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Nair, K G M [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Ravichandran, V [Department of Nuclear Physics, University of Madras, Chennai - 600025 (India)

    2005-12-21

    Depth resolved positron annihilation measurements were carried out on 85 keV and 1 MeV nitrogen ion implanted InP samples. The defect sensitive S-parameter and R-parameter values for the low energy implantations confirm the presence of monovacancies up to a dose of 10{sup 15} cm{sup -2} and coexistence of monovacancies and divacancies for 10{sup 16} cm{sup -2} dose sample. Corroborative glancing incidence x-ray diffraction measurements on the highest dose sample revealed that the sample is amorphized. For high energy implantation, it is found that vacancy-defects are present right from the near-surface region and these defects are identified to be monovancancies, based on the observed S- and R-parameters. A comparison of the results for the low and high energy implantations is made.

  20. Long Life, High Energy Cell Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher energy density battery systems to meet the power requirements of future energy devices. In this proposed Phase I program, PSI will...

  1. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... Energy Physics Advisory Panel AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the High Energy Physics Advisory Panel (HEPAP.... FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory...

  2. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... Energy Physics Advisory Panel AGENCY: Office of Science, Department of Energy. ACTION: Notice of Intent... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period beginning...-range planning and priorities in the national high-energy physics program. Additionally, the renewal...

  3. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    Science.gov (United States)

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  4. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  5. Phenomenology of hard diffraction at high energies

    CERN Document Server

    Machado, Magno V T

    2016-01-01

    We present some of the topics covered in two lectures under the same title that was given at the "Summer School on High Energy Physics at the LHC: New trends in HEP" in Natal, Brazil. In this contribution we give a brief review on the application of perturbative QCD to the hard diffractive processes. Such reactions involving a hard scale can be understood in terms of quarks and gluons degrees of freedom and have become an useful tool for investigating the low-$x$ structure of the proton and the behavior of QCD in the high-density regime. We start using the information from the $ep$ collisions at HERA concerned to the inclusive diffraction to introduce the concept of diffractive parton distributions. Their interpretation in the resolved pomeron model is addressed and we discuss the limits of diffractive hard-scattering factorization for hadron-hadron collisions. Some examples of phenomenology for the diffractive production of $W/Z$, heavy $Q\\bar{Q}$ and quarkonium in hadron-hadron reactions are presented. We a...

  6. Radio Detection of Ultra High Energy Neutrinos

    Science.gov (United States)

    Beatty, James J.

    2011-05-01

    Ultra high energy cosmic rays interact with the cosmic microwave background radiation, resulting in the production of energetic pions. These interactions result in energy loss by the incident cosmic ray leading to the Greisen-Zatsepin-Kuzmin (GZK) feature in the cosmic ray spectrum at about 4×10^19 eV, and the decay of the charged pions produced in these interactions results in neutrinos known as Berezinskii-Zatsepin (BZ) neutrinos. These neutrinos interact only via the weak interaction, with negligible absorption over cosmic distances but interaction lengths in the Earth of a few hundred kilometers. When these neutrinos interact in a dense medium, the electromagnetic component of the resulting shower develops a negative charge excess due to Compton scattering of the electrons from the medium and depletion of positrons by in-flight annihilation. This macroscopic charge excess moves at nearly the speed of light, and its passage through a dielectric medium results in coherent Cherenkov radiation at radio wavelengths longer than the size of the radiating region. This process is known as the Askaryan mechanism, and has been observed in accelerator experiments. The radio pulse is impulsive, and can be detected over large volumes in materials with long radio attenuation lengths, most notably the cold ice in the Antarctic ice sheet. Upper limits on the neutrino flux obtained by the balloon-borne instrument ANITA are now approaching the expected flux, and prototype in-ice antenna arrays are now being deployed. Prospects for large detectors capable of detecting hundreds of these neutrinos will be discussed. This work is supported by NASA under grants NNX08AC17G and NNX11AC45G, by the NSF under grant PHY-0758082, and by the Ohio State Center for Cosmology and Particle Astrophysics (CCAPP).

  7. The KLOE-2 high energy taggers

    Science.gov (United States)

    Curciarello, F.

    2017-06-01

    The precision measurement of the π0 → γγ width allows to gain insights into the low-energy QCD dynamics. A way to achieve the precision needed (1%) in order to test theory predictions is to study the π0 production through γγ fusion in the e+e- → e+e-γ*γ* → e+e-π0 reaction. The KLOE-2 experiment, currently running at the DAΦNE facility in Frascati, aims to perform this measurement. For this reason, new detectors, which allow to tag final state leptons, have been installed along the DAΦNE beam line in order to reduce the background coming from phi-meson decays. The High Energy Tagger (HET) detector measures the deviation of leptons from their main orbit by determining their position and timing. The HET detectors are placed in roman pots just at the exit of the DAΦNE dipole magnets, 11 m away from the IP, both on positron and electron sides. The HET sensitive area is made up of a set of 28 plastic scintillators. A dedicated DAQ electronic board, based on a Xilinx Virtex-5 FPGA, has been developed for this detector. It provides a MultiHit TDC with a time resolution of 550(1) ps and the possibility to clearly identify the correct bunch crossing (ΔTbunch ~ 2.7 ns). The most relevant features of the KLOE-2 tagging system operation as time performance, stability and the techniques used to determine the time overlap between the KLOE and HET asynchronous DAQs will be presented.

  8. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  9. The Transient High Energy Sky and Early Universe Surveyor

    Science.gov (United States)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  10. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  11. Defining High-Energy Calibration Standards: IACHEC (International Astronomical Consortium for High-Energy Calibration)

    Science.gov (United States)

    Sembay, S.; Guainazzi, M.; Plucinsky, P.; Nevalainen, J.

    2010-07-01

    The International Astronomical Consortium for High-Energy Calibration (IACHEC) aims to provide standards for high energy calibration and supervise cross-calibration between different X-ray and Gamma-ray observatories. This goal is reached through Working Groups, involving around 40 astronomers worldwide. In these Groups, IACHEC members co-operate to define calibration standards and procedures. Their scope is primarily a practical one: a set of astronomical sources, data and results (eventually published in refereed journals) will be the outcome of a co-ordinated and standardized analysis of reference sources (``high-energy standard candles''). We briefly describe here just two of the many studies undertaken by the IACHEC; a cross-calibration analysis of O and Ne line fluxes from the thermal SNR 1E0102.2-7219, and at higher energies a comparison study of a sample of cluster temperatures and fluxes. A more detailed picture of the activities of the IACHEC is available via the information portal at http://web.mit.edu/iachec/.

  12. Transportable high-energy high-power generator.

    Science.gov (United States)

    Novac, B M; Smith, I R; Senior, P; Parker, M; Louverdis, G

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

  13. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  14. High-Energy Neutrons from the Moon

    Science.gov (United States)

    Maurice, S.; Feldman, W. C.; Lawrence, D. J.; Elphic, R. E.; Gasnault, O.; dUston, C.; Lucey, P. G.

    1999-01-01

    Galactic cosmic rays that impact the lunar soil produce neutrons with energies from fractions of eV's to about 100 MeV. The high-energy band from 0.6 to 8.0 MeV is referred as the "fast neutron" band, which is measured by Lunar Prospector (LP) Gamma Ray Spectrometer. Fast neutrons play an important role in neutron spectroscopy that may be summarized as follows: Fast neutrons define the total neutron input to the moderating process toward low-energy populations, so that epithermal and thermal neutron leakage currents must be normalized to the leakage of fast neutrons; they allow the determination of the burial depth of H, a measure necessary to understand characteristics of water deposits; they provide information on the surface content in heavy elements, such as Ti and Fe; and they provide a direct insight into the evaporation process. As discussed hereafter, fast neutrons may yield information on other oxides, such as Si02. missing data. Mare have numerous features, that are resolved in fast neutrons. For instance, the region extending northwest of Aristarchus (23.7 deg N, 47.4 W) is clearly separated from Montes Harbinger (27.0N, 41.0W) by a high-emission channel, and Mare Vaporum (13.3 N, 3.6 E) is separated from Sinus Aestuun (10.9N, 8.8W) by a low-emission area. We present a new technique to extract information on soil composition from the fast-neutron measurements. The analysis is applied to the central mare region. There are two steps for the development of the technique. 1. For the first step, which has been fully completed, we assume that variations of fast-neutron counting rates are due solely to TiO. and FeO. Upon this assumption, we correlate Clementine Spectral Reflectance Fe and Ti oxide maps with fast measurements. Above 16.5% of FeO, effects of Ti02 variations show in LP data. Below 6.5% of FeO, Fe cannot be discriminated; this is the region of most highland terrains. Under assumption of only two oxides to modulate the signal, we show that fast

  15. A New Expression for the Full Energy Peak Efficiency of a High Pure Germanium Detector

    CERN Document Server

    Medhat, M E; Awaad, Z

    2001-01-01

    An empirical expression for the full energy photo-peak efficiency in terms of gamma-ray energy (E) and the vertical distance from the detector surface (d) (i.e. efficiency = function (d,E)) has been obtained for a high pure germanium detector (HPGe) using different standard sources. Comparison of the calculated efficiencies and the experimentally measured values for the energy range from 59.5-1332.2 keV and a source-to-detector distance of 5-30 cm showed that the theoretical values agree with the experiment.

  16. Oklahoma Center for High Energy Physics (OCHEP)

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S; Strauss, M J; Snow, J; Rizatdinova, F; Abbott, B; Babu, K; Gutierrez, P; Kao, C; Khanov, A; Milton, K A; Neaman, H; H Severini, P Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging

  17. Optics of High-Energy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, Owen

    1960-05-01

    Many of the experiments now being conducted on high-energy accelerators requires the use of beams of charged secondary particles. It is worth while at this time to attempt to summarize information about some of the most useful methods of setting up such beams. We are not concerned here with the primary beam of the accelerator. Rather, they assume that a target is struck by the primary beam and that it is desired to form a beam from the secondary charged particles that emerge from collisions within the target. The simplest system of forming this beam of secondary particles involves the use of magnetic fields only. In most cases it is desirable to obtain a beam of particles of known magnetic rigidity, or momentum. The bulk of this article is addressed to this problem. Some comments are also made about the use of electric fields in conjunction with magnetic fields. The inclusion of electric fields allows the separation of a beam of known momentum into its various components according to the velocities of the particles, hence according to the masses of the particles. These are referred to as ''separated beams''.

  18. Low Energy High Brilliance Beam Characterization

    CERN Document Server

    Bähr, J

    2005-01-01

    Low energy high brilliance beam characterization plays an important role for electron sources and injectors of Free Electron Lasers (FELs) and electron linear accelerators as for example the future ILC project. The topic is discussed basing on solutions of the PITZ facility (PhotoInjector Test facility Zeuthen) which are compared with methods applied at other facilities. The properties of an electron beam produced at a laser-driven rf-gun is mainly influenced also by characteristics of the laser beam and the electron gun itself. Therefore aspects of diagnostics will be also discussed for the laser, laser beam line and gun as well. The main properties of the electron beam are transverse and longitudinal phase space and charge as well. The measurement of transverse beam size and position, transverse emittance, charge, beam current, and longitudinal phase space will be discussed in detail. The measurements of the transverse emittance at PITZ is based on a single slit method. The measurement of the longitudinal p...

  19. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  20. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  1. High-energy radiation from old pulsars

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we study nonthermal high energy radiation from old rotation-powered pulsars with ages greater than 106 yr based on the revised outer gap model.In this model,the inclination angle and geometry of the magnetic field have been taken into account,and the fractional size f of the outer gap is determined by the electron/positron pair production process.The cascade process caused by the back-flowing particles moving from the outer gap to the star will produce the observed nonthermal X-ray emission,and the relativistic particles accelerated in the outer gap will produce gamma-rays via curvature radiation.For nine old pulsars which have been detected to have nonthermal X-rays,we first use the observed nonthermal X-ray emission to estimate reasonable inclination angles,and then estimate their gamma-ray emissions.We also study the possibilities of gamma-ray emissions from other old rotation-powered pulsars.We compare our predicted gamma-ray flux with the sensitivities of AGILE and Fermi.

  2. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  3. An experimental high energy physics program

    Science.gov (United States)

    Gaidos, J. A.; Loeffler, F. J.; McIlwain, R. L.; Miller, D. H.; Palfrey, T. R.; Shibata, E. I.

    1989-05-01

    The CLEO detector accumulated, (approximately 480,000 B-mesons) the world's largest sample of B decays, before being shutdown in May 1988 for the installation of CLEO II. This data sample came from 335 pb(-1) accumulated at the upsilon (4S). The Cornell Electron Storage Ring set new luminosity records, reaching 3.5 pb(-1) in a single day. These data are being intensively analyzed and 21 papers were given at the Baltimore APS meeting. Among the highlights are: confirmation of B(sup 0)(bar B)(sup 0) mixing; discovery of the charm-strange baryon xi (sub c)(sup 0); limits on b yields u decay; and non-observation of B yields p(bar p)pi(pi), which was reported by the ARGUS collaboration. The construction of CLEO II is proceeding on schedule. The new 1.5 T superconducting magnet has passed all tests and all of the detector elements have been installed. This includes a 7800 CsI crystals electromagnetic shower calorimeter. The data from the Gamma Ray Astrophysics experiment show a significant signal for high energy gamma ray emission from Cygnus X-3 and also confirm the previously reported anomalous period from Her X-1. Meanwhile, the old 6 mirror telescope has been refitted with 26 high resolution mirrors and improved fast electronics. GRANDE, the next generation detector based on the water Cherenkov technique, has been formally proposed to HEPAP. The detector will search for neutrino emission in the Southern Hemisphere and gamma radiation in the Northern Hemisphere.

  4. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  5. Very high energy outburst of Markarian 501 in May 2009

    Science.gov (United States)

    Aliu, E.; Archambault, S.; Archer, A.; Arlen, T.; Aune, T.; Barnacka, A.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Böttcher, M.; Bouvier, A.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Cesarini, A.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dumm, J.; Eisch, J. D.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Hütten, M.; Håkansson, N.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krause, M.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Pandel, D.; Park, N.; Pelassa, V.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rousselle, J.; Rovero, A. C.; Saxon, D. B.; Sembroski, G. H.; Shahinyan, K.; Sheidaei, F.; Skole, C.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Theiling, M.; Todd, N. W.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2016-10-01

    The very high energy (VHE; E> 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54 938-54 956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE γ-ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E> 400 GeV) increased to 10 times the pre-flare baseline flux (3.9 × 10-11 ph cm-2 s-1), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15°. This VHE flare showed a fast flux variation with an increase of a factor ~4 in 25 min, and a falling time of ~50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.

  6. Very High Energy outburst of Markarian 501 in May 2009

    CERN Document Server

    Aliu, E; Archer, A; Arlen, T; Aune, T; Barnacka, A; Behera, B; Beilicke, M; Benbow, W; Berger, K; Bird, R; Bouvier, A; Böttcher, M; Buchovecky, M; Buckley, J H; Bugaev, V; Cardenzana, J V; Cerruti, M; Cesarini, A; Chen, X; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Dumm, J; Eisch, J D; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fleischhack, H; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hütten, M; Håkansson, N; Holder, J; Hughes, G; Humensky, T B; Johnson, C A; Kaaret, P; Kar, P; Kelley-Hoskins, N; Kertzman, M; Khassen, Y; Kieda, D; Krause, M; Krawczynski, H; Krennrich, F; Lang, M J; Madhavan, A S; Maier, G; McArthur, S; McCann, A; Meagher, K; Millis, J; Moriarty, P; Mukherjee, R; Nieto, D; de Bhróithe, A O'Faoláin; Ong, R A; Orr, M; Otte, A N; Pandel, D; Park, N; Pelassa, V; Perkins, J S; Pichel, A; Pohl, M; Popkow, A; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rousselle, J; Rovero, A C; Saxon, D B; Sembroski, G H; Shahinyan, K; Sheidaei, F; Skole, C; Smith, A W; Staszak, D; Telezhinsky, I; Theiling, M; Todd, N W; Tucci, J V; Tyler, J; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Weiner, O M; Weinstein, A; Welsing, R; Wilhelm, A; Williams, D A; Zitzer, B; Baring, M G; Gónzalez, J Becerra; Cillis, A N; Horan, D; Paneque, D

    2016-01-01

    The very high energy (VHE; E $>$ 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54938--54956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE $\\gamma$-ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E $>$ 400 GeV) increased to 10 times the pre-flare baseline flux ($3.9{\\times 10^{-11}}~{\\rm ph~cm^{-2}~s^{-1}}$), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15$^{\\circ}$. This VHE flare showed a fast flux variation with an increase of a factor $\\sim$4 in 25 minutes, and a falling time of $\\sim$50 minutes. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.

  7. High energy astroparticle physics for high school students

    CERN Document Server

    Krause, Maria; Classen, Lew; Holler, Markus; Hütten, Moritz; Raab, Susanne; Rautenberg, Julian; Schulz, Anneli

    2015-01-01

    The questions about the origin and type of cosmic particles are not only fascinating for scientists in astrophysics, but also for young enthusiastic high school students. To familiarize them with research in astroparticle physics, the Pierre Auger Collaboration agreed to make 1% of its data publicly available. The Pierre Auger Observatory investigates cosmic rays at the highest energies and consists of more than 1600 water Cherenkov detectors, located near Malarg\\"{u}e, Argentina. With publicly available data from the experiment, students can perform their own hands-on analysis. In the framework of a so-called Astroparticle Masterclass organized alongside the context of the German outreach network Netzwerk Teilchenwelt, students get a valuable insight into cosmic ray physics and scientific research concepts. We present the project and experiences with students.

  8. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  9. Energy Efficient Beam Transfer Channels for High Energy Particle Accelerators

    CERN Document Server

    Gardlowski, Philipp; Ondreka, David

    2016-01-01

    conducting (NC) magnets or high current pulsed (HCP) magnets are an economic solution. For high repetition rates above 1.0 Hz, superconducting Cos(N) (SC) magnets or superferric (SF) magnets are more attractive; at least if they are operated in DC mode and if no dynamic losses occur in the cryogenic system. Unfortunately, a range between these values exist, in which no...

  10. Can low energy electrons affect high energy physics accelerators?

    CERN Document Server

    Cimino, R; Furman, M A; Pivi, M; Ruggiero, F; Rumolo, Giovanni; Zimmermann, Frank

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at whic...

  11. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  12. U.S. Department of Energy, National Energy Technology Laboratory Solid-State Lighting Core Technologies Light Emitting Diodes on Semipolar Bulk GaN Substrate with IQE > 80% at 150 A/cm2 and 100 0C

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Arpan [Soraa, Inc., Fremont, CA (United States); David, Aurelien [Soraa, Inc., Fremont, CA (United States); Grundmann, Michael [Soraa, Inc., Fremont, CA (United States); Tyagi, Anurag [Soraa, Inc., Fremont, CA (United States); Craven, Michael [Soraa, Inc., Fremont, CA (United States); Hurni, Christophe [Soraa, Inc., Fremont, CA (United States); Cich, Michael [Soraa, Inc., Fremont, CA (United States)

    2015-03-31

    GaN is a crucial material for light-emitting diodes (LEDs) emitting in the violet-to-green range. Despite its good performance, it still suffers from significant technical limitations. In particular, the efficiency of GaN-based LEDs decreases at high current (“current droop”) and high temperature (“temperature droop”). This is problematic in some lighting applications, where a high-power operation is required. This program studied the use of particular substrates to improve the efficiency of GaN-based LEDs: bulk semipolar (SP) GaN substrates. These substrates possess a very high material quality, and physical properties which are distinctly different from legacy substrates currently used in the LED industry. The program focused on the development of accurate metrology to quantify the performance of GaN-based LEDs, and on improvement to LED quality and design on SP substrates. Through a thorough optimization process, we demonstrated violet LEDs with very high internal quantum efficiency, exceeding 85% at high temperature and high current. We also investigated longer-wavelength blue emitters, but found that the limited strain budget was a key limitation.

  13. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  14. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  15. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant... Energy Physics Advisory Panel will be renewed for a two-year period, beginning on August 12, 2011. The... priorities in the national High Energy Physics program. Additionally, the renewal of the HEPAP has...

  16. Phase conjugation of high energy lasers.

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle Howard; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  17. Clostridial fermentation of high-energy sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.

    1989-01-01

    Pretreatment of biomass has been shown to increase the efficiency of microbial conversion of lignocellulose to energy or chemicals. Most chemical and physical pretreatments, however, are too expensive for practical application. Biological pretreatment during ensilage storage offers the potential for a low cost pretreatment process for herbaceous biomass. A number of cellulolytic microorganisms occurring naturally in silages or inoculated into the biomass during ensiling could result in significant hydrolysis of lignocellulose during storage prior to conversion to the final end products. The overall objective of this research was to induce clostridial fermentation in sorghum during ensiling through either manipulation of environmental conditions or inoculation with clostridium bacteria. The first objective was to determine whether environmental conditions can influence the natural microorganisms population distribution during ensiling, thus leading to clostridial fermentation. The second objective was to determine whether cellulolytic clostridia can compete with lactic acid bacteria in the ensiling process, resulting in a clostridial fermentation. Two studies were conducted to investigate these two objectives. Three levels of water soluble sugars ranging from 180g/kg D.M. to 15g/Kg D.M. and five levels of moisture contents ranging from 58% to 81% were used in the first part of this investigation. The fermentation types were generally heterolactic acid fermentation though sporadic clostridial fermentations were observed. The major products from the fermentations were lactic acid, acetic acid, ethanol, and mannitol. Although the effects of water soluble sugar and moisture content were highly significant for the amount of lactic acid and total products in the fermentations, the two factors were not enough to induce cellulolytic clostridial fermentation.

  18. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    Science.gov (United States)

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; Furnish, M. D.

    2016-12-01

    We applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients CM=(Pa s)/(J/m2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (CM) max of 50×10-5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount ( 1 cm/s) to avert collision a year in advance. Comet model calculations indicate for CM=5×10-4 s/m the deflection of a 2 km comet with a density 600 kg/m3 by 1 cm/s requires an applied energy on the target surface of 5×1013 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.

  19. Discussion on the geometric factor in the detection of high energy electrons in geospace

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High energy electron is a kind of sources to be detected in the geospace environment. Generally, the particle telescope with much thick semiconductor detector is used as the sensor for energetic electrons because they can penetrate deeply into the detector. The more energy of the electrons is, the deeper they can penetrate into, so that the geometric factor varies with energy of the incident electrons. We discuss the geometric factor of particle radiation detector (PRD), which is a payload on ZY-1 (CBERS-1 and CBERS-2) satellites to monitor the high energy particle radiation inside the satellites. According to the NASA's AE8 model, the geometric factors of electrons for the low energy bin (0.5-1.0 MeV) and the high energy bin (> 2.0 MeV) are 2.468 and 1.736 cm2·sr, respectively. These results are much different from the traditional calculation of the geometric factor that is 1.18 cm2·sr. The angle-response function of the telescope is also derived, which can be useful for design of the telescope and analysis of the directional distribution.

  20. Discussion on the geometric factor in the detection of high energy electrons in geospace

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High energy electron is a kind of sources to be detected in the geospace environ- ment. Generally, the particle telescope with much thick semiconductor detector is used as the sensor for energetic electrons because they can penetrate deeply into the detector. The more energy of the electrons is, the deeper they can penetrate into, so that the geometric factor varies with energy of the incident electrons. We discuss the geometric factor of particle radiation detector (PRD), which is a payload on ZY-1 (CBERS-1 and CBERS-2) satellites to monitor the high energy particle ra- diation inside the satellites. According to the NASA’s AE8 model, the geometric factors of electrons for the low energy bin (0.5―1.0 MeV) and the high energy bin (> 2.0 MeV) are 2.468 and 1.736 cm2·sr, respectively. These results are much differ- ent from the traditional calculation of the geometric factor that is 1.18 cm2·sr. The angle-response function of the telescope is also derived, which can be useful for design of the telescope and analysis of the directional distribution.

  1. An Assessment of the South Asian Summer Monsoon Variability for Present and Future Climatologies Using a High Resolution Regional Climate Model (RegCM4.3 under the AR5 Scenarios

    Directory of Open Access Journals (Sweden)

    Mujtaba Hassan

    2015-11-01

    Full Text Available We assessed the present and future climatologies of mean summer monsoon over South Asia using a high resolution regional climate model (RegCM4 with a 25 km horizontal resolution. In order to evaluate the performance of the RegCM4 for the reference period (1976–2005 and for the far future (2070–2099, climate change projections under two greenhouse gas representative concentration pathways (RCP4.5 and RCP8.5 were made, the lateral boundary conditions being provided by the geophysical fluid dynamic laboratory global model (GFDL-ESM2M. The regional climate model (RCM improves the simulation of seasonal mean temperature and precipitation patterns compared to driving global climate model (GCM during present-day climate conditions. The regional characteristic features of South Asian summer monsoon (SASM, like the low level jet stream and westerly flow over the northern the Arabian Sea, are well captured by the RegCM4. In spite of some discrepancies, the RegCM4 could simulate the Tibetan anticyclone and the direction of the tropical easterly jet reasonably well at 200 hPa. The projected temperature changes in 2070–2099 relative to 1976–2005 for GFDL-ESM2M show increased warming compared to RegCM4. The projected patterns at the end of 21st century shows an increase in precipitation over the Indian Peninsula and the Western Ghats. The possibilities of excessive precipitation include increased southwesterly flow in the wet period and the effect of model bias on climate change. However, the spatial patterns of precipitation are decreased in intensity and magnitude as the monsoon approaches the foothills of the Himalayas. The RegCM4-projected dry conditions over northeastern India are possibly related to the anomalous anticyclonic circulations in both scenarios.

  2. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  3. HIGH-RESOLUTION 8 mm AND 1 cm POLARIZATION OF IRAS 4A FROM THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tobin, John [Leiden Observatory, Leiden University, P.O. Box 9513, 2000-RA Leiden (Netherlands); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Tychoniec, Łukasz [Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, PL-60-268 Poznań (Poland); Chandler, Claire J.; Perez, Laura M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kratter, Kaitlin [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Sadavoy, Sarah I., E-mail: egcox2@illinois.edu [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany)

    2015-12-01

    Magnetic fields can regulate disk formation, accretion, and jet launching. Until recently, it has been difficult to obtain high-resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ∼0.″2 (50 AU) resolution at λ = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with β ∼ 1.3, suggesting that millimeter-/centimeter-sized grains have grown and survived in the short lifetime of the protostar.

  4. A high-resolution mm and cm study of the obscured LIRG NGC 4418 - A compact obscured nucleus fed by in-falling gas?

    CERN Document Server

    Costagliola, F; Sakamoto, K; Martín, S; Beswick, R; Muller, S; Klöckner, H -R

    2013-01-01

    The aim of this study is to constrain the dynamics, structure and feeding of the compact nucleous of NGC4418, and to reveal the nature of the main hidden power source: starburst or AGN. We obtained high spatial resolution observations of NGC4418 at 1.4 and 5 GHz with MERLIN, and at 230 and 270 GHz with the SMA very extended configuration. We use the continuum morphology and flux density to estimate the size of the emitting region, the star formation rate and the dust temperature. Emission lines are used to study the kinematics through position-velocity diagrams. Molecular emission is studied with population diagrams and by fitting an LTE synthetic spectrum. We detect bright 1mm line emission from CO, HC3N, HNC and C34S, and 1.4 GHz absorption from HI. The CO 2-1 emission and HI absorption can be fit by two velocity components at 2090 and 2180 km s-1. We detect vibrationally excited HC3N and HNC, with Tvib 300K. Molecular excitation is consistent with a layered temperature structure, with three main components...

  5. Research of the temperature measurement of high-energy laser energy meter and energy loss compensation technique

    Science.gov (United States)

    Yu, Xun; Wang, Hui; Wu, Ji'an; Wang, Fang; Li, Qian

    2009-11-01

    The energy measurement of high energy laser is converts incident laser energy into heat energy, calculates energy utilizing absorber temperature rise, thus the energy value can be gained. Temperature measurement of high-energy laser energy meter and energy loss compensation during the course of the measurement were studied here. Firstly, temperature-resistance characteristics of resistance wire was analyzed, which was winded on exterior surface of the absorbing cavity of high-energy laser energy meter and used in temperature measurement. Least square method was used to process experiment data and a compensation model was established to calibrate the relationship of temperature vs. resistance. Experiment proved that, error between resistance wire and Pt100 is less than 0.01Ω and temperature error is less than 0.02°C. This greatly improves accuracy of the high energy meter measurement result. Secondly, aimed to the compensation of laser energy loss caused by absorbing cavity's heat exchange, the heat energy loss of absorbing cavity, resulted from thermal radiation, heat convection and heat conduction was analyzed based on heat transfer theory. Its mathematics model was established. Least square method was used to fit a curve of experiment data in order to compensate energy loss. Repetitiveness of measurement is 0.7%, which is highly improved.

  6. Improving the Precision of Tree Counting by Combining Tree Detection with Crown Delineation and Classification on Homogeneity Guided Smoothed High Resolution (50 cm Multispectral Airborne Digital Data

    Directory of Open Access Journals (Sweden)

    Masato Katoh

    2012-05-01

    Full Text Available A method of counting the number of coniferous trees by species within forest compartments was developed by combining an individual tree crown delineation technique with a treetop detection technique, using high spatial resolution optical sensor data. When this method was verified against field data from the Shinshu University Campus Forest composed of various cover types, the accuracy for the total number of trees per stand was higher than 84%. This shows improvements over the individual tree crown delineation technique alone which had accuracies lower than 62%, or the treetop detection technique alone which had accuracies lower than 78%. However, the accuracy of the number of trees classified by species was less than 84%. The total number of trees by species per stand was improved with exclusion of the understory species and ranged from 45.2% to 93.8% for Chamaecyparis obtusa and C. pisifera and from 37.9% to 98.1% for broad-leaved trees because many of these were understory species. The better overall results are attributable primarily to the overestimation of Pinus densiflora, Larix kaempferi and broad-leaved trees compensating for the underestimation of C. obtusa and C. pisifera. Practical forest management can be enhanced by registering the output resulting from this technology in a forest geographical information system database. This approach is mostly useful for conifer plantations containing medium to old age trees, which have a higher timber value.

  7. Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly(vinylidene fluoride) composite films

    Science.gov (United States)

    Zheng, Ming-Sheng; Zha, Jun-Wei; Yang, Yu; Han, Peng; Hu, Chao-He; Wen, Yong-Qiang; Dang, Zhi-Min

    2017-06-01

    A series of composites blending thermoplastic polyurethane (TPU) with poly(vinylidene fluoride) (PVDF) were prepared in this work to realize a high energy storage density. Low loading of TPU (dispersion state in the PVDF matrix. We demonstrate that the incorporation of TPU induces high breakdown strength which results in promoted energy storage performance. In addition, the influence of the different TPU hardnesses (65, 75, and 85) on the breakdown strength of TPU/PVDF composites was also investigated. Finally, a maximum value up to 537.8 MV/m at 3 vol. % TPU with a hardness of 65 was obtained, which led to a high energy density of 10.36 J/cm3.

  8. A Compact High Energy Camera for the Cherenkov Telescope Array

    CERN Document Server

    Daniel, M K; Berge, D; Buckley, J; Chadwick, P M; Cotter, G; Funk, S; Greenshaw, T; Hidaka, N; Hinton, J; Lapington, J; Markoff, S; Moore, P; Nolan, S; Ohm, S; Okumura, A; Ross, D; Sapozhnikov, L; Schmoll, J; Sutcliffe, P; Sykes, J; Tajima, H; Varner, G S; Vandenbroucke, J; Vink, J; Williams, D

    2013-01-01

    The Compact High Energy Camera (CHEC) is a camera-development project involving UK, US, Japanese and Dutch institutes for the dual-mirror Small-Sized Telescopes (SST-2M) of the Cherenkov Telescope Array (CTA). Two CHEC prototypes, based on different photosensors are funded and will be assembled and tested in the UK over the next ~18 months. CHEC is designed to record flashes of Cherenkov light lasting from a few to a hundred nanoseconds, with typical RMS image width and length of ~0.2 x 1.0 degrees, and has a 9 degree field of view. The physical camera geometry is dictated by the telescope optics: a curved focal surface with radius of curvature 1m and diameter ~35cm is required. CHEC is designed to work with both the ASTRI and GATE SST-2M telescope structures and will include an internal LED flasher system for calibration. The first CHEC prototype will be based on multi-anode photomultipliers (MAPMs) and the second on silicon photomultipliers (SiPMs or MPPCs). The first prototype will soon be installed on the...

  9. Scattering-absorbing method for the detection of 16.7 MeV high-energy pulse gamma

    Institute of Scientific and Technical Information of China (English)

    Tan Xinjian; Ouyang Xiaoping; Wang Qunshu

    2009-01-01

    Based on theoretical calculation and Monte Carlo simulation, this paper proposes a new method for the diagno-sing of 16.7 MeV high-energy pulse gamma, named "scattering absorption method". The ratio of the sensitivity of high-energy gamma to that of the low-energy background gamma can reach 106 to 108 by this new method. The sensitivity of 16.7 McV high-energy gamma ranges from 10-21 to 10-16 C·cm2. It's better than the traditional method which is based on the magnetic analyzer and Chcrankov detector on some aspects.

  10. Highly hydrogen-sensitive thermal desorption spectroscopy system for quantitative analysis of low hydrogen concentration (∼1 × 10(16) atoms/cm(3)) in thin-film samples.

    Science.gov (United States)

    Hanna, Taku; Hiramatsu, Hidenori; Sakaguchi, Isao; Hosono, Hideo

    2017-05-01

    We developed a highly hydrogen-sensitive thermal desorption spectroscopy (HHS-TDS) system to detect and quantitatively analyze low hydrogen concentrations in thin films. The system was connected to an in situ sample-transfer chamber system, manipulators, and an rf magnetron sputtering thin-film deposition chamber under an ultra-high-vacuum (UHV) atmosphere of ∼10(-8) Pa. The following key requirements were proposed in developing the HHS-TDS: (i) a low hydrogen residual partial pressure, (ii) a low hydrogen exhaust velocity, and (iii) minimization of hydrogen thermal desorption except from the bulk region of the thin films. To satisfy these requirements, appropriate materials and components were selected, and the system was constructed to extract the maximum performance from each component. Consequently, ∼2000 times higher sensitivity to hydrogen than that of a commercially available UHV-TDS system was achieved using H(+)-implanted Si samples. Quantitative analysis of an amorphous oxide semiconductor InGaZnO4 thin film (1 cm × 1 cm × 1 μm thickness, hydrogen concentration of 4.5 × 10(17) atoms/cm(3)) was demonstrated using the HHS-TDS system. This concentration level cannot be detected using UHV-TDS or secondary ion mass spectroscopy (SIMS) systems. The hydrogen detection limit of the HHS-TDS system was estimated to be ∼1 × 10(16) atoms/cm(3), which implies ∼2 orders of magnitude higher sensitivity than that of SIMS and resonance nuclear reaction systems (∼10(18) atoms/cm(3)).

  11. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  12. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  13. Observable to explore high density behaviour of symmetry energy

    CERN Document Server

    Sood, Aman D

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  14. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers.

    Science.gov (United States)

    Zhang, Maojie; Guo, Xia; Zhang, Shaoqing; Hou, Jianhui

    2014-02-01

    The synergistic effect of fluorination on molecular energy level modulation is realized by introducing fluorine atoms onto both the donor and the acceptor moieties in a D-A polymer, and as a result, the polymer solar cell device based on the trifluorinated polymer, PBT-3F, shows a high efficiency of 8.6%, under illumination of AM 1.5G, 100 mW cm(-) (2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electron capture collisions involving low-energy highly-stripped projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Cocke, C.L.; Gray, T.J.; Justiniano, E.; Can, C.; Waggoner, B.; Varghese, S.L.; Mann, R. (Kansas State Univ., Manhattan (USA). Dept. of Physics)

    1983-01-01

    Recoil ions produced by fast-ion bombardment of dilute gases are in use at Kansas State University as a source of low-energy highly-charged ions to study electron capture by these projectiles on neutral targets in the 10/sup 6/-10/sup 7/ cm s/sup -1/ velocity range. A progress report on several phases of this program is summarized.

  16. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.

    Science.gov (United States)

    Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi

    2017-09-26

    With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm(-3) and energy densities of 0.12 mWh cm(-2) and 8 mWh cm(-3) (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm(-2) and 2.2 W cm(-3) (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.

  17. Neutral Pion Photoproduction at High Energies

    Energy Technology Data Exchange (ETDEWEB)

    Sibirtsev, Alexander; Haidenbauer, J.; Krewald, Siegfried; Meissner, Ulf-G.; Thomas, Anthony

    2009-01-01

    A Regge model with absorptive corrections is employed in a global analysis of the world data on the reactions Å pâ R0p and Å nâ R0n for photon energies from 3 to 18 GeV. In this region resonance contributions are expected to be negligible so that the available experimental information on differential cross sections and single- and double polarization observables at td2 GeV2 allows us to determine the non-resonant part of the reaction amplitude reliably. The model amplitude is then used to predict observables for photon energies below 3 GeV. A detailed comparison with recent data from the CLAS and CB-ELSA Collaborations in that energy region is presented. Furthermore, the prospects for determining the R0 radiative decay width via the Primakoff effect from the reaction Å pâ R0p are explored.

  18. High energy particle collisions near black holes

    Directory of Open Access Journals (Sweden)

    Zaslavskii O. B.

    2016-01-01

    Full Text Available If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect. The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process.

  19. Is the electron radiation length constant at high energies?

    Science.gov (United States)

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  20. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    Science.gov (United States)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  1. The early high-energy afterglow emission from short GRBs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We calculate the high energy afterglow emission from short Gamma-Ray Bursts(SGRBs) in the external shock model.There are two possible components contributing to the high energy afterglow:electron synchrotron emission and synchrotron self-Compton(SSC) emission.We find that for typical parameter values of SGRBs,the early high-energy afterglow emission in 10 MeV-10 GeV is dominated by synchrotron emission.For a burst occurring at redshift z = 0.1,the high-energy emission can be detectable by Fermi LAT if the blast wave has energy E ≥ 1051 ergs and the fraction of electron energy εe≥ 0.1.This provides a possible explanation for the high energy tail of SGRB 081024B.

  2. Selection effects at 21cm

    NARCIS (Netherlands)

    Briggs, FH; Davies, JI; Impey, C; Phillipps, S

    1999-01-01

    Surveys in the 21cm line of neutral hydrogen are testing the completeness of the catalogs of nearby galaxies. The remarkable observational fact is that the potential wells that confine gas to sufficient density that it can remain neutral in the face of ionizing radiation also provide sites for star

  3. Numerical simulations of generation of high-energy ion beams driven by a petawatt femtosecond laser

    Directory of Open Access Journals (Sweden)

    Domański Jarosław

    2015-06-01

    Full Text Available This contribution presents results of a Particle-in-Cell simulation of ion beam acceleration via the interaction of a petawatt 25 fs laser pulse of high intensity (up to ~1021 W/cm2 with thin hydrocarbon (CH and erbium hydride (ErH3 targets of equal areal mass density (of 0.6 g/m2. A special attention is paid to the effect that the laser pulse polarization and the material composition of the target have on the maximum ion energies and the number of high energy (>10 MeV protons. It is shown that both the mean and the maximum ion energies are higher for the linear polarization than for the circular one. A comparison of the maximum proton energies and the total number of protons generated from the CH and ErH3 targets using a linearly polarized beam is presented. For the ErH3 targets the maximum proton energies are higher and they reach 50 MeV for the laser pulse intensity of 1021 W/cm2. The number of protons with energies higher than 10 MeV is an order of magnitude higher for the ErH3 targets than that for the CH targets.

  4. Very high energy neutrinos; Les neutrinos de tres haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso, L. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); Spiering, Ch. [Desy-Zeuthen (Germany)

    2000-03-01

    A sky survey with neutrinos may considerably extend our understanding of cosmic phenomena. Due to the low interaction cross section of neutrinos with matter and due to the high cosmic ray background the detector must be very large (of the order of 1 km{sup 3}) and must be shielded. These new devices consist of a network of photo-tubes which are deployed in the depth of the ocean, of a lake or of South Pole. The detection of the Cherenkov light emitted by muons produced in muon neutrino interactions with the matter surrounding the detector will allow the reconstruction of the neutrino direction with an angular resolution of the order or lower than one degree. Several projectsare underway. Their status will be reviewed in this paper. (authors)

  5. Small hysteresis and high energy storage power of antiferroelectric ceramics

    Science.gov (United States)

    Wang, Jinfei; Yang, Tongqing; Chen, Shengchen; Yao, Xi

    2014-09-01

    In this paper, modified Pb(Zr,Ti)O3(PZT) antiferroelectric (AFE) ceramics system was investigated by traditional solid state method. It was observed that the effect of different contents of Zr/Sn, Zr/Ti on modified PZT antiferroelectrics. With increasing Zr/Sn content, the EAFE (electric field of AFE phase to ferroelectric (FE) phase) value was enlarged. The phase switch field was reduced from FE to AFE (EFA). The hysteresis loops were changed from "slanted" to "square"-types. With increasing Zr/Ti concentrate, the EAFE value, and also the EFA was enlarged, while the hysteresis switch ΔE was reduced. The hysteresis loops was from "square" to "slanted"-types. The samples with square hysteresis loops are suitable for energy storage capacitor applications, the composition of ceramics was Pb0.97La0.02(Zr0.90Sn0.05Ti0.05)O3, which have the largest energy storage density 4.426J/cm3 at 227 kV/cm, and ΔE was 80 kV/cm, energy efficient η was about 0.612.

  6. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  7. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  8. AMRH and High Energy Reinicke Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, A I; Greenough, J A

    2001-05-14

    The authors describe AMRH results on a version of the Reinicke problem specified by the V and V group of LLNL's A-Div. The simulation models a point explosion with heat conduction. The problem specification requires that the heat conduction be replaced with diffusive radiation transport. The matter and radiation energy densities are tightly coupled.

  9. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  10. The High Cost of Saving Energy Dollars.

    Science.gov (United States)

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  11. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, T; Madsen, S; Sudowe, R [University of Nevada, Las Vegas, Las Vegas, NV (United States); Meigooni, A Soleimani [University of Nevada, Las Vegas, Las Vegas, NV (United States); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  12. High energy, low inductance, high current fiberglass energy storage capacitor for the Atlas Machine Marx modules

    CERN Document Server

    Cooper, R A; Ennis, J B; Cochrane, J C; Reass, W A; Parsons, W M

    1999-01-01

    The Los Alamos National Laboratory's Atlas Marx design team envisioned a double ended plastic case 60 kV, 15 nH, 650 kA, energy storage capacitor. A design specification was established and submitted to various vendors. Maxwell Energy Products drew from its development of large fiberglass case, high voltage, low inductance "FASTCAP" capacitors manufactured for Maxwell Technologies' ACE II, ACE III and ACE IV machines. This paper discusses the LANL specification and Maxwell Energy Products' successful design, Model No. 39232, 34.1 mu F, 60 kV, 13*29*27", the only capacitor qualified by LANL for the 23 Mega Joule Atlas application. Maxwell's past experience in this type of capacitor is covered. The performance data is reviewed and the life test data compared to the original calculated design life. Challenges included Maxwell's "keep it simple " design goal which was maintained to minimize the effort required to create and manufacture a nearly 600 pound capacitor. (1 refs).

  13. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  14. High efficiency, high energy second-harmonic generation of Nd glass laser radiation in large aperture CsLiB sub 6 O sub 1 sub 0 crystals

    CERN Document Server

    Kiriyama, H; Yamakawa, K

    2002-01-01

    We have demonstrated the generation of a high-energy green laser pulse using large aperture CsLiB sub 6 O sub 1 sub 0 (CLBO) crystals. A pulsed energy of 25 J at 532-nm was generated using the 1064-nm incident Nd:glass laser radiation with an energy of 34 J. High conversion efficiency of 74% at intensities of only 370 MW/cm sup 2 was obtained using a two-stage crystal architecture. This result represents the highest green pulse energy ever reported using the CLBO crystals. We discuss in detail the design and performance of SHG using CLBO crystals.

  15. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  16. Studies of High Energy Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Nitz, David F [Michigan Technological University; Fick, Brian E [Michigan Technological University

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  17. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  18. Requirements for very high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Richter, B.

    1985-04-01

    In this introductory paper at the second Workshop on Laser Acceleration my main goal is to set what I believe to be the energy and luminosity requirements of the machines of the future. These specifications are independent of the technique of accelerations. But, before getting to these technical questions, I will briefly review where we are in particle physics, for it is the large number of unanswered questions in physics that motivates the search for effective accelerators.

  19. High Energy Effects of Noncommutative Spacetime Geometry

    CERN Document Server

    Sidharth, Burra G

    2016-01-01

    In this paper, we endeavour to obtain a modified form of the Foldy-Wouthuysen and Cini-Toushek transformations by resorting to the noncommutative nature of space-time geometry, starting from the Klein-Gordon equation. Also, we obtain a shift in the energy levels due to noncommutativity and from these results a limit for the Lorentz factor in the ultra-relativistic case has been derived in conformity with observations

  20. Neural Computing in High Energy Physics

    Institute of Scientific and Technical Information of China (English)

    O.D.Joukov; N.D.Rishe

    2001-01-01

    Artifical neural networks (ANN) are now widely used successfully as tools for hith energy physics.The paper covers two aspects.First,mapping ANNs onto the proposed ring and linear systolic array provides an efficient implementation of VLSI-based architectures since in this case all connections among processing elements are local and regular,Second.it is discussed algorthmic organizing of such structures on the base of modular algebra whose use can provide an essential increase of system throughput.

  1. Future scientific applications for high-energy lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.W. [comp.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  2. High-Energy Ions Emitted from Ar Clusters Irradiated by Intense Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LEI An-Le; NI Guo-Quan; XU Zhi-Zhan

    2000-01-01

    We have experimentally studied the energy spectra of Ar ions emitted from Ar clusters irradiated by intense femtosecond laser pulses. The Ar clusters were produced in the adiabatic expansion of Ar gas into vacuum at high backing pressures. The laser peak intensity was about 2×106 W/cm2 with a pulse duration of 45 fs. The maximum and the average energies of Ar ions are 0.2 MeV and 15kev at a backing pressure of 2. S MPa, respectively. They are almost independent of the backing pressures in the range of 0.6 to 4.5 MPa.

  3. Inclusive Glueball Production in High-Energy p+p(p-) Collisions

    Institute of Scientific and Technical Information of China (English)

    彭宏安; 段春贵; 何祯民

    2001-01-01

    Using the factorizable character of amplitudes for the double diffractive process in the Landshoff-Nachtmann model, we have discussed the inclusive glueball production in high-energy pp collisions via the fusion process of two non-perturbative gluons, and have compared it with the double diffractive alike process. We found that, as the c.m. energy Ecms increases from 20 to 20 000 GeV, the cross sections of the latter process are about one to two orders larger than the former. Such an outcome could be explained from the hypothesis of duality between glueballs and pomeron.

  4. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    Science.gov (United States)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  5. Some Intensive and Extensive Quantities in High-Energy Collisions

    CERN Document Server

    Tawfik, A

    2013-01-01

    We review the evolution of some statistical and thermodynamical quantities measured in difference sizes of high-energy collisions at different energies. We differentiate between intensive and extensive quantities and discuss the importance of their distinguishability in characterizing possible critical phenomena of nuclear collisions at various energies with different initial conditions.

  6. High tonnage harvesting and skidding for loblolly pine energy plantations

    Science.gov (United States)

    Patrick Jernigan; Tom Gallagher; Dana Mitchell; Mathew Smidt; Larry Teeter

    2016-01-01

    The southeastern United States has a promising source for renewable energy in the form of woody biomass. To meet the energy needs, energy plantations will likely be utilized. These plantations will contain a high density of small-stem pine trees. Since the stems are relatively small when compared with traditional product removal, the harvesting costs will increase. The...

  7. Study of the Energy Dependence of the Anomalous Mean Free Path Effect by Means of High-energy ($\\geq$12 GeV/nucleon) Helium Nuclei

    CERN Multimedia

    2002-01-01

    The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...

  8. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries.

    Science.gov (United States)

    Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan; Fu, Yanbao; Battaglia, Vincent S; Abdelbast, Guerfi; Zaghib, Karim; Liu, Gao

    2015-01-14

    High capacity and high density functional conductive polymer binder/SiO electrodes are fabricated and calendered to various porosities. The effect of calendering is investigated in the reduction of thickness and porosity, as well as the increase of density. SiO particle size remains unchanged after calendering. When compressed to an appropriate density, an improved cycling performance and increased energy density are shown compared to the uncalendered electrode and overcalendered electrode. The calendered electrode has a high-density of ∼1.2 g/cm(3). A high loading electrode with an areal capacity of ∼3.5 mAh/cm(2) at a C/10 rate is achieved using functional conductive polymer binder and simple and effective calendering method.

  9. High-Energy Optical Parametric Waveform Synthesizer

    OpenAIRE

    Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.

    2014-01-01

    We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...

  10. JACEE results on very high energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, H. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); JACEE Collaboration

    1996-12-31

    Direct observations of cosmic ray interactions in emulsion chambers of the JACEE experiment at energies above 1 TeV/nucleon are presented. An analysis of two decay of short lived particles produced in cosmic ray interactions is described. The known decay modes of bottom and charged particles do not account satisfactorily for the observations. This could possibly indicate a new decay channel of a heavy particle. The JACEE results support the hypothesis of existence of a long-flying component in cosmic ray showers. An interaction event was observed which may be the first direct observation of (mini)anticentauro interaction. (author) 13 refs, 12 figs, 1 tab

  11. Range fluctuations of high energy muons passing through matter

    Science.gov (United States)

    Minorikawa, Y.; Mitsui, K.

    1985-01-01

    The information about energy spectrum of sea level muons at high energies beyond magnetic spectrographs can be obtained from the underground intensity measurements if the fluctuations problems are solved. The correction factor R for the range fluctuations of high energy muons were calculated by analytical method of Zatsepin, where most probable energy loss parameter are used. It is shown that by using the R at great depth together with the slope, lambda, of the vertical depth-intensity (D-I) curve in the form of exp(-t/lambda), the spectral index, gamma, in the power law energy spectrum of muons at sea level can be obtained.

  12. Low and High Energy Modeling in Geant4

    CERN Document Server

    Wright, Dennis H; Folger, Günter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; Heikkinen, Aatos; Wellisch, Hans-Peter

    2007-01-01

    Four of the most-used Geant4 hadronic models, the Quark-gluon string, Bertini-style cascade, Binary cascade and Chiral Invariant Phase Space, are discussed. These models cover high, medium and low energies, respectively, and represent a more theoretical approach to simulating hadronic interactions than do the Low Energy and High Energy Parameterized models. The four models together do not yet cover all particles for all energies, so the Low Energy and High Energy Parameterized models, among others, are used to fill the gaps.The validity range in energy and particle type of each model is presented, as is a discussion of the models' distinguishing features. The main modeling stages are also described qualitatively and areas for improvement are pointed out for each model.

  13. Low And High Energy Modeling in GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Dennis H.; Koi, Tatsumi; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Wellisch,

    2007-10-05

    Four of the most-used Geant4 hadronic models, the Quark-gluon string, Bertini-style cascade, Binary cascade and Chiral Invariant Phase Space, are discussed. These models cover high, medium and low energies, respectively, and represent a more theoretical approach to simulating hadronic interactions than do the Low Energy and High Energy Parameterized models. The four models together do not yet cover all particles for all energies, so the Low Energy and High Energy Parameterized models, among others, are used to fill the gaps. The validity range in energy and particle type of each model is presented, as is a discussion of the models' distinguishing features. The main modeling stages are also described qualitatively and areas for improvement are pointed out for each model.

  14. Beam Performance and Luminosity Limitations in the High-Energy Storage Ring (HESR)

    CERN Document Server

    Lehrach, A; Hinterberger, F; Maier, R; Prasuhn, D

    2006-01-01

    The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton synchrotron and storage ring in the momentum range from 1.5 to 15 GeV/c. An important feature of this new facility is the combination of phase space cooled beams with dense internal targets (e.g. pellet targets), resulting in demanding beam parameter of two operation modes: high luminosity mode with peak luminosities up to 2*10^32 cm-2 s-1, and high resolution mode with a momentum spread down to 10^-5, respectively. To reach these beam parameters very powerful phase space cooling is needed, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. The effect of beam-target scattering and intra-beam interaction is investigated in order to study beam equilibria and beam losses for the two different operation modes.

  15. Beam performance and luminosity limitations in the high-energy storage ring (HESR)

    Science.gov (United States)

    Lehrach, A.; Boine-Frankenheim, O.; Hinterberger, F.; Maier, R.; Prasuhn, D.

    2006-06-01

    The high-energy storage ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton synchrotron storage ring in the momentum range 1.5-15 GeV/ c. An important feature of this new facility is the combination of phase space cooled beams and dense internal targets (e.g. pellet targets), which results in demanding beam parameter requirements for two operation modes: high luminosity mode with peak luminosities to 2×10 32 cm -2 s -1, and high-resolution mode with a momentum spread down to 10 -5. To reach these beam parameters one needs a very powerful phase space cooling, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. The effects of beam-target scattering and intra-beam interaction are investigated in order to study beam equilibria and beam losses for the two different operation modes.

  16. Constraining dark matter through 21-cm observations

    Science.gov (United States)

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  17. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  18. FACT - Monitoring Blazars at Very High Energies

    CERN Document Server

    Dorner, D; Bergmann, M; Biland, A; Balbo, M; Bretz, T; Buss, J; Einecke, S; Freiwald, J; Hempfling, C; Hildebrand, D; Hughes, G; Lustermann, W; Mannheim, K; Meier, K; Mueller, S; Neise, D; Neronov, A; Overkemping, A -K; Paravac, A; Pauss, F; Rhode, W; Steinbring, T; Temme, F; Thaele, J; Toscano, S; Vogler, P; Walter, R; Wilbert, A

    2015-01-01

    The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of La Palma in October 2011 as a proof of principle for silicon based photosensors in Cherenkov Astronomy. The scientific goal of the project is to study the variability of active galatic nuclei (AGN) at TeV energies. Observing a small sample of TeV blazars whenever possible, an unbiased data sample is collected. This allows to study the variability of the selected objects on timescales from hours to years. Results from the first three years of monitoring will be presented. To provide quick flare alerts to the community and trigger multi-wavelength observations, a quick look analysis has been installed on-site providing results publicly online within the same night. In summer 2014, several flare alerts were issued. Results of the quick look analysis are summarized.

  19. High energy diffraction processes - TOTEM experiment

    CERN Document Server

    Kaspar, Jan

    2005-01-01

    We study two problems in this thesis. First, we analyse a model for pp and anti-pp elastic scattering. The model was developed by M.M.Islam and coworkers in the past 25 years. Our aim was to make a prediction for differential cross section of pp scattering at energy of 14 TeV which will be measured by the TOTEM experiment at the LHC at CERN. Since protons carry electromagnetic charge, we had to take into account an electromagnetic interaction and effects of the interference between electromagnetic and hadronic forces. We also analysed the model in the impact parameter representation. It enabled us to gain information about range of hadronic forces responsible for elastic, inelastic and total pp and anti-pp scattering. In the second part we present our alignment method for detectors inside the Roman pots of the TOTEM experiment. The method was used during Roman Pot tests on the SPS beam last year.

  20. High Energy Neutrinos from Recent Blazar Flares

    CERN Document Server

    Halzen, Francis

    2016-01-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In June 2015, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of forty for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  1. Italian Meeting on High Energy Physics

    CERN Document Server

    Nicrosini, Oreste; Vercesi, Valerio; IFAE 2006; Incontri Di Fisica Delle Alte Energie

    2007-01-01

    This book collects the Proceedings of the Workshop ``Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 April 2006". This is the fifth edition of a new series of meetings on fundamental research in particle physics and was attended by more than 150 researchers. Presentations, both theoretical and experimental, addressed the status of Standard Model and Flavour phyiscs, Neutrino and Cosmological topics, new insights beyond the present understanding of particle physics and cross-fertilization in areas such as medicine, biology, technological spin-offs and computing. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation in 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.

  2. Crystal collimator systems for high energy frontier

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  3. Surface Pyrolysis of High Energy Materials

    Directory of Open Access Journals (Sweden)

    Luigi Deluca

    1998-10-01

    Full Text Available The Arrhenius zero-order phenomenological pyrolysis law, commonly used in conjunction with the Vieille ballistic law to study pressure-driven burning of energetic materials, is revisited. Motivated by experimental and theoretical work performed in 1984 in this Laboratory , a relationship among several interplaying parameters is found under steady-state conditions. This relationship corresponds to the Jacobian of the pyrolysis sensitivity parameters used in the Zeldovich-Novozhilov approach. The Arrhenius pyrolysis is still expressed in terms of a global surface activation energy, but consistency with the experimental ballistic law may require an explicit pressure dependence as well. This conclusion is supported by a variety of arguments drawn from different areas. The linear dependence of the pre-exponential factor on surface activation energy (known as kinetic compensation is proved and extended to the pressure exponent, for any given experimental data set under steady burning. Experimental results are reported for about a dozen solid propellants of different nature. The effects of surface pyrolysis explicit pressure dependence, although modest on steady-state burning, are potentially far-reaching for unsteady regime and/or unstable burning. The paper is mainly focussed on pressure-driven burning and Arrhenius pyrolysis, but the implemented method is believed to apply in general. Thus, enforcing KTSS zero-order phenomenological pyrolysis with the Vieille ballistic law yields similar results and requires an explicit pressure dependence. In case, the Zeldovich ballistic law is enforced instead of the classical Vieille law, no explicit pressure dependence is required. The unifying concept for these different trends is the pyrolysis Jacobian as a consistency requirement between the implemented steady pyrolysis and ballistic laws."

  4. AGNs and microquasars as high energy gamma-ray sources

    CERN Document Server

    Paredes, J M

    2004-01-01

    The extragalactic analogs of the microquasars, the quasars, are strong gamma-ray emitters at GeV energies. It is expected that microquasars are also gamma-ray sources, because of the analogy with quasars and because theoretical models predict the high-energy emission. There are two microquasars that appear as the possible counterparts for two unidentified high-energy gamma-ray sources.

  5. Apparatus for advancing a wellbore using high power laser energy

    Science.gov (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  6. Tau Air-Showers Signature of Ultra High Energy Neutrinos

    CERN Document Server

    Fargion, D

    2001-01-01

    The discover of Ultra High Energy Neutrino of astrophysical nature may be already reached. Indeed upward and horizontal tau Air-showers emerging from the Earth crust or mountain chains offer the best and most powerful signal of Ultra High Energy UHE neutrinos nu_tau}, bar\

  7. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [University of Chicago

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  8. The Role of Computing in High-Energy Physics.

    Science.gov (United States)

    Metcalf, Michael

    1983-01-01

    Examines present and future applications of computers in high-energy physics. Areas considered include high-energy physics laboratories, accelerators, detectors, networking, off-line analysis, software guidelines, event sizes and volumes, graphics applications, event simulation, theoretical studies, and future trends. (JN)

  9. Search for high-energy neutrinos from dust obscured Blazars

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; Vries, K. D.; Gentile, G.; Scholten, O.; van Eijndhoven, N.

    2015-01-01

    The recent discovery of high-energy cosmic neutrinos by the IceCube neutrino observatory opens up a new field in physics, the field of neutrino astronomy. Using the IceCube neutrino detector we plan to search for high-energy neutrinos emitted from Active Galactic Nuclei (AGN), since AGN are believed

  10. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  11. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  12. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  13. EOS7Cm: An improved TOUGH2 module for simulating non-isothermal multiphase and multicomponent flow in CO2-H2S-CH4-brine systems with high pressure, temperature and salinity

    Science.gov (United States)

    Lei, Hongwu; Li, Jun; Li, Xiaochun; Jiang, Zhenjiao

    2016-09-01

    Understanding the non-isothermal multiphase and multicomponent flow in a CO2-H2S-CH4-brine system is of critical importance in projects such as CO2 storage in deep saline aquifers, natural gas extraction using CO2 as the displacement fluid, and heat extraction from hot dry rocks using CO2 as the working fluid. Numerical simulation is a necessary tool to evaluate the chemical evolution in these systems. However, an accurate thermodynamic model for CO2-H2S-CH4-brine systems appropriate for high pressure, temperature, and salinity is still lacking. This study establishes the mutual solubility model for CO2-H2S-CH4-brine systems based on the fugacity-activity method for phase equilibrium. The model can predict mutual solubilities for pressure up to 1000 bar for CO2 and CH4, and 200 bar for H2S, for temperature up to 200 °C, and for salinity up to 6 mol/kg water. We incorporated the new model into TOUGH2/EOS7C, forming a new improved module we call EOS7Cm. Compared to the original EOS7C, EOS7Cm considers the effects of H2S and covers a larger range of temperature and salinity. EOS7Cm is employed in five examples, including CO2 injection with and without impurities (CH4 and/or H2S) into deep aquifers, CH4 extraction from aquifers by CO2 injection, and heat extraction from hot dry rock. The results are compared to those from TOUGH2/ECO2N, EOS7C and CMG, agreement among which serves to verify EOS7Cm.

  14. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind ...

  15. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  16. High-energy photoproduction of neutral mesons

    CERN Document Server

    Charity, Tim

    1987-01-01

    This thesis presents results from the first full period of data-taking of the experiment WA69 at the Omega^'^ectrometer, CERN, Geneva. The experiment used a tagged photon beam of energy 60-180 GeV incident on a liquid hydrogen target to study photoproduction of hadronic states. The various components of the experiment are described, with particular emphasis on the electromagnetic calorimeters, and the associated offline software for event reconstruction and acceptance calculation. The performance of the outer calorimeter is discussed, and the pi^0 detection and reconstruction efficiency is examined by comparison with pi^{+/- } production. Searches for photoproduction of neutral meson states reveal a clear signal for the pi^0, eta^0 , and omega^0 mesons. The cross-section for elastic omega^0 production is estimated, and found to be consistent with the established value of 1 mub. The cross-section for inclusive pi^0 and eta^0 production is studied using the variable Feynman-x (x_{F }), and pi^0 production as a ...

  17. Organizing the Parameter Space of the Global 21-cm Signal

    CERN Document Server

    Cohen, Aviad; Barkana, Rennan; Lotem, Matan

    2016-01-01

    The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources, and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming halos; the efficiency, spectral energy distribution, and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range $z = 6-40$ for each of 181 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide s...

  18. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  19. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control

    Science.gov (United States)

    Wang, W. T.; Li, W. T.; Liu, J. S.; Zhang, Z. J.; Qi, R.; Yu, C. H.; Liu, J. Q.; Fang, M.; Qin, Z. Y.; Wang, C.; Xu, Y.; Wu, F. X.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2016-09-01

    By designing a structured gas density profile between the dual-stage gas jets to manipulate electron seeding and energy chirp reversal for compressing the energy spread, we have experimentally produced high-brightness high-energy electron beams from a cascaded laser wakefield accelerator with peak energies in the range of 200-600 MeV, 0.4%-1.2% rms energy spread, 10-80 pC charge, and ˜0.2 mrad rms divergence. The maximum six-dimensional brightness B6 D ,n is estimated as ˜6.5 ×1 015 A /m2/0.1 % , which is very close to the typical brightness of e beams from state-of-the-art linac drivers. These high-brightness high-energy e beams may lead to the realization of compact monoenergetic gamma-ray and intense coherent x-ray radiation sources.

  20. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.