WorldWideScience

Sample records for high chemical yield

  1. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I, E-mail: saiful@mail.ucf.edu [Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826 (United States)

    2010-04-23

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm{sup 2} V{sup -1} s{sup -1} respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  2. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  3. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene.

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-09-25

    Bernal-stacked (AB-stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electric field. Mechanical exfoliation can be used to produce AB-stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB- and randomly stacked structures. Herein we report a rational approach to produce large-area high-quality AB-stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H(2)/CH(4) ratio in a low-pressure CVD process to enable the continued growth of bilayer graphene. A high-temperature and low-pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90%) and high coverage (up to 99%). The electrical transport studies demonstrate that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB-stacked bilayer graphene with the highest carrier mobility exceeding 4000 cm(2)/V · s at room temperature, comparable to that of the exfoliated bilayer graphene.

  4. Simple efficient synthesis of strongly luminescent polypyrene with intrinsic conductivity and high carbon yield by chemical oxidative polymerization of pyrene.

    Science.gov (United States)

    Li, Xin-Gui; Liu, You-Wei; Huang, Mei-Rong; Peng, Sai; Gong, Ling-Zhi; Moloney, Mark G

    2010-04-26

    A wholly aromatic polypyrene was synthesized by direct chemical oxidative polymerization of pyrene with ferric chloride as oxidant in hexane/nitromethane. Successful synthesis of polypyrene was thoroughly confirmed by IR, UV/Vis, 1D (1)H NMR, 2D (1)H-(1)H COSY, 2D (1)H-(13)C HSQC, MALDI-TOF MS, elemental analysis, and X-ray diffraction methods. The results indicated that the polypyrene was formed mainly through dehydro coupling between 2- or 1- and 2'- or 1'-positions on pyrene rings having a degree of polymerization of around 24. The polypyrene was purified and then separated into THF-soluble (ca. 10 %) and THF-insoluble (ca. 90 %) fractions. Compared with insulating pyrene monomer, the polypyrene is a controllably conducting polymer that has low conductivity of 3.4x10(-8) S cm(-1) in its virgin state, moderate conductivity of 2.28x10(-4) S cm(-1) upon iodine doping, but much higher conductivity of up to 81.2 S cm(-1) after the insoluble polypyrene was heated up to 1300 degrees C in nitrogen with a high char yield of 70.6 %. In particular, the soluble polypyrene demonstrates much stronger visible color fluorescence and much lower toxicity than pyrene. The soluble polypyrene would be advantageous for detecting Fe(3+) with almost no interference of other metal ions. The soluble and insoluble polypyrene fractions have potential applications as intrinsically luminescent and highly conducting carbon materials, respectively.

  5. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol.

    Science.gov (United States)

    Xu, Youqiang; Chu, Haipei; Gao, Chao; Tao, Fei; Zhou, Zikang; Li, Kun; Li, Lixiang; Ma, Cuiqing; Xu, Ping

    2014-05-01

    The production of biofuels by recombinant Escherichia coli is restricted by the toxicity of the products. 2,3-Butanediol (2,3-BD), a platform and fuel bio-chemical with low toxicity to microbes, could be a promising alternative for biofuel production. However, the yield and productivity of 2,3-BD produced by recombinant E. coli strains are not sufficient for industrial scale fermentation. In this work, the production of 2,3-BD by recombinant E. coli strains was optimized by applying a systematic approach. 2,3-BD biosynthesis gene clusters were cloned from several native 2,3-BD producers, including Bacillus subtilis, Bacillus licheniformis, Klebsiella pneumoniae, Serratia marcescens, and Enterobacter cloacae, inserted into the expression vector pET28a, and compared for 2,3-BD synthesis. The recombinant strain E. coli BL21/pETPT7-EcABC, carrying the 2,3-BD pathway gene cluster from Enterobacter cloacae, showed the best ability to synthesize 2,3-BD. Thereafter, expression of the most efficient gene cluster was optimized by using different promoters, including PT7, Ptac, Pc, and Pabc. E. coli BL21/pET-RABC with Pabc as promoter was superior in 2,3-BD synthesis. On the basis of the results of biomass and extracellular metabolite profiling analyses, fermentation conditions, including pH, agitation speed, and aeration rate, were optimized for the efficient production of 2,3-BD. After fed-batch fermentation under the optimized conditions, 73.8g/L of 2,3-BD was produced by using E. coli BL21/pET-RABC within 62h. The values of both yield and productivity of 2,3-BD obtained with the optimized biological system are the highest ever achieved with an engineered E. coli strain. In addition to the 2,3-BD production, the systematic approach might also be used in the production of other important chemicals through recombinant E. coli strains.

  6. Specific yield, High Plains aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000...

  7. Accurate fast method with high chemical yield for determination of uranium isotopes ({sup 234}U, {sup 235}U, {sup 238}U) in granitic samples using alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, Laila A., E-mail: lailagurgus@yahoo.com; Farag, Nagdy M.; Salim, Adham K.

    2015-03-21

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St{sub 4} (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO{sub 4}+H{sub 2}SO{sub 4}+NH{sub 4}OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6. - Highlights: • Radiochemical technique for analysis uranium isotopes. • Alpha-particle spectrometry is performed after a radiochemical procedure. • Electrodeposition conditions for preparation of alpha uranium source. • Using {sup 232}U (t{sub 1/2}=70.6a, E{sub α}=5320.24 keV, intensity=69.1%) as an internal tracer makes it a highly reliable technique.

  8. A New Type of Multielements-Doped, Carbon-based Materials Characterized by High-thermoconductiv ity, Low Chemical Sputtering, Low RES Yield and Exposure to Plasma

    Institute of Scientific and Technical Information of China (English)

    许增裕; 刘翔; 谌继明; 王明旭; 宋进仁; 翟更太; 李承新

    2002-01-01

    Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials developed are presented along with experimental re sults of their properties. The results indicate a decrease in chemical sputtering yield by one order of magnitude, a decrease in both thermal shock resistance and radiation-enhanced sublimation, an evidently lower temperature desorption spectrum, and combined properties of exposing to plasma.

  9. Accurate fast method with high chemical yield for determination of uranium isotopes (234U, 235U, 238U) in granitic samples using alpha spectroscopy

    Science.gov (United States)

    Guirguis, Laila A.; Farag, Nagdy M.; Salim, Adham K.

    2015-03-01

    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St4 (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO4+H2SO4+NH4OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6.

  10. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    Science.gov (United States)

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-05-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.

  11. Using Simulation to Increase Yields in Chemical Engineering

    OpenAIRE

    William C. Conley

    2003-01-01

    Trying to increase the yields or profit or efficiency (less pollution) of chemical processes is a central goal of the chemical engineer in theory and practice. Certainly sound training in chemistry, business and pollution control help the engineer to set up optimal chemical processes. However, the ever changing demands of customers and business conditions, plus the multivariate complexity of the chemical business can make optimization challenging. Mathematical tools such as statistics and lin...

  12. High-throughput analysis of chemical components and theoretical ethanol yield of dedicated bioenergy sorghum using dual-optimized partial least squares calibration models.

    Science.gov (United States)

    Li, Meng; Wang, Jun; Du, Fu; Diallo, Boubacar; Xie, Guang Hui

    2017-01-01

    Due to its chemical composition and abundance, lignocellulosic biomass is an attractive feedstock source for global bioenergy production. However, chemical composition variations interfere with the success of any single methodology for efficient bioenergy extraction from diverse lignocellulosic biomass sources. Although chemical component distributions could guide process design, they are difficult to obtain and vary widely among lignocellulosic biomass types. Therefore, expensive and laborious "one-size-fits-all" processes are still widely used. Here, a non-destructive and rapid analytical technology, near-infrared spectroscopy (NIRS) coupled with multivariate calibration, shows promise for addressing these challenges. Recent advances in molecular spectroscopy analysis have led to methodologies for dual-optimized NIRS using sample subset partitioning and variable selection, which could significantly enhance the robustness and accuracy of partial least squares (PLS) calibration models. Using this methodology, chemical components and theoretical ethanol yield (TEY) values were determined for 70 sweet and 77 biomass sorghum samples from six sweet and six biomass sorghum varieties grown in 2013 and 2014 at two study sites in northern China. Chemical components and TEY of the 147 bioenergy sorghum samples were initially analyzed and compared using wet chemistry methods. Based on linear discriminant analysis, a correct classification assignment rate (either sweet or biomass type) of 99.3% was obtained using 20 principal components. Next, detailed statistical analysis demonstrated that partial optimization using sample set partitioning based on joint X-Y distances (SPXY) for sample subset partitioning enhanced the robustness and accuracy of PLS calibration models. Finally, comparisons between five dual-optimized strategies indicated that competitive adaptive reweighted sampling coupled with the SPXY (CARS-SPXY) was the most efficient and effective method for improving

  13. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A

    2016-01-01

    Soil fertility decline is a major biophysical constraint to crop production in Sub-Saharan Africa. Therefore, there is an urgent need for sustainable soil fertility replenishment strategies to improve soil quality for enhanced crop production. In a laboratory incubation experiment, biochar (2......% and 5%) and cow dung (20 tons ha-1) were applied singly, and 2% biochar was applied in combination with two rates of cow dung (10 and 20 tons ha-1) in a coastal savanna soil repacked at a bulk density of 1.4 g cm-3 at a constant soil water filled capacity of 60% for 40 days. The same treatments were...... imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...

  14. Using Simulation to Increase Yields in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    William C. Conley

    2003-06-01

    Full Text Available Trying to increase the yields or profit or efficiency (less pollution of chemical processes is a central goal of the chemical engineer in theory and practice. Certainly sound training in chemistry, business and pollution control help the engineer to set up optimal chemical processes. However, the ever changing demands of customers and business conditions, plus the multivariate complexity of the chemical business can make optimization challenging. Mathematical tools such as statistics and linear programming have certainly been useful to chemical engineers in their pursuit of optimal efficiency. However, some processes can be modeled linearly and some can not. Therefore, presented here will be an industrial chemical process with potentially five variables affecting the yield. Data from over one hundred runs of the process has been collected, but it is not known initially whether the yield relationship is linear or nonlinear. Therefore, the CTSP multivariate correlation coefficient will be calculated for the data to see if a relationship exists among the variables. Then once it is proven that there is a statistically significant relationship, an appropriate linear or nonlinear equation can be fitted to the data, and it can be optimized for use in the chemical plant.

  15. PREOVULATORY FOLLICLE DEVELOPMENT IN HIGH YIELDING COWS

    Directory of Open Access Journals (Sweden)

    Radovan Tomášek

    2013-06-01

    Full Text Available The aim of the study was to examine the development of preovulatory follicles in pregnant and non-pregnant high yielding cows. The treatment by supergestran and oestrophan was used to synchronize the estrous cycle. Ovaries were monitored by transrectal ultrasonography. The linear increase of preovulatory follicles was observed in pregnant (P < 0,001 and non-pregnant (P < 0,001 cows during 8 days before ovulation. In conclusion, preovulatory follicles in pregnant and non-pregnant high yielding cows developed similarly.

  16. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  17. Chemical intervention in plant sugar signalling increases yield and resilience

    Science.gov (United States)

    Griffiths, Cara A.; Sagar, Ram; Geng, Yiqun; Primavesi, Lucia F.; Patel, Mitul K.; Passarelli, Melissa K.; Gilmore, Ian S.; Steven, Rory T.; Bunch, Josephine; Paul, Matthew J.; Davis, Benjamin G.

    2016-12-01

    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function.

  18. Quantifying the uncertainties of chemical evolution studies. II. Stellar yields

    CERN Document Server

    Romano, D; Tosi, M; Matteucci, F

    2010-01-01

    This is the second paper of a series which aims at quantifying the uncertainties in chemical evolution model predictions related to the underlying model assumptions. Specifically, it deals with the uncertainties due to the choice of the stellar yields. We adopt a widely used model for the chemical evolution of the Galaxy and test the effects of changing the stellar nucleosynthesis prescriptions on the predicted evolution of several chemical species. We find that, except for a handful of elements whose nucleosynthesis in stars is well understood by now, large uncertainties still affect the model predictions. This is especially true for the majority of the iron-peak elements, but also for much more abundant species such as carbon and nitrogen. The main causes of the mismatch we find among the outputs of different models assuming different stellar yields and among model predictions and observations are: (i) the adopted location of the mass cut in models of type II supernova explosions; (ii) the adopted strength ...

  19. A cytopreparatory method for cerebrospinal fluid in which the cell yield is high and the fluid is saved for chemical analysis.

    Science.gov (United States)

    Tutuarima, J A; Hische, E A; Sylva-Steenland, R M; van der Helm, H J

    1988-01-01

    A method for the concentration of cells from cerebrospinal fluid is described. An adaptation of a commercial cytochamber, consisting of a holder that fixes a disposable chamber directly on a microscope slide, was used. The cells were spun down in a conventional swing-out centrifuge, which was provided with a bucket for the cytochamber system. After removing most of the supernatant with a pipette, the remaining fluid was absorbed by means of a suction device consisting of a disposable pipette tip covered with a piece of Leukopor and filled with Sephadex G10 beads. The method gives a high recovery of cells (90%), together with a good preservation of cell morphology, and leaves about 80% of the fluid available for analysis of the soluble components.

  20. Methods for high yield production of terpenes

    Science.gov (United States)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  1. Methods for high yield production of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  2. Interpolation methods for thematic maps of soybean yield and soil chemical attributes

    National Research Council Canada - National Science Library

    Nelson Miguel Betzek; Eduardo Godoy de Souza; Claudio Leones Bazzi; Ricardo Sobjak; Vanderlei Artur Bier; Erivelto Mercante

    2017-01-01

    ...) in the construction of thematic maps of soybean yield and soil chemical attributes. A set of data referred to 55 sampling units for the construction maps of soybean yield and of eight soil chemical attributes, by different interpolation methods...

  3. Yield and chemical composition of fractions from fermented shrimp biowaste.

    Science.gov (United States)

    Narayan, Bhaskar; Velappan, Suresh Puthanveetil; Zituji, Sakhare Patiram; Manjabhatta, Sachindra Nakkerike; Gowda, Lalitha Ramakrishna

    2010-01-01

    Chemical composition of chitinous residue and fermentation liquor fractions, obtained from fermented shrimp biowaste, was evaluated in order to explore their potential for further utilization. Lyophilization of the liquor fraction obtained after fermentation resulted in a powder rich in both protein (30%) and carotenoids (217.18 +/- 2.89 microg/g). The yield of chitinous residue was 44% (w/w) whereas the yield of lyophilized powder was >25% (w/v). About 69% of total carotenoids were recovered by fermentation. Fermentation resulted in the removal of both protein as well as ash content from the shrimp biowaste, as indicated by approximately 92% deproteination and >76% demineralization, respectively. Post fermentation, the residue had a chitin content of >90%. The lyophilized liquor fraction had all the essential amino acids (except threonine) in quantities comparable to Food & Agriculture Organization/World Health Organization reference protein. The composition of fermentation liquor is indicative of its potential for application as an amino acid supplement in aquaculture feed formulations.

  4. Combining high biodiversity with high yields in tropical agroforests

    Science.gov (United States)

    Clough, Yann; Barkmann, Jan; Juhrbandt, Jana; Kessler, Michael; Wanger, Thomas Cherico; Anshary, Alam; Buchori, Damayanti; Cicuzza, Daniele; Darras, Kevin; Putra, Dadang Dwi; Erasmi, Stefan; Pitopang, Ramadhanil; Schmidt, Carsten; Schulze, Christian H.; Seidel, Dominik; Steffan-Dewenter, Ingolf; Stenchly, Kathrin; Vidal, Stefan; Weist, Maria; Wielgoss, Arno Christian; Tscharntke, Teja

    2011-01-01

    Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland. PMID:21536873

  5. Low Odor, High Yield Kraft Pulping

    Energy Technology Data Exchange (ETDEWEB)

    W.T. McKean

    2000-12-15

    In laboratory cooks pure oxygen was profiled into the circulation line of a batch digester during two periods of the cooking cycle: The first injection occurred during the heating steps for the purpose of in-situ generation of polysulfide. This chip treatment was studied to explore stabilization against alkaline induced carbohydrate peeling and to increase pulp yield. Under optimum conditions small amounts of polysulfide were produced with yield increase of about 0.5% These increases fell below earlier reports suggesting that unknown differences in liquor composition may influence the relative amounts of polysulfide and thiosulfate generated during the oxidation. Consequently, further studies are required to understand the factors that influence the ratios of those two sulfur species.

  6. Integrated process for high conversion and high yield protein PEGylation.

    Science.gov (United States)

    Pfister, David; Morbidelli, Massimo

    2016-08-01

    Over the past decades, PEGylation has become a powerful technique to increase the in vivo circulation half-life of therapeutic proteins while maintaining their activity. The development of new therapeutic proteins is likely to require further improvement of the PEGylation methods to reach even better selectivity and yield for reduced costs. The intensification of the PEGylation process was investigated through the integration of a chromatographic step in order to increase yield and conversion for the production of mono-PEGylated protein. Lysozyme was used as a model protein to demonstrate the feasibility of such approach. In the integrated reaction/separation process, chromatography was used as fractionation technique in order to isolate and recycle the unreacted protein from the PEGylated products. This allows operating the reactor with short reaction times so as to minimize the production of multi-PEGylated proteins (i.e., conjugated to more than one polymer). That is, the reaction is stopped before the desired product (i.e., the mono-PEGylated protein) can further react, thus leading to limited conversion but high yield. The recycling of the unreacted protein was then considered to drive the protein overall conversion to completion. This approach has great potential to improve processes whose yield is limited by the further reaction of the product leading to undesirable by-products. Biotechnol. Bioeng. 2016;113: 1711-1718. © 2016 Wiley Periodicals, Inc.

  7. effects of preharvest treatments on yield and chemical composition ...

    African Journals Online (AJOL)

    Administrator

    nations of ComCat® with the two forms of fertilisation and the control on yield and quality of .... urea. Manure, DAP and half of the nitrogen fertiliser were incorporated to the experimental ..... stage and slow release of nitrogen from manure.

  8. Aqueous fractionation yields chemically stable lupin protein isolates

    NARCIS (Netherlands)

    Berghout, J.A.M.; Marmolejo-Garcia, C.; Berton-Carabin, C.C.; Nikiforidis, C.V.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    The chemical stability of lupin protein isolates (LPIs) obtained through aqueous fractionation (AF, i.e. fractionation without the use of an organic solvent) at 4 °C or 20 °C was assessed. AF of lupin seeds results in LPIs containing 2 wt.% oil. This oil is composed of mono- and poly-unsaturated fat

  9. Improvement of FK506 Production in the High-Yielding Strain Streptomyces sp. RM7011 by Engineering the Supply of Allylmalonyl-CoA Through a Combination of Genetic and Chemical Approach.

    Science.gov (United States)

    Mo, SangJoon; Lee, Sung-Kwon; Jin, Ying-Yu; Suh, Joo-Won

    2016-02-01

    FK506, a widely used immunosuppressant, is a 23-membered polyketide macrolide that is produced by several Streptomyces species. FK506 high-yielding strain Streptomyces sp. RM7011 was developed from the discovered Streptomyces sp. KCCM 11116P by random mutagenesis in our previous study. The results of transcript expression analysis showed that the transcription levels of tcsA, B, C, and D were increased in Streptomyces sp. RM7011 by 2.1-, 3.1-, 3.3-, and 4.1- fold, respectively, compared with Streptomyces sp. KCCM 11116P. The overexpression of tcsABCD genes in Streptomyces sp. RM7011 gave rise to approximately 2.5-fold (238.1 μg/ml) increase in the level of FK506 production compared with that of Streptomyces sp. RM7011. When vinyl pentanoate was added into the culture broth of Streptomyces sp. RM7011, the level of FK506 production was approximately 2.2-fold (207.7 μg/ml) higher than that of the unsupplemented fermentation. Furthermore, supplementing the culture broth of Streptomyces sp. RM7011 expressing tcsABCD genes with vinyl pentanoate resulted in an additional 1.7-fold improvement in the FK506 titer (498.1 μg/ml) compared with that observed under nonsupplemented condition. Overall, the level of FK506 production was increased approximately 5.2-fold by engineering the supply of allylmalonyl-CoA in the high-yielding strain Streptomyces sp. RM7011, using a combination of overexpressing tcsABCD genes and adding vinyl pentanoate, as compared with Streptomyces sp. RM7011 (95.3 μg/ml). Moreover, among the three precursors analyzed, pentanoate was the most effective precursor, supporting the highest titer of FK506 in the FK506 high-yielding strain Streptomyces sp. RM7011.

  10. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Science.gov (United States)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  11. High pressure intensification of cassava resistant starch (RS3) yields

    OpenAIRE

    2015-01-01

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly in...

  12. High-biomass sorghum yield estimate with aerial imagery

    Science.gov (United States)

    Sui, Ruixiu; Hartley, Brandon E.; Gibson, John M.; Yang, Chenghai; Thomasson, J. Alex; Searcy, Stephen W.

    2011-01-01

    To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, high-biomass sorghum is well-suited to achieving this goal because it requires less water per unit dry biomass and can produce very high biomass yields. In order to make biofuels economically competitive with fossil fuels it is essential to maximize production efficiency throughout the system. The goal of this study was to use remote sensing technologies to optimize the yield and harvest logistics of high-biomass sorghum with respect to production costs based on spatial variability within and among fields. Specific objectives were to compare yield to aerial multispectral imagery and develop predictive relationships. A 19.2-ha high-biomass sorghum field was selected as a study site and aerial multispectral images were acquired with a four-camera imaging system on July 17, 2009. Sorghum plant samples were collected at predetermined geographic coordinates to determine biomass yield. Aerial images were processed to find relationships between image reflectance and yield of the biomass sorghum. Results showed that sorghum biomass yield in early August was closely related (R2 = 0.76) to spectral reflectance. However, in the late season the correlations between the biomass yield and spectral reflectance were not as positive as in the early season. The eventual outcome of this work could lead to predicted-yield maps based on remotely sensed images, which could be used in developing field management practices to optimize yield and harvest logistics.

  13. Willow yield is highly dependent on clone and site

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Lærke, Poul Erik

    2014-01-01

    Use of high-yielding genotypes is one of the means to achieve high yield and profitability in willow (Salix spp.) short rotation coppice. This study investigated the performance of eight willow clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) on five Danish sites......, differing considerably in soil type, climatic conditions and management. Compared to the best clone, the yield was up to 36 % lower for other clones across sites and up to 51 % lower within sites. Tordis was superior to other clones with dry matter yields between 5.2 and 10.2 Mg ha−1 year−1 during the first...... 3-year harvest rotation, and it consistently ranked as the highest yielding clone on four of the five sites and not significantly lower than the highest yielding clone on the fifth site. The ranking of the other clones was more dependent on site with significant interaction between clone and site...

  14. Nutritive Equilibrium in Rice Plant Populations for High Yield

    Institute of Scientific and Technical Information of China (English)

    WANGBOLUN; LIUXINAN; 等

    1999-01-01

    The effects of nitrogen,phosphorus and potassium application level,seed rate and transplanting density on the growth and development of rice plants were studied to find out nutrient status in high-yielding rice plants and to increase grain yield by adequate fertilization.There was an equilibrium relationship among nutrient elements for high-yielding rice plant populations.The equilibrium index of nutrient amount ,content and distribution in high-yielding rice plants should be generally greater than-2 but less than 2.The optimum nutritive proportion of nitrogen:phosphorus:potassium assimilated by the plants was about 10:2:9 at the ripening stage.But the content and the proportion varied with the growth stages,Therefore,the nutrient in rice plant populations should be in a dynamic equilibrium.So as to achieve high yield.

  15. Chemical description and essential oil yield variability of different accessions of Salvia lavandulifolia.

    Science.gov (United States)

    Usano-Alemany, Jaime; Palá-Paúl, Jesús; Rodríguez, Manuel Santa-Cruz; Herraiz-Peñalver, David

    2014-02-01

    The amount and chemical composition of essential oils are crucial for the modulation of the flavor, scent and therapeutic properties of aromatic and medicinal plants. The aim of this study was to evaluate the effects of phenology and weather conditions on the essential oil yield obtained from the aerial parts of Salvia lavandulifolia Vahl. Besides, we tried to carry out an approach to the chemical composition at the time of full bloom. Essential oil production of several accessions was monitored throughout the whole phenological cycle, both, at the original location growing wild and at the experimental plot as cultivated plants. Local pedoclimatic conditions seem to be crucial for the plant essential oil production. Our results showed high conditioning rates from both yearly climatic conditions and developmental stage of the plants. Maximum yield production was reported at the full seed maturation stage (average 1.74%) and after a slight dry period (average 2.16%). Phytochemical differences were maintained when plants were forced to grow under common pedoclimatic conditions. Thereby, essential oil analysis showed some populations formed by clearly distinct individuals while others had more homogenous plants. Compounds such alpha-pinene, beta-pinene + myrcene, limonene, 1,8-cineol, camphor and beta-caryophyllene were the main compounds of the essential oils of S. lavandulifolia.

  16. High yield, single droplet electrode arrays for nanoscale printed electronics.

    Science.gov (United States)

    Caironi, Mario; Gili, Enrico; Sakanoue, Tomo; Cheng, Xiaoyang; Sirringhaus, Henning

    2010-03-23

    In this work we demonstrate two building blocks of a scalable manufacturing technology for nanoscale electronic devices based on direct-write printing: an architecture for high-yield printing of electrode gaps with 100 nm dimension and a low-temperature silver complex ink for integration of organic materials with high conductivity metal interconnects. We use single printed droplets that are made to dewet slowly from each other to allow reliable, high yield patterning even in the presence of certain surface defects.

  17. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and c

  18. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and

  19. [Study on High-yield Cultivation Measures for Arctii Fructus].

    Science.gov (United States)

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  20. High pressure intensification of cassava resistant starch (RS3) yields.

    Science.gov (United States)

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.

  1. Hadron yields, the chemical freeze-out and the QCD phase diagram

    CERN Document Server

    Andronic, A; Redlich, K; Stachel, J

    2016-01-01

    We present the status of the chemical freeze-out, determined from fits of hadron yields with the statistical hadronization (thermal) model, with focus on the data at the LHC. A description of the yields of hadrons containing light quarks as well as the application of the model for the production of the J/$\\psi$ meson is presented. The implications for the QCD phase diagram are discussed.

  2. Chemical effect on the K shell fluorescence yield of Fe, Mn, Co, Cr and Cu compounds

    Indian Academy of Sciences (India)

    U Turgut

    2004-11-01

    Chemical effects on the K shell fluorescence yields of Fe, Mn, Co, Cr and Cu compounds were investigated. Samples were excited using 59.5 keV energy photons from a 241Am radioisotope source. K X-rays emitted by samples were counted by a Si(Li) detector with a resolution 160 eV at 5.9 keV. Chemical effects on the K shell fluorescence yields (K) for Fe, Mn, Co, Cr and Cu compounds were observed. The values are compared with theoretical, semiempirical fit and experimental ones for the pure elements.

  3. BRS Pampeira: new irrigated rice cultivar with high yield potential

    Directory of Open Access Journals (Sweden)

    Ariano Martins de Magalhães Júnior

    2016-12-01

    Full Text Available BRS Pampeira is a rice cultivar developed by Embrapa, recommended for irrigated cultivation in Brazil. It shows modern architecture, with high tillering and tolerance to lodging. It stands out for its high yield potential, medium cycle and good grain quality.

  4. Comparison the effect of organic and chemical fertilizers on yield and essential oil percentage of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S.M.K. Tahami

    2016-04-01

    Full Text Available In order to have a sustainable agriculture it is necessary to use environmental friendly inputs to improve ecological aspects of environment. Basil (Ocimum basilicum L. is a medicinal and vegetable crop which is cultivated in different parts of the world. An experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in year 2009. A complete randomized block design with six treatments, and three replications was used. The treatments were: control (no fertilizer, cow manure, sheep manure, hen manure, vermin-compost and NPK fertilizers. Results showed that all studied organic manures were high in measured characters in compare with chemical fertilizer. The highest plant height, leaf yield, fresh and dry matter were obtained at vermicompost. Treatments have no significant affect on Essential oil percentage. The highest essential oil yield was obtained in cow manure treatments. Third cut and the first cut had the maximum and the minimum of leaf yield, fresh and dry shoot yield, respectively. Essential oil percentage in the first cut was significantly more than other cuts, but essential oil yield, were the highest in third cut because this cut produced highest leaf yield. There was no significant difference between chemical fertilizers and control treatment in all characters except green area index and fresh and dry leaf weight in a plant.

  5. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    CERN Document Server

    Andrews, Brett H; Schönrich, Ralph; Johnson, Jennifer A

    2016-01-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the IMF, the SNIa delay time distribution, stellar yields, and mixing of stellar populations. Using flexCE, a new, flexible one-zone chemical evolution code, we investigate the effects of individual parameters and the trade-offs between them. Two of the most important parameters are the SFE and outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] that do not match the observed bimodality in this plane. A mix of one-zone models with variations in their inflow timescales and outflow mass-loading parameters, as motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the high- and low-alpha sequences b...

  6. Nonstop Selection for High and Stable Crop Yield by Two Prognostic Equations to Reduce Yield Losses

    Directory of Open Access Journals (Sweden)

    Dionysia A. Fasoula

    2012-09-01

    Full Text Available Yield losses occurring at the field level, whether due to plant diseases or abiotic stresses, reveal reduced stability of the crop yield potential. The paper argues that the stability of crop yield potential is a trait with a clear genetic component, which can be successfully selected for at the single-plant level and incorporated into high-yielding cultivars. Two novel selection equations with prognostic power are presented, capable to objectively phenotype and evaluate individual plants in real field conditions in the absence of the masking effects of interplant competition and soil heterogeneity. The equations predict performance at the crop stand through the key concept of coefficient of homeostasis and are equally useful for early generation selection and for nonstop selection within finished cultivars in order to continuously incorporate the adaptive (genetic or epigenetic responses of plants. Exploitation of adaptive responses acquires particular importance in view of the climate change effects on crop productivity and the changing biotic or abiotic micro-environments. Cotton is used as a case study to highlight the potential of nonstop selection for increasing crop yield and for the gradual build-up of disease resistance. In addition, the paper envisions and proposes the formation of international networks of researchers focusing on specific diseases as, for example, the cereal root-rot or the cotton Verticillium wilt that will concurrently use the proposed strategy in their respective environments to select for resistant genotypes, while gaining a deeper understanding of the nature of the genetic or epigenetic changes at the phenotypic and genomic levels.

  7. Simulation of DSB yield for high LET radiation.

    Science.gov (United States)

    Friedrich, T; Durante, M; Scholz, M

    2015-09-01

    A simulation approach for the calculation of the LET-dependent yield of double-strand breaks (DSB) is presented. The model considers DSB formed as two close-lying single-strand breaks (SSB), whose formation is mediated by both intra-track processes (single electrons) or at local doses larger than about 1000 Gy in particle tracks also by electron inter-track processes (two independent electron tracks). A Monte Carlo algorithm and an analytical formula for the DSB yield are presented. The approach predicts that the DSB yield is enhanced after charged particle irradiation of high LET compared with X-ray or gamma radiation. It is used as an inherent part of the local effect model, which is applied to estimate the relative biological effectiveness of high LET radiation.

  8. Executive Summary High-Yield Scenario Workshop Series Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

    2009-12-01

    To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate “High-Yield Scenario” (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

  9. Chemical insights, explicit chemistry and yields of secondary organic aerosol from methylglyoxal and glyoxal

    Science.gov (United States)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-02-01

    Atmospherically abundant, volatile water soluble organic compounds formed through gas phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3) and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud relevant concentrations (∼ 10-6-∼ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ∼ 120% for glyoxal and ∼ 80% for methylglyoxal. Oligomerization of unreacted aldehydes during droplet evaporation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (∼ 10 M), the major products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ∼ 90% for both glyoxal and methylglyoxal.

  10. Milk yield and chemical composition of sheep milk in Srednostaroplaninska and Tetevenska breeds

    OpenAIRE

    Gerchev G.; Mihaylova G.

    2012-01-01

    The study was conducted from April to July on pastures located at different altitudes and of different sward composition during the milking period of Srednostaroplaninska and Tetevenska sheep. Morning bulk milk was sampled for analysis monthly between April and end of July. The purpose of the study was to establish the milk yield and to investigate the chemical composition of sheep milk obtained from Srednostaroplaninska and Tetevenska breeds reared on past...

  11. Biomass production, yield and chemical composition of peppermint essential oil using different organic fertilizer sources

    OpenAIRE

    Costa, Andressa Giovannini; Bertolucci,Suzan Kelly Vilela; Chagas,Jorge Henrique; Ferraz, Elza de Oliveira [UNESP; Pinto,José Eduardo Brasil Pereira

    2013-01-01

    Mentha x piperita L. is an aromatic and medicinal species belonging to the family Lamiaceae that is popularly known as peppermint. The aim of this study was to evaluate the effects of organic fertilizer sources on the biomass production, yield and chemical composition of peppermint (Mentha piperita L.) essential oil. The experiment was conducted using a completely randomized design (CRD) with a 2 x 5 factorial scheme, two sources of manure (cattle and poultry), five doses (0, 3, 6, 9 and 12 k...

  12. Stereotypical behaviour at high yielding dairy cows farms - "tongue rolling"

    OpenAIRE

    Prodanović Radiša; Kirovski Danijela; Vujanac Ivan; Nešić Ksenija; Janevski Aleksandar; Marić Jovan; Kukrić Vladimir

    2013-01-01

    The objective of this work was to determine if there was a connection between stereotypical behaviour of high yielding dairy cows breeds and values of biochemical blood parameters. The investigation was carried out in august at loose-housing type of farms, in 30 heads of cattle from four groups: drying (15 to 7 days before calving), puerperium (up to 40 days after calving, early lactation (up to 120 days after calving) and late lactation (200 to 300 days af...

  13. Processing yield and chemical composition of rainbow trout (Oncorhynchus mykiss with regard to body weight

    Directory of Open Access Journals (Sweden)

    Maria Luiza Rodrigues de Souza

    2015-05-01

    Full Text Available The influence of weight (W category of the rainbow trout on processing yield and chemical composition of the entire eviscerated fish and fish fillet was analyzed. A completely randomized design was employed for processing variables (W1 = 300 to 370 g and W2 = 371 to 440 coupled to a 2 x 2 factorial scheme for the chemical composition (W1 and W2 and forms of presentation: fillet and whole eviscerated fish. W1 showed higher yield for entire eviscerated fish (83.00% and head (13.27%, but a lower yield for the viscera (17.00%, when compared to W2. We did not affect abdominal muscle yield, fillet with or without skin, skin percentage and residues. There were significant differences between W for moisture (W1 = 72.30% and W2 = 71.15% and lipids (CP1 = 7.96% and CP2 = 9.04% rates. Fillet moisture contents (73.74% and crude protein (19.05% were higher (p < 0.01 than for entire eviscerated fish (69.71% and 17.81%, respectively. Ash (2.15% and lipid (10.48% rates were higher (p < 0.01 for entire fish when compared to those of fillets (1.16% and 6.52%, respectively. The slaughter of fish weighing between 300 and 370 g and their fillets are more adequate for the market.

  14. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  15. Evolution and chemical yields of AGB stars: effects of low-temperature opacities

    CERN Document Server

    Ventura, Paolo

    2009-01-01

    The studies focused on the Thermally-Pulsing Asymptotic Giant Branch phase experienced by low- and intermediate-mass stars are extremely important in many astrophysical contexts. In particular, a detailed computation of their chemical yields is essential for several issues, ranging from the chemical evolution of galaxies, to the mechanisms behind the formation of globular clusters. Among all the uncertainties affecting the theoretical modelling of this phase, and described in the literature, it remains to be fully clarified which results are severely affected by the use of inadequate low-temperature opacities, that are in most cases calculated on the basis of the original chemical composition of the stars, and do not consider the changes in the surface chemistry due to the occurrence of the third dredge-up and hot-bottom burning. Our investigation is aimed at investigating this point. By means of full evolutionary models including new set of molecular opacities computed specifically with the AESOPUS tool, we ...

  16. Development of high-yield influenza A virus vaccine viruses

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J.S.; Nidom, Chairul A.; Ghedin, Elodie; Macken, Catherine A.; Fitch, Adam; Imai, Masaki; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin–Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development. PMID:26334134

  17. Laser heating challenges of high yield MagLIF targets

    Science.gov (United States)

    Slutz, Stephen; Sefkow, Adam; Vesey, Roger

    2014-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. Chemical insights, explicit chemistry and yields of secondary organic aerosol from methylglyoxal and glyoxal

    Directory of Open Access Journals (Sweden)

    Y. B. Lim

    2013-02-01

    Full Text Available Atmospherically abundant, volatile water soluble organic compounds formed through gas phase chemistry (e.g., glyoxal (C2, methylglyoxal (C3 and acetic acid have great potential to form secondary organic aerosol (SOA via aqueous chemistry in clouds, fogs and wet aerosols. This paper (1 provides chemical insights into aqueous-phase OH radical-initiated reactions leading to SOA formation from methylglyoxal and (2 uses this and a previously published glyoxal mechanism (Lim et al., 2010 to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012. This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010, and is used to simulate the profiles of products and to estimate SOA yields.

    At cloud relevant concentrations (∼ 10−6–∼ 10−3 M; Munger et al., 1995 of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass are ∼ 120% for glyoxal and ∼ 80% for methylglyoxal. Oligomerization of unreacted aldehydes during droplet evaporation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (∼ 10 M, the major products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass are ∼ 90% for both glyoxal and methylglyoxal.

  19. High Yield Preparation Method of Thermally Stable Cellulose Nanofibers

    Directory of Open Access Journals (Sweden)

    Hongli Zhu

    2014-02-01

    Full Text Available The preparation of nanocellulose fibers (NFs is achieved through pretreating cellulose in a NaOH/urea/thiourea solution, and then defibrillating the fibers through ultrasonication, resulting in a high yield of 85.4%. Extensive work has been done to optimize the preparation parameters. The obtained NFs are about 30 nm in diameter with cellulose II crystal structure. They possess high thermal stability with an onset of thermal degradation at 270 °C and a maximum degradation temperature of 370 °C. Such NFs have potential applications in transistors and batteries with high thermal stability. NFs-H were obtained by homogenizing undefibrillated fibers separated from the preparation of NFs. NFs-H were also in cellulose II crystal form but with lower thermal stability due to low crystallinity. They can be applied to make highly transparent paper.

  20. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  1. Projecting crop yield in northern high latitude area.

    Science.gov (United States)

    Matsumura, Kanichiro

    2014-01-01

    Changing climatic conditions on seasonal and longer time scales influence agricultural production. Improvement of soil and fertilizer is a strong factor in agricultural production, but agricultural production is influenced by climate conditions even in highly developed countries. It is valuable if fewer predictors make it possible to conduct future projections. Monthly temperature and precipitation, wintertime 500hPa geopotential height, and the previous year's yield are used as predictors to forecast spring wheat yield in advance. Canadian small agricultural divisions (SAD) are used for analysis. Each SAD is composed of a collection of Canadian Agricultural Regions (CAR) of similar weather and growing conditions. Spring wheat yields in each CAR are forecast from the following variables: (a) the previous year's yield, (b) earlier stages of the growing season's climate conditions and, (c) the previous year's wintertime northern hemisphere 500hPa geopotential height field. Arctic outflow events in the Okanagan Valley in Canada are associated with episodes of extremely low temperatures during wintertime. Principal component analysis (PCA) is applied for wintertime northern hemisphere 500hPa geopotential height anomalies. The spatial PCA mode1 is defined as Arctic Oscillation and it influences prevailing westerlies. The prevailing westerlies meanders and influences climatic conditions. The spatial similarity between wintertime top 5 Arctic outflow event year's composites of 500hPa geopotential height anomalies and mode 3's spatial pattern is found. Mode 3's spatial pattern looks like the Pacific/North American (PNA) pattern which describes the variation of atmospheric circulation pattern over the Pacific Ocean and North America. Climate conditions from April to June, May to July, mode 3's time coefficients, and previous year's yield are used for forecasting spring wheat yield in each SAD. Cross-validation procedure which generates eight sets of models for the eight

  2. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Yang, Jungwoo; Kim, Kyoung Heon

    2017-01-11

    To reduce the distillation costs of cellulosic ethanol, it is necessary to produce high sugar titers in the enzymatic saccharification step. To obtain high sugar titers, high biomass loadings of lignocellulose are necessary. In this study, to overcome the low saccharification yields and the low operability of high biomass loadings, a fed-batch saccharification process was developed using an enzyme reactor that was designed and built in-house. After optimizing the cellulase and biomass feeding profiles and the agitation speed, 132.6 g/L glucose and 76.0% theoretical maximum glucose were obtained from the 60 h saccharification of maleic acid-pretreated rice straw at a 30% (w/v) solids loading with 15 filter paper units (FPU) of Cellic CTec2/g glucan. This study demonstrated that through the proper optimization of fed-batch saccharification, both high sugar titers and high saccharification yields are possible, even with using the high solids loading (i.e., ≥30%) with the moderate enzyme loading (i.e., high solids saccharification process in cellulosic fuel and chemical production.

  3. A high-yield saponification of galactosylceramide I(3)-sulfate.

    Science.gov (United States)

    Koshy, K M; Boggs, J M

    1982-12-01

    A method for the deacylation of galactosylceramide I(3)-sulphate using aqueous methanolic KOH is described. The combination of a relatively low concentration of the alkali (0.3 M) and a moderate reaction temperature (reflux point of 90% methanol) results in the formation of galactosylsphingosine I(3)-sulphate in consistently high yields (61%) with a minimum of side reactions. The product was purified by column chromatography and its identity established by thin layer chromatography, infrared spectroscopy, determination of galactose content and organic sulphate assay using established methods or their modifications.

  4. Effect of Chemical Fertilizer, Cow Manure and Municipal Compost on Yield, Yield Components and Oil Quantity of three Sesame (Sesamum indicum L. Cultivars in Mashhad

    Directory of Open Access Journals (Sweden)

    P Rezvani Moghaddam

    2013-10-01

    Full Text Available In order to evaluate the effects of different organic and chemical fertilizers on yield, yield components and seed oil content of sesame an experiment was conducted in a split plot layout based on randomized complete block design with four replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad in year 2006. Four types of fertilizer, including chemical fertilizer, cow manure, municipal compost and no fertilizer (control were allocated as main plots and three sesame cultivars (two local varieties of Kalat and Esfarayen, and Oltan cultivar were used as sub plots. The results showed that fertilizer treatments had significant effect (P

  5. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  6. Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)

    Science.gov (United States)

    Hohenberg, Charles; Meshik, Alex

    2008-04-01

    Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).

  7. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  8. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  9. High yield neutron generators using the DD reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T. [Adelphi technology, 2003 E. Bayshore Rd. 94061, Redwood City, CA (United States); Ji, Qing; Ludewigt, B. A. [Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jones, G. [G and J Enterprise, 1258 Quary Ln, Suite F, Pleasanton California 94566 (United States)

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  10. High yield neutron generators using the DD reaction

    Science.gov (United States)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  11. Diversity in chemical composition and yield of essential oil from two Iranian landraces of sweet basil

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2014-01-01

    Full Text Available Ocimum basilicum L. belongs to the family Lamiaceae is an herb that is extensively cultivated in some countries. Areal parts, especially leaves of sweet basil are widely used to enhance the flavour of foods such as salads, pasta, tomato products, vegetables, pizza, meat, soups, marine foods, confectioneries and other products. Essential oil yield and chemical components of two Iranian landraces of sweet basil including “Purple” and “Green” grown south-central of Iran (Isfahan province were investigated. The hydro-distillated oils were analyzed by GC-MS. The oil yields were obtained from the aerial of Purple with 0.56 ml/100 g dry matter and the aerial of Green with 0.48 ml/100 g dry matter. Results indicated significant differences (p < 0.01 among the aerial for the main constituents in the essential oil from two Iranian landraces of sweet basil. The major constituents of the essential oil from the aerial of Purple landrace were methyl chavicol or estragol (63.32% and linalool (7.96%. The main compositions of the essential oil from the aerial of Green landrace were methyl chavicol (31.82%, geranial (24.60% and neral (22.65%. Genarlly, a comparison of our results with the previous reports suggests differences in the essential oil compositions and oil yield of the plant material could be attributed to genetic diversity in two Iranian landraces of sweet basil.

  12. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence.

    Science.gov (United States)

    Sainju, Upendra M; Allen, Brett L; Caesar-TonThat, Thecan; Lenssen, Andrew W

    2015-01-01

    Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-year effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and cation exchange capacity (CEC) at the 0-120 cm depth and annualized crop yield in the northern Great Plains, USA. Treatments were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), spring till continuous spring wheat (STCW), fall and spring till continuous spring wheat (FSTCW), fall and spring till spring wheat-barley (Hordeum vulgare L., 1984-1999) followed by spring wheat-pea (Pisum sativum L., 2000-2013) (FSTW-B/P), and spring till spring wheat-fallow (STW-F, traditional system). At 0-7.5 cm, P, K, Zn, Na, and CEC were 23-60% were greater, but pH, buffer pH, and Ca were 6-31% lower in NTCW, STCW, and FSTW-B/P than STW-F. At 7.5-15 cm, K was 23-52% greater, but pH, buffer pH, and Mg were 3-21% lower in NTCW, STCW, FSTCW, FSTW-B/P than STW-F. At 60-120 cm, soil chemical properties varied with treatments. Annualized crop yield was 23-30% lower in STW-F than the other treatments. Continuous N fertilization probably reduced soil pH, Ca, and Mg, but greater crop residue returned to the soil increased P, K, Na, Zn, and CEC in NTCW and STCW compared to STW-F. Reduced tillage with continuous cropping may be adopted for maintaining long-term soil fertility and crop yields compared with the traditional system.

  13. Film quantum yields of EUV& ultra-high PAG photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  14. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  15. Analysis of the trade-off between high crop yield and low yield instability at the global scale

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2016-10-01

    Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.

  16. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  17. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. The NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.

  18. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  19. Association of total-mixed-ration chemical composition with milk, fat, and protein yield lactation curves at the individual level

    NARCIS (Netherlands)

    Caccamo, M.; Veerkamp, R.F.; Licitra, G.; Petriglieri, R.; Terra, La F.; Pozzebon, A.; Ferguson, J.D.

    2012-01-01

    The objective of this study was to examine the effect of the chemical composition of a total mixed ration (TMR) tested quarterly from March 2006 through December 2008 for milk, fat, and protein yield curves for 27 herds in Ragusa, Sicily. Before this study, standard yield curves were generated on da

  20. Study on the Theory and Technology of High Yield Culture of Compact Corn

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi; ZHANG Rong-da; WU Sheng-li; SONG Bi; ZHANG Bang-kun; JIANG Long; WANG Song; HU Jian-feng

    2002-01-01

    Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6's yield and yield components, important colony quality and physiological index, microclimate index in field and technical planting for high yield were studied. Cultivation for high yield showed that Denghai 6 had the great potential of increase yield. The average yield of two years was 12510kg/ha for 13.85ha, the highest grain yield (754.7m2) was 15477kg/ha. The climatic conditions can meet the needs for high yield during the whole growth stage of corn in the mountain area of Northwest Guizhou.

  1. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-03-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  2. Comparison of different methods for extraction from Tetraclinis articulata: yield, chemical composition and antioxidant activity.

    Science.gov (United States)

    Herzi, Nejia; Bouajila, Jalloul; Camy, Séverine; Romdhane, Mehrez; Condoret, Jean-Stéphane

    2013-12-15

    In the present study, three techniques of extraction: hydrodistillation (HD), solvent extraction (conventional 'Soxhlet' technique) and an innovative technique, i.e., the supercritical fluid extraction (SFE), were applied to ground Tetraclinis articulata leaves and compared for extraction duration, extraction yield, and chemical composition of the extracts as well as their antioxidant activities. The extracts were analyzed by GC-FID and GC-MS. The antioxidant activity was measured using two methods: ABTS(•+) and DPPH(•). The yield obtained using HD, SFE, hexane and ethanol Soxhlet extractions were found to be 0.6, 1.6, 40.4 and 21.2-27.4 g/kg respectively. An original result of this study is that the best antioxidant activity was obtained with an SFE extract (41 mg/L). The SFE method offers some noteworthy advantages over traditional alternatives, such as shorter extraction times, low environmental impact, and a clean, non-thermally-degraded final product. Also, a good correlation between the phenolic contents and the antioxidant activity was observed with extracts obtained by SFE at 9 MPa.

  3. Chemical composition and yield of essential oil from three Croton species

    Directory of Open Access Journals (Sweden)

    Giuliane Sampaio de Souza

    Full Text Available ABSTRACT: Marmeleiros are popularly known for the medicinal properties ascribed to their essential oils. This research aimed to analyze the essential oil of leaves from three Croton species (Croton argyrophylloides, Croton jacobinensis, and Croton sincorensis, to verify whether the daily time and harvest season in the year may interfere with their essential oils performance and composition. From each species, 1,500g of green leaves were harvested in Viçosa do Ceará - CE, at 6am and 12pm, during both dry and rainy seasons. Essential oil extraction was conducted by the method of water vapor drag and chemical profile was analyzed by gas chromatography-mass spectrometry (GC/MS. The highest yield was obtained at 12pm in the dry season for C. argyrophylloides and C. jacobinensis, and at 6am in the rainy season for C. sincorensis. Bicyclogermacrene demonstrated higher relative abundance in C. argyrophylloides (28.09 to 30.59%, C. jacobinensis (25.2 to 30.14%, and C. sincorensis (23.86 and 21.71%, and the only exception was at 6am in C. sincorensis, where (E-caryophyllene was the most abundant compound (25.34%. The yield and composition of the studied species were influenced by rainfall, temperature, and sunlight, presenting statistical significant differences between the different periods studied. The species produce constituents with specific biological properties; and therefore, they can be used as a natural source.

  4. The Effect of Chemical, Biological and Organic Nutritional Treatments on Sunflowers Yield and Yield Components under the Influence of Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    fatemeh soleymani

    2016-07-01

    Full Text Available Introduction To achieve the higher economic yield of crop plants, supplying enough nutrients to plants is very important. Moreover, nutrient uptakes by plants is influenced by the soil water contents. However, nowadays chemical fertilizer application is important agronomic factor that has significant effects on growth and quantity and quality of final yield, but traditional nutrient management and excessive use of chemical fertilizers may cause the environmental problems such as contamination of soil and water resources, low quality of agricultural products and reduction of soil fertility. These factors have drawn attention to health and ecological sustainable farming systems (Sharma, 2002. In this context, usage of organic and biological products for plant nutrition is considered as one of the solutions to achieve the goals of sustainable agriculture. Materials and methods To evaluate the effect of various feeding systems on yield and yield components of sunflower (Helianthus annuus L. under the influence of water deficit stress, a split-plot experiment based on randomized complete block design with three replications, was carried out in the Agricultural Faculty of Bu-Ali Sina University during the growing season of 2013-2014. Main plots consisted of two irrigation levels: optimum irrigation and deficit irrigation stress (irrigation after 60 and 120 mm evaporation from evaporation pan, class A, respectively and sub-plots included of nine nutrition systems: 1- no bio or chemical fertilizer application, 2- 100% of the recommended chemical fertilizer , 3- vermicompost, 4- phospho nitro kara, 5- vermicompost+ phospho nitro kara, 6- vermicompost+ ½ chemical fertilizer, 7- phospho nitro kara+ ½ chemical fertilizer, 8- vermicompost+ phospho nitro kara+ ½ chemical fertilizer, 9- ½ proposed chemical fertilizer. Phospho-nitro-kara which contains phosphate solubilizing and nitrogen fixing bacteria (Bacillus coagulans, azotobactr chroocuccum and

  5. Effect of bio-regulator and foliar fertilizers on chemical composition and yield of soybean.

    Science.gov (United States)

    Piccinin, Gleberson Guillen; Braccini, Alessandro Lucca; da Silva, Luiz Henrique; Mariucci, Giovanna Emanuêlle Gonçalves; Suzukawa, Andréia Kazumi; Dan, Lilian Gomes de Morais; Tonin, Telmo António

    2013-11-15

    Current study evaluates the effects of bio-regulator associated with foliar fertilizers on the yield components, productivity and chemical composition of soybean. The experimental design was entirely randomized blocks, with four replications. The treatments consisted of: T1-absolute control, T2-application of 0.25 L h(-1) Stimulate in R1 stage of development, T3-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1, T4-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1 and 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R5.1; T5-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1 and 2 L h(-1) Mover in R5.1, T6-application of 3 L h(-1) Sett in R1 and 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R5.1 and T7-application of 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R1. Application of Sett and Mover is a potentially efficient handling as it favors the soybean agronomic performance in R1 stage. Chemical composition of processed grains has influence with applying bio-regulator and foliar fertilizers.

  6. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  7. Nutritional status of high yielding crossbred cow around parturition

    Directory of Open Access Journals (Sweden)

    Mohammad Yousuf

    2016-03-01

    Materials and methods: Nutritional status of cows around the peri-parturient period was investigated for six months in dairy farm. Seven to eight months' pregnant cows were selected for this study. Blood samples from 24 randomly selected cows were collected at stage-1, -2 and -3. The serum was stored at -20C until analyzing glucose, total protein (TP, albumin (Alb, triglycerides (Tg, cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, calcium (Ca, magnesium (Mg and phosphorus (P. Results: An increasing trend of glucose level was evidenced (P=0.07 during stage-1. Instead, higher levels of TP were found during stage-3 as compared to the stage-1 and -2. The Alb levels differed significantly (P<0.01 among different stages. A significantly increased (P<0.01 cholesterol, Tg, and HDL were found after parturition (stage-2 and -3 than before parturition (stage-1. LDL was significantly (P=0.02 increased during stage-2 and -3. A significantly higher level of Ca (P<0.01, Mg (P<0.01 and P (P=0.03 were present during stage-1. Glucose, TP, cholesterol and Tg were significantly higher (P<0.01 in cows two months after parturition, while Alb was found to be the highest (P<0.01 in cows immediately after parturition. An increasing trend of LDL (P=0.07 and HDL (P=0.07 were found in the cows two months after parturition. However, Ca levels were significantly (P=0.04 higher in cows two months after parturition. Conclusion: The results indicate that there is alteration of biochemical levels among the study population at three different stages, and these data may be helpful in using the necessary nutrients to the the high yielding cows around their parturition. [J Adv Vet Anim Res 2016; 3(1.000: 68-74

  8. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  9. Evaluation of Effect of Chemical and Organic Fertilizers on Growth Characteristics, Yield and Yield components of three Sesame Ecotypes (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    M Goldani

    2014-07-01

    Full Text Available Using organic fertilizers is cause increase soil fertility, improving crop growth and production. For this purpose a greenhouse experiment was carried out in factorial arrangement based on a completely randomized design with three replications during 2011 year. First factor included: three sesame ecotype (MSC3, MSC6, MSC7 and second factor was 6 fertilizer treatments that included: Incorporation manure and chemical fertilizer (216 g manure and 1 gram chemical fertilizer NPK, Chemical fertilizer (2 g NPK, Vermicompost (192 g, Manure ( 228 g, Compost Sulfur granules (192 g per vase and Control (without any manure or fertilizer. Results indicated that different manure treatments had significant effect on morphological and yield components traits, as the most number and length branch per plant was obtained from incorporation manure and chemical fertilizer treatment. Appling incorporation manure and chemical fertilizer treatment had the most biomass in MSC3 ecotype that in comparison of control treatment was increased almost 73 percent. Consuming incorporation manure and chemical fertilizer treatment in MSC3 ecotype was also obtained the most capsule per plant (21.2, number seed per capsule (54.4, 100-seed weight (0.257 g and seed per plant with (1.95 g. The least seed weight per plant with 0.450 g was observed in MSC7 ecotype from application of control treatment. Response of three sesame ecotype (MSC3, MSC6, MSC7 to applied vermin-compost manure was similar; as the amount of seed weight per plant was increased more than 1 g per plant in all these ecotypes and in others fertilizer treatments was not observed this trend. There was significant positive correlation between seed weight per plant and number of capsule per plant (r=0.83**, height (r=0.68** and biomass (r=0.51**. The results showed that incorporation manure and chemical fertilizer was improved on growth and yield characteristics of sesame plant.

  10. Assessing the Effect of Organic Compounds, Biofertilizers and Chemical Fertilizers on Morphological Properties,yield and Yield Components of Forage Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    A.H Saeidnejad

    2012-12-01

    Full Text Available Recently, using the source of organic fertilizers and biofertilizers in sustainable crop production is growing. In order to evaluate the effect of organic compounds, biofertilizers and chemical fertilizer on morphological properties, yield and yield components of forage Sorghum (sorghum bicolor a field experiment was conducted in the Research Farm, College of Agriculture, Ferdowsi University of Mashhad in 2008.The treatments were seed inoculation with the combination of Azotobacter chroococcum and Azospirillum brasilense, Compost (15 t/ha, Vermicompost (10 t/ha, seed inoculation with Azotobacter and Azospirillum and compost (10t/ha, seed inoculation with Azotobacter chroococcum and Azospirillum brasilense and Vermicompost (7t/ha, seed inoculation with Pseudomonas flurescence, seed inoculation with Pseudomonas flurescence and Azotobacter chroococcum and Azospirillum brasilense combination, seed inoculation with Pseudomonas flurescence and compost (15t/ha, chemical fertilizer (80 kg/h urea fertilizer and 50 kg/h super phosphate fertilizer and control. Harvesting was performed in 2 cuts in flowering stage. Plant height, number of tiller per plant and SPAD reading was significantly affected by the treatments. Stem diameter was not affected by any treatments. There was a significant difference among all treatments in terms of fresh and dry forage yield. There were no significant differences among all treatments in terms of stem and leaf dry matter. In general, result of this experiment indicated that organic amendments and biofertilizers could be acceptable alternatives for chemical fertilizers.

  11. Diversity in chemical composition and yield of essential oil from two Mentha species

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2016-01-01

    Full Text Available The genus Mentha, which belongs to the mint family (Lamiaceae. Essential oil yield and chemical components of two Mentha species including Mentha longifolia (L. Huds. and (Mentha spicata L. collected from three ecotypes in Iran were investigated. The essential oils of samples were obtained by hydro-distillation, and analyzed using gas chromatography-mass spectrometry (GC-MS. A significant difference (p < 0.05 in oil yields was obtained from the aerial parts of two Mentha species. The essential oil yields were obtained from the aerial of M. longifolia, 0.62, 0.85 and 1.24 ml / 100 g dry matter identified in Ardestan, Saman and Kuhrang province, respectively and the aerial of M. spicata, 0.49, 1.02 and 1.54 ml / 100 g dry matter identified in Ardestan, Saman and Kuhrang province, respectively. Results indicated significant differences (p < 0.01 among the aerial for the main constituents in the essential oil from two Mentha species. The major constituents of the essential oil from the aerial of M. longifolia collected from Ardestan province were pulegone (31.21%, 1,8-cineole (23.01%, sabinene (6.76%, the aerial of M. longifolia collected from Saman province were pulegone (31.06%, 1,8-cineole (24.34%, sabinene (7.45% and the aerial of M. longifolia collected from Kuhrang province were pulegone (36.42% and 1,8-cineole (29.49%. The major constituents of the essential oil from the aerial of M. spicata collected from Ardestan province were 1,8-cineole (35.28%, carvone (30.71%, the aerial of M. spicata collected from Saman province were carvone (35.37%, 1,8-cineole (24.35%, pulegone (18.67% and the aerial of M. spicata collected from Kuhrang province were carvone (41.51%, 1,8-cineole (25.95%. Generally, a comparison of our results with the previous reports suggests differences in the essential oil compositions and oil yield of the plant material could be attributed to genetic diversity in two Menthe species.

  12. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  13. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  14. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  15. Yield, chemical composition and persistence of alfalfa on moderately acidic mountain soil

    Directory of Open Access Journals (Sweden)

    Josip Leto

    2006-12-01

    Full Text Available Due to its excellent nutritional characteristics and high yields, alfalfa is the most important forage crop in roughage production. The main limiting factor in global food production is soil acidification. At the moment, about 40% of world agricultural soils are acidic. It is difficult to grow alfalfa on acid soils (pH 0.05. Average DM yield of all cultivars in the year 2000 was 7.07 t/ha, in the year 2001 it was 10.94 t/ha, and finally in the year 2002 it was 12.78 t/ha. Significant differences in DM yields were recorded between cuttings (P0.05. Mean crude protein content was 28.2%, while contents of crude fat, crude fibers and non nitrogen free extract (NFE were 3.73%, 16.15%, 29.19%, respectively. No significant differences in alfalfa ground cover were recorded between cultivars in autumn or in spring in all experimental years (P>0.05. Significant differences in alfalfa ground cover in autumn (P<0.05 and in spring (P<0.01 were recorded between years. The lowest average ground cover was recorded in last experimental year: in the autumn of the year 2001(72.81% and in the spring of the year 2002 (64.37%. All investigated alfalfa cultivars are suitable for growing in similar agroecological conditions.

  16. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield....

  17. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  18. CG FARRAPO: a sudangrass cultivar with high biomass and grain yields

    Directory of Open Access Journals (Sweden)

    Emilio Ghisleni Arenhardt

    2016-07-01

    Full Text Available The new sudangrass cultivar [Sorghum sudanense (Piper Stapf.] was developed by the method of selection of individual plants with progeny testing. The most important traits are high biomass yield with high grain yield.

  19. Stereotypical behaviour at high yielding dairy cows farms - "tongue rolling"

    Directory of Open Access Journals (Sweden)

    Prodanović Radiša

    2013-01-01

    Full Text Available The objective of this work was to determine if there was a connection between stereotypical behaviour of high yielding dairy cows breeds and values of biochemical blood parameters. The investigation was carried out in august at loose-housing type of farms, in 30 heads of cattle from four groups: drying (15 to 7 days before calving, puerperium (up to 40 days after calving, early lactation (up to 120 days after calving and late lactation (200 to 300 days after calving. Assessment of stereotypical behaviour (tongue rolling was carried out by the method of careful observation of all the tested animals 2 to 4 hours after morning feeding. Blood samples were taken by puncture of jugular vein from 8 cows out of each animal group. In these blood samples there was determined the concentration of glucose, beta hydroxy-butyric acid (BHBA, total protein (TP, albumin, urea, total bilirubin (TBI, Ca, P, and Mg as well as AST and ALT activities. During the period up to 40 days after calving (puerperium, behavioral disorder in the form of „tongue rolling“ was found out in 4 out of 30 observed animals (13.33%. Average concentrations of all the tested blood parameters during the drying period as well as in early and late lactation were within physiological values for cattle. During puerperium there were found significantly lower values of glycaemia, proteinemia, albuminemia, uremia and magnesiemia in regard to antepartal values (p<0.05, where the values of glycaemia and magnesiemia were below the physiological limit. A the same time, in this group of cows the values of TBI and AST activities were higher than physiological values. Frequent appearance of „tongue rolling“ phenomenon only among cows in the group with deviation of biochemical parameters values, points out to a possible connection between the stereotypical behaviour and biochemical composition of blood. It seems that hypomagnesiemia could be a significant etiopathogenetic factor causing the

  20. Evaluation of high yielding soybean germplasm under water limitation

    Institute of Scientific and Technical Information of China (English)

    Silvas J. Prince; Henry T. Nguyen; Mackensie Murphy; Raymond N. Mutava; Zhengzhi Zhang; Na Nguyen; Yoon Ha Kim; Safiullah M. Pathan; Grover J. Shannon; Babu Valliyodan

    2016-01-01

    Limited information is available for soybean root traits and their plasticity under drought stress. To date, no studies have focused on examining diverse soybean germ-plasm for regulation of shoot and root response under water limited conditions across varying soil types. In this study, 17 genetically diverse soybean germplasm lines were selected to study root response to water limited conditions in clay (trial 1) and sandy soil (trial 2) in two target environments. Physiological data on shoot traits was measured at multiple crop stages ranging from early vegetative to pod filling. The phenotypic root traits, and biomass accumulation data are collected at pod filling stage. In trial 1, the number of lateral roots and forks were positively correlated with plot yield under water limitation and in trial 2, lateral root thickness was positively correlated with the hill plot yield. Plant Introduction (PI) 578477A and 088444 were found to have higher later root number and forks in clay soil with higher yield under water limitation. In sandy soil, PI458020 was found to have a thicker lateral root system and higher yield under water limitation. The genotypes identified in this study could be used to enhance drought tolerance of elite soybean cultivars through improved root traits specific to target environments.

  1. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  2. Improvement of bleached wheat straw pulp properties by using aspen high-yield pulp.

    Science.gov (United States)

    Zhang, Hongjie; Li, Jianguo; Hu, Huiren; He, Zhibin; Ni, Yonghao

    2012-09-01

    The bleached wheat straw pulp (BWSP) accounts for about 25% of the virgin fiber supply in the Chinese Pulp and Paper Industry. As a non-wood chemical pulp, BWSP is known to have low bulk, low light scattering coefficient and poor drainage due to its high content of parenchyma cells. In this study, a high-quality aspen high-yield pulp (HYP) was used to improve the BWSP properties at the laboratory scale. The results indicate that adding 5-20% aspen HYP into unrefined or refined BWSP can minimize many of the drawbacks associated with the BWSP: improving its drainage, bulk, light scattering coefficient and opacity. The addition of a small amount (up to 20%) of aspen HYP can also significantly increase the tear index of BWSP with only a slight decrease of the tensile index.

  3. Economics of fertility in high-yielding dairy cows on confined TMR systems.

    Science.gov (United States)

    Cabrera, V E

    2014-05-01

    The objective of this review paper was to summarise the latest findings in dairy cattle reproductive economics with an emphasis on high yielding, confined total mixed ration systems. The economic gain increases as the reproductive efficiency improves. These increments follow the law of diminishing returns, but are still positive even at high reproductive performance. Reproductive improvement results in higher milk productivity and, therefore, higher milk income over feed cost, more calf sales and lower culling and breeding expenses. Most high-yielding herds in the United States use a combination of timed artificial insemination (TAI) and oestrous detection (OD) reproductive programme. The ratio of achievable pregnancies between OD and TAI determines the economic value difference between both and their combinations. Nonetheless, complex interactions between reproductive programme, herd relative milk yield, and type of reproductive programme are reported. For example, higher herd relative milk yield would favour programme relying more on TAI. In addition, improved reproductive efficiency produces extra replacements. The availability of additional replacements could allow more aggressive culling policies (e.g. less services for non-pregnant cows) to balance on-farm supply and demand of replacements. Balancing heifer replacement availability in an efficient reproductive programme brings additional economic benefits. New technologies such as the use of earlier chemical tests for pregnancy diagnosis could be economically effective depending on the goals and characteristics of the farm. Opportunities for individual cow reproductive management within defined reproductive programme exist. These decisions would be based on economic metrics derived from the value of a cow such as the value of a new pregnancy, the cost of a pregnancy loss, or the cost of an extra day open.

  4. The Effect of Bio-fertilizer and Chemical Fertilizers (Phosphate and Zinc on Yield and Yield Components of Two Cultivars of Bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2016-02-01

    Full Text Available Introduction: Use of unbalanced chemical fertilizers especially P, having low absorption efficiency and low solubility compounds with soil components, has resulted in the production and use of bio-fertilizers (17, 23 and 29. Bio-fertilizer is a preservative material consisting of one or several specific beneficial micro-organisms or their metabolic products used to supply plant nutrients and development of root systems (29. There are a lot of micro-organisms in soil capabling help to plant nutrition and uptake of nutrient elements in different ways that can be mentioned by the dual symbiotic relation between micro-organism and plant. Mycorrhizal fungus and plant growth promoting rhizobacteria (PGPR such as Azotobacter and Pseudomonas are able to increase uptake of nutrient elements particularly when they are applied with others and hence they increase the yield of different crops (12, 14; 24 and 30. P solubilizing fungus and bacteria facilitate uptake of slowly diffusing nutrient ions such as P, Zn and Cu and increase their availabilities usually by increasing volume of soil exploited by plants, spreading external mycelium, secreting organic acids, production of dehydrogenase and phosphates enzymes and reducing rhizosphere acidity (9, 15, 19, 23 and 26. The main beneficial use of micro-organism is increasing of host plant growth. It can be done with increase of nutrient elements uptake. The main objective of this study was to evaluate the effect of P and Zn bio-fertilizers on yield, yield components and shoot nutrient elements in two cultivars of bean for the first time in the Chaharmahal-va- Bakhtiari province. Material and Methods: This field experiment was carried out as a factorial in a randomized complete block design (RCBD with three replications. The treatments of this research consisted of two cultivars of Chiti bean (Talash and Sadri, four levels of P (P0: Control, P1: Chemical fertilizer on the basis of soil test, P2: 50 percent of

  5. Impact of anthracnose on the yield of soybean subjected to chemical control in the north region of Brazil

    Directory of Open Access Journals (Sweden)

    Moab Diany Dias

    2016-03-01

    Full Text Available ABSTRACT Losses due to soybean anthracnose, caused by Colletotrichum truncatum, have not been systematically quantified in the field, and the efficacy of chemical control of this disease is not known. This study shows an estimate of losses associated with the disease in soybean crops in the north of the country. Two trials with cv. M9144 RR were carried out in commercial fields in Tocantins State in the 2010/2011 and 2011/2012 growing seasons, in randomized blocks, with four replicates. Foliar applications were performed on plants at R1/R2 and R5.2 stages, employing CO2-pressurized equipment and application volume of 200 L ha-1. Nine fungicides and one untreated control were compared, and the disease gradients in the two seasons were obtained. The percentage of infected pods was calculated at the R6 stage. Grain yield ranged from 3,288 to 3,708 kg/ha in the untreated plots in 2010/2011 and 2011/2012, respectively, and from 3,282 to 4,110 kg/ha in the treated plots. In the 2010/2011 season, only azoxystrobin + cyproconazole significantly reduced the disease incidence, compared to untreated control plots, not differing from the remaining treatments. In the 2011/2012 season, there were no significant differences between treated and untreated plots. Highly significant correlations (p < 0.01 were found between yield and soybean anthracnose incidence on pods in both years (r = -0.85. For each 1% increment in the disease incidence, c. 90 kg/ha of soybean grain were lost. The current study determined that significant losses due to anthracnose occur in commercial crops in the north of the country and highlighted the limitation of chemical control as anthracnose management method.

  6. Soil Chemical Properties and Soybean Yield Due to Application Biochar and Compost of Plant Waste

    Directory of Open Access Journals (Sweden)

    Junita Barus

    2016-01-01

    Full Text Available he importance to return organic matter to the soil has been widely recognized, especially to agricultural lands that are low in organic matter and nutrients contents that will decrease the productivity of food crops. This study aimed to study the effect of biochar (rice husk and corn cob biochar and straw compost on soil chemical properties and yield of soybean (Glycine max (L. Merr. The experiments were done in the laboratory and the field experiment at February–July 2015. The first study was laboratory test using a randomized block design with three replicates. Soil samples were ground and sieved to obtain the less than 4 mm fraction for the incubation experiment. A five kg soil was mixtured with amandement treatments (A: control; B: Rice husk biochar 10 Mg ha-1 ; C: corn cob 10 Mg ha-1; D: straw compost 10 Mg ha-1; and E. Rice husk biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 ; F. corn cob biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 were filled into plastic pots. The treatments were incubated for 1 and 2 months. Soil samples measured were pH, Organic-C, Total-N, P2O5 (Bray-1, K2O (Morgan, Na, Ca, Mg, S, and CEC. The field experiment was conducted at Sukaraja Nuban Village, Batanghari Nuban sub district, East Lampung Regency. The treatments (similar too laboratory experiment were arranged in a randomized block design with four replicates. Plot size was 10 m × 20 m, and soybean as crop indicators. The parameters observed were plant heigh, number of branches , number of pods per plant , number of seeds per plant, grain weight, and stover. The results of laboratory experiment showed that application of biochar and compost improve soil fertility due to the increase in soil pH and nutrient availability for plant especially P2O5 and K2O available. The treatment of a rice husk biochar and compost mixture was better than single application to improve soil fertility and soybean yield. Apllication mixture husk biochar 10 Mg ha-1and straw compost

  7. Soil Chemical Properties and Soybean Yield Due to Application of Biochar and Compost of Plant Waste

    Directory of Open Access Journals (Sweden)

    Junita Barus

    2016-01-01

    Full Text Available The importance to return organic matter to the soil has been widely recognized, especially to agricultural lands that are low in organic matter and nutrients contents that will decrease the productivity of food crops. This study aimed to study the effect of biochar (rice husk and corn cob biochar and straw compost on soil chemical properties and yield of soybean (Glycine max (L. Merr. The experiments were done in the laboratory and the field experiment at February–July 2015. The first study was laboratory test using a randomized block designwith three replicates. Soil samples were ground and sieved to obtain the less than 4 mm fraction for the incubation experiment. A five kg soil was mixtured with amandement treatments (A: control; B: Rice husk biochar 10 Mg ha-1 ; C: corn cob 10 Mg ha-1; D: straw compost 10 Mg ha-1; and E. Rice husk biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 ; F. corn cob biochar 10 Mg ha-1 + straw compost 10 Mg ha-1 were filled into plastic pots. The treatments were incubated for 1 and 2 months. Soil samples measured were pH, Organic-C, Total-N, P2O5 (Bray-1, K2O (Morgan, Na, Ca, Mg, S, and CEC. The field experiment was conducted at Sukaraja Nuban Village, Batanghari Nuban sub district, East Lampung Regency. The treatments (similar too laboratory experiment were arranged in a randomized block design with four replicates. Plot size was 10 m× 20 m, and soybean as crop indicators. The parameters observed were plant heigh, number of branches , number of pods per plant , number of seeds per plant, grain weight, and stover. The results of laboratory experiment showed that application of biochar and compost improve soil fertility due to the increase in soil pH and nutrient availability for plant especially P2O5 and K2O available. The treatment of a rice husk biochar and compost mixture was better than single application to improve soil fertility and soybean yield. Apllication mixture husk biochar 10 Mg ha-1and straw compost 10

  8. Simple and high yield access to octafunctional azido, amine and urea group bearing cubic spherosilicates.

    Science.gov (United States)

    Schäfer, Sandra; Kickelbick, Guido

    2016-12-20

    Spherosilicates and polyhedral oligomeric silsesquioxanes represent unique well-defined rigid building blocks for molecular and hybrid materials. Drawbacks in their synthesis are often low yields and the restricted presence of functional groups either based on incomplete transformation of all corners or the reactivity of the functional groups. Particularly amine-functionalization reveals some synthetic challenges. In this study we report the synthesis of a new class of octafunctionalized hydrogen bond forming spherosilicates via a facile route based on octabromo alkyl functionalized cubic spherosilicates. Four different alkyl chain lengths, namely C4, C5, C6 and C11, were realized starting from ω-alkenylbromides via hydrosilylation of Q8M8(H). Using sodium azide in a mixture of acetonitrile : DMF = 10 : 1, the octaazide was obtained quantitatively and could be rapidly transformed in an octaamine cube via catalytic hydrogenation over Pd/C in absolute ethanol. The following reaction to hydrogen bond forming spherosilicates was performed in situ by adding propyl isocyanate. All transformations proceed quantitatively at the eight corners of the cube, which was evidenced by NMR spectroscopy and ESI-MS measurements. The Q8-target compound can be separated after each reaction step over simple chemical workup while no cage rearrangement was observed. The structures were confirmed using (1)H, (13)C, (29)Si-NMR, FT-IR, elemental analysis and ESI-MS. The method opens a high yield route (overall isolated yield 83-88%) for structural building blocks in hybrid materials.

  9. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  10. CD 150 - short wheat cultivar with high quality and high yield

    Directory of Open Access Journals (Sweden)

    Ivan Schuster

    2011-01-01

    Full Text Available The industrial quality and lodging resistance of CD 150, a cross between CD104 and CD108, are high and the plant heightis short. The average yield was 10 % higher than of the controls in the regions II, III and IV. It is suitable for cultivation in the states of PR,SP, MS and GO, MG, and DF.

  11. Microbial Carbon Substrate Utilization Differences among High- and Average-Yield Soybean Areas

    National Research Council Canada - National Science Library

    Taylor C. Adams; Kristofor R. Brye; Mary C. Savin; Jung Ae Lee; Edward E. Gbur

    2017-01-01

    Since soybean (Glycine max L. (Merr.)) yields greater than 6719 kg ha−1 have only recently and infrequently been achieved, little is known about the soil microbiological environment related to high-yield soybean production...

  12. Effect of Different Doses of NK Chemical Fertilizers and Compost on Growth and Yield Attributes of Tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Thayamini Harold Seran

    2016-07-01

    Full Text Available This study was conducted to evaluate the effect of NK chemical fertilizers in combination with compost on the growth and yield attributes of tomato (Lycopersicon esculentum Mill.. The pot experiment was done in a complete randomized block design possessing eight treatments with four replicates. Fruit weight, pulp weight, seed weight, total soluble solid, leaf area and dry weights of plat parts were taken and fruit yield was calculated. All the collected data were subjected to statistical analysis. The results revealed that there were significant differences in fruit and seed weights, total soluble solid, pulp weight, 100 seed weight, pulp consistency, leaf area and crop residue. In these parameters, higher mean values were recorded in chemical fertilizers (7.5 g N + 6 g K2O + 15 g P2O5 per m2 with compost (2 kg per m2 than those in the chemical fertilizers applied alone (9.0 g N + 8 g K2O + 15 g P2O5 per m2as standard control. Total soluble solid and fruit yield were 5.73 obrix and 3.21 kg/m2 respectively in the chemical fertilizers with compost (7.5 g N + 6 g K2O + 15 g P2O5 +2 kg compost per m2 treated plants and these were statically on par with the standard control which gave 4.36 obrix total soluble solid and 3.05 kg/m2 fruit yield. The result could be concluded that application of chemical fertilizers (7.5 g N + 6 g K2O + 15 g P2O5 per m2 with compost (2 kg per m2 could increase the total soluble solid and fruit yield as well as reduce the usage of chemical fertilizers in tomato cultivation over the standard control in sandy regosol.

  13. Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation

    Science.gov (United States)

    Qian, Shiquan; Cheng, Ying; Zhu, Suwen; Cheng, Beijiu

    2008-12-01

    Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8 × 1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4 reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.

  14. Creation of High-Yield Polyhydroxyalkanoates Engineered Strains by Low Energy Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    QIAN Shiquan; CHENG Ying; ZHU Suwen; CHENG Beijiu

    2008-01-01

    Polyhydroxyalkanoates (PHAs), as a candidate for biodegradable plastic materials, can be synthesized by numerous microorganisms. However, as its production cost is high in comparison with those of chemically synthesized plastics, a lot of research has been focused on the efficient production of PHAs using different methods. In the present study, the mutation effects of PHAs production in strain pCB4 were investigated with implantation of low energy ions. It was found that under the implantation conditions of 7.8×1014 N+/cm2 at 10 keV, a high-yield PHAs strain with high genetic stability was generated from many mutants. After optimizing its fermentation conditions, the biomass, PHAs concentration and PHAs content of pCBH4reached 2.26 g/L, 1.81 g/L, and 80.08% respectively, whereas its wild type controls were about 1.24 g/L, 0.61 g/L, and 49.20%. Moreover, the main constituent of PHAs was identified as poly-3-hydroxybutyrates (PHB) in the mutant stain and the yield of this compound was increased up to 41.33% in contrast to that of 27.78% in the wild type strain.

  15. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V.; Sidorov, A. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Strelkov, A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyväskylä, Jyväskylä (Finland)

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  16. Harvester development for new high yielding SRC crops and markets

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Mark

    2005-07-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented.

  17. The effect of application of chemical and organic fertilizers on yield and yield components of sesame (Sesamum indicum L. in different plant densities

    Directory of Open Access Journals (Sweden)

    P. Rezvani Moghaddam

    2016-04-01

    Full Text Available In order to understand the effect of plant density and different fertilizers on sesame (Sesamum indicum L. production, an experiment was conducted as a factorial arrangement based on completely randomized block design with three replications. The experimental treatments were fertilizers in four levels (cow manure (30 t.ha-1, municipal compost (30 t.ha-1, chemical fertilizer (250 kg ammonium phosphate + 100 kg urea and control (no-fertilizer and plant density in four levels (20, 30, 40 and 50 plant.m-2. The results showed that all treatments increased the plant height, number of capsule per plant, plant biomass, seed yield, seed weight and number of seed per plant compared to control, significantly. The highest amount of the traits was obtained in manure treatment. The seed yield was increased by increasing plant density, but decreased the plant height, number of capsule per plant, plant biomass, seed yield and weight and number of seed per plant, significantly. 1000-seed weight, harvest index and weight of seed per capsule had no affected by treatments. Our result indicated that the density of 40 plant.m-2 among using manure was the most appropriate of cropping pattern in our experiment.

  18. Effects of Organic Manure Application with Chemical Fertilizers on Nutrient Absorption and Yield of Rice in Hunan of Southern China

    Institute of Scientific and Technical Information of China (English)

    XU Ming-gang; LI Dong-chu; LI Ju-mei; QIN Dao-zhu; Kazuyuki Yagi; Yasukazu Hosen

    2008-01-01

    To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha-'. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.

  19. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  20. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  1. Frequency of cardiac arrhythmias in high and low- yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Afshin Jafari Dehkordi

    2014-06-01

    Full Text Available Electrocardiography (ECG may be used to recognize cardiac disorders. Levels of milk production may change the serum electrolytes which its imbalance has a role in cardiac arrhythmia. Fifty high yielding and fifty low yielding Holstein dairy cows were used in this study. Electrocardiography was recorded by base-apex lead and blood samples were collected from jugular vein for measurement of serum elements such as sodium, potassium, calcium, phosphorous, iron and magnesium. Cardiac dysrhythmias were detected more frequent in low yielding Holstein cows (62.00% compared to high yielding Holstein cows (46.00%. The cardiac dysrhythmias that were observed in low yielding Holstein cows included sinus arrhythmia (34.70%, wandering pacemaker (22.45 %, bradycardia (18.37%, tachycardia (10.20%, atrial premature beat (2.04%, sinoatrial block (2.04%, atrial fibrillation (8.16% and atrial tachycardia (2.04%. The cardiac dysrhythmias were observed in high yielding Holstein cows including, sinus arrhythmia (86.95% and wandering pacemaker (13.05%. Also, notched P wave was observed to be 30% and 14% in high- and low- yielding Holstein cows respectively. The serum calcium concentration of low yielding Holstein cows was significantly lower than that of high yielding Holstein cows. There was not any detectable significant difference in other serum elements between high- and low- yielding Holstein cows. Based on the result of present study, could be concluded that low serum concentration of calcium results to more frequent dysrhythmias in low yielding Holstein cows.

  2. Improvement of production of high-yield poplar varieties seedlings by mycorrhiza application

    Directory of Open Access Journals (Sweden)

    Galić Zoran A.

    2007-01-01

    Full Text Available Research related to the effects of treatment by mycorrhiza preparations Ectovit, Rhodovit (preparations Symbio-m Ltd., Czech Rep. and their combination on growth of four high-yield poplar clones of Populus deltoides and one variety of Populus x euramericana are presented in this paper. In order to make more accurate assessment of mycorrhiza effect, soil characteristics such as morphology, texture and chemical composition were determined. The study results indicate that mycorrhized cuttings had the same or the better survival in all the study clones compared to the control. The application of the preparation Ectovit and Rhodovit resulted averagely in the first class planting stock of all the study clones. The combination of the preparations Ectovit and Rhodovit produced averagely the first class planting stock only of the clone Populus x euramericana.

  3. Yields, photosynthetic efficiencies, and proximate chemical composition of dense cultures of marine microalgae. A subcontract report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Seibert, D.L.R.; Alden, M.; Eldridge, P.; Neori, A.

    1983-07-01

    The yields, photosynthetic efficiencies, and proximate composition of several microalgae were compared in dense cultures grown at light intensities up to 70% sunlight. Yields ranged from 3.4 to 21.7 g dry weight/m/sup 2/ day. The highest yield was obtained with Phaeodactylum; the lowest in Botryococcus cultures. The same species had the highest and lowest efficiencies of utilization of photosynthetically active radiation. In nitrogen-sufficient cells of all but one species, most of the dry weight consisted of protein. Lipid content of all species was 20 to 29%, and carbohydrate content 11 to 23%. Lipid content increased somewhat in N-deficient Phaeodactylum and Isochrysis cells, but decreased in deficient Monallanthus cells. Because the overall dry weight yield was reduced by deficiency, lipid yields did not increase. However, since the carbohydrate content increased to about 65% in N-deficient Dunaliella and Tetraselmis cells, the carbohydrate yield increased. In Phaeodactylum the optimum light intensity was about 40% of full sunlight. Most experimets with this alga included a CUSO/sub 4/ filter to decrease infrared irradiance. When this filter was removed, the yield increased because more red light in the photosynthetically active spectral range was included. These results should prove useful to workers attempting to maximize yields and efficiencies, but additional studies are needed. 69 references, 27 figures, 18 tables.

  4. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  5. High-harmonic generation: Ultrafast lasers yield X-rays

    NARCIS (Netherlands)

    McKinnie, Iain; Kapteyn, Henry

    2010-01-01

    Table-top sources that generate both extreme ultraviolet light and soft X-rays through high-harmonic generation of ultrafast infrared laser pulses look set to perform tasks previously accessible using only large-scale synchrotrons.

  6. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers.

    Science.gov (United States)

    Nosheen, Asia; Bano, Asghari; Ullah, Faizan

    2016-02-01

    This study aimed to find out the effect of plant growth-promoting rhizobacteria (PGPR; Azospirillum brasilense and Azotobacter vinelandii) either alone or in combination with different doses of nitrogen and phosphate fertilizers on growth, seed yield, and oil quality of Brassica carinata (L.) cv. Peela Raya. PGPR were applied as seed inoculation at 10(6) cells/mL(-1) so that the number of bacterial cells per seed was 2.6 × 10(5) cells/seed. The chemical fertilizers, namely, urea and diammonium phosphate (DAP) were applied in different doses (full dose (urea 160 kg ha(-1) + DAP 180 kg ha(-1)), half dose (urea 80 kg ha(-1) + DAP 90 kg ha(-1)), and quarter dose (urea 40 kg ha(-1) + DAP 45 kg ha(-1)). The chemical fertilizers at full and half dose significantly increased the chlorophyll, carotenoids, and protein content of leaves and the seed yield (in kilogram per hectare) but had no effect on the oil content of seed. The erucic acid (C22:1) content present in the seed was increased. Azospirillum performed better than Azotobacter and its effect was at par with full dose of chemical fertilizers (CFF) for pigments and protein content of leaves when inoculated in the presence of half dose of chemical fertilizers (SPH). The seed yield and seed size were greater. Supplementing Azospirillum with SPH assisted Azospirillum to augment the growth and yield, reduced the erucic acid (C22:1) and glucosinolates contents, and increased the unsaturation in seed oil. It is inferred that A. brasilense could be applied as an efficient bioinoculant for enhancing the growth, seed yield, and oil quality of Ethiopian mustard at low fertilizer costs and sustainable ways.

  7. THE YIELD AND CHEMICAL COMPOSITION OF MILK OF COWS FED THE RATION WITH PROTEIN-FIBROUS-EXTRUDERATE

    Directory of Open Access Journals (Sweden)

    Andrzej TARKOWSKI

    2009-06-01

    Full Text Available The present research evaluated the effect of protein-fi brous extruderate on yield and chemical composition of milk obtained cows. Protein-fi brous extruderate produced from dry sida (Sida hermaphrodita (L Rusby and horse bean meal was compared to a standard concentrate mixture “B” comprising maize silage and meadow hay. Daily yield milk appeared to be comparable between two treatment groups, one fed a protein-fi brous extruderate supplemented diet and other – a standard concentrate. A higher fat and protein content was determined in milk from cows with a dietary protein-fi brous extruderate additive.

  8. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating;

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  9. Integrated application of February Orchid (Orychophragmus violaceus) as green manure with chemical fertilizer for improving grain yield and reducing nitrogen losses in spring maize system in northern China

    Institute of Scientific and Technical Information of China (English)

    BAI Jin-shun; CAO Wei-dong; XIONG Jing; ZENG Nao-hua; GAO Song-juan; Shimizu Katsuyoshi

    2015-01-01

    The development of more efifcient management systems is crucial to achieving high grain yields with high nitrogen use efifciency (NUE). February Orchid-spring maize rotation system is a newly established planting system with the beneifts of ground cover and potential wind erosion in northern China. A ifeld experiment was conducted to evaluate the effects of integrated application of February Orchid as green manure with reduction of chemical fertilizers (INTEGRATED) on spring maize yield, N uptake, ammonium volatilization, and soil residual mineral N in northern China. Compared to farmers’ traditional fertilization (CON), integrated application of February Orchid as green manure with 30% reduction of nitrogen fertilizers (INTEGRATED) increased maize grain yield and biomass by 9.9 and 10.2%, respectively. The 0–100 cm soil residual Nmin at harvest was decreased by 58.5% and thus nitrogen use efifciency was increased signiifcantly by 26.7%. The nitrogen balance calculation further demonstrated that the INTEGRATED approach performed better than CON with lower apparent nitrogen loss (decreased by 48.9%) which evidenced by the ammonium volatilization of top-dressing fertilizer was decreased by 31.1%, the Nmin movement to the deeper soil layers was reduced, and the apparent nitrogen leaching loss nearly equal to 0 under the INTEGRATED treatment. Therefore, in northern China, integrated application of green manure and chemical fertilizers is an efifcient management approach for improving maize yields and NUE simultaneously.

  10. High School Student Physics Research Experience Yields Positive Results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-01-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a…

  11. Controllable preparation of high-yield magnetic polymer latex.

    Science.gov (United States)

    Wu, Chun-Chao; Kong, Xiang-Ming; Yang, Hai-Long

    2011-09-01

    In order to overcome the low conversion and complex post-treatment, four different polymerization procedures were adopted to prepare the magnetic polymer latexes. The results clearly show that the strategy using magnetic emulsion template-dosage is the most effective and feasible. Based on the optimized procedure, various factors including the type of initiators such as oil soluble initiator, water soluble initiator, redox initiator system, crosslinking agent, functional monomers etc. were systematically studied. Magnetic polymer latex with high monomer conversion of 83% and high magnet content of 31.8% was successfully obtained. Besides, core-shell structured magnetic polymer latex with good film forming property was also prepared, which is promising for potential applications such as magnetic coatings and modification of cementitious materials with controlled polymer location.

  12. High school student physics research experience yields positive results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  13. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  14. The Prospects for High-Yield ICF with a Z-Pinch Driven Dynamic Hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    CHANDLER, GORDON A.; CHRIEN, R.; COOPER, GARY WAYNE; DERZON, MARK S.; DOUGLAS, MELISSA R.; HEBRON, DAVID E.; LASH, JOEL S.; LEEPER, RAMON J.; MATZEN, M. KEITH; MEHLHORN, THOMAS A.; NASH, THOMAS J.; OLSON, RICHARD E.; PETERSON, D.L.; RUIZ, CARLOS L.; SANFORD, THOMAS W. L.; SLUTZ, STEPHEN A.

    1999-09-07

    Recent success with the Sandia Z machine has renewed interest in utilizing fast z-pinenes for ICF. One promising concept places the ICF capsule internal to the imploding z-pinch. At machine parameters relevant to achieving high yield, the imploding z-pinch mass has sufficient opacity to trap radiation giving rise to a dynamic hohlraum. The concept utilizes a 12 MJ, 54 MA z-pinch driver producing a capsule drive temperature exceeding 300 eV to realize a 550 MJ thermonuclear yield. They present the current high-yield design and its development that supports high-yield ICF with a z-pinch driven dynamic hohlraum.

  15. Practice and Thought on Developing Hybrid Rice for Super High Yield by Exploiting Inter-subspecific Heterosis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Since the breakthrough of grain yield owing to the development of dwarf rice and three-line system hybrid rice, rice breeding for high yield hardly had showed significant progress in the next successive two decades. It was considered that utilizing heterosis between subspecific varieties (Oryza sativa L.) would be an effective approach to increase yield further. During 1987-1993,an indica-japonica hybrid Yayou 2 yielded as high as 10.5 t/ha; however, it failed to be commercialized because of seed purity problem due to non-uniform emasculation by chemical agent in seed production, and sensitivity of seed setting in F1 plants to environmental conditions. In the past decade, two inter-subspeific hybrids, Liangyoupeijiu (Peiai 64S/9311, javanica/indica) and Liangyou E32 (Peiai 64S/E32, javanica/japonica); both of them exhibited grain yield higher than 10.5 t/ha, and were widely judged as the pioneers of super hybrid rice. Liangyoupeijiu has been successfully popularized over 4 million hectare in wide climatic areas, while Liangyou E32 made a yield record and offered a model of plant ideotype for super hybrid rice. It was considered that in combination with plant ideotype, active physiological functions, and wide-range adaptability to ecological conditions, exploitation of indica-japonica heterosis would be the key approach for super hybrid rice breeding.

  16. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2007-10-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those

  17. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  18. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    Science.gov (United States)

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work.

  19. Effect of leucaena row spacing and cutting height on yield and chemical compositions of three associated grasses intercropped with leucaena

    OpenAIRE

    Tudsri, S.; Kaewkunya, C.

    2002-01-01

    The experiment was conducted at Suwanvajokkasikit Research Station, Pakchong, to determine the yield and chemical compositions of ruzi (Brachiaria ruziziens), dwarf napier (Pennisetum purpureum), and Taiwan A25 (P. purpureum) intercropped with leucaena (Leucaena leucocephala cv. Ivory Coast) under irrigation. The design of the experiment was a randomized split-split plot with pasture species as the main plots, leucaena row spacings (1, 2, 4 m) as sub - plots and leucaena cutting height (10 an...

  20. INFLUENCE OF BIOFERTILIZERS, VERMICOMPOST AND CHEMICAL FERTILIZRS ON GROWTH, NODULATION, NUTRIENT UPTAKE, SEED YIELD AND ECONOMICS OF BLACK GRAM

    Directory of Open Access Journals (Sweden)

    Harish Kumar Mehta

    2015-07-01

    Full Text Available The experiment was conducted during rabi season in medium black soil at College Farm, College of Agriculture, Rajendranagar, ANGRAU, Hyderabad, Andhra Pradesh to study the influence of biofertilizers, vermicompost and chemical fertilizers on growth, nodulation, nutrient uptake, seed yield and economics of Black gram. From the data, it was observed that 50%RDF + Vermicompost + Rhizobium + Pseudomonas significantly increased the plant height, root length, leaf area index and leaf chlorophyll content at 25 and 50 DAS over the other treatments including control. The same treatment recorded highest seed yield (707 kg ha-1 and haulm yield (7067 kg ha-1 as compared to the control. Nutrient uptake recorded significantly highest in the treatment supplied with biofertilizers along with Vermicompost and 50%RDF. Treatment supplied with 50%RDF + Vermicompost + Rhizobium + Pseudomonas recorded highest net return (17784 Rs ha-1 but highest B: C ratio (2.11 was recorded in the treatment supplied with 50%RDF + Rhizobium + Pseudomonas.

  1. Effect of leucaena row spacing and cutting height on yield and chemical compositions of three associated grasses intercropped with leucaena

    Directory of Open Access Journals (Sweden)

    Tudsri, S.

    2002-07-01

    Full Text Available The experiment was conducted at Suwanvajokkasikit Research Station, Pakchong, to determine the yield and chemical compositions of ruzi (Brachiaria ruziziens, dwarf napier (Pennisetum purpureum, and Taiwan A25 (P. purpureum intercropped with leucaena (Leucaena leucocephala cv. Ivory Coast under irrigation. The design of the experiment was a randomized split-split plot with pasture species as the main plots, leucaena row spacings (1, 2, 4 m as sub - plots and leucaena cutting height (10 and 25 cm above ground levels as sub-sub-plots with three replications of 5 × 4 m sub-sub-plots. Dwarf napier produced the highest total dry matter yield, followed by Taiwan A25 and ruzi. Leucaena yield was highest in the ruzi plots and lowest in the dwarf napier plots. However, the total dry matter yield (grass + leucaena was highest in the dwarf napier plot and lowest in the ruzi plots. Increasing the row spacing between rows of leucaena resulted in a poorer leucaena yield but the reverse was true for the grasses. The recommendation for row spacing of leucaena was 1 m under irrigation conditions. Cutting of leucaena at 10 cm above ground levels depressed yield of leucaena but did not affect the associated grasses. In terms of chemical compositions it was found that the crude protein of the dwarf napier and Taiwan A25 were higher than that of the ruzi grass. Leucaena gave higher levels of crude protein than the grasses. The phosphorus and potassium levels of the grasses were higher than leucaena. ADF levels were higher in the grasses than in the legumes. Nutrient contents of grasses and leucaena were not affected by leucaena row spacing and cutting height.

  2. High Precision and High Yield Fabrication of Dense Nanoparticle Arrays onto DNA Origami at Statistically Independent Binding Sites †

    OpenAIRE

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph Tyler; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-01-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templa...

  3. High confinement, high yield Si3N4 waveguides for nonlinear optical application

    CERN Document Server

    Epping, Jörn P; Mateman, Richard; Leinse, Arne; Heideman, René G; van Rees, Albert; van der Slot, Peter J M; Lee, Chris J; Boller, Klaus-J

    2014-01-01

    In this paper we present a novel fabrication technique for silicon nitride (Si3N4) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si3N4. Using this technique no stress-induced cracks in the Si3N4 layer were observed resulting in a high yield of devices on the wafer. The propagation losses of the obtained waveguides were measured to be as low as 0.4 dB/cm at a wavelength of around 1550 nm.

  4. Foliar application effects of beet vinasse on rice yield and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Tejada, M.; Garcia-Martinez, A. M.; Benitez, C.; Gonzalez, J. L.; Bautista, J.; Parrado, J.

    2009-07-01

    This study presents an account of rice (oriza sativa cv. Puntal) yield quality parameters as influenced by the foliar application of an industrial byproduct (beet vinasse). Beet (Beta vulgaris L. Subsp.vurgaris) vinasse is a product of great agricultural interest, because of its organic matter content, N and K concentrations. (Author)

  5. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  6. Breeding of Zhongyouza 8, a Canola Variety with Large Seeds and High Oil Yield

    Institute of Scientific and Technical Information of China (English)

    LI Yun-chang; HU Qiong; MEI De-sheng; LI Ying-de; XU Yu-song

    2006-01-01

    High oil yield resulted from a combination of high grain yield and high oil content is a prerequisite for the high efficient oilseed rape production. By using irradiation induced mutation and sexual hybridization combined with paired test cross,the fertility, yield and oil content of the three lines of cytoplasmic male sterility have been improved and a new hybrid variety Zhongyouza 8 with high oil yield was developed. It has been testified that the yield of Zhongyouza 8 was significantly higher than that of the control variety Zhongyou 821 with 9.82 and 10.64% increase in the regional trials of Hubei Province and nationwide, respectively. The oil content and oil yield of Zhongyouza 8 were the highest among all the lines involved in Hubei provincial trials, being 42.77% and 1 051.05 kg ha-1 which was raised by 3% and 161.25 kg ha-1compared to the control Zhongyou 821, respectively. The genetic basis for the strong heterosis, and the factors contributing to the yield and oil content increase of Zhongyouza 8 as well as the strategy for high oil yielding variety improvement through increasing seed size were also discussed in this paper.

  7. Evaluation the effects of organic, biological and chemical fertilizers on morphological traits, yield and yield components of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S. M.K Tahhami Zarandi

    2015-04-01

    Full Text Available The use of organic manure and biofertilizers containing beneficial microorganisms instead of chemical fertilizers are known to improve plant growth through supply of plant nutrients and can help sustain environmental health and soil productivity. Because of special priority of the medicinal plants production in sustainable agricultural systems and lack of studies on assessment of different sources of fertilizer on basil plants, an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2009. A complete randomize block design with ten treatments, and three replications was used. The treatments were: 1cow manure, 2sheep manure, 3hen manure, 4compost 5vermicompost, 6biological fertilizer nitroxin (consisting of Azotobacter and Azospirillum, 7biological fertilizer consisting of Phosphate Solubilizing Bacteria (Pseudomonas and Bacillus, 8mixture of biological fertilizer nitroxin and Phosphate Solubilizing Bacteria 9NPK fertilizers, and 10control (no fertilizer. Results showed plant height in sheep manure was higher than other treatments. Number of branches in vermicompost and number of inflorescence in cow manure were significantly higher than other treatments. The number of whorled flowers in compost, sheep and cow manure were more than other treatments. Highest leaf and green area index was observed in nitroxin treatment and biological yield in sheep manure have significant difference with other treatments (except cow manure. The highest seed yield were obtained from plants treated with compost (1945 kg/h and the lowest of that observed in NPK fertilizer and control treatments. In all measured traits (except number of inflorescence NPK fertilizer and control treatment did not have any significant difference.

  8. Correction of the ratio between real cheese yield at 28 hours and protein according to chemical composition of buffalo milk

    Directory of Open Access Journals (Sweden)

    R. Di Palo

    2010-02-01

    Full Text Available The aim of this study was to verify the ratio between real cheese yield at 28 hours and proteins, after values correction according to the regression analysis. Milk characteristics of subjects characterized by a 28CY/protein ratio lower (Group A; n=212 or higher (Group B; n=108 than 56 were analysed by ANOVA in order to evaluate differences between the following milk characteristics: the lactodinamographic parameters (Formagraph, Foss, DN; the complete physic-chemical composition; fat (F, protein (P, casein, lactose, ash, urea, pH and SH; the somatic cells content (SCC using (Milkoskan; the total aerobic mesophilic flora (TAMF by the dilution method. Chemical composition of the curd was also determined (protein, fat and ash; ASPA, 1995. The milk protein content was adjusted for the non proteic N content determined in milk as urea (corrected P; the theoretic cheese yield (ThCY was obtained by the following formula: cheese yield =milk x[-0.88 + 3.50 x P(%+1.23 x F(%] x 100 -1 (Altiero et al., 1989 and the ratio between ThCY/FCY and ThCY/28CY were calculated. Other calculated variables were: FCY/Corrected P, 28CY/Corrected P, CDM/Corrected P. Regression analysis was carried out between real cheese yield at 28 hours/proteins ratio and 28CY vs. all the parameters resulted different between the two groups of buffaloes. Real cheese yield at 28 hours/proteins ratio and 28CY were corrected and ANOVA was repeated on corrected data, in order to verify the modifications of the values. These correction reduced but did not eliminate the differences.

  9. The yields of r-process elements and chemical evolution of the Galaxy

    CERN Document Server

    Chen, Z; Chen, Y P; Cui, W Y; Zhang, B; Chen, Zhe; Zhang, Jiang; Chen, YanPing; Cui, WenYuan; Zhang, Bo

    2006-01-01

    The supernova yields of r-process elements are obtained as a function of the mass of their progenitor stars from the abundance patterns of extremely metal-poor stars on the left-side [Ba/Mg]-[Mg/H] boundary with a procedure proposed by Tsujimoto and Shigeyama. The ejected masses of r-process elements associated with stars of progenitor mass $M_{ms}\\leq18M_{\\odot}$ are infertile sources and the SNe II with 20$M_{\\odot}\\leq M_{ms}\\leq 40M_{\\odot}$are the dominant source of r-process nucleosynthesis in the Galaxy. The ratio of these stars 20$M_{\\odot}\\leq M_{ms}\\leq40M_{\\odot}$ with compared to the all massive stars is about $\\sim$18%. In this paper, we present a simple model that describes a star's [r/Fe] in terms of the nucleosynthesis yields of r-process elements and the number of SN II explosions. Combined the r-process yields obtained by our procedure with the scatter model of the Galactic halo, the observed abundance patterns of the metal-poor stars can be well reproduced

  10. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks.

    Science.gov (United States)

    Chan, Siew-Yin; Choo, Wee-Sim

    2013-12-15

    Different extraction conditions were applied to investigate the effect of temperature, extraction time and substrate-extractant ratio on pectin extraction from cocoa husks. Pectin was extracted from cocoa husks using water, citric acid at pH 2.5 or 4.0, or hydrochloric acid at pH 2.5 or 4.0. Temperature, extraction time and substrate-extractant ratio affected the yields, uronic acid contents, degrees of methylation (DM) and degrees of acetylation (DA) of the extracted pectins using the five extractants differently. The yields and uronic acid contents of the extracted pectins ranged from 3.38-7.62% to 31.19-65.20%, respectively. The DM and DA of the extracted pectins ranged from 7.17-57.86% to 1.01-3.48%, respectively. The highest yield of pectin (7.62%) was obtained using citric acid at pH 2.5 [1:25 (w/v)] at 95 °C for 3.0 h. The highest uronic acid content (65.20%) in the pectin was obtained using water [1:25 (w/v)] at 95 °C for 3.0 h.

  11. Effects of Chemical Fertilizer, Algea Compost and Zeolite on Green Bean Yield

    Directory of Open Access Journals (Sweden)

    Aysun Türkmen

    2017-03-01

    Full Text Available The present study used chemical fertilizer, brown algae compost and zeolite carried out in the field of Giresun Hazelnut Research Center between May-November 2014 in pots according to randomized blog design as three replicate each. Treatment groups were consist of eight different combinations as follow; G1-Control, G2-Zeolite, G3-Compost, G4-Chemical Fertilizer, G5-Zeolite+Compost, G6-Zeolite+Chemical Fertilizer, G7-Compost+ Chemical Fertilizer, G8-Compost+Zeolite+ Chemical Fertilizer. The brown algae (Cystoseira sp. were used as compost material. These combinations were applied to green beans (Phaseolus vulgaris. The green beans were seeded by hand to arrange planting depth of 5-6 cm and 20 seeds/m2. Except control group, each treatment was added fertilizers as 50 g zeolite, 50 g compost, and 25 g chemical according to treatment design. Half of the chemical fertilizers were added at seeding time and the rest after two weeks. Collected soil samples were analyzed right after harvest, the greatest values of treatment groups were determined as; Carbon% G1: 5.08, nitrogen G3: 0.09 ppm, sodium G5: 139 ppm, potassium G6 and G8: 5 ppm, magnesium G2: 1865 ppm, calcium G6: 8.33 ppm, manganese G2: 359 ppm, iron G6 : 16070 ppm, cobalt G6 and G7: 7.91 ppm, copper G2: 17.5 ppm, zinc G8: 28.0 ppm, selenium G7: 4.17 ppm, cadmium G5: 0.08 ppm, lead G4: 5.31 ppm. The greatest harvest value as g/m2 was obtained from zeolite only group G2 with 273 while the lowest was obtained from Compost only group G3 with 113 g/m2, obviously showing the effectiveness of zeolite only application moreover, also thinking that better results may get if the present study run for longer period.

  12. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    Science.gov (United States)

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of animal manure on quantitative and qualitative yield and chemical composition of essential oil in cumin (Cuminum cyminum

    Directory of Open Access Journals (Sweden)

    ahmad ahmadiyan

    2009-06-01

    Full Text Available Animal manure on soil prepares essential elements and increase water holding capacity and quality of plants. To study the effects of animal manure on yield and its components, nutrients absorption, chemical composition and its percentages on Cuminum cyminum this experiment was conducted at the agricultural researcher station of Zahak-Zabol, during 2003 – 2004 in a randomized complete block design with four replications. Animal manure significantly enhanced number of umbers per plant, number of seed per plant, biological and seed yield. Use of animal manure had not significant affect on Ca, Mg, Fe, P, K, Mn, Zn, and Cu and protein percentage in cumin seed but decreased Na concentration. Animal manure significantly enhanced cumin aldehyde and ρ-cymene and decrease β-pinene, γ-terpinene and α-pinene in cumin oil. A relationship or correlation exists between the main components of cumin oil. This study showed that animal manure enhances seed yield, oil percentage and qualitative chemical composition in cumin oil.

  14. Toddlers at High Risk of Chemical Eye Burns

    Science.gov (United States)

    ... fullstory_160258.html Toddlers at High Risk of Chemical Eye Burns: Study Access to household cleaning products to blame, ... and 2 years have relatively high rates of chemical eye burns, with everyday cleaners a common cause, researchers say. ...

  15. Yield and phosphorus-uptake by crops as influenced by chemical fertilizer and integrated use of industrial by-products

    Directory of Open Access Journals (Sweden)

    M. Mohsin Iqbal

    2005-01-01

    Full Text Available To determine the best combination of P fertilizer for obtaining higher P fertilizer efficiency, industrial by-products i.e. filter cake (FC, poultry waste (PW and di-calcium phosphates (DCP were integrated in different proportions so as to supply 75 mg P kg-1 soil and evaluated against mineral P fertilizer i.e. single super phosphate (SSP for growing maize and wheat in pots. The organic and inorganic fertilizers were thoroughly mixed with soil before sowing of maize and wheat while the effect of residual P on the yield and P-uptake on the following crop was assessed by growing rice in the same pots. Maize was harvested after 40 days of growth while wheat and rice were harvested at maturity. The results showed that irrespective to the source or combination, application of P increased the dry matter yield (DMY of maize over control. Integration of PW and DCP in 2:1 P ratio gave maximum DMY and the highest P-uptake. Integrated use of FC, PW and DCP in 1:1:1 P ratio produced 95% of the maximum dry matter yield and 93% of the maximum P-uptake. Application of P through chemical source (SSP produced 79 and 61% of maximum DMY and PORIGINAL uptake, respectively and resulted in lowest P fertilizer efficiency (PFE compared to all other combinations. For wheat integrated use of waste in all tested combinations except (FC+DCP significantly increased total P-uptake and the grain yield of wheat over SSP. Highest grain yield as well as maximum P-uptake were recorded for DCP+PW combination. However, PW+DCP and FC+PW+DCP combinations also produced grain yields equivalent to DCP+PW combination. Integrated use of wastes increased wheat grain yield ranging from 15-42% and the PFE from 9-65% over SSP, respectively. Assessment of the residual P effect showed that integrated use of fertilizers resulted in 5-30% more grain yield than SSP alone. Thus for improved P fertilizer efficiency and sustainable crop yields, integrated use of PW and DCP in 2:1 P ratio was the best

  16. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  17. Effects of Rhizobium inoculation, organic and chemical fertilizers on yield and physical properties of faba bean seeds.

    Science.gov (United States)

    Elsheikh, E A; Elzidany, A A

    1997-01-01

    A field experiment was carried out to investigate the effect of Rhizobium inoculation, sulphur, nitrogen and chicken manure on yield, 100-seed weight, cookability, non-soakers, total defects and hydration coefficient of faba bean. The results showed that sulphur, nitrogen and chicken manure treatments significantly (p < or = 0.05) increased yield, 100-seed weight, non-soakers, and hydration coefficient, in the absence of Rhizobium inoculation. The results also showed that Rhizobium inoculation significantly (p < or = 0.05) increased yield, 100-seed weight, cookability, but decreased non-soakers. A positive correlation (r = 0.90) was observed between the non-soaker percent and the total defect percent. No correlation was found between non-soakers, hydration coefficient and cookability. The results of this investigation indicate that Rhizobium inoculation is a promising fertilizer because it is cheap, easy to handle and improves plant growth and seed quality. The efficiency of inoculation could be improved with the addition of biological, chemical or organic fertilizers. Generally, fertilization of faba bean with nitrogen, sulphur or chicken manure not only increased plant growth and yield, but also improved seed quality and nutritional value.

  18. Comparing milk yield, chemical properties and somatic cell count from organic and conventional mountain farming systems

    Directory of Open Access Journals (Sweden)

    Marcello Bianchi

    2010-01-01

    Full Text Available A study was undertaken to investigate the effects of farming systems (organic vs. conventional, diet (hay/concentrate vs. pasture and their interaction on milk yield, gross composition and fatty acid (FA profile of dairy cows bred in mountainous areas. For this purpose four dairy farms (two organic and two conventional were chosen in the alpine territory of Aosta Valley (NW Italy; individual milk yield was recorded daily and bulk milk samples were collected monthly from February to September 2007 to cover dietary variations. Higher levels of milk production (P<0.05 and lower milk protein amounts (P<0.01 were observed in the organic farms with respect to the conventional ones, while no significant differences were noticed in milk fat and lactose contents and in somatic cell count. Concerning fatty acids, only small differences were detected between organic and conventional milk and such differences seemed to be related mainly to the stabled period. Diet affected almost all variables studied: pasture feeding provided a significant improvement in the fatty acid composition in both organic and conventional systems leading to lower hypercholesterolemic saturated fatty acids, higher mono- and polyunsaturated fatty acids and conjugated linoleic acid amounts (P<0.001.

  19. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  20. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis

    Directory of Open Access Journals (Sweden)

    Ganghua Li

    2014-08-01

    Full Text Available Improvement of yield in rice (Oryza sativa L. is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars (53 in 2007 and 48 in 2008 were grown in Taoyuan, Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107 (a large-panicle type and Xieyou 107 (a heavy-panicle type, were planted in Taoyuan, Yunnan province and Nanjing, Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes. Growth duration (GD, leaf area index (LAI, panicles per m2 (PN, and spikelets per m2 (SM were significantly and positively correlated with grain yield (GY over all years. Sequential path analysis identified PN and panicle weight (PW as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height (PH, days from heading to maturity (HM, and grain weight (GW were stable traits that showed little variation across sites or years, whereas GD (mainly the pre-heading period, PHP and PN varied significantly across locations. To achieve a yield of 15 t ha− 1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m− 2, and a GW of 29–31 mg.

  1. Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis

    Institute of Scientific and Technical Information of China (English)

    Ganghua; Li; Jun; Zhang; Congdang; Yang; Yunpan; Song; Chengyan; Zheng; Shaohua; Wang; Zhenghui; Liu; Yanfeng; Ding

    2014-01-01

    Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars(53 in 2007 and 48 in 2008) were grown in Taoyuan,Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107(a large-panicle type) and Xieyou 107(a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing,Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes.Growth duration(GD), leaf area index(LAI), panicles per m2(PN), and spikelets per m2(SM) were significantly and positively correlated with grain yield(GY) over all years. Sequential path analysis identified PN and panicle weight(PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height(PH), days from heading to maturity(HM), and grain weight(GW) were stable traits that showed little variation across sites or years, whereas GD(mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg.

  2. Chemical and Mechanical Weed Control Methods and Their Effects on Photosynthetic Pigments and Grain Yield of Kidney Bean

    Directory of Open Access Journals (Sweden)

    A.S Ghatari

    2015-11-01

    Full Text Available To evaluate the integrated management of weeds in red kidney bean, a split-plot experiment using randomized complete block design with three replications was conducted in 2013 in the Damavand County. In this experiment, the mechanical control treatments consisted of two levels (no cultivation and one cultivation asseigned to main plots and controlling chemical treatments consisted of six levels (non-application of herbicides, pre-emergence herbicide application of Pursuit with full dose of 1 liter per hectare, pre-emergence herbicide application of Pursuit a dose decreased 0.5 liters per hectare, post-emergence herbicide application of Pursuit dose reduced to 0.3 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit with a reduced dose of 0.5 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit full dose of 1 liter per hectar + 2 thousand citogate to subplots. The results showed that the effects of interaction between herbicide application and cultivation for traits of carotenoids, chlorophyll a, chlorophyll b and total chlorophyll contents, density of weeds and their dry weights were significant at 1 %, and grain yield at the 5% probability levels. The highest bean seed yield with an average of 5461.6 kg.ha-1 and lowest weed dry weight with an average of 345.9 kg.ha-1 were related to pre-emergence herbicide and cultivation with a dose of 1 liter per hectare treatment. The difference between full and reduced doses of chemical weed control was non-significant. It could be concluded that integrated mechanical and chemical weed control not only may increase seed yield but also reduce, environmental hazards.

  3. Monash Chemical Yields Project (Monχey) Element production in low- and intermediate-mass stars

    Science.gov (United States)

    Doherty, Carolyn; Lattanzio, John; Angelou, George; Campbell, Simon W.; Church, Ross; Constantino, Thomas; Cristallo, Sergio; Gil-Pons, Pilar; Karakas, Amanda; Lugaro, Maria; Stancliffe, Richard

    The Monχey project will provide a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling. We describe our detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova (CC-SN) ~ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z = 0) to those of super-solar metallicity (Z = 0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi. A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars. We briefly introduce our forthcoming web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results will be available for further use in post processing calculations for dust production yields.

  4. CR Dhan 407, a high-yielding rice cultivar released for the rainfed shallow lowland ecosystem of eastern India

    National Research Council Canada - National Science Library

    Roy, P S; Patnaik, S S C; Patnaik, A; Rao, G J N; Singh, O N

    2015-01-01

    .... Development and release of CR Dhan 407, a high-yielding cultivar, with a potential yield of more than 5 tons per hectare and non-lodging plant type, can address the problem of yield stagnation...

  5. Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Thomsen, Rasmus Peter; Ogaki, Ryosuke

    2015-01-01

    in biomedical applications. Oligoethylenimine (OEI)–β-cyclodextrin (βCD) Cdots were synthesised using a simple and fast heating method in phosphoric acid. The synthesised Cdots showed strong green fluorescence under UV excitation with a 30% quantum yield and exhibited superior stability over a wide pH range. We......Carbon dots (Cdots) have recently emerged as a novel platform of fluorescent nanomaterials. These carbon nanoparticles have great potential in biomedical applications such as bioimaging as they exhibit excellent photoluminescence properties, chemical inertness and low cytotoxicity in comparison...... to widely used semiconductor quantum dots. However, it remains a great challenge to prepare highly stable, water-soluble green luminescent Cdots with a high quantum yield. Herein we report a new synthesis route for green luminescent Cdots imbuing these desirable properties and demonstrate their potential...

  6. Observations of atmospheric chemical deposition to high Arctic snow

    Science.gov (United States)

    Macdonald, Katrina M.; Sharma, Sangeeta; Toom, Desiree; Chivulescu, Alina; Hanna, Sarah; Bertram, Allan K.; Platt, Andrew; Elsasser, Mike; Huang, Lin; Tarasick, David; Chellman, Nathan; McConnell, Joseph R.; Bozem, Heiko; Kunkel, Daniel; Duan Lei, Ying; Evans, Greg J.; Abbatt, Jonathan P. D.

    2017-05-01

    Rapidly rising temperatures and loss of snow and ice cover have demonstrated the unique vulnerability of the high Arctic to climate change. There are major uncertainties in modelling the chemical depositional and scavenging processes of Arctic snow. To that end, fresh snow samples collected on average every 4 days at Alert, Nunavut, from September 2014 to June 2015 were analyzed for black carbon, major ions, and metals, and their concentrations and fluxes were reported. Comparison with simultaneous measurements of atmospheric aerosol mass loadings yields effective deposition velocities that encompass all processes by which the atmospheric species are transferred to the snow. It is inferred from these values that dry deposition is the dominant removal mechanism for several compounds over the winter while wet deposition increased in importance in the fall and spring, possibly due to enhanced scavenging by mixed-phase clouds. Black carbon aerosol was the least efficiently deposited species to the snow.

  7. Neutron and fission yields from high-energy deuterons in infinite /sup 238/U targets

    Energy Technology Data Exchange (ETDEWEB)

    Canfield, E.

    1965-06-28

    Early work on the interaction of high energy deuterons with large /sup 238/U targets is reexamined and current theoretical study is discussed. Results of fission and neutron yield calculations are compared with experiment. (SDF)

  8. INDUSTRIAL YIELD AND CHEMICAL COMPOSITION OF HIGH QUALITY PROTEIN MAIZE AS COMPARED TO COMMERCIAL HYBRIDS RENDIMENTO INDUSTRIAL E COMPOSIÇÃO QUÍMICA DE MILHO DE ALTA QUALIDADE PROTÉICA EM RELAÇÃO A HÍBRIDOS COMERCIAIS

    Directory of Open Access Journals (Sweden)

    Luciana de Oliveira Froes

    2009-09-01

    Full Text Available

    The hardness of corn endosperm is an essential attribute for farmers and industries that use this cereal as a raw material. However, Quality Protein Maize (QPM presents alterations in the grain texture, which hinder its commercial use. This study evaluated the industrial yield in the kernel degerming and endosperm fractionation, and chemical composition of a QPM variety, regarding commercial common corn hybrids. QPM and common corn genotypes were processed using the dry degerming method, and the resulting yield was expressed as the ratio of the weight of fractions obtained to the initial weight of the whole corn. Compared to commercial corn hybrids, QPM presented lower endosperm yield, higher germ and fine fraction (< 0.425 mm yield and the same hominy yield in endosperm fractionation. QPM showed similar protein, lipid, and ash levels and higher levels of dietary fiber and iron in the germ, when compared to common corn hybrids. QPM and its fractions have potential as a nutritious raw material for use by the food industry.

    KEY-WORDS: QPM corn; corn germ; degermed corn yield; corn chemical composition; corn nutrients.

  9. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria.

    Science.gov (United States)

    Taher, Edris; Chandran, Kartik

    2013-04-02

    The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH(4)) to methanol (CH3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH(4) to CH(3)OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH(3)OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH(4) to CH(3)OH conversion obtained during this study was 0.82 mg CH(3)OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH(4) oxidation to CH(3)OH by AOB was inhibited by NH(3) (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH(3)OH, itself. Further, oxidation of CH(4) to CH(3)OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH(2)OH) as an electron donor. Therefore, a potential optimum design for promoting CH(4) to CH(3)OH oxidation by AOB could involve supplying NH(3) (needed to maintain AMO activity) uncoupled from the supply of NH(2)OH and CH(4). Partial oxidation of CH(4)-containing gases to CH3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH(3) OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N(2), using an internally produced organic electron donor.

  10. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2016-10-01

    Full Text Available A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington of Kansas (total of 457 ha. Three basic tests were conducted on the data: (1 spatial dependence on each of the yield and vegetation indices (VIs using Moran’s I test; (2 model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS and spatial econometric (SPL models; and (3 model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG was tested positive and statistically significant for most of the fields (p < 0.05, except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02 was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to

  11. Fast and green synthesis of biologically important quinoxalines with high yields in water

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2014-06-01

    Full Text Available Optimal method were developed for the green synthesis of quinoxaline derivatives based on the highly efficient and simple condensation reaction of various aromatic 1,2-diketones and 1,2-diamines in nearly quantitative yields in water. In this method we did not use any catalyst. The very mild reaction conditions, the high yields of the products, and the absence of any catalyst make this methodology an efficient and green route for synthesis of quinoxalines.

  12. Divisional compound hierarchical classification method for regionalization of high, medium and low yield croplands of China

    Science.gov (United States)

    Yuliang, Qiao; Ying, Wang; Jinchun, Liu

    This is an introduction to the method of classifying high, medium and low yield croplands by remote sensing and GIS, which is the result of a key project of The Scientific and Industry Technology Committee of National Defence. In the study, special information related to high, medium and low yield cropland was compounded with TM data. The development of the method of compound hierarchy classification improved accuracy of remote sensing classification greatly.

  13. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-05-01

    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  14. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  15. Commercial Practice on Technology for High- Temperature Cracking of C4 Fraction to Increase Propylene Yield

    Institute of Scientific and Technical Information of China (English)

    Yu Darong; Zhang Zhigang

    2003-01-01

    This article refers to the results of small-scale and commercial tests on high-temperature cracking of C4 fraction in FCC unit to increase the propylene yield. The bench tests revealed that the conversion rate of C4 fraction during high-temperature cracking reached 37.38 % and propylene yield was equal to 15.60 % with the conversion rate of C4 olefins equating around 50%. The results of commercial application showed that adoption of the technology for high-temperature cracking of C4 fraction in FCC unit had led to an increase of propylene yield by 2.16 % with no remarkable changes in the yields and properties of other products.

  16. 白浆土高产耕层建设技术对玉米生长发育及土壤理化性状影响的研究%Effect of High Yield Topsoil Construction Technology on Maize Growth and Soil Physical and Chemical Properties of Albic Soil

    Institute of Scientific and Technical Information of China (English)

    冯延江

    2012-01-01

    为了使白浆土地区玉米生产进一步获得高产,研究了三段式犁整地技术模式对玉米农艺性状及土壤理化性状的影响。结果表明:在玉米的整个生育期,利用三段式犁整地技术模式的玉米株高、干物质重和叶面积均高于常规技术;在土壤含水量方面,三段式犁整地技术模式的15~25cm土壤含水量均高于常规技术模式的土壤含水量1.9~3.6个百分点;在土壤容重方面,三段式犁整地技术模式的20~40cm土壤容重均低于常规技术模式;在土壤养分方面,两者差异不明显;在产量方面,三段式犁整地技术模式较常规技术模式增产9.6%。%In order to obtain higher yield of maize in albic soil area,the effect of three-plow tillage on agronomic characters of maize and soil physical and chemical properties was studied.The results showed that in the whole growth period of maize,plant height,dry weight and leaf area of three-plow tillage were higher than conventional tillage;15~25 cm soil water content of the three-plow soil preparation mode was 1.9~3.6 percentage point higher than conventional tillage;20~40 cm soil bulk density of three-plow tillage were lowerr than conventional tillage;Difference was not obvious in the soil nutrient;In terms of yield,three-plow tillage increase 9.6% more than the conventional tillage.

  17. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid.

    Science.gov (United States)

    Wang, Yun; Zhang, Dong-Hao; Zhang, Jiang-Yan; Chen, Na; Zhi, Gao-Ying

    2016-01-01

    In this paper, Lipozyme TLIM-catalyzed synthesis of ethyl cinnamate through esterification of cinnamic acid with ethanol was studied. In order to increase the yield of ethyl cinnamate, several media, including acetone, isooctane, DMSO and solvent-free medium, were investigated in this reaction. The reaction showed a high yield by using isooctane as reaction medium, which was found to be much higher than the yields reported previously. Furthermore, several parameters such as shaking rate, water activity, reaction temperature, substrate molar ratio and enzyme loading had important influences on this reaction. For instance, when temperature increased from 10 to 50 °C, the initial reaction rate increased by 18 times and the yield of ethyl cinnamate increased by 6.2 times. Under the optimum conditions, lipase-catalyzed synthesis of ethyl cinnamate gave a maximum yield of 99%, which was of general interest for developing industrial processes for the preparation of ethyl cinnamate.

  18. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Directory of Open Access Journals (Sweden)

    Nathaniel B Lyman

    Full Text Available Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  19. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Science.gov (United States)

    Lyman, Nathaniel B; Jagadish, Krishna S V; Nalley, L Lanier; Dixon, Bruce L; Siebenmorgen, Terry

    2013-01-01

    Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable) rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  20. High yield sample preconcentration using a highly ion-conductive charge-selective polymer.

    Science.gov (United States)

    Chun, Honggu; Chung, Taek Dong; Ramsey, J Michael

    2010-07-15

    The development and analysis of a microfluidic sample preconcentration system using a highly ion-conductive charge-selective polymer [poly-AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid)] is reported. The preconcentration is based on the phenomenon of concentration polarization which develops at the boundaries of the poly-AMPS with buffer solutions. A negatively charged polymer, poly-AMPS, positioned between two microchannels efficiently extracts cations through its large cross section, resulting in efficient anion sample preconcentration. The present work includes the development of a robust polymer that is stable over a wide range of buffers with varying chemical compositions. The sample preconcentration effect remains linear to over 3 mM (0.15 pmol) and 500 microM (15 fmol) for fluorescein and TRITC-tagged albumin solutions, respectively. The system can potentially be used for concentrating proteins on microfluidic devices with subsequent analysis for proteomic applications.

  1. Analysis on differential expressed genes of ovarian tissue between high- and low-yield laying hen.

    Science.gov (United States)

    Chen, Wei; Song, Ling-Jun; Zeng, Yong-Qing; Yang, Yun; Wang, Hui

    2013-01-01

    In order to elucidate molecular genetic mechanism of laying hen reproduction at the transcriptional level and the structure of significantly differential genes, the mRNA differential display and reverse northern dot-blot were used to detect the differential expression of genes in the ovary tissue of low-yield laying hens and high-yield laying hens in the present study. Sixteen 32-week-old CAU-pink laying hens divided into two groups were used and the laying performance was measured. The results showed that only the egg numbers were significantly different between the two groups; and from 15 primer pairs, a total of 336 bands were displayed of which 59 cDNA bands were found to be differentially expressed in both high-yield and low-yield laying hen. The sequence analysis indicated that the expression of such bands as H-AP5, H-P5, and H-P4 was significantly potentiated in high-yield laying hen using primer pairs AP5/HT11G, P5/HT11G and P4/HT11G and these transcripts had high homology (98%) to HoxDb, HoxCa, and HoxBa, respectively. The differentially expressed gene fragments may be relevant to the progression of the high-yield hens to the egg-laying stage. And further study is required to elucidate the molecular function to improve the productivity of laying hens.

  2. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  3. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  4. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    field strength in the discharge. In order to clarify this phenomenon, further study on the gas analysis within the ozone gas by an FTIR spectrometer...31st ICPIG, July 14-19, 2013, Granada, Spain Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier... ozonizer and found that the ozone yield is higher by the homogeneous discharge mode than by the conventional filamentary discharge mode in larger

  5. High-resistance controlled yielding supporting technique in deep-well oil shale roadways

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Bai Jianbiao; Wang Xiangyu; Wang Junde; Xue Shizhi; Xu Ke

    2014-01-01

    In order to avoid the deep-well oil shale roadway being deformed, damaged, or difficult to maintain after excavating and supporting in Haishiwan coal mine, this paper has analyzed the characteristics of the deformed roadway and revealed its failure mechanism by taking comprehensively the methods of field geological investigation, displacement monitoring of surrounding rock, rock properties and hydration properties experiments and field application tests. Based on this work, the high-resistance controlled yielding supporting principle is proposed, which is:to‘resist’ by high pre-tightening force and high stiff-ness in the early stage, to‘yield’ by making use of the controlled deformation of a yielding tube in the middle stage, and to‘fix’ by applying total-section Gunite in the later stage. A high-resistance controlled yielding supporting technique of‘high pre-tightening force yielding anchor bolt+small-bore pre-tight-ening force anchor cable+rebar ladder beam+rhombic metal mesh+lagging gunite’ has been estab-lished, and industrial on site testing implemented. The practical results show that the high-resistance controlled yielding supporting technique can effectively control the large deformation and long-time rhe-ology of deep-well oil shale roadways and can provide beneficial references for the maintenance of other con-generic roadways.

  6. Growth and development characteristics of super-high-yielding mid-season japonica rice

    Institute of Scientific and Technical Information of China (English)

    YANG Jianchang; DU Yong; WU Changfu; LIU Lijun; WANG Zhiqin; ZHU Qingsen

    2007-01-01

    Rice is one of the most important food crops in China.The realization of the super-high-yielding (SHY)type has great significance in ensuring food security in this country.This study investigated the growth and development characteristics of the super-high-yielding rice (grain yield>11 t/hm2).Four mid-season japonica rice cultivars (including lines):Lianjiajing 2,Huajing 5,0026 and 9823,were grown in the paddy field.Growth analysis was performed during the growth period,and yield components were determined at maturity.Results showed that SHY rice had more sipkelets per panicle and higher filled-grain percentage than the high-yielding rice (CK,grain yield 8.98-9.16 t/hm2).There was no significant difference in the 1 000-grain weight between the super-high-yielding and the CK.Super-high-yield rice exhib ited fewer tillers at the early growth stage (from transplanting to jointing),with a higher ratio of productive tillers to total tillers,when compared with the CK.The leaf area index (LAI),photosynthetic potential and dry matter accumulation were lower for the SHY rice than those for the CK at the early growth stage,and the differences were not significant between the two rice types at heading,but were greater in the former than the latter after heading.The root-shoot ratio at each growth stage,root bleedings from heading to maturity,grain-leaf ratio,translocation percentage of the matter from stems and sheaths and harvest index of super-high-yielding rice were greater than those of CK.The indexes for the growth and development of SHY mid-season rice population were suggested,i.e.total spikelets>4.5×104/m2,filled-grain percentage>90%,1 000-grain weight>26 g;ratio of productive tillers>80%,leaf area index at heading 7.5-8.0,photosynthetic potential during the whole growth period >22 t/hm2,harvest index>0.51;grain-leaf ratio (number of spikelets per cm2 leaf area)>0.58;root-shoot ratio at heading tion approaches and key cultivation techniques for raising the

  7. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    Science.gov (United States)

    Purchase, R L; de Groot, H J M

    2015-06-06

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m(-2) d(-1) for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum-classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We

  8. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    Science.gov (United States)

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics

  9. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  10. Ultrahigh Yield Strength Rhenium for High-Performance Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The state-of-the-art material system for high-performance radiation-cooled liquid rocket engines is iridium/rhenium manufactured by chemical vapor deposition (CVD)....

  11. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids.

    Science.gov (United States)

    Sasikala, Suchithra Padmajan; Henry, Lucile; Yesilbag Tonga, Gulen; Huang, Kai; Das, Riddha; Giroire, Baptiste; Marre, Samuel; Rotello, Vincent M; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-05-24

    This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.

  12. Amendment of Tephrosia Improved Fallows with Inorganic Fertilizers Improves Soil Chemical Properties, N Uptake, and Maize Yield in Malawi

    Directory of Open Access Journals (Sweden)

    Maggie G. Munthali

    2014-01-01

    Full Text Available Maize production in Malawi is limited mainly by low soil N and P. Improved fallows of N-fixing legumes such as Tephrosia and Sesbania offer options for improving soil fertility particularly N supply. The interactions of Tephrosia fallows and inorganic fertilizers on soil properties, N uptake, and maize yields were evaluated at Chitedze Research Station in Malawi. The results indicated that the level of organic matter and pH increased in all the treatments except for the control. Total N remained almost unchanged while available P decreased in all plots amended with T. vogelii but increased in T. candida plots where inorganic P was applied. Exchangeable K increased in all the plots irrespective of the type of amendment. The interaction of N and P fertilizers with T. vogelii fallows significantly increased the grain yield. The treatment that received 45 kg N ha−1 and 20 kg P ha−1 produced significantly higher grain yields (6.8 t ha−1 than all the other treatments except where 68 kg N ha−1 and 30 kg P ha−1 were applied which gave 6.5 t ha−1 of maize grain. T. candida fallows alone or in combination with N and P fertilizers did not significantly affect grain yield. However, T. candida fallows alone can raise maize grain yield by 300% over the no-input control. Based on these results we conclude that high quality residues such as T. candida and T. vogelii can be used as sources of nutrients to improve crop yields and soil fertility in N-limited soils. However, inorganic P fertilizer is needed due to the low soil available P levels.

  13. Effects of Organic and Chemical Fertilizers on Leaf Yield, Essential Oil Content and Composition of Lemon Verbena (Lippia citriodora Kunth

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ebadi

    2017-02-01

    Full Text Available Introduction: Organic fertilizers with beneficial effects on soil structure and nutrient availability help maintain yield and quality, and they are less costly than synthetic fertilizers. Vermicompost and vermiwash are two organic fertilizers that they contain a biologically active mixture of bacteria, enzymes and phytohormones, also these organic fertilizers can supply the nutritional needs of plants. Lemon verbena (Lippia citriodora Kunth, Verbenaceae is an evergreen perennial aromatic plant. The lemon-scented essential oil from the lemon verbena has been widely used for its digestive, relaxing, antimalarial and lemony flavor properties. In order to decrease the use of chemical fertilizers for reduction of environmental pollution, this research was undertaken to determine effects of vermicompost and vermiwash in comparison with chemical fertilizer on leaf yield, essential oil content and composition of lemon verbena. Materials and Methods: A pot experiment based on a completely randomized design with six treatments and three replications on Lemon verbena was carried out in the experimental greenhouse of the Department of Horticulture Sciences, Tarbiat Modares University, 2012. Treatments consisted of 10, 20 and 30 % by volume of vermicompost and vermiwash (with an addition to irrigation in three steps, including: two weeks after the establishment of plants in pots, the appearing of branches and three weeks before harvest, complete fertilizer and control without any fertilizer. Each replication contained six pots and each pot contained one plant of Lemon verbena provided from Institute of Medicinal Plants, Karaj, therefore 108 pots were used in this experiment. The pots were filled up by a mixture contained 3/5 soil and 2/5 sand (v/v. After three months, plant aerial parts were harvested concomitantly at starting of the flowering stage. Aerial parts were dried at room temperature for 72 hours and dry weights of dried branches and leaves were

  14. Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Christensen, Bjarke; Thykær, Jette; Nielsen, Jens

    2000-01-01

    A recently developed method for analyzing metabolic networks using C-13-labels was employed for investigating the metabolism of a high- and a low-yielding strain of Penicillium chrysogenum. Under penicillin-producing conditions, the flux through the pentose phosphate (PP) pathway in the high...

  15. Evaluation of Effect of Chemical and Organic Fertilizers on Growth Characteristics, Yield and Yield components of three Sesame Ecotypes (Sesamum indicum L.)

    OpenAIRE

    M Goldani; Fazel Fazeli Kakhki

    2014-01-01

    Using organic fertilizers is cause increase soil fertility, improving crop growth and production. For this purpose a greenhouse experiment was carried out in factorial arrangement based on a completely randomized design with three replications during 2011 year. First factor included: three sesame ecotype (MSC3, MSC6, MSC7) and second factor was 6 fertilizer treatments that included: Incorporation manure and chemical fertilizer (216 g manure and 1 gram chemical fertilizer NPK), Chemical fertil...

  16. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    Science.gov (United States)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  17. Sputtering yields of carbon based materials under high particle flux with low energy

    Science.gov (United States)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  18. Introgression of High Yield Genes from Lycopersicon hirsutum acc. LA1777 Using CAPS Marker

    Institute of Scientific and Technical Information of China (English)

    LI Hong; WANG Xiao-xuan; SONG Ming; GAO Jian-chang; GUO Yan-mei; ZHU De-wei; DAI Shan-shu; DU Yong-chen

    2007-01-01

    The idea behind this study is to show that using high yield genes from a wild tomato can enrich tomato breeding resources and accelerate tomato breeding programs. In this study, the near-isogenic line TA1229 containing a 24-cM introgression at the bottom of chromosome 1 from Lycopersicon acc. LA1777, affects several higher yield traits. The TA1229 × 9706 BC1population was analyzed by marker-assisted selection and the traits of the population were evaluated. Twenty-three recombinant individuals that carried a shorter segment than TA1229 were obtained. Among them, 16 lines with the chromosome 1 recombinant segment can increase tomato yield and a QTL affecting yield was found between TG53 and TG158. Sixteen recombinant lines are useful to improve the tomato variety.

  19. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice.

    Science.gov (United States)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P; Lovell, John T; Moyers, Brook T; Baraoidan, Marietta; Naredo, Maria Elizabeth B; McNally, Kenneth L; Poland, Jesse; Bush, Daniel R; Leung, Hei; Leach, Jan E; McKay, John K

    2017-02-21

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.

  20. Controlled Fabrication of High-Yield CdS Nanostructures by Compartment Arrangement

    Directory of Open Access Journals (Sweden)

    Joshua M. Green

    2008-01-01

    Full Text Available High-yield, high-purity CdS nanostructures were synthesized in a turf-like configuration using an improved vapor-liquid-solid method. To increase the yield, a compartment arrangement was employed. The specific kind of nanostructure fabricated was found to be directly dependent on the temperature in the compartment. Along with the high-yield growth of CdS nanorods, nanowires, and nanobelts, intertwined structures were also observed, and the electron field emission property of the intertwined structures was investigated and compared with that of other type of nanostructures. Photoluminescence measurements at 10 K showed a peak emission from the CdS nanostructures at 485 nm.

  1. Physical and chemical performances of high Al steels

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-chuan; DONG Yuan-chi; ZHANG Wen-ming; WANG Shi-jun; ZHOU Yun

    2005-01-01

    The effects of acid-soluble Al content on the physical and chemical performances of high Al steels were investigated. The results show that the distribution of acid-soluble Al in steel substrate is uniform. With increasing Al content, the strength and toughness of steels decrease a little but the hardness increases. The average yield strength and tensile strength are 425 MPa and 570 MPa, respectively, and the Rockwell hardness is 89.7. For non-Al steels the average oxidation rate is up to 0.421 mg/(cm2·h) at 1 373 K. For high Al steels, when the mass fraction of Al is less than 5%, there is a thinner gray oxidized layer on surface and the oxidation rate is high; when the mass fraction of Al is more than 8.0%, the thin, close and yellow glossing film still exists, and the average oxidation rate is only 0.016 mg/(cm2·h).

  2. The Hazards of Reactive Chemicals in High School Laboratories.

    Science.gov (United States)

    Forlin, Peter

    Chemical reactivity is a major area of risk in high school laboratories. This paper reports on a study that has provided a research-based framework for risk management in Australian chemical education. The chemical practice model of risk management is considered with respect to kinetic factors; catalysts; concentrations and proportions;…

  3. [Effects of nitrogen fertilization on population dynamics and yield of high-yielding wheat and on alteration of soil nitrogen].

    Science.gov (United States)

    Ye, You-Liang; Wang, Gui-Liang; Zhu, Yun-Ji; Li, Huan-Huan; Huang, Yu-Fang

    2010-02-01

    Taking wheat varieties Yumai 49-198 (multi-spike phenotype) and Lankao Aizao 8 (large-spike phenotype) as test materials, field experiments were conducted at Wenxian and Lankao sites of Henan Province to study the effects of nitrogen fertilization on their population dynamics and yield and on the alteration of soil nitrogen. Five nitrogen application rates, i. e., 0, 90, 180, 270, and 360 N kg x hm(-2) were installed. The population amount of the two test varieties were all increased after emergence, reached the highest at jointing stage, and decreased afterwards. As for Yumai 49-198, its population amount had no significant differences at wintering and turning-green stages among the five nitrogen application rates and two experimental sites, but differed significantly after jointing stage with the nitrogen application rates. For Lankao Aizao 8, its population amount had no significant differences among the nitrogen application rates during whole growth period. The grain yield of the two varieties increased with the increase of nitrogen fertilization rate, but excessive nitrogen fertilization decreased the grain yield. Yumai 49-198 had the highest yield at 270 N kg x hm(-2), being 9523 and 9867 kg x hm(-2) at Wenxian and Lanako sites, respectively, while Lankao Aizao 8 had the highest yield at 180 N kg x hm(-2), being 9258 and 9832 kg x hm(-2) at Wenxian and Lanako sites, respectively. With the increase of nitrogen fertilization rate, soil nitrate N concentration and apparent nitrogen loss increased. At Wenxian and Lankao sites, the apparent soil nitrogen loss for Yumai 49-198 was 32.56% - 51.84% and - 16.7% - 42.6% of fertilized nitrogen, and that for Lankao Aizao 8 was 18.58% - 52.94% and - 11.5% - 45.8% of fertilized nitrogen, respectively. Considering the yield and environmental effect comprehensively, the nitrate N concentration in 0-90 cm soil layer in our case should not be exceeded 120 - 140 kg x hm(-2), and the maximal nitrogen application rate should not

  4. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A New High-Yielding Two-line Hybrid Rice Variety - Peiliang You 981

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Peiliang You 981 (also called 98 Guangzhi 1 or Peiliang You Guangzhi 1) is a late-season two-line indica hybrid rice variety with high yield and late maturity. Pei'ai 64S is the female parent and R981 (Guang 1) is the male parent of Peiliang You 981. The hybrid showed its characters of high and stable yield and wide adaptability in the variety trials and demonstration production in the recent years, and it was released in March 2002 by Hunan Crop Varieties Release Committee.

  6. Property Evaluation Method Using Spherical Indentation for High-Yield Strength Materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngsick; Marimuthu, Karuppasamy Pandian; Lee, Hyungyil [Sogang Univ., Seoul (Korea, Republic of); Lee, Jin Haeng [KAERI, Daejeon (Korea, Republic of)

    2015-11-15

    In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.

  7. Property evaluation method using spherical indentation for high-yield strength materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Sick; Marimuthu, Karuppasamy Pandian; Lee, Hyung Yil [Dept. of Mechanical Engineering, Sogang University, Seoul (Korea, Republic of); Lee, Jin Haeng [Reactor Mechanical Engineering Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-11-15

    In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10 GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.

  8. Characterization of high-yield performance as affected by genotype and environment in rice

    Institute of Scientific and Technical Information of China (English)

    Song CHEN; Fang-rong ZENG; Zong-zhi PAO; Guo-ping ZHANG

    2008-01-01

    We characterized yield-relevant characters and their variations over genotypes and environments (locations and years) by examining two rice varieties (9746 and Jinfeng) with high yield potential.9746 and Jinfeng were planted in two locations of Shanghai,China,during 2005 and 2006.The results show that there was a large variation in grain yield between locations and years.The realization of high yield potential for the two types of rice was closely related to the improved sink size,such as more panicles per square meter or grains per panicle.Stem and leaf biomasses were mainly accumulated from tillering stage to heading stage,and showed slow decline during grain filling.Meanwhile,some photosynthetic characters including net photosynthesis rate (Pn),leaf area index (LAI),specific leaf area (SLA),fluorescence parameter (maximum quantum yield of PSII,Fv/Fm),chlorophyll content (expressed as SPAD value),as well as nutrient (N,P,K) uptake were also measured to determine their variations over genotypes and environments and their relationships with grain yield.Although there were significant differences between years or locations for most measurements,SLA at tillering and heading stages,Fv/Fm and LAI at heading stage,stem biomass at heading and maturity stages,and leaf nitrogen concentration at tillering and heading stages remained little changed,indicating their pos-sible applications as selectable characters in breeding programs.It was also found that stem nitrogen accumulation at tillering stage is one of the most important and stable traits for high yield formation.

  9. Yield behaviour associated with stacking faults in a high-temperature annealed ultra-low carbon high manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Liming [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Fan, Likun [Shanghai Research Institute of Materials, 99 Handan Road, Shanghai, 200437 (China); Li, Zhigang; Sun, Nairong [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Wang, Huanrong; Wang, Wei [Baosteel Research Institute, 889 Fujin Road, Shanghai, 201900 (China); Shan, Aidang, E-mail: adshan@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2013-10-10

    This paper investigated the tensile behaviour of high-temperature annealed ultra-low carbon high manganese steel with 42 vol% delta-ferrite. The results show that the tensile stress-strain curve of plastic deformation exhibits three distinct stages of deformation: a yielding stage with a remarkably large elongation and a positive strain-hardening rate, a second stage in which the strain-hardening rate rapidly increases, and a third stage in which the strain-hardening rate slowly increase. The yield plateau is intrinsically associated with the increasing formation of strain-induced stacking faults. The stacking faults quickly form during yield deformation, and the yield elongation monotonically increases with the extent of the stacking faults. The localised strain concentration of delta-ferrite and the heterogeneous strain partitioning between harder delta-ferrite and softer austenite play important roles in the rapid formation of stacking faults during strain at the yield plateau, which is an important prerequisite for this yielding phenomenon. The results and analysis demonstrate that the rapid and then slow hardening deformation after the yield plateau result from strain-induced transformation and deformation twinning, respectively.

  10. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengpeng; Zhang, Changchang; Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Cui, Ping, E-mail: cokecp@sohu.com

    2016-04-15

    Graphical abstract: - Highlights: • Cheap carbon quantum dots (CQDs) with a high quantum yield were prepared. • The preparation process and surface functionalization on CQDs are rather facile. • Such functionalized CQDs can be attached to BSA covalently. • This predicts that some biomolecules can be labeled by the fluorescent CQDs. - Abstract: An economic and green approach of manufacturing carbon quantum dots (CQDs) with a high quantum yield (denoted with HQY-CQDs) and the application in labeling bovine serum albumin (BSA) were described in detail in this work. Firstly, the cheap resources of citric acid and glycine were pyrolysed in drying oven for preparing the CQDs. Then the product was immersed in tetrahydrofuran for 8 h. HQY-CQDs were obtained by removing tetrahydrofuran from the supernate and were evaluated that they possessed a much higher quantum yield compared with that without dealing with tetrahydrofuran and a wonderful photo-bleaching resistance. Such HQY-CQDs could be functionalized by N-hydroxysuccinimide and successively combined with BSA covalently. Thus fluorescent labeling on BSA was realized. The HQY-CQDs were demonstrated with transmission electron microscopy and the chemical modification with N-hydroxysuccinimide was proved by infrared and X-ray photoelectron spectra. Labeling BSA with the HQY-CQDs was confirmed by gel electrophoresis and fluorescence imaging.

  11. Influence of chemical and organic fertilizer on growth, yield and essential oil of dragonhead (Dracocephalum moldavica L. plant

    Directory of Open Access Journals (Sweden)

    Mohsen JANMOHAMMADI

    2015-12-01

    Full Text Available Two field experiments were carried out to study the response of Dracocephalum moldavica L. to NPK fertilizer and different application techniques of MOG organic fertilizer in two regions of Iran (Piranshahr with cold Mediterranean climate and clay loam soil,  Maragheh with cool sub-humid temperate climate and sandy loam  soil. MOG is bio-organic fertilizer with plant origin and contains different natural enzymes and amino acids. In current study following treatments have been applied: NPK (a complete NPK 20-20-20, 90 kg fertilizer ha-1; MOG1 (soil application of MOG organic fertilizer at sowing stage; MOG2 (foliar application of MOG organic fertilizer at early stage of flowering; MOG3 (soil application of MOG organic fertilizer at sowing and at 5 to 6 leaf stage; MOG4 (soil application of MOG organic fertilizer at sowing and at 5 to 6 leaf stage with foliar application at early stage of flowering. Results indicated that all MOG treatments overcome the chemical fertilizers in both locations. However, plants grown in Piranshahr were more responsive to MOG fertilizer treatments than those grown in Mragheh. Overall, it could be concluded that utilization of MOG fertilizer as both soil and foliar application (MOG4 may increase content and yield of essential oil, which could be suggested as a suitable alternative for chemical fertilizers.

  12. Effect of Azolla Based - Organic Fertilizer, Rock Phosphate and Rice Hull Ash on Rice Yield and Chemical Properties of Alfisols

    Directory of Open Access Journals (Sweden)

    Sudadi

    2014-07-01

    Full Text Available The application of chemical fertilizer for long time may adverse soil environment. Organic agriculture, for example combination use of azolla based-organic fertilizer, phosphate rock and rice hull ash, was one of ways that able to recover it. Research was conducted in Sukosari, Jumantono, Karanganyar while soi chemical properties analysis was analysed in Soil Chemistry and Fertility Laboratory, Fac. of Agriculture, Sebelas Maret University April to November 2013. Research design used was RAKL with 5 treatments, each repeated 5 times. The treatments applied were P0 (control, P1 ( azola inoculum dosage 250 g/m2 + phosphate rock + rice hull ash equal to 150 kg/ha KCl, P2 (azola inoculum dosage 500 g/m2 + phosphate rock equal to 150kg/ha, SP-36 + rice hull ash equal to 100 kg/ha KCl, P3 (manure dosage of 5 ton/ha,P4 (Urea 250 kg/ha + SP-36 150 kg/ha + KCl 100 kg/ha. Data analysed statistically by F test (Fisher test with level of confident 95% followed by DMRT (Duncan Multiple Range Test if any significant differences. The result showed that the treatment combination of azolla, phosphate rock and rice hull ash increase soil organic matter content, cation exchange capacity, available-P and exchangeable-K as well as rice yield ( (at harvest-dry grain weight and milled-dry grain weight.

  13. Mechanical model for yield strength of nanocrystalline materials under high strain rate loading

    Institute of Scientific and Technical Information of China (English)

    朱荣涛; 周剑秋; 马璐; 张振忠

    2008-01-01

    To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations.

  14. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    Science.gov (United States)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  15. Use of Iron Powder to Obtain High Yields of Leptothrix Sheaths in Culture

    Directory of Open Access Journals (Sweden)

    Tomoko Suzuki

    2015-06-01

    Full Text Available The Leptothrix species, Fe-oxidizing bacteria, produce an extracellular, microtubular sheath with a complicated organic–inorganic hybrid nature. We have discovered diverse industrial functions for this material, e.g., electrode material for Li-ion batteries, catalyst enhancers, pigments, plant growth promoters, and plant protectants. To consistently obtain material with the qualitative and quantitative stability needed for industrial applications, we focused on developing an optimum culture system for sheath synthesis by the Leptothrix sp. strain OUMS1. Although we have used Fe plates as an Fe source in the liquid silicon-glucose-peptone medium (SGP, the plates do not yield a consistent quality or precise mass, and formation of Fe-encrusted sheath is restricted to a surface of the plates, which limits harvest yield. In this study, to obtain a high yield of sheaths, we cultured OUMS1 in SGP supplemented with Fe powders. The addition of Fe powders to the medium (up to 14.0 g/L did not adversely influence growth of OUMS1. The final yield of sheaths was about 10-fold greater than in the Fe plate culture. The sheaths also maintained a microtubular form and crystalline texture similar to those produced on Fe plates in SGP. The results proved the usefulness of Fe powder for consistently high yields of Fe-encrusted sheaths of stable quality.

  16. 板栗丰产栽培技术%High-yield Cultivation Technology of Chestnuts

    Institute of Scientific and Technical Information of China (English)

    李明杰; 于海洋; 孙少娟; 吴岩

    2011-01-01

    In view of the biological characteristics of chestnuts, several key technical points of high-yield cultivation of chestnuts are presented.%针对板栗的生物学特性,对栗树的丰产栽培提出几项技术要点。

  17. Surrogate models for identifying robust, high yield regions of parameter space for ICF implosion simulations

    Science.gov (United States)

    Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian

    2016-10-01

    Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.

  18. Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability

    Science.gov (United States)

    High density light detection and ranging (LIDAR) imaging has been shown to be able to define yield stability areas of a field for multi-cropping. Since LIDAR imaging is expensive and not widely available, we hypothesized that medium resolution GPS elevation data which is commonly collected with var...

  19. CULTIVAR RELEASE - FAEM Carlasul: new white oat cultivar with high grain yield

    Directory of Open Access Journals (Sweden)

    Antônio Costa de Oliveira

    2012-01-01

    Full Text Available The white oat cultivar FAEM Carlasul was developed at the Plant Genomics and Breeding Center, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, as a result of the cross between UFRGS 10 and 90SAT-28 (Coronado2/Cortez3/Pendek/ME 1563. It is characterized by high yield and grain quality.

  20. 31 CFR 356.21 - How are awards at the high yield or discount rate calculated?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are awards at the high yield or discount rate calculated? 356.21 Section 356.21 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT SALE...

  1. Engineering of High Yield Production of L-serine in Escherichia coli

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre

    2016-01-01

    L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevente...

  2. Lab-on-Chip platform for high-yield electrofusion in droplets

    NARCIS (Netherlands)

    Schoeman, R.M.; Braak, ter P.M.; Bomer, J.G.; Berg, van den A.

    2014-01-01

    In this article, we present a microfluidic device, consisting of a microchannel structure in PDMS bonded to a glass substrate with recessed platinum electrodes. Our device is capable of successive high-yield single cell encapsulation in droplets, with additional droplet pairing, fusion, shrinkage an

  3. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  4. Barbarasul: a high-yielding and lodging-resistant white oat cultivar

    Directory of Open Access Journals (Sweden)

    Fernando Irajá Félix de Carvalho

    2009-01-01

    Full Text Available The white-oat cultivar Barbarasul was developed by the Universidade Federal de Pelotas. It resulted from across between UPF18 and CTC5. It is adapted to the southern region of Brazil, with excellent grain yield potential, shortstature and high lodging tolerance.

  5. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  6. Improved forage strategies for high-yielding dairy cows in Vietnam : report of a workshop

    NARCIS (Netherlands)

    Wouters, A.P.; Lee, van der J.

    2013-01-01

    This report presents results of the workshop "Improved forage strategies for high-yielding dairy cows in Vietnam" which was held with Vietnamese stakeholders on January 17-18, 2013 in Ho Chi Minh City as part of the project "Forage and Grass Production for Dairy Development in Vietnam" funded by the

  7. High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx.

    Science.gov (United States)

    Martín, Nuria; Moliner, Manuel; Corma, Avelino

    2015-06-21

    The synthesis of chabazite with high solid yields is achieved by the rational combination of directing effects of a source of Si and Al coming from USY zeolites and the inexpensive tetraethylammonium. Moreover, Cu-CHA materials prepared by post-synthetic and "one-pot" methodologies show high activity and stability for SCR of NOx.

  8. Root-determined hypernodulation mutant of Lotus japonicus shows high-yielding characteristics.

    Science.gov (United States)

    Yokota, Keisuke; Li, Yong Yi; Hisatomi, Masahiro; Wang, Yanxu; Ishikawa, Kaori; Liu, Chi-Te; Suzuki, Shino; Aonuma, Kho; Aono, Toshihiro; Nakamoto, Tomomi; Oyaizu, Hiroshi

    2009-07-01

    Here we report the phenotypic characteristics of a novel hypernodulation mutant, Ljrdh1 (root-determined hypernodulation 1) of Lotus japonicus. At 12 weeks after rhizobial inoculation, there were no differences between the growth of Ljrdh1 and, wild-type. However, Ljrdh1 showed 2 to 3 times higher nitrogen-fixing activity, and seed and pod yields, were approximately 50% higher than the wild-type. This is the first report of a legume hypernodulation mutant showing normal growth and a high-yielding characteristic under optimal cultivation conditions.

  9. Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization

    CERN Document Server

    Khruschov, V V; Nadyozhin, D K; Fomichev, S V

    2014-01-01

    The relative yields of active and sterile neutrinos in the matter with a high density and different degree of neutronization are calculated. A significant increase in the proportion of sterile neutrinos produced in superdense matter when approaching the medium neutronization degree to value of two is found. The results obtained can be used in the calculations of the neutrino fluxes for media with a high density and different neutronization degrees in astrophysical processes such as the formation of protoneutron core of a supernova.

  10. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    Science.gov (United States)

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  11. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  12. Rice Breeding for High Grain Yield under Drought: A Strategic Solution to a Complex Problem

    Directory of Open Access Journals (Sweden)

    Shalabh Dixit

    2014-01-01

    Full Text Available Drought is one of the major abiotic stresses that affect rice production in rainfed areas. Recent trends in climate change have predicted a further increase in drought intensity, making the development of new drought-tolerant rice cultivars critical to sustain rice production in this ecosystem. The use of grain yield as a selection criterion at the International Rice Research Institute (IRRI, through proper population development and precise phenotyping techniques, has allowed the development of several high-yielding rice cultivars that have been released in major rainfed rice-growing areas. This strategy has also allowed the identification of several major quantitative trait loci (QTLs that show large effects under drought across environments and genetic backgrounds. These QTLs are being pyramided together to develop drought-tolerant versions of popular drought-susceptible varieties. The near-isogenic lines (NILs developed can replace the popular, high-yielding but drought-susceptible varieties in rainfed areas prone to drought. Additionally, these NILs serve as suitable genetic material for the study of molecular and physiological mechanisms underlying these QTLs. This may provide a better understanding of plant functions responsible for high grain yield under drought and lead to the identification of new traits and genes.

  13. Freestanding carbon nanodots/poly (vinyl alcohol) films with high photoluminescent quantum yield realized by inverted-pyramid structure

    Science.gov (United States)

    Pang, Linna; Ba, Lixiang; Pan, Wei; Shen, Wenzhong

    2017-02-01

    Carbon nanodots (C-dots) have attracted great attention for their biocompatibility and strong tunable photoluminescence (PL). However, aggregation-induced PL quenching blocks their practical application in solid-state optoelectronics. Here, we report a luminescent C-dots freestanding film with a substantially enhanced high quantum yield (QY) of 72.3%. A facile template method, rather than complicate lithography and etching technique is proposed to fabricate the C-dots composite films with large-area (8 inch × 8 inch) ordered micro-scale inverted-pyramid patterns on the surface. The control experiment and theoretical analysis demonstrate the key success to QY enhancement lies in the separation of C-dots and the pattern of surface inverted-pyramid structure. This work realizes the QY enhancement simply by geometrical optics, not the chemical treatment of luminescent particles. It provides a general approach to fabricate large-area freestanding luminescent composite film with high QY.

  14. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.

    Science.gov (United States)

    Navarro, Pilar; Savoie, Jean-Michel

    2015-01-01

    To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. China’s High-yield Pulp Sector and Its Carbon Dioxide Emission: Considering the Saved Standing Wood as an Increase of Carbon Storage

    Directory of Open Access Journals (Sweden)

    Yanhong Gao

    2014-11-01

    Full Text Available The production of high-yield pulp in China has increased significantly in recent years. The well-known advantages of this type of pulp include low production cost, high opacity, and good paper formation. In the context of state-of-the-art technologies, China’s high-yield pulping, which is dominated by the PRC-APMP (preconditioning refiner chemical treatment-alkaline peroxide mechanical pulping process, has a much higher energy input but a significantly lower wood consumption in comparison with the kraft pulping process. If the saved wood in the forest or plantation is considered as an increment of carbon storage, then the carbon dioxide emission from the production of high-yield pulp can be regarded as much lower than that of kraft pulp.

  16. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    Science.gov (United States)

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  17. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets.

    Science.gov (United States)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-29

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  18. Surface studies and implanted helium measurements following NOVA high-yield DT experiments

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M.A.; Hudson, G.B.

    1997-02-18

    This paper presents the results of three March 6, 1996 direct-drive high-yield DT NOVA experiments and provides `proof-of-principal` results for the quantitative measurement of energetic He ions. Semiconductor quality Si wafers and an amorphous carbon wafer were exposed to NOVA high-yield implosions. Surface damage was sub-micron in general, although the surface ablation was slightly greater for the carbon wafer than for the Si wafers. Melting of a thin ({approx} 0.1{mu}) layer of Si was evident from microscopic investigation. Electron microscopy indicated melted blobs of many different metals (e.g. Al, Au, Ta, Fe alloys, Cu and even Cd) on the surfaces. The yield measured by determining the numbers of atoms of implanted {sup 4}He and {sup 3}He indicate the number of DT fusions to be 9.1({plus_minus}2.3) X 10{sup 12} and DD fusions to be 4.8({plus_minus}1.0) x 10{sup 10}, respectively. The helium DT fusion yield is slightly lower than that of the Cu activation measurement, which was 1.3({plus_minus}0.l) x 10{sup 13} DT fusions.

  19. Study on Plant Morphological Traits and Production Characteristics of Super High-Yielding Soybean

    Institute of Scientific and Technical Information of China (English)

    AO Xue; XIE Fu-ti; HAN Xiao-ri; ZHAO Ming-hui; ZHU Qian; LI Jie; ZHANG Hui-jun; WANG Hai-ying; YU Cui-mei; LI Chun-hong; YAO Xing-dong

    2013-01-01

    Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages;the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments

  20. Development of a Chemically Defined Medium for Better Yield and Purification of Enterocin Y31 from Enterococcus faecium Y31

    Directory of Open Access Journals (Sweden)

    Wenli Liu

    2017-01-01

    Full Text Available The macro- and micronutrients in traditional medium, such as MRS, used for cultivating lactic acid bacteria, especially for bacteriocin production, have not been defined, preventing the quantitative monitoring of metabolic flux during bacteriocin biosynthesis. To enhance Enterocin Y31 production and simplify steps of separation and purification, we developed a simplified chemically defined medium (SDM for the growth of Enterococcus faecium Y31 and production of its bacteriocin, Enterocin Y31. We found that the bacterial growth was unrelated to Enterocin Y31 production in MRS; therefore, both the growth rate and the Enterocin Y31 production were set as the index for investigation. Single omission experiments revealed that 5 g/L NaCl, five vitamins, two nucleic acid bases, MgSO4·7H2O, MnSO4·4H2O, KH2PO4, K2HPO4, CH3COONa, fourteen amino acids, and glucose were essential for the strain’s growth and Enterocin Y31 production. Thus, a novel simplified and defined medium (SDM was formulated with 30 components in total. Consequently, Enterocin Y31 production yield was higher in SDM as compared to either MRS or CDM. SDM improved the Enterocin Y31 production and simplified the steps of purification (only two steps, which has broad potential applications.

  1. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    Science.gov (United States)

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.

  2. Chemical tracers of high-metallicity environments

    CERN Document Server

    Bayet, E; Bell, T A; Viti, S

    2012-01-01

    We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored Photon-Dominated Region (PDR) chemistry for a wide range of physical conditions likely to be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, Far-Ultra Violet (FUV) radiation fields and cosmic ray ionisation rates. We also investigate the response of the chemistry to the changes in $\\alpha-$element enhancement as seen in ETGs. We find that the fractional abundances of CS, H$_{2}$S, H$_{2}$CS, H$_{2}$O, H$_{3}$O$^{+}$, HCO$^{+}$ and H$_{2}$CN seem invariant to an increase of metallicity whereas C$^{+}$, CO, C$_{2}$H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of $\\alpha-$elements ar...

  3. High-Yield Solvothermal Formation of Magnetic CoPt Alloy Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zongtao [ORNL; Blom, Douglas Allen [ORNL; Gai, Zheng [ORNL; Thompson, James R [ORNL; Shen, Jian [ORNL; Dai, Sheng [ORNL

    2003-01-01

    One-dimensional (1D) magnetic nanomaterials have attracted much attention recently because of their applications in magnetic recording and spintronics. Nevertheless, it remains a challenge to prepare free-standing magnetic nanowires in high yield. This Communication reports the successful high-yield synthesis of an interesting 1D ferromagnetic CoPt alloy by direct decomposition of platinum acetylacetonate and cobalt carbonyl compound in ethylenediamine solvent through a solvothermal reaction. The CoPt alloy nanowires obtained have a tunable diameter of 10-50 nm and a length along the longitudinal axis of up to several microns, depending on crystallization temperature and reaction time. A unique formation mechanism involving coarsening and ripening under solvothermal conditions was discovered. This research opens new opportunities in synthesizing nanomaterials through low-temperature solvothermal processes.

  4. [Molecular ecological basis of high-yielding formation of rice and its application].

    Science.gov (United States)

    Lin, Wenxiong; Liang, Kangjing; Guo, Yuchun; He, Huaqin; Wang, Jingyuan; Liang, Yiyuan; Chen, Fangyu

    2003-12-01

    This paper introduced the developmental genetics and its molecular ecological basis of high yielding formation of rice in the past decade, and analyzed the advantage and the shortage of comparative physiological approach traditionally used in the research work on crop cultivation. It was emphasized to actively introduce the research contents and its methodology from relative disciplines to deeply understand the scientific issue, and suggested that the key to realize stable and high yielding of rice was to develop a rational cultivation system based on the properties of genetic effects on the traits in different developmental stages by controlling and regulating the traits governed by dominant effect genes and additive effect genes x environment in same direction, which was considered as the main characteristics and the technological innovation of modern crop genetic ecological cultivation science. Finally, the development trend of crop cultivation science shifting to molecular crop cultivation science was predicted and discussed.

  5. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2016-01-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant...... archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae...... and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield....

  6. Effects of head pruning and different nutritional systems (chemical, biological and integrated on seed yield and oil content in medicinal pumpkin (Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    Zarei Dariush

    2016-01-01

    Full Text Available To evaluate the effect of head pruning and different nutritional systems (chemical, biological and integrated on yield and seed oil content in medicinal pumpkin (Cucurbita pepo L., an experiment was conducted in Kermanshah/Iran during the 2013 growing season. The experimental treatments consisted of two levels - no head pruning, control (Co and head pruning (C1 allocated to the main plots. Four levels of different fertilizing systems - control (without fertilizer (T0, chemical (T1, biological (a combination of nitrogen fixing bacteria, Azospirillum brasilense and Glomus mosseae (T2, and integrated fertilizing system (biological fertilizer + 50% chemical fertilizer (T3 were assigned to the sub-plots. The experimental treatments were arranged as a split plot based on a randomized complete block design with three replications. The results showed that the highest percentage of seed oil was obtained (37% in the integrated nutritional system along with the head pruning treatment. The highest grain yields of 53 and 50 g per square meter were obtained in integrated and chemical fertilizing systems, respectively while no pruning was applied. The highest fruit yields of 3,710 and 3,668 kg per hectare were produced by chemical and integrated fertilizing systems, respectively. The biological nutrition system required more time to demonstrate its positive effect on the growth and yield of medicinal pumpkin.

  7. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  8. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  9. Mutagenesis and Screening of High Yield Xylanase Production Strain of Aspergillus usamii by Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    李永泉; 陈时飞; 岑沛霖

    2003-01-01

    A high yield xylanase producing strain, A. usamii L336-23, was screened out from its parent strain A.usamii L336 after microwave irradiation. Its productivity of xylanase activity increased by 35.7% from 21000μ·m1-1 to 28500μ·m1-1 and was stable after frequent subcultures and storage for more than two months.The mechanism of microwave mutation was also discussed.

  10. Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds.

    Science.gov (United States)

    Howell, Alison; Baylis, Matthew; Smith, Rob; Pinchbeck, Gina; Williams, Diana

    2015-09-01

    The liver fluke Fasciola hepatica is a trematode parasite with a worldwide distribution and is the cause of important production losses in the dairy industry. The aim of this observational study was to assess the prevalence of exposure to F. hepatica in a group of high yielding dairy herds, to determine the risk factors and investigate their associations with production and fertility parameters. Bulk milk tank samples from 606 herds that supply a single retailer with liquid milk were tested with an antibody ELISA for F. hepatica. Multivariable linear regression was used to investigate the effect of farm management and environmental risk factors on F. hepatica exposure. Higher rainfall, grazing boggy pasture, presence of beef cattle on farm, access to a stream or pond and smaller herd size were associated with an increased risk of exposure. Univariable regression was used to look for associations between fluke exposure and production-related variables including milk yield, composition, somatic cell count and calving index. Although causation cannot be assumed, a significant (phepatica exposure and estimated milk yield at the herd level, representing a 15% decrease in yield for an increase in F. hepatica exposure from the 25th to the 75th percentile. This remained significant when fertility, farm management and environmental factors were controlled for. No associations were found between F. hepatica exposure and any of the other production, disease or fertility variables.

  11. A novel medium devoid of ruminant peptone for high yield growth of Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Patel, Hiren; Mackintosh, David; Ayling, Roger D; Nicholas, Robin A J; Fielder, Mark D

    2008-03-18

    Mycoplasma ovipneumoniae is considered an emerging veterinary pathogen causing pneumonia in sheep and goats worldwide. Currently it has not been possible to define a growth medium that yields the maximum growth of M. ovipneumoniae within a short incubation period. Growth yields of M. ovipneumoniae in Eaton's medium are variable and not as consistently high as those seen with other Mycoplasma spp. This study investigated the ability of different M. ovipneumoniae field strains to grow in various media formulations, where PPLO broth was replaced by a vegetable protein source, and comparisons were made in terms of strain viability in Eaton's medium. Studies were also conducted to determine the optimal carbohydrate source for use in the M. ovipneumoniae medium. Generally, it was found that different strains showed good growth in all media tested, with growth yields at 24h in TSB-1 medium higher than those observed with Eaton's medium. Growth yields reached 10(8) to 10(9)cfu ml(-1) within 24h for particular field strains, with all strains achieving this growth level within 48-72h.

  12. Some critical considerations on rice high-yielding breeding in China

    Institute of Scientific and Technical Information of China (English)

    ZHU Lihong

    2007-01-01

    Views and comments concerning rice highyielding breeding in China had been touched upon:(1) historical development of rice breeding in China and its prominent contributions recounted;current challenges evolved from rapid population increase,erosion of key natural resources and socioeconomic changes envisaged;(2) concept of extra or super high-yielding rice breeding and related ideas embraced nowadays in the main rice-producing countries assessed;the conception of so-called superrice in China could have been misled and misunderstood,and no substantial genetical differences could be affirmed yet between superrice and modern high-yielding rice;(3) two strategical approaches of rice production and breeding in China would have been persistent in the construction of most favorable-to-growth rice fields to plant rice varieties with high-yielding potentiality as well as renovation and rejuvenation of less favorable rice fields to plant most adaptableto-ecoenvironment varieties with promising productivity;in addition,breeding for rice varieties compatible with the specific rice regions ridden by adverse ecoenvironments;(4) overview of the relationship between the development of genetical researches and the perspective of rice breeding;integration of the classical genetical principles and breeding methods and techniques wherefrom with molecular biotechniques underscored.Finally,appeal to the breeders to adhere to due attentions to the development of genetics and promote pragmatism and traditional ethic solemnly so as to live up to implementing the national rice breeding mandates.

  13. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available High fluorescence quantum yield graphene quantum dots (GQDs have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications.

  14. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the watershed.

  15. Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Gunaseelan, V.N. [PSG College of Arts and Science, Coimbatore (India). Department of Zoology

    2007-04-15

    Several fractions of fruits and vegetable solid wastes (FVSW), sorghum and napiergrass were analyzed for total solids (TS), volatile solids (VS), total organic carbon, total kjeldahl nitrogen, total soluble carbohydrate, extractable protein, acid-detergent fiber (ADF), lignin, cellulose and ash contents. Their ultimate methane yields (B{sub o}) were determined using the biochemical methane potential (BMP) assay. A series of simple and multiple regression models relating the B{sub o} to the various substrate constituents were generated and evaluated using computer statistical software, Statistical Package for Social Sciences (SPSS). The results of simple regression analyses revealed that, only weak relationship existed between the individual components such as carbohydrate, protein, ADF, lignin and cellulose versus B{sub o}. A regression of B{sub o} versus combination of two variables as a single independent variable such as carbohydrate/ADF and carbohydrate + protein/ADF also showed that the relationship is not strong. Thus it does not appear possible to relate the B{sub o} of FVSW, sorghum and napiergrass with single compositional characteristics. The results of multiple regression analyses showed promise and the relationship appeared to be good. When ADF and lignin/ADF were used as independent variables, the percentage of variation accounted for by the model is low for FVSW (r{sup 2}=0.665) and sorghum and napiergrass (r{sup 2}=0.746). Addition of nitrogen, ash and total soluble carbohydrate data to the model had a significantly higher effect on prediction of B{sub o} of these wastes with the r{sup 2} values ranging from 0.9 to 0.99. More than 90% of variation in B{sub o} of FVSW could be accounted for by the models when the variables carbohydrate, lignin, lignin/ADF, nitrogen and ash (r{sup 2}=0.904), carbohydrate, ADF, lignin/ADF, nitrogen and ash (r{sup 2}=0.90) and carbohydrate/ADF, lignin/ADF, lignin and ash (r{sup 2}=0.901) were used. All the models have

  16. Diagnostic Yield of High-Resolution Breast Sonography in Detecting Microcalcifications Compared to Mammography

    Directory of Open Access Journals (Sweden)

    N Ahmadinejad

    2009-08-01

    Full Text Available Background/Objective: Mammography remains the most suitable screening test in detecting microcalcifications as the earliest manifestation of breast malignancy. By means of highfrequency transducers yielding high-resolution breast imaging, some researchers have reported that ultrasonography is capable of depicting microcalcifications in the breast tissue. Therefore, this study has been designed to compare the diagnostic yield of high-resolution"nbreast ultrasonography (HRS versus conventional mammography."nPatients and Methods: Seventy-four consecutive patients who had breast microcalcifications (hyperdense foci < 0.5mm according to standard mammograms, without a prior history of breast disease, surgery, biopsy, chest wall radiation or systemic chemotherapy were enrolled. Considering mammograms as a reference, 46 patients without a mass, voluntarily underwent high-resolution bilateral breast ultrasonography."nResults: The mean age was 50.7±10 years (range, 35-85 years. The upper outer quadrant of the breast was the commonest place where microcalcifications were detected (36.9%. A relative frequency of 45.7% was reported for microcalcifications with breast imaging reporting"nand data system (BIRADS score 3. An overall 82.6% diagnostic yield was discovered for HRS in detecting microcalcifications; it detected all microcalcifications with BIRADS score 4 and 5, but 57.1% and 90.5% of microcalcifications with BIRADS score 2 and 3, respectively. Cluster microcalcification was the most common pattern (43.5%."nConclusion: Considering the 82.6% diagnostic yield of HRS compared to mammography, it can be proposed as the surrogate modality in locating microcalcifications in procedures such as biopsies and hook-wiring, with the advantage of reducing radiation exposure. HRS may be the future screening modality as a result of feasibility, safety, compliance and accuracy.

  17. Engineering of high yield production of L-serine in Escherichia coli.

    Science.gov (United States)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre; Nielsen, Alex Toftgaard

    2016-04-01

    L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevented by deletion of three L-serine deaminases sdaA, sdaB, and tdcG, as well as serine hydroxyl methyl transferase (SHMT) encoded by glyA. Upon overexpression of the serine production pathway, consisting of a feedback resistant version of serA along with serB and serC, this quadruple deletion strain showed a very high serine production yield (0.45 g/g glucose) during small-scale batch fermentation in minimal medium. Serine, however, was found to be highly toxic even at low concentrations to this strain, which lead to slow growth and production during fed batch fermentation, resulting in a serine production of 8.3 g/L. The production strain was therefore evolved by random mutagenesis to achieve increased tolerance towards serine. Additionally, overexpression of eamA, a cysteine/homoserine transporter was demonstrated to increase serine tolerance from 1.6 g/L to 25 g/L. During fed batch fermentation, the resulting strain lead to the serine production titer of 11.7 g/L with yield of 0.43 g/g glucose, which is the highest yield reported so far for any organism.

  18. Field induced gradient simulations: a high throughput method for computing chemical potentials in multicomponent systems.

    Science.gov (United States)

    Mehrotra, Anuja Seth; Puri, Sanjay; Khakhar, D V

    2012-04-07

    We present a simulation method for direct computation of chemical potentials in multicomponent systems. The method involves application of a field to generate spatial gradients in the species number densities at equilibrium, from which the chemical potential of each species is theoretically estimated. A single simulation yields results over a range of thermodynamic states, as in high throughput experiments, and the method remains computationally efficient even at high number densities since it does not involve particle insertion at high densities. We illustrate the method by Monte Carlo simulations of binary hard sphere mixtures of particles with different sizes in a gravitational field. The results of the gradient Monte Carlo method are found to be in good agreement with chemical potentials computed using the classical Widom particle insertion method for spatially uniform systems.

  19. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.

    Science.gov (United States)

    Hasegawa, Satoshi; Suda, Masako; Uematsu, Kimio; Natsuma, Yumi; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2013-02-01

    We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.

  20. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  1. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  2. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    Science.gov (United States)

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  3. Advances and Prospects in Breeding Japonica Rice for Super High Yield in the Northern China

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-fu; XU Zheng-jin; ZHANG Wen-zhong

    2007-01-01

    In this paper, advances and prospects in breeding japonica rice for super high yield in the northern China were analyzed comprehensively in terms of breeding theories, techniques and practices. The author holds that developing and spreading super rice is an important way to enhance the overall yielding ability of japonica rice and attaining immense expansion of rice production. After theories and technical guidelines for super rice breeding were formulated, which involved the creation of new plant morphology and strong hybrid vigor through crossing indica with japonica subspecies, the optimization of combination of desirable traits via multiple crossing or backcrossing, the assemblage of favorable genes and the integration of ideal plant morphology with the utilization of vigor-major breakthroughs have been made in conventional breeding of japonica super rice. A batch of new super rice varieties marked by superior rice quality and high disease resistance, such as Shennong 265, Shennong 606, and Jijing 88, etc., have been developed and released. In comparison with the advancement in conventional breeding of super rice, progress in hybrid japonica super rice breeding is slower because of climatic and ecological constraint in northern China. Therefore, solving the contradictions between vigor and growth duration, between yield and rice quality, and boosting vastly seed production are still serious challenges for breeders of hybrid japonica rice. Physiological and genetic problems in japonica super rice breeding are also discussed in this paper.

  4. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaie, Mohammad; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Liu, Feng; Zhang, Jie [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); He, Fei; Cheng, Ya [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  5. High-yielding Cultivation and Fertilization Technology of Lvhan No.1 in Angola

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The aim was to research high-yielding cultivation and fertilization technology for Lvhan No.l, a new Chinese rice cultivar, in Angola. [Method] In rainy season of 2012, high-yielding cultivation and fertilization technology of Lvhan No.l, a new cultivar of earlier ripe and drought resistant rice, was researched in CATETE farm of Luanda suburb with pot experiment method. [Result] In CATETE farm, Lvhan No.1 rice were directly sown in black clay and the rice can be significantly improved in plant height, grain weight of single plant, biological yield of single plant, ear length, total grain number per ear, number of filled grain per ear and thousand seed weight, as well as economic coefficient and ratio of grain to straw, if applied with base fertilizer made up of DAP (N:P2Os=14:43), or compound fertilizer of N, P and K (N:P2Os:K~O=15:15:15) and with Duannai fertilizer and ear-grain fertilizer made up of urea. If DAP is taken as base fertilizer, the optimal quantity is 300 kg/hm2. If compound fertilizer of N, P and K is taken as base fertilizer, the optimal quantity is 450 kg/hm2, but urea at 75 kg/hm2 should be applied as Duannai fertilizer and ear- grain fertilizer, respectively, on time. [Conclusion] The research provides technical ref- erences for planting of Chinese rice cultivars in Angola.

  6. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Institute of Scientific and Technical Information of China (English)

    FU Jing; YANG Jian-chang

    2012-01-01

    In 1996,China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types.Today,approximately 80 super rice varieties have been released and some of them show high grain yields of 12-21 t/hm2 in field experiments.The main reasons for the high yields of super rice varieties,compared with those of conventional varieties,can be summarized as follows:more spikelets per panicle and larger sink size (number of spikelets per square meter); larger leaf area index,longer duration of green leaf,greater photosynthetic rate,higher lodging resistance,greater dry matter accumulation before the heading stage,greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity.However,there are two main problems in super rice production:poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets),and low and unstable seed-setting rate.Here,we review recent research advances in the crop physiology of super rice,focusing on biological features,formation of yield components,and population quality.Finally,we suggest further research on crop physiology of super rice.

  7. Utilizing Palm Oil Mill Effluent Compost for Improvement of Acid Mineral Soil Chemical Properties and Soybean Yield

    Directory of Open Access Journals (Sweden)

    Ermadani Ermadani

    2013-09-01

    Full Text Available Effluent from a palm oil mill contains organic matters and nutrients. It can result in water pollution when it is discharged into river without treatment. One way to manage this effluent is through composting that has potential to allow the recycling of effluent nutrients in a sustainable and environmentally friendly manner so that it can be used as organic fertilizer. This study wasintended to evaluate the benefit of effluent compost application to improve soil chemical properties and soybean yield. Effluent wascomposted with chicken manure and lime for eight weeks. A pot experiment of which each pot was filled with 10 kg of soil (Ultisolwas conducted in a screen house from April to November 2012 at the Experimental Farm, University of Jambi, Muaro JambiResidency. The treatments were without compost (adding 0,25 g Urea, 0,75 g SP-36 and 0,50 g KCl and compost application with amounts of 12,5 ml, 25 ml, 37,5 ml, 50 ml, 62,5 ml, and 75 ml. The indicator plant was soybean. The treatments were arranged in acompletely randomized design and replicated four times. Results of study showed a significant improvement of soil chemicalproperties with compost application in which application of 75 ml compost resulted in the highest increase of pH, organic C, cationexchange capacity, total N, available P, exchangeable cations (K, Ca, Mg. Furthermore, the dry weight of shoot, pod number and dryweight of seed increased significantly with compost application. The highest dry weight of seed was 28 g (equivalent to 2, 82 t ha-1obtained by compost application of 75 ml (equivalent to 15 t ha -1.

  8. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Institute of Scientific and Technical Information of China (English)

    FU Guan-fu; TAO Long-xing; SONG Jian; WANG Xi; CAO Li-yong; CHENG Shi-hua

    2008-01-01

    By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control) were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05) respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  9. Shock-Ignited High Gain/Yield Targets for the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K. N.; Bedrosiian, P.; Tabak, M.; Miles, A.; Dixit, S.; Betti, R.; Anderson, K.; Zhou, C.

    2006-10-01

    Shock-ignition, a new concept for ICF ignition [C.Zhou, R.Betti Bull APS, v50, 2005], is being studied as a future option for efficiently achieving high gains in large laser facilities such as NIF. Accordingly, this offers the potential for testing: (1)High yield (up to 200MJ), reactor-relevant targets for inertial fusion energy (2)High fusion yield targets for DOE NNSA stockpile application (3)Targets with appreciable gain at low laser drive energies (gains of 10's at 150kJ) (4)Ignition of simple, non-cryo (room temperature) single shell gas targets at (unity gain). By contrast to conventional hotspot ignition, we separate the assembly and ignition phases by initially imploding a massive cryogenic shell on a low adiabat (alpha 0.7) at low velocity (less than 2e7cm/s) using a direct drive pulse of modest total energy. The assembled fuel is then separately ignited by a strong, spherically convergent shock driven by a high intensity spike at the end of the pulse and timed to reach the center as the main fuel is stagnating and starting to rebound. Like fast ignition, shock ignition can achieve high gains with low drive energy, but has the advantages of requiring only a single laser with less demanding timing and spatial focusing requirements.

  10. Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production.

    Science.gov (United States)

    Berger, Christian; Montag, Cindy; Berndt, Sandra; Huster, Daniel

    2011-03-01

    The recombinant expression of human G protein-coupled receptors usually yields low production levels using commonly available cultivation protocols. Here, we describe the development of a high yield production protocol for the human neuropeptide Y receptor type 2 (Y2R), which provides the determination of expression levels in a time, media composition, and process parameter dependent manner. Protein was produced by Escherichia coli in a defined medium composition suitable for isotopic labeling required for investigations by nuclear magnetic resonance spectroscopy. The Y2 receptor was fused to a C-terminal 8x histidine tag by means of the pET vector system for easy one-step purification via affinity chromatography, yielding a purity of 95-99% for every condition tested, which was determined by SDS-PAGE and Western blot analysis. The Y2 receptor was expressed as inclusion body aggregates in complex media and minimal media, using different carbon sources. We investigated the influences of media composition, temperature, pH, and set specific growth rate on cell behavior, biomass wet weight specific and culture volume specific amounts of the target protein, which had been identified by inclusion body preparation, solubilization, followed by purification and spectrometric determination of the protein concentration. The developed process control strategy led to very high reproducibility of cell growth and protein concentrations with a maximum yield of 800 μg purified Y2 receptor per gram wet biomass when glycerol was used as carbon source in the mineral salt medium composition (at 38 °C, pH 7.0, and a set specific growth rate of 0.14 g/(gh)). The maximum biomass specific amount of purified Y2 receptor enabled the production of 35 mg Y2R per liter culture medium at an optical density (600 nm) of 25.

  11. Effect of Phosphate Solubilizing Bacterium, Arbuscular Mycorrhizal Fungus and Chemical Phosphorus Fertilizer on the Yield and Yield Component of Maize (Zea mays L. under Normal and Limited Irrigation Conditions in the Karaj Region

    Directory of Open Access Journals (Sweden)

    M Ghorchiani

    2012-07-01

    Full Text Available In order to evaluate the effect of balanced application of chemical phosphorus fertilizer and seed inoculation with phosphate solubilizing bacterium and arbuscular mycorrhizal fungus and on the yield and yield components of maize (Zea mays L. under normal and limited irrigation conditions, a split-split plots arrangement based on randomized complete block design with three replications was conducted. Treatments consisted of two levels of irrigation including: irrigation of 60 (normal irrigation and 120 (limited irrigation mm evaporation from class A pan evaporation; combination of phosphate solubilizing microorganisms (arbuscular mycorrhiza fungus and phosphate solubilizing bacterium at four levels; and phosphate chemical fertilizer at three levels includes: no consumption of phosphate chemical fertilizer (control, consumption of 50% triple superphosphate fertilizer needed based on soil-test results and consumption of rock phosphate (based on the quantity of consumed phosphate of triple superphosphate source. The results showed that the irrigation levels had significant affect on all traits except harvest index, and the phosphate solubilizing microorganisms had significantly affected all traits except harvest index and number of row in ear. The results of mean comparison indicated that the maximum of amount most traits related to normal irrigation treatment, and co-application of phosphate solubilizing bacterium-arbuscular mycorrhizal fungus. The effect of phosphate chemical fertilizer on all traits was significant. Results of interactions between irrigation and phosphate solubilizing microorganisms in both normal irrigation and limited irrigation conditions showed that the co-application of phosphate solubilizing bacterium-arbuscular mycorrhizal fungus increased grain yield more than other treatments; Also, the result of balanced application of phosphate chemical fertilizer with phosphate solubilizing microorganisms showed that effect of

  12. Comparative effect of biofertilizers with chemical fertilizers on sunflower (Helianthus annuus L. growth, yield and oil percentage in different drought stress levels

    Directory of Open Access Journals (Sweden)

    H. Pirasteh Anosheh

    2016-04-01

    Full Text Available Today, environment protection and safe crop production are very important. The management of soil elements by bio-fertilizers is considered as important point for sustainable agriculture. Mode of action of fertilizers is very different in drought stress conditions. To evaluate biological fertilizers (agrohumic, nitroxin, superabsorbent and vermicompost and compare them with current chemical fertilizers (N, P and K in sunflower (Helianthus annuus L. at different drought stress levels (100% as control, 75%, 50% and 25% field capacity, a greenhouse experiment was conducted based on completely randomized design with 20 treatments and 3 replications at College of Agriculture, Shiraz University in 2010. Results showed that drought stress effect was significant on plant height, head diameter, biological yield (BY, grain yield (GY, and harvest index (HI; however, it did not affect oil percentage. Highest HI was obtained at 50% F.C, Also the highest grain yield and plant height were observed in bio-fertilizers and chemical fertilizer, respectively. The most grain yield achieved under control and severe drought stress conditions were found in nitroxin and superabsorbent, respectively. Fertilizers had significant effect on plant height and grain yield. Generally, bio-fertilizers particularly superabsorbent and vermicompost had better responses to drought stress, compared to chemical fertilizers, which was due to higher ability of them in water maintenance. According to results of this investigation, bio-fertilizers seem to be useful under limited moisture conditions to alleviate water deficit effects.

  13. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin

    Science.gov (United States)

    Liu, Pengpeng; Zhang, Changchang; Liu, Xiang; Cui, Ping

    2016-04-01

    An economic and green approach of manufacturing carbon quantum dots (CQDs) with a high quantum yield (denoted with HQY-CQDs) and the application in labeling bovine serum albumin (BSA) were described in detail in this work. Firstly, the cheap resources of citric acid and glycine were pyrolysed in drying oven for preparing the CQDs. Then the product was immersed in tetrahydrofuran for 8 h. HQY-CQDs were obtained by removing tetrahydrofuran from the supernate and were evaluated that they possessed a much higher quantum yield compared with that without dealing with tetrahydrofuran and a wonderful photo-bleaching resistance. Such HQY-CQDs could be functionalized by N-hydroxysuccinimide and successively combined with BSA covalently. Thus fluorescent labeling on BSA was realized. The HQY-CQDs were demonstrated with transmission electron microscopy and the chemical modification with N-hydroxysuccinimide was proved by infrared and X-ray photoelectron spectra. Labeling BSA with the HQY-CQDs was confirmed by gel electrophoresis and fluorescence imaging.

  14. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase.

    Science.gov (United States)

    Seo, Dong-Ho; Jung, Jong-Hyun; Ha, Suk-Jin; Cho, Hyun-Kug; Jung, Dong-Hyun; Kim, Tae-Jip; Baek, Nam-In; Yoo, Sang-Ho; Park, Cheon-Seok

    2012-06-01

    α-Arbutin (α-Ab) is a powerful skin whitening agent that blocks epidermal melanin biosynthesis by inhibiting the enzymatic oxidation of tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA). α-Ab was effectively synthesized from hydroquinone (HQ) by enzymatic biotransformation using amylosucrase (ASase). The ASase gene from Deinococcus geothermalis (DGAS) was expressed and efficiently purified from Escherichia coli using a constitutive expression system. The expressed DGAS was functional and performed a glycosyltransferase reaction using sucrose as a donor and HQ as an acceptor. The presence of a single HQ bioconversion product was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The HQ bioconversion product was isolated by silica gel open column chromatography and its chemical structure determined by 1H and 13C nuclear magnetic resonance (NMR). The product was determined to be hydroquinone-O-α-D-glucopyranoside with a glucose molecule linked to HQ through an α-glycosidic bond. However, the production yield of the transfer reaction was significantly low (1.3%) due to the instability of HQ in the reaction mixture. The instability of HQ was considerably improved by antioxidant agents, particularly ascorbic acid, implying that HQ is labile to oxidation. A maximum yield of HQ transfer product of 90% was obtained at a 10:1 molar ratio of donor (sucrose) and acceptor (HQ) molecules in the presence of 0.2 mM ascorbic acid.

  15. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order t...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method.......A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...

  16. High yield expression of catalytically active USP18 (UBP43 using a Trigger Factor fusion system

    Directory of Open Access Journals (Sweden)

    Basters Anja

    2012-08-01

    Full Text Available Abstract Background Covalent linkage of the ubiquitin-like protein ISG15 interferes with viral infection and USP18 is the major protease which specifically removes ISG15 from target proteins. Thus, boosting ISG15 modification by protease inhibition of USP18 might represent a new strategy to interfere with viral replication. However, so far no heterologous expression system was available to yield sufficient amounts of catalytically active protein for high-throughput based inhibitor screens. Results High-level heterologous expression of USP18 was achieved by applying a chaperone-based fusion system in E. coli. Pure protein was obtained in a single-step on IMAC via a His6-tag. The USP18 fusion protein exhibited enzymatic activity towards cell derived ISG15 conjugated substrates and efficiently hydrolyzed ISG15-AMC. Specificity towards ISG15 was shown by covalent adduct formation with ISG15 vinyl sulfone but not with ubiquitin vinyl sulfone. Conclusion The results presented here show that a chaperone fusion system can provide high yields of proteins that are difficult to express. The USP18 protein obtained here is suited to setup high-throughput small molecule inhibitor screens and forms the basis for detailed biochemical and structural characterization.

  17. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    Science.gov (United States)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  18. Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis

    Science.gov (United States)

    Liu, Jian; Zhang, Yong; Ionescu, Mihnea Ioan; Li, Ruying; Sun, Xueliang

    2011-06-01

    Nitrogen-doped carbon nanotubes (CN x) were prepared by ultrasonic spray pyrolysis from mixtures of imidazole and acetonitrile. Imidazole, as an additive, was used to control the structure and nitrogen doping in CN x by adjusting its concentration in the mixtures. Scanning electron microscopy observation showed that the addition of imidazole increased the nanotube growth rate and yield, while decreased the nanotube diameter. Transmission electron microscopy study indicated that the addition of imidazole promoted the formation of a dense bamboo-like structure in CN x. X-ray photoelectron spectroscopy analysis demonstrated that the nitrogen content varied from 3.2 to 5.2 at.% in CN x obtained with different imidazole concentrations. Raman spectra study showed that the intensity ratio of D to G bands gradually increased, while that of 2D to G bands decreased, due to increasing imidazole concentration. The yield of CN x made from mixtures of imidazole and acetonitrile can reach 192 mg in 24 min, which is 15 times that of CN x prepared from only acetonitrile. The aligned CN x, with controlled nitrogen doping, tunable structure and high yield, may find applications in developing non-noble catalysts and novel catalyst supports for fuel cells.

  19. Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jian; Zhang Yong; Ionescu, Mihnea Ioan; Li Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada); Sun Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada)

    2011-06-15

    Nitrogen-doped carbon nanotubes (CN{sub x}) were prepared by ultrasonic spray pyrolysis from mixtures of imidazole and acetonitrile. Imidazole, as an additive, was used to control the structure and nitrogen doping in CN{sub x} by adjusting its concentration in the mixtures. Scanning electron microscopy observation showed that the addition of imidazole increased the nanotube growth rate and yield, while decreased the nanotube diameter. Transmission electron microscopy study indicated that the addition of imidazole promoted the formation of a dense bamboo-like structure in CN{sub x}. X-ray photoelectron spectroscopy analysis demonstrated that the nitrogen content varied from 3.2 to 5.2 at.% in CN{sub x} obtained with different imidazole concentrations. Raman spectra study showed that the intensity ratio of D to G bands gradually increased, while that of 2D to G bands decreased, due to increasing imidazole concentration. The yield of CN{sub x} made from mixtures of imidazole and acetonitrile can reach 192 mg in 24 min, which is 15 times that of CN{sub x} prepared from only acetonitrile. The aligned CN{sub x}, with controlled nitrogen doping, tunable structure and high yield, may find applications in developing non-noble catalysts and novel catalyst supports for fuel cells.

  20. High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders.

    Science.gov (United States)

    Yavarna, Tarunashree; Al-Dewik, Nader; Al-Mureikhi, Mariam; Ali, Rehab; Al-Mesaifri, Fatma; Mahmoud, Laila; Shahbeck, Noora; Lakhani, Shenela; AlMulla, Mariam; Nawaz, Zafar; Vitazka, Patrik; Alkuraya, Fowzan S; Ben-Omran, Tawfeg

    2015-09-01

    Clinical exome sequencing (CES) has become an increasingly popular diagnostic tool in patients with heterogeneous genetic disorders, especially in those with neurocognitive phenotypes. Utility of CES in consanguineous populations has not yet been determined on a large scale. A clinical cohort of 149 probands from Qatar with suspected Mendelian, mainly neurocognitive phenotypes, underwent CES from July 2012 to June 2014. Intellectual disability and global developmental delay were the most common clinical presentations but our cohort displayed other phenotypes, such as epilepsy, dysmorphism, microcephaly and other structural brain anomalies and autism. A pathogenic or likely pathogenic mutation, including pathogenic CNVs, was identified in 89 probands for a diagnostic yield of 60%. Consanguinity and positive family history predicted a higher diagnostic yield. In 5% (7/149) of cases, CES implicated novel candidate disease genes (MANF, GJA9, GLG1, COL15A1, SLC35F5, MAGE4, NEUROG1). CES uncovered two coexisting genetic disorders in 4% (6/149) and actionable incidental findings in 2% (3/149) of cases. Average time to diagnosis was reduced from 27 to 5 months. CES, which already has the highest diagnostic yield among all available diagnostic tools in the setting of Mendelian disorders, appears to be particularly helpful diagnostically in the highly consanguineous Middle Eastern population.

  1. Particle Concentration and Yield Stress of Biomass Slurries During Enzymatic Hydrolysis at High-Solids Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Roche, C. M.; Dibble, C. J.; Knutsen, J. S.; Stickel, J. J.; Liberatore, M. W.

    2009-01-01

    Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost-effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress ({tau}{sub y}) of the slurries were measured. The saccharified stover liquefies to the point of being pourable ({tau}{sub y} {le} 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi-empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high-solids loadings.

  2. A high throughput DNA extraction method with high yield and quality

    Science.gov (United States)

    Background: Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome), and next-generation sequencing directly from sheared ...

  3. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Science.gov (United States)

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.

  4. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Directory of Open Access Journals (Sweden)

    Yasmin Abou Rajab

    Full Text Available One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species in Sulawesi (Indonesia with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1, total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1. This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1. The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.

  5. Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli.

    Science.gov (United States)

    George, Kevin W; Thompson, Mitchell G; Kang, Aram; Baidoo, Edward; Wang, George; Chan, Leanne Jade G; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2015-06-08

    Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Finally, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol.

  6. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    Science.gov (United States)

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change.

  7. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 C) mixed culture environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chenxi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); Lu, Wenjing; Wang, Hongtao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    The effect of pH and medium composition on extreme-thermophilic (70 C) dark fermentative simultaneous hydrogen and ethanol production (process performance and microbial ecology) was investigated. Hydrogen and ethanol yields were optimized with respect to glucose, peptone, FeSO{sub 4}, NaHCO{sub 3}, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations as well as initial pH as independent variables. A combination of low levels of both glucose ({<=}2 g/L) and vitamin solutions ({<=}1 mL/L) and high levels of initial pH ({>=}7), mineral salts solution ({>=}5 mL/L) and FeSO{sub 4} ({>=}100 mg/L) stimulated the hydrogen production, while high level of glucose ({>=}5 g/L) and low levels of both initial pH ({<=}5.5) and mineral salts solution ({<=}1 mL/L) enhanced the ethanol production. High yield of simultaneous hydrogen and ethanol production (1.58 mol H{sub 2}/mol glucose combined with an ethanol yield of 0.90 mol ethanol/mol glucose) was achieved under extreme-thermophilic mixed culture environment. Results obtained showed that the shift of the metabolic pathways favouring either hydrogen or ethanol production was affected by the change in cultivation conditions (pH and medium composition). The mixed culture in this study demonstrated flexible ability for simultaneous hydrogen and ethanol production, depending on pH and nutrients formulation. The microorganisms involved could be regarded as simultaneous hydrogen/ethanol producers, as hydrogen and ethanol fermentation under all conditions was carried out by a group of extreme-thermophilic bacterial species related to Thermoanaerobacter, Thermoanaerobacterium and Caldanaerobacter. (author)

  8. Yield and depth Estimation of Selected NTS Nuclear and SPE Chemical Explosions Using Source Equalization by modeling Local and Regional Seismograms (Invited)

    Science.gov (United States)

    Saikia, C. K.; Roman-nieves, J. I.; Woods, M. T.

    2013-12-01

    Source parameters of nuclear and chemical explosions are often estimated by matching either the corner frequency and spectral level of a single event or the spectral ratio when spectra from two events are available with known source parameters for one. In this study, we propose an alternative method in which waveforms from two or more events can be simultaneously equalized by setting the differential of the processed seismograms at one station from any two individual events to zero. The method involves convolving the equivalent Mueller-Murphy displacement source time function (MMDSTF) of one event with the seismogram of the second event and vice-versa, and then computing their difference seismogram. MMDSTF is computed at the elastic radius including both near and far-field terms. For this method to yield accurate source parameters, an inherent assumption is that green's functions for the any paired events from the source to a receiver are same. In the frequency limit of the seismic data, this is a reasonable assumption and is concluded based on the comparison of green's functions computed for flat-earth models at various source depths ranging from 100m to 1Km. Frequency domain analysis of the initial P wave is, however, sensitive to the depth phase interaction, and if tracked meticulously can help estimating the event depth. We applied this method to the local waveforms recorded from the three SPE shots and precisely determined their yields. These high-frequency seismograms exhibit significant lateral path effects in spectrogram analysis and 3D numerical computations, but the source equalization technique is independent of any variation as long as their instrument characteristics are well preserved. We are currently estimating the uncertainty in the derived source parameters assuming the yields of the SPE shots as unknown. We also collected regional waveforms from 95 NTS explosions at regional stations ALQ, ANMO, CMB, COR, JAS LON, PAS, PFO and RSSD. We are

  9. Controlled fabrication of individual silicon quantum rods yielding high intensity, polarized light emission

    Science.gov (United States)

    Bruhn, Benjamin; Valenta, Jan; Linnros, Jan

    2009-12-01

    Elongated silicon quantum dots (also referred to as rods) were fabricated using a lithographic process which reliably yields sufficient numbers of emitters. These quantum rods are perfectly aligned and the vast majority are spatially separated well enough to enable single-dot spectroscopy. Not only do they exhibit extraordinarily high linear polarization with respect to both absorption and emission, but the silicon rods also appear to luminesce much more brightly than their spherical counterparts. Significantly increased quantum efficiency and almost unity degree of linear polarization render these quantum rods perfect candidates for numerous applications.

  10. Production of carbon nanofibers in high yields using a sodium chloride support.

    Science.gov (United States)

    Geng, Junfeng; Kinloch, Ian A; Singh, Charanjeet; Golovko, Vladimir B; Johnson, Brian F G; Shaffer, Milo S P; Li, Yali; Windle, Alan H

    2005-09-08

    A new route for the highly convenient scalable production of carbon nanofibers on a sodium chloride support has been developed. Since the support is nontoxic and soluble in water, it can be easily removed without damage to the nanofibers and the environment. Nanofiber yields of up to 6500 wt % relative to the nickel catalyst have been achieved in a growth time of 15 min. Electron microscopy (SEM, TEM) and thermal gravimetric analysis (TGA) indicated that the catalytically grown carbon had relatively little thermal over-growth and possessed either a herringbone or a semi-ordered nanostructure, depending on the growth conditions.

  11. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  12. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    Science.gov (United States)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  13. Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production.

    Science.gov (United States)

    Wang, Qingling; Zhang, Dong; Li, Yudong; Zhang, Fuming; Wang, Cao; Liang, Xinle

    2014-07-01

    Nosiheptide is one of the EU-approved sulfur-containing peptides in feed industry to inhibit the growth of the majority of Gram-positive bacteria. The main purpose of this study is directed to breed the high nosiheptide-producers by genome shuffling and ribosome engineering in Streptomyces actuosus AW7. The starting population for shuffling was generated by combining (60)Coγ-irradiation with LiCl mutagenesis treatments on the spores. After four rounds of protoplast fusion exposed to streptomycin as adaptive pressure, a high-yield recombinant strain D92 was obtained. In a 10-L fermenter, nosiheptide production reached 1.54 g/L which was 9.20-fold compared to that of the parental strain. Hyphae development, metabolic process, and ribosomal protein S12 sequence were investigated to characterize the differentiation among the recombinants. Several mutations in S12 were believed to be responsible to streptomycin resistance in the tested strain. The results demonstrated that the combination of genome shuffling and ribosome engineering is an efficient approach to breed high-yield industrial strains.

  14. Flow "Fine" Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods.

    Science.gov (United States)

    Kobayashi, Shū

    2016-02-18

    The concept of flow "fine" synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow "fine" synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Problems in Fast-growing and High-yield Plantation Ecosystem Management and Their Countermeasures in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper analyzed the basic characteristics of fast-growing and high-yield plantation, classified and identified the ecological problems in its development, and finally proposed the basic principles and corresponding technical measures for fast-growing and high-yield plantation ecosystem management based on these problems.

  16. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    Directory of Open Access Journals (Sweden)

    Hong Jae Yim

    2016-03-01

    Full Text Available When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50.

  17. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    Science.gov (United States)

    Yim, Hong Jae; Kim, Jae Hong; Kwon, Seung Hee

    2016-01-01

    When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50. PMID:28773273

  18. Evaluation of the Effect of Sulfur Application and Thiobacillus on Some Soil Chemical Characteristics and Yield of Canola in Wheat-Canola Rotation System

    Directory of Open Access Journals (Sweden)

    H. Besharati

    2016-09-01

    have no significant and considerable impacts on canola yield and soil chemical properties, and the effects was not observed in the second year of experiment, too. Probably the sulfur consumed or sulfur oxidation in the experiments was not enough to cope with high lime (14% and buffering capacity of the soil. Also probably the nutrient concentration in test sites were more than critical level for canola and plants absorbed enough nutrients from the soil. No increase in canola yield in fertilization treatments (T8 can confirm this opinion, though. It also seems that there were no favorable conditions (soil moisture for the oxidation of sulfur in the soil.

  19. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    Science.gov (United States)

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  20. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Science.gov (United States)

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-04

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

  1. Yield gains of coffee plants from phosphorus fertilization may not be generalized for high density planting

    Directory of Open Access Journals (Sweden)

    Samuel Vasconcelos Valadares

    2014-06-01

    Full Text Available Inconclusive responses of the adult coffee plant to phosphorus fertilization have been reported in the literature, especially when dealing with application of this nutrient in high density planting systems. Thus, this study was carried out for the purpose of assessing the response of adult coffee plants at high planting density in full production (in regard to yield and their biennial cycle/stability to the addition of different sources and application rates of P in the Zona da Mata region of Minas Gerais, Brazil. The experiment with coffee plants of the Catucaí Amarelo 6/30 variety was carried out over four growing seasons. Treatments were arranged in a full factorial design [(4 × 3 + 1] consisting of four P sources (monoammonium phosphate, simple superphosphate, natural reactive rock phosphate from Algeria (Djebel-Onk, and FH 550®, three P rates (100, 200, and 400 kg ha-1 year-1 of P2O5, and an additional treatment without application of the nutrient (0 kg ha-¹ year-¹. A randomized block experimental design was used with three replicates. The four seasons were evaluated as subplots in a split plot experiment. The P contents in soil and leaves increased with increased rates of P application. However, there was no effect from P application on the yield and its biennial cycle/stability regardless of the source used over the four seasons assessed.

  2. Functionalization of quinoxalines by using TMP bases: preparation of tetracyclic heterocycles with high photoluminescene quantum yields.

    Science.gov (United States)

    Nafe, Julia; Herbert, Simon; Auras, Florian; Karaghiosoff, Konstantin; Bein, Thomas; Knochel, Paul

    2015-01-12

    Tetracyclic heterocycles that exhibit high photoluminescence quantum yields were synthesized by anellation reactions of mono-, di-, and trifunctionalized 2,3-dichloroquinoxalines. Thus, treatment of 2,3-dichloroquinoxaline with TMPLi (TMP = 2,2,6,6-tetramethylpiperidyl) allows a regioselective lithiation in position 5. Quenching with various electrophiles (iodine, (BrCl2 C)2 , allylic bromide, acid chloride, aryl iodide) leads to 5-functionalized 2,3-dichloroquinoxalines. Further functionalization in positions 6 and 8 can be achieved by using TMPLi or TMPMgCl⋅LiCl furnishing a range of new di- and tri-functionalized 2,3-dichloroquinoxalines. The chlorine atoms are readily substituted by anellation with 1,2-diphenols or 1,2-dithiophenols leading to a series of new tetracyclic compounds. These materials exhibit strong, tunable optical absorption and emission in the blue and green spectral region. The substituted O-heterocyclic compounds exhibit particularly high photoluminescence quantum yields of up to 90%, which renders them interesting candidates for fluorescence imaging applications.

  3. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol

    DEFF Research Database (Denmark)

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis;

    2016-01-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for l...... of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform.......M or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield...

  4. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization.

    Science.gov (United States)

    Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald

    2015-04-01

    We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity.

  5. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  6. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  7. Radiation Hard & High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    AUTHOR|(CDS)2081071

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO:Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  8. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  9. Chemical Diversity in High-Mass Star Formation

    CERN Document Server

    Beuther, H; Bergin, E A; Sridharan, T K

    2008-01-01

    Massive star formation exhibits an extremely rich chemistry. However, not much evolutionary details are known yet, especially at high spatial resolution. Therefore, we synthesize previously published Submillimeter Array high-spatial-resolution spectral line observations toward four regions of high-mass star formation that are in various evolutionary stages with a range of luminosities. Estimating column densities and comparing the spatially resolved molecular emission allows us to characterize the chemical evolution in more detail. Furthermore, we model the chemical evolution of massive warm molecular cores to be directly compared with the data. The four regions reveal many different characteristics. While some of them, e.g., the detection rate of CH3OH, can be explained by variations of the average gas temperatures, other features are attributed to chemical effects. For example, C34S is observed mainly at the core-edges and not toward their centers because of temperature-selective desorption and successive g...

  10. High-Yield Synthesis of Uniform Ag Nanowires with High Aspect Ratios by Introducing the Long-Chain PVP in an Improved Polyol Process

    Directory of Open Access Journals (Sweden)

    Jie-Jun Zhu

    2011-01-01

    Full Text Available Polyvinyl pyrrolidone (PVP with different molecular weights was used as capping agent to synthesize silver nanowires through a polyol process. The results indicated that the yields and aspect ratios of silver nanowires were controlled by the chain length of PVP and increased with increasing the molecular weight (MW of PVP. When the long-chain PVP-K90 (MW = 800,000 was used, the product was uniform in size and was dominated by nanowires with high aspect ratios. The growth mechanism of the nanowires was studied. It is proposed that the chemical adsorption of Ag+ on the PVP chains at the initial stage promotes the growth of Ag nanowires.

  11. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  12. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  13. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    Science.gov (United States)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  14. JLT-408 A New High Yielding Sesame Variety for Maharashtra State

    Directory of Open Access Journals (Sweden)

    M. G. Jadhav, G.B.Chaudhari,T. R. Patil, and S. C. Patil

    2015-03-01

    Full Text Available Sesame variety JLT-408 is developed through hybridization followed by advance generation selection from the cross Padma x Yuzhi-8 by pedigree method at Oilseeds Research Station, Jalgaon. This variety gave 29.9 % and 20.8% higher yield than checks JLT-7 and JLT-26, respectively. It has medium maturity period (81-85 days, white bold seed and found superior in quality viz. high oil content (53.2%, low in free fatty acid (1.46% and its Iodine value is 107.0. This new variety is moderately resistant to major diseases like Phyllody, Cercospora leaf spot, Alternaria leaf spot, Powdery mildew and Macrophomina stem/ root rot and it is moderately tolerant to leaf roller /capsule borer and tolerant to gall fly under field conditions. Considering merits in respect of yield, oil content and quality parameters JLT-408 has been released for cultivation in kharif season in North Maharashtra and adjoining areas of Vidarbha and Marathwada regions in Maharashtra.

  15. Engineering a high-yield glutathione strain of Hansenula polymorpha using ion beam implantation.

    Science.gov (United States)

    Qian, Weidong; Fu, Yunfang; Cai, Changlong

    2013-01-01

    To generate an industrial strain of Hansenula polymorpha capable of yielding greater levels of glutathione (GSH), wild strain H. polymorpha DL-1 cells were mutated using a nitrogen ion beam, a novel mutagen. At an energy level of 20 keV and dose of 2.13 × 10(16) ions/cm(2), H. polymorpha strain 28 (HP28) with a high-yield of GSH was screened. HP28 intracellular GSH levels reached 337.16 mg/L by ion beam implantation, 1.56 times greater than that of the wild type strain when the fermentation time was shortened from 48 hr to 42 hr, greatly improving efficiency and reducing the cost of industrial-scale production. The enhanced efficiency of HP28 is promising for GSH production from lignocellulosic materials. Therefore, the ion beam implantation would be a cost-effective alternative to the conventional mutation method for engineering yeast and improving its utility.

  16. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    Science.gov (United States)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  17. High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants

    Science.gov (United States)

    Mortley, D. G.; Bonsi, C. K.; Loretan, P. A.; Hill, W. A.; Morris, C. E.

    2000-01-01

    Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.

  18. Yields of AGB and SAGB models with chemistry of low- and high-metallicity Globular Clusters

    CERN Document Server

    Ventura, P; Carini, R; D'Antona, F

    2013-01-01

    We present yields from stars of mass in the range Mohigh-Z Globular Clusters. The yields are based on full evolutionary computations, following the evolution of the stars from the pre-Main Sequence through the Asymptotic Giant Branch phase, until the external envelope is lost. Independently of metallicity, stars with M<3Mo are dominated by Third Dredge-Up, thus ejecting into their surroundings gas enriched in carbon and nitrogen. Conversely, Hot Bottom Burning is the main responsible for the modification of the surface chemistry of more massive stars, whose mass exceeds 3Mo: their gas shows traces of proton-capture nucleosynthesis. The extent of Hot Bottom Burning turns out to be strongly dependent on metallicity. In this paper we analyze the consequences of this fact. These results can be used to understand the role played by intermediate mass stars in the self-enrichment scenario of globular clusters: the resu...

  19. The yield of high-detail radiographic skeletal surveys in suspected infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Ignasi [Hospital Vall d' Hebron, Universitat Autonoma de Barcelona, Pediatric Radiology Department, Barcelona (Spain); Perez-Rossello, Jeannette M.; Kleinman, Paul K. [Boston Children' s Hospital, Radiology Department, Boston, MA (United States); Wilson, Celeste R. [Boston Children' s Hospital, Division of General Pediatrics, Boston, MA (United States)

    2014-07-06

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population. (orig.)

  20. Flash co-pyrolysis of biomass with polyhydroxybutyrate: Part 1. Influence on bio-oil yield, water content, heating value and the production of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    T. Cornelissen; M. Jans; J. Yperman; G. Reggers; S. Schreurs; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-09-15

    Bio-oil obtained via flash pyrolysis shows potential to be applied as a renewable fuel. However, bio-oil often contains high amounts of water, which is a major drawback for its application. The influence of a biopolymer - polyhydroxybutyrate (PHB) on the pyrolysis of willow is investigated using a semi-continuous home-built pyrolysis reactor. The flash co-pyrolysis of willow/PHB blends (w/w ratio 7:1, 3:1, 2:1 and 1:1) clearly shows particular merits: a synergetic increase in pyrolysis yield, a synergetic reduction of the water content in bio-oil, an increase in heating value, and a production of easily separable chemicals. The occurrence of synergetic interactions is observed based on a comparison between the actual pyrolysis results of the willow/PHB blends, the theoretical pyrolysis results calculated from the reference pyrolysis experiments (pure willow and pure PHB) and their respective w/w ratio. The co-pyrolysis of 1:1 willow/PHB shows the best overall results. 24 refs., 9 figs., 5 tabs.

  1. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  2. BRS FC402: high-yielding common bean cultivar with carioca grain, resistance to anthracnose and fusarium wilt

    Directory of Open Access Journals (Sweden)

    Leonardo Cunha Melo

    2016-12-01

    Full Text Available BRS FC402 is a common bean cultivar of the carioca-grain group with commercial grain quality, suitable for cultivation in 21 Brazilian states. Cultivar has a normal cycle (85-94 days, high yield potential (4479 kg ha-1, 10.1% higher mean yield than the controls (2462 kg ha-1 and resistance to fusarium wilt and anthracnose.

  3. High-Yield Synthesis of Silver Nanoparticles by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    Y. D. Sosa

    2010-01-01

    Full Text Available Silver nanoparticles were precipitated at 70°C in a reverse microemulsion containing a high concentration of 0.5 M silver nitrate aqueous solution, toluene as organic phase, and a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, w/w. Nanoparticles were characterized by X-ray diffraction, atomic absorption spectroscopy, and high-resolution transmission electron microscopy. In spite of the high-water/surfactant molar ratio and concentration of silver nitrate solution used in this study, characterizations demonstrated that nanoparticles were silver crystals (purity >99% with 8.6–8.8 nm in average diameter and 2.9–4.7 nm in standard deviation. It is proposed that slow dosing rate of aqueous solution of precipitating agent and the small molecular volume of toluene attenuated both particle aggregation and polydispersity widening. Experimental yield of silver nanoparticles obtained in this study was much higher than theoretical yields calculated from available data in the literature on preparation of silver nanoparticles in reverse microemulsions.

  4. The addition of submergence-tolerant Sub1 gene into high yielding MR219 rice variety and analysis of its BC2F3 population in terms of yield and yield contributing characters to select advance lines as a variety

    Directory of Open Access Journals (Sweden)

    Fahim Ahmed

    2016-09-01

    Full Text Available A cross was made between MR219 (high yielding but submergence intolerant and Swarna-Sub1 (submergence tolerant to produce submergence-tolerant rice variety using the marker-assisted backcrossing (MABC method to protect the farmers of low-lying land from flash floods during rain. Knowledge of yield and yield contributing factors plays a vital role in the selection process of a variety. This experim ent was designed to determine the genetic diversity among recently produced different lines of BC2F3 population and also to compare all the lines with MR219 to find the best one. Agronomical, yield and yield contributing data were taken, while genotypic and phenotypic coefficients, variance components and heritability were estimated. Introgression of the target gene, Sub1, was done using tightly linked marker, and also background recovery was measured using simple sequence repeat (SSR markers in different generations. The observed recurrent parent genome (RPG recovery of BC2F2 generation was 95.37%, which indicates high-level similarity between the recurrent parent (MR219 and the resulting lines. Thirty newly developed lines of BC2F3 population, resulting backcross of MR219 and Swarna-Sub1, were planted with four replications following randomised complete block design (RCBD. Newly developed lines were grouped into four clusters based on traits with UPGMA dendrogram and cluster analysis to select the 10 best plants. This study will help the future researchers to select the best plants of a breeding programme after introgression of a gene considering phenotype performances to develop new varieties.

  5. Molecular signature of high yield (growth influenza a virus reassortants prepared as candidate vaccine seeds.

    Directory of Open Access Journals (Sweden)

    Manojkumar Ramanunninair

    Full Text Available BACKGROUND: Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8, to provide the high yield reassortant (HYR viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA and neuraminidase (NA genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo. METHODOLOGY: The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2 and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry. RESULTS: Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA. SIGNIFICANCE: In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.

  6. Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields

    Science.gov (United States)

    Şenkuytu, Elif; Eçik, Esra Tanrıverdi

    2017-07-01

    Novel fully-BODIPY functionalized dendrimeric cyclotetraphosphazenes (FBCP 1 and 2) have been synthesized and characterized by 1H, 13C and 31P NMR spectroscopies. The photophysical and photochemical properties of FBCP 1 and 2 are investigated in dichloromethane solution. The effectiveness of singlet oxygen generation was measured for FBCP 1 and 2 by UV-Vis spectra monitoring of the solution of 1,3-diphenylisobenzofuran (DPBF), which is a well-known trapping molecule used in detection of singlet oxygen. FBCP 1 and 2 show high molar extinction coefficients in the NIR region, good singlet oxygen quantum yields and appropriate photo degradation. The data presented in the work indicate that the dendrimeric cyclotetraphosphazenes are effective singlet oxygen photosensitizers that might be used for various areas of applications such as photodynamic therapy and photocatalysis.

  7. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium.

    Science.gov (United States)

    Coconi-Linares, Nancy; Magaña-Ortíz, Denis; Guzmán-Ortiz, Doralinda A; Fernández, Francisco; Loske, Achim M; Gómez-Lim, Miguel A

    2014-11-01

    The white-rot fungus Phanerochaete chrysosporium secretes extracellular oxidative enzymes during secondary metabolism, but lacks versatile peroxidase, an enzyme important in ligninolysis and diverse biotechnology processes. In this study, we report the genetic modification of a P. chrysosporium strain capable of co-expressing two endogenous genes constitutively, manganese peroxidase (mnp1) and lignin peroxidase (lipH8), and the codon-optimized vpl2 gene from Pleurotus eryngii. For this purpose, we employed a highly efficient transformation method based on the use of shock waves developed by our group. The expression of recombinant genes was verified by PCR, Southern blot, quantitative real-time PCR (qRT-PCR), and assays of enzymatic activity. The production yield of ligninolytic enzymes was up to four times higher in comparison to previously published reports. These results may represent significant progress toward the stable production of ligninolytic enzymes and the development of an effective fungal strain with promising biotechnological applications.

  8. High-yield synthesis of silicon carbide nanowires by solar and lamp ablation

    Science.gov (United States)

    Lu, Hai-bo; Chan, Benjamin C. Y.; Wang, Xiaolin; Tong Chua, Hui; Raston, Colin L.; Albu-Yaron, Ana; Levy, Moshe; Popowitz-Biro, Ronit; Tenne, Reshef; Feuermann, Daniel; Gordon, Jeffrey M.

    2013-08-01

    We report a reasonably high yield (∼50%) synthesis of silicon carbide (SiC) nanowires from silicon oxides and carbon in vacuum, by novel solar and lamp photothermal ablation methods that obviate the need for catalysis, and allow relatively short reaction times (∼10 min) in a nominally one-step process that does not involve toxic reagents. The one-dimensional core/shell β-SiC/SiOx nanostructures—characterized by SEM, TEM, HRTEM, SAED, XRD and EDS—are typically several microns long, with core and outer diameters of about 10 and 30 nm, respectively. HRTEM revealed additional distinctive nanoscale structures that also shed light on the formation pathways.

  9. Modeling Integrated High-Yield IFE Target Explosions in Xenon Filled Chambers

    Science.gov (United States)

    Fatenejad, Milad; Moses, Gregory

    2010-11-01

    We will present the results of several radiation-hydrodynamics simulations which model the aftermath of an exploding high yield (200 MJ) indirect drive target in a xenon filled reactor chamber. The goal is to determine the radial extent to which debris from the target and hohlraum expands into the target chamber. The 1D radiation-hydrodynamics code BUCKY is used to perform integrated simulations of the target explosion beginning from ignition and includes interactions between the chamber gas and tungsten first wall. The 3D radiation-hydrodynamics code Cooper will be used to model the growth of fluid instabilities as the target material expands into the xenon gas. Cooper will also be used to investigate the early-time interaction between the burning target and hohlraum shortly after ignition.

  10. Maximising high solid loading enzymatic saccharification yield from acid-catalysed hydrothermally-pretreated brewers spent grain

    Directory of Open Access Journals (Sweden)

    Stuart Wilkinson

    2016-06-01

    Full Text Available Enzyme saccharification of pretreated brewers spent grains (BSG was investigated, aiming at maximising glucose production. Factors investigated were; variation of the solids loadings at different cellulolytic enzyme doses, reaction time, higher energy mixing methods, supplementation of the cellulolytic enzymes with additional enzymes (and cofactors and use of fed-batch methods. Improved slurry agitation through aerated high-torque mixing offered small but significant enhancements in glucose yields (to 53 ± 2.9 g/L and 45% of theoretical yield compared to only 41 ± 4.0 g/L and 39% of theoretical yield for standard shaking methods (at 15% w/v solids loading. Supplementation of the cellulolytic enzymes with additional enzymes (acetyl xylan esterases, ferulic acid esterases and α-L- arabinofuranosidases also boosted achieved glucose yields to 58 – 69 ± 0.8 - 6.2 g/L which equated to 52 - 58% of theoretical yield. Fed-batch methods also enhanced glucose yields (to 58 ± 2.2 g/L and 35% of theoretical yield at 25% w/v solids loading compared to non-fed-batch methods. From these investigations a novel enzymatic saccharification method was developed (using enhanced mixing, a fed-batch approach and additional carbohydrate degrading enzymes which further increased glucose yields to 78 ± 4.1 g/L and 43% of theoretical yield when operating at high solids loading (25% w/v.

  11. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    Science.gov (United States)

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils.

  12. A high loading overland flow system: Impacts on soil characteristics, grass constituents, yields and nutrient removal.

    Science.gov (United States)

    Wen, C G; Chen, T H; Hsu, F H; Lu, C H; Lin, J B; Chang, C H; Chang, S P; Lee, C S

    2007-04-01

    The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed.

  13. Evaluation of plant activator and chemical fungicides on leaf blight (Bipolaris sorokiniana) development and yield of wheat.

    Science.gov (United States)

    Aminuzzaman, F M; Hossain, I

    2007-06-01

    Bion 50 WG (Benzothiodiazole), Tilt-250 EC (Propiconazole) and Amistar (Azoxystrobin) either alone and some of their combinations were evaluated against leaf blight/spot (Bipolaris sorokiniana) development and yield of wheat. All the treatments significantly reduced leaf spot reaction of wheat over untreated control. But Bion in combination with Amistar resulted significantly highest reduction of leaf spot reaction of wheat (p = 0.05) against all the tested pathotypes inoculated at flag leaf stage. In the field, Bion reduced leaf spot severity at heading and flowering stage in 2000-2001 and at hard dough stage in 2001-2002. Number of grains/ear not significantly increased by treating seeds with Bion though 1000-grain weight is significantly increased (p = 0.05) in 2000-2001 by Bion. Statistically higher grain yield was obtained from the experimental plot by treating seeds with Bion and Amistar. Bion resulted 53.33% higher grain yield in compare to untreated control.

  14. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

    Science.gov (United States)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-09-01

    Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10-6 - ~ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M), the major oxidation products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium) could enhance yields.

  15. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

    Directory of Open Access Journals (Sweden)

    Y. B. Lim

    2013-09-01

    Full Text Available Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2, methylglyoxal (C3, and acetic acid have great potential to form secondary organic aerosol (SOA via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1 provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2 uses this and a previously published glyoxal mechanism (Lim et al., 2010 to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012. This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010, and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10−6 − ~ 10−3 M; Munger et al., 1995 of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M, the major oxidation products are oligomers formed via organic radical–radical reactions, and simulated SOA yields (by mass are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium could enhance yields.

  16. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method

    Directory of Open Access Journals (Sweden)

    Manafi SA

    2009-01-01

    Full Text Available Abstract This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2–4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM and high-resolution transmission electron microscopy (HRTEM. The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs. As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  17. High-yield Synthesis of Nanohybrid Shish-kebab Polyethylene-carbon Nanotube Structure

    Institute of Scientific and Technical Information of China (English)

    CUI Chaojie; QIAN Weizhong; ZHAO Mengqiang; XU Guanghui; NIE Jingqi; JIA Xilai; WEI Fei

    2013-01-01

    We report a novel method to prepare nanohybrid shish-kebab (NHSK) structure of polyethylene (PE) and carbon nanotube (CNT),Pristine CNTs without surface modification with high concentration was effectively dispersed in xylene solution by a simple shearing method,which induces the quick crystallization of PE in xylene to form a novel NHSK structure with more dense and smaller PE kebab on CNT axis.The flocculated NHSK product was transferred quickly from the xylene solution to the ethanol solution,in order to shorten the preparation time.The freeze-drying method was used in vacuum instead of high-temperature drying to avoid the aggregation of NHSK product.These improvements allow the formation of NHSK with an absolute yield of 200 mg·h-1,which is 2000 folds of that reported previously.It is favorable to apply this structured material in high performance nanocomposite,by improving the compatibility of CNTs in polymer and the interracial force between CNTs and polymer.

  18. Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Sutaryo, Sutaryo; Møller, Henrik Bjarne

    2013-01-01

    This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn a...

  19. Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2014-01-01

    specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast-including l-aspartate, l-lysine, l-isoleucine, l-proline, l-serine, and putrescine-and non-native products in E. coli-including 1...

  20. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield.

    Science.gov (United States)

    Shaw, A Joe; Podkaminer, Kara K; Desai, Sunil G; Bardsley, John S; Rogers, Stephen R; Thorne, Philip G; Hogsett, David A; Lynd, Lee R

    2008-09-16

    We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations in continuous culture. The growth rate of strain ALK2 was similar to the wild-type strain, with a reduction in cell yield proportional to the decreased ATP availability resulting from acetate kinase inactivation. Glucose and xylose are co-utilized and utilization of mannose and arabinose commences before glucose and xylose are exhausted. Using strain ALK2 in simultaneous hydrolysis and fermentation experiments at 50 degrees C allows a 2.5-fold reduction in cellulase loading compared with using Saccharomyces cerevisiae at 37 degrees C. The maximum ethanol titer produced by strain ALK2, 37 g/liter, is the highest reported thus far for a thermophilic anaerobe, although further improvements are desired and likely possible. Our results extend the frontier of metabolic engineering in thermophilic hosts, have the potential to significantly lower the cost of cellulosic ethanol production, and support the feasibility of further cost reductions through engineering a diversity of host organisms.

  1. Does high yield spread dampen economic growth? : the case of US-Japan

    Directory of Open Access Journals (Sweden)

    Yutaka Kurihara

    2014-04-01

    Full Text Available This article focuses on the relationship between the United States' and Japan's yield spread of interest rates and economic growth in Japan. The yield spread is defined in this article as the difference between the Japanese government bond yield minus the US government bond yield. Some studies have tackled this issue and found a negative relationship between the yield spread and economic growth; however, recent studies have shown no or a weak relationship. This problem has not yet consensus in spite of its importance. As the Japanese interest rate has been quite low since the adoption of the zero interest rate policy at the end of 1990s, the situation may change the results. The empirical results show that reliability of yield spread as a leading indicator of output growth exists in Japan; however, term structure of interest rate is not related to economic growth.

  2. Chemical, Biological, Radiological, Nuclear, and High-Yield Explosives Consequences Management

    Science.gov (United States)

    2006-10-02

    SNOITCNUFTROPPUSYCNEGREME ) AMEF /SHD(tnemeganaMycnegremE-5#FSE DOD ytilibisnopseR )s(daeLDOD tnioJlasrevinUdetaleR )DOD(sksaT ksaTlasrevinUdetaleR )SHD(tsiL...ezinagrO,hsilbatsE5.5PO POeeS(QHFJaetarepO )4.7.5PO,2.5.5 ) AMEF /SHD(secivreSnamuHdna,gnisuoH,eraCssaM-6#FSE dnaeciedivorP retaw /MOCHTRONSU MOCAPSU...Functions (cont’d) ROFSEITILIBISNOPSERDNAELORESNEFEDFOTNEMTRAPED )d’tnoc(SNOITCNUFTROPPUSYCNEGREME )d’tnoc() AMEF /SHD(secivreSnamuHdna,gnisuoH,eraCssaM-6#FSE

  3. Breeding of a high yielding chamomile variety (Matricaria recutita L. with improved traits for machine harvesting

    Directory of Open Access Journals (Sweden)

    Albrecht, Sebastian

    2016-07-01

    Full Text Available A more productive variety of chamomile (Matricaria recutita L., which is more efficient in machine processing with consistent quality traits, will benefit the viability of german products in the global market. Breeding of an enhanced chamomile variety is part of a german multi-network project called KAMEL whose research aims on Matricaria recutita L., Valeriana officinalis L. and Melissa officinalis L. The agronomic and qualitative improvement of these speciality crops are the basis for further economic prosperity of medicinal and aromatic plant cultivation in Germany. The main breeding goals of a new variety of chamomile are the increase of blossom product yield (Matricariae flos to 6 dt/ha in up to three harvest stages through a homogenous flower horizon (pick height, an even flowering time, large flower heads and a high regeneration rate after each harvest stage. The upgrade of the content of essential oil content to a minimum of 0.8 % with its compostion according to Ph. Eur. and a chamazulene content of min. 25 % are further objectives of the breeding process. In addition to these quality traits, high tolerances against common fungal diseases are of particular interest. Development of an innovative chamomile variety is realized over nine years in three stages (2010 - 2019.

  4. Propagation method for persistent high yield of diverse Listeria phages on permissive hosts at refrigeration temperatures.

    Science.gov (United States)

    Radford, Devon R; Ahmadi, Hanie; Leon-Velarde, Carlos G; Balamurugan, Sampathkumar

    2016-10-01

    The efficient production of a high concentration of bacteriophage in large volumes has been a limiting factor in the exploration of the true potential of these organisms for biotechnology, agriculture and medicine. Traditional methods focus on generating small volumes of highly concentrated samples as the end product of extensive mechanical and osmotic processing. To function at an industrial scale mandates extensive investment in infrastructure and input materials not feasible for many smaller facilities. To address this, we developed a novel, scalable, generic method for producing significantly higher titer psychrophilic phage (P Listeria, Yersinia and their phages grow in equilibrium. Diverse Yersinia and Listeria phages tested yielded averages of 3.49 × 10(8) to 3.36 × 10(12) PFU/ml/day compared to averages of 1.28 × 10(5) to 1.30 × 10(10) PFU/ml/day by traditional methods. Host growth and death kinetics made this method ineffective for extended propagation of mesophilic phages.

  5. Effect of Organic and Chemical Fertilizers on Yield and Essential Oil of Two Ecotypes of Savory (Satureja hortensis L. under Normal and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    O Akrami nejad

    2016-02-01

    height, grain and biological yield, chlorophyll index, ionic leakage, relative water content, number of branches, essence percentage and essence amount were evaluated. Data were analyzed with SAS and MSTAT-C software and mean comparison was done using Duncan test at %5 level. Results and Discussion The results showed that drought stress reduced plant height, number of branches, oil yield, relative water content, SPAD index and increased ion leakage. Meanwhile, it had no significant effect on the percent of oil. Fertilizers increased plant height, number of branches, yield, chlorophyll index and oil yield, while it decreased ion leakage in contrast with control. Baher et al (2002 have reported that drought stress reduced plant height, grain yield, and branches number of Savory. As nutrients deficit is one of the main factors in control of plant height and yield, plant that were treated with control had the lowest growth. Organic fertilizers provide appropriate plant growth via gradual release of nutrients during growth season and saving water. Two ecotypes had significant differences for yield, number of branches and ionic leakage. Kerman ecotype showed better yield performance. The results showed that water stress reduced yield, number of branches and plant height of savory. Meanwhile fertilizers (especially cow and hen manure could reduce the effects of drought. Conclusions Generally, organic fertilizers, especially cow manure, produced higher yield and showed a better response to drought stress. It might be for higher moisture maintenance in contrast with chemical fertilizers. It seems that, using cow manure could be helpful to overcome the negative effects of drought stress.

  6. The effect of organic, biological and chemical fertilizers on yield, essential oil percentage and some agroecological characteristics of summer savory (Satureja hortensis L. under Mashhad conditions

    Directory of Open Access Journals (Sweden)

    E Gholami Sharafkhane

    2016-05-01

    , all studied characteristics including plant height, lateral branches, flowering shoot yield, stem yield, percentage of essential oil and dry matter yield were affected positively by cattle manure. The highest plant height and number of lateral branches resulted from vermicompost and combination of Nitroxin+Biophosphor+Biosulfur, respectively. Biosulfur fertilizer produced the highest dry matter yield, flowering shoot yield and stem yield. Percentage of essential oil was also significantly affected by fertilizer treatments as the most percentage of essential oil was obtained from Nitroxin, vermicompost and combination of Nitroxin+Biophosphor+Biosulfur. A positive and strong correlation was observed between dry mater yield and flowering shoot yield and stem yield, respectively. Conclusion The results indicated that application of organic and inoculation of biological fertilizers have positive effects on improvement of qualitative and quantitative traits of summer savory, so it could be considered as an alternative method for healthy production of summer savory. Acknowledgements The expenses for this research were funded by the Research and Technology Deputy of the Ferdowsi University of Mashhad, Faculty of agriculture. The financial support is appreciated. References Chen, J. 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. October 16-20. Thailand. 11 pp. Gliessman, S.R. 1998. Agroecology: Ecological Processes in Sustainable Agriculture. CRC Press. ISBN: 1-57504-043-3 Mahfouz, S.A., Sharaf- Eldin, A. 2007. Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel (Foeniculum vulgare Mill.. Agrophysics Journal 21: 361-366. Omidbeigi, R. 2000. Approaches to Production and Processing of Medicinal plants, vol. (3. Beh Nashr Publisher, Mashhad. (In

  7. Influence of technology of growing on yield and oil chemical composition of linseed in Non-chernozem zone of Russia

    Directory of Open Access Journals (Sweden)

    Vinogradov Dmitriy V.

    2012-01-01

    Full Text Available The influence of the level of mineral nutrition and rate of seed sowing on yield and fatty acid composition of linseed (Linum usitatissimum L. in the Non-chernozem zone of Russia was studied. It was shown that the level of mineral fertilizers N - 90, P2O5 - 60, and K2O - 60 kg/ha under the rate of sowing of 8 million seeds/ha provided maximum seed yield of 1.94 t/ha. A clear correlation between oil content and rate of sowing has not been established. Under an increasing level of mineral nutrition, oil content was slightly increased. The composition of oil was slightly changed under the influence of the studied factors.

  8. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties

    Science.gov (United States)

    Fang, Caihong; Zhao, Guili; Xiao, Yanling; Zhao, Jun; Zhang, Zijun; Geng, Baoyou

    2016-11-01

    Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable. Here, we employed chloroplatinic acid as the key shape-directing agent for the first time to grow Au NBPs using a modified seed-mediated method at room temperature. H2PtCl6 was added both during the seed preparation and in growth solution. Metallic Pt, reduced from chloroplatinic acid, will deposit on the surface of the seed nanoparticles and the Au nanocrystals and thus plays a critical role for the formation of Au NBPs. Additionally, the reductant, precursor, and surfactant are all cheap and commonly used. Furthermore, the Au NBPs offer narrow size distribution, two sharp tips, and a shared basis. Au NBPs therefore show much higher refractive index sensitivities than that of the Au nanorods. The refractive index sensitivities and lager figure of merit values of Au NBPs exhibit an increase of 63% and 321% respectively compared to the corresponding values of Au nanorod sample.

  10. Hydrothermal carbonisation of poultry litter: Effects of initial pH on yields and chemical properties of hydrochars.

    Science.gov (United States)

    Ghanim, Bashir M; Kwapinski, Witold; Leahy, James J

    2017-08-01

    In this study, hydrothermal carbonisation (HTC) of poultry litter (PL) was carried out to evaluate the impact of initial pH using acetic acid (CH3COOH) or sulfuric acid (H2SO4) on the yields and properties of hydrochar (HC). The PL samples were treated by HTC at various initial pH and at 250°C for 2h. The HCs produced were characterized by ultimate, proximate and fibre analyses as well as heating value and surface area measurements. The results indicated that undertaking HTC in the presence of acids (CH3COOH, H2SO4) significantly affects the yields and properties of HC. The C content and HHV of the HC increased with decreasing initial pH. In the presence of H2SO4, the hydrochar yield (HY) increased while the ash content was significantly reduced. The lowest ash content and the highest HY were measured in the HC produced from the suspension with an initial pH of 2 using H2SO4. Copyright © 2017. Published by Elsevier Ltd.

  11. Genetic parameters for body weight, carcass chemical composition and yield in a broiler-layer cross developed for QTL mapping

    Science.gov (United States)

    Nunes, Beatriz do Nascimento; Ramos, Salvador Boccaletti; Savegnago, Rodrigo Pelicioni; Ledur, Mônica Corrêa; Nones, Kátia; Klein, Claudete Hara; Munari, Danísio Prado

    2011-01-01

    The objective of this study was to estimate genetic and phenotypic correlations of body weight at 6 weeks of age (BW6), as well as final carcass yield, and moisture, protein, fat and ash contents, using data from 3,422 F2 chickens originated from reciprocal cross between a broiler and a layer line. Variance components were estimated by the REML method, using animal models for evaluating random additive genetic and fixed contemporary group (sex, hatch and genetic group) effects. The heritability estimates (h2) for BW6, carcass yield and percentage of carcass moisture were 0.31 ± 0.07, 0.20 ± 0.05 and 0.33 ± 0.07, respectively. The h2 for the percentages of protein, fat and ash on a dry matter basis were 0.48 ± 0.09, 0.55 ± 0.10 and 0.36 ± 0.08, respectively. BW6 had a positive genetic correlation with fat percentage in the carcass, but a negative one with protein and ash contents. Carcass yield, thus, appears to have only low genetic association with carcass composition traits. The genetic correlations observed between traits, measured on a dry matter basis, indicated that selection for carcass protein content may favor higher ash content and a lower percentage of carcass fat. PMID:21931515

  12. Physical and chemical properties of a durably efficacious ammonium bicarbonate as a fertilizer and its yield-increasing mechanism

    Institute of Scientific and Technical Information of China (English)

    张志明; 李继云; 冯元琦; 毕庶春; 伍蔚民

    1997-01-01

    A new fertilizer of cocrystal type,known as durably efficacious ammonium bicarbonate (DEAB),has been developed by adding a certain amount of dicyandiamide (DCD) as an ammonia-stabilizing agent to ammonium bearbenate(AB)during the process of its production.As compared with AB,DEAB was found to have a reduction of direct volatilization loss by 53%,a fertilizer availability period prolonged from 35-45 to 90-110 d,and an increase in the rate of nitrogen in fertilizer being utilized by 5.9%-10.2%,and a saving of the amount of fertilizer to be ap-phed by 20%-30% for the same level of yield,or an increase of the crop yield by over 10% for the same level of ni-tregen fertilization;in addition,it was found to show usually a function of promoting the crop to early mature.It can be apptied as basal dressing all in one time to soil and thus also used as a labour-saving and crop yield-increasing fertil-izer for is non-mtertillage,plastics film covering and water-saving agriculture

  13. Induction of embryogenic callus and plantlet regeneration from young leaves of high yielding mature oil palm

    Directory of Open Access Journals (Sweden)

    Yeedum, I.

    2004-09-01

    Full Text Available Callus induction and plantlet regeneration from young leaves of high-yielding mature oil palm were carried out using 10-year and 20-year-old trees from Thepa Research Station, Faculty of Natural Resources,Prince of Songkla University, Hat Yai, and Trang Agricultural College, respectively. Culture media used in this experiment were Murashige and Skoog (1962 and Oil Palm supplemented with various concentrations of α-naphthaleneacetic acid (NAA or 2,4- dichlorophenoxy acetic acid (2,4-D or dicamba (Di and antioxidants.Young leaves from 6th to 11st frond were excised, sterilized, cut into 5x5 mm pieces and cultured in the dark at 26±4ºC or 28±0.5ºC for 3 months. The results revealed that MS medium with 200 mg/l ascorbic acid (As and 1 mg/l Di (MS-AsDi gave the highest callus induction percentage (7.93 after culture for 3 months at 28±0.5ºC. Leaf segments from 6th - 8th frond yielded callus forming percentage at 10% (averaged from 1, 2.5 and 5 mg/l Di containing MS medium. Ascorbic acid as an antioxidant at concentration of 200 mg/l supplemented in MS medium in the presence of 2.5 mg/l Di produced the highest callus induction percentage (11.2 and number of nodules (7.06. A high percentage of embryogenic callus formation (66.67 was obtained when the calli were transferred to the same medium component supplemented with 0.5 mg/l Di and 1,000 mg/l casein hydrolysate (CH (MS-AsDiCH. Haustorial-staged embryos were observed to be isolated as an individual embryo and germinated on MS medium without plant growth regulator (MS-free. Development of root could be classified into two distinct types, fibrous and tap root.

  14. Association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows

    Directory of Open Access Journals (Sweden)

    Tripti Sharma (Buragohain

    2017-03-01

    Full Text Available Aim: The present investigation was conducted to study the association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows. Materials and Methods: A total of 48 healthy high yielding crossbred cows were selected for the study. The udder configuration and teat/udder morphology were recorded before milking. Milk samples (100 ml/cow were collected aseptically. Milk somatic cell counts (SCC and milk differential leukocyte counts were performed microscopically. Milk leukocytes (viz., neutrophils, lymphocytes, and macrophages were isolated from milk samples by density gradient centrifugation. Phagocytic index (PI of milk neutrophils and macrophages were evaluated by colorimetric nitro blue tetrazolium assay. Lymphocytes proliferation response was estimated by MTT assay and expressed as stimulation index. Results: There was a significant (p<0.01 positive correlation between milk SCC with mid teat diameter, teat base diameter and significant (p<0.05 negative correlation between milk SCC and the height of the teat from the ground. Milk SCC was found to be significantly (p<0.01 lower in bowl-shaped udder and higher (p<0.01 in pendulous type. Milk macrophage percentage was positively (p<0.01 correlated with udder circumference. PI of milk neutrophil was negatively (p<0.01 correlation between teat base diameter, and PI of milk macrophages was found to be positively (p<0.01 correlated with teat apex diameter. Both PI of milk neutrophils and macrophages was found to be significantly (p<0.01 lower in the animals having flat and round teat and pendulous type of udder. In vitro PI of milk neutrophils was found to be significantly (p<0.01 lower in flat teat. In vitro PI of milk macrophages was found to be significantly (p<0.01 lower in the round and flat teats compared to pointed and cylindrical teats. Conclusion: Udder risk factors such as teat shape and size, teat to floor distance, udder shape, and size may decrease

  15. High-yielding aquifers in crystalline basement: insights about the role of fault zones, exemplified by Armorican Massif, France

    Science.gov (United States)

    Roques, Clément; Bour, Olivier; Aquilina, Luc; Dewandel, Benoît

    2016-12-01

    While groundwater constitutes a crucial resource in many crystalline-rock regions worldwide, well-yield conditions are highly variable and barely understood. Nevertheless, it is well known that fault zones may have the capacity to ensure sustainable yield in crystalline media, but there are only a few and disparate examples in the literature that describe high-yield conditions related to fault zones in crystalline rock basements. By investigating structural and hydraulic properties of remarkable yielding sites identified in the Armorican Massif, western France, this study discusses the main factors that may explain such exceptional hydrogeological properties. Twenty-three sites, identified through analysis of databases available for the region, are investigated. Results show that: (1) the highly transmissive fractures are related to fault zones which ensure the main water inflow in the pumped wells; (2) the probability of intersecting such transmissive fault zones does not vary significantly with depth, at least within the range investigated in this study (0-200 m); and (3) high yield is mainly controlled by the structural features of the fault zones, in particular the fault dip and the presence of a connected storage reservoir. Conceptual models that summarize the hydrological properties of high-yield groundwater resources related to fault zones in crystalline basement are shown and discussed.

  16. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.

    Science.gov (United States)

    Wang, Junzhong; Manga, Kiran Kumar; Bao, Qiaoliang; Loh, Kian Ping

    2011-06-15

    High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exfoliation of graphite into highly conductive few-layer graphene flakes (average thickness electrolyte of Li salts and organic solvents under high current density and exfoliated efficiently into few-layer graphene sheets with the aid of sonication. The dispersible graphene can be ink-brushed to form highly conformal coatings of conductive films (15 ohm/square at a graphene loading of <1 mg/cm(2)) on commercial paper.

  17. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning.

    Science.gov (United States)

    Erickson, Ariane E; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin

    2015-12-10

    The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications.

  18. High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese.

    Science.gov (United States)

    Escobar, D; Clark, S; Ganesan, V; Repiso, L; Waller, J; Harte, F

    2011-03-01

    High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties.

  19. Simple room-temperature preparation of high-yield large-area graphene oxide.

    Science.gov (United States)

    Huang, N M; Lim, H N; Chia, C H; Yarmo, M A; Muhamad, M R

    2011-01-01

    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm(2), respectively. The simplified Hummer's method provides a facile approach for the preparation of large-area GO.

  20. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli.

    Science.gov (United States)

    Liu, Huaiwei; Valdehuesa, Kris Niño G; Nisola, Grace M; Ramos, Kristine Rose M; Chung, Wook-Jin

    2012-07-01

    An engineered Escherichia coli was constructed to produce D-xylonic acid, one of the top 30 high-value chemicals identified by US Department of Energy. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by disrupting xylose isomerase (XI) and xylulose kinase (XK) genes. The native pathway for xylonic acid catabolism was also blocked by disrupting two genes both encoding xylonic acid dehydratase (yagE and yjhG). Through the introduction of a D-xylose dehydrogenase from Caulobacter crescentus, a D-xylonic acid producing E. coli was constructed. The recombinant E. coli produced up to 39.2 g L(-1) D-xylonic acid from 40 g L(-1) D-xylose in M9 minimal medium. The average productivity was as high as 1.09 g L(-1) h(-1) and no gluconic acid byproduct was produced. These results suggest that the engineered E. coli has a promising application for the industrial-scale production of D-xylonic acid.

  1. Single PA mutation as a high yield determinant of avian influenza vaccines

    Science.gov (United States)

    Lee, Ilseob; Il Kim, Jin; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Yun, Soo-Hyeon; Lee, Joo-Yeon; Kim, Kisoon; Kang, Chun; Park, Man-Seong

    2017-01-01

    Human infection with an avian influenza virus persists. To prepare for a potential outbreak of avian influenza, we constructed a candidate vaccine virus (CVV) containing hemagglutinin (HA) and neuraminidase (NA) genes of a H5N1 virus and evaluated its antigenic stability after serial passaging in embryonated chicken eggs. The passaged CVV harbored the four amino acid mutations (R136K in PB2; E31K in PA; A172T in HA; and R80Q in M2) without changing its antigenicity, compared with the parental CVV. Notably, the passaged CVV exhibited much greater replication property both in eggs and in Madin-Darby canine kidney and Vero cells. Of the four mutations, the PA E31K showed the greatest effect on the replication property of reverse genetically-rescued viruses. In a further luciferase reporter, mini-replicon assay, the PA mutation appeared to affect the replication property by increasing viral polymerase activity. When applied to different avian influenza CVVs (H7N9 and H9N2 subtypes), the PA E31K mutation resulted in the increases of viral replication in the Vero cell again. Taken all together, our results suggest the PA E31K mutation as a single, substantial growth determinant of avian influenza CVVs and for the establishment of a high-yield avian influenza vaccine backbone. PMID:28084423

  2. Identified particle yield associated with a high-$p_T$ trigger particle at the LHC

    CERN Document Server

    Veldhoen, Misha; van Leeuwen, Marco

    Identified particle production ratios are important observables, used to constrain models of particle production in heavy-ion collisions. Measurements of the inclusive particle ratio in central heavy-ion collisions showed an increase of the baryon-to-meson ratio compared to proton-proton collisions at intermediate pT, the so-called baryon anomaly. One possible explanation of the baryon anomaly is that partons from the thermalized deconfined QCD matter hadronize in a different way compared to hadrons produced in a vacuum jet. In this work we extend on previous measurements by measuring particle ratios in the yield associated with a high-pT trigger particle. These measurements can potentially further constrain the models of particle production since they are sensitive to the difference between particles from a jet and particles that are produced in the bulk. We start by developing a particle identification method that uses both the specific energy loss of a particle and the time of flight. From there, we presen...

  3. A novel high yield method for dry functionalization of carbon nanotubes.

    Science.gov (United States)

    Ansari, S G

    2011-04-01

    A novel and high yield (> 80%) dry method to functionalize (dry functionalization) carbon nanotubes (CNTs) using hydrothermal method, is reported here. The hydrothermal solution was prepared with HNO3, H2SO4 and H2O2 (1:3:2 vol. ratios) and reaction was carried out from 120 to 200 degrees C for 24 h. CNTs (multi wall) were kept in a way to avoid the direct contact with the solution. Treatment above 180 degrees C resulted in better functionalization of nanotubes as observed from Fourier transform infrared absorption spectroscopic (FTIR) measurements. Field emission scanning electron microscopic (FESEM) images showed that after functionalization, the nanotubes are seen with open ends, granular surface, twisted and are joined together. These clearly indicate the destruction of the graphite structure on the surface. This indicates that after treatment, CNTs reactivity has increased at the ends as well as at the side walls. X-ray Photoelectron Spectroscopic (XPS) studies show a shift in the C 1s peak position, increase in O 1s peak intensity and appearance of an N 1s peak.

  4. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity

    Science.gov (United States)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO2 nanotubes (GQDs/TiO2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600-800 nm. The photocatalytic activity of prepared GQDs/TiO2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO2 nanotubes (TiO2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV-vis light irradiation (λ = 380-780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO2 composite.

  5. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb(2+)) with trivalent antimony (Sb(3+)) to synthesize stable and brightly luminescent Cs3Sb2Br9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs3Sb2X9) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  6. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase

    Science.gov (United States)

    Padovani, Dominique; Zeghouf, Mahel; Traverso, José A.; Giglione, Carmela; Cherfils, Jacqueline

    2013-01-01

    Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays. PMID:23319116

  7. QCD Effective action at high temperature and small chemical potential

    CERN Document Server

    Villavicencio, C

    2007-01-01

    We present a construction of an effective Yang-Mills action for QCD, from the expansion of the fermionic determinant in terms of powers of the chemical potential at high temperature, for the case of massless quarks. We analyze this expansion in the perturbative region and find that it gives extra spurious information. We propose for the non-perturbative sector a simplified effective action which, in principle, contains only the relevant information.

  8. Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent.

    Science.gov (United States)

    Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F

    2005-01-01

    Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.

  9. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2013-12-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  10. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy.

    Science.gov (United States)

    Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa

    2017-01-01

    To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.

  11. High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope.

    Science.gov (United States)

    Konishi, H; Murata, Y; Wongwiriyapan, W; Kishida, M; Tomita, K; Motoyoshi, K; Honda, S; Katayama, M; Yoshimoto, S; Kubo, K; Hobara, R; Matsuda, I; Hasegawa, S; Yoshimura, M; Lee, J-G; Mori, H

    2007-01-01

    We have established a fabrication process for conductive carbon nanotube (CNT) tips for multiprobe scanning tunneling microscope (STM) with high yield. This was achieved, first, by attaching a CNT at the apex of a supporting W tip by a dielectrophoresis method, second, by reinforcing the adhesion between the CNT and the W tip by electron beam deposition of hydrocarbon and subsequent heating, and finally by wholly coating it with a thin metal layer by pulsed laser deposition. More than 90% of the CNT tips survived after long-distance transportation in air, indicating the practical durability of the CNT tips. The shape of the CNT tip did not change even after making contact with another metal tip more than 100 times repeatedly, which evidenced its mechanical robustness. We exploited the CNT tips for the electronic transport measurement by a four-terminal method in a multiprobe STM, in which the PtIr-coated CNT portion of the tip exhibited diffusive transport with a low resistivity of 1.8 kOmega/microm. The contact resistance at the junction between the CNT and the supporting W tip was estimated to be less than 0.7 kOmega. We confirmed that the PtIr thin layer remained at the CNT-W junction portion after excess current passed through, although the PtIr layer was peeled off on the CNT to aggregate into particles, which was likely due to electromigration or a thermally activated diffusion process. These results indicate that the CNT tips fabricated by our recipe possess high reliability and reproducibility sufficient for multiprobe STM measurements.

  12. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.

    Science.gov (United States)

    Tetali, Sailaja; Zaka, Mujtaba; Schönfelder, Ronny; Bachmatiuk, Alicja; Börrnert, Felix; Ibrahim, Imad; Lin, Jarrn H; Cuniberti, Gianaurelio; Warner, Jamie H; Büchner, Bernd; Rümmeli, Mark H

    2009-12-22

    The use of mixed catalysts for the high-yield production of single-walled carbon nanotubes is well-known. The mechanisms behind the improved yield are poorly understood. In this study, we systematically explore different catalyst combinations from Ni, Co, and Mo for the synthesis of carbon nanotubes via laser evaporation. Our findings reveal that the mixing of catalysts alters the catalyst cluster size distribution, maximizing the clusters' potential to form a hemispherical cap at nucleation and, hence, form a single-walled carbon nanotube. This process significantly improves the single-walled carbon nanotube yields.

  13. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  14. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  15. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...

  16. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  17. A New Type of Multielements—Dpoed.Carbon—based Materials Characterized by High—Thermoconductivity,Low Chemical Syputtering.Low RES Yield and Exposure to Plasma

    Institute of Scientific and Technical Information of China (English)

    许增裕; 宋进仁; 等

    2002-01-01

    Low-Z materials,such as carbon-based materials and Be,are major plasma-facing material (PFM) for current,even in future fusion devices.In this paper,new type of multielement-doped carbon-based materials developed are presented along with experimental results of their properties,The results indicate a decrease in chemical sputtering yield by one order of magnitude.a decrease in both thermal shock resistance and radiation-enhanced sublimation,an evidently lower temperature desorption spectrum ,and combined properties of exposing to plasma.

  18. Controlled tip wear on high roughness surfaces yields gradual broadening and rounding of cantilever tips

    Science.gov (United States)

    Vorselen, Daan; Kooreman, Ernst S.; Wuite, Gijs J. L.; Roos, Wouter H.

    2016-11-01

    Tip size in atomic force microscopy (AFM) has a major impact on the resolution of images and on the results of nanoindentation experiments. Tip wear is therefore a key limitation in the application of AFM. Here we show, however, how wear can be turned into an advantage as it allows for directed tip shaping. We studied tip wear on high roughness polycrystalline titanium and diamond surfaces and show that tip wear on these surfaces leads to an increased tip size with a rounded shape of the apex. Next, we fitted single peaks from AFM images in order to track the changes in tip radius over time. This method is in excellent agreement with the conventional blind tip reconstruction method with the additional advantage that we could use it to demonstrate that the increase in tip size is gradual. Moreover, with our approach we can shape and control the tip size, while retaining identical chemical and cantilever properties. This significantly expands the reproducibility of AFM force spectroscopy data and is therefore expected to find a wide applicability.

  19. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  20. [Characteristics of canopy structure of super high yielding japonica hybrid rice community].

    Science.gov (United States)

    Chen, Jinhong; Zhang, Guoping; Guo, Hengde; Mao, Guojuan

    2003-06-01

    In this paper, the characteristics of canopy structure, such as the numbers of seedling, panicle and grain, the distribution of dry matters in different canopy layers and different organs, and the distributions of LAI and of solar radiation in different canopy layers of super high yielding community of japonica hybrid rice were studied, in comparison with normal japonica rice. The results showed that the total the dry matter weight and the dry matter weight of layers below 40 cm, 40-60 cm, 60-80 cm and above 80 cm of japonica hybrid rice canopy were 32.29%, 29.12%, 13.95%, 16.45% and 100.17% higher those that of normal japonica rice, respectively. The ratios of dry leaf (photosynthetic organ) and of dry panicle (sink organ) weight to total dry weight were 24.8% and 12.8%, respectively, which were greater than those of normal japonica rice, while the ratios of dry sheath and stem (storage organs) weight were 33.6% and 28.9%, respectively, which were lower than those of normal japonica rice. The allotment of LAI in different layers of japonica hybrid rice canopy was reasonable, and the LAI of above 40 cm layer at full heading stage reached 5.44. The solar radiation was well-distributed inside japonica hybrid rice canopy, for example, the solar radiation in layers below 60 cm were 13.1%-37.0% higher, but 5.9%-12.2% lower above 60 cm than that of normal japonica rice. The extinction coefficients of solar radiation in layers below 20 cm, 20-40 cm, 40-60 cm and 60-80 cm of japonica hybrid rice canopy were 35.1%, 13.5%, 29.1% and 17.2% lower than that of normal japonica rice, respectively.

  1. Photoyellowing inhibition of bleached high yield pulps using novel water-soluble UV screens.

    Science.gov (United States)

    Argyropoulos, D S; Halevy, P; Peng, P

    2000-02-01

    To address the deficiencies of benzophenone UV screens for preventing brightness reversion in high yield mechanical papers, we synthesized a new series of such materials with enhanced water solubility and compatibility with the lignocellulosic substrate. A series of 2,4-dihydroxybenzophenones (DHB) were synthesized containing various Mannich bases at the C3 position of one of its rings. They possess the UV-screening ability of o-hydroxylbenzophenones, and they also contain tertiary nitrogen atoms that may function as radical scavengers. Aqueous solutions of the hydrochloride salt of 3-(dimethylaminomethylene)-2,4-dihydroxylbenzophenone (1), when applied on bleached chemithermomechanical pulp (CTMP) sheets, were significantly more efficient in preventing photoyellowing than the original DHB applied on the sheets from ethanol-water solutions. This confirmed our original hypothesis that increasing the compatibility of the UV screen with the lignocellulosic matrix would increase its efficiency in preventing photoyellowing. Compound 1, however, was found to be somewhat more effective than its hydrochloride salt toward preventing photoyellowing. This was attributed to the synergistic action of the free tertiary aminic center attached on the molecule with its UV-screening ability. To comprehend further the various parameters that influence the photoyellowing inhibition performance of these compounds and DHB with bleached CTMP pulp fibers, a series of handsheets were prepared at different pH. The interactions of the protonated compound 1 with pulp fibers were then evaluated by studying their kinetics of absorption and desorption to and from the fiber matrix. This part of our study found that the adsorption of protonated Mannich derivatives of DHB onto pulp is most likely governed by a cation-exchange mechanism involving the cationic amine group with the sulfonic and carboxylic acid groups located on the surface of the fibers. The pH the paper sheet was made from was also

  2. A high-yield double-purification proteomics strategy for the identification of SUMO sites.

    Science.gov (United States)

    Hendriks, Ivo A; Vertegaal, Alfred C O

    2016-09-01

    The small ubiquitin-like modifier (SUMO) is a protein modifier that is post-translationally coupled to thousands of lysines in more than a thousand proteins. An understanding of which lysines are modified by SUMO is critical in unraveling its function as a master regulator of all nuclear processes, as well as its involvement in diseases such as cancer. Here we describe a protocol for the lysine-deficient (K0) method for efficient identification of SUMOylated lysines by mass spectrometry (MS). To our knowledge, the K0 method is the only currently available method that can routinely identify >1,000 SUMO sites in mammalian cells under standard growth conditions. The K0 strategy relies on introducing a His10-tagged SUMO wherein all lysines have been substituted to arginines. Lysine deficiency renders the SUMO immune to digestion by the endoproteinase Lys-C, which in turn allows for stringent and high-yield tandem purification through the His10 tag. In addition, the His10-tagged SUMO also contains a C-terminal Q87R mutation, which accommodates generation of SUMO-site peptides with a QQTGG mass remnant after digestion with trypsin. This remnant possesses a unique mass signature and readily generates diagnostic ions in the fragment ion scans, which increases SUMO-site identification confidence. The K0 method can be applied in any mammalian cell line or in any model system that allows for integration of the K0-SUMO construct. From the moment of cell lysis, the K0 method takes ∼7 d to perform.

  3. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    Science.gov (United States)

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  4. A multi-region assessment of population rates of cardiac catheterization and yield of high-risk coronary artery disease

    Directory of Open Access Journals (Sweden)

    Clement Fiona M

    2011-11-01

    Full Text Available Abstract Background There is variation in cardiac catheterization utilization across jurisdictions. Previous work from Alberta, Canada, showed no evidence of a plateau in the yield of high-risk disease at cardiac catheterization rates as high as 600 per 100,000 population suggesting that the optimal rate is higher. This work aims 1 To determine if a previously demonstrated linear relationship between the yield of high-risk coronary disease and cardiac catheterization rates persists with contemporary data and 2 to explore whether the linear relationship exists in other jurisdictions. Methods Detailed clinical information on all patients undergoing cardiac catheterization in 3 Canadian provinces was available through the Alberta Provincial Project for Outcomes Assessment in Coronary Heart (APPROACH disease and partner initiatives in British Columbia and Nova Scotia. Population rates of catheterization and high-risk coronary disease detection for each health region in these three provinces, and age-adjusted rates produced using direct standardization. A mixed effects regression analysis was performed to assess the relationship between catheterization rate and high-risk coronary disease detection. Results In the contemporary Alberta data, we found a linear relationship between the population catheterization rate and the high-risk yield. Although the yield was slightly less in time period 2 (2002-2006 than in time period 1(1995-2001, there was no statistical evidence of a plateau. The linear relationship between catheterization rate and high-risk yield was similarly demonstrated in British Columbia and Nova Scotia and appears to extend, without a plateau in yield, to rates over 800 procedures per 100,000 population. Conclusions Our study demonstrates a consistent finding, over time and across jurisdictions, of linearly increasing detection of high-risk CAD as population rates of cardiac catheterization increase. This internationally-relevant finding

  5. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  6. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus;

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  7. In search of annual legumes to improve forage sorghum yield and nutritive value in the southern high plains

    Science.gov (United States)

    Livestock production is significant in the Southern High Plains of the USA and demand is increasing for greater forage dry matter (DM) yield with increased nutritive value. Forage sorghum (FS)[Sorghum bicolor (L.) Moench] is commonly used, although, it is low in crude protein (CP) and high in fiber....

  8. High Yield Technique of Virus-free Potato Favorite Planting in Paddy

    Directory of Open Access Journals (Sweden)

    Yan-xia Zhang

    2013-04-01

    Full Text Available To screen the best combination cultivation factors, the orthogonal test was conducted on the 6 factors of virus-free potato Favorite including sowing time, density, urea, calcium superphosphate, potassium sulfate and zinc, planted in paddy field of Xian-ning, Luo-tian and Guang-shui. The results showed that: a experimental site had significant influence on growth period (F = 147.08>F0.01, sowing date had great significant influence on growth period (F = 15.68>F0.01, with the delay of sowing date, the growth period was short (R1 = 0.9851**. b Density had great significant influence on yield (F = 4.0>F0.01, the yield could be increased with the density increasing (R2 = 0.9782**, sowing date had significant influence on yield (F = 3.55>F0.05. c The maximum yield and economic return appeared at the treatment of seeding date December 10, seeding density 75000 plant/hm2, N 75 kg/hm2, phosphorus fertilizer 900 kg/hm2, potassium sulfate 450 kg/hm2 and zinc 22.5 kg/hm2, with the yield 31185 kg/hm2 and economic benefit 26833 Yuan/hm2.

  9. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Arnold, E-mail: aburger@fisk.edu [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-05

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.

  10. Effect of Organic Manure and Chemical Amendments on Soil Properties and Crop Yield on a Salt Affected Entisol

    Institute of Scientific and Technical Information of China (English)

    A.U.BHATTI; Q.KHAN; A.H.GURMANI; M.J.KHAN

    2005-01-01

    A field experiment was conducted for two consecutive years in a farmer's field at Haji Mora Village, Dera Ismail Khan(D.I. Khan) in the Northwest Frontier Province (NWFP) of Pakistan to compare various management practices, such as the effect of various organic manures and gypsum in a rice-wheat cropping system on a saline-sodic Entisol (Zindani soil series). The treatments consisted of 1) a control (rice-wheat), 2) gypsum, 3) farmyard manure (FYM), 4) berseem(Trifolium alexandrinum L.) as green manure (GM), and 5) dhancha (Sesbania sp.) as GM. All treatments increased yields of both rice and wheat significantly (P < 0.01) over the control, with the green manure treatments proving more economical than the others; while they decreased pH, electrical conductivity (EC), and sodium adsorption ratio (SAR) of the soil. Saturation percentage and available water of the soil were raised for all treatments due to an increase in organic matter content of the soil.

  11. Effect of Silver Nanoparticles and Pb(NO32 on the Yield and Chemical Composition of Mung bean (Vigna radiata

    Directory of Open Access Journals (Sweden)

    Saeideh Najafi

    2014-03-01

    Full Text Available Phytotoxic effects of Pb as Pb(NO32 and silver nanoparticles on Mung bean (Vigna radiata planted on contaminated soil was assessed in terms of growth, yield, chlorophyll pigments, phenol and flavonoid content at 120 ppm concentration. Experiments were carried out with 4 treatments in 10 days. Treatments were including (T1 control, (T2 silver nanoparticles (50 ppm, (T3 Pb as Pb (NO32 (120 ppm and (T4 silver nanoparticles (50 ppm plus Pb as Pb(NO32 (120 ppm. Regarding the pigment content, silver nanoparticles-treated plants showed a remarkable increase of chlorophyll. The loss of chlorophyll content was associated with disturbance in photosynthetic capacity which ultimately results in the reduction of Vigna radiate growth. Pb caused a fall in the total content of phenols, while the content of flavonoid not significantly changed. The minimum decrease in root length, weight of root fresh and stem fresh was observed in T4 group, but this factors increased in the other treatments. Also, length of stem and seedling height decreased in control group. Increase length and fresh weight of stem in Pb-treated plants suggest that compatible solutes may contribute to osmotic adjustment at the cellular level and enzyme protection stabilizing the structure of macromolecules and organelles.

  12. Influence of pre-sowing treatments by gamma rays on growth, yield and some chemical constituents of Sesamum indicum L

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, O.S.; Hamideldin, N.

    2016-07-01

    The present work aims to improve the quantity and quality of seeds and/or seed oil by using low doses of radiation. Sesame seeds were exposed to ?- rays at levels of 30, 60 and 90 Gy. The results show that 30, 60 and 90 Gy doses activated most of growth and yield parameters significantly (weight of plant, number of capsules, weight of capsules/plant and weight of seeds/plant), with 60 Gy being the best dose. With regard to the total oil percentage in the produced crops, few changes have been observed, which did not reach the level of significance. The amount of unsaturated fatty acid (18:1, omega 9) was increase by 10.5% at a 30 Gy dose followed by 60 Gy (1.1%). The total of amino acid content showed that 30 Gy dose recorded the highest value (350.4 mg·g-1) followed by 60 Gy (285.6 mg·g-1) as compared to the control value (254.4 mg·g-1). The values of phosphorus, potassium magnesium and iron which represent the major minerals in sesame seeds were increased in the irradiated samples. (Author)

  13. High surface area graphene foams by chemical vapor deposition

    Science.gov (United States)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  14. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  15. Energy transfer and light yield properties of a new highly loaded indium(III) β-diketonate organic scintillator system

    Science.gov (United States)

    Buck, C.; Hartmann, F. X.; Motta, D.; Schoenert, S.

    2007-02-01

    We present combined experimental and model studies of the light yield and energy transfer properties of a newly developed high light yield scintillator based on indium(III)-tris(2,4-pentanedionate) in a 2-(4-biphenyl)-5-phenyloxazole (BPO), methoxybenzene organic liquid; of interest to the detection of solar electron neutrino oscillations. Optical measurements are made to understand the energy transfer properties and a model is advanced to treat the unusual conditions of high metal and fluor loadings. Such scintillator types are of interest to the exploration of novel luminescent materials and the development of large-scale detectors for studying fundamental properties of naturally occurring neutrinos.

  16. Studies on high chemical reactivity of nano-NaH

    Institute of Scientific and Technical Information of China (English)

    FAN Yinheng; ZOU Yunling; JIN Dan; WU Qiang; LIU Tong; XU Jie

    2007-01-01

    A comparison between the initial reaction rates of nanometric and commercial Nail has been studied in four test reactions: 1) hydrogenolysis of chlorobenzene; 2) selec-tive reduction of cinnamaldehyde to cinnamyl alcohol; 3)metallation of dimethyl sulfoxide; and 4) catalytic hydroge-nation ofolefins. The experimental results indicate that when Nail is used as a chemical reagent in the first three reactions,the initial reaction rates of nano-NaH is 230, 120 and 110 times higher than those of the commercial ones respectively,and it is in agreement with the difference in specific surface areas between these two forms of Nail. When Nail is used as a catalyst component together with Cp2TiCl2 in the fourth reaction, catalyst with nano-NaH gives extremely high activity in the hydrogenation of olefins, while the one with commercial Nail gives no activity at all even ifa large amount of the commercial Nail is used to make the total surface area equivalent to that of nano-NaH. Thus, it is evident that although large specific surface area is important for nano-Nail to be used as a catalyst component, high surface energy with surface defects seems to be more important. The largespecific surface and the activated surface of nano-NaH withhigh surface energy should be the main factors for thei rextremely high chemical reactivity, while whether the former or the latter one plays a leading role depends on the type of reactions involved.

  17. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.

    Science.gov (United States)

    Ge, Han-Jing; Du, Shuang-Kui; Lin, De-Hui; Zhang, Jun-Na; Xiang, Jin-Le; Li, Zhi-Xi

    2011-12-01

    Strain M(438), deposited as CGMCC3917 and isolated from inoculums of bacterial cellulose (BC) producing strain screened in homemade vinegar and then induced by high hydrostatic pressure treatment (HHP), has strong ability to produce BC more than three times as that of its initial strain. It is the highest yield BC-producing strain ever reported. In this paper, M(438) was identidied as Gluconacetobacter hansenii subsp. nov. on the basis of the results obtained by examining it phylogenetically, phenotypically, and physiologically-biochemically. Furthermore, the genetic diversity of strain M(438) and its initial strain was examined by amplified fragment length polymorphism. The results indicated that strain M(438) was a deletion mutant induced by HHP, and the only deleted sequence showed 99% identity with 24,917-24,723 bp in the genome sequence of Ga. hansenii ATCC23769, and the complement gene sequence was at 24,699-25,019 bp with local tag GXY_15142, which codes small multidrug resistance (SMR) protein. It can be inferred that SMR might be related to inhibiting BC production to a certain extent.

  18. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    Science.gov (United States)

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  19. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  20. Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp.

    Science.gov (United States)

    Manda, B M Krishna; Blok, Kornelis; Patel, Martin K

    2012-11-15

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO(2)) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO(2) coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10-35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13GJ/ton paper) and GHG emission reduction by 75% (0.6 tonCO(2)eq./ton paper). Micro TiO(2) coated CTMP paper offered NREU savings by 25% (3GJ/ton paper) and savings of GHG emissions by 10% (0.1 tonCO(2)eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then the

  1. Innovations in papermaking: An LCA of printing and writing paper from conventional and high yield pulp

    Energy Technology Data Exchange (ETDEWEB)

    Manda, B.M. Krishna, E-mail: b.m.k.manda@uu.nl; Blok, Kornelis, E-mail: K.Blok@uu.nl; Patel, Martin K., E-mail: m.k.patel@uu.nl

    2012-11-15

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO{sub 2}) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO{sub 2} coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10-35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13 GJ/ton paper) and GHG emission reduction by 75% (0.6 ton CO{sub 2} eq./ton paper). Micro TiO{sub 2} coated CTMP paper offered NREU savings by 25% (3 GJ/ton paper) and savings of GHG emissions by 10% (0.1 ton CO{sub 2} eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the

  2. Comparison between supercritical CO2 extraction and hydrodistillation for two species of eucalyptus: yield, chemical composition, and antioxidant activity.

    Science.gov (United States)

    Herzi, Najia; Bouajila, Jalloul; Camy, Séverine; Cazaux, Sylvie; Romdhane, Mehrez; Condoret, Jean Stéphane

    2013-05-01

    In this work, 2 Eucalyptus species extracts (Eucalyptus cinerea and Eucalyptus camaldulensis) were prepared by hydrodistillation (HD) and supercritical carbon dioxide extraction (SCE) techniques. The best yields of E. cinerea and E. camaldulensis (27.5 and 8.8 g/kg, respectively) were obtained using SCE at 90 bar, 40 °C compared to HD (23 and 6.2 g/kg, respectively). Extracts were quantified by gas chromatography-flame ionization detection and identified by gas chromatography-mass spectrometry. 1,8-cineole and p-menth-1-en-8-ol were the major compounds of E. cinerea essential oil obtained by HD (64.89% and 8.15%, respectively) or by SCE (16.1% and 31.87%, respectively). Whereas, in case of E. camaldulensis, 1,8-cineole (45.71%) and p-cymene (17.14%) were the major compounds obtained by HD, and 8,14-cedranoxide (43.79%) and elemol (6.3%) by SCE. Their antioxidant activity was assessed using 2 methods: 2,2-azino-di-3-ethylbenzothialozine-sulphonic acid radical cation (ABTS(•+) ) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•) ). In the SCE extracts from both E. cinerea and E. camaldulensis, a promising radical scavenging activity was observed with ABTS(•+) , (65 and 128 mg/L, respectively). The total phenolics composition of the extracts was measured and the range was 2 to 60 mg of gallic acid equivalent/g dry plant material. The SCE method was superior to HD, regarding shorter extraction times (30 min for SCE compared with 4 h for HD), a low environmental impact, allows production of nondegraded compounds and being part of green chemistry. © 2013 Institute of Food Technologists®

  3. High Diagnostic Yield of Dedicated Pulmonary Screening before Hematopoietic Cell Transplantation in Children

    NARCIS (Netherlands)

    Versluijs, Anne Birgitta; van der Ent, Korstiaan; Boelens, Jaap J.; Wolfs, Tom; de Jong, Pim; Bierings, Marc B.

    2015-01-01

    Pulmonary complications are an important cause for treatment-related morbidity and mortality in hematopoietic cell transplantation (HCT) in children. The aim of this study was to investigate the yield of our pre-HCT pulmonary screening program. We also describe our management guidelines based on

  4. Scintillation light, ionization yield and scintillation decay times in high pressure xenon and xenon methane

    NARCIS (Netherlands)

    Pushkin, K. N.; Akimov, D. Y.; Burenkov, A. A.; Dmitrenko, V. V.; Kovalenko, A. G.; Lebedenko, V. N.; Kuznetsov, I. S.; Stekhanov, V. N.; Tezuka, C.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2007-01-01

    Scintillation light, ionization yield and scintillation decay times have been measured in xenon and in its mixture with a 0.05% concentration of methane as a function of the reduced electric field (E/N)-the ratio of the electric field strength to the number density of gas-at a pressure of 21 atm. Th

  5. Nuclear Engineering of Microalgae for High Yield Secretion of Recombinant Proteins

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel

    to the glycomodules, accumulation of a fusion protein was dramatically increased by up to 12 folds, with the maximum yield of 15 mg L-1. Characterization of the secreted Venus showed the presence of glycosylations and increased resistance to proteolytic degradation. The results from this thesis demonstrate...

  6. Origin of central abundances in the hot intra-cluster medium - II. Chemical enrichment and supernova yield models

    CERN Document Server

    Mernier, François; Pinto, Ciro; Kaastra, Jelle S; Kosec, Peter; Zhang, Yu-Ying; Mao, Junjie; Werner, Norbert; Pols, Onno R; Vink, Jacco

    2016-01-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z~2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the model...

  7. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    Science.gov (United States)

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform.

  8. Development of a New Class of Scintillating Fibres with Very Short Decay Time and High Light Yield

    Science.gov (United States)

    Borshchev, O.; Cavalcante, A. B. R.; Gavardi, L.; Gruber, L.; Joram, C.; Ponomarenko, S.; Shinji, O.; Surin, N.

    2017-05-01

    We present first studies of a new class of scintillating fibres which are characterised by very short decay times and high light yield. The fibres are based on a novel type of luminophores admixed to a polystyrene core matrix. These so-called Nanostructured Organosilicon Luminophores (NOL) have high photoluminescense quantum yield and decay times just above 1 ns. A blue and a green emitting prototype fibre with 250 μm diameter were produced and characterised in terms of attenuation length, ionisation light yield, decay time and tolerance to x-ray irradiation. The well-established Kuraray SCSF-78 and SCSF-3HF fibres were taken as references. Even though the two prototype fibres mark just an intermediate step in an ongoing development, their performance is already on a competitive level. In particular, their decay time constants are about a factor of two shorter than the fastest known fibres, which makes them promising candidates for time critical applications.

  9. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  10. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Directory of Open Access Journals (Sweden)

    Othman Soufan

    Full Text Available High-throughput screening (HTS experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  11. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Science.gov (United States)

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  12. Chemical and Thermodynamic Properties at High Temperatures: A Symposium

    Science.gov (United States)

    Walker, Raymond F.

    1961-01-01

    This book contains the program and all available abstracts of the 90' invited and contributed papers to be presented at the TUPAC Symposium on Chemical and Thermodynamic Properties at High Temperatures. The Symposium will be held in conjunction with the XVIIIth IUPAC Congress, Montreal, August 6 - 12, 1961. It has been organized, by the Subcommissions on Condensed States and on Gaseous States of the Commission on High Temperatures and Refractories and by the Subcommission on Experimental Thermodynamics of the Commission on Chemical Thermodynamics, acting in conjunction with the Organizing Committee of the IUPAC Congress. All inquiries concerning participation In the Symposium should be directed to: Secretary, XVIIIth International Congress of Pure and Applied Chemistry, National Research Council, Ottawa, 'Canada. Owing to the limited time and facilities available for the preparation and printing of the book, it has not been possible to refer the proofs of the abstracts to the authors for checking. Furthermore, it has not been possible to subject the manuscripts to a very thorough editorial examination. Some obvious errors in the manuscripts have been corrected; other errors undoubtedly have been introduced. Figures have been redrawn only when such a step was essential for reproduction purposes. Sincere apologies are offered to authors and readers for any errors which remain; however, in the circumstances neither the IUPAC Commissions who organized the Symposium, nor the U. S. Government Agencies who assisted in the preparation of this book can accept responsibility for the errors.

  13. High yield stress associated with capillary attraction between alumina surfaces in the presence of low molecular weight dicarboxylic acids.

    Science.gov (United States)

    Teh, E-Jen; Leong, Yee-Kwong; Liu, Yinong; Craig, Vincent S J; Walsh, Rick B; Howard, Shaun C

    2010-03-02

    Adsorbed low molecular weight charged molecules are known to give rise to a range of surface forces that affect the rheological behavior of oxide dispersions. The behavior of dicarboxylic acid bolaform compounds in alumina slurry was investigated to determine the influence of the molecular structure on the nanoscale interactions between alumina surfaces and on the macroscopic properties of the slurry. The surface forces in dispersions and between a single particle and a flat surface were characterized by yield stress and atomic force microscopy (AFM) respectively. Absorbed muconic acid increased the yield stress of the alumina system, which indicates an additional attractive interaction between the particles. Adsorbed trans,trans (TT) muconic acid resulted in a much higher yield stress than cis,cis (CC) muconic acid. Force-distance data obtained via AFM displayed features indicating the presence of a capillary force attraction at low pH between the alumina surfaces when TT and CC muconic acids were adsorbed at high surface coverage. This force appeared to explain the high yield stress at low pH (pH 3.6), but the absence of a net attractive force at higher pH (pH 5) did not correlate with the yield stress results. At low pH, the muconic acids become less soluble in the confined space between the interacting surfaces resulting in the formation of an "oily" muconic acid phase located between the interacting surfaces. The nanosized "oil" phase is the source of the capillary force.

  14. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  15. A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties.

    Science.gov (United States)

    Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav

    2015-10-05

    The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility.

  16. Origin of central abundances in the hot intra-cluster medium. II. Chemical enrichment and supernova yield models

    Science.gov (United States)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.; Pols, O. R.; Vink, J.

    2016-11-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z 2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the models. We show that the Ca/Fe ratio can be reproduced better, either by taking a SNIa delayed-detonation model that matches the observations of the Tycho supernova remnant, or by adding a contribution from the "Ca-rich gap transient" SNe, whose material should easily mix into the hot ICM. On the other hand, the Ni/Fe ratio can be reproduced better by assuming that both deflagration and delayed-detonation SNIa contribute in similar proportions to the ICM enrichment. In either case, the fraction of SNIa over the total number of SNe (SNIa+SNcc) contributing to the ICM enrichment ranges within 29-45%. This fraction is found to be systematically higher than the corresponding SNIa/(SNIa+SNcc) fraction contributing to the enrichment of the proto-solar environnement (15-25%). We also discuss and quantify two useful constraints on both SNIa (i.e. the initial metallicity on SNIa progenitors and the fraction of low-mass stars that result in SNIa) and SNcc (i.e. the effect of

  17. Gallium loading of gold seed for high yield of patterned GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, J. P.; Chia, A. C. E.; LaPierre, R. R., E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-08-25

    A method is presented for maximizing the yield and crystal phase purity of vertically aligned Au-assisted GaAs nanowires grown with an SiO{sub x} selective area epitaxy mask on GaAs (111)B substrates. The nanowires were grown by the vapor-liquid-solid (VLS) method in a gas source molecular beam epitaxy system. During annealing, Au VLS seeds will alloy with the underlying GaAs substrate and collect beneath the SiO{sub x} mask layer. This behavior is detrimental to obtaining vertically aligned, epitaxial nanowire growth. To circumvent this issue, Au droplets were pre-filled with Ga assuring vertical yields in excess of 99%.

  18. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway.

    Science.gov (United States)

    Becker, Sidney; Thoma, Ines; Deutsch, Amrei; Gehrke, Tim; Mayer, Peter; Zipse, Hendrik; Carell, Thomas

    2016-05-13

    The origin of life is believed to have started with prebiotic molecules reacting along unidentified pathways to produce key molecules such as nucleosides. To date, a single prebiotic pathway to purine nucleosides had been proposed. It is considered to be inefficient due to missing regioselectivity and low yields. We report that the condensation of formamidopyrimidines (FaPys) with sugars provides the natural N-9 nucleosides with extreme regioselectivity and in good yields (60%). The FaPys are available from formic acid and aminopyrimidines, which are in turn available from prebiotic molecules that were also detected during the Rosetta comet mission. This nucleoside formation pathway can be fused to sugar-forming reactions to produce pentosides, providing a plausible scenario of how purine nucleosides may have formed under prebiotic conditions.

  19. Fast and high light yield scintillation in the Ga2O3 semiconductor material

    Science.gov (United States)

    Yanagida, Takayuki; Okada, Go; Kato, Takumi; Nakauchi, Daisuke; Yanagida, Satoko

    2016-04-01

    We report the distinct scintillation properties of the well-known Ga2O3 semiconductor material. Under UV excitation, the photoluminescence (PL) emission peak appeared near a wavelength of 380 nm with a quantum yield of 6%, and fast decays of 8 and 793 ns were observed. In contrast, the X-ray-induced scintillation spectrum showed an intense emission band near a wavelength of 380 nm, whose decay curve was reproduced using two exponential decay components with time constants of 8 and 977 ns. The pulse height spectrum of 137Cs γ-rays measured using Ga2O3 showed a clear photoabsorption peak with a light yield of 15000 ± 1500 photons/MeV.

  20. Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells.

    Science.gov (United States)

    Bouallagui, Zouhaier; Sayadi, Sami

    2006-12-27

    An immobilized whole cell system was successfully performed to produce the most powerful antioxidant, hydroxytyrosol. Bioconversion of tyrosol into hydroxytyrosol was achieved via the immobilization of Pseudomonas aeruginosa resting cells in calcium alginate beads. Immobilization was advantageous as it allows immobilized cells to tolerate a greater tyrosol concentration than free cells. The bioconversion yield reached 86% in the presence of 5 g L-1 of tyrosol when cells immobilized in alginate beads were carried out in single batches. Evaluation of kinetic parameters showed the maintenance of the same catalytic efficiency expressed as Kcat/Km for both free and immobilized cells. The use of immobilized cells in repeated batches demonstrated a notable activity stabilization since the biocatalyst reusability was extended for at least four batches with a molar yield greater than 85%.

  1. Growth performance, carcass yield, and quality and chemical traits of meat from commercial korean native ducks with 2-way crossbreeding.

    Science.gov (United States)

    Heo, K N; Hong, E C; Kim, C D; Kim, H K; Lee, M J; Choo, H J; Choi, H C; Mushtaq, M M H; Parvin, R; Kim, J H

    2015-03-01

    This work was conducted to investigate the performance and meat characteristics of commercial Korean native duck (KND). A total of 180 1-d-old ducklings of 2-way crossbreds from A and B lines (from National Institute of Animal Science) were used in this work and divided into 4 groups (3 replicates/group, 15 birds/replicate). The four groups were 4 crossbreds as AA (A line [♀]×A line [♂]), AB (A line [♀]×B line [♂]), BB (Pure line B strains) and BA (B strains [♀]×A strain [♂]). Ducks were fed diets based on corn-soybean meal for 0 to 3 wk (22.4% crude protein [CP], 2,945 kcal/kg metabolizable energy [ME]) and 3 to 8 wk (18.4% CP, 3,047 kcal/kg ME). As a result of this study, average body weight of 4 crossbreds were 625, 1,617, 2,466, and 2,836 g at 2, 4, 6, and 8 weeks, respectively, and significantly increased over the period of time (p<0.05). Body weight of BB group was greater than other crossbreds at the age of 6 weeks (p<0.05). There was a significant difference in weekly body weight gains (p<0.05), which were 573, 991, 850, and 371 g at 2, 4, 6, and 8 weeks old, respectively. Uniformity of 4 crossbreds was 84.9%, 80.5%, and 72.5% at 6, 7, and 8 weeks, respectively, and there was no difference among crossbreds. Body weight gain of BB crossbred was highest among crossbreds (p<0.05). Weekly feed intake significantly increased with weeks as 669, 1,839, 2,812, and 3,381 g at 2, 4, 6, and 8 weeks respectively (p<0.05). Feed intakes of AA and BB crossbreds were higher at 2 to 4 weeks old than others and that of BB crossbred was highest at 4 to 6 weeks old (p<0.05). Weekly feed conversion ratios were 1.17, 1.86, 3.32, and 9.37 at 0 to 2, 2 to 4, 4 to 6, and 6 to 8 weeks old, respectively, and it increased with age (p<0.05). There was no significant difference in feed conversion ratio among crossbreds. Carcass yields of 4 crossbreds were 73.6%, 71.6%, 73.5%, and 71.7%, respectively, so there was no significant difference among crossbreds. There was no

  2. High yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ramos-Martinez, E M; Fimognari, L; Sakuragi, Y

    2017-02-16

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability, and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. In order to increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n, wherein n=10 or 20]. The yields of the (SP)n-fused Venus were higher than Venus without the glycomodule by up to 12 folds, with the maximum yield of 15 mg L(-1) . Moreover, the presence of the glycomodules confererred an enhanced proteolytic protein stability. The Venus-(SP)n proteins were shown to be glycosylated, and a treatment of the cells with Brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. This article is protected by copyright. All rights reserved.

  3. Temperature-dependent yield criterion for high strength steel sheets under warm-forming conditions

    Directory of Open Access Journals (Sweden)

    Cai Zhengyang

    2015-01-01

    Full Text Available In this paper, uniaxial and biaxial tensile tests with cruciform specimens were conducted to investigate the deformation behaviour of dual phase steel sheet with a tensile strength of 590 MPa (DP590 under evaluated warm-forming temperatures (20–190 ∘C. Detailed analyses were then carried out to obtain the corresponding experimental yield loci. For the purpose of describing the temperature-dependent yield behaviour of DP590 appropriately, the Yld2000–2d yield function with temperature-dependent exponent was proposed. The identification procedures of the introduced parameters were then proposed based on Levenberg-Marquardt optimization algorithm. Afterwards, the proposed model was implemented into ABAQUS as user subroutine VUMAT with NICE (Next Increment Corrects Error explicit integration scheme. The numerical simulations of biaxial tensile tests were then conducted to confirm the validity of the proposed model. It could be concluded that the flexibility and accuracy of the proposed model guarantee the applicability in warm-forming applications.

  4. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor.

  5. A new copper containing MALDI matrix that yields high abundances of [peptide + Cu]+ ions.

    Science.gov (United States)

    Wu, Zhaoxiang; Fernandez-Lima, Francisco A; Perez, Lisa M; Russell, David H

    2009-07-01

    The dinuclear copper complex (alpha-cyano-4-hydroxycinnamic acid (CHCA) copper salt (CHCA)(4)Cu(2)), synthesized by reacting CHCA with copper oxide (CuO), yields increased abundances of [M + xCu - (x-1)H](+) (x = 1-6) ions when used as a matrix for matrix-assisted laser desorption ionization (355 nm Nd:YAG laser). The yield of [M + xCu - (x-1)H](+) (x = 1 to approximately 6) ion is much greater than that obtained by mixing peptides with copper salts or directly depositing peptides onto oxidized copper surfaces. The increased ion yields for [M + xCu - (x-1)H](+) facilitate studies of biologically important copper binding peptides. For example, using this matrix we have investigated site-specific copper binding of several peptides using fragmentation chemistry of [M + Cu](+) and [M + 2Cu - H](+) ions. The fragmentation studies reveal interesting insight on Cu binding preferences for basic amino acids. Most notable is the fact that the binding of a single Cu(+) ion and two Cu(+) ions are quite different, and these differences are explained in terms of intramolecular interactions of the peptide-Cu ionic complex.

  6. Simulating evapotranspiration (ET) and corn yield response to irrigation management in the Texas High Plains using DSSAT

    Science.gov (United States)

    Grain corn (Zea mays L) continues to be a major irrigated crop in the northern Texas High Plains. Improvements in irrigation system efficiency, irrigation management, and plant genetics have increased average yields while decreasing seasonal water use in the last 40 years. However, declining water l...

  7. Yields in high density, short rotation intensive culture (SRIC)—plantations of Eucalyptus and Other Hardwood Species

    Science.gov (United States)

    R.M. Sachs; C.B. Low

    1983-01-01

    Initial high density (17,200 trees ha-1, 6961 trees a-1) plantations of Eucalyptus grandis yielded up to 22 oven dry tons (ODT) ha-l yr-I (10 ta-1 yr-1) on an approximate 6 month rotation. Border effects could not be eliminated from the small sized plots used...

  8. 'Caro-Tex 312’ – An F1 Hybrid, High Yielding, Multiple Disease Resistant, Orange Habanero Pepper Cultivar

    Science.gov (United States)

    Texas A&M University and the USDA-ARS U.S. Vegetable Laboratory in Charleston, SC, have developed a new, F1 hybrid Habanero pepper cultivar. ‘Caro-Tex 312’ produces a large, orange-fruited Habanero pepper with typical shape and high pungency. It also possesses unique yield, early maturity and dise...

  9. Fully automated synthesis module for the high yield one-pot preparation of 6-[F-18]fluoro-L-DOPA

    NARCIS (Netherlands)

    de Vries, EFJ; Luurtsema, G; Brussermann, M; Elsinga, PH; Vaalburg, W

    1999-01-01

    A fully automated one-pot synthesis of 6-[F-18]fluoro-L-DOPA, an important radiopharmaceutical for studies on the presynaptic dopamine metabolism with positron emission tomography,is described. 6-[F-18]Fluoro-L-DOPA was prepared in high radiochemical yield (33 +/- 4%, c.f.d.) and radiochemical

  10. Stable and high-yielding intrinsic 59Fe-radiolabeling of the intravenous iron preparations Monofer and Cosmofer

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Severin, Gregory; Andreasen, Hans B.;

    2016-01-01

    of the supplements in the presence of [Fe-59]FeCl3 for 24h at 95 degrees C for Monofer, and 85 degrees C for Cosmofer, resulting in radiochemical yields greater than 94%. High performance size exclusion chromatography, UV-VIS spectroscopy, and dynamic light scattering were used to show that the supplements remained...

  11. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    Science.gov (United States)

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  12. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  13. High-temperature isothermal chemical cycling for solar-driven fuel production.

    Science.gov (United States)

    Hao, Yong; Yang, Chih-Kai; Haile, Sossina M

    2013-10-28

    The possibility of producing chemical fuel (hydrogen) from the solar-thermal energy input using an isothermal cycling strategy is explored. The canonical thermochemical reactive oxide, ceria, is reduced under high temperature and inert sweep gas, and in the second step oxidized by H2O at the same temperature. The process takes advantage of the oxygen chemical potential difference between the inert sweep gas and high-temperature steam, the latter becoming more oxidizing with increasing temperature as a result of thermolysis. The isothermal operation relieves the need to achieve high solid-state heat recovery for high system efficiency, as is required in a conventional two-temperature process. Thermodynamic analysis underscores the importance of gas-phase heat recovery in the isothermal approach and suggests that attractive efficiencies may be practically achievable on the system level. However, with ceria as the reactive oxide, the isothermal approach is not viable at temperatures much below 1400 °C irrespective of heat recovery. Experimental investigations show that an isothermal cycle performed at 1500 °C can yield fuel at a rate of ~9.2 ml g(-1) h(-1), while providing exceptional system simplification relative to two-temperature cycling.

  14. Efficient and high yield one-pot synthesis of cyclometalated platinum(II) β-diketonates at ambient temperature.

    Science.gov (United States)

    Hudson, Zachary M; Blight, Barry A; Wang, Suning

    2012-04-06

    Cyclometalated Pt(II) β-diketonates are widely used as efficient luminescent materials but are typically prepared at high temperatures in low yields using excess reagents. A one-pot synthesis of these complexes is described employing stoichiometric reagents and short reaction times at ambient temperature, giving yields of up to 94%. The method is applicable to a broad range of substrates including N^C, P^C, and C^C chelate Pt(II) complexes and different β-diketonate ligands.

  15. Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses.

    Science.gov (United States)

    Ren, Wurong; Perumal, Jayakumar; Wang, Jun; Wang, Hao; Sharma, Siddharth; Kim, Dong-Pyo

    2014-02-21

    Two types of whole ceramic-like microreactors were fabricated from inorganic polymers, polysilsesquioxane (POSS) and polyvinylsilazane (PVSZ), that were embedded with either perfluoroalkoxy (PFA) tube or polystyrene (PS) film templates, and subsequently the templates were removed by physical removal (PFA tube) or thermal decomposition (PS). A POSS derived ceramic-like microreactor with a 10 cm long serpentine channel was obtained by an additional "selective blocking of microchannel" step and subsequent annealing at 300 °C for 1 h, while a PVSZ derived ceramic-like microreactor with a 14 cm long channel was yielded by a co-firing process of the PVSZ-PS composite at 500 °C for 2 h that led to complete decomposition of the film template leaving a microchannel behind. The obtained whole ceramic-like microfluidic devices revealed excellent chemical and thermal stabilities in various solvents, and they were able to demonstrate unique chemical performance at high temperature or/and high pressure conditions such as Michaelis-Arbuzov rearrangement at 150-170 °C, Wolff-Kishner reduction at 200 °C, synthesis of super-paramagnetic Fe3O4 nanoparticles at 320 °C and isomerisation of allyloxybenzene to 2-allylphenol (250 °C and 400 psi). These economic ceramic-like microreactors fabricated by a facile non-lithographic method displayed excellent utility under challenging conditions that is superior to any plastic microreactors and comparable to glass and metal microreactors with high cost.

  16. Productivity, Profitability and Resource Use Efficiency: A Comparative Analysis between Conventional and High Yielding Rice in Rajbari District, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Yahia Bapari

    2016-10-01

    Full Text Available The study was analyzed the determinants, costs and benefits and resources allocation of both conventional and high yielding rice cultivation over the Rajbari district of Bangladesh. Data were accumulated from 300 regular rice growers of conventional and high yielding varieties and random sampling technique was applied for selecting the respondents from the study area from which information was collected through pre-tested questionnaire. Cobb – Douglas production function and gross margin were mainly used to determine the productivities and profits of both rice and the marginal value of the product was highly recommended to derive the optimal use of the resources. Results obtained by applying ordinary least square method showed that the most important factors of production in the study area were irrigation, labor, fertilizer and insecticide costs whose elasticities were 0.904, 0.048, 0.045 and 0.044 respectively and insignificant factors were seed and ploughing costs whose elasticities were – 0.009 and 0.030 respectively for high yielding rice. On the other hand, irrigation, insecticide, seed and ploughing costs of elasticities 0.880, 0.589, 0.116 and – 0.127 respectively were the important factors and minor role playing factors were labor and fertilizer costs whose elasticities were 0.098 and 0.077 respectively for conventional yielding rice. The core message from productivity analysis was that the irrigation was key variable which played a positive and vital role in producing rice of both varieties. All variables (resources were economically misallocated in the production activities of both varieties along the study area but high yielding rice was more profitable than conventional one. Results also showed that the farmers of the study area produced rice of both varieties in the inefficient range of production. Continuous supply of electricity, flexible credit and improving the existing resources were the prime policy recommendations of

  17. Tuning of ZIF-Derived Carbon with High Activity, Nitrogen Functionality, and Yield - A Case for Superior CO2 Capture.

    Science.gov (United States)

    Gadipelli, Srinivas; Guo, Zheng Xiao

    2015-06-22

    A highly effective and facile synthesis route is developed to create and tailor metal-decorated and nitrogen-functionalized active microporous carbon materials from ZIF-8. Clear metal- and pyrrolic-N-induced enhancements of the cyclic CO2 uptake capacities and binding energies are achieved, particularly at a much lower carbonization temperature of 700 °C than those often reported (1000 °C). The high-temperature carbonization can enhance the porosity but only at the expense of considerable losses of sample yield and metal and N functional sites. The findings are comparatively discussed with carbons derived from metal-organic frameworks (MOFs) reported previously. Furthermore, the porosity of the MOF-derived carbon is critically dependent on the structure of the precursor MOF and the crystal growth. The current strategy offers a new and effective route for the creation and tuning of highly active and functionalized carbon structures in high yields and with low energy consumption.

  18. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  19. Effects of Water Management, Arsenic and Phosphorus Levels on Rice Yield in High-Arsenic Soil-Water System

    Institute of Scientific and Technical Information of China (English)

    A. S. M. H. M. TALUKDER; C. A. MEISNER; M. A. R. SARKAR; M. S. ISLAM; K. D. SAYRE

    2014-01-01

    Aerobic rice (Oryza sativa L.) cultivation is considered an alternative production system to combat increased water scarcity and arsenic (As) contamination in the food chain. Pot experiments were conducted at the Wheat Research Centre, Dinajpur, Bangladesh to examine the role of water management (WM), As and phosphorus (P) on yield and yield attributes of boro (variety BRRI dhan 29) and aman (variety BRRI dhan 32) rice. A total of 18 treatment combinations of the three levels of As (0, 20 and 40 mg/kg) and P (0, 12.5 and 25.0 mg/kg) and two WM strategies (aerobic and anaerobic) were investigated. Yield attributes were significantly affected by increasing As levels. Grain yields of BRRI dhan 29 and BRRI dhan 32 were reduced from 63.0 to 7.7 and 35.0 to 16.5 g/pot with increasing As application, respectively, indicating a greater sensitivity of BRRI dhan 29 than BRRI dhan 32. Moreover, As toxicity was reduced with aerobic compared to anaerobic WM for all P levels. During early growth stages, phytotoxic symptoms appeared on BRRI dhan 29 and BRRI dhan 32 rice stems with increasing As levels without applying P under anaerobic WM. Under anaerobic and As-contaminated conditions, BRRI dhan 29 was highly susceptible to straighthead, which dramatically reduced grain yields. There were significant relationships between the number of effective tillers per pot and root dry weight, grain yield, and number of fertile and unfertile grains per pot for both BRRI dhan 29 and BRRI dhan 32 (P<0.001). Our findings indicate that rice could be grown aerobically in As-contaminated areas with a reduced risk of As toxicity and yield loss.

  20. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  1. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors

    OpenAIRE

    Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri

    2006-01-01

    Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses tha...

  2. Cellulose acetate-directed growth of bamboo-raft-like single-crystalline selenium superstructures: high-yield synthesis, characterization, and formation mechanism.

    Science.gov (United States)

    Song, Ji-Ming; Zhan, Yong-Jie; Xu, An-Wu; Yu, Shu-Hong

    2007-06-19

    High-yield synthesis of bamboo-raft-like single-crystalline selenium superstructures has been realized for the first time via a facile solvothermal approach by reducing SeO2 with ethylene alcohol in the presence of cellulose acetate. The formation of a raftlike superstructure with various forms is strongly dependent on the temperature, amount of cellulose acetate, reaction time, and even preheating treatment. The suitable amount of cellulose acetate is essential for the formation of elegant and uniform raft Se. The morphology, microstructure, optical properties, and chemical compositions of bamboo-raft-like selenium were characterized using various techniques (X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution (HR) TEM, X-ray photoelectron spectroscopy, UV-vis spectroscopy, FTIR spectroscopy, and Raman spectroscopy). A possible growth mechanism has been proposed. Such special superstructures could provide a useful precursor for potential applications.

  3. Vineyard Yield Estimation Based on the Analysis of High Resolution Images Obtained with Artificial Illumination at Night

    Directory of Open Access Journals (Sweden)

    Davinia Font

    2015-04-01

    Full Text Available This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV. The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1 the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2 the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively.

  4. Tensile Strength Assessment of Injection-Molded High Yield Sugarcane Bagasse-Reinforced Polypropylene

    OpenAIRE

    2016-01-01

    Sugarcane bagasse was treated to obtain sawdust, in addition to mechanical, thermomechanical, and chemical-thermomechanical pulps. The obtained fibers were used to obtain reinforced polypropylene composites prepared by injection molding. Coupling agent contents ranging from 2 to 10% w/w were added to the composite to obtain the highest tensile strength. All the composites included 30% w/w of reinforcing fibers. The tensile strength of the different sugarcane bagasse fiber composites were test...

  5. Extraction of essential oil from Cupressus sempervirens: comparison of global yields, chemical composition and antioxidant activity obtained by hydrodistillation and supercritical extraction.

    Science.gov (United States)

    Nejia, Herzi; Séverine, Camy; Jalloul, Bouajila; Mehrez, Romdhane; Stéphane, Condoret Jean

    2013-01-01

    In this study, supercritical fluid extraction (SFE) with CO2 and hydrodistillation (HD) were compared as methods to isolate the essential oil from Cupressus sempervirens. The odour of the oil obtained by SFE at 90 bar and 40°C was very close to the odour of the leaves of C. sempervirens before the extraction. Compounds extracted by both SFE and HD were identified by GC-FID and GC-MS. Moreover, the difference in the chemical composition obtained by SFE and HD was quite noticeable qualitatively and quantitatively. Phenolic composition and antioxidant activity were also determined. Compared to HD, the SFE method presents some advantages: the extraction was completed after 1 h in SFE, although 4 h is necessary for HD, and the yield was improved by 34%. Finally, it has also been shown that SFE is very selective towards some specific components such as manoyl oxide, trans-totarol and α-acoradiene.

  6. Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

    Directory of Open Access Journals (Sweden)

    Ting-ting Xie

    2016-01-01

    Full Text Available Cotton produces more biomass and economic yield when cluster planting pattern (three plants per hole than in a traditional planting pattern (one plant per hole, even at similar plant densities, indicating that individual plant growth is promoted by cluster planting. The causal factors for this improved growth induced by cluster planting pattern, the light interception, canopy microclimate and photosynthetic rate of cotton were investigated in an arid region of China. The results indicated that the leaf area index and light interception were higher in cluster planting, and significantly different from those in traditional planting during the middle and late growth stages. Cotton canopy humidity at different growth stages was increased but canopy temperatures were reduced by cluster planting. In the later growth stage of cluster planting, the leaf chlorophyll content was higher and the leaf net photosynthetic rate and canopy photosynthetic rate were significantly increased in comparing with traditional planting pattern. We concluded that differences in canopy light interception and photosynthetic rate were the primary factors responsible for increased biomass production and economic yield in cluster planting compared with the traditional planting of cotton.

  7. PopII 1/2 stars: very high N14 and low O16 yields

    CERN Document Server

    Hirschi, R

    2006-01-01

    Nine 20 Mo models were computed with metallicities ranging from solar, through $Z=10^{-5}$ ([Fe/H]=~-3.1) down to $Z=10^{-8}$ ([Fe/H]=~-6.1) and with initial rotational velocities between 0 and 600 km/s to study the impact of initial metallicity and rotational velocity. The very large amounts of N14 observed (~0.03 Mo) are only produced at $Z=10^{-8}$ (PopII 1/2). The strong dependence of the N14 yields on rotation and other parameters like the initial mass and metallicity may explain the large scatter in the observations of N14 abundance. The metallicity trends are best reproduced by the models with Omega_ini/Omega_c=~0.75, which is slightly above the mean observed value for OB solar metallicity stars. Indeed, in the model with Vini=600 km/s at $Z=10^{-8}$, the O16 yield is reduced due to strong mixing. This allows in particular to reproduce the upturn for C/O and a slightly decreasing [C/Fe], which are observed below [Fe/H]=~-3.

  8. Conducting polymer nanofibers for high sensitivity detection of chemical analytes.

    Science.gov (United States)

    Kumar, Abhishek; Leshchiner, Ignaty; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant

    2008-03-01

    Possessing large surface area materials is vital for high sensitivity detection of analyte. We report a novel, inexpensive and simple technique to make high surface area sensing interfaces using electrospinning. Conducting polymers (CP) nanotubes were made by electrospinning a solution of a catalyst (ferric tosylate) along with poly (lactic acid), which is an environment friendly biodegradable polymer. Further vapor deposition polymerization of the monomer ethylenedioxy thiophene (EDOT) on the nanofiber surface yielded poly (EDOT) covered fibers. X-ray photo electron spectroscopy (XPS) study reveals the presence of PEDOT predominantly on the surface of nanofibers. Conducting nanotubes had been received by dissolving the polymer in the fiber core. By a similar technique we had covalently incorporated fluorescent dyes on the nanofiber surface. The materials obtained show promise as efficient sensing elements. UV-Vis characterization confirms the formation of PEDOT nanotubes and incorporation of chromophores on the fiber surface. The morphological characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  9. Acid-yield measurements of the gas-phase ozonolysis of ethene as a function of humidity using Chemical Ionisation Mass Spectrometry (CIMS

    Directory of Open Access Journals (Sweden)

    K. E. Leather

    2012-01-01

    Full Text Available Gas-phase ethene ozonolysis experiments were conducted at room temperature to determine formic acid yields as a function of relative humidity (RH using the integrated EXTreme RAnge chamber-Chemical Ionisation Mass Spectrometry technique, employing a CH3I ionisation scheme. RHs studied were <1, 11, 21, 27, 30 % and formic acid yields of (0.07±0.01 and (0.41±0.07 were determined at <1 % RH and 30 % RH respectively, showing a strong water dependence. It has been possible to estimate the ratio of the rate coefficient for the reaction of the Criegee biradical, CH2OO with water compared with decomposition. This analysis suggests that the rate of reaction with water ranges between 1×10−12–1×10−15 cm3 molecule−1 s−1 and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Global model integrations suggest that this reaction between CH2OO and water may dominate the production of HC(OOH in the atmosphere.

  10. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  11. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars.

    Directory of Open Access Journals (Sweden)

    Kacper Piotr Kaminski

    Full Text Available BACKGROUND: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP independent mechanism under special conditions. Nonetheless, glucose-6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. PRINCIPAL FINDING: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM and normal levels of transcripts for other enzymes involved in starch metabolism in comparison with medium and low yielding cultivars as determined by DeepSAGE transcriptome profiling. The decrease in PGM activity in Kuras was confirmed by measuring the enzyme activity from potato tuber extracts. Contrary to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. SIGNIFICANCE: This could open entirely new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global population this presents an exciting new possibility.

  12. Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates.

    Science.gov (United States)

    Gür, Fatih N; Schwarz, Friedrich W; Ye, Jingjing; Diez, Stefan; Schmidt, Thorsten L

    2016-05-24

    Plasmonic structures allow the manipulation of light with materials that are smaller than the optical wavelength. Such structures can consist of plasmonically active metal nanoparticles and can be fabricated through scalable bottom-up self-assembly on DNA origami templates. To produce functional devices, the precise and high-yield arrangement of each of the nanoparticles on a structure is of vital importance as the absence of a single particle can destroy the functionality of the entire device. Nevertheless, the parameters influencing the yield of the multistep assembly process are still poorly understood. To overcome this deficiency, we employed a test system consisting of a tubular six-helix bundle DNA origami with binding sites for eight oligonucleotide-functionalized gold nanoparticles. We systematically studied the assembly yield as a function of a wide range of parameters such as ionic strength, stoichiometric ratio, oligonucleotide linker chemistry, and assembly kinetics by an automated high-throughput analysis of electron micrographs of the formed heterocomplexes. Our optimized protocols enable particle placement yields up to 98.7% and promise the reliable production of sophisticated DNA-based multiparticle plasmonic devices for applications in photonics, optoelectronics, and nanomedicine.

  13. High yields of fatty acid and neutral lipid production from cassava bagasse hydrolysate (CBH) by heterotrophic Chlorella protothecoides.

    Science.gov (United States)

    Chen, Junhui; Liu, Xiaoguang; Wei, Dong; Chen, Gu

    2015-09-01

    The fermentation process for high yields of fatty acid and neutral lipid production from cassava bagasse hydrolysate (CBH) was developed by heterotrophic Chlorella protothecoides. An efficient single-step enzymatic hydrolysis of cassava bagasse (CB) by cellulase was firstly developed to produce >30 g/L of reducing sugars. The concentrated CBH was subsequently applied in a batch culture, producing 7.9 g/L of dry biomass with yield of 0.44 g/g reducing sugar and 34.3 wt% of fatty acids and 48.6 wt% of neutral lipids. Furthermore, fed-batch fermentation using CBH achieved higher yields of fatty acids (41.0 wt% and a titer of 5.83 g/L) and neutral lipids (58.4 wt% and yield of 0.22 g/g reducing sugar). Additionally, the fatty acid profile analysis showed that the intercellular lipid was suitable to prepare high-quality biodiesel. This study demonstrated the feasibility of using CBH as low-cost feedstock to produce crude algal oil for sustainable biodiesel production.

  14. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    Science.gov (United States)

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microwave-Assisted Chemical Preparation of ZnO Nanoparticles and Its Application on the Improving Grain Yield, Quantity and Quality of Safflower (Carthamus Tinctorius L.

    Directory of Open Access Journals (Sweden)

    S. Khaghani

    2016-01-01

    Full Text Available ZnO nanoparticles were synthesized by a microwave-assisted chemical method. ZnO nanostructures were synthesized via a fast reaction between zinc acetate and ammonia at presence citric acid and other effective agents in chemical procedure. Nanostructures were characterized by X-ray diffraction , scanning electron microscopy. Seed yield and seed quality of safflower grown under drought stress. The test includes control treatments priming  with distilled water, priming with zinc sulphate in the amount of 300 mg per ml, priming  with sulfate of zinc to 600 mg per liter, priming with Nano priming on the amount of 300 mg per liter, with Nano on priming  rate of 600 mg per liter, priming with zinc sulphate in the amount of 300 mg/l zinc sulphate along with spraying the amount of 300 mg, zinc sulfate with priming  to the amount of 600 mg/l zinc sulphate along with spraying the amount of 600 mg, priming  with Nano over the amount of 300 mg per liter plus the foliar application of nano on the amount of 300 mg, priming  with Nano over the amount of 600 mg per liter plus the foliar application to nano on 600 mg, zinc sulfate to foliar application with the amount of 300 mg per liter, foliar application with Nano over the amount of 300 Mg/l, respectively.

  16. Growth and yield of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) near a high voltage transmission line.

    Science.gov (United States)

    Soja, G; Kunsch, B; Gerzabek, M; Reichenauer, T; Soja, A-M; Rippar, G; Bolhàr-Nordenkampf, H R

    2003-02-01

    The objective of this study was to determine the effects of an electromagnetic field from a high voltage transmission line on the yield of agricultural crops cultivated underneath and near the transmission line. For 5 years, experiments with winter wheat and corn were carried out near the 380 kV transmission line Dürnrohr (Austria)-Slavetice (Czech Republic). Different field strengths were tested by planting the crops at different distances from the transmission line. The plants were grown in experimental plots (1.77 m2), aligned to equal electric field strengths, and were cultivated according to standard agricultural practice. The soil for all plots was homogenized layer-specifically to a depth of 0.5 m to guarantee uniform soil conditions in the plant root environment. The soil was sampled annually for determinations of carbon content and the behavior of microbial biomass. During development of the vegetation, samples were collected at regular intervals for growth rate analyses. At physiological maturity, the plots (n = 8) were harvested for grain and straw yield determinations. The average electric and magnetic field strengths at four distances from the transmission line (nominal distances: 40, 14, 8, and 2 m) were between 0.2 and 4.0 kV/m and between 0.4 and 4.5 micro T, respectively. No effect of the field exposures on soil microbial biomass could be detected. The wheat grain yields were 7% higher (average of 5 years) in the plots with the lowest field exposure than in the plots nearer to the transmission line (P plants were more pronounced in years with drought episodes during grain filling than in humid years. No significant yield differences were found for corn yields. The extent of the yield variations attributed to the distance from the transmission line was small compared to the observed annual variations in climatic or soil specific site characteristics. Copyright 2003 Wiley-Liss, Inc.

  17. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes.

    Science.gov (United States)

    Kim, Se Won; Hong, Chae-Hwan; Jeon, Sung-Wan; Shin, Hyun-Jae

    2015-11-01

    Gracilaria verrucosa, the red alga, is a suitable feedstock for biosugar production. This study analyzes biosugar production by the hydrolysis of G. verrucosa conducted under various conditions (i.e., various acid concentrations, substrate concentrations, reaction times, and enzyme dosages). The acid hydrolysates of G. verrucosa yielded a total of 7.47g/L (37.4%) and 10.63g/L (21.26%) of reducing sugars under optimal small (30mL) and large laboratory-scale (1L) hydrolysis processes, respectively. Reducing sugar obtained from acid and enzymatic hydrolysates were 10% higher, with minimum by-products, than those reported in other studies. The mass balance for the small laboratory-scale process showed that the acid and enzymatic hydrolysates had a carbohydrate conversion of 57.2%. The mass balance approach to the entire hydrolysis process of red seaweed for biosugar production can be applied to other saccharification processes.

  18. High-yield production and transfer of graphene flakes obtained by anodic bonding.

    Science.gov (United States)

    Moldt, Thomas; Eckmann, Axel; Klar, Philipp; Morozov, Sergey V; Zhukov, Alexander A; Novoselov, Kostya S; Casiraghi, Cinzia

    2011-10-25

    We report large-yield production of graphene flakes on glass by anodic bonding. Under optimum conditions, we counted several tens of flakes with lateral size around 20-30 μm and a few tens of flakes with larger size. About 60-70% of the flakes have a negligible D peak. We show that it is possible to easily transfer the flakes by the wedging technique. The transfer on silicon does not damage graphene and lowers the doping. The charge mobility of the transferred flakes on silicon is on the order of 6000 cm(2)/V s (at a carrier concentration of 10(12) cm(-2)), which is typical for devices prepared on this substrate with exfoliated graphene.

  19. Activated carbon fibers with a high heteroatom content by chemical activation of PBO with phosphoric acid.

    Science.gov (United States)

    Vázquez-Santos, M B; Suárez-García, F; Martínez-Alonso, A; Tascón, J M D

    2012-04-03

    The preparation of activated carbon fibers (ACFs) by phosphoric acid activation of poly(p-phenylene benzobisoxazole) (PBO) fibers was studied, with particular attention to the effects of impregnation ratio and carbonization temperature on porous texture. Phosphoric acid has a strong effect on PBO degradation, lowering the temperature range at which the decomposition takes place and changing the number of mass loss steps. Chemical analysis results indicated that activation with phosphoric acid increases the concentration of oxygenated surface groups; the resulting materials also exhibiting high nitrogen content. ACFs are obtained with extremely high yields; they have well-developed porosity restricted to the micropore and narrow mesopore range and with a significant concentration of phosphorus incorporated homogeneously in the form of functional groups. An increase in the impregnation ratio leads to increases in both pore volume and pore size, maximum values of surface area (1250 m(2)/g) and total pore volume (0.67 cm(3)/g) being attained at the highest impregnation ratio (210 wt % H(3)PO(4)) and lowest activation temperature (650 °C) used; the corresponding yield was as large as 83 wt %. The obtained surface areas and pore volumes were higher than those achieved in previous works by physical activation with CO(2) of PBO chars.

  20. 窖泥化学元素含量与窖池产酒的灰色关联度分析%Grey Relational Analysis on the Relation between Content of Chemical Elements in Pit Mud and Liquor Yield

    Institute of Scientific and Technical Information of China (English)

    黄训端; 张部昌; 陈兴杰; 彭兵; 谢国排; 张宝年; 杨牢记; 程伟; 李彬; 周玉霞

    2015-01-01

    Applying grey relational analysis method ,we had studied the relationship between content of main chemical elements in put mud and liquor yield .The results showed that the average value in pit mud of total C ,total H ,total N ,ammonia N ,total P , total S ,Ca、Fe、Mg、K、Na ,respectively is 6 .09% and 1 .28% and 1 .22% ,1 .64 per thousand ,11 .37% ,1 .49% and 1 .98% and 3 .25% ,1 .04% and 2 .73% ,2 .67% .The coefficients of variation of these chemical components are large among the pits .The average rate of liquor yield is 43 .89% in pit ,the rate of high quality liquor is 24 .11% ,and the pit mud is help to improve liquor yield ,especially to the high quality product .The chemical elements in pit mud are high relation to liquor yield ,especially of mineral elements .The order of grey relational degree to rate of liquor yield:Ca>Fe> total P> total S>ammonia N>Mg> total C> total H>K>Na> total N ,and to rate of high quality liquor:Ca>Mg>Na>K>Fe>total P> total S>ammonia N>total C>total N>total H .This study provides a reference for the maintenance of pit mud and improve liquor yield .%在对窖泥主要化学元素含量、窖池产酒效果测定的基础上,采用灰色关联度法对窖池产酒与窖泥成分的关联性进行量化分析。结果表明,窖泥中总C、总 H、总 N、氨 N、总 P、总 S、Ca、Fe、M g、K、Na的平均值分别是:6.09%、1.28%、1.22%、1.64‰、11.37‰、1.49‰、1.98%、3.25%、1.04%、2.73%、2.67%,各窖池间化学元素含量的变异系数较大。窖池的出酒率43.89%,优质品率平均值24.11%,窖泥对产酒效果,特别是优质品率贡献度高。窖泥化学元素变化与产酒关联度高,其中矿质元素对产酒效果的影响高于有机元素。与出酒率灰色关联度排序结果:Ca>Fe>总P>总S>氨N>Mg>总C>总 H>K> Na>总N。与优质品率排序:Ca>M g>Na>K>Fe>总P>总S>氨N>总C>总N>总H。窖泥成分

  1. 贵州高产油菜的群体结构特征及高产栽培技术%The Group Structure Characteristics and High-yield Culture Technique of High-yield Rape in Guizhou

    Institute of Scientific and Technical Information of China (English)

    冯文豪; 冯泽蔚; 苏跃

    2012-01-01

    In order to promote the integration and application of high yield cultivation technology of rape,the rape yield and component features in high-yield fields were analyzed in 2010-2011. The results showed that; 1) the group structure characteristics with the yield of over 200 kg/667m2 were as follows; average cultivation density 6 099. 2 plants/667m2 , mean pod number 3. 509 106 per 667 m2, grains per pod 18. 5, 1 000-seed weight 3. 7 g, plant height 191. 4 cm, branch number 10. 9, main inflorescence length 72. 8 cm, average yield 216. 2 kg/667m2. 2) The high-yield cultivation techniques included sowing in September 5-10, cultivating strong seedlings, transplanting on moderate-fertility soil in October 10 ?20, fine preparation of soil, soil testing and formulated fertilization, in time irrigation, disease, pest and grass control.%为了促进贵州油菜高产栽培技术的集成和运用,对2010-2011年参加贵州省油菜高产创建活动的高产田块油菜产量及其群体构成特征进行分析.结果表明:1)产量为200 kg/667m2以上油菜群体的结构特征为平均栽培密度达6 099.2株/667m2,平均角果数3.509×106个/667m2,每果粒数18.5粒,千粒重3.7g,株高191.4 cm,分枝数10.9个,主花序长72.8 cm,平均产量达216.2 kg/667m2.2)高产田块的栽培措施为9月5-10日播种,培育壮苗,10月10-20日移栽,土壤肥力中等,精细整地,测土配方施肥,及时灌排水和防治病虫草害等.

  2. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    Science.gov (United States)

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  3. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Science.gov (United States)

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ˜10 kJ is segregated into four modules of ˜2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ˜2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ˜17 kV/550 kA discharge. At ˜7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ˜4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ˜2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  4. Study on the Practice and High-yielding Mechanism of Super-sparse-cultivation Associated with Maximum-tiller Seedling of Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    MA Jun; TAO Shi-shun

    2002-01-01

    In this paper, a new cultivation practice-super-sparse-cultivation associated with maximumtiller seedling (SSCMTS) of hybrid rice was proposed and its high-yielding mechanism was studied. The results showed that the practice of SSCMTS in hybrid rice could not only increase grain yield but also save seeds and labor. It was a new high-yielding way for the late transplanting seedlings and heavy panicle type hybrid rice cultivars to further utilize the high-yielding potential of hybrid rice cultivars. The increasing number of spikelets and ideal grain -filling were the direct factors for the high yield of SSCMTS in hybrid rice, and those high-yielding factors relied on high quality seedlings, sturdy individuals, high quality population and vigorous later growth.

  5. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  6. Transcriptome Analysis Suggests That Starch Synthesis May Proceed via Multiple Metabolic Routes in High Yielding Potato Cultivars

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Høgh Petersen, Annabeth; Sønderkær, Mads

    2012-01-01

    Background: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP...... independent mechanism under special conditions. Nonetheless, glucose 6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. Principal Finding: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM) and normal...... to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P) in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. Significance: This could open entirely...

  7. Assessment on Carbon Sequestration Benefit of Fast-growing and High-yielding Forest Base Construction Program

    Institute of Scientific and Technical Information of China (English)

    Ru Taoqin; Li Jiyue; Zhuo Weihua; Li Xiangdong; Zhang Wenjie

    2004-01-01

    Fast-growing and High-yielding Forests Base Construction Program is the only industrialization program of six key forestry programs. The main construction content is to plant 13.33 million hm fast-growing and high-yielding plantation in 18 provinces in China. According to the program planning and growth of different tree species, the biomass of this program is evaluated and the C sequestration is assessed in this paper. In the program period, the biomass of the program will reach 3.703 6×109 t, and the C storage will get 1.851 8×109 t. The program will have a great effect on raising the C pool function of forest vegetation.

  8. High dilutions of Sulphur and relationship with the onion thrips, downy mildew incidence and yield of onion in organic system

    Directory of Open Access Journals (Sweden)

    Paulo Antonio de Souza Gonçalves

    2015-12-01

    Full Text Available The objective of this research was to evaluate high dilutions of Sulphur on the incidence of onion thrips, downy mildew, chlorophyll content and yield of onion under organic production system. The study was carried out at Ituporanga Experiment Station of Epagri, Santa Catarina State, Brazil, from August to December of 2011, 2012 and 2013. Treatments were foliar sprays of 0.5% Sulphur at high dilutions 6, 12 and 30 CH (CH, hahnemannian centesimal scale and untreated plot as control check. The experimental design was a randomized block design with four replications. The incidence and damage of onion thrips, reduction of the severity of downy mildew, chlorophyll index, total and commercial yield, bulb weight, postharvest conservation were not influenced by the treatments.

  9. Studies on Mutation Breeding of High-Yielding Xylanase Strains by Low-Energy Ion Beam Implantation

    Institute of Scientific and Technical Information of China (English)

    LI Shichang; YAO Jianming; YU Zhengling

    2007-01-01

    As a new mutagenetic method,low-energy ion implantation has been used widely in many research areas in recent years.In order to obtain some industrial strains with high xylanase yield,the wild type strain Aspergillus niger A3 was mutated by means of nitrogen ions implantation (10 keV,2.6 × 1014~1.56 × 1015 ions/cm2) and a mutant N212 was isolated subsequently.However,it was found that the initial screening means of the high-yielding xylanase strains such as transparent halos was unfit for first screening.Compared with that of the wild type strain,xylanase production of the mutant N212 was increased from 320 IU/ml to 610 IU/ml,and the optimum fermentation temperature was increased from 28 ℃ to 30 ℃.

  10. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue, E-mail: euy-tokyo@umin.ac.jp [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang, E-mail: liaogy@21cn.com [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  11. 40 CFR 799.5085 - Chemical testing requirements for certain high production volume chemicals.

    Science.gov (United States)

    2010-07-01

    ... (preferred species), rat, or Chinese hamster): 40 CFR 799.9538 OR Mammalian Erythrocyte Micronucleus Test (in... CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Multichemical Test Rules § 799.5085 Chemical testing... paragraph (j) of this section at any time from April 17, 2006 to the end of the test data...

  12. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to liquid fuel, rather than growing biomass. Furthermore, based on the Sun-to-Wheels recovery for different transportation pathways, synergistic and complementary use of electricity, hydrogen and biomass, all derived from solar energy, is presented in an energy

  13. Organocatalytic azomethine imine-olefin click reaction: high-yielding stereoselective synthesis of spiroindane-1,3-dione-pyrazolidinones.

    Science.gov (United States)

    Ramachary, Dhevalapally B; Prabhakar Reddy, T; Suresh Kumar, A

    2016-07-06

    In search of developing new useful "click reactions", herein we report the organocatalytic azomethine imine-olefin [3 + 2]-cycloaddition as a new click reaction for the synthesis of drug-like spiroindane-1,3-dione-pyrazolidinones from indane-1,3-diones, aldehydes and N,N-cyclic azomethine imines through amino acid-catalysis. The scope of this new click reaction is demonstrated using many examples with high reactivity, selectivity and yields.

  14. Synthesis of high surface area nanometer magnesia by solid-state chemical reaction

    Institute of Scientific and Technical Information of China (English)

    GUAN Hongbo; WANG Pei; ZHAO Biying; ZHU Yuexiang; XIE Youchang

    2007-01-01

    Nanometer MgO samples with high surface area,small crystal size and mesoporous texture were synthesized tion process accelerated the sintering of MgO,and MgO with calcining its precursor in flowing dry nitrogen at 520℃ for 4 h.The samples were characterized by X-ray diffraction,N2 adsorption,transmission electron microscopy,thermogravimetry,and differential thermal analysis.The as-prepared MgO was composed of nanocrystals with a size of about 4-5 nm and formed a wormhole-like porous structure.The MgO also had good thermal stability,and its surface areas remained at 357 and 153 m2.g-1 after calcination at 600 and 800℃ for 2 h,respectively.Compared with the MgO sample prepared by the precipitation method,MgO prepared by solid-state chemical reaction has uniform pore size distribution,surface area,and crystal size.The solid-state chemical method has the advantages of low cost,low pollution,and high yield,therefore it appears to be a promising method in the industrial manufacture of nanometer MgO.

  15. A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine

    Directory of Open Access Journals (Sweden)

    Yujiao Yang

    2017-03-01

    Full Text Available A purified inactivated vaccine (PIV using the Zika virus (ZIKV Puerto Rico strain PRVABC59 showed efficacy in monkeys, and is currently in a phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access. Here we report an infectious cDNA clone-launched platform to maximize its yield. A single NS1 protein substitution (K265E was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly. The NS1 mutant virus retained wild-type virulence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, and NS3 S356F. The mutant cDNA clone produced >25-fold more ZIKV than the wild-type parent on Vero cells. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture time, and minimized chance of contamination.

  16. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation.

    Science.gov (United States)

    Shen, Xiao-Fei; Chu, Fei-Fei; Lam, Paul K S; Zeng, Raymond J

    2015-09-15

    In this study the heterotrophic cultivation of Chlorella vulgaris NIES-227 fed with glucose was investigated systematically using six media types; combinations of nitrogen repletion/depletion and phosphorus repletion/limitation/depletion. It was found that a high yield of fatty acids (0.88 of fed glucose-COD) and a high content of fatty acid methyl esters (FAMEs) (89% of dry weight) were obtained under nitrogen starved conditions. To our knowledge it is the first report on such high COD conversion yield and FAME content in microalgae. The dominant fatty acid (>50%) was methyl oleate (C18:1), a desirable component for biodiesel synthesis. FAME content under nitrogen starved conditions was significantly higher than under nitrogen sufficient conditions, while phosphorus had no significant influence, indicating that nitrogen starvation was the real "fatty acids trigger" in heterotrophic cultivation. These findings could simplify the downstream extraction process, such as the extrusion of oil from soybeans, and could reduce operating costs by improving the fatty acid yield from waste COD.

  17. Automated high-throughput assessment of prostate biopsy tissue using infrared spectroscopic chemical imaging

    Science.gov (United States)

    Bassan, Paul; Sachdeva, Ashwin; Shanks, Jonathan H.; Brown, Mick D.; Clarke, Noel W.; Gardner, Peter

    2014-03-01

    Fourier transform infrared (FT-IR) chemical imaging has been demonstrated as a promising technique to complement histopathological assessment of biomedical tissue samples. Current histopathology practice involves preparing thin tissue sections and staining them using hematoxylin and eosin (H&E) after which a histopathologist manually assess the tissue architecture under a visible microscope. Studies have shown that there is disagreement between operators viewing the same tissue suggesting that a complementary technique for verification could improve the robustness of the evaluation, and improve patient care. FT-IR chemical imaging allows the spatial distribution of chemistry to be rapidly imaged at a high (diffraction-limited) spatial resolution where each pixel represents an area of 5.5 × 5.5 μm2 and contains a full infrared spectrum providing a chemical fingerprint which studies have shown contains the diagnostic potential to discriminate between different cell-types, and even the benign or malignant state of prostatic epithelial cells. We report a label-free (i.e. no chemical de-waxing, or staining) method of imaging large pieces of prostate tissue (typically 1 cm × 2 cm) in tens of minutes (at a rate of 0.704 × 0.704 mm2 every 14.5 s) yielding images containing millions of spectra. Due to refractive index matching between sample and surrounding paraffin, minimal signal processing is required to recover spectra with their natural profile as opposed to harsh baseline correction methods, paving the way for future quantitative analysis of biochemical signatures. The quality of the spectral information is demonstrated by building and testing an automated cell-type classifier based upon spectral features.

  18. Experimental Determination of DT Yield in High Current DD Dense Plasma Focii

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, D. R. [National Security Technologies, LLC; Hagen, E. C. [National Security Technologies, LLC; Meehan, B. T. [National Security Technologies, LLC; Springs, R. K. [University of Nevada, Las Vegas; O' Brien, R. J. [University of Nevada, Las Vegas

    2013-06-18

    Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

  19. Influence of Glacier Retreat On The Water Yield From High Mountain Areas, Comparison Alps - Central Asia

    Science.gov (United States)

    Hagg, W.; Braun, L.

    The main objective of the study is the investigation of the link between glacier retreat and discharge in selected catchments in Central Asia and the comparison of these results with conditions in the Alps. For this purpose, the conceptual runoff model HBV-ETH has been applied in three glacierized basins in Kazakhstan, Kyrgyztan and China, which represent regions of different continentality. Operating only with air temperature and precipitation data, the model calculates discharge and other water balance components in a daily timestep. To evaluate the reaction of the simulated hydrograph to climate change, the meteorological model input has been modified, according to the results of regional climate modeling under the assumption of doubling of atmospheric CO2. These runoff scenarios were made for three different stages of deglacierization. The first results show a similar pattern as observed in the Alps in previous studies: under a present-day glacier extent the water yield rises drastically during the melting period, after a reduction of the glacierized area by 50 % the flood peaks are reduced to presently observed values, and after a complete disappearance of the glaciers the calculated runoff indicates a strong reduction of runoff during summer months, which would have a significant effect on the availability of water resources in these dry regions of Asia.

  20. Understanding scaling of ignition metrics for high-yield implosions on the NIF

    Science.gov (United States)

    Springer, Paul; Hurricane, Omar; Hammer, J. H.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Edwards, M. J.; Field, J. E.; Gaffney, J.; Grim, G. P.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Munro, D. H.; Nora, R. C.; Patel, P. K.; Peterson, L.; Spears, B.

    2016-10-01

    The self-heating condition for an imploding hotspot requires understanding the balance between mechanical work, heating via fusion reactions, and the radiative and conduction losses. A 3D cognizant Lawson ignition threshold metric is derived based on net fusion hotspot heating achieved when hotspot rho-r and ion temperature exceed critical values that depend on the temperature-dependent loss mechanisms. Key to understanding and scaling such analysis is an accurate determination of hotspot density and pressure, which are generally inferred using the yield, the thermal temperature, and other experimental data. 3D flow and its effect on neutron spectra can lead to overestimation of the temperature, and underestimation of hotspot rho-r, energy, and ignition margin. In this work, we analyze these effects in NIF data, and propose new methods to avoid them. These simple, analytical methods are tested using the largest 2D ICF simulation dataset ever produced. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  1. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    Science.gov (United States)

    Shi, Hongliang; Du, Mao-Hua

    2015-05-01

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. Here, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs2NaInBr6 , Cs2NaBiCl6 , and Tl2NaBiCl6 . The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs2NaInBr6 as an example to show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. These characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.

  2. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    CERN Document Server

    Lantz, M; Jokinen, A; Kolhinen, V S; Mattera, A; Penttilä, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S; Solders, A

    2013-01-01

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some co...

  3. A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol

    Science.gov (United States)

    Periana, Roy A.; Taube, Douglas J.; Evitt, Eric R.; Loffler, Daniel G.; Wentrcek, Paul R.; Voss, George; Masuda, Toshihiko

    1993-01-01

    A homogeneous system for the selective, catalytic oxidation of methane to methanol via methyl bisulfate is reported. The net reaction catalyzed by mercuric ions, Hg(II), is the oxidation of methane by concentrated sulfuric acid to produce methyl bisulfate, water, and sulfur dioxide. The reaction is efficient. At a methane conversion of 50 percent, 85 percent selectivity to methyl bisulfate (~43 percent yield; the major side product is carbon dioxide) was achieved at a molar productivity of 10-7 mole per cubic centimeter per second and Hg(II) turnover frequency of 10-3 per second. Separate hydrolysis of methyl bisulfate and reoxidation of the sulfur dioxide with air provides a potentially practical scheme for the oxidation of methane to methanol with molecular oxygen. The primary steps of the Hg(II)-catalyzed reaction were individually examined and the essential elements of the mechanism were identified. The Hg(II) ion reacts with methane by an electrophilic displacement mechanism to produce an observable species, CH_3HgOSO_3H, 1. Under the reaction conditions, 1 readily decomposes to CH_3OSO_3H and the reduced mercurous species, Hg_22+. The catalytic cycle is completed by the reoxidation of Hg_22+ with H_2SO_4 to regenerate Hg(II) and byproducts SO_2 and H_2O. Thallium(III), palladium(II), and the cations of platinum and gold also oxidize methane to methyl bisulfate in sulfuric acid.

  4. Template-particle stabilized bicontinuous emulsion yielding controlled assembly of hierarchical high-flux filtration membranes.

    Science.gov (United States)

    Hess, Samuel C; Kohll, A Xavier; Raso, Renzo A; Schumacher, Christoph M; Grass, Robert N; Stark, Wendelin J

    2015-01-14

    A novel solvent-evaporation-based process that exploits template-particle stabilized bicontinuous emulsions for the formation of previously unreached membrane morphologies is reported in this article. Porous membranes have a wide range of applications spanning from water filtration, pharmaceutical purification, and battery separators to scaffolds for tissue engineering. Different situations require different membrane morphologies including various pore sizes and pore gradients. However, most of the previously reported membrane preparation procedures are restricted to specific morphologies and morphology alterations require an extensive optimization process. The tertiary system presented in this article, which consists of a poly(ether sulfone)/dimethylacetamide (PES/DMAc) solution, glycerol, and ZnO-nanoparticles, allows simple and exact tuning of pore diameters ranging from sub-20 nm, up to 100 nm. At the same time, the pore size gradient is controlled from 0 up to 840%/μm yielding extreme asymmetry. In addition to structural analysis, water flux rates of over 5600 L m(-2) h(-1) are measured for membranes retaining 45 nm silica beads.

  5. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice

    Directory of Open Access Journals (Sweden)

    Yi-Chien Wu

    2016-01-01

    Full Text Available Typical japonica type rice is sensitive to high temperature. Pon-Lai rice is a special japonica type with adaptation to the subtropical climate in Taiwan. Facing climate change, rising temperatures would damage the yield and quality of rice production. This research was conducted using Pon-Lai rice in the field of a subtropical climate. We conducted 2 experiments, including a year-round experiment and collection of samples from different districts for building different temperature conditions. We analyzed the correlation between rising temperature and rice yield or quality. In our results, the critical period of temperature effect is 0–15 days after heading (H15. The threshold of high temperature damage in yield and appearance quality was 25–27 °C. Grain weight decreased about 2–6%, while the temperature of H15 was raised 1 °C above the thresholds. Perfect grain ratio and chalky grain ratio decreased and increased, respectively, while the temperature of H15 was raised above the thresholds. However, the high temperature in H15 affected the physicochemical characteristics. In addition, we found positive correlation between grain length to width ratio and perfect grain ratio. Grain length to width ratio could be an index of temperature effects for grain quality. In our study, when the temperature was below 30 °C, a rising temperature of H15 could damage rice yield and appearance quality, and change grain shape. Our results could provide reference for dealing with the warming future in other temperate rice-cultivated countries.

  6. Freezing point of milk in a herd of high yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Slavica Golc Teger

    2005-04-01

    Full Text Available Factors affecting the freezing point of milk in a herd of 200 Black and White cows with the average milk yield of 8 386 kg in the lactation and 8 328 kg in the standard lactation were examinated. Over the period of one year (2002 and based upon 1 773 individual monthly collected milk samples with the average contents of 3.91% fat, 3.26% protein, 4.54% lactose, 33.4 mg/100 ml urea and 331000 somatic cells per ml in milk were determined. The average freezing point of milk (n = 1 680 was estimated to be –0.527 ºC, with a range from -0.562 ºC to -0.423 ºC. In 210 (12.5% samples was higher than -0.515 ºC. The lowest freezing point (-0.532 ºC was found in the samples collected in the first month after calving and highest (-0.522 ºC in the samples of 12th month of lactation. The differences between the freezing point of milk after the first and the second calving (-0.530 ºC; P < 0.05 and those after the fifth calving (-0.523 ºC; P < 0.05 were also significant. The samples collected in month from January to April (-0.538 ºC to -0.532 ºC were significantly lower in comparison to samples collected in May and June (-0.517 ºC and -0.519 ºC. The following statistically significant correlation coefficients between cows' properties, milk composition and the freezing point of milk were found: month of lactation r = 0.233 (P < 0.001; lactation number r = 0.196 (P < 0.001; age of cows (years r = 0.231 (P < 0.001; month of the year r = 0.0253 (P < 0.001; milk yield per milking day r = -0.106 (P < 0.001; fat corrected milk content (FCM per milking day r = -0.234 (P < 0.001; lactose % r = -0.530 (P < 0.001; fat % r = -0.351 (P < 0.001; protein % r = 0.058 (P < 0.05; urea mg/100 mL r = 0.091 (P < 0.001 and somatic cell count r = 0.154 (P < 0.001. The sum of effects (month of the year, lactation lenght and fat, protein and lactose content of milk was found to account for about 70% variability of the total depression of milk freezing point (R2 = 0.698.

  7. Embedded pitch adapters: A high-yield interconnection solution for strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullán, M., E-mail: miguel.ullan@imb-cnm.csic.es [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Fleta, C.; Fernandez-Tejero, J.; Quirion, D. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Díez, S.; Gregor, I.M.; Lohwasser, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); and others

    2016-09-21

    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.

  8. Embedded pitch adapters: A high-yield interconnection solution for strip sensors

    Science.gov (United States)

    Ullán, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Fleta, C.; Fernandez-Tejero, J.; Quirion, D.; Bloch, I.; Díez, S.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.

  9. Effects of Fluctuating Environments on the Selection of High Yielding Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J. R.; Tillett, D. M.

    1987-02-27

    Microalgae have the potential of producing biomass with a high content of lipids at high productivities using seawater or saline ground water resources. Microalgal lipids are similar to vegetable oils and suitable for processing to liquid fuels. Engineering cost analysis studies have concluded that, at a favorable site, microalgae cultivation for fuel production could be economically viable. The major uncertainties involve the microalgae themselves: biomass and lipid productivity and culture stability.

  10. Anisotropy vs chemical composition at ultra-high energies

    CERN Document Server

    Lemoine, Martin

    2009-01-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E_{thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E_{thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55EeV is not a statistical accident, and that no significant anisotropy has been observed at energies 10^{45}Z^{-2}erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data...

  11. Growth of High TcYBaCuO Thin Films by Metalorganic Chemical Vapor Deposition

    Science.gov (United States)

    Kirlin, Peter S.; Binder, R.; Gardiner, R.; Brown, Duncan W.

    1990-03-01

    Thin films of YBa2Cu3O7-x were grown on MgO(100) by metalorganic chemical vapor deposition (MOCVD). Low pressure growth studies were carried out between 400 and 600°C using metal β-diketonate complexes as source reagents for Y, Ba, and Cu. As-deposited films were amorphous and a two stage annealing protocol was used in which fluorine was first removed in a Ar/H20 stream between 700 and 850°C, followed by calcination in flowing oxygen between 500 and 950°C. Scanning electron microscopy, X-ray diffraction and energy dispersive analysis indicate that good compositional and dimensional uniformity could be achieved. The temperature of the oxygen annealing step was shown to have a dramatic impact on the physical and electrical properties of the YBa2Cu307-x thin films. Annealing temperatures exceeding 910°C gave large crystallites and semiconducting resistivity above Tc; annealing temperatures below 910°C yielded films with metallic conductivity whose density and superconducting transition varied inversely with maximum annealing temperature. Optimized deposition/annealing protocols yielded films with a preferred c-axis orientation, R273/R100 ratios of 2, onsets as high as 94K and zero resistance exceeding 90K.

  12. 水稻高产创建栽培技术%High Yield and Create Cultivation Techniques of Rice

    Institute of Scientific and Technical Information of China (English)

    姜田英; 彭昌家

    2015-01-01

    This paper introduces the high yield and creates cultivation techniques of rice, such as the selection of seed, timely sowing, soil preparation,fertilization, specification transplanting, reasonable density planting, strengthen the man-agement of the field and timely harvest. To guide farmers to do scientific and reasonable rice super-high-yield strengthen-ing cultivation, improve the yield of rice and increase farmers' income, to ensure the rice production could continue to in-crease and ensure the safety of food production.%介绍了选用良种、适时播种、整好本田、配方施肥、规范移栽,合理密植、加强田间管理和适时收获等水稻高产创建栽培技术,旨在指导农民科学合理做好水稻超高产强化栽培,从而提高水稻单产,增加农民收益,确保水稻总产量持续增加,保障粮食生产安全。

  13. Determination of the chemical yield on the Fricke dosimetry for {sup 192}Ir sources used in brachytherapy; Determinacao do rendimento quimico na dosimetria Fricke para fontes de {sup 192}Ir usadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    David, M.G.; Albuquerque, M.A.G.; Almeida, C.E. de, E-mail: marianogd08@gmail.com [Universidade do Estado do Rio de Janeiro (LCR/UERJ), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Salata, C. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Rosado, P.H. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    With the aim of developing a primary standard for the absorbed dose to water, for the {sup 192}Ir sources used in high dose rate brachytherapy, this work focuses on the determination of the chemical yield, G(Fe{sup +3}), using Fricke dosimetry, for the energy of those sources . The G(Fe{sup +3}) were determined the for three qualities of x-ray beams (150, 250 and 300 kV ) and for {sup 60}Co energy. The G(Fe{sup +3}) value for the average energy of {sup 192}Ir was obtained by linear fit, the found value was 1,555 ± 0,015 μmol/J. (author)

  14. 76 FR 1067 - Testing of Certain High Production Volume Chemicals; Second Group of Chemicals

    Science.gov (United States)

    2011-01-07

    ...; Albemarle Corporation (Albemarle); American Chemistry Council (ACC); Chlorinated Paraffins Industry... Responsible Medicine (PCRM), the Alternatives Research Development Foundation (ARDF), and the American Anti... Medicine. B. Are these chemical substances produced and/or imported in substantial quantities? EPA...

  15. Strategies for the chemical analysis of highly porous bone scaffolds using secondary ion mass spectrometry.

    Science.gov (United States)

    Wang, Daming; Poologasundarampillai, Gowsihan; van den Bergh, Wouter; Chater, Richard J; Kasuga, Toshihiro; Jones, Julian R; McPhail, David S

    2014-02-01

    Understanding the distribution of critical elements (e.g. silicon and calcium) within silica-based bone scaffolds synthesized by different methods is central to the optimization of these materials. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to determine this information due to its very high surface sensitivity and its ability to map all the elements and compounds in the periodic table with high spatial resolution. The SIMS image data can also be combined with depth profiles to construct three-dimensional chemical maps. However, the scaffolds have interconnected pore networks, which are very challenging structures for the SIMS technique. To overcome this problem two experimental methodologies have been developed. The first method involved the use of the focused ion beam technique to obtain clear images of the regions of interest and subsequently mark them by introducing fiducial marks; the samples were then analysed using the ToF-SIMS technique to yield the chemical analyses of the regions of interest. The second method involved impregnating the pores using a suitable reagent so that a flat surface could be achieved, and this was followed by secondary ion mapping and 3D chemical imaging with ToF-SIMS. The samples used in this work were sol-gel 70S30C foam and electrospun fibres and calcium-containing silica/gelatin hybrid scaffolds. The results demonstrate the feasibility of both these experimental methodologies and indicate that these methods can provide an opportunity to compare various artificial bone scaffolds, which will be of help in improving scaffold synthesis and processing routes. The techniques are also transferable to many other types of porous material.

  16. Meteors do not break exogenous organic molecules into high yields of diatomics.

    Science.gov (United States)

    Jenniskens, Peter; Schaller, Emily L; Laux, Christophe O; Wilson, Michael A; Schmidt, Greg; Rairden, Rick L

    2004-01-01

    Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.

  17. Plasmonic core-satellite assemblies with high stability and yield (Conference Presentation)

    Science.gov (United States)

    Huang, Li-Ching; Lin, Tien-Hsin; Liu, Zhi-Yan; Chen, Jyun-Hao; Wang, Yi-Chen; Chen, Shiuan-Yeh

    2016-09-01

    Plasmonic structures are attractive due to their optical properties in the near-field and far-field. In the near-field, the enhanced field they generated strongly interacts with materials in proximity to the surface and even produces the quantum hybrid states in the strong coupling regime. In the far-field, the larger scattering cross section of plasmonic particles provides better contrast for tissue imaging. In addition, the strong absorption can generate substantial amount of heat for cancer cell elimination. These optical properties are usually engineered through tuning the size and morphology of individual nanoparticles by various chemical synthesis methods. The alternative way is to use coupled structure based on existing particles. The molecule-linked structure is a common way for 3D plasmonic materials. However, to produce a stable coupled structure in the solution phase is challenging. The formation of linkage between linker molecules is usually time-consuming and at low efficiency. Increasing the concentration of linker molecules may raise the reaction speed but also result in the random aggregation of particles. In this work, a polyelectrolyte coating is used to connect spherical nanoparticles of different sizes to form core-satellite assemblies (CSA). The coupled core-satellite structure is formed almost immediately after th