WorldWideScience

Sample records for high chemical contaminant

  1. Global contamination trends of persistent organic chemicals

    National Research Council Canada - National Science Library

    Loganathan, Bommanna G; Lam, Paul K. S

    2012-01-01

    "Composed by a diverse group of experts, this reference covers the history, present status, and projected future trends of environmental contamination from highly toxic synthetic chemical pollutants...

  2. Chemical food contaminants; Chemische Lebensmittelkontaminanten

    Energy Technology Data Exchange (ETDEWEB)

    Schrenk, D. [Technische Univ. Kaiserslautern (Germany)

    2004-09-15

    Chemical food contaminants are substances which are neither present naturally in the usual raw material used for food production nor are added during the regular production process. Examples are environmental pollutants or contaminants derived from agricultural production of crops or livestock or from inadequate manufacturing of the food product itself. More difficult is the classification of those compounds formed during regular manufacturing such as products of thermal processes including flavoring substances. In these cases, it is common practice to call those compounds contaminants which are known for their adverse effects such as acrylamide, whereas constituents which add to the food-specific flavor such as Maillard products formed during roasting, baking etc. are not termed contaminants. From a toxicological viewpoint this distinction is not always clear-cut. Important groups of chemical contaminants are metals such as mercury or lead, persistent organic pollutants such as polychlorinated biphenyls and related pollutants, which are regularly found in certain types of food originating from background levels of these compounds in our environment. Furthermore, natural toxins form microorganisms or plants, and compounds formed during thermal treatment of food are of major interest. In general, a scientific risk assessment has to be carried out for any known contaminant. This comprises an exposure analysis and a toxicological and epidemiological assessment. On these grounds, regulatory and/or technological measures can often improve the situation. Major conditions for a scientific risk assessment and a successful implementation of regulations are highly developed food quality control, food toxicology and nutritional epidemiology. (orig.)

  3. High sensitivity detection and characterization of the chemical state of trace element contamination on silicon wafers

    CERN Document Server

    Pianetta, Piero A; Baur, K; Brennan, S; Homma, T; Kubo, N

    2003-01-01

    Increasing the speed and complexity of semiconductor integrated circuits requires advanced processes that put extreme constraints on the level of metal contamination allowed on the surfaces of silicon wafers. Such contamination degrades the performance of the ultrathin SiO sub 2 gate dielectrics that form the heart of the individual transistors. Ultimately, reliability and yield are reduced to levels that must be improved before new processes can be put into production. It should be noted that much of this metal contamination occurs during the wet chemical etching and rinsing steps required for the manufacture of integrated circuits and industry is actively developing new processes that have already brought the metal contamination to levels beyond the measurement capabilities of conventional analytical techniques. The measurement of these extremely low contamination levels has required the use of synchrotron radiation total reflection X-ray fluorescence (SR-TXRF) where sensitivities 100 times better than conv...

  4. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.

    Science.gov (United States)

    Neculita, Carmen-Mihaela; Zagury, Gérald J; Deschênes, Louise

    2005-01-01

    A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils.

  5. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical oxidati

  6. Chemical contamination of water supplies

    Energy Technology Data Exchange (ETDEWEB)

    Shy, C.M.

    1985-10-01

    Man-made organic chemicals have been found in drinking water for many years. Their numbers and varieties increase as our analytical capabilities improve. The identified chemicals comprise 10 to 20% of the total organic matter present. These are volatile or low molecular weight compounds which are easily identified. Many of them are carcinogenic or mutagenic. Chlorinated compounds have been found in untreated well water at levels up to 21,300 micrograms/L and are generally present at higher levels in chlorine-treated water than in untreated water. Aggregate risk studies for cancer are summarized. The most common sites are: bladder, stomach, colon, and rectum. Such studies cannot be linked to individual cases. However, they are useful for identifying exposed populations for epidemiologic studies. Five case-control studies were reviewed, and significant associations with water quality were found for: bladder cancer in two studies, colon cancer in three and rectal cancer in four. A large study by the National Cancer Institute found that there had been a change in the source of raw water for 50% of the persons in one area between the years 1955 and 1975. Such flaws in the data may preclude finding a causal relation between cancer and contaminants in drinking water. Large case-control and cohort studies are needed because of the low frequency of the marker diseases, bladder and rectal cancer. Cohort studies may be precluded by variations in the kinds of water contaminants. Definitive questions about these issues are posed for cooperative effort and resolution by water chemists, engineers, and epidemiologists.

  7. Agricultural Chemical Sourcebook for Wildlife Contaminants Specialists

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this handbook is to provide information to contaminant specialists involved in evaluating agricultural chemical impacts on wetlands. The handbook...

  8. Schiff base: A high affinity chemical agent to decrease the concentration of aflatoxin M1 in raw milk contaminated artificially

    Directory of Open Access Journals (Sweden)

    Frane Delaš

    2012-03-01

    Full Text Available In the present study were conducted the effect of pH (5.5, 6.0 and 6.5 and concentration of new synthesized 3-/2-aminophenylimino-(p-toluoyl/-4-hydroxy-6-(p-tolyl-2H-pyrane-2-one (Schiff base on decrease the concentration of aflatoxin M1 (AFM1 in raw milk contaminated with known concentration of this toxin. Experiments were carried out at temperature of 4 °C during 35 days. At pH 5.5 Schiff base concentration of 0.1 µmol/L was lessening the concentration of AFM1 after 35 days by 55 %. However, at pH 6.5 the most effective concentration for lessening of AFM1 was 0.5 µmol/L. Schiff base was not effective at pH value of 7 or higher. The ability of Schiff base to act as antimycotoxigenic agent provides new perspective for possibly using this compound to control AFM1 contamination in milk and to extent shelf lives of this food. Detection of toxicity of investigated Schiff base was performed by using the brine shrimp (Artemia salina larvae as an biological indicator to determine their sensitivity to this chemical agent.

  9. Immunoassay of chemical contaminants in milk:A review

    Institute of Scientific and Technical Information of China (English)

    XU Fei; REN Kang; YANG Yu-ze; GUO Jiang-peng; MA Guang-peng; LIU Yi-ming; LU Yong-qiang; LI Xiu-bo

    2015-01-01

    The detection of chemical contaminants is critical to ensure dairy safety. These contaminants include veterinary medicines, antibiotics, pesticides, heavy metals, mycotoxins, and persistent organic polutants (POPs). Immunoassays have recently been used to detect contaminants in milk because of their simple operation, high speed, and low cost. This article describes the latest developments in the most important component of immunoassays—antibodies, and then reviews the four major substrates used for immunoassays (i.e., microplates, membranes, gels, and chips) as wel as their use in the detection of milk contaminants. The paper concludes with prospects for further applications of these immunoassays.

  10. Chemical contamination of material cycles

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Astrup, Thomas Fruergaard

    2015-01-01

    Material recycling represents a backbone of sustainable society in the context of circular economy. Ideally, materials are converted into products, used by the consumers, and discarded, just to be recycled and converted into newly manufactured products. Furthermore, materials may also contain...... acceptance of recycledmaterial‐based products. Paper and plastics are conventional materials used to manufacture a variety of products within main sectors of economy (i.e. packaging, transportation, construction, services, and other). A number of chemicals can be either intentionally or unintentionally added...... to these materials in the process of product manufacturing or final product conversion. Extend of chemical use, as well as their presence in paper and plastic products remains largely uninvestigated. The aim of this project is to obtain reliable quantitative data on presence of selected (potentially hazardous...

  11. Airborne chemical contamination of a chemically amplified resist

    Science.gov (United States)

    MacDonald, Scott A.; Clecak, Nicholas J.; Wendt, H. R.; Willson, C. Grant; Snyder, Clinton D.; Knors, C. J.; Deyoe, N. B.; Maltabes, John G.; Morrow, James R.; McGuire, Anne E.; Holmes, Steven J.

    1991-06-01

    We have found that the performance of the t-BOC/onium salt resist system is severely degraded by vapor from organic bases. This effect is very pronounced and can be observed when the coated wafers stand for 15 minutes in air containing as little as 15 parts per billion (ppb) of an organic base. The observed effect, caused by this chemical contamination, depends on the tone of the resist system. For negative tone systems the UV exposure dose, required to obtain the correct linewidth, increases. While for the positive tone system, one observes the generation of a skin at the resist-air interface. Both effects are caused by the photogenerated acid being neutralized by the airborne organic base. There are a wide variety of commonly used materials which can liberate trace amounts of volatile amines and degrade resist performance. For example, fresh paint on a laboratory wall can exhibit this detrimental effect. These effects can be minimized by storing and processing the resist coated wafers in air that has passed through a specially designed, high efficiency carbon filter. The implementation of localized air filtration, to bathe the resist in chemically pure air, enabled this resist system to operate in a manufacturing environment at a rate of 100 wafers/hour.

  12. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Schoske, Richard [ORNL; Kennedy, Patrick [ORNL; Duty, Chad E [ORNL; Smith, Rob R [ORNL; Huxford, Theodore J [ORNL; Bonavita, Angelo M [ORNL; Engleman, Greg [ORNL; Vass, Arpad Alexander [ORNL; Griest, Wayne H [ORNL; Ilgner, Ralph H [ORNL; Brown, Gilbert M [ORNL

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  13. Decomposition of energetic chemicals contaminated with iron or stainless steel.

    Science.gov (United States)

    Chervin, Sima; Bodman, Glenn T; Barnhart, Richard W

    2006-03-17

    Contamination of chemicals or reaction mixtures with iron or stainless steel is likely to take place during chemical processing. If energetic and thermally unstable chemicals are involved in a manufacturing process, contamination with iron or stainless steel can impact the decomposition characteristics of these chemicals and, subsequently, the safety of the processes, and should be investigated. The goal of this project was to undertake a systematic approach to study the impact of iron or stainless steel contamination on the decomposition characteristics of different chemical classes. Differential scanning calorimetry (DSC) was used to study the decomposition reaction by testing each chemical pure, and in mixtures with iron and stainless steel. The following classes of energetic chemicals were investigated: nitrobenzenes, tetrazoles, hydrazines, hydroxylamines and oximes, sulfonic acid derivatives and monomers. The following non-energetic groups were investigated for contributing effects: halogens, hydroxyls, amines, amides, nitriles, sulfonic acid esters, carbonyl halides and salts of hydrochloric acid. Based on the results obtained, conclusions were drawn regarding the sensitivity of the decomposition reaction to contamination with iron and stainless steel for the chemical classes listed above. It was demonstrated that the most sensitive classes are hydrazines and hydroxylamines/oximes. Contamination of these chemicals with iron or stainless steel not only destabilizes them, leading to decomposition at significantly lower temperatures, but also sometimes causes increased severity of the decomposition. The sensitivity of nitrobenzenes to contamination with iron or stainless steel depended upon the presence of other contributing groups: the presence of such groups as acid chlorides or chlorine/fluorine significantly increased the effect of contamination on decomposition characteristics of nitrobenzenes. The decomposition of sulfonic acid derivatives and tetrazoles

  14. Risks from the microbiological and chemical contamination of fish materials

    Directory of Open Access Journals (Sweden)

    Halaši Tibor J.

    2005-01-01

    Full Text Available Fish is today one of the most important commercial material. In our market as in the world market they are present in fresh and manufactured products. Fish products always have some risk. They could be contaminated with dangerous chemicals and biological contaminants. From biological originated polutions Aflatoxin and other Mycotoxins are very dangerous. The contamination starts in fish ponds, in canals and swamps. Also, the contamination occurs at storage and prepararation of fish materials. It is very important to recognize hygienically correct fish material and control fish food and different products from fish by educated inspectors (Vlahović, 1999.

  15. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.......S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  16. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  17. Chemical contaminants in swimming pools: Occurrence, implications and control.

    Science.gov (United States)

    Teo, Tiffany L L; Coleman, Heather M; Khan, Stuart J

    2015-03-01

    A range of trace chemical contaminants have been reported to occur in swimming pools. Current disinfection practices and monitoring of swimming pool water quality are aimed at preventing the spread of microbial infections and diseases. However, disinfection by-products (DBPs) are formed when the disinfectants used react with organic and inorganic matter in the pool. Additional chemicals may be present in swimming pools originating from anthropogenic sources (bodily excretions, lotions, cosmetics, etc.) or from the source water used where trace chemicals may already be present. DBPs have been the most widely investigated trace chemical contaminants, including trihalomethanes (THMs), haloacetic acids (HAAs), halobenzoquinones (HBQs), haloacetonitriles (HANs), halonitromethanes (HNMs), N-nitrosamines, nitrite, nitrates and chloramines. The presence and concentrations of these chemical contaminants are dependent upon several factors including the types of pools, types of disinfectants used, disinfectant dosages, bather loads, temperature and pH of swimming pool waters. Chemical constituents of personal care products (PCPs) such as parabens and ultraviolet (UV) filters from sunscreens have also been reported. By-products from reactions of these chemicals with disinfectants and UV irradiation have been reported and some may be more toxic than their parent compounds. There is evidence to suggest that exposure to some of these chemicals may lead to health risks. This paper provides a detailed review of various chemical contaminants reported in swimming pools. The concentrations of chemicals present in swimming pools may also provide an alternative indicator to swimming pool water quality, providing insights to contamination sources. Alternative treatment methods such as activated carbon filtration and advanced oxidation processes may be beneficial in improving swimming pool water quality.

  18. Structural damage and chemical contaminants on reprocessed arthroscopic shaver blades.

    Science.gov (United States)

    Kobayashi, Masahiko; Nakagawa, Yasuaki; Okamoto, Yukihiro; Nakamura, Shinichiro; Nakamura, Takashi

    2009-02-01

    In response to socioeconomic pressure to cut budgets in medicine, single-use surgical instruments are often reprocessed despite potential biological hazard. To evaluate the quality and contaminants of reprocessed shaver blades. Reprocessed shaver blades have mechanical damage and chemical contamination. Controlled laboratory study. Seven blades and 3 abraders were reprocessed 1 time or 3 times and then were assessed. In the first part of the study, structural damage on the blades after 3 reprocessings was compared to that after 1 reprocessing using optical microscopy. In the second part, surface damage was observed using optical microscopy and scanning electron microscopy; elemental and chemical analyses of contaminants found by the microscopy were performed using scanning electron microscopy/energy dispersive x-ray spectroscopy, scanning Auger microscopy, and Fourier transform infrared spectroscopy. Optical microscopic examination revealed abrasion on the surface of the inner blade and cracks on the inner tube after 1 reprocessing. These changes were more evident after 3 reprocessings. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the blade reprocessed once showed contaminants containing calcium, carbon, oxygen, and silicon, and Fourier transform infrared spectroscopy demonstrated biological protein consisting mainly of collagen, some type of salts, and polycarbonate used in plastic molding. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the reprocessed abrader revealed contaminants containing carbon, calcium, phosphorous, and oxygen, and Fourier transform infrared spectroscopy showed H2O, hydroxyapatite, and hydroxyl proteins. Scanning Auger microscopy showed that the tin-nickel plating on the moving blade and abrader was missing in some locations. This is the first study to evaluate both mechanical damage and chemical contaminants containing collagen, hydroxyapatite, and salts

  19. Screening chemicals for the potential to be persistent organic pollutants: a case study of Arctic contaminants.

    Science.gov (United States)

    Brown, Trevor N; Wania, Frank

    2008-07-15

    A large and ever-increasing number of chemicals are used in commerce, and researchers and regulators have struggled to ascertain that these chemicals do not threaten human health or cause environmental or ecological damage. The presence of persistent organic pollutants (POPs) in remote environments such as the Arctic is of special concern and has international regulatory implications. Responding to the need for a way to identify chemicals of high concern, a methodology has been developed which compares experimentally measured properties, or values predicted from chemical structure alone, to a set of screening criteria. These criteria include partitioning properties that allow for accumulation in the physical Arctic environment and in the Arctic human food chain, and resistance to atmospheric oxidation. Atthe same time we quantify the extent of structural resemblance to a group of known Arctic contaminants. Comparison of the substances that are identified by a mechanistic description of the processes that lead to Arctic contamination with those substances that are structurally similar to known Arctic contaminants reveals the strengths and limitations of either approach. Within a data set of more than 100,000 distinct industrial chemicals, the methodology identifies 120 high production volume chemicals which are structurally similarto known Arctic contaminants and/or have partitioning properties that suggest they are potential Arctic contaminants.

  20. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  1. Hazard assessment of chemical contaminants in soil.

    Science.gov (United States)

    Poels, C L; Veerkamp, W

    1992-12-01

    Disposal practices, accidental spills, leakages and local aerial deposition occurring in the past have led to local soil pollution in many cases. Especially in situations where people live on or nearby such locations this has created concern about possible adverse effects on human health. A stepped approach to the hazard assessment of polluted soil, as developed by a Task Force from the European Chemical Industry Ecology and Toxicology Centre (ECETOC), is described. In an early phase in the assessment process the potential exposure of humans is estimated. The Human Exposure to Soil Pollutants (HESP) model can be applied for this purpose. The model calculates the total exposure of adults and children resulting from pollutants present in soil, via 10 different exposure routes. The estimated exposure can be used to indicate the potential significant exposure routes and to carry out a preliminary hazard assessment. The model is also able to predict pollutant concentrations in soil which do not exceed accepted maximum exposure levels for humans in both standardised and site specific situations. The stepped approach is cost-effective and provides an objective basis for decisions and priority setting.

  2. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  3. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  4. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. (Pacific Northwest Lab., Richland, WA (United States))

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  5. Seabird eggs as bioindicators of chemical contamination in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, Jacqueline Munoz; Becker, Peter H.; Sommer, Ute; Pacheco, Patricia; Schlatter, Roberto

    2003-11-01

    Seabird eggs are proposed as biomonitors of chemical contamination in Chile. - Seabird eggs were used as bioindicators of chemical contamination in Chile. Brown-hooded Gull (Larus maculipennis), Kelp Gull (Larus dominicanus), Trudeau's Tern (Sterna trudeaui), Neotropic Cormorant (Phalacrocorax brasilianus), and Pink-footed Shearwater (Puffinus creatopus) eggs were sampled at different breeding sites during the 1990s. Mercury and organochlorines (PCBs, DDT, HCB, HCH, and PCP) were quantified to reveal the interspecific differences, spatial and temporal trends in contamination levels. Trudeau's Tern displayed the highest levels of mercury (486 ng g{sup -1} wet weight). The highest {sigma}DDT concentrations were measured in Brown-hooded Gulls (726 ng g{sup -1}). PCB levels were similar among the species (102-236 ng g{sup -1}), but the composition of the PCB mixture was different in Pink-footed Shearwaters. With the exception of the Brown-hooded Gull, all species studied presented similar and low levels of organochlorines ({sigma}OHa). Residues of PCB and related compounds were not detected in any of the seabird eggs analyzed in Chile. Geographical variation was low, although levels of industrial chemicals were slightly higher in eggs from Concepcion Bay, and agricultural chemicals in eggs from Valdivia. Also interannual variation was low, but some evidence was found of decreasing levels in gull eggs throughout the time of the study. The causes of the low levels and small variability in space and time of environmental chemicals in Chilean seabirds are discussed. We propose the use of seabirds in future monitoring of the development of chemical contamination in Chile.

  6. Evaluation of Microbiological and Chemical Contaminants in Poultry Farms

    Directory of Open Access Journals (Sweden)

    Justyna Skóra

    2016-02-01

    Full Text Available The aim of the study was to evaluate the microbiological and chemical contamination in settled dust at poultry farms. The scope of research included evaluating the contributions of the various granulometric fractions in settled dust samples, assessing microbial contamination using culture methods, concentrations of secondary metabolites in dust and their cytotoxicity against hepatocyte chicken cells by means of MTT (3-(4,5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide tests. In addition, we also evaluated the concentration of selected volatile odorous compounds (VOCs using gas chromatographic and spectrophotometric methods and airborne dust concentration in the air with DustTrak™ DRX Aerosol Monitor. Studies were carried out on chicken broilers and laying hens at 13 poultry farms, with numbers of birds ranging from 8000 to 42,000. The airborne total dust concentration at poultry farms averaged 1.44 mg/m3 with a high percentage of the PM10 fraction (particulate matter with a diameter less than 10 μm. Microorganism concentrations in the settled dust were: 3.2 × 109 cfu/g for bacteria and 1.2 × 106 cfu/g for fungi. Potential pathogens (Enterococcus spp., Escherichia coli, Salmonella spp., Aspergillus fumigatus, Paecilomyces variotii were also found. Secondary metabolites included aurofusarin, deoxynivalenol, 15-hydroxyculmorin zearalenone, zearalenone-sulfate, infectopyron, and neochinulin A. However, the dust samples showed weak cytotoxicity towards chicken hepatocyte cells, which ranged between 9.2% and 29.7%. Among volatile odorous compounds ammonia, acrolein, methyloamine, acetic acid, acetoaldehyde and formaldehyde were detected in the air. In conclusion, settled dust can be a carrier of microorganisms, odours and secondary metabolites in poultry farms, which can be harmful to workers’ health.

  7. Evaluation of Microbiological and Chemical Contaminants in Poultry Farms.

    Science.gov (United States)

    Skóra, Justyna; Matusiak, Katarzyna; Wojewódzki, Piotr; Nowak, Adriana; Sulyok, Michael; Ligocka, Anna; Okrasa, Małgorzata; Hermann, Janusz; Gutarowska, Beata

    2016-02-04

    The aim of the study was to evaluate the microbiological and chemical contamination in settled dust at poultry farms. The scope of research included evaluating the contributions of the various granulometric fractions in settled dust samples, assessing microbial contamination using culture methods, concentrations of secondary metabolites in dust and their cytotoxicity against hepatocyte chicken cells by means of MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) tests. In addition, we also evaluated the concentration of selected volatile odorous compounds (VOCs) using gas chromatographic and spectrophotometric methods and airborne dust concentration in the air with DustTrak™ DRX Aerosol Monitor. Studies were carried out on chicken broilers and laying hens at 13 poultry farms, with numbers of birds ranging from 8000 to 42,000. The airborne total dust concentration at poultry farms averaged 1.44 mg/m³ with a high percentage of the PM10 fraction (particulate matter with a diameter less than 10 μm). Microorganism concentrations in the settled dust were: 3.2 × 10⁸ cfu/g for bacteria and 1.2 × 10⁶ cfu/g for fungi. Potential pathogens (Enterococcus spp., Escherichia coli, Salmonella spp., Aspergillus fumigatus, Paecilomyces variotii) were also found. Secondary metabolites included aurofusarin, deoxynivalenol, 15-hydroxyculmorin zearalenone, zearalenone-sulfate, infectopyron, and neochinulin A. However, the dust samples showed weak cytotoxicity towards chicken hepatocyte cells, which ranged between 9.2% and 29.7%. Among volatile odorous compounds ammonia, acrolein, methyloamine, acetic acid, acetoaldehyde and formaldehyde were detected in the air. In conclusion, settled dust can be a carrier of microorganisms, odours and secondary metabolites in poultry farms, which can be harmful to workers' health.

  8. Levels of chemical contaminants in nonoccupationally exposed U. S. residents

    Energy Technology Data Exchange (ETDEWEB)

    Holleman, J.W.; Hammons, A.S.

    1978-08-01

    Data are presented on the levels of all chemical contaminants resulting from environmental pollution which have been found in human tissues including blood, urine, breast milk, and tissue samples obtained at autopsy. Most data results from specific surveys to determine health hazards. The roles of trace elements and recognition of the need to determine baseline levels of chemicals introduced into the environment are factors which have motivated surveys by individual investigators. Thus, most data on chemicals in human tissues record levels of pesticides (e.g., DDT and metabolites), levels of trace metals such as lead, cadmium, and mercury, or levels of nutritionally essential elements such as zinc, copper, manganese, and fluoride. Data available on iron and calcium are not presented as their presence in the environment is generally not considered hazardous. Data on several uncommon chemicals, such as indium and ytterbium, are included basically as items of interest and to further document their presence in healthy individuals. Baseline data were presented where available to provide perspective as to chemical levels which might be expected under conditions where exposure could be considered normal or not directly related to a pollutant source. Nearly 600 cited surveys or investigations, most of which were reported within the past decade, are listed. Ninety-four different chemical contaminants, primarily trace metals and organochlorine pesticides, are reported. It is estimated that over 75% of the data published during the past 30 years on chemical contaminants derived from environmental pollution and found in human tissue in the United States are represented in this report.

  9. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    Science.gov (United States)

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  10. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Large Item Interiors

    Science.gov (United States)

    2016-08-03

    Manual (FM) 3- 11.312 and Allied Tactical Publication ( ATP ) 45C13]. f. The acronym CBR is used in this document, rather than NBC, to reflect current...Testing and Materials AT&L acquisition, technology, and logistics ATEC U.S. Army Test and Evaluation Command ATP Allied Technical Publication C...Contamination Avoidance, 2 February 2006, Change 1, 30 April 2009. 13. ATP 45C, Reporting Nuclear Detonations, Biological and Chemical Attacks, and

  11. Tactical approach to maneuvering within the chemical contamination labyrinth

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, T.W. [Department of Energy, Oak Ridge, TN (United States)

    1990-12-31

    The Department of Energy (DOE) recognized the need and accepts the responsibility for understanding the reality and mitigating the consequence of the complex chemical contamination legacy it inherited as well as controlling, reducing, and eliminating extant emissions and effluents. The key to maneuvering through this complicated and multifaceted labyrinth of concerns, from which a meaningful, high quality, and cost-effective restoration/mitigation machine is then set in motions, is the ability to perform accurate, factual, and explicit health and environmental/ecological risk assessments. Likewise, the common denominator for carrying out this essential task is to have access to comprehensive and reliable data of known quality with which to perform those analyses. DOE is committed to identifying the data universe; to technically scrutinize and ensure the quality of that data; to develop efficient and cost-effective means to maximize the handling, utilization, and sharing of that universe; and to undertake those assessments. DOE views this as an effort that can only be accomplished through a merging of the technical excellence that exists within federal and state agencies, academia, and industry. The task at hand is so large that only by integrating that intelligence base can we hope to accomplish the goals of establishing meaningful standards, developing functional and effective solutions, and providing quality guidance at a national scale.

  12. Chemical and biological risk assessment of chronic exposure to PAH contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Means, J.; McMillin, D.; Kondapi, N. [Louisiana State Univ., Baton Rouge, LA (United States)

    1995-12-31

    Chronically contaminated sediments represent a long-term source of mixtures of contaminants, exposing aquatic ecosystems to PAH through desorption and bioaccumulation. Chronic toxicity assessments must address potential of these bond contaminants. Environmental impacts and ecological health hazards of sediment-bound normal, alkylated and heterocyclic aromatic hydrocarbons are functions of their entry into aquatic food webs and are controlled by both abiotic and biotic factors. Laboratory and field microcosm exposures of fish and invertebrates were conducted followed by assessments of effects using chemical analysis and biomarkers of potential genotoxic effects. Chemical analysis of accumulated residues of 62 individual PAH were conducted in oysters, Crassostrea virginica exposed to PAH contaminated sediments in the field. The rates and equilibrium bioaccumulation constants for each were determined. Fish were exposed to the same contaminated sediments in laboratory and field exposures. Measurements of ethoxy-resorufin-o-deethylase activity induction as well as alterations in the expression of the p53 tumor suppressor gene were performed on exposed fish liver samples. EROD activities were increased significantly relative to unexposed and laboratory/field control sediment-exposed fish, however, the responses of individuals were highly variable. Fundulus grandis or Gambusia affinis, exposed to contaminated sediments in the laboratory, revealed changes in the expression of the p53 tumor suppressor gene. The degree to which mutations within the gene occurred was assessed using PCR followed by measurement of single stranded DNA polymorphisms using gel electrophoresis chromatography.

  13. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.

    Science.gov (United States)

    Guéguen, Marielle; Amiard, Jean-Claude; Arnich, Nathalie; Badot, Pierre-Marie; Claisse, Didier; Guérin, Thierry; Vernoux, Jean-Paul

    2011-01-01

    .The human health risks associated with consuming chemical contaminants in shellfish are difficult to assess for several reasons: effects may only surface after long-term exposure (chronic risk), exposures may be discontinuous, and contamination may derive from multiple sources (food, air, occupational exposure, etc.).Therefore, it is not possible to attribute a high body burden specifically to shellfish consumption even if seafood is a major dietary contributor of any contaminant, e.g.,arsenic and mercury.The data assembled in this review provide the arguments for maintaining the chemical contaminant monitoring programs for shellfish. Moreover, the results presented herein suggest that monitoring programs should be extended to other chemicals that are suspected of presenting a risk to consumers, as illustrated by the high concentration reported for arsenic (in urine) of high consumers of seafood products from the CALIPSO study. In addition, the research conducted in shellfish-farming areas of Arcachon Bay highlights the need to monitor TBT and PAH contamination levels to ensure that these chemical pollutants do not migrate from the harbor to oyster farms.Finally, we have concluded that shellfish contamination from seawater offers a rather low risk to the general French population, because shellfish do not constitute a major contributor to dietary exposure of chemical contaminants. Notwithstanding,consumer vigilance is necessary among regular shellfish consumers, and especially for those residing in fishing communities, for pregnant and breast-feeding women,and for very young children.

  14. Chemical Contaminant and Decontaminant Test Methodology Source Document. Second Edition

    Science.gov (United States)

    2012-07-01

    vapor emission sources is the use of perfume or cologne as an example contaminant. Applying the perfume is the contamination event. The degree of...contamination is determined by the number of pumps used to dispense the perfume . As the perfume -contaminated person resides in various environments... perfume vapor is emitted, generating a vapor concentration of contaminant. The longer the perfume -contaminated person resides in the environment

  15. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories.

    Science.gov (United States)

    Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea

    2015-07-17

    The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces.

  16. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-07-01

    Full Text Available The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces.

  17. Chemically enhanced phytoextraction of lead-contaminated soils.

    Science.gov (United States)

    Perry, V Ryan; Krogstad, Eirik J; El-Mayas, Hanan; Greipsson, Sigurdur

    2012-08-01

    The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4.

  18. Insecticide Usage and Chemical Contamination Assessment in Asiatic Pennywort

    Science.gov (United States)

    Bumroongsook, S.

    2017-07-01

    The insecticide usage in commercially grown asiatic pennywort plantations in Nakhonpatum and Nonthaburi province, Thailand was surveyed during January-June, 2016. The results showed that asiatic pennywort cuttworms was leaf destructive and caused the most damge to the production. The growers used organophosphate insecticides to control the caterpillars the most, followed by pyrethoid, abamectin, carbamate and organochlorine, respectively. The chemical contaminants of pennywort from 9 fresh markets in Bangkok was monitored, the result indicated that lead was not detected in the samples. The amount of arsenic was less than 0.075 mg / kg. The insecticide residue measurement of dicofol, chlorpyrifos and methidathion was 0.98, 2.84 and 0.46 mg / kg, respectively.

  19. Toxicology profiles of chemical and radiological contaminants at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Harper, B.L.; Strenge, D.L.; Stenner, R.D.; Maughan, A.D.; Jarvis, M.K.

    1995-07-01

    This document summarizes toxicology information required under Section 3.3 (Toxicity Assessment) of HSRAM, and can also be used to develop the short toxicology profiles required in site assessments (described in HSRAM, Section 3.3.5). Toxicology information is used in the dose-response step of the risk assessment process. The dose-response assessment describes the quantitative relationship between the amount of exposure to a substance and the extent of toxic injury or disease. Data are derived from animal studies or, less frequently, from studies in exposed human populations. The risks of a substance cannot be ascertained with any degree of confidence unless dose-response relations are quantified. This document summarizes dose-response information available from the US Environmental Protection Agency (EPA). The contaminants selected for inclusion in this document represent most of the contaminants found at Hanford (both radiological and chemical), based on sampling and analysis performed during site investigations, and historical information on waste disposal practices at the Hanford Site.

  20. Microbial contamination and chemical toxicity of the Rio Grande

    Directory of Open Access Journals (Sweden)

    Valles Adrian

    2004-04-01

    Full Text Available Abstract Background The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002. Results The results showed great variability in the number of fecal coliforms, and E. coli on a month-to-month basis. Fecal coliforms ranged between 0–106 CFU/100 ml while E. coli ranged between 6 to > 2419 MPN. H. pylori showed positive detection for all the sites at different times. Toxicity ranged between 0 to 94% of inhibition capacity (IC. Since values above 50% are considered to be toxic, most of the sites displayed significant chemical toxicity at different times of the year. No significant correlations were observed between microbial indicators and chemical toxicity. Conclusion The results of the present study indicate that the 112-Km segment of the Rio Grande river from Sunland Park, NM to Fort Hancock, TX exceeds the standards for contact recreation water on a continuous basis. In addition, the presence of chemical toxicity in most sites along the 112-Km segment indicates that water quality is an area of concern for the bi-national region. The presence of H. pylori adds to the potential health hazards of the Rio Grande. Since no

  1. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction.

    Science.gov (United States)

    Lombi, E; Zhao, F J; Dunham, S J; McGrath, S P

    2001-01-01

    A pot experiment was conducted to compare two strategies of phytoremediation: natural phytoextraction using the Zn and Cd hyperaccumulator Thlaspi caerulescens J. Presl & C. Presl versus chemically enhanced phytoextraction using maize (Zea mays L.) treated with ethylenediaminetetraacetic acid (EDTA). The study used an industrially contaminated soil and an agricultural soil contaminated with metals from sewage sludge. Three crops of T. caerulescens grown over 391 d removed more than 8 mg kg(-1) Cd and 200 mg kg(-1) Zn from the industrially contaminated soil, representing 43 and 7% of the two metals in the soil. In contrast, the high concentration of Cu in the agricultural soil severely reduced the growth of T. caerulescens, thus limiting its phytoextraction potential. The EDTA treatment greatly increased the solubility of heavy metals in both soils, but this did not result in a large increase in metal concentrations in the maize shoots. Phytoextraction of Cd and Zn by maize + EDTA was much smaller than that by T. caerulescens from the industrially contaminated soil, and was either smaller (Cd) or similar (Zn) from the agricultural soil. After EDTA treatment, soluble heavy metals in soil pore water occurred mainly as metal-EDTA complexes, which were persistent for several weeks. High concentrations of heavy metals in soil pore water after EDTA treatment could pose an environmental risk in the form of ground water contamination.

  2. Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay.

    Science.gov (United States)

    Misson, Benjamin; Garnier, Cédric; Lauga, Béatrice; Dang, Duc Huy; Ghiglione, Jean-François; Mullot, Jean-Ulrich; Duran, Robert; Pringault, Olivier

    2016-06-15

    Investigating the impact of human activities on marine coastal ecosystems remains difficult because of the co-occurrence of numerous natural and human-induced gradients. Our aims were (i) to evaluate the links between the chemical environment as a whole and microbial diversity in the benthic compartment, and (ii) to compare the contributions of anthropogenic and natural chemical gradients to microbial diversity shifts. We studied surface sediments from 54 sampling sites in the semi-enclosed Toulon Bay (NW Mediterranean) exposed to high anthropogenic pressure. Previously published chemical data were completed by new measurements, resulting in an in depth geochemical characterization by 29 representative environmental variables. Bacterial and archaeal diversity was assessed by terminal restriction fragment length polymorphism profiling on a selection of samples distributed along chemical gradients. Multivariate statistical analyses explained from 45% to 80% of the spatial variation in microbial diversity, considering only the chemical variables. A selection of trace metals of anthropogenic origin appeared to be strong structural factors for both bacterial and archaeal communities. Bacterial terminal restriction fragment (T-RF) richness correlated strongly with both anthropogenic and natural chemical gradients, whereas archaeal T-RF richness demonstrated fewer links with chemical variables. No significant decrease in diversity was evidenced in relation to chemical contamination, suggesting a high adaptive potential of benthic microbial communities in Toulon Bay.

  3. Chemical Contamination of the Lower Rio Grande near Laredo, TX

    Science.gov (United States)

    Flores, B.; Ren, J.; Krishnamurthy, S.; Belzer, W.

    2006-12-01

    The Rio Grande River stretches over 2000 miles from the southern Rocky Mountains in Colorado to the tip of Texas where the Rio Grande meets the Gulf of Mexico. It is the natural boundary between U.S. and Mexico from El Paso, TX, to Brownsville, TX. The communities along the border heavily rely upon the Rio Grande as a primary source of water for consumption, agricultural uses, supporting wildlife and recreation. For many years the Rio Grande has been polluted with municipal, industrial, agricultural and farming contaminants from both sides of the border. This pollution has led to the extinction or reduction of certain wildlife species as well as affecting the health of the residences along the border. Even though great strides have been made in monitoring the Rio Grande, there has been a lack of intense monitoring data collection for pollutants such as pesticides. Three sampling sites including Manadas Creek, the Rio Grande River at International Bridge I, and USGS monitoring site 08459200 off of Highway 83 were chosen. The water quality parameters focused include temperature, pH, conductivity, dissolve oxygen (DO), salinity, total dissolved solids, nutrients, metals and pesticides. Preliminary results have shown elevated concentration of total phosphorus and ortho-phosphorus in the Manadas Creek site. Organochlorinated pesticides such as heptachlor and 4, 4 DDE were detected at various concentrations at all sites and endrin aldehyde was found at Manadas Creek site. This research has provided more information on the current chemical contamination level of the Rio Grande in the Laredo area.

  4. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  5. 40 CFR 141.11 - Maximum contaminant levels for inorganic chemicals.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for inorganic chemicals. 141.11 Section 141.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.11 Maximum contaminant levels...

  6. Microbiological and chemical contamination in different types of food of non-European origin

    Directory of Open Access Journals (Sweden)

    Francesco Casalinuovo

    2013-10-01

    Full Text Available In the markets of the European Union (EU the presence of food imported from non-European countries such as Asia, Africa and America is increasingly more widespread. Non-European countries, indeed, are much more competitive in terms of prices compared to European countries. For these reasons, EU has issued important laws. The purpose of this study was to assess the effectiveness of these regulations, estimating the levels of microbiological and chemical contamination of food samples of 91 different matrices imported from third countries. The microbiological methods used are those required by the UNI EN ISO, while for the determination of chemical parameters validated methods according to the Standard UNI EN ISO 16140:2003 were used. Our investigation revealed qualitative or quantitative microbial contamination in 23 out of 91 samples analysed (25.2%. We found high total microbial loads in alimentary conserves, multiple bacterial contamination (Salmonella thiphymurium, Escherichia coli and Vibrio alginolyticus and viral contamination (Norovirus in shellfish of the species Cassostrea gigas, and the presence of other pathogens in various products such as hamburgers (Yersinia enterocolitica, frozen fish (Listeria monocytogenes and honey (Bacillus cereus. With regard to chemical contamination, 24 samples of different food products were analysed. In 9 samples (37.5%, the levels of the following substances exceeded the permitted limits: histamine (fish conserves, mercury (crab meat, cadmium (crab meat and fish conserves, lead (cheese and honey and polyphosphates (chicken meat. Despite the limited number of samples analysed, these data prompt reflection on the need to implement a more detailed and rigorous activity of monitoring and control in order to guarantee adequate levels of safety with regard to the consumption of foodstuffs imported into the EU from non-European countries.

  7. The effects of cationic contamination on the physio-chemical properties of perfluoroionomer membranes

    Science.gov (United States)

    Molter, Trent M.

    Proton Exchange Membrane (PEM) technology cannot meet fuel cell and electrolyzer durability standards for stationary and transportation applications. Cell designs are not of sufficient maturity to demonstrate more than several thousand hours of invariant performance. One of the limiting factors is the operational lifetime of membrane electrode assemblies (MEA's) because of pin-holing, dry-out, mechanical breeches, chemical attack and contamination. This program investigated the role of contamination on the degradation of perfluorinated membranes in fuel cell and electrolysis environments. Tests were conducted to develop an understanding of the effects of cationic contaminants on fundamental design parameters for these membranes including water content, ion exchange capacity, gas diffusion, ionic conductivity, and mechanical properties. Tests showed that cations rapidly transport into the membrane and disperse throughout its structure achieving high equilibrium concentrations. Ion charge density appears to govern membrane water content with small ions demonstrating the highest water content. Permeability studies showed transport in accordance with Fick's law in the following order: H2>O2>N 2>H2O. Cations negatively affect gas and water transport, with charge density affecting transport rates. Unique diffusion coefficients were calculated for each contaminating species suggesting that the contaminant is an integral participant in the transport process. AC resistance measurements showed that size of the ion charge carrier is an important factor in the conduction mechanism and that membrane area specific resistance correlates well with water content. Increases in membrane yield strength and the modulus of elasticity were demonstrated with increased contamination. Tensile tests showed that cation size plays an important role in determining the magnitude of this increase, indicating that larger ions interfere more with strain than smaller ones. Contaminants reduced

  8. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    Science.gov (United States)

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  9. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    Science.gov (United States)

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  10. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark.

    Science.gov (United States)

    Mortensen, Alicja; Granby, Kit; Eriksen, Folmer D; Cederberg, Tommy Licht; Friis-Wandall, Søren; Simonsen, Yvonne; Broesbøl-Jensen, Birgitte; Bonnichsen, Rikke

    2014-01-01

    With aim to provide information on chemical contaminants in byproducts in animal feed, the data from an official control by the Danish Plant Directorate during 1998-2009, were reviewed and several samples of citrus pulp and dried distillers grains with solubles (DDGS) were additionally collected for analysis and risk assessment. The levels of contaminants in the samples from the official control were below maximum limits from EU regulations with only a few exceptions in the following groups; dioxins and dioxin-like polychlorobiphenyls (PCBs) in fish-containing byproducts and dioxins in vegetable and animal fat, hydrogen cyanide in linseed, and cadmium in sunflowers. The levels of pesticides and mycotoxins in the additionally collected samples were below maximum limits. Enniatin B (ENN B) was present in all DDGS samples. The hypothetical cases of carry-over of contamination from these byproducts were designed assuming total absorption and accumulation of the ingested contaminant in meat and milk and high exposure (a byproduct formed 15-20% of the feed ration depending on the species). The risk assessment was refined based on literature data on metabolism in relevant animal species. Risk assessment of contaminants in byproducts is generally based on a worst-case approach, as data on carry-over of a contaminant are sparse. This may lead to erroneous estimation of health hazards. The presence of ENN B in all samples of DDGS indicates that potential impact of this emerging mycotoxin on feed and food safety deserves attention. A challenge for the future is to fill up gaps in toxicological databases and improve models for carry-over of contaminants.

  11. Identification of specific organic contaminants in different units of a chemical production site.

    Science.gov (United States)

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  12. Chemical Contamination Sensor for Phosphate Ester Hydraulic Fluids

    Directory of Open Access Journals (Sweden)

    Sumit Paul

    2010-01-01

    Full Text Available The paper deals with chemical contamination monitoring in phosphate-ester-based hydraulic fluids using nondispersive infrared (NDIR optical absorption. Our results show that NDIR monitoring allows detecting the take-up of water into such fluids and their hydrolytic disintegration as these become additionally stressed by Joule heating. Observations on the O–H stretching vibration band (3200–3800 cm−1 are used for determining the free water content (0–1.5% and the Total Acid Number (0–1 mgKOH/g. Both quantities can be assessed by monitoring the strength and the asymmetry of the O–H vibration band with regard to the free water absorption band centred around 3500 cm−1. As such optical parameters can be assessed without taking fluid samples from a pressurised hydraulic system, fluid degradation trends can be established based on regular measurements, before irreversible damage to the fluid has occurred. Therefore maintenance actions can be planned accordingly, which is very important for the airline, as unscheduled maintenance disturbs the flights organisation and often generates money loss.

  13. Arsenic in tree rings at a highly contaminated site.

    Science.gov (United States)

    Cheng, Zhongqi; Buckley, Brendan M; Katz, Beth; Wright, William; Bailey, Richard; Smith, Kevin T; Li, Jingbo; Curtis, Ashley; Geen, Alexander van

    2007-04-15

    Arsenic concentrations were measured in annual rings, pith, bark, and leaves of five tree species (four genera) from a site highly contaminated with As in Vineland, New Jersey, and two nearby uncontaminated areas. The highest As concentrations were found in bark (0.68+/-0.89 mg/kg, n=16) and leaves (1.9+/-1.8 mg/kg, n=4) from the contaminated area. Tree-ring As levels from the contaminated area (0.28+/-0.15 mg/kg, n=32) were low but still considerably higher than those from the control areas (0.06+/-0.06 mg/kg, n=30). There is a generally positive relationship between soil and tree-ring As levels. The overall low uptake of As by trees contrasts with that of P, a chemical analog for As(V) in aerated soils. Much higher P concentration in sapwood than in heartwood indicates that P is exported into more recently formed wood during the conversion from sapwood to heartwood; this again is drastically different than the behavior of As which is present in sapwood and heartwood at comparable levels. Variable sapwood As concentrations observed in detailed radial profiles of tree-ring chemistry of a pine and an oak from the contaminated site suggest that As is most likely transported among multiple rings within the sapwood. Therefore, tree species for which sapwood is thin (e.g., oak as in this study) should be preferred for reconstructing the history of contamination of a site. Due to the possibility of lateral translocation between growth rings, further studies are necessary to understand within-tree As transport and storage before dendrochemistry can be confidently accepted for such applications.

  14. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  15. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    Science.gov (United States)

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content.

  16. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    Groundwater risk assessment of contaminated soils implies determination of the solute concentration leaching out of the soil. Determination based on estimation techniques or simple experimental batch approach has proven inadequate. Two chemical equilibrium soil column leaching tests...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...... to measure solute phase concentration of PAHs in contaminated soils. Overall a reliable and reproducable system for determining solute concentration of a wide range of organic compounds in contaminated soils has been developed....

  17. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  18. 3D modeling of environments contaminated with chemical, biological, radiological and nuclear (CBRN) agents

    Science.gov (United States)

    Jasiobedzki, Piotr; Ng, Ho-Kong; Bondy, Michel; McDiarmid, Carl H.

    2008-04-01

    CBRN Crime Scene Modeler (C2SM) is a prototype 3D modeling system for first responders investigating environments contaminated with Chemical, Biological, Radiological and Nuclear agents. The prototype operates on board a small robotic platform or a hand-held device. The sensor suite includes stereo and high resolution cameras, a long wave infra red camera, chemical detector, and two gamma detectors (directional and non-directional). C2SM has been recently tested in field trials where it was teleoperated within an indoor environment with gamma radiation sources present. The system has successfully created multi-modal 3D models (geometry, colour, IR and gamma radiation), correctly identified location of radiation sources and provided high resolution images of these sources.

  19. Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources

    Science.gov (United States)

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  20. Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources

    NARCIS (Netherlands)

    Brack, Werner; Dulio, Valeria; Ågerstrand, Marlene; Allan, Ian; Altenburger, Rolf; Brinkmann, Markus; Bunke, Dirk; Burgess, Robert M.; Cousins, Ian; Escher, Beate I.; Hernández, Félix J.; Hewitt, L.M.; Hilscherová, Klára; Hollender, Juliane; Hollert, Henner; Kase, Robert; Klauer, Bernd; Lindim, Claudia; Herráez, David López; Miège, Cécil; Munthe, John; O'Toole, Simon; Posthuma, Leo; Rüdel, Heinz; Schäfer, Ralf B.; Sengl, Manfred; Smedes, Foppe; Meent, van de Dik; Brink, van den Paul J.; Gils, van Jos; Wezel, van Annemarie P.; Vethaak, A.D.; Vermeirssen, Etienne; Ohe, von der Peter C.; Vrana, Branislav

    2017-01-01

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for

  1. Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources

    Science.gov (United States)

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  2. USE OF APATITE FOR CHEMICAL STABILIZATION OF SUBSURFACE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William D. Bostick

    2003-05-01

    Groundwater at many Federal and civilian industrial sites is often contaminated with toxic metals at levels that present a potential concern to regulatory agencies. The U.S. Department of Energy (DOE) has some unique problems associated with radionuclides (primarily uranium), but metal contaminants most likely drive risk-based cleanup decisions, from the perspective of human health, in groundwater at DOE and U.S. Environmental Protection Agency (EPA) Superfund Sites include lead (Pb), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), zinc (Zn), selenium (Se), antimony (Sb), copper (Cu) and nickel (Ni). Thus, the regulatory ''drivers'' for toxic metals in contaminated soils/groundwaters are very comparable for Federal and civilian industrial sites, and most sites have more than one metal above regulatory action limits. Thus improving the performance of remedial technologies for metal-contaminated groundwater will have ''dual use'' (Federal and civilian) benefit.

  3. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    Science.gov (United States)

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures.

  4. 化学氧化法处理高铁锰微污染地下水的实验%Experimental Research of Micro-Chemical Oxidation Treatment of High Iron and Manganese Contaminated Groundwater

    Institute of Scientific and Technical Information of China (English)

    赵玉华; 陈芳; 李艳凤; 张春娜

    2012-01-01

    The research is to find a best approach to treat contaminated groundwater with high iron and manganese micro-chemical oxidation. With sodium hypochlorite, ozone as oxidant to treat with high iron and manganese micro-polluted groundwater, by comparing the individual oxidants and oxidant water oxidation combined with post-processing effects,we could determine the best process parameters. The results showed that when the concentration of iron in water is 4 ~5 mg/L,manganese concentration 5~6 mg/L,CODMn concentration 3 mg/L,temperature 10~15℃,pH 7. 0 ~7. 5,use of ozone oxidation,the reaction 30 min, the dosing increased to 7 mg/L, after reaction, in water, iron, manganese, organic standards, ammonia are not up;use of sodium hypochlorite oxidation,the reaction 30 min,the dosage increased to 50 mg/L, manganese and ammonia nitrogen are not up; raw water through ozone combined with sodium hypochlorite oxidation, o-zone dosage is 3 mg/L,sodium hypochlorite dosage 25 mg/L,treated water quality meets standards. Combined ozone and sodium hypochlorite oxidation treatment of high iron and manganese in micro-polluted groundwater,the first dosing of ozone is 3 mg/L,oxidation 15 min,then the dosing of sodium hypochlorite is 25 mg/L in the same oxidation time.%目的 研究高铁锰微污染地下水化学氧化处理的最佳处理方法.方法 以NaClO、O3作氧化剂处理含高铁、锰的微污染地下水,通过对比单独氧化剂氧化与氧化剂联用后处理水质氧化效果,确定出最佳工艺参数.结果 实验结果表明,当水中TFe质量浓度4~5 mg/L,Mn质量浓度5~6 mg/L,CODMn质量浓度3 mg/L,水温10 ~15℃,pH7.0 ~7.5时,采用臭氧氧化,反应30 min,投加量增加到7 mg/L时,反应后水中TFe、Mn、CODMn达标,NH3-N不迭标;采用次氯酸钠氧化,反应30 min,投加量增加到50 mg/L,Mn和NH3-N不达标;原水经过NaClO和O3联合氧化处理,O3投加量3 mg/L,NaClO投加量25 rng/L,处理后水质达标.结论

  5. Chemical Alterations of Pb using Flue Gas Desulfurization Gypsum (FGDG) in two contaminated soils

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data include chemical composition of Pb contaminated soils by adding FGDG as an amendment. The data shows the changes in Pb speciation to sulfur based minerals....

  6. Chemical Contamination at National Wildlife Refuges in the Lower Mississippi River Ecosystem

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An investigation was made into chemical contamination at 26 National Wildlife Refuges in the Lower Mississippi River Ecosystem. Samples of water, sediment, and fish...

  7. National Status and Trends: Bioeffects Program - Southwest Puerto Rico Chemical Contaminant Assessment Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of the project was to characterize the extent and magnitude of chemical contamination in southwest Puerto Rico, as part of a larger effort to link coral...

  8. Raman spectroscopy-based detection of chemical contaminants in food powders

    Science.gov (United States)

    Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary sp...

  9. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    Science.gov (United States)

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and oxidation reactions in soils and understand the impact of soil properties on remediation performance.

  10. Characterization of chemical waste site contamination and its extent using bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Callahan, C.A.; Cline, J.F.; Greene, J.C.; McShane, M.C.; Miller, W.E.; Peterson, S.A.; Simpson, J.C.; Skalski, J.R.

    1984-12-01

    Bioassays were used in a three-phase research project to assess the comparative sensitivity of test organisms to known chemicals, determine if the chemical components in field soil and water samples containing unknown contaminants could be inferred from our laboratory studies using known chemicals, and to investigate kriging (a relatively new statistical mapping technique) and bioassays as methods to define the areal extent of chemical contamination. The algal assay generally was most sensitive to samples of pure chemicals, soil elutriates and water from eight sites with known chemical contamination. Bioassays of nine samples of unknown chemical composition from the Rocky Mountain Arsenal (RMA) site showed that a lettuce seed soil contact phytoassay was most sensitive. In general, our bioassays can be used to broadly identify toxic components of contaminated soil. Nearly pure compounds of insecticides and herbicides were less toxic in the sensitive bioassays than were the counterpart commercial formulations. This finding indicates that chemical analysis alone may fail to correctly rate the severity of environmental toxicity. Finally, we used the lettuce seed phytoassay and kriging techniques in a field study at RMA to demonstrate the feasibility of mapping contamination to aid in cleanup decisions. 25 references, 9 figures, 9 tables.

  11. Food and feed chemical contaminants in the European Union: Regulatory, scientific, and technical issues concerning chemical contaminants occurrence, risk assessment, and risk management in the European Union.

    Science.gov (United States)

    Silano, Marco; Silano, Vittorio

    2017-07-03

    A priority of the European Union is the control of risks possibly associated with chemical contaminants in food and undesirable substances in feed. Following an initial chapter describing the main contaminants detected in food and undesirable substances in feed in the EU, their main sources and the factors which affect their occurrence, the present review focuses on the "continous call for data" procedure that is a very effective system in place at EFSA to make possible the exposure assessment of specific contaminants and undesirable substances. Risk assessment of contaminants in food atances in feed is carried currently in the European Union by the CONTAM Panel of EFSA according to well defined methodologies and in collaboration with competent international organizations and with Member States.

  12. In situ chemical degradation of DNAPLS in contaminated soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gates, D.D.; Korte, N.E.; Siegrist, R.L. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    An emerging approach to in situ treatment of organic contaminants is chemical degradation. The specific processes discussed in this chapter are in situ chemical oxidation using either hydrogen peroxide (H{sub 2}O{sub 2}) or potassium permanganate (KMnO{sub 4}) and in situ dechlorination of halogenated hydrocarbons using zero-valence base metals such as iron. These technologies are primarily chemical treatment processes, where the treatment goal is to manipulate the chemistry of the subsurface environment in such a manner that the contaminants of interest are destroyed and/or rendered non-toxic. Chemical properties that can be altered include pH, ionic strength, oxidation and reduction potential, and chemical equilibria. In situ contaminant destruction processes alter or destroy contaminants in place and are typically applied to compounds that can be either converted to innocuous species such as CO{sub 2} and water, or can be degraded to species that are non-toxic or amenable to other in situ processes (i.e., bioremediation). With in situ chemical oxidation, the delivery and distribution of chemical reagents are critical to process effectiveness. In contrast, published approaches for the use of zero valence base metals suggest passive approaches in which the metals are used in a permeable reaction wall installed in situ in the saturated zone. Both types of processes are receiving increasing attention and are being applied both in technology demonstration and as final solutions to subsurface contaminant problems. 43 refs., 9 figs., 1 tab.

  13. Chemical contamination of free-range eggs from Belgium.

    Science.gov (United States)

    Van Overmeire, I; Pussemier, L; Hanot, V; De Temmerman, L; Hoenig, M; Goeyens, L

    2006-11-01

    The elements manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony, thallium, lead and mercury, and selected persistent organochlorine compounds (dioxins, marker and dioxin-like polychlorinated biphenyls, dichlorodiphenyltricholroethane (DDT) and metabolites as well as other chlorinated pesticides) were analysed in Belgian free-range eggs obtained from hens of private owners and of commercial farms. It was found that eggs from private owners were more contaminated than eggs from commercial farms. The ratios of levels in eggs from private owners to the levels in eggs from commercial farms ranged from 2 to 8 for the toxic contaminants lead, mercury, thallium, dioxins, polychlorinated biphenyls and the group of DDT. DDT contamination was marked by the substantial presence of p,p'-DDT in eggs from private owners in addition to dichlorodiphenyldichloroethylene (p,p-DDE) and dichlorodiphenyl-dichloroethane (p,p'-DDD). It is postulated that environmental pollution is at the origin of the higher contamination of eggs from private owners. Extensive consumption of eggs from private owners is likely to result in toxic equivalent quantity intake levels exceeding the tolerable weekly intake.

  14. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  15. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern

    Science.gov (United States)

    Ismail, Baraem; Reuhs, Bradley L.; Nielsen, S. Suzanne

    The food chain that starts with farmers and ends with consumers can be complex, involving multiple stages of production and distribution (planting, harvesting, breeding, transporting, storing, importing, processing, packaging, distributing to retail markets, and shelf storing) (Fig. 18.1). Various practices can be employed at each stage in the food chain, which may include pesticide treatment, agricultural bioengineering, veterinary drug administration, environmental and storage conditions, processing applications, economic gain practices, use of food additives, choice of packaging material, etc. Each of these practices can play a major role in food quality and safety, due to the possibility of contamination with or introduction (intentionally and nonintentionally) of hazardous substances or constituents. Legislation and regulation to ensure food quality and safety are in place and continue to develop to protect the stakeholders, namely farmers, consumers, and industry. [Refer to reference (1) for information on regulations of food contaminants and residues.

  16. Chemical Source Tracking of Bacterial Contamination Using Micropollutants - A Karst Aquifer Case Study

    Science.gov (United States)

    Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Schiperski, Ferry; Stange, Claudia; Tiehm, Andreas; Scheytt, Traugott

    2015-04-01

    Karst aquifers are important drinking water resources in many parts of the world, though they are well known for their high vulnerability to contamination. Rainfall and snowmelt often trigger temporary contamination of karst water resources. Free-range animal breeding and application of manure on the one hand and sewage leakage or spillage on the other hand are usually regarded as main sources for fecal contamination. But distinction of their respective contributions is difficult. This study investigates the feasibility to track the origin of fecal contamination from the occurrences of indicator bacteria and chemical source indicators in karst spring water. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (combined sewer system) are known to impact water quality at the spring. There is no free-range animal breeding in the catchment but intense application of manure. Following two heavy rainfall events with overflow of the stormwater detention basin, spring water was sampled over several days. Samples were analysed for indicator bacteria (total Coliform, E. coli, Enterococci) and 57 micropollutants, among them cyclamate and metazachlor. For the Gallusquelle catchment the artificial sweetener cyclamate and the herbicide metazachlor have been established as source specific indicators, the former for the sewer system and the latter for cropland. Though recharge in the Gallusquelle catchment is predominantly diffuse, there is a significant portion of direct recharge reflected by distinct breakthrough curves for cyclamate and metazachlor. The breakthrough of indicator bacteria coincides very well with the occurrence of both, cyclamate and metazachlor. However, indicator bacteria cannot be unambiguously tracked back to a specific source.

  17. Development of Chemical Indicators of Groundwater Contamination Near the Carcass Burial Site

    Science.gov (United States)

    Kim, H.; Choi, J.; Kim, M.; Choi, J.; Lee, M.; Lee, H.; Jeon, S.; Bang, S.; Noh, H.; Yoo, J.; Park, S.; Kim, H.; Kim, D.; Lee, Y.; Han, J.

    2011-12-01

    A serious outbreak of foot and mouth disease (FMD) and avian influenza (AI) led to the culling of millions of livestock in South Korea from late 2010 to earlier 2011. Because of the scale of FMD and AI epidemic in Korea and rapid spread of the diseases, mass burial for the disposal of carcass was conducted to halt the outbreak. The improper construction of the burial site or inappropriate management of the carcass burial facility can cause the contamination of groundwater mainly due to the discharges of leachate through the base of disposal pit. The leachate from carcass burial contains by products of carcass decay such as amino acids, nitrate, ammonia and chloride. The presence of these chemical components in groundwater can be used as indicators demonstrating contamination of groundwater with leachate from carcass. The major concern about using these chemical indicators is that other sources including manures, fertilizers and waste waters from human or animal activities already exist in farming area. However, we lack the understanding of how groundwater contamination due to mass burial of carcass can be differentiated from the contamination due to livestock manures which shows similar chemical characteristics. The chemical compositions of the leachate from carcass burial site and the wastewater from livestock manure treatment facilities were compared. The chemical compositions considered include total organic carbon (TOC), total nitrogen (TN), nitrate, organic nitrogen (Organic nitrogen =TN-Ammonium Nitrogen- Nitrate nitrogen), ammonia, chloride, sodium, potassium and amino acids (20 analytes). The ratios of concentrations of the chemical compositions as indicators of contamination were determined to distinguish the sources of contamination in groundwater. Indicators which showed a linear relationship between two factors and revealed a distinct difference between the carcass leachate and livestock manure were chosen. In addition, the background level of the

  18. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  19. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Mehdi [Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz (Iran, Islamic Republic of); Hempel, Stefan, E-mail: hempel.stefan@googlemail.co [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Freie Universitaet Berlin, Institut fuer Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin (Germany); Wubet, Tesfaye; Schaefer, Tina [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany); Savaghebi, Gholamreza [Department of Soil Science Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of); Buscot, Francois [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Ecology, Theodor-Lieser-Strasse 4, 06120 Halle (Germany)

    2010-08-15

    Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. - The molecular diversity of AMF was found to be influenced by a combination of soil heavy metal and other soil chemical parameters.

  20. Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas.

    Science.gov (United States)

    Pozolotina, Vera N; Antonova, Elena V; Bezel, Victor S

    2012-10-01

    We carried out a comparative study of seed progeny taken from the dandelion (Taraxacum officinale s.l.) coenopopulations exposed for a long time to radioactive or chemical contamination originated from the East-Ural radioactive trace zone (EURT) or Nizhniy Tagil metallurgical combine impact zone (NTMC), respectively. Coenopopulations from EURT, NTMC and background areas significantly differ from each other with respect to the qualitative and quantitative composition of allozyme phenes. An analysis of clonal diversity showed the uniqueness of all coenopopulations in terms of their phenogenetics. P-generation seed viability was found to decrease in a similar manner as all types of the industrial stress increased. Studies of F (1)-generation variability in radio- and metal resistance by family analysis showed that seed progeny from EURT impact zone possessed high viability that, however, was accompanied by development of latent injuries resulting in low resistance to additional man-caused impacts. In F (1)-generation originated from NTMC zone, high seed viability was combined with increased resistance to provocative heavy metal and radiation exposure. No significant differences in responses to 'habitual' and 'new' factors, i.e. pre-adaptation effect, were found in samples from the contaminated areas.

  1. High-pressure saline washing of allografts reduces bacterial contamination.

    Science.gov (United States)

    Hirn, M Y; Salmela, P M; Vuento, R E

    2001-02-01

    60 fresh-frozen bone allografts were contaminated on the operating room floor. No bacterial growth was detected in 5 of them after contamination. The remaining 55 grafts had positive bacterial cultures and were processed with three methods: soaking in saline, soaking in antibiotic solution or washing by high-pressure saline. After high-pressure lavage, the cultures were negative in three fourths of the contaminated allografts. The corresponding figures after soaking grafts in saline and antibiotic solution were one tenth and two tenths, respectively. High-pressure saline cleansing of allografts can be recommended because it improves safety by reducing the superficial bacterial bioburden.

  2. Polymeric Materials for Protection Against Chemical and Biological Contaminants

    Science.gov (United States)

    2002-09-30

    the demand for a safe antimicrobial and deodorizing treatment, chemical methods have been proposed using as an antimicrobial component, halamines...in an organic solvent such as carbon disulfide, and a Friedei-Crafts acylation was performed utilizing acetyl chloride and the catalyst aluminum

  3. Approaches to assessing the risk of chemical contamination of Urban Soils

    Science.gov (United States)

    Makarov, O. A.; Makarov, A. A.

    2016-09-01

    The existing approaches to studying the risk of chemical contamination of soils are analyzed. It is noted that the actual and critical loads of contaminants on the soil cover are often compared for estimating these risks. The insufficient use of economic tools and methods for assessing the risk of soil contamination is emphasized. The sanitary-hygienic standards are found out to be exceeded for lead, zinc, cadmium and copper content in soils in six localities, each of 6250 m2 in the area, situated in the industrial and transport zones of Podol'sk and Moscow. The values of actual and maximal permissible damage exerted by the heavy-metal contamination to the studied soils are calculated. The probable damage R and the degree of probable damage implementation (DPDI) are used as the indices of soil contamination risk.

  4. Pleasure Boatyard Soils are Often Highly Contaminated

    OpenAIRE

    Eklund, Britta; Eklund, David

    2014-01-01

    The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (∑16 PAHs), and the seven most common polychlorinated biphenyls (∑7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,48...

  5. Decontamination of multiple casualties who are chemically contaminated: a challenge for acute hospitals.

    Science.gov (United States)

    Clarke, Simon F J; Chilcott, Rob P; Wilson, James C; Kamanyire, Robie; Baker, David J; Hallett, Anthony

    2008-01-01

    Patients who have been contaminated by chemical compounds present a number of difficulties to emergency departments, in particular, the risk of secondary contamination of healthcare staff and facilities. The Department of Health in the United Kingdom has provided equipment to decontaminate chemically contaminated casualties who present at emergency departments. The capacity of this equipment is limited, and although both the ambulance and fire services have equipment to cope with mass casualties at the scene of a chemical incident, there is still the possibility that acute hospitals will be overwhelmed by large numbers of self-presenting patients. The risks and potential consequences of this gap in resilience are discussed and a number of possible practical solutions are proposed.

  6. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  7. Estimating areas threatened by contamination from leaking chemical warfare agents dumped into the Baltic Sea

    Science.gov (United States)

    Jakacki, Jaromir; Przyborska, Anna; Andrzejewski, Jan

    2017-04-01

    Approximately 60,000 tons of chemical munitions were dumped into the Baltic Sea after World War II (the exact amount is unknown and some sources estimate it as more than 200,000 tons). Dumped munitions still pose a risk of leakage caused by erosion and corrosion, and it is important to know the danger areas. Because of wide dispersion of the dumped munitions, modelling is only one tool that could provide wide image of physical state of the sea at all locations and which could also be used for analysing contamination during a potential leakage. Obviously, it is possible to take samples at each dumpsite, but modelling also allows to develop possible scenarios of leakages under specific physical conditions. For the purpose of analysis of potential leakage a high-resolution model (HRM) of the contamination will be embedded in the hydrodynamic model (HM) of the Baltic Sea. The HRM will use data from general circulation model results of estimated resolution of nearly 2 km. The Parallel Ocean Program will be implemented as the HM for the whole Baltic Sea. Atmospheric data from regional implementation of the Weather Research and Forecasting System (WRF) have been used as the top boundary conditions of the HM, and sea level data from Gothenburg had been included into model barotropic equation as lateral boundary conditions. Passive tracer will represent the contamination in the HRM and horizontal resolution of the HRM will be close to 50 meters. Passive tracers will also be implemented in the HM - for comparison of the results. For proper representation of potential leakage of chemical warfare agents the HRM will have included diffusion and advection processes. The results from the HM are going to be interpolated into the HRM domain and then integration will be performed. Based on the implemented simulations, estimated contaminated area and its comparison from the HRM as well as from the HM will be presented. The research work was fund by the European Union (European

  8. The problem of living in a world contaminated with chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, R.L. [Univ. of Illinois, Urbana (United States)

    1990-12-31

    The proliferation of xenobiotic chemicals in the global environment poses living problems for each of us aboard {open_quotes}spaceship earth.{close_quotes} Seven case studies are presented that illustrate the magnitude of the problem that can result from waiting to identify toxic hazards until there have been decades of {open_quotes}human guinea pig{close_quotes} exposure. 25 refs., 5 tabs.

  9. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL(-1)) and 13 (553±1050ngL(-1)) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food.

    Science.gov (United States)

    Lim, Min-Cheol; Kim, Young-Rok

    2016-09-28

    The detection of food pathogens is an important aspect of food safety. A range of detection systems and new analytical materials have been developed to achieve fast, sensitive, and accurate monitoring of target pathogens. In this review, we summarize the characteristics of selected nanomaterials and their applications in food, and place focus on the monitoring of biological and chemical contaminants in food. The unique optical and electrical properties of nanomaterials, such as gold nanoparticles, nanorods, quantum dots, carbon nanotubes, graphenes, nanopores, and polydiacetylene nanovesicles, are closely associated with their dimensions, which are comparable in scale to those of targeted biomolecules. Furthermore, their optical and electrical properties are highly dependent on local environments, which make them promising materials for sensor development. The specificity and selectivity of analytical nanomaterials for target contaminants can be achieved by combining them with various biological entities, such as antibodies, oligonucleotides, aptamers, membrane proteins, and biological ligands. Examples of nanomaterial-based analytical systems are presented together with their limitations and associated developmental issues.

  11. Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential.

    Science.gov (United States)

    Alexander, Jonathan T; Hai, Faisal I; Al-Aboud, Turki M

    2012-11-30

    Trace organic contaminants have become an increasing cause of concern for governments and water authorities as they attempt to respond to the potential challenges posed by climate change by implementing sustainable water cycle management practices. The augmentation of potable water supplies through indirect potable water reuse is one such method currently being employed. Given the uncertainty surrounding the potential human health impacts of prolonged ingestion of trace organic contaminants, it is vital that effective and sustainable treatment methods are utilized. The purpose of this article is to provide a comprehensive literature review of the performance of the chemical coagulation process in removing trace organic contaminants from water. This study evaluated the removal data collated from recent research relating to various trace organic contaminants during the coagulation process. It was observed that there is limited research data relating to the removal of trace organic contaminants using coagulation. The findings of this study suggest that there is a gap in the current research investigating the potential of new types of coagulants and exploring coagulation-based hybrid processes to remove trace organic contaminants from water. The data analysed in this study regarding removal efficiency suggests that, even for the significantly hydrophobic compounds, hydrophobicity is not the sole factor governing removal of trace organic contaminants by coagulation. This has important implications in that the usual practice of screening coagulants based on turbidity (suspended solid) removal proves inadequate in the case of trace organic contaminant removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Improved Understanding of In Situ Chemical Oxidation. Technical Objective I: Contaminant Oxidation Kinetics Contaminant Oxidation Kinetics

    Science.gov (United States)

    2009-05-01

    identified during reactions of SO4•− with alkenes by electron spin resonance (Chawla and Fessenden , 1975; Koltzenburg et al., 1982; Davies and...reactions of organic chemicals in water. Environ. Toxicol. Chem., 22, 1743-1754. 13. Chawla, O.P., Fessenden , R.W., 1975. Electron spin resonance and pulse

  13. Artisanal alcohol production in Mayan Guatemala: Chemical safety evaluation with special regard to acetaldehyde contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kanteres, Fotis [Centre for Addiction and Mental Health (CAMH), 33 Russell Street, ARF 2035, Toronto, ON, Canada, M5S 2 S1 (Canada); Rehm, Juergen [Centre for Addiction and Mental Health (CAMH), 33 Russell Street, ARF 2035, Toronto, ON, Canada, M5S 2 S1 (Canada); Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON, Canada, M5T 3 M7 (Canada); Institute for Clinical Psychology and Psychotherapy, TU Dresden, Chemnitzer Strasse 46, D-01187 Dresden (Germany); Lachenmeier, Dirk W., E-mail: Lachenmeier@web.de [Chemisches und Veterinaeruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe (Germany)

    2009-11-01

    There is a lack of knowledge regarding the composition, production, distribution, and consumption of artisanal alcohol, particularly in the developing world. In Nahuala, an indigenous Mayan municipality located in highland Guatemala, heavy alcohol consumption appears to have had a significant negative impact on health, a major role in cases of violence and domestic abuse, and a link to street habitation. Cuxa, an artisanally, as well as commercially produced sugarcane alcohol, is widely consumed by heavy drinkers in this community. Cuxa samples from all distribution points in the community were obtained and chemically analyzed for health-relevant constituents and contaminants including methanol, acetaldehyde, higher alcohols, and metals. From those, only acetaldehyde was confirmed to be present in unusually high levels (up to 126 g/hl of pure alcohol), particularly in samples that were produced clandestinely. Acetaldehyde has been evaluated as 'possibly carcinogenic' and has also been identified as having significant human exposure in a recent risk assessment. This study explores the reasons for the elevated levels of acetaldehyde, through both sampling and analyses of raw and intermediary products of cuxa production, as well as interviews from producers of the clandestine alcohol. For further insight, we experimentally produced this alcohol in our laboratory, based on the directions provided by the producers, as well as materials from the town itself. Based on these data, the origin of the acetaldehyde contamination appears to be due to chemical changes induced during processing, with the major causative factors consisting of poor hygiene, aerobic working conditions, and inadequate yeast strains, compounded by flawed distillation methodology that neglects separation of the first fractions of the distillate. These results indicate a preventable public health concern for consumers, which can be overcome through education about good manufacturing practices

  14. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs.

    Science.gov (United States)

    Kraus, Johanna M; Walters, David M; Wesner, Jeff S; Stricker, Craig A; Schmidt, Travis S; Zuellig, Robert E

    2014-09-16

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  15. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs

    Science.gov (United States)

    Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.

    2014-01-01

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  16. Chemical contamination assessment of Gulf of Mexico oysters in response to hurricanes Katrina and Rita.

    Science.gov (United States)

    Johnson, W E; Kimbrough, K L; Lauenstein, G G; Christensen, J

    2009-03-01

    Hurricane Katrina made landfall on August 29, 2005 and caused widespread devastation along the central Gulf Coast states. Less than a month later Hurricane Rita followed a similar track slightly west of Katrina's. A coordinated multi-agency response followed to collect water, sediment and tissue samples for a variety of chemical, biological and toxicological indicators. The National Oceanic and Atmospheric Administration's National Status and Trends Program (NS&T) participated in this effort by measuring chemical contamination in sediment and oyster tissue as part of the Mussel Watch Program, a long-term monitoring program to assess spatial and temporal trends in a wide range of coastal pollutants. This paper describes results for contaminants measured in oyster tissue collected between September 29 and October 10, 2005 and discusses the results in the context of Mussel Watch and its 20-year record of chemical contamination in the region and the nation. In general, levels of metals in oyster tissue were higher then pre- hurricane levels while organic contaminants were at or near record lows. No contaminant reported here exceeded the FDA action level for food safety.

  17. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges Using Chemical:Gene Interactions in Caged Fish.

    Science.gov (United States)

    Perkins, Edward J; Habib, Tanwir; Escalon, Barbara L; Cavallin, Jenna E; Thomas, Linnea; Weberg, Matthew; Hughes, Megan N; Jensen, Kathleen M; Kahl, Michael D; Villeneuve, Daniel L; Ankley, Gerald T; Garcia-Reyero, Natàlia

    2017-08-01

    We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.

  18. Consumer perceptions of risks of chemical and microbiological contaminants associated with food chains: A cross-national study

    NARCIS (Netherlands)

    Kher, S.V.; Jonge, de J.; Wentholt, M.T.A.; Deliza, R.; Cunha de Andrade, J.; Cnossen, H.J.; Lucas Luijckx, N.B.; Frewer, L.J.

    2013-01-01

    The development and implementation of effective systems to identify vulnerabilities in food chains to chemical and microbiological contaminants must take account of consumer priorities and preferences. The present investigation attempted to understand consumer perceptions associated with chemical an

  19. Prenatal exposure to environmental chemical contaminants and asthma and eczema in school-age children

    DEFF Research Database (Denmark)

    Smit, Lidwien A M; Lenters, Virissa; Høyer, Birgit Bjerre;

    2015-01-01

    BACKGROUND: Emerging evidence suggests that prenatal or early-life exposures to environmental contaminants may contribute to an increased risk of asthma and allergies in children. We aimed to the explore associations of prenatal exposures to a large set of environmental chemical contaminants...... with asthma and eczema in school-age children. METHODS: We studied 1024 mother-child pairs from Greenland and Ukraine from the INUENDO birth cohort. Data were collected by means of an interview-based questionnaire when the children were 5-9 years of age. Questions from the ISAAC study were used to define.......41-0.99). In Greenlandic children, a negative association of PC4 (organochlorines) with ever eczema (OR 0.78, 0.61-0.99) was found. CONCLUSIONS: We found limited evidence to support a link between prenatal exposure to environmental chemical contaminants and childhood asthma and eczema....

  20. A chemical additive to limit potential bacterial contamination in chill tanks

    Science.gov (United States)

    Broiler carcasses with different types and numbers of bacteria are commonly chilled together in an ice water bath which may lead to transfer of unwanted bacteria from carcass to carcass. Historically chill tanks have been chlorinated to help prevent cross contamination and recently other chemical a...

  1. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Granby, Kit; Eriksen, Folmer Damsted;

    2014-01-01

    With aim to provide information on chemical contaminants in byproducts in animal feed, the data from an official control by the Danish Plant Directorate during 1998-2009, were reviewed and several samples of citrus pulp and dried distillers grains with solubles (DDGS) were additionally collected ...

  2. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...

  3. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; McKnight, Ursula S.; Sonne, Anne Thobo

    2016-01-01

    Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity ...

  4. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  5. Characterization and assessment of contaminated soil and groundwater at an organic chemical plant site in Chongqing, Southwest China.

    Science.gov (United States)

    Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin

    2016-04-01

    Contamination from organic chemical plants can cause serious pollution of soil and groundwater ecosystems. To characterize soil contamination and to evaluate the health risk posed by groundwater at a typical organic chemical plant site in Chongqing, China, 91 soil samples and seven groundwater samples were collected. The concentrations of different contaminants and their three-dimensional distribution were determined based on the 3D-krige method. Groundwater chemistry risk index (Chem RI) and cancer risk were calculated based on TRIAD and RBCA models. The chemistry risk indices of groundwater points SW5, SW18, SW22, SW39, SW52, SW80, and SW82 were 0.4209, 0.9972, 0.9324, 0.9990, 0.9991, 1.0000, and 1.0000, respectively, indicating that the groundwater has poor environmental status. By contrast, the reference Yangtse River water sample showed no pollution with a Chem RI of 0.1301. Benzene and 1,2-dichloroethane were the main contaminants in the groundwater and were responsible for the elevated cancer risk. The cumulative health risk of groundwater points (except SW5 and SW18) were all higher than the acceptable baselines of 10(-6), which indicates that the groundwater poses high cancer risk. Action is urgently required to control and remediate the risk for human health and groundwater ecosystems.

  6. A new chemical formulation for control of dental unit water line contamination: An 'in vitro' and clinical 'study'

    Directory of Open Access Journals (Sweden)

    Dolci Giovanni

    2002-02-01

    Full Text Available Abstract Background Water delivered by dental units during routine dental practice is highly contaminated. The aim of this study is to evaluate the efficacy of a new chemical solution flushed through Dental Unit Water Lines (DUWL for the control of contamination inside dental units. Materials and methods Six old dental units equipped with a device designed to automatically flush disinfecting solutions through the water system (Castellini Autosteril were selected. Water samples from DUWL effluents were collected in each dental unit for 10 randomly selected days, before and after a 5 minute DUWL disinfecting cycle with TetraAcetylEthileneDiamine (TAED and persalt (Ster4spray produced by Farmec spa, and distributed by Castellini spa. Water samples were plated in R2A Agar and cultured at room temperature for 7 days, and the total number of heterotrophic microorganisms counted and expressed in Log10 CFU/mL A general linear model was fitted and multiple regression ANOVA for repeated measures was used for the statistical analysis. Results The mean contamination in DUWL effluent at baseline was 5.45 ± 0.35 CFU/mL (range 4.79 to 5.93 CFU/mL. When water samples were tested "in vitro" against the chemical, no growth of heterotrophic bacteria was detected after a 5 minute contact in any of the water samples tested. After undergoing a 5 minute disinfecting cycle with the chemical, DUWL mean contamination in water effluents was 2.01 ± 0.32 CFU/mL (range 1.30 to 2.74 CFU/mL (significant difference with respect to baseline. Conclusions An inbetween patient disinfecting procedure consisting of flushing DUWL with TAED and persalt equivalent to 0.26% peracetic acid could be useful in routine dental practice for cross-contamination control.

  7. Chemical properties and toxicity of soils contaminated by mining activity.

    Science.gov (United States)

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to chemical analyses in the assessment of quality of soils as well as in properly managing them.

  8. Chemical contamination of soils in the New York City area following Hurricane Sandy.

    Science.gov (United States)

    Mandigo, Amy C; DiScenza, Dana J; Keimowitz, Alison R; Fitzgerald, Neil

    2016-10-01

    This paper presents a unique data set of lead, arsenic, polychlorinated biphenyl (PCB), and polycyclic aromatic hydrocarbon (PAH) concentrations in soil samples collected from the metropolitan New York City area in the aftermath of Hurricane Sandy. Initial samples were collected by citizen scientists recruited via social media, a relatively unusual approach for a sample collection project. Participants in the affected areas collected 63 usable samples from basements, gardens, roads, and beaches. Results indicate high levels of arsenic, lead, PCBs, and PAHs in an area approximately 800 feet south of the United States Environmental Protection Agency (US EPA) Superfund site at Newtown Creek. A location adjacent to the Gowanus Canal, another Superfund site, was found to have high PCB concentrations. Areas of high PAH contamination tended to be near high traffic areas or next to sites of known contamination. While contamination as a direct result of Hurricane Sandy cannot be demonstrated conclusively, the presence of high levels of contamination close to known contamination sites, evidence for co-contamination, and decrease in number of samples containing measureable amounts of semi-volatile compounds from samples collected at similar locations 9 months after the storm suggest that contaminated particles may have migrated to residential areas as a result of flooding.

  9. Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rainer, D.; Michaelsen, G.S.

    1980-03-01

    In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

  10. A Raman chemical imaging system for detection of contaminants in food

    Science.gov (United States)

    Chao, Kaunglin; Qin, Jianwei; Kim, Moon S.; Mo, Chang Yeon

    2011-06-01

    This study presented a preliminary investigation into the use of macro-scale Raman chemical imaging for the screening of dry milk powder for the presence of chemical contaminants. Melamine was mixed into dry milk at concentrations (w/w) of 0.2%, 0.5%, 1.0%, 2.0%, 5.0%, and 10.0% and images of the mixtures were analyzed by a spectral information divergence algorithm. Ammonium sulfate, dicyandiamide, and urea were each separately mixed into dry milk at concentrations of (w/w) of 0.5%, 1.0%, and 5.0%, and an algorithm based on self-modeling mixture analysis was applied to these sample images. The contaminants were successfully detected and the spatial distribution of the contaminants within the sample mixtures was visualized using these algorithms. Although further studies are necessary, macro-scale Raman chemical imaging shows promise for use in detecting contaminants in food ingredients and may also be useful for authentication of food ingredients.

  11. Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L.

    Science.gov (United States)

    Liu, Jianv; Zhou, Qixing; Wang, Song

    2010-07-01

    The popular ornamental plant Calendula officinalis L was studied for its potential application in the phytoremediation of cadmium (Cd)-contaminated soils. Enhancements to the Cd accumulation by the application of sodium dodecyl sulfate (SDS), ethylenediaminetriacetic acid (EDTA) and ethylenegluatarotriacetic acid (EGTA) to the soil were investigated. Under these chemically enhanced treatments, EDTA was observed to be toxic to the plants leading to retarded growth. However, the application of SDS and/or EGTA was shown to result in significantly increased plant biomass (p Calendula officinalis L. for applications of phytoremediation of Cd-contaminated sites.

  12. Level of chemical and microbiological contaminations in chili bo (paste).

    Science.gov (United States)

    Zaini, Nurul Aqilah Mohd; Harith, Hanis Hazeera; Olusesan, Akanbi Taiwo; Zulkifli, Anwarul Hidayah; Bakar, Fatimah Abu; Osman, Azizah; Hamid, Azizah Abd; Saari, Nazamid

    2010-03-01

    The objective of this study was to determine the level of preservatives and microbiological loads in various brands of commercially available chili bo (paste). Fifteen different brands of chili bo obtained from the local market and hypermarkets were analyzed for pH, moisture and benzoic acid content, microbiological loads (aerobic, anaerobic, aerobic spores, and fungi), and thermophilic microorganisms. Results showed that both moisture content and pH vary among samples. The concentrations of benzoic acid detected in chili bo were found to be in the range of 537 to 5,435 mg/kg. Nine of fifteen brands were found to exceed the maximum level permitted by the Malaysian Food Law in accordance with the Codex Alimentarius (1,000 mg/kg for benzoic acid). An apparent correlation between benzoic acid concentration and microbiological loads present in the chili bo was observed. The microbiological loads were found to be relatively low in the end products containing high amounts of benzoic acid. The heat-resistant (70 to 80 degrees C) microorganisms present in chili bo were identified as Ochrobacterum tritici, Stenotrophomonas rhizophila, Microbacterium maritypicum, Roseomonas spp., CDC group II-E subgroup A, Flavimonas oryzihabitans, and Pseudomonas aeruginosa, with M. maritypicum being the most frequently found (in 9 of 15 samples) microorganism. Most of these identified microorganisms were not known to cause foodborne illnesses.

  13. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    Science.gov (United States)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  14. A simple chemical method reduces ochratoxin A in contaminated cocoa shells.

    Science.gov (United States)

    Amézqueta, S; González-Peñas, E; Lizarraga, T; Murillo-Arbizu, M; López de Cerain, A

    2008-07-01

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium species, which contaminates cocoa among other food commodities. It has been previously demonstrated that the toxin is concentrated in cocoa shells. The aim of this study was to assay a simple chemical method for ochratoxin A reduction from naturally contaminated cocoa shells. In order to determine the efficiency of the method, a high-performance liquid chromatography method with fluorescence detection was set up beforehand and validated. Ochratoxin A was extracted from cocoa shells with methanol-3% sodium bicarbonate solution and then purified with immunoaffinity columns. The recovery attained was 88.7% (relative standard deviation = 6.36%) and the limits of detection and quantification were 0.06 and 0.2 kg/kg, respectively. For decontamination experiments, the solvent extractor ASE 200 was used. First, aqueous solutions of 2% sodium bicarbonate and potassium carbonate were compared under the same conditions (1,500 lb/in2 at 40 degrees C for 10 min). Higher ochratoxin A reduction was obtained with potassium carbonate (83 versus 27%). Then, this salt was used under different conditions of pressure, temperature, and time. The greatest ochratoxin A reduction was achieved with an aqueous potassium carbonate solution (2%), at 1,000 lb/in2 at 90 degrees C for 10 min. This method could probably be applicable to the cocoa industry because it is fast and relatively economic. From the point of view of human health, the use of potassium carbonate, partially eliminated by rinsing the sample with water, does not likely represent a risk for human health.

  15. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    Science.gov (United States)

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  16. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality......Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production...... the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs...

  17. Effect of chemically contaminated marine sediment on naupliar production of the marine harpacticoid copepod, Tigriopus californicus

    Energy Technology Data Exchange (ETDEWEB)

    Misitano, D.A.; Schiewe, M.H. (National Oceanic and Atmospheric Administration, Seattle, WA (USA))

    1990-04-01

    There is a growing body of evidence indicating that chemically contaminated sediments in urban bays and estuaries pose a significant threat to the productivity of these important marine habitats. Particularly at risk are benthic species which live in direct contact with the sediment. However, nondemersal species are also at risk via the food chain and by direct contact with resuspended sediment particulates. There are substantial data on the lethal and sublethal effects of aqueous contaminants on a variety of aquatic species. In contrast, there is very limited information on the toxic effects of the generally water-insoluble sediment-associated contaminants. In the present communication the authors report a series of experiments in which the harpacticoid copepod, Tigriopus californicus, was exposed to sediments from urban and nonurban bays, and reproductive success was evaluated. This species was selected for study as it is widely distributed along the West Coast of North America, and as a group, copepods are an important component of the marine food chain. In addition, the relatively short reproductive life span of this species makes it particularly amenable for studies of reproductive success. Here, the authors report reduced and irregular naupliar production as a consequence of exposure to chemically contaminated sediments from urban waterways.

  18. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    Science.gov (United States)

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.

  19. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  20. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  1. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates.

    Science.gov (United States)

    Rasmussen, Jes J; McKnight, Ursula S; Sonne, Anne Th; Wiberg-Larsen, Peter; Bjerg, Poul L

    2016-02-01

    Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown ecotoxicity, but they are continuously discharged into the stream by way of a long-lasting source generating long-term chronic exposure of the stream biota. Our results show that taxonomical density and diversity of especially sediment dwelling taxa were reduced by >50 % at the sampling sites situated in the primary inflow zone of the contaminated GW. Moreover, macroinvertebrate communities at these sampling sites could be distinguished from those at upstream control sites and sites situated along a downstream dilution gradient using multidimensional scaling. Importantly, macroinvertebrate indices currently used did not identify this impairment, thus underpinning an urgent need for developing suitable tools for the assessment of ecological effects of contaminated sites in streams.

  2. Bioassessment of contaminant transport and distribution in aquatic ecosystems by chemical analysis of burrowing mayflies (Hexagenia)

    Science.gov (United States)

    Steingraeber, M.T.; Wiener, J.G.

    1995-01-01

    Burrowing mayfly nymphs (Ephemeroptera) inhabit and ingest fine-grained sediments and detritus that may be enriched with metals and persistent organic compounds. The burrowing nymphs can externally adsorb and internally assimilate these contaminants, providing a link for the food chain transfer of potentially toxic substances from sediments to organisms in higher trophic levels. The emergent adults are short-lived and do not feed, thus their gut contents do not contribute greatly to their total contaminant burden. These characteristics make Hexagenia spp. And certain other burrowing mayflies useful for assessing ecosystem contamination. General protocols are presented for the collection, processing and analysis of emergent mayflies to assess the spatial distribution and bioaccumulation of sediment-associated contaminants in aquatic ecosystems. Two essential components of this bioassessment approach are a network of on-site volunteers with the materials and instructions needed to correctly collect and store samples and quality assurance procedures to estimate the accuracy of chemical analyses. The utility of this approach is demonstrated with an example of its application to the Upper Mississippi River (USA). Determination of cadmium, mercury and polychlorinated biphenyl congeners in emergent Hexagenia bilineata from a 1250 km reach of this river revealed (1) several source areas of contaminants and (2) distinct patterns in the bioaccumulation (and apparent sediment-associated transport) of each residue on both small and large spatial scales.

  3. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  4. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  5. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination.

    Science.gov (United States)

    Chen, Huanwen; Zheng, Jian; Zhang, Xie; Luo, Mingbiao; Wang, Zhichang; Qiao, Xiaolin

    2007-08-01

    Ambient mass spectrometry, pioneered with desorption electrospray ionization (DESI) technique, is of increasing interest in recent years. In this study, a corona discharge ionization source is adapted for direct surface desorption chemical ionization of compounds on various surfaces at atmospheric pressure. Ambient air, with about 60% relative humidity, is used as a reagent to generate primary ions such as H(3)O(+), which is then directed to impact the sample surface for desorption and ionization. Under experimental conditions, protonated or deprotonated molecules of analytes present on various samples are observed using positive or negative corona discharge. Fast detection of trace amounts of analytes present in pharmaceutical preparations, viz foods, skins and clothes has been demonstrated without any sample pretreatment. Taking the advantage of the gasless setup, powder samples such as amino acids and mixtures of pharmaceutical preparations are rapidly analyzed. Impurities such as sudan dyes in tomato sauce are detected semiquantitatively. Molecular markers (e.g. putrescine) for meat spoilage are successfully identified from an artificially spoiled fish sample. Chemical warfare agent stimulants, explosives and herbicides are directly detected from the skin samples and clothing exposed to these compounds. This provides a detection limit of sub-pg (S/N > or = 3) range in MS2. Metabolites and consumed chemicals such as glucose are detected successfully from human skins. Conclusively, surface desorption atmospheric pressure chemical ionization (DAPCI) mass spectrometry, without toxic chemical contamination, detects various compounds in complex matrices, showing promising applications for analyses of human related samples.

  6. Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China.

    Science.gov (United States)

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-12-01

    Heavy metals in urban soils may pose risks to both urban environment and human health. However, only a fraction of heavy metals in soil is mobile and/or bioavailable for plant uptake and human ingestion. This study evaluates the chemical fraction and potential mobility and bioaccessibility of heavy metals (Cd, Cr, Cu, Pb, and Zn) in the contaminated urban topsoils from steel-industrial city (Anshan), Northeastern China. Chemical forms of heavy metals in soils are determined using Tessier sequential extraction technique. The toxicity characteristic leaching procedure (TCLP), ethylenediaminetetraacetic acid (EDTA), and US Pharmacopeia methodology (USPM) are used to determine the operationally defined potentially mobile and bioaccessible metal fractions, respectively. Sequential extraction results show that Cd has the highest percentage of exchangeable form, whereas Cr primarily exists in residual form. The non-residual fraction of heavy metals increases in the order of Cr metals evaluated by TCLP test indicates that Cd, Zn, Cu, and Pb have much higher mobile than Cr. The bioavailability of heavy metals determined by EDTA extraction decreases in the order of Pb > Cu ≅ Zn > Cd > Cr. The order of bioaccessibility determined by USPM extraction is Pb = Cu > Zn > Cd > Cr. The Cr exhibits the lowest leachability and bioaccessibility among the investigated metals. The Pb has the highest bioaccessibility, indicating higher potential hazard for the human health. There are significant relationships between the EDTA- and USPM-extractable metals (Cd, Cu, Pb, and Zn) and the sum of first three steps of sequential extraction. Highly significant correlation is found between amounts of EDTA-extractable Cd, Cu, Pb, and Zn and USPM-extractable metals. The result suggests that EDTA extraction can be helpful to estimate the bioaccessibility of heavy metals for human ingestion. Introduction of mobile and human bioaccessible concentrations into risk assessments can give more realistic

  7. REMOVAL OF MERCURY FROM CONTAMINATED SOILS AT THE PAVLODAR CHEMICAL PLANT.

    Energy Technology Data Exchange (ETDEWEB)

    KHRAPUNOV, V. YE.; ISAKOVA, R.A.; LEVINTOV, B.L.; KALB, P.D.; KAMBEROV, I.M.; TREBUKHOV, A.

    2004-09-25

    Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process. The process can operate at temperatures from 250-500 C and pressures of 0.13kPa-1.33kPa. Following vaporization, the mercury vapor is cooled, condensed and concentrated back to liquid elemental mercury. It will then be treated using the Sulfur Polymer Stabilization/Solidification process developed at Brookhaven National Laboratory as described in a companion paper at this conference. The overall project objectives include chemical and physical characterization of the contaminated soils, study of the influence of the soil's physical-chemical and hydro dynamical characteristics on process parameters, and laboratory testing to optimize the mercury sublimation rate when heating in vacuum. Based on these laboratory and pilot-scale data, a full-scale production process will be designed for testing. This paper describes the soil characterization. This work is being sponsored by the International Science and Technology Center.

  8. Experimental study on trace chemical contaminant generation rates of human metabolism in spacecraft crew module

    Science.gov (United States)

    Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi

    2012-12-01

    Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.

  9. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems.

    Science.gov (United States)

    Maruya, Keith A; Dodder, Nathan G; Mehinto, Alvine C; Denslow, Nancy D; Schlenk, Daniel; Snyder, Shane A; Weisberg, Stephen B

    2016-07-01

    The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC.

  10. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources.

    Science.gov (United States)

    Brack, Werner; Dulio, Valeria; Ågerstrand, Marlene; Allan, Ian; Altenburger, Rolf; Brinkmann, Markus; Bunke, Dirk; Burgess, Robert M; Cousins, Ian; Escher, Beate I; Hernández, Félix J; Hewitt, L Mark; Hilscherová, Klára; Hollender, Juliane; Hollert, Henner; Kase, Robert; Klauer, Bernd; Lindim, Claudia; Herráez, David López; Miège, Cécil; Munthe, John; O'Toole, Simon; Posthuma, Leo; Rüdel, Heinz; Schäfer, Ralf B; Sengl, Manfred; Smedes, Foppe; van de Meent, Dik; van den Brink, Paul J; van Gils, Jos; van Wezel, Annemarie P; Vethaak, A Dick; Vermeirssen, Etienne; von der Ohe, Peter C; Vrana, Branislav

    2017-01-15

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.

  11. [Health risk analysis of VOC/SVOC contaminated soil in an abandoned chemical plant].

    Science.gov (United States)

    Guo, Guan-lin; Wang, Shi-jie; Shi, Lie-yan; Li, Hui-ying; Han, Chun-mei; Gu, Qing-bao; Cao, Yun-zhe; Li, Fa-sheng

    2010-02-01

    Environmental health risk of contaminated soil in a typical abandoned industry was analyzed based on the full field investigation according to the site assessment procedure of American Society for Testing and Material (ASTM). Parameters were modified with the combination of Chinese crowd character and site specifics. Results indicated that the site was mainly contaminated with volatile and semi-volatile organic compounds in soil profiles. And the contents of carbon tetrachloride, tetrachloroethylene, pentachloroethane, hexachlorobutadiene, hexachloroethane and hexachlorobenzene in soil samples were exceeded the national environmental standard. These contaminants ranked the carcinogenic risks and hazard quotients more than 10(-2) and 1 in some locations with the exposure by oral ingestion, dermal contact and inhalation. Contaminants in this site had resulted in the high health risks to the residents and surrounding communities. The risk should be reduced to the health acceptable level by the treatment and remediation before further development for residential and commercial utilization.

  12. Contaminant and nutrient concentrations of natural ingredient rat and mouse diet used in chemical toxicology studies.

    Science.gov (United States)

    Rao, G N; Knapka, J J

    1987-08-01

    The NIH-07 open formula natural ingredient rat and mouse ration is the standard diet for chemical toxicity and carcinogenicity studies conducted for the National Toxicology Program (NTP). Contaminant and nutrient concentrations were determined in 2 to 94 lots of this diet used in the NTP toxicology studies. All nutrient concentrations were equivalent to or greater than the requirements for rats and mice as set forth by the National Research Council. Aflatoxins, Hg, chlorinated hydrocarbons except methoxychlor, organophosphates except malathion, estrogenic activity, and Salmonella sp. were not present at the detectable levels. Fluorine, As, Cd, Pb, Se, N-nitrosodimethylamine, N-nitrosopyrrolidine, N-nitrosomorpholine, nitrate, nitrite, butylated hydroxyanisole, butylated hydroxytoluene, ethylene dibromide, methoxychlor, malathion, and trypsin inhibitor activity were present at or above the detectable levels. Five lots of diet had nitrosamine content of 100 to 273 ppb and 7 lots had 2.08 to 3.37 ppm of Pb. All other lots of NIH-07 diet used for NTP toxicology studies contained low levels of the contaminants. After determination of the contaminant concentrations in the 94 lots of diet and the contaminant concentrations in natural ingredients used in formulating NIH-07 diet, maximum allowable levels of contaminants were established and a flexible scoring system for acceptability of each lot of diet for chemical toxicology studies was developed. By prescreening ingredients such as fish meal for heavy metals and nitrosamines, and applying the flexible scoring system proposed, more than 95% of the lots of NIH-07 diet produced during the last 3 years had scores of greater than or equal to 95 out of 100 points and were considered acceptable for toxicology studies.

  13. Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species.

    Science.gov (United States)

    Aguirre-Rubí, Javier R; Luna-Acosta, Andrea; Etxebarría, Nestor; Soto, Manu; Espinoza, Félix; Ahrens, Michael J; Marigómez, Ionan

    2017-05-24

    This paper aims to contribute to the use of mangrove cupped oyster, Crassostrea rhizophorae, as a biomonitor species for chemical contamination assessment in mangrove-lined Caribbean coastal systems. Sampling was carried out in eight localities (three in Nicaragua and five in Colombia) with different types and levels of contamination. Oysters were collected during the rainy and dry seasons of 2012-2013 and the tissue concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs) were determined. Low tissue concentrations of metals (except Hg) and PAHs; moderate-to-high tissue concentrations of Hg, hexachlorocyclohexanes (HCHs), and dichlorodiphenyl-trichloroethanes (DDTs); detectable levels of chlorpyrifos, polychlorinated biphenyls (PCBs) (mainly CB28, CB118, CB138 and CB 153) and brominated diphenyl ethers 85 (BDE85); and negligible levels of musks were recorded in Nicaraguan oysters. A distinct profile of POPs was identified in Colombia, where the tissue concentrations of PCBs and synthetic musk fragrances were low to moderate, and Ag, As, Cd, Pb, and PAHs ranged from moderate to extremely high. Overall, the values recorded for HCHs, DDTs and PCBs in Nicaraguan mangrove cupped oysters greatly exceeded the reference values in tissues of C. rhizophorae from the Wider Caribbean Region, whereas only the levels of PCBs were occasionally surpassed in Colombia. Different contaminant profiles were distinguished between oysters from Nicaragua and Colombia in radar plots constructed using the main groups of contaminants (metals, PAHs, musks, PCBs, and organochlorine pesticides (OCPs)). Likewise, integrated pollution indices revealed differences in the levels of contaminants. Moreover, the profiles and levels in oyster tissues also varied with season. Thus, principal component analysis clearly discriminated Nicaraguan and Colombian localities and, especially in Colombia, seasonal trends in chemical contamination and differences

  14. Chemical interactions in complex matrices: Determination of polar impurities in biofuels and fuel contaminants in building materials

    Science.gov (United States)

    Baglayeva, Ganna

    The solutions to several real-life analytical and physical chemistry problems, which involve chemical interactions in complex matrices are presented. The possible interferences due to the analyte-analyte and analyte-matrix chemical interactions were minimized on each step of the performed chemical analysis. Concrete and wood, as major construction materials, typically become contaminated with fuel oil hydrocarbons during their spillage. In the catastrophic scenarios (e.g., during floods), fuel oil mixes with water and then becomes entrained within the porous structure of wood or concrete. A strategy was proposed for the efficient extraction of fuel oil hydrocarbons from concrete to enable their monitoring. The impacts of sample aging and inundation with water on the extraction efficiency were investigated to elucidate the nature of analytematrix interactions. Two extraction methods, 4-days cold solvent extraction with shaking and 24-hours Soxhlet extraction with ethylacetate, methanol or acetonitrile yielded 95-100 % recovery of fuel oil hydrocarbons from concrete. A method of concrete remediation after contamination with fuel oil hydrocarbons using activated carbon as an adsorbent was developed. The 14 days remediation was able to achieve ca. 90 % of the contaminant removal even from aged water-submerged concrete samples. The degree of contamination can be qualitatively assessed using transport rates of the contaminants. Two models were developed, Fickian and empirical, to predict long-term transport behavior of fuel oil hydrocarbons under flood representative scenarios into wood. Various sorption parameters, including sorption rate, penetration degree and diffusion coefficients were obtained. The explanations to the observed three sorption phases are provided in terms of analyte-matrix interactions. The detailed simultaneous analysis of intermediate products of the cracking of triacylglycerol oils, namely monocarboxylic acids, triacyl-, diacyl- and

  15. The social and psychological impact of the chemical contamination incident in Weston Village, UK: a qualitative analysis.

    Science.gov (United States)

    Barnes, Geoffrey; Baxter, Jamie; Litva, Andrea; Staples, Brian

    2002-12-01

    This paper contributes to the literature on community response to the announcement of well-established chemical contamination close to their homes. It describes a study of residents' views of chemical contamination on a close and long-standing community in the context of impacts on everyday life. This followed the discovery early in 2000 that houses in Weston Village, in the County of Cheshire, England, were contaminated by the chemical hexachlorobutadiene which was seeping from a sealed chemical waste quarry owned by Imperial Chemical Industries, one of the world's largest chemical companies. Qualitative methods were used for the study. A total of 23 people from the village were interviewed in 15 focused, semi-structured interviews. This study highlights the importance of attention to secondary, community-level and interpersonal-level health impacts in the face of epidemiological uncertainty. Copyright 2002 Elsevier Science Ltd.

  16. Multiple stressors in amphibian communities: Effects of chemical contamination, bullfrogs, and fish

    Science.gov (United States)

    Boone, M.D.; Semlitsch, R.D.; Little, E.E.; Doyle, M.C.

    2007-01-01

    A leading hypothesis of amphibian population declines is that combinations of multiple stressors contribute to declines. We examined the role that chemical contamination, competition, and predation play singly and in combination in aquatic amphibian communities. We exposed larvae of American toads (Bufo americanus), southern leopard frogs (Rana sphenocephala), and spotted salamanders (Ambystoma maculatum) to overwintered bullfrog tadpoles (R. catesbeiana), bluegill sunfish (Lepomis macrochirus), the insecticide carbaryl, and ammonium nitrate fertilizer in 1000-L mesocosms. Most significantly, our study demonstrated that the presence of multiple factors reduced survival of B. americanus and A. maculatum and lengthened larval periods of R. sphenocephala. The presence of bluegill had the largest impact on the community; it eliminated B. americanus and A. maculatum and reduced the abundance of R. sphenocephala. Chemical contaminants had the second strongest effect on the community with the insecticide, reducing A. maculatum abundance by 50% and increasing the mass of anurans (frogs and toads) at metamorphosis; the fertilizer positively influenced time and mass at metamorphosis for both anurans and A. maculatum. Presence of overwintered bullfrogs reduced mass and increased time to metamorphosis of anurans. While both bluegill and overwintered bullfrog tadpoles had negative effects on the amphibian community, they performed better in the presence of one another and in contaminated habitats. Our results indicate that predicting deleterious combinations from single-factor effects may not be straightforward. Our research supports the hypothesis that combinations of factors can negatively impact some amphibian species and could contribute to population declines. ?? 2007 by the Ecological Society of America.

  17. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges using Chemical:Gene Interactions in Caged Fish.

    Data.gov (United States)

    U.S. Environmental Protection Agency — We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene...

  18. Mass Casualty Decontamination in a Chemical or Radiological/Nuclear Incident with External Contamination: Guiding Principles and Research Needs.

    Science.gov (United States)

    Cibulsky, Susan M; Sokolowski, Danny; Lafontaine, Marc; Gagnon, Christine; Blain, Peter G; Russell, David; Kreppel, Helmut; Biederbick, Walter; Shimazu, Takeshi; Kondo, Hisayoshi; Saito, Tomoya; Jourdain, Jean-René; Paquet, Francois; Li, Chunsheng; Akashi, Makoto; Tatsuzaki, Hideo; Prosser, Lesley

    2015-11-02

    Hazardous chemical, radiological, and nuclear materials threaten public health in scenarios of accidental or intentional release which can lead to external contamination of people.  Without intervention, the contamination could cause severe adverse health effects, through systemic absorption by the contaminated casualties as well as spread of contamination to other people, medical equipment, and facilities.  Timely decontamination can prevent or interrupt absorption into the body and minimize opportunities for spread of the contamination, thereby mitigating the health impact of the incident.  Although the specific physicochemical characteristics of the hazardous material(s) will determine the nature of an incident and its risks, some decontamination and medical challenges and recommended response strategies are common among chemical and radioactive material incidents.  Furthermore, the identity of the hazardous material released may not be known early in an incident.  Therefore, it may be beneficial to compare the evidence and harmonize approaches between chemical and radioactive contamination incidents.  Experts from the Global Health Security Initiative's Chemical and Radiological/Nuclear Working Groups present here a succinct summary of guiding principles for planning and response based on current best practices, as well as research needs, to address the challenges of managing contaminated casualties in a chemical or radiological/nuclear incident.

  19. Principal Component Analysis with Contaminated Data: The High Dimensional Case

    CERN Document Server

    Xu, Huan; Mannor, Shie

    2010-01-01

    We consider the dimensionality-reduction problem (finding a subspace approximation of observed data) for contaminated data in the high dimensional regime, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some (arbitrarily) corrupted observations. We propose a High-dimensional Robust Principal Component Analysis (HR-PCA) algorithm that is tractable, robust to contaminated points, and easily kernelizable. The resulting subspace has a bounded deviation from the desired one, achieves maximal robustness -- a breakdown point of 50% while all existing algorithms have a breakdown point of zero, and unlike ordinary PCA algorithms, achieves optimality in the limit case where the proportion of corrupted points goes to zero.

  20. Chemical factors influencing colloid-facilitated transport of contaminants in porous media

    Science.gov (United States)

    Roy, Sujoy B.; Dzombak, David A.

    1997-01-01

    The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows:  (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).

  1. Groundwater contamination from an inactive uranium mill tailings pile: 1. Application of a chemical mixing model

    Science.gov (United States)

    White, A. F.; Delany, J. M.; Narasimhan, T. N.; Smith, A.

    1984-11-01

    Low-pH process waters contained in a number of inactive and abandoned uranium mill tailings in the United States represent potential sources of radionuclide and trace metal contamination of groundwater. Detailed investigations at a typical site at Riverton, Wyoming, indicate that chemical transport occurs from initial dewatering of the tailings, downward infiltration due to precipitation, and groundwater intrusion into the base of the tailings pile. Except for elevated uranium and molybdenum concentrations, current radionuclide and trace metal transport is limited by the near-neutral pH conditions of the groundwater. Significant reactions include the dissolution of calcite, production of CO2, and precipitation of gypsum and the hydroxides of iron and aluminum. A geochemical mixing model employing the PHREEQE computer code is used to estimate current rates of the groundwater contamination by tailings water. A maximum mixing of 1.7% of pore water is a factor of 2 less than steady state estimates based on hydraulic parameters.

  2. Chemical fractionation of Cu and Zn and their impacts on microbial properties in slightly contaminated soils

    Directory of Open Access Journals (Sweden)

    Liu Aiju

    2013-06-01

    Full Text Available Chemical fractionation of Cu and Zn in bulk soil and its effects on soil microbial properties were determined in Cu and Zn contaminated soils (Cu: 35.57~46.37 mg•kg-1, Zn: 74.33~127.20 mg•kg-1 sampled from an agricultural field in outskirts of Zibo, China during the month of September, 2011. A sequential extraction technique (SET was used for metals chemical fractionation analysis in soils and a correlation analysis was applied to determinate the effects of metal on soil microbial properties. Chemical speciation showed that Cu and Zn were mostly present in the residual fraction and their concentrations in the most labile fraction (acid soluble fraction were the lowest in the investigated soils. However, the correlation analysis indicated that the labile forms of Cu/Zn, such as its acid soluble, reducible or oxidizable fractions, were usually significantly negatively correlated with the tested microbial activities at 0.05 or 0.01 probability levels. These results indicate that the metal labile fractions could exert an inhibitory effect on the soil microbial parameters even in the minor contaminated soils.

  3. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    Science.gov (United States)

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  4. Restoration projects for decontamination of facilities from chemical, biological and radiological contamination after terrorist actions

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Lumley, T.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Payette, P.; Laframboise, D.; Best, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Krishnan, J.; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Winnipeg, MB (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada); Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada)

    2006-07-01

    This paper reviewed studies that identified better decontamination methods for chemical, biological and radiological/nuclear (CBRN) attacks. In particular, it reviewed aspects of 3 projects in which procedures were tested and validated for site restoration. Cleanup targets or standards for decontaminating buildings and materials after a CBRN attack were also developed. The projects were based on physicochemical and toxicological knowledge of potential terrorist agents and selected surface matrices. The projects also involved modeling and assessing environmental and health risks. The first multi-agent project involved gathering information on known procedures for restoration of areas including interiors and exteriors of buildings, contents, parking lots, lawn, and vehicles. Air inside the building was included. The efficacy of some of the proposed concepts was tested. Results included the determination of appropriate surrogates for anthrax and tests of liquid and gaseous biocides on the surrogates. The development of new contamination procedures using peroxyacetic acid were also discussed. The second project involved decontamination tests on CBRN using specially-constructed buildings at the Counter-terrorism Technology Centre at Defence Research and Development Canada in Suffield. The buildings will be contaminated with chemical and biological agents and with short-lived radionuclides. They will be decontaminated using the best-performing technologies known. Information collected will include fate of the contaminant and decontamination products, effectiveness of the restoration methods, cost and duration of cleanup and logistical problems. The third project is aimed at developing cleanup standards for decontaminating buildings and construction materials after a chemical or biological attack. It will create as many as 12 algorithms for the development of 50 standards which will help cleanup personnel and first-responders to gauge whether proposed methods can achieve

  5. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  6. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate

    DEFF Research Database (Denmark)

    Tsitonaki, Aikaterini; Petri, B.; Crimi, M.

    2010-01-01

    Persulfate is the newest oxidant that is being used for in situ chemical oxidation (ISCO) in the remediation of soil and groundwater. In this review, the fundamental reactions and governing factors of persulfate relevant to ISCO are discussed. The latest experiences for ISCO with persulfate...... are presented, with a focus on the different activation methods, the amenable contaminants, and the reactions of persulfate with porous media, based primarily on a critical review of the peer-reviewed scientific literature and to a lesser extent on non-reviewed professional journals and conference proceedings...

  7. Results for the second quarter 2014 tank 50 WAC slurry sample chemical and radionuclide contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-09-04

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  8. Results For The Second Quarter 2013 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J.

    2013-07-31

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Saltstone Facility Engineering (SFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  9. Results for the Third Quarter 2014 Tank 50 WAC slurry sample: Chemical and radionuclide contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-08

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time.1 Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  10. Chemical speciation and contamination assessment of Pb and V by sequential extraction in surface sediment off Nile Delta, Egypt

    Directory of Open Access Journals (Sweden)

    Maha Ahmed Mohamed Abdallah

    2017-01-01

    The total concentrations of metals were ranged (22.8–41.3 μg g−1 for Pb and (66.6–142.5 μg g−1 for V. The chemical speciation in most sampling stations was in the order of Residual > acid-reducible > oxidizable-organic > exchangeable for Pb and in the order of Residual > oxidizable-organic > exchangeable > acid-reducible for V. The results showed that the Pb in surface sediments off Nile River Delta existed in the nonresistant fractions while vanadium existed in the resistant fractions. The degree of surface sediments contamination was determined for individual contamination factors (ICF and global contamination factor (GCF. The result of ICF and GCF values showed that those stations located in the vicinity of municipal area (especially Lake Burullus outlet had high potential risk to fauna and flora of study area. Risk assessment code (RAC analysis indicated that although Pb presented a moderate overall risk to the aquatic environment, vanadium showed a low risk (RAC < 10% at six sites.

  11. Uptake of radioactive and stable Co and Zn isotopes by barley plants under mixed radioactive and chemical contamination of soils

    Science.gov (United States)

    Kruglov, S. V.; Lavrent'eva, G. V.; Pivovarova, Yu. A.; Anisimov, V. S.

    2010-03-01

    The effect of Co and Zn on the accumulation of 60Co and 65Zn by plants was studied in experiments with growing barley on a soddy-podzolic soil and a chernozem containing the radionuclide and increasing concentrations (from the background level to a high degree of contamination) of the corresponding metal. The root uptake of 60Co was directly related to the soil contamination with Co and its accumulation in the plants, while an inverse relationship was observed between the activity of 65Zn in the plants and the content of Zn in the soil. It was concluded that the transfer of the radionuclide into the plants under mixed radioactive and chemical contamination depended, on the one hand, on the mobile reserve of the stable nuclide in the soil and the solid phase potential to release its ions into the soil solution and, on the other hand, on the requirement of the plants for this element and the uptake rate of its ions by the roots from the solution.

  12. Chapter 8 Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS)

    Science.gov (United States)

    Alvarez, David A.; Huckins, James N.; Petty, Jimmie D.; Jones-Lepp, Tammy L.; Stuer-Lauridsen, Frank; Getting, Dominic T.; Goddard, Jon P.; Gravell, Anthony

    2007-01-01

    The development of the polar organic chemical integrative sampler (POCIS) provides environmental scientists and policy makers a tool for assessing the presence and potential impacts of the hydrophilic component of these organic contaminants. The POCIS provides a means for determining the time-weighted average (TWA) concentrations of targeted chemicals that can be used in risk assessments to determine the biological impact of hydrophilic organic compounds (HpOCs) on the health of the impacted ecosystem. Field studies have shown that the POCIS has advantages over traditional sampling methods in sequestering and concentrating ultra-trace to trace levels of chemicals over time resulting in increased method sensitivity, ability to detect chemicals with a relatively short residence time or variable concentrations in the water, and simplicity in use. POCIS extracts can be tested using bioassays and can be used in organism dosing experiments for determining toxicological significance of the complex mixture of chemicals sampled. The POCIS has been successfully used worldwide under various field conditions ranging from stagnant ponds to shallow creeks to major river systems in both fresh and brackish water.

  13. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers

    Science.gov (United States)

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.

    2008-01-01

    Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    Science.gov (United States)

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  15. Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington

    Science.gov (United States)

    Moran, P.W.; Aluru, N.; Black, R.W.; Vijayan, M.M.

    2007-01-01

    The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to enhance atmospheric deposition of contaminants. However, little is known about contaminant levels in organisms residing in these remote high elevation lakes. We measured total mercury and 28 organochlorine compounds in trout collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in trout from all lakes sampled (15 to 262 ??g/kg ww), while two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were also detected in these fish tissues (<25 ??g/kg ww). In sediments, organochlorine levels were below detection, while median total and methyl mercury were 30.4 and 0.34 ??g/ kg dry weight (ww), respectively. Using fish from two lakes, representing different contaminant loading levels (Wilcox lake: high; Skymo lake: low), we examined transcriptional response in the liver using a custom-made low-density targeted rainbow trout cDNA microarray. We detected significant differences in liver transcriptional response, including significant changes in metabolic, endocrine, and immune-related genes, in fish collected from Wilcox Lake compared to Skymo Lake. Overall, our results suggest that local urban areas contribute to the observed contaminant patterns in these high elevation lakes, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. ?? 2007 American Chemical Society.

  16. Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of Mailuu Suu (Kyrgyzstan).

    Science.gov (United States)

    Corcho Alvarado, J A; Balsiger, B; Röllin, S; Jakob, A; Burger, M

    2014-12-01

    An assessment of the radioactive and chemical contamination of the water resources at the former uranium mines and processing sites of Mailuu-Suu, in Kyrgyzstan, was carried out. A large number of water samples were collected from the drinking water distribution system (DWDS), rivers, shallow aquifers and drainage water from the mine tailings. Radionuclides and trace metal contents in water from the DWDS were low in general, but were extremely high for Fe, Al and Mn. These elements were associated with the particle fractions in the water and strongly correlated with high turbidity levels. Overall, these results suggest that water from the DWDS does not represent a serious radiological hazard to the Mailuu Suu population. However, due to the high turbidities and contents of some elements, this water is not good quality drinking water. Water from artesian and dug wells were characterized by elevated levels of U (up to 10 μg/L) and some trace elements (e.g. As, Se, Cr, V and F) and anions (e.g. Cl(-), NO3(-), SO4(2-)). In two artesian wells, the WHO guideline value of 10 μg/L for As in water was exceeded. As the artesian wells are used as a source of drinking water by a large number of households, special care should be taken in order to stay within the WHO recommended guidelines. Drainage water from the mine tailings was as expected highly contaminated with many chemicals (e.g. As) and radioactive contaminants (e.g. U). The concentrations of U were more than 200 times the WHO guideline value of 30 μg/L for U in drinking water. A large variation in (234)U/(238)U isotopic ratios in water was observed, with values near equilibrium at the mine tailings and far from equilibrium outside this area (reaching ratios of 2.3 in the artesian well). This result highlights the potential use of this ratio as an indicator of the origin of U contamination in Mailuu Suu. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A framework to determine the effectiveness of dietary exposure mitigation to chemical contaminants.

    Science.gov (United States)

    van der Fels-Klerx, H J Ine; Edwards, Simon G; Kennedy, Marc C; O'Hagan, Sue; O'Mahony, Cian; Scholz, Gabriele; Steinberg, Pablo; Chiodini, Alessandro

    2014-12-01

    In order to ensure the food safety, risk managers may implement measures to reduce human exposure to contaminants via food consumption. The evaluation of the effect of a measure is often an overlooked step in risk analysis process. The aim of this study was to develop a systematic approach for determining the effectiveness of mitigation measures to reduce dietary exposure to chemical contaminants. Based on expert opinion, a general framework for evaluation of the effectiveness of measures to reduce human exposure to food contaminants was developed. The general outline was refined by application to three different cases: 1) methyl mercury in fish and fish products, 2) deoxynivalenol in cereal grains, and 3) furan in heated products. It was found that many uncertainties and natural variations exist, which make it difficult to assess the impact of the mitigation measure. Whenever possible, quantitative methods should be used to describe the current variation and uncertainty. Additional data should be collected to cover natural variability and reduce uncertainty. For the time being, it is always better for the risk manager to have access to all available information, including an assessment of uncertainty; however, the proposed methodology provides a conceptual framework for addressing these systematically.

  18. Ways of adaptation of the plant populations to chemical and radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pozolotina, V.; Bezel' , V.; Zhuykova, T.; Severu' Khina, O.; Ulyanova, E. [Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2004-07-01

    Chemical agents (heavy metals, acids, etc.) and radiation render their influence upon biota being clearly distinct in primary mechanisms of action. However, lively organisms demonstrate one and the same set [arsenal] of response reactions, and thus it is important to reveal the ways of their realization caused by different types of techno-genic impacts. Our work was intended to examine the seed progeny of the dandelion, Taraxacum officinale, from radionuclides-contaminated coeno-populations (grown at the territories influenced by Eastern-Ural radioactive trace, in the Techa-river flood plain) and those situated in the nearest impact zone affected by a large metallurgical plant in the Urals. Plots, differently distanced from the enterprise, showed heavy metal contamination loads 8-33 times higher than the control site did. Radionuclides concentrations ({sup 90}Sr and {sup 137}Cs) within the contaminated zone exceeded the background values 4-40 times. The study allowed estimation of the seed progeny vitality level for different coeno-populations, comparison of their adaptive potential in regard to heavy metals tolerance and gamma radiation resistance, estimation of abnormal seedlings [sprouts] frequency values. It was shown [found] that under techno-genic pollution the dandelion coeno-populations usually demonstrate wider variations of different characteristics (vitality, mutability, root and leaf growth rates) as compared to those in the background zone. As a general regularity one can regard the phenomenon, that negative effects were not marked to be increased by heavier pollution loads, irrespectively of the agents nature. (author)

  19. Survey on Physical, Chemical and Microbiological Characteristics of PAH-Contaminated Soils in Iran

    Directory of Open Access Journals (Sweden)

    M Arbabi, S Nasseri, A Mesdaghinia, S Rezaie, K Naddafi, Gh Omrani, M Yunesian

    2004-07-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are one of the important groups of organic micro pollutants (Xenobiotics due to their widespread distribution and low degradability in the environment (atmosphere, water and soil. Some PAHs exhibit carcinogenic and/or mutagenic properties and are listed by the United States Environmental Protection Agency (USEPA and European Commission (EC as priority pollutants. In this research three petroleum contaminated sites in Iran were selected in order to separate and classify PAH-degrading microorganisms. Samples were analysed for: soil physico-chemical properties, soil particle size distribution, Ultrasonic extraction of PAH (phenanthrene and microbial analysis. Ultrasonic extraction method was shown to be a reliable procedure to extract a wide range of PAH concentrations from different soils, e.g. clay, silt, and clay-silt mixtures. Results showed that the extraction rate of phenanthreen in mentioned different soils was in the range of 85 – 100 percent. Results showed that two of three selected sites were contaminated with phenanthrene in the range of 10 – 100 mg/kg of soil, and had a reasonable population of PAH-degrading bacteria, which were enable to adaptate and degradate a concentration range of phenanthrene between 10 and 1000 mg/kg of soil. According to results, it can conclude that, the bioremediation of contaminated soils in Iran may be considered as a feasible practice.

  20. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  1. Intake of chemical contaminants through fish and seafood consumption by children of Catalonia, Spain: health risks.

    Science.gov (United States)

    Martí-Cid, Roser; Bocio, Ana; Llobet, Juan M; Domingo, José L

    2007-10-01

    The intake of arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), polybrominated diphenylethers (PBDEs), polychlorinated diphenylethers (PCDEs), hexachlorobenzene, and polycyclic aromatic hydrocarbons through fish and seafood consumption by children of Catalonia, Spain, was assessed. In 2005, samples of the 14 most consumed marine species in Catalonia were randomly acquired in various cities of the country. Analysis of the above chemical contaminants were determined according to the appropriate analytical techniques and the daily intakes were estimated. For most pollutants, intake was higher in boys than in girls. Average exposure of children to contaminants through fish and seafood consumption did not exceed the respective tolerable daily intake of those pollutants for which it has been already established (metals, PCDD/Fs plus dioxin-like PCBs, HCB, and PAHs). In relation to body weight, intake by children of most contaminants was higher than that found for other age groups of the general population of Catalonia.

  2. Contaminación por agentes químicos Contamination by chemical agents

    Directory of Open Access Journals (Sweden)

    I. Santiago

    2003-01-01

    Full Text Available La contaminación por productos químicos es una situación clínica cuyo manejo precisa de una serie de conocimientos muy concretos por parte de los médicos de emergencias, al tener que conocer los tipos de agentes químicos más frecuentes y su mecanismo de acción. Este tipo de contaminación exige la existencia de unos planes concretos de actuación en el ámbito hospitalario y en coordinación con los mecanismos extrahospitalarios de emergencias. Al riesgo que supone el estar diariamente rodeados de productos químicos a escala industrial, con riesgo de escapes y accidentes durante su transporte e incluso en los domicilios, se une la posibilidad de utilización de diversos agentes químicos como armas de destrucción masiva, tanto en conflictos bélicos, como en actos terroristas.Contamination by chemical products is a clinical situation whose handling requires very specific knowledge by the physicians in the emergency services, since they must know the most frequent types of chemical agents and their mechanism of action. This type of contamination makes it necessary for there to be concrete plans of action in the hospital milieu and coordination with the emergency outpatient mechanisms. To the risk of being surrounded by chemical products on an industrial scale on a daily basis, and the risk of leaks and accidents during transport and even in private homes, there is now added the possible use of different chemical agents as weapons of mass destruction, both in military conflicts and in terrorist acts.

  3. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  4. Treatability study report for remediation of chemical warfare agent contaminated soils using peroxysulfate ex-situ treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, J.R.; Grinstead, J.H.; Farley, J.A.; Enlow, P.D.; Kelly, D.A.

    1996-07-01

    This laboratory scale study examines the feasibility of using peroxysulfate based oxidants to remediate soils contaminated with GB, Hi, and VX. The project was conducted with chemical warfare agent simulants. The study concludes that peroxysulfates, and particularly peroxydisulfate, can degrade chemical warfare agent simulants in soil and recommends continuing research.

  5. Quantitative data analysis of chemical contamination in the Venice lagoon. A risk management perspective

    Energy Technology Data Exchange (ETDEWEB)

    Miniero, R.; Domenico, A. di [Istituto Superiore di Sanita, Rome (Italy). Dept. Environment and Primary Prevention

    2004-09-15

    A comprehensive risk management for the contaminants present in bottom sediments of the Venice lagoon appears to be complicated by three issues: the past, present, and future influence of human pressure; the obvious sensitivity of a wetland like the lagoon; its extension. The actual situation can be viewed as typical of stressors at regional scale. The relationships between a coastal city and its environment are one of the central question addressed in Chapter 17 of Agenda 21, adopted at the United Nations Conference on Environment and Development (UNCED). In this chapter, the importance of coasts in a life-supporting system and the positive opportunity for sustainable development that coastal areas represent are stressed. However, in industrialized countries a practicable co-existence of environment and development will require mostly regulatory measures to regulate their relationships. The Venice lagoon is one of the leading shellfish production areas in Italy, harvesting several metric tons per year of the clam Tapes philippinarum and the mussel Mytilus galloprovincialis. A number of studies in recent years have characterized the chemical contamination of matrices like biota and sediment. The chemicals analyzed belong to different families including organic contaminants (such as polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs)), chlorinated pesticides, heavy metals, organometals, etc. The primary contamination sources have been clearly identified with Porto Marghera industrial settlement and the city of Venice with its canals, motorboats, and dense anthropogenic activity. The impacts of all these activities appear to be concentrated in the central basin although the industrial area be situated at the southern boundaries of the northern basin. From the studies on sediments, the following four impact types were identified in the lagoon: industrial, urban, ''not classifiable'', and lagoon background. In this paper, the PCDD

  6. Results for the Third Quarter 2013 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time.1 Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: SRR WAC targets or limits were met for all analyzed chemical and radioactive contaminates unless noted in this section. 59Ni, 94Nb, 247Cm, 249Cf, and 251Cf are above the requested SRR target concentrations.2 However, they are below the detection limits established by SRNL.3 Norpar 13 and Isopar L have higher detection limits4 compared with the Saltstone WAC.1 The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50. Finally, the low insoluble solids content increases the measurement uncertainty for insoluble species.

  7. Results for the Fourth Quarter 2012 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC).1 Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: The concentration of the reported chemical and radioactive contaminants were less than their respective WAC Limits and Targets, unless noted in this section. Norpar 13 and Isopar L have higher detection limits5 compared with the Saltstone WAC1. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50. Diisooctyl adipate (or diisooctyl hexanedioate) was measured at 1.30E+00 mg/L in one of two replicate measurements conducted on an at-depth sample.a The organic analysis of the at-depth sample was conducted at the request of SRR.4 This analyte was below the detection limit in the surface sample. The low insoluble solids content increases the measurement uncertainty for insoluble species.

  8. Farmland mercury contamination in the vicinity of an organic chemical factory in Guizhou, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junfang; QU Liya; FENG Xinbin; ZHANG Wei; GUO Yanna; LIN Kai; LI Mei

    2008-01-01

    This study assesses the level of contamination of Hg in farmland soils along the irrigating channel downstream from Guizhou Organic Chemical Factory (GOCF), where metallic mercury is used as a catalyst to produce acetic acid. The total input of mercury into the environment, as announced by GOCF, is 140 t in the past 30 years (1971-2000). Sampling sites were chosen based on the distance from the source of pollution-the chemical factory. A total of 39 samples were collected from the study area and analyzed for total mercury concentrations and methyl mercury concentrations. The characteristics of vertical and horizontal distributions of total mercury and methyl mercury in the study area (farmland) are described in this paper. Much attention was paid to the transformation of inorganic Hg into organic mercury species in soils as well. The results showed that the farmland has been heavily contaminated by Hg. Land cultivation activity, land utilization style and distance from the pollution source could be the dominant factors controlling the distribution of THg and MeHg. It is observed that active transformation of inorganic Hg into organic mercury species (MeHg) usually takes place in paddy soils.

  9. Spatial structure of floodplain soil radionuclide contamination of the Enisey River near the Krasnoyarsk Mining and Chemical Combine

    Science.gov (United States)

    Linnik, V. G.; Brown, J. E.; Potapov, V. N.; Surkov, V. V.

    2012-04-01

    Enisey River floodplain soils were contaminated by technogenic radionuclides arising from operations at the Krasnoyarsk Mining Chemical Combine (KMCC) from 1958 to 1992. The radioecological situtation of the Enisey flood plain landscapes has been formed by the interaction of two factors: (i) characteristics of radionuclide discharges to the aquatic environment, (ii) hydrological regime of the Enisey River. The radionuclide discharge determined the potential extent of contamination, while the river hydrology was responsible for its transport over considerable distances. The erection of the dam of the Krasnoyarsk power station in 1970 changed the hydrological regime of the Enisey River. The water discharge and suspended sediments became uniform in all seasons and extreme floods, extending over high floodplain areas, ceased. The distribution of radioactive contamination within floodplain soils downstream from the KMCC was studied with the objectives of mapping contamination levels and analyzing the spatial structure of radionuclide distributions arising from floodplain formation. Based on a digital elevation model of floodplain landscapes at a strip of KMCC-Strelka the flooded area of the Enisey River was determined. In 1960 to 1970, deposition of contaminated sediments occurred at heights less than 6 m over an area of 99,2 km2, in 1970-1992 the flooded area with a height less than 3,5 m was of 38,2 km2. Since radiocaesium in the Enisey River primarily occurs in a well fixed sediment-associated form it is possible to use the analysis of landscape structure within the floodplain to detect lithologo-geomorphological zones corresponding to a varying degree of 137Cs contamination. Radionuclide contamination was measured using in situ gamma spectrometry and soil sampling undertaken at control points. Maximum 137Cs contamination densities (700 kBq m-2) were found on low- and middle-level floodplains of Beriozovy Island (16 km from the KMCC). The contamination density of 60

  10. Transfer of chemical elements from a contaminated estuarine sediment to river water. A leaching assay

    Science.gov (United States)

    Abreu, Manuela; Peres, Sara; Magalhães, M. Clara F.

    2014-05-01

    Wastes of a former Portuguese steel industry were deposited during 40 years on the left bank of the Coina River, which flows into the estuary of the Tagus River near Lisbon. The aim of this study was to evaluate the release of the chemical elements from the contaminated sediment to the river water. A leaching experiment (four replicates) was performed using 1.6 kg/replicate of sediment from a landfill located in the Coina River bank, forming a lagoon subject to tidal influence. River water coming from this lagoon was collected during low tide. This water (200 mL) was added to the moist sediment, contained in cylindrical reactors, and was collected after 24 h of percolation. The leaching experiments were conducted for 77 days being leachates collected at time zero, after 28, 49 and 77 days with the sediment always moist. The sediment was characterized for: pH, electric conductivity (EC), total organic carbon (TOC), extractable phosphorus and potassium, mineral nitrogen, iron from iron oxides (crystalline and non-crystalline) and manganese oxides. Multi-elemental analysis was also made by ICP-INAA. Leachates and river water were analysed for pH, EC, hydrogencarbonate and sulfatetot by titrations, chloride by potentiometry, and multi-elemental composition by ICP-MS. The sediment presented pH=7.2, EC=18.5 dS/m, TOC=147.8 g/kg, high concentrations of extractable phosphorous (62.8 mg/kg) and potassium (1236.8 mg/kg), mineral nitrogen=11.3 mg/kg. The non-crystalline fraction of iron oxides corresponds to 99% (167.5 g Fe/kg) of the total iron oxides, and manganese from manganese oxides was low (52.7 mg/kg). Sediment is considered contaminated. It contained high concentrations (g/kg) of Zn (2.9), Pb (0.9), Cr (0.59), Cu (0.16), As (0.07), Cd (0.005), and Hg (0.001), which are above Canadian values for marine sediments quality guidelines for protection of aquatic life. River water had: pH=8.2, EC=28.6 dS/m, csulfate=1.23 g/L, and [Cl-]=251.6 mg/L. The concentrations of Cd (0

  11. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    Science.gov (United States)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the

  12. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  13. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    Science.gov (United States)

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 1: evaluation of in vitro clotting efficacy in the presence of certain contaminants.

    Science.gov (United States)

    Hall, Charlotte A; Lydon, Helen L; Dalton, Christopher H; Chipman, J K; Graham, John S; Chilcott, Robert P

    2015-05-01

    The treatment of penetrating, haemorrhaging injuries sustained within a hazardous environment may be complicated by contamination with toxic chemicals. There are currently no specific medical countermeasures for such injuries. Haemostats with an absorbent mechanism of action have the potential to simultaneously stop bleeding and decontaminate wounds. However, a primary requirement of a 'haemostatic decontaminant' is the retention of clotting function in the presence of chemical contaminants. Thus, the aim of this study was to investigate the haemostatic efficacy of seven commercially available haemostats in the presence of toxic chemicals (soman, VX, sulphur mustard, petrol, aviation fuel and motor oil). Clot viscosity was assessed ex vivo using thrombelastography following treatment of pig blood with: (i) toxic chemical; (ii) haemostat; or (iii) haemostat in combination with toxic chemical. Several contaminants (VX, petrol and GD) were found to be pro-haemostatic and none had an adverse effect on the rate with which the test products attained haemostasis. However, the total clot strength for blood treated with certain haemostats in the presence of sulphur mustard, soman and petrol was significantly decreased. Three test products failed to demonstrate haemostatic function in this ex vivo (thrombelastography) model; this was tentatively ascribed to the products achieving haemostasis through a tamponade mechanism of action, which can only be replicated using in vivo models. Overall, this study has identified a number of commercial products that may have potential as haemostatic decontaminants and warrant further investigation to establish their decontaminant efficacy. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions.

    Science.gov (United States)

    Usman, Muhammad; Tascone, Oriane; Rybnikova, Victoria; Faure, Pierre; Hanna, Khalil

    2017-06-01

    This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg(-1)) and γ-HCH (lindane, 25 mg kg(-1)) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H2O2 alone, H2O2/Fe(II), Na2S2O8 alone, Na2S2O8/Fe(II), and KMnO4. Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H2O2 improved the oxidation efficiency while in Na2S2O8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by Fe(II)-activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO4 > Na2S2O8/Fe(II) > Na2S2O8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.

  16. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    Science.gov (United States)

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  17. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  18. The application of solid sorbents for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Bulska, E; Pyrzyńska, K

    1996-06-01

    Various microcolumns with solid sorbents (ion exchange resins, functionalised cellulose sorbents, chelating resins) have been tested with respect to their ability for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry. The purification of NaNO(3), Mg(NO(3))(2), K(2)SO(4) and (NH(4))(2)HPO(4) has been the most effective with an almost 100% efficiency, when Spheron-Oxine was used as chelating resin. The sorption of aluminum from KOH solution has been found to be very high (around 90%) for all investigated sorbents. However, the best results have been obtained with anion-exchange resins. It has been difficult to purify concentrated mineral acids (HCl, H(2)SO(4)). A retention of aluminum above 80% has been achieved only when Cellex P, Chelex 100 or Amberlite XAD-2 have been used.

  19. Effects of chemical contaminants on growth, age-structure, and reproduction of Mytilus edulis complex from Puget sound, Washington.

    Science.gov (United States)

    Kagley, Anna N; Kardong, Kyle E; Snider, Robert G; Casillas, Edmundo

    2014-07-01

    Bivalves are used as sentinel species to detect chemical contaminants in the marine environment, but biological effects on indigenous populations that result from chemical exposure are largely unknown. We assessed age-weight, length-weight relationships, age structure, and reproductive status (i.e. fecundity, egg size) of the blue mussel Mytilus edulis complex from six sites in central Puget Sound, Washington, and one site in the relatively pristine area of northern Puget Sound. Results of this study suggest that mussels from urban areas of Puget Sound exhibit a lower growth rate, altered population age-structure, and potential reproductive impairment as a result of exposure to chemical contaminants. These findings support the use of mussels as sentinel species to assess the biological effects of contaminants on invertebrate populations.

  20. Preliminary screening of alternative technologies to incineration for treatment of chemical-agent-contaminated soil, Rocky Mountain Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.; Wilkey, P.L.; Ballou, S.W.

    1995-12-01

    In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.

  1. Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Piskonen, R.; Itaevaara, M. [VTT Biotechnology, Espoo (Finland)

    2004-10-01

    The efficiency of several chemical treatments as potential enhancers of the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil was evaluated by analyzing the mineralization of {sup 14}C-labeled phenanthrene, pyrene, and benzo(a)pyrene. The effect of nonionic surfactants with Fenton oxidation and combinations of surfactants with the Fenton oxidation was evaluated in a microtiter plate assay. The surfactants selected for the study were Tween 80, Brij 35, Tergitol NP-10, and Triton X-100. The addition of Fenton's reagent significantly enhanced the mineralization of pyrene at the two concentrations studied: 2.8 M H{sub 2}O{sub 2} with 0.1 M FeSO{sub 4} and 0.7 M H{sub 2}O{sub 2} with 0.025 M FeSO{sub 4}. Phenanthrene mineralization was also positively induced by the Fenton treatments. However, none of the treatments had a significant effect on benzo(a)pyrene mineralization. Surfactant additions at concentrations of 20% and 80% of the aqueous critical micelle concentration did not significantly affect the mineralization rates. When surfactant addition was combined with the Fenton oxidation, reduced mineralization rates were obtained when compared with mineralization after Fenton's treatment alone. The results indicate that the addition of Fenton's reagent may enhance the mineralization of PAHs in contaminated soil, whereas the addition of surfactants has no significant beneficial effect. The efficiency of the Fenton oxidation may decrease when surfactants are added simultaneously with Fenton's reagent to contaminated soil. (orig.)

  2. Epidemiologic approaches to assessing human cancer risk from consuming aquatic food resources from chemically contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Ozonoff, D. (Boston Univ. School of Public Health, MA (United States)); Longnecker, M.P. (UCLA School of Public Health, Los Angeles, CA (United States))

    1991-01-01

    Epidemiologic approaches to assessing human cancer risk from contaminated waters must confront the problems of long latency and rarity of the end point (cancer). The latency problem makes determination of diet history more difficult, while the low frequency of cancer as an end point reduces the statistical power of the study. These factors are discussed in relation to the study designs most commonly employed in epidemiology. It is suggested that the use of biomarkers for persistent chemicals may be useful to mitigate the difficulty of determining exposure, while the use of more prevalent and timely end points, such as carcinogen-DNA adducts or oncogene proteins, may make the latency and rarity problems more tractable.

  3. Chemical contamination of soft drinks in sealed plastic bottles by environmental stress cracking.

    Science.gov (United States)

    Muller, Dan; Israelsohn-Azulay, Osnat

    2009-01-01

    A contamination of soft drinks in sealed bottles by organic solvents is reported: closed bottles full of soft drinks were accidentally placed on a cardboard soaked with thinner and the organic fluid subsequently fissured the bottom of the bottles and penetrated into the soft drinks without any apparent leakage of the soft drinks. Experiments were carried out to simulate the process: the penetration of different organic solvents into soft drinks through the bottom of closed bottles was tested. The penetration occurred only when the closed bottles contained carbonated soft drinks (CSD), indicating that inner pressure is a necessary condition for the fissuring of the bottles. This paper discusses environmental stress cracking of polyethylene terephthalate (PET) bottles by organic solvents and migration of chemicals to CSD. Experiments were conducted to determine the conditions in which PET can be permeable to poisoning organic products.

  4. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Angela Yu-Chen [National Taiwan University, Graduate Institute of Environmental Engineering, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)], E-mail: yuchenlin@ntu.edu.tw; Panchangam, Sri Chandana; Lo, Chao-Chun [National Taiwan University, Graduate Institute of Environmental Engineering, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2009-04-15

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 {mu}g/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments.

  5. Review of chemical and radiotoxicological properties of polonium for internal contamination purposes.

    Science.gov (United States)

    Ansoborlo, Eric; Berard, Philippe; Den Auwer, Christophe; Leggett, Rich; Menetrier, Florence; Younes, Ali; Montavon, Gilles; Moisy, Philippe

    2012-08-20

    The discovery of polonium (Po) was first published in July, 1898 by P. Curie and M. Curie. It was the first element to be discovered by the radiochemical method. Polonium can be considered as a famous but neglected element: only a few studies of polonium chemistry have been published, mostly between 1950 and 1990. The recent (2006) event in which (210)Po evidently was used as a poison to kill A. Litvinenko has raised new interest in polonium. 2011 being the 100th anniversary of the Marie Curie Nobel Prize in Chemistry, the aim of this review is to look at the several aspects of polonium linked to its chemical properties and its radiotoxicity, including (i) its radiochemistry and interaction with matter; (ii) its main sources and uses; (iii) its physicochemical properties; (iv) its main analytical methods; (v) its background exposure risk in water, food, and other environmental media; (vi) its biokinetics and distribution following inhalation, ingestion, and wound contamination; (vii) its dosimetry; and (viii) treatments available (decorporation) in case of internal contamination.

  6. The risk of river pollution due to washout from contaminated floodplain water bodies during high floods

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Today, the potential impact of extremely high floods, which in the last years have become a rather frequent weather-related disaster, is the problem of primary concern. In studies of the potential impact of floods the emphasis is placed first of all on the estimation of possible flood zones and the analysis of the flow regimes in these zones. However, in some cases the hydrochemical parameters related to changes in the chemical composition of water are more important than the hydraulic parameters. It is generally believed that the higher is the flow rate, the more intensive is the process of dissolution, i.e. the lower is the concentration of limiting contaminants in water. However, this statement is valid provided that flooding does not activate new sources of water pollution such as contaminated floodplain water bodies located in the vicinity of water supply systems. Being quite reliable and safe at small and moderate discharges, in the case of extremely high level of river waters they become intensive sources of water pollution, essentially limiting the water consumption schedule for downstream water consumers. It should be noted that compared to the well-studied mechanisms of waste discharge due to failure of hydraulic engineering structures by flood waves, the mechanisms of pollutant washout from the contaminated floodplain water bodies by the flood waves is still poorly understood. We analyze the impacts of such weather-related events on the quality of water in the water intake system, taking as an example, the section of the Vyatka River located in the Prikamskaya lowland of the Russian Federation. The risk of river pollution due to washout from the contaminated floodplain water bodies during high floods is studied by hydrodynamical modeling in the framework of combined approach using one-, two- and three-dimensional hydrodynamic models are implemented and by in situ measurements. It is shown that during high floods the removal of pollutants from the

  7. RESULTS FOR THE FOURTH QUARTER 2010 TANK 50 WAC SLURRY SAMPLE: CHEMICAL AND RADIONUCLIDE CONTAMINANT RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M

    2011-02-22

    This report details the chemical and radionuclide contaminant results for the characterization of the 2010 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Liquid Waste Operations (LWO) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: (1) The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted in this section. (2) The reported detection limits for {sup 94}Nb, {sup 247}Cm and {sup 249}Cf are above the requested limits from Reference 2. However, they are below the limits established in Reference 3. (3) There is an estimated concentration of trimethylbenzene (2.25 mg/L). This is not a WAC analyte, but it is the first time this organic compound has been detected in a quarterly WAC sample from Tank 50. (4) The reported detection limit for Norpar 13 is greater than the limit from Table 4 and Attachment 8.2 of the WAC. (5) The reported detection limit for Isopar L is greater than the limit from Table 3 of the WAC. (6) Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples. The values reported in this memo are the concentrations in the sub-sample as detected by the GC/MS; however, the results may not accurately represent the concentrations of the analytes in Tank 50.

  8. RESULTS FOR THE FOURTH QUARTER 2013 TANK 50 WAC SLURRY SAMPLE CHEMICAL AND RADIONUCLIDE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C.

    2014-04-01

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: SRR WAC targets or limits were met for all analyzed chemical and radioactive contaminants unless noted in this section. {sup 59}Ni, {sup 94}Nb, {sup 247}Cm, {sup 249}Cf, and {sup 251}Cf are above the requested SRR target concentrations. However, they are below the detection limits established by SRNL. Norpar 13 and Isopar L have higher detection limits compared with the Saltstone WAC. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility of these materials in aqueous solution, may not represent the concentrations of the analytes in Tank 50. The low insoluble solids content increases the measurement uncertainty for insoluble species. The semivolatile organic analysis (SVOA) method employed in the measurement of Norpar 13 and tributyl phosphate (TBP) has resulted in the erroneous reporting of a variety of small chain alcohols, including 4-methyl-3-hexanol and 5-methyl-3-hexanol, in previous quarterly sample reports. It has now been determined that these alcohols are an artifact of the sample preparation. Further work is being conducted in SRNL to delineate the conditions that produce these alcohols, and these findings will be reported separately.

  9. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale.

    Science.gov (United States)

    Mason, Timothy J; Collings, Anthony; Sumel, Adam

    2004-05-01

    Power ultrasound can be used for the rehabilitation of industrial sites or the reclamation of polluted land by the removal of chemical and biological contamination from soil. In this paper some current laboratory research and the potential for the scale-up of chemical decontamination is reviewed. Two basic mechanisms for acoustically enhanced soil cleaning have been suggested (a). an increase in the abrasion of suspended soil in slurries leading to the removal of contaminated material from the surface of particles and (b). an improvement in leaching out of more deeply entrenched materials.

  10. Incorporating biomarkers in ecological risk assessment of chemical contaminants of soils

    Directory of Open Access Journals (Sweden)

    A. J. Reinecke

    2007-09-01

    Full Text Available Soil is an important but complex natural resource which is increasingly used as sink for chemicals. The monitoring of soil quality and the assessment of risks posed by contaminants have become crucial. This study deals with the potential use of biomarkers in the monitoring of soils and the assessment of risk resulting from contamination. Apart from an overview of the existing literature on biomarkers, the results of various of our field experiments in South African soils are discussed. Biomarkers may have potential in the assessment of risk because they can indicate at an early stage that exposure has taken place and that a toxic response has been initiated. It is therefore expected that early biomarkers will play an increasing role as diagnostic tools for determining exposure to chemicals and the resulting effects. They may have predictive value that can assist in the prevention or minimising of risks. The aim of this study was to investigate the possibilities of using our results on biomarker responses of soil dwelling organisms to predict changes at higher organisational levels (which may have ecological implications. Our recent experimental results on the evaluation of various biomarkers in both the laboratory and the field are interpreted and placed in perspective within the broader framework of response biology. The aim was further to contribute to the development and application of biomarkers in regulatory risk assessment schemes of soils. This critical review of our own and recent literature on biomarkers in ecotoxicology leads to the conclusion that biomarkers can, under certain conditions, be useful tools in risk assessment. Clear relationships between contamination loads in soil organisms and certain biomarker responses were determined in woodlice, earthworms and terrestrial snails. Clear correlations were also established in field experiments between biomarker responses and changes at the population level. This indicated that, in

  11. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  12. Stabilization of high mercury contaminated brine purification sludge.

    Science.gov (United States)

    Zhuang, J Ming; Lo, Tony; Walsh, Tony; Lam, Tak

    2004-09-10

    The highly leachable mercury contaminants of brine purification sludge (BPS) generated from the Hg-cell electrolysis process in chlorine production can be stabilized in the treatment procedure employing ferric-lignin derivatives (FLD) (Ligmet binder) and Portland cement (PC). The stabilization effectiveness has been examined by time-based multiple toxicity characteristic leaching procedure (TCLP) tests and sequential TCLP tests. In a period of 50 days, the multiple TCLP tests showed a variation of less than 90 microg l(-1) for the leachable mercury level, and the sequential TCLP tests for the same sample displayed a declining TCLP mercury level. Based on this study, the stabilization of approximately 2000 t of brine purification sludge has been successfully processed with the ferric-lignin derivatives treatment.

  13. Effects of prevalent freshwater chemical contaminants on in vitro growth of Escherichia coli and Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, James [USDA-ARS, Bldg 173, 10300 Baltimore Ave., Beltsville, MD 20705 (United States)], E-mail: tarbandu12@juno.com; Hohn, Christina [NCSU College of Veterinary Medicine, Raleigh, NC 27606 (United States)

    2008-03-15

    Many surface and ground waters in the continental US are contaminated with a variety of chemical pollutants, which are usually present in concentrations in the ppm and ppb range. The effects of these pollutants on coliform bacteria, which are prominent members of the aquatic flora, are poorly understood. Using a microtiter plate assay, isolates of Escherichia coli (from chicken intestine and fresh water), and an isolate of Klebsiella pneumoniae (from bovine milk) were exposed to varying concentrations of common pollutants over a 24 h period. The herbicides/pesticides simazine, atrazine, and diazinon; the VOCs trichloroethene and MTBE; the estrogens estradiol and estrone; and caffeine, all failed to inhibit bacterial growth at ppm levels. Only ethylene glycol, and the herbicide 2,4-D, significantly inhibited bacterial growth compared to controls. These results suggest that the replication of coliform bacteria in fresh waters is not adversely impacted by many common pollutants. - Using a microtiter plate assay, E. coli and Klebsiella bacteria were exposed to a panel of common chemical pollutants of fresh water; only ethylene glycol and 2,4-D inhibited bacterial replication.

  14. Occurrence and Assessment of Chemical Contaminants in Drinking Water in Tunceli, Turkey

    Directory of Open Access Journals (Sweden)

    Veysel Demir

    2013-01-01

    Full Text Available The objective of this study was to analyze drinking water samples from 21 sites in the city center and seven municipalities of Tunceli, Turkey, in order to determine the presence of nitrate, nitrite, fluoride, bromate, pesticides, polycyclic aromatic hydrocarbons (PAHs, trihalomethanes (THMs, and some other chemicals. In all locations, the concentrations of chemicals investigated were below the permissible limits set by local and international organizations for drinking water. Low levels of nitrate (4.79 ± 4.20 mg/L, fluoride (0.11 ± 0.08 mg/L, and THMs (6.63 ± 5.14 μg/L were detected in all locations. A low level of tetra, chloroethane, which is suspected to be a human carcinogen, was also detected in 8 locations in the range of 0.26–0.43 μg/L. These contaminants may pose adverse health effects or minimum hazard due to long-term exposure. In all locations, bromate, benzene, total PAH, 1-2 dichloroethane, vinyl chloride, acrylamide, and epichloridine levels in drinking water samples were under detection limits.

  15. Comparative Studies on Methane Upgradation of Biogas by Removing of Contaminant Gases Using Combined Chemical Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Rashed Al Mamun

    2015-07-01

    Full Text Available Biogas, which generated from renewable sources can be used as a sustainable energy to achieve resourceful targets of biofuel for internal combustion engines. This process can be achieved in combined absorption and adsorption chemical way. This method can be employed by aqueous solutions of calcium hydroxide, activated carbon, iron(II chloride, silica gel and sodium sulfate respectively. The presence of CO2, H2S and H2O in the biogas has lowering the calorific value and detrimental corrosion effects on the metal components. Removal of these contaminants from the biogas can therefore significantly improve the gas quality. A comparison study was investigated using combined chemical methods of improving the calorific value of biogas. Experiment results revealed that the aqueous solution used effectively in reacting with CO2 in biogas (over 85-90% removal efficiency, creating CH4 enriched biogas. The removal efficiency was the highest in method 1, where efficiency results were 91.5%, 97.1% and 91.8%, for CO2, H2S, and H2O, respectively. The corresponding CH4 enrichment was 97.5%. These results indicate that the method 1 is more suitable compare to method 2. However, both methane enrichment processes might be useful for cleaning and upgrading methane quality in biogas.

  16. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    Science.gov (United States)

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  17. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    Science.gov (United States)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  18. Effects of anthropogenic activities on chemical contamination within the Grand Canal, China.

    Science.gov (United States)

    Wang, Xiaolong; Han, Jingyi; Xu, Ligang; Gao, Junfeng; Zhang, Qi

    2011-06-01

    Contamination of nutrients and heavy metals within aquatic system is of great concern due to its potential impact on human and animal health. The Grand Canal of China, the largest artificial river in the world, is of great importance in supplying water resource, transporting cargo, and recreating resident, as well as great historical heritage. This study assessed and examined the impact of human activities on characters of contamination distribution within the section of the Canal in Taihu watershed. Physicochemical parameters of surface water quality were determined monthly from the year 2004 to 2006 at 11 sites that were influenced by different anthropogenic activities along the Canal. Moreover, contaminations at surface sediments (20 cm) at the same locations were also analyzed in September 2006. Results showed that the Canal had been seriously polluted, which was characterized with high spatial variations in contaminations distribution. The sites influenced mainly by industry and urbanization showed higher contents of nutrients and lower levels of dissolve oxygen than other sites. Concentrations of nitrogen at all studied sites exceeded the worst level of surface water quality according to the National Criterion of Surface Water Quality, China, with the average values varying from 2.27 to 10.34 mg/L. Furthermore, the site influenced mainly by industry (i.e., Site 4) presented the highest contents of cadmium (3.453 mg/kg), chromium (196.87 mg/kg), nickel (87.12 mg/kg), zinc (381.8 mg/kg), and copper (357.32 mg/kg). While sites in vicinity to cities had presented relatively higher contents of metals, especially for the site located downstream of Changzhou City (Site 3) had presented the highest contents of mercury (1.64 mg/kg) and lead (197.62 mg/kg). Copper at Sites 2 to 6, Nickel at Sites 2 to 9 except for Site 7, chromium, lead, and zinc at Sites 3 to 6 had exceeded New York State Department of Environmental Conservation (NYSDEC) Severe Effect Level (SEL). By

  19. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s reage

  20. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  1. Relationships between organohalogen contaminants and blood plasma clinical–chemical parameters in chicks of three raptor species from Northern Norway

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan Ove; Herzke, Dorte

    2010-01-01

    Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled da...

  2. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from rivers in the Southeastern United States

    Science.gov (United States)

    Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Echols, K.R.; Gale, R.W.; Wieser, C.; May, T.W.; Ellersieck, M.; Coyle, J.J.; Tillitt, D.E.

    2008-01-01

    Largemouth bass (Micropterus salmoides) and common carp (Cyprinus carpio) were collected from 13 sites located in the Mobile (MRB), Apalachicola-Flint-Chattahoochee (ARB), Savannah (SRB), and Pee Dee (PRB) River Basins to document spatial trends in accumulative chemical contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8-tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Mercury (Hg) and polychlorinated biphenyls (PCBs) were the primary contaminants of concern. Concentrations of Hg in bass samples from all basins exceeded toxicity thresholds for piscivorous mammals (> 0.1????g/g ww), juvenile and adult fish (> 0.2????g/g ww), and piscivorous birds (> 0.3????g/g ww). Total PCB concentrations in samples from the MRB, ARB, and PRB were > 480??ng/g ww and may be a risk to piscivorous wildlife. Selenium concentrations also exceeded toxicity thresholds (> 0.75????g/g ww) in MRB and ARB fish. Concentrations of other formerly used (total chlordanes, dieldrin, endrin, aldrin, mirex, and hexachlorobenzene) and currently used (pentachlorobenzene, pentachloroanisole, dacthal, endosulfan, ??-hexachlorocyclohexane, and methoxychlor) organochlorine residues were generally low or did not exceed toxicity thresholds for fish and piscivorous wildlife. TCDD-EQs exceeded wildlife dietary guidelines (> 5??pg/g ww) in MRB and PRB fish. Hepatic ethoxyresorufin O-deethylase (EROD) activity was generally greatest in MRB bass and carp. Altered fish health indicators and reproductive biomarker were noted in individual fish, but mean responses were similar among basins. The field necropsy and histopathological examination determined that MRB fish were generally in poorer health than those from the other basins, primarily due to parasitic infestations. Tumors were found in few fish (n = 5; 0.01%); ovarian tumors of smooth muscle

  3. Toddlers at High Risk of Chemical Eye Burns

    Science.gov (United States)

    ... fullstory_160258.html Toddlers at High Risk of Chemical Eye Burns: Study Access to household cleaning products to blame, ... and 2 years have relatively high rates of chemical eye burns, with everyday cleaners a common cause, researchers say. ...

  4. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  5. Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants.

    Directory of Open Access Journals (Sweden)

    Katherine A Dafforn

    Full Text Available Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching. Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic

  6. Modelling of environmental impacts of 140 years of open pit lignite mining and chemical industry on groundwater contaminants in the Bitterfeld area, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Gossel, W.; Stollberg, R.; Wycisk, P. [Martin Luther Univ., Halle (Germany). Inst. of Geosciences, Dept. of Hydrogeology and Environmental Geology

    2010-07-01

    In this study, a groundwater flow and transport model was used to estimate the contamination of watersheds located in the Bitterfeld area in Germany. The contamination was caused by previous open pit lignite mining activities in the region as well as by contaminants from a chemical plant. A high resolution geological model of the area was used to parametrize the model. The region is geologically complex, with Pleistocene channels and gullies from the Saalenian age. The mining activities also disturbed or destroyed many geological structures in the region. A geological description was provided, as well as details of hydraulic conductivity, lithology, and hydrostratigraphy. The model was based on borehole data and maps covering a total area of 60 km{sup 2}. The time-dependent groundwater recharge and boundary conditions were set. Dispersivity and diffusivity parameters were also considered. The model accurately characterized the successive spreading of groundwater contamination over the last 100 years in the area. The study showed that the contamination will spread to nature reserve zones in the region over the next few decades. 3 refs. 1 tab., 2 figs.

  7. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    Science.gov (United States)

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes.

  8. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  9. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric [Texas A & M Univ., College Station, TX (United States); Krejci, Michael [Texas A & M Univ., College Station, TX (United States); Mathieu, Olivier [Texas A & M Univ., College Station, TX (United States); Vissotski, Andrew [Texas A & M Univ., College Station, TX (United States); Ravi, Sankat [Texas A & M Univ., College Station, TX (United States); Plichta, Drew [Texas A & M Univ., College Station, TX (United States); Sikes, Travis [Texas A & M Univ., College Station, TX (United States); Levacque, Anthony [Texas A & M Univ., College Station, TX (United States); Camou, Alejandro [Texas A & M Univ., College Station, TX (United States); Aul, Christopher [Texas A & M Univ., College Station, TX (United States)

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  10. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    Science.gov (United States)

    Degnan, James R.; Böhlke, John Karl; Pelham, Krystle; David M. Langlais,; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  11. Use of on-site high performance liquid chromatography to evaluate the magnitude and extent of organic contaminants in aquifers

    Science.gov (United States)

    Goerlitz, D.F.; Franks, B.J.

    1989-01-01

    Appraisal of ground water contaminated by organic substances raises problems of difficult sample collection and timely chemical analysis. High-performance liquid chromatography was evaluated for on-site determination of specific organic contaminants in ground water samples and was used at three study sites. Organic solutes were determined directly in water samples, with little or no preparation, and usually in less than an hour after collection. This information improved sampling efficiency and was useful in screening for subsequent laboratory analysis. On two occasions, on-site analysis revealed that samples were undergoing rapid change, with major solutes being upgraded and alteration products being formed. In addition to sample stability, this technique proved valuable for monitoring other sampling factors such as compositional changes with respect to pumping, filtration, and cross contamination. -Authors

  12. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate.

  13. Chemical Characterization and Identification of Organosilicon Contaminants in ISS Potable Water

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Gazda, Daniel B.

    2016-01-01

    2015 marked the 15th anniversary of continuous human presence on board the International Space Station. During the past year crew members from Expeditions 42-46, including two participating in a one-year mission, continued to rely on reclaimed water as their primary source of potable water. This paper presents and discusses results from chemical analyses performed on ISS water samples returned in 2015. Since the U.S. water processor assembly (WPA) became operational in 2008, there have been 5 instances of organic contaminants breaking through the treatment process. On each occasion, the breakthrough was signaled by an increase in the total organic carbon (TOC) concentration in the product water measured by the onboard TOC analyzer (TOCA). Although the most recent TOC rise in 2015 was not unexpected, it was the first time where dimethylsilanediol (DMSD) was not the primary compound responsible for the increase. Results from ground analysis of a product water sample collected in June of 2015 and returned on Soyuz 41 showed that DMSD only accounted for 10% of the measured TOC. After considerable laboratory investigation, the compound responsible for the majority of the TOC was identified as monomethysilanetriol (MMST). MMST is a low-toxicity compound that is structurally similar to DMSD.

  14. Chemical Characterization and Identification of Organosilicon Contaminants in ISS Potable Water

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Wallace, William T.; Gazda, Daniel B.

    2016-01-01

    2015 marked the 15th anniversary of continuous human presence on board the International Space Station. During the past year crew members from Expeditions 42-46, including two participating in a one-year mission, continued to rely on reclaimed water as their primary source of potable water. This paper presents and discusses results from chemical analyses performed on ISS water samples returned in 2015. Since the U.S. water processor assembly (WPA) became operational in 2008, there have been 5 instances of organic contaminants breaking through the treatment process. On each occasion, the breakthrough was signaled by an increase in the total organic carbon (TOC) concentration in the product water measured by the onboard TOC analyzer (TOCA). Although the fifth and most recent TOC rise in 2015 was not unexpected, it was the first time where dimethylsilanediol (DMSD) was not the primary compound responsible for the increase. Results from ground analysis of a product water sample collected in June of 2015 and returned on Soyuz 41 showed that DMSD only accounted for <10% of the measured TOC. After considerable laboratory investigation, the compound responsible for the majority of the TOC was identified as monomethysilanetriol (MMST). MMST is a low-toxicity compound that is structurally similar to DMSD.

  15. Removal of Lead from Wastewater Contaminated with Chemical Synthetic Dye by Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Lamyai Neeratanaphan

    2015-07-01

    Full Text Available Novel isolated microorganisms have been demonstrated to efficiently remove lead from wastewater contaminated with chemical synthetic dye. In this study, the physical and chemical parameters of wastewater samples (including Pb concentrations were analyzed before and after treatment with microorganisms. The highest Pb concentration detected in wastewater was 0.788 mg/l. Investigations of the Pb tolerance and removal capacities of microorganism strains isolated from the wastewater sediment resulted in the selection of three fungal isolates (F102, F203 and F302. Interestingly, isolate F203 had a Pb tolerance of up to 100 mg/l. Using DNA barcoding and morphological characteristics, fungal isolate F203 was identified as Aspergillus terreus. Wastewater characteristics before treatment included a grayish black color with pH, TDS, BOD, COD and Pb concentrations higher than the Thailand standard values. Wastewater qualities after treatment with A. terreus showed definite improvement; however, the values of certain parameters were still higher than the allowed values based on the Thailand standard. The only improvement that fell within the allowed standard was the Pb concentration. Next, A. terreus was used for Pb adsorption in wastewater with an initial Pb concentration of 0.788 mg/l at time points corresponding to 0, 24, 48, 72, 96, 120, 144 and 168 h of incubation. The results showed that A. terreus could adsorb and remove higher amounts of Pb from wastewater than the other fungal isolates. Time course adsorption analysis showed the remaining Pb concentrations as 0.788, 0.213, 0.162, 0.117, 0.100, 0.066, 0.042 and 0.032 mg/l, respectively; the percentage of Pb removal could be estimated as 0, 72.97, 79.44, 85.15, 87.31, 91.62, 94.67 and 95.94%, respectively. In conclusion, A. terreus possessed the ability to adsorb up to 96% of Pb from chemical synthetic dye within 168 h. Thus, A. terreus might be suitable for adaptation and use in Pb treatment.

  16. Contaminants of antropic origin in groundwater San Juan (Argentina). Vulnerability and hydro chemical indicators; Contaminantes de origen antropico en aguas subterraneas San Juan (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, J. M.; Castro, A.; Medici, M. E.; Gimenez, M.; Suero, E.; Turcuman, M. H.

    2002-07-01

    The Tulum Valley aquifer vulnerability and its correlation with the behavior of hydro chemical parameters related to new urban neighborhoods and uncontrolled waste disposal are discussed. A high vulnerability to contamination by substances solved in the recharge water at the San Juan river shore is estimated. A fast transport rate due to the high permeability is foreseen, as well as the existence of contamination sources related to waste disposals and populations without a sewer system. The results show that the mentioned populations and waste disposal sites are located at vulnerable zones of the area. A higher concentration of nitrates and nitrites is observed at the Southeast, due to the short permanency period of the water in the system, and to the reconcentration in zones with less permeable levels. (Author) 19 refs.

  17. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve.

    Directory of Open Access Journals (Sweden)

    Marine Breitwieser

    Full Text Available Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.

  18. Assessment Bioremediation of Contaminated Soils to Petroleum Compounds and Role of Chemical Fertilizers in the Decomposition Process

    Directory of Open Access Journals (Sweden)

    H. Parvizi Mosaed

    2013-06-01

    Full Text Available Today oil removal from contaminated soil by new methods such as bioremediation is necessary.  In this paper, the effect of chemical fertilizers and aeration on bioremediation of oil-contaminated soil has been investigated. Also the control group, (bioremediation of petroleum hydrocarbons in contaminated soil without treatment by chemical fertilizers and aeration treatment was examined. The condition of experiment is as following: those were treated 70 days in glass columns (30×30×30cm dimensions, ambient temperature (25-30 0C, relative humidity 70%, aeration operation with flow 0.7 lit/min.  The total number of heterotrophic bacteria of break down oil and the total of petroleum hydrocarbons were analyzed using gas chromatography analysis. all experiments were replicated three times. The microbial population results for control soil, treated soil by aeration and treated soil by aeration and chemical fertilizers columns are 2.3×105, 1.04×1010, and 1.14×1011 CFU/gr, respectively. The concentrations of total petroleum hydrocarbons of remaining are 46965, 38124, and 22187 mg kg-1respectively. The obtained results show that the aeration operation and chemical fertilizers have effective role on degradation of petroleum hydrocarbon by oil degrading bacteria from soil.

  19. CASCADE - Chemicals as contaminants in the food chain. A network of excellence for research, risk assessment, and education

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, M.; Haakansson, H. [Karolinska Institutet, Insitute of Environmental Medicine, Stockholm (Sweden); Pongratz, I.; Gustavsson, J.Aa. [Karolinska Institutet, Dept. of Biosciences, Huddinge (Sweden)

    2004-09-15

    Harmful effects of chemical contaminants in food are of major health concern in Europe today. Lack of integration between basic research, risk assessment, and education severely hampers the efforts to reach European excellence in this area. The research activities that are carried out are small in scale and are not well integrated into a coherent structure. To tackle the fragmentation problems and to achieve synergistic effects and full European research potential, the European Commission has initiated a Network of Excellence called CASCADE or ''Chemicals as contaminants in the food chain: a network of excellence for research, risk assessment, and education'' The contract is running for five years and is worth over 14 million with partners from eighteen research centres. The network has the potential and goal to be a world force in knowledge on health issues related to chemical contaminants in food. Focus is on chemical residues that act via and/or interfere with cell regulation at the level of nuclear receptors. The risk assessment integration parts of the network aim to increase the awareness among scientists and others of the need to bring multiple aspects of scientific information into use in risk assessment.

  20. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  1. 食品中化学污染物风险评估研究进展%Review on the risk assessment for chemical contaminants in food

    Institute of Scientific and Technical Information of China (English)

    周妍; 闻胜; 刘潇; 毛燕妮; 罗苹; 李永刚; 陈明; 史廷明

    2014-01-01

    化学污染物是影响全球食品安全和危害人体健康的主要因素之一。对食品中化学污染物进行风险评估是保障食品安全、促进食品贸易和健全食品安全体系的重要手段。本文简要介绍了化学污染物风险评估的内容和基本方法,对国外化学污染物风险评估开展情况进行了概述,重点对国内开展的食品中化学污染物风险评估的研究进展进行综述,包括重金属、有机污染物、农药残留、黄曲霉毒素等,并对国内开展食品中化学污染物风险评估的方法进行了分析比较。重金属、农药残留和黄曲霉毒素方面的评估结果均表明:儿童的膳食暴露量偏高,需引起重视。此外提出目前我国食品中化学污染物风险评估中存在的主要问题和建议,为进一步开展化学污染物风险评估提供借鉴。%ABSTRACT:Chemical contaminants are of immediate and serious concern to food safety and human health. Risk assessment for chemical contaminants in food not only protects food safety and human health, but also enhances consumer protection and facilitates international trade. Conceptions, classification and methods ap-plication on chemical risk assessment were introduced in this paper. The risk assessment of chemical contami-nants in foreign countries was summarized, and progress in research of chemical contaminants risk assessment in food at home was reviewed in detail, including heavy metals, organic pollutants, pesticides, and aflatoxin etc. The methods of these risk assessment were analyzed and compared. The assessment results of heavy metal, pesticide residues and aflatoxin showed that:children's dietary exposure is high. Main problems in chemical risk assessment in China at present were pointed out and advices were given on further complete chemical risk assessment.

  2. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  3. Improvement of radiological consequence estimation methodologies for NPP accidents in the ARGOS and RODOS decision support systems through consideration of contaminant physico-chemical forms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.G.; Roos, P. [Technical University of Denmark - DTU (Denmark); Lind, O.C.; Salbu, B. [Norwegian University of Life Sciences/CERAD - NMBU (Norway); Bujan, A.; Duranova, T. [VUJE, Inc. (Slovakia); Ikonomopoulos, A.; Andronopoulos, S. [National Centre for Scientific Research ' Demokritos' (Greece)

    2014-07-01

    The European standard computerized decision support systems RODOS and ARGOS, which are integrated in the operational nuclear emergency preparedness in practically all European countries, as well as in a range of non-European countries, are highly valuable tools for radiological consequence estimation, e.g., in connection with planning and exercising as well as in justification and optimization of intervention strategies. Differences between the Chernobyl and Fukushima accident atmospheric release source terms have demonstrated that differences in release conditions and processes may lead to very different degrees of volatilization of some radionuclides. Also the physico-chemical properties of radionuclides released can depend strongly on the release process. An example from the Chernobyl accident of the significance of this is that strontium particles released in the fire were oxidized and thus generally physico-chemically different from those released during the preceding explosion. This is reflected in the very different environmental mobility of the two groups of particles. The initial elemental matrix characteristics of the contaminants, as well as environmental parameters like pH, determine for instance the particle dissolution time functions, and thus the environmental mobility and potential for uptake in living organisms. As ICRP recommends optimization of intervention according to residual dose, it is crucial to estimate long term dose contributions adequately. In the EURATOM FP7 project PREPARE, an effort is made to integrate physico-chemical forms of contaminants in scenario-specific source term determination, thereby enabling consideration of influences on atmospheric dispersion/deposition, post-deposition migration, and effectiveness of countermeasure implementation. The first step in this context was to investigate, based on available experience, the important physico-chemical properties of radio-contaminants that might potentially be released to the

  4. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks.

  5. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  6. [Contaminated heparins].

    Science.gov (United States)

    Monneret, C

    2008-08-01

    In January 2008, following the detection of severe allergic reaction, several batches of heparins were removed from the United-States market. Although less dramatic, comparable side effects were also reported in Germany but not in France despite the fact that low-weight heparins, obtained from contaminated batches of unfractionated heparins, were used to limit shortage. So far, tainted injectable heparin has been linked to over 80 deaths in the USA. Analyses demonstrated that such tainted heparins were contaminated by high levels of chondroïtin persulfate (5-20%), a cheaper hemi-synthetic product. All batches were furnished by several Chinese chemical industries, China representing 50% of all heparins produced worldwide. Thus, contamination of the heparin supply is a worldwide problem. Following this event, the efficiency of the quality insurance, particularly analytical controls before proceeding, remains questionable. The strict respect of the pharmaceutical chain is urgently required to avoid any kind of quality problem in the future.

  7. A Low Impact Delivery System for In Situ Treatment of Sediments Contaminated with Methyl Mercury and other Hydrophobic Chemicals

    Science.gov (United States)

    2016-02-01

    range of biological and physical conditions. The demonstration projects showed that treatment of PCBs can be carried out in the field using AC...early 1970s, almost all municipal and industrial wastewater generated by CCSA facilities was discharged into Canal Creek and its marsh (EA 2008...ER-200835) A Low-Impact Delivery System for In Situ Treatment of Sediments Contaminated with Methyl Mercury and other Hydrophobic Chemicals

  8. High risk of lead contamination for scavengers in an area with high moose hunting success.

    Science.gov (United States)

    Legagneux, Pierre; Suffice, Pauline; Messier, Jean-Sébastien; Lelievre, Frédérick; Tremblay, Junior A; Maisonneuve, Charles; Saint-Louis, Richard; Bêty, Joël

    2014-01-01

    Top predators and scavengers are vulnerable to pollutants, particularly those accumulated along the food chain. Lead accumulation can induce severe disorders and alter survival both in mammals (including humans) and in birds. A potential source of lead poisoning in wild animals, and especially in scavengers, results from the consumption of ammunition residues in the tissues of big game killed by hunters. For two consecutive years we quantified the level lead exposure in individuals of a sentinel scavenger species, the common raven (Corvus corax), captured during the moose (Alces alces) hunting season in eastern Quebec, Canada. The source of the lead contamination was also determined using stable isotope analyses. Finally, we identified the different scavenger species that could potentially be exposed to lead by installing automatic cameras targeting moose gut piles. Blood lead concentration in ravens increased over time, indicating lead accumulation over the moose-hunting season. Using a contamination threshold of 100 µg x L(-1), more than 50% of individuals were lead-contaminated during the moose hunting period. Lead concentration was twice as high in one year compared to the other, matching the number of rifle-shot moose in the area. Non-contaminated birds exhibited no ammunition isotope signatures. The isotope signature of the lead detected in contaminated ravens tended towards the signature from lead ammunition. We also found that black bears (Ursus americanus), golden eagles and bald eagles (Aquila chrysaetos and Haliaeetus leucocephalus, two species of conservation concern) scavenged heavily on moose viscera left by hunters. Our unequivocal results agree with other studies and further motivate the use of non-toxic ammunition for big game hunting.

  9. High risk of lead contamination for scavengers in an area with high moose hunting success.

    Directory of Open Access Journals (Sweden)

    Pierre Legagneux

    Full Text Available Top predators and scavengers are vulnerable to pollutants, particularly those accumulated along the food chain. Lead accumulation can induce severe disorders and alter survival both in mammals (including humans and in birds. A potential source of lead poisoning in wild animals, and especially in scavengers, results from the consumption of ammunition residues in the tissues of big game killed by hunters. For two consecutive years we quantified the level lead exposure in individuals of a sentinel scavenger species, the common raven (Corvus corax, captured during the moose (Alces alces hunting season in eastern Quebec, Canada. The source of the lead contamination was also determined using stable isotope analyses. Finally, we identified the different scavenger species that could potentially be exposed to lead by installing automatic cameras targeting moose gut piles. Blood lead concentration in ravens increased over time, indicating lead accumulation over the moose-hunting season. Using a contamination threshold of 100 µg x L(-1, more than 50% of individuals were lead-contaminated during the moose hunting period. Lead concentration was twice as high in one year compared to the other, matching the number of rifle-shot moose in the area. Non-contaminated birds exhibited no ammunition isotope signatures. The isotope signature of the lead detected in contaminated ravens tended towards the signature from lead ammunition. We also found that black bears (Ursus americanus, golden eagles and bald eagles (Aquila chrysaetos and Haliaeetus leucocephalus, two species of conservation concern scavenged heavily on moose viscera left by hunters. Our unequivocal results agree with other studies and further motivate the use of non-toxic ammunition for big game hunting.

  10. [Phytoavailability and chemical speciation of cadmium in different Cd-contaminated soils with crop root return].

    Science.gov (United States)

    Zhang, Jing; Yu, Ling-Ling; Xin, Shu-Zhen; Su, De-Chun

    2013-02-01

    Pot experiments were conducted under greenhouse condition to investigate the effects of crop root return on succeeding crops growth, Cd uptake and soil Cd speciation in Cd-contaminated soil and artificial Cd-contaminated soil. The results showed that the amount of root residue returned to soil by corn and kidney bean growth successive for 3 times was 0.4%-1.1%. The Cd returned to soil by root residue was 1.3%-3.5% to the total soil Cd. There was no significant difference in the shoot dry weights of winter wheat and Chinese cabbage grown on the 2 Cd-contaminated soils with and without root return. While Cd concentration of Chinese cabbage increased significantly in the Cd-contaminated soil with corn or kidney bean root return. Light fraction of soil organic matter increased with root return in both of the Cd-contaminated soils. The percentage of Cd in the light fraction of soil organic matter increased with root return in the artificial Cd-contaminated soil. Soil carbonates-bound Cd concentration decreased significantly with corn root return in the Cd-contaminated soil. Soil exchangeable Cd concentration decreased and soil Fe-Mn oxide-bound Cd concentration increased significantly with kidney bean root return in the artificial Cd-contaminated soil.

  11. Multiservice Tactics, Techniques, and Procedures for Chemical, Biological, Radiological and Nuclear Contamination Avoidance

    Science.gov (United States)

    2006-02-01

    contaminants, and these contaminants accumulate. Even if the hazard area is small, it can be deadly . Persons working around equipment should be...Cataract formation. • Chronic radiodermatitis. • Decreased fertility . • Genetic mutations. The effect upon future generations is unclear. Data from...a) Apply insect repellant on the exposed skin. (b) Gain intelligence on the threat capabilities and intentions. (c) Seek out

  12. Risk assessment of down-the-drain chemicals at large spatial scales: Model development and application to contaminants originating from urban areas in the Saint Lawrence River Basin.

    Science.gov (United States)

    Grill, Günther; Khan, Usman; Lehner, Bernhard; Nicell, Jim; Ariwi, Joseph

    2016-01-15

    Chemicals released into freshwater systems threaten ecological functioning and may put aquatic life and the health of humans at risk. We developed a new contaminant fate model (CFM) that follows simple, well-established methodologies and is unique in its cross-border, seamless hydrological and geospatial framework, including lake routing, a critical component in northern environments. We validated the model using the pharmaceutical Carbamazepine and predicted eco-toxicological risk for 15 pharmaceuticals in the Saint-Lawrence River Basin, Canada. The results indicated negligible to low environmental risk for the majority of tested chemicals, while two pharmaceuticals showed elevated risk in up to 13% of rivers affected by municipal effluents. As an integrated model, our CFM is designed for application at very large scales with the primary goal of detecting high risk zones. In regulatory frameworks, it can help screen existing or new chemicals entering the market regarding their potential impact on human and environmental health. Due to its high geospatial resolution, our CFM can also facilitate the prioritization of actions, such as identifying regions where reducing contamination sources or upgrading treatment plants is most pertinent to achieve targeted pollutant removal or to protect drinking water resources.

  13. Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis.

    Science.gov (United States)

    Fabbri, Rita; Montagna, Michele; Balbi, Teresa; Raffo, Enrico; Palumbo, Franca; Canesi, Laura

    2014-08-01

    Emerging contaminants (such as Endocrine disrupting chemicals-EDCs, brominated and perfluorinated compounds-BFRs and PFCs, pharmaceuticals) are chemicals currently not included in regulatory monitoring programs, and whose fate and biological impacts are poorly understood. Assessment of ecosystem health with respect to these chemicals is of particular concern also in the marine environment: in this respect, data on the effects on early life stages are important to establish the sensitivity of marine species. In this work, the acute (48 h) bivalve embryo toxicity test was applied for screening the developmental effects of different emerging contaminants in the Mediterranean mussel Mytilus galloprovincialis. The assay was adapted to 96-microwell plates, and standardized in order to obtain to normal D-shaped larvae with acceptability of test results based on negative control and positive control (copper) comparable with those reported in literature for Mytilus spp. The effects of different model compounds representative of EDCs (Nonylphenol-NP and Bisphenol A-BPA), BFRs (Tetrabromobisphenol A-TBBPA), PFCs (perfluorooctanoid acid-PFOA and perfluorooctane sulphonate-PFOAS) and pharmaceuticals (Ibuprofen-IBU, Diclofenac-DCF, Bezafibrate-BEZA) in a wide concentration range (0.01-0.1-1-10-100-1000 μg/L) were evaluated. The assay proved as a sensitive tool for high throughput screening of emerging contaminants in a marine species, leading to production of significant amounts of data that may be useful for regulatory purposes.

  14. Development of a new class of chemical and biological ultrasensors: Ribonuclease contamination and control

    Science.gov (United States)

    1984-01-01

    In order to define ribonuclease contamination, an assay for ribonuclease having picogram level sensitivity was established. In this assay, polycytidylic acid is digested by ribonuclease leading to smaller fragments of poly C that remain soluble after treatment of the sample with perchloric acid and lanthanum acetate. An absorbance measurement at 260 nm of the supernatant from the centrifuged sample measures the ribonuclease. A standard curve is shown. Using this assay procedure, ribonuclease contamination was found to be significant in routine laboratory proteins, in particular, bovine serum albumin, lysozyme, catalase, and cytochrome C. This was confirmed by demonstrating a considerable reduction in this activity in the presence of phosphate buffer since phosphate inhibits ribonuclease. Ribonuclease contamination was not significantly encountered in routine laboratory glassware, plasticware, column surfaces, chromatographic particles, and buffer reagents, including airborne contamination. Some contamination could be introduced by fingerprints, however.

  15. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    Science.gov (United States)

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  16. The Hazards of Reactive Chemicals in High School Laboratories.

    Science.gov (United States)

    Forlin, Peter

    Chemical reactivity is a major area of risk in high school laboratories. This paper reports on a study that has provided a research-based framework for risk management in Australian chemical education. The chemical practice model of risk management is considered with respect to kinetic factors; catalysts; concentrations and proportions;…

  17. Chemical composition of drinking water as a possible environment-specific factor modifying the thyroid risk in the areas subjected to radioiodine contamination

    Science.gov (United States)

    Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris

    2015-04-01

    Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration

  18. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries

    Science.gov (United States)

    Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Echols, K.R.; Gross, T.S.; May, T.W.; Anderson, P.J.; Coyle, J.J.; Tillitt, D.E.

    2007-01-01

    evidence of contaminant exposure as indicated by fish health indicators and reproductive biomarker results. Multiple health indicators including altered body and organ weights and high health assessment index scores may be associated with elevated Se concentrations in fish from the Colorado River at Loma, Colorado and Needles. Although grossly visible external or internal lesions were found on most fish from some sites, histopathological analysis determined many of these to be inflammatory responses associated with parasites. Edema, exophthalmos, and cataracts were noted in fish from sites with elevated Se concentrations. Intersex fish were found at seven of 14 sites and included smallmouth bass (M. dolomieu), largemouth bass (M. salmoides), catfish, and carp and may indicate exposure to endocrine disrupting compounds. A high proportion of smallmouth bass from the Yampa River at Lay (70%) was intersex but the cause of this condition is unknown. Male carp, bass, and catfish with low concentrations of vitellogenin were common in the CRB. Comparatively high vitellogenin concentrations (> 0.2??mg/mL) were measured in male bass from the Green River at Ouray NWR and the Colorado River at Imperial Dam and indicate exposure to estrogenic or anti-androgenic chemicals. Anomalous reproductive biomarkers including low GSI and gonadal abnormalities (calcifications, edema, and parasites) observed in fish downstream of Phoenix are likely related to the poor water-quality of the Gila River in this area.

  19. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    Science.gov (United States)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    increasing of HMs mobility in the conditions of 6-weeks field experiment. Peat-humate application causes insignificant enrichment of soil by organic matter, has low influence on pH and microbiological activity. Nevertheless, in combination with lime, it raises pH and immobilizes Ni and Cu and shows best results by vegetation state. Ni and Cu mean concentrations in soil water extract of control sites are 3.7 μg kg-1 and 12.3 μg kg-1, and of sites with combination of peat-humate and lime - 0.2 μg kg-1 and 1.1 μg kg-1 respectively. Coal-humate application attended with high enrichment of soil by organic matter and it's soluble forms, changes in molecular-mass distribution, decreasing of acidity, and growth of microbe biomass (also due to using of biomates). That involves relatively HM soluble forms mobilization in variants with highest concentration of coal-humate (1%). Ni and Cu mean concentrations of those variants are 2.1 μg kg-1and 10.2 μg kg-1. Promising results obtained in short-term experiments should be supported by further investigations. Proper evaluation of humates efficiency and selection their optimal doses for remediation of contaminated soils require long-term field experiments under the influence of multicomponent contamination and diverse physical, chemical, and biological factors.

  20. Analysis of chemical contamination within a canal in a Mexican border colonia

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Janel E. [Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX 78626 (United States); Niemeyer, Emily D. [Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX 78626 (United States)]. E-mail: niemeyee@southwestern.edu

    2006-04-15

    This study examines urban pollution within Derechos Humanos, a colonia popular in Matamoros, Tamaulipas, Mexico. General water quality indicators (coliform bacteria, total dissolved solids, ecologically relevant cations and anions), heavy metals (copper, lead, nickel, zinc, iron and cadmium), and volatile organic compounds (benzene, toluene, ethylbenzene, styrene, and dichlorobenzene and xylene isomers) were quantified within a wastewater canal running adjacent to the community. Water samples were collected at multiple sites along the banks of the canal and evidence of anthropogenic emissions existed at each sampling location. Sample site 2, approximately 10 m upstream of the colonia, contained both the widest range of hazardous pollutants and the greatest number exceeding US Environmental Protection Agency surface water standards. At each sampling location, high concentrations of total coliform (>10{sup 4} colonies/100 mL sample), lead (ranging from 0.05 to 0.40 mg/L), nickel (levels from 0.21 to 1.45 mg/L), and benzene (up to 9.80 mg/L) were noted. - This study quantifies widespread industrial and urban contamination within a canal located in a colonia (unplanned community) in Matamoros, Tamaulipas on the US-Mexico border.

  1. Enviromental contaminants in Puget Sound fish - Histological Preparation and Chemical Analyses of Puget Sound Fish

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of a long-term contaminant-monitoring program of fish in Puget Sound and Georgia Basin, Washington Department of Fish and Wildlife (WDFW) and NWFSC have...

  2. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  3. US Army Public Health Command’s (Prov) (Formly USACHPPM) Process to Screen Chemicals in Support of DoD’s CMRM Emerging Contaminants Program

    Science.gov (United States)

    2010-06-01

    US Army Public Health Command’s (Prov) (Formly USACHPPM) Process to Screen Chemicals in Support of DoD’s CMRM Emerging Contaminants Program...CMRM Emerging Contaminants Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...Occupational Health • DoD Instruction 5000.2 Operation of the Defense Acquisition System • DoD Instruction 4715.18 Emerging Contaminants (EC

  4. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  5. Metal availability in a highly contaminated, dredged-sediment disposal site: Field measurements and geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lions, Julie, E-mail: j.lions@brgm.f [BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2 (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France); Guerin, Valerie; Bataillard, Philippe [BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2 (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France); Lee, Jan van der [Mines ParisTech, Centre de Geosciences, 77305 Fontainebleau Cedex (France); Laboudigue, Agnes [Univ Lille Nord de France, F-59000 Lille (France); EMDouai, MPE-GCE, F-59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France)

    2010-09-15

    Two complementary approaches were used to characterize arsenic and metal mobilizations from a dredged-sediment disposal site: a detailed field study combined with hydrogeochemical modeling. Contaminants in sediments were found to be mainly present as sulfides subject to oxidation. Secondary phases (carbonates, sulfates, (hydr)oxides) were also observed. Oxidative processes occurred at different rates depending on physicochemical conditions and contaminant contents in the sediment. Two distinct areas were identified on the site, each corresponding to a specific contaminant mobility behavior. In a reducing area, Fe and As were highly soluble and illustrated anoxic behavior. In well-oxygenated material, groundwater was highly contaminated in Zn, Cd and Pb. A third zone in which sediments and groundwater were less contaminated was also characterized. This study enabled us to prioritize remediation work, which should aim to limit infiltration and long-term environmental impact. - A detailed case study of metal behavior in a dredged-sediment disposal site combined with geochemical modeling.

  6. The effect of misunderstanding the chemical properties of environmental contaminants on exposure beliefs: a case involving dioxins.

    Science.gov (United States)

    Zikmund-Fisher, Brian J; Turkelson, Angela; Franzblau, Alfred; Diebol, Julia K; Allerton, Lindsay A; Parker, Edith A

    2013-03-01

    Chemical properties of contaminants lead them to behave in particular ways in the environment and hence have specific pathways to human exposure. If residents of affected communities lack awareness of these properties, however, they could make incorrect assumptions about where and how exposure occurs. We conducted a mailed survey of 904 residents of Midland and Saginaw counties in Michigan, USA to assess to what degree residents of a community with known dioxin contamination appear to understand the hydrophobic nature of dioxins and the implications of that fact on different potential exposure pathways. Participants assessed whether various statements about dioxins were true, including multiple statements assessing beliefs about dioxins in different types of water. Participants also stated whether they believed different exposure pathways were currently significant sources of dioxin exposure in this community. A majority of residents believed that dioxins can be found in river water that has been filtered to completely remove all particulates, well water, and even city tap water, beliefs which are incongruous with the hydrophobic nature of dioxins. Mistrust of government and personal concern about dioxins predicted greater beliefs about dioxins in water. In turn, holding more beliefs about dioxins in water predicted beliefs that drinking and touching water are currently significant exposure pathways for dioxins. Ensuring that community residents' mental models accurately reflect the chemical properties of different contaminants can be important to helping them to adjust their risk perceptions and potentially their risk mitigation behaviors accordingly. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The effect of misunderstanding the chemical properties of environmental contaminants on exposure beliefs: A case involving dioxins

    Science.gov (United States)

    Zikmund-Fisher, Brian J.; Turkelson, Angela; Franzblau, Alfred; Diebol, Julia K.; Allerton, Lindsay A.; Parker, Edith A.

    2013-01-01

    Chemical properties of contaminants lead them to behave in particular ways in the environment and hence have specific pathways to human exposure. If residents of affected communities lack awareness of these properties, however, they could make incorrect assumptions about where and how exposure occurs. We conducted a mailed survey of 904 residents of Midland and Saginaw counties in Michigan, USA to assess to what degree residents of a community with known dioxin contamination appear to understand the hydrophobic nature of dioxins and the implications of that fact on different potential exposure pathways. Participants assessed whether various statements about dioxins were true, including multiple statements assessing beliefs about dioxins in different types of water. Participants also stated whether they believed different exposure pathways were currently significant sources of dioxin exposure in this community. A majority of residents believed that dioxins can be found in river water that has been filtered to completely remove all particulates, well water, and even city tap water, beliefs which are incongruous with the hydrophobic nature of dioxins. Mistrust of government and personal concern about dioxins predicted greater beliefs about dioxins in water. In turn, holding more beliefs about dioxins in water predicted beliefs that drinking and touching water are currently significant exposure pathways for dioxins. Ensuring that community residents’ mental models accurately reflect the chemical properties of different contaminants can be important to helping them to adjust their risk perceptions and potentially their risk mitigation behaviors accordingly. PMID:23391895

  8. Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, A. S.; Strain, R.; Jeong, S. Y.; Reed, D.; Krause, T.; Singh, D.

    A feasibility study was conducted on the use of chemically bonded phosphate ceramics for stabilization of combustion residue of high transuranic (TRU) wastes. Using a matrix of magnesium potassium phosphate formed by the room-temperature reaction of MgO and KH 2PO 4 solution, we made waste forms that contained 5 wt% Pu to satisfy the requirements of the Waste Isolation Pilot Plant. The waste forms were ceramics whose compression strength was twice that of conventional cement grout and whose connected porosity was ≈50% that of cement grout. Both surrogate and actual waste forms displayed high leaching resistance for both hazardous metals and Pu. Hydrogen generation resulting from the radiolytic decomposition of water and organic compounds present in the waste form did not appear to be a significant issue. Pu was present as PuO 2 that was physically microencapsulated in the matrix. In the process, pyrophoricity was removed and leaching resistance was enhanced. The high leaching resistance was due to the very low solubility of PuO 2 coupled with superior microencapsulation. As a result, the waste forms satisfied the current Safeguard Termination Limit requirement for storage of TRU combustion residues.

  9. Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Rahul D. Solunke; Goetz Veser [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15

    Chemical-looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC, which combine the high reactivity of metals with the high-temperature stability of ceramics. In the present study, we investigate the effect of H{sub 2}S in a typical coal-derived syngas on the stability and redox kinetics of Ni- and Cu-based nanostructured oxygen carriers. Both carriers show excellent structural stability and only mildly changed redox kinetics upon exposure to H{sub 2}S, despite a significant degree of sulfide formation. Surprisingly, partial sulfidation of the support results in a strong increase in oxygen carrier capacity in both cases because of the addition of a sulfide-sulfate cycle. Overall, the carriers show great potential for use in CLC of high-sulfur fuels. 21 refs., 13 figs. 1 tab.

  10. Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover.

    Science.gov (United States)

    Kumpiene, Jurate; Desogus, Paolo; Schulenburg, Sven; Arenella, Mariarita; Renella, Giancarlo; Brännvall, Evelina; Lagerkvist, Anders; Andreas, Lale; Sjöblom, Rolf

    2013-12-01

    The aim of the study was to determine if an As-contaminated soil, stabilized using zerovalent iron (Fe(0)) and its combination with gypsum waste, coal fly ash, peat, or sewage sludge, could be used as a construction material at the top layer of the landfill cover. A reproduction of 2 m thick protection/vegetation layer of a landfill cover using a column setup was used to determine the ability of the amendments to reduce As solubility and stimulate soil functionality along the soil profile. Soil amendment with Fe(0) was highly efficient in reducing As in soil porewater reaching 99 % reduction, but only at the soil surface. In the deeper soil layers (below 0.5 m), the Fe treatment had a reverse effect, As solubility increased dramatically exceeding that of the untreated soil or any other treatment by one to two orders of magnitude. A slight bioluminescence inhibition of Vibrio fischeri was detected in the Fe(0) treatment. Soil amendment with iron and peat showed no toxicity to bacteria and was the most efficient in reducing dissolved As in soil porewater throughout the 2 m soil profile followed by iron and gypsum treatment, most likely resulting from a low soil density and a good air diffusion to the soil. The least suitable combination of soil amendments for As immobilization was a mixture of iron with coal fly ash. An increase in all measured enzyme activities was observed in all treatments, particularly those receiving organic matter. For As to be stable in soil, a combination of amendments that can keep the soil porous and ensure the air diffusion through the entire soil layer of the landfill cover is required.

  11. Quantification of chemical contaminants in the paper and board fractions of municipal solid waste.

    Science.gov (United States)

    Pivnenko, K; Olsson, M E; Götze, R; Eriksson, E; Astrup, T F

    2016-05-01

    Chemicals are used in materials as additives in order to improve the performance of the material or the production process itself. The presence of these chemicals in recyclable waste materials may potentially affect the recyclability of the materials. The addition of chemicals may vary depending on the production technology or the potential end-use of the material. Paper has been previously shown to potentially contain a large variety of chemicals. Quantitative data on the presence of chemicals in paper are necessary for appropriate waste paper management, including the recycling and re-processing of paper. However, a lack of quantitative data on the presence of chemicals in paper is evident in the literature. The aim of the present work is to quantify the presence of selected chemicals in waste paper derived from households. Samples of paper and board were collected from Danish households, including both residual and source-segregated materials, which were disposed of (e.g., through incineration) and recycled, respectively. The concentration of selected chemicals was quantified for all of the samples. The quantified chemicals included mineral oil hydrocarbons, phthalates, phenols, polychlorinated biphenyls, and selected toxic metals (Cd, Co, Cr, Cu, Ni, and Pb). The results suggest large variations in the concentration of chemicals depending on the waste paper fraction analysed. Research on the fate of chemicals in waste recycling and potential problem mitigation measures should be focused on in further studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Quantification of chemical contaminants in the paper and board fractions of municipal solid waste

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Olsson, Mikael Emil; Götze, Ramona

    2016-01-01

    on the production technology or the potential end-use of the material. Paper has been previously shown to potentially contain a large variety of chemicals. Quantitative data on the presence of chemicals in paper are necessary for appropriate waste paper management, including the recycling and re-processing of paper......Chemicals are used in materials as additives in order to improve the performance of the material or the production process itself. The presence of these chemicals in recyclable waste materials may potentially affect the recyclability of the materials. The addition of chemicals may vary depending....... However, a lack of quantitative data on the presence of chemicals in paper is evident in the literature. The aim of the present work is to quantify the presence of selected chemicals in waste paper derived from households. Samples of paper and board were collected from Danish households, including both...

  13. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments.

  14. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles: Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  15. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles: Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle comp

  16. Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen

    Science.gov (United States)

    Hornung, Steven

    2013-01-01

    Oxygen used for extravehicular activities (EVAs) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen has been developed. This instrument uses a glow discharge in reduced-pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete, and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants, and may lend itself to a device capable of on-orbit verification of oxygen purity. A glow discharge is a plasma formed in a low-pressure (1 to 10 Torr) gas cell between two electrodes. Depending on the configuration, voltages ranging from 200 V and above are required to sustain the discharge. In the discharge region, the gas is ionized and a certain population is in the excited state. Light is produced by the transitions from the excited states formed in the plasma to the ground state. The spectrum consists of discrete, narrow emission lines for the atomic species, and broader peaks that may appear as a manifold for molecular species such as O2 and N2, the wavelengths and intensities of which are a characteristic of each atom. The oxygen emission is dominated by two peaks at 777 and 844 nm.

  17. Chemical and biological methods for the analysis and remediation of environmental contaminants frequently identified at superfund sites

    Energy Technology Data Exchange (ETDEWEB)

    Melinda Christine Wiles [Texas A& amp; M University, College Station, TX (United States). Department of Veterinary Anatomy & Public Health

    2004-08-15

    Substantial environmental contamination has occurred from coal tar creosote and pentachlorophenol (C5P) in wood preserving solutions. The present studies focused on the characterization and remediation of these contaminants. The first objective was to delineate a sequence of biological changes caused by chlorinated phenol (CP) exposure. The second study was to develop multi-functional sorbents to remediate CPs and other components of wood preserving waste from groundwater. Following water remediation, the final aim of this work was to explore the safety of the parent clay minerals as potential enterosorbents for contaminants ingested in water and food. Based on evaluations of toxicity and neutron activation analysis of tissues, no significant differences were observed between animals receiving clay supplements and control animals, with the exception of slightly decreased brain Rb in animals ingesting clay. Overall, the results suggest that neither clay mineral, at relatively high dietary concentrations, influences mineral uptake or utilization in the pregnant rat. 420 refs., 28 figs, 15 tabs.

  18. Framework to determine the effectiveness of dietary exposure mitigation to chemical contaminants

    NARCIS (Netherlands)

    Fels, van der H.J.; Edwards, S.; Kennedy, M.; O'Hagan, A.; O'Mahony, C.; Scholz, G.; Steinberg, P.; Tennant, D.; Chiodini, A.

    2014-01-01

    In order to ensure the food safety, risk managers may implement measures to reduce human exposure to contaminants via food consumption. The evaluation of the effect of a measure is often an overlooked step in risk analysis process. The aim of this study was to develop a systematic approach for

  19. In Situ Chemical Oxidation for Remediation of Contaminated Groundwater. Frequently Asked Questions

    Science.gov (United States)

    2010-03-01

    peroxide − Most contaminants are amenable including chlorocarbons, fuel hydrocarbons, pesticides , PAHs  Permanganate − Chloroethenes and PAHs...alternative endpoints such as: 1) transition from active treatment (e.g., ISCO) to a more passive technology like MNA or in situ bioremediation , 2

  20. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Fogh, C.L.; Kucera, J.

    2003-01-01

    Soil samples from areas in Belarus, Russia and Sweden contaminated by the Chernobyl accident were analysed for I-129 by radiochemical neutron activation analysis, as well as for Cs-137 by gamma-spectrometry. The atomic ratio of I-129/(CS)-C-137 in the upper layer of the examined soil cores ranged...

  1. Framework to determine the effectiveness of dietary exposure mitigation to chemical contaminants

    NARCIS (Netherlands)

    Fels, van der H.J.; Edwards, S.; Kennedy, M.; O'Hagan, A.; O'Mahony, C.; Scholz, G.; Steinberg, P.; Tennant, D.; Chiodini, A.

    2014-01-01

    In order to ensure the food safety, risk managers may implement measures to reduce human exposure to contaminants via food consumption. The evaluation of the effect of a measure is often an overlooked step in risk analysis process. The aim of this study was to develop a systematic approach for deter

  2. Extraction, chemical characterization and narcosis toxicity in a field contaminated marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Beekman, M.; Klamer, H.; Wezel, A. van [National Inst. for Coastal and Marine Management, The Hague (Netherlands)

    1995-12-31

    Lug worms, mussels and flounder were chronically exposed to contaminated sediment from the Rotterdam Harbour in a marine mesoscosm. The sediment contained a variety of known and unknown contaminants. The amount of toxic stress in the System was evaluated by extraction of the biota and testing of the extracts to Microtox{reg_sign}. An extract of biota is a reflection of the bioavailable contaminants and their biotransformation products that induce toxicity in the organism. First different extraction procedures were evaluated in the mussel. Samples were Soxhlet extracted for 16 hr, with (1) acetone/hexane, (2) ethylacetatehexane, (3) chloroform/hexane or (4) chloroform/methanol as a solvent. The different extracts were analyzed on total lipid amount, lipid composition (HPLC-ELSD), contaminant composition (HPLC-UV, HPLC-fluorescence and GC-MS) and on their toxicity on Microtox{reg_sign}. The chloroform/methanol extraction yielded almost twice as much lipids compared to the other procedures, the difference was mainly explained by a more efficient extraction of the polar lipids. The contaminant chromatograms showed approximately the same spectra for the four procedures, the toxicity of the extracts to Microtox{reg_sign} was somewhat higher for extraction procedure 4. The worm and flounder samples were extracted with chloroform/methanol and also tested on their toxicity by Microtox{reg_sign}. The difference in toxicity between the different species was correlated with their difference in {delta}{sup 15}N, a parameter to indicate the trophic position in the food web. The use of the testing of organisms` extracts in Microtox{reg_sign} for the assessment of the toxic stress in a field situation is discussed.

  3. Chemical tracers of high-metallicity environments

    CERN Document Server

    Bayet, E; Bell, T A; Viti, S

    2012-01-01

    We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored Photon-Dominated Region (PDR) chemistry for a wide range of physical conditions likely to be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, Far-Ultra Violet (FUV) radiation fields and cosmic ray ionisation rates. We also investigate the response of the chemistry to the changes in $\\alpha-$element enhancement as seen in ETGs. We find that the fractional abundances of CS, H$_{2}$S, H$_{2}$CS, H$_{2}$O, H$_{3}$O$^{+}$, HCO$^{+}$ and H$_{2}$CN seem invariant to an increase of metallicity whereas C$^{+}$, CO, C$_{2}$H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of $\\alpha-$elements ar...

  4. [Non detection of enterovirus in the bivalve Anadara tuberculosa (Bivalvia:Arcidae) caused by chemical contamination in the Pacific of Costa Rica].

    Science.gov (United States)

    Libia Herrero, U; Alejandro Palacios, F; Laya Hun, O; Francisco Vega, A

    1999-09-01

    Anadara tuberculosa is one of the most abundant mollusks of commercial importance in Costa Rica. Its habitat water is a potential source of fecal and chemical contamination to humans. We wanted to asses enterovirus, mainly poliovirus and hepatitis A virus and chemicals such as sulphates and nitrates in meat and body fluids. Thirteen samples were taken from four sites in Nicoya Gulf, three sites in the Sierpe-Térraba mangrove (Pacific of Costa Rica) and from five fish markets in San José, the capital of Costa Rica. Samples were tested for 1) fecal coliforms (Most Probable Number/100 ml), 2) isolation of enterovirus in cell culture (Hep-2, FrhK-4), 3) cell cytotoxicity in Vero cells and 4) the ability to inactivate 10 ID50% of poliovirus in cell culture. The Most Probable Number/100 ml in surrounding water was higher than the accepted standard for recreational waters, although the number of fecal coliforms in meats and body fluids was lower than in the external water. No cytopathogenic agents were isolated, but we found nitrate and sulphate concentrations that exceeded maxima for human consumption and recreation. The intrinsic cytotoxicity of the samples was at a 1/8 dilution, but some samples were cytotoxic at dilutions of 1/128. Body fluids were more cytotoxic than meats, but a positive correlation between cytotoxicity and chemical contamination was not determined: apparently other pollutants not identified in this study were responsible. Fluid and meat capacity to inactivate 10 ID50% of poliovirus in cell culture was demonstrated. Samples that were toxic for cell cultures also showed a higher percentage of poliovirus inactivation. Monitoring chemical pollution in these waters is highly recommended.

  5. Remote Methodology used at B Plant Hanford to Map High Radiation and Contamination Fields and Document Remaining Hazards

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    2000-01-01

    A remote radiation mapping system using the Gammacam{trademark} (AIL Systems Inc. Trademark) with real-time response was used in deactivating the B Plant at Hanford to produce digitized images showing actual radiation fields and dose rates. Deployment of this technology has significantly reduced labor requirements, decreased personnel exposure, and increased the accuracy of the measurements. Personnel entries into the high radiation/contamination areas was minimized for a dose savings of 30 Rem (.3 Seivert) and a cost savings of $640K. In addition, the data gathered was utilized along with historical information to estimate the amount of remaining hazardous waste in the process cells. The B Plant facility is a canyon facility containing 40 process cells which were used to separate cesium and strontium from high level waste. The cells and vessels are contaminated with chemicals used in the separation and purification processes. Most of the contaminants have been removed but the residual contamination from spills in the cells and heels in the tanks contribute to the localized high radioactivity. The Gammacam{trademark} system consists of a high density terbium-activated scintillating glass detector coupled with a digitized video camera. Composite images generated by the system are presented in pseudo color over a black and white image. Exposure times can be set from 10 milliseconds to 1 hour depending on the field intensity. This information coupled with process knowledge is then used to document the hazardous waste remaining in each cell. Additional uses for this radiation mapping system would be in support of facilities stabilization and deactivation activities at Hanford or other DOE sites. The system is currently scheduled for installation and mapping of the U Plant in 1999. This system is unique due to its portability and its suitability for use in high dose rate areas.

  6. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  7. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  8. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions

    NARCIS (Netherlands)

    French, H.K.; Zee, van der S.E.A.T.M.

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the inf

  9. Reduction of Microbial and Chemical Contaminants in Water Using POU/POE & Mobile Treatment Technologies

    Science.gov (United States)

    POU/POE may be a cost-effective option for reductions of a particular chemical to achieve water quality compliance under certain situations and given restrictions. Proactive consumers seeking to reduce exposure to potential pathogens, trace chemicals, and nanoparticles not curre...

  10. Arsenic contamination of coarse-grained and nanostructured nitinol surfaces induced by chemical treatment in hydrofluoric acid.

    Science.gov (United States)

    Korotin, D M; Bartkowski, S; Kurmaev, E Z; Borchers, C; Müller, M; Neumann, M; Gunderov, D V; Valiev, R Z; Cholakh, S O

    2012-10-01

    XPS measurements of coarse-grained and nanostructured nitinol (Ni(50.2)Ti(49.8)) before and after chemical treatment in hydrofluoric acid (40% HF, 1 min) are presented. The nanostructured state, providing the excellent mechanical properties of nitinol, is achieved by severe plastic deformation. The near-surface layers of nitinol were studied by XPS depth profiling. According to the obtained results, a chemical treatment in hydrofluoric acid reduces the thickness of the protective TiO(2) oxide layer and induces a nickel release from the nitinol surface and an arsenic contamination, and can therefore not be recommended as conditioning to increase the roughness of NiTi-implants. A detailed evaluation of the resulting toxicological risks is given.

  11. Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards

    Directory of Open Access Journals (Sweden)

    Ogueri Nwaiwu

    2017-03-01

    Full Text Available Recent analysis of palm wine, a traditional drink fermented mainly by yeasts, revealed the presence of several chemicals that were not products of yeast fermentation. The chemicals included styrene, benzene, trimethyldioxolane, dichloromethane, methylene fluoride, dichloroethanol, benzylisoquinoline and tetraacetyl-d-xylonic nitrile. A review of the concentrations of these compounds in palm wine found that the benzene concentrations in all samples reviewed ranged from 56–343 ppm and were within permissible limits, whereas the styrene values (1505–5614 ppm in all the palm wine samples evaluated were well over the recommended concentration that is immediately dangerous to life or health. Other chemical compounds evaluated varied according to location or sample source. The concentrations obtained are estimates only and a quantitative study needs to be carried out before the impact of these chemicals on health is evaluated. A search on The PubChem Project, the open chemical database, showed the description, properties and uses of these chemicals. Further searches carried out within other databases like PubMed, Scopus and Google Scholar, using each chemical’s name as a search term, showed possible hazards and adverse health conditions caused by these chemicals, especially styrene, benzene and dichloromethane. The point at which the chemicals are introduced into the drink is still not clear and requires further investigation. The chemicals can be hazardous to humans and there is need to establish and maintain a system that can guarantee permissible levels in the drink. This can be carried out using concentrations of the chemicals that are already known to be immediately dangerous to life or health as a reference point.

  12. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants.

    Science.gov (United States)

    Couto, Camila Rattes de Almeida; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-12-15

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may pose problems of toxicity themselves; therefore, biosurfactants are considered to constitute an environmentally friendly and effective alternative. Nevertheless, the putative effects of such agents on the microbiomes of oil-contaminated and uncontaminated marine environments have not been sufficiently evaluated. Here, we studied the effects of the surfactant Ultrasperse II(®) and the surfactin (biosurfactant) produced by Bacillus sp. H2O-1 on the bacterial communities of marine water. Specifically, we used quantitative PCR and genetic fingerprint analyses to study the abundance and structure of the bacterial communities in marine water collected from two regions with contrasting climatic conditions. The addition of either chemical surfactant or biosurfactant influenced the structure and abundance of total and oil-degrading bacterial communities of oil-contaminated and uncontaminated marine waters. Remarkably, the bacterial communities responded similarly to the addition of oil and/or either the surfactant or the biosurfactant in both set of microcosms. After 30 days of incubation, the addition of surfactin enhanced the oil-degrading bacteria more than the chemical surfactant. However, no increase of hydrocarbon biodegradation values was observed, irrespective of the dispersant used. These data contribute to an increased understanding of the impact of novel dispersants on marine bacteriomes before commercial release into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Examination of gutta-percha cones for microbial contamination during chemical use

    Directory of Open Access Journals (Sweden)

    Guven Kayaoglu

    2009-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the degree of microbial contamination in packaged gutta-percha cones before and during use in clinical conditions. MATERIAL AND METHODS: Sealed packages of #15-40 gutta-percha cones were opened under aseptic laboratory conditions. Two gutta-percha cones from each size were randomly drawn and added to tubes containing glass beads and 750 µL of saline. The tubes were vortexed, serially diluted and samples of 250 µL were cultured on agar plates. The plates were incubated at 37ºC for 3 days and colonies were counted. The initially sampled packages were distributed to 12 final year dental students. The packages were collected at the end of the first and the third clinical practice days and sampled as described above. RESULTS: Baseline microbial counts did not exceed 3 CFU. At the end of the first and the third day, additional contamination was found in five and three of the packages, respectively. The ratio of contaminated packages at the first day and the third day was not significantly different (z-test; p > 0.05. The numbers of microorganisms cultured at the first day (8 ± 9.9 CFU and the third day (4.5 ± 8.3 CFU were not significantly different (Wilcoxon signed-rank test; p > 0.05. No significant correlation was found between the number of filled root canals and cultured microorganisms at either the first day (Spearman's rho; r = 0.481, p = 0.113 or the third day (r = -0.034, p = 0.917. CONCLUSIONS: Gutta-percha cones taken directly from manufacturer's sealed package harbored microorganisms. Clinical use of the packages has been found to be associated with additional contamination of the gutta-percha cones. The counts of cultured microorganisms did not correlate well with the number of filled root canals.

  14. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  15. Chemical contamination of a coral reef by the grounding of a cruise ship in Bermuda.

    Science.gov (United States)

    Jones, Ross J

    2007-07-01

    Bulk metal analyses of surficial sediments collected around the Norwegian Crown cruise ship grounding site in Bermuda indicated significant but localized contamination of reef sediments by copper and zinc, caused by the stripping of the tri-butyltin (TBT)-free antifouling (AF) paint (Intersmooth 460) from the underside of the hull. Highest copper and zinc values were found in heavily compacted and red-pigmented sediments inside the impact scar and were comparable to levels found close to slip ways of local boat yards where AF paints from hull stripping and cleaning processes are washed into the sea. The re-distribution of AF contaminated sediments by storms and deposition on nearby reefs constitutes a significant ecological risk that could delay recovery processes and reduce the effectiveness of remediation efforts. Whilst the ecotoxicological effects of AF paint particles interspersed with sediment is unknown, and in need of further study, it is argued that the significance of AF paint contamination of grounding sites has been overlooked.

  16. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS IN WATER: POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLER (POCIS)

    Science.gov (United States)

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low ...

  17. A REVIEW OF APPLICATIONS OF LUMINESCENCE TO MONITORING OF CHEMICAL CONTAMINANTS IN THE ENVIRONMENT

    Science.gov (United States)

    The recent analytical literature on the application of luminescence techniques to the measurement of various classes of environmentally significant chemicals has been reviewed. Luminescent spectroscopy based methods are compared to other current techniques. Also, examples of rece...

  18. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS IN WATER: POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLER (POCIS)

    Science.gov (United States)

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low ...

  19. Chemical Contaminants Found in the Gastrointestinal Tract of Loggerhead Sea Turtles (Caretta caretta)

    Science.gov (United States)

    Athey, S. N.; Seaton, P. J.; Mead, R. N.

    2016-02-01

    Plastic is becoming increasingly more abundant in the marine environment. Plastic ingestion has been shown to be a source of exposure to a variety of harmful compounds, such as polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates, which are known for their negative physiological effects on the endocrine system as well as their ability to adsorb and leach from plastic into the bodies of marine organisms. The physiological effects of these compounds on loggerhead sea turtles (Caretta caretta) still remain unknown. This study investigated the presence of toxicants on marine plastic samples collected from Bermuda, the Sargasso Sea, and the North Atlantic Ocean. Gas chromatography/triple quadruple mass spectrometry (GC/MS) analysis showed PAHs were present on many plastic debris samples. Plastic additives such as phthalates and (BPA) were also found. ΣPAH concentrations for anthracene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene for 2013 environmental plastic samples averaged 26.7ng/g of plastic. This study also examined the presence of these compounds in fluids from the stomach, small intestine, and large intestine from two adult loggerhead turtles. GC/MS analysis also showed the presence of BPA and phthalates on plastic samples, as well as in two out of the six gastrointestinal fluids samples. Average ΣPAH concentration for GI fluids for the loggerheads in the study was 58.7 ng/mL. This study showed plastic could be a significant source of PAHs in sea turtles and the first to detect PAHs in sea turtle GI fluid. Loggerhead sea turtles are a long living species and could accumulate high concentrations of these endocrine-disrupting chemicals throughout their lifetime.

  20. Characterization and Modeling of Contamination for Lyman Break Galaxy Samples at High Redshift

    Science.gov (United States)

    Vulcani, Benedetta; Trenti, Michele; Calvi, Valentina; Bouwens, Rychard; Oesch, Pascal; Stiavelli, Massimo; Franx, Marijn

    2017-02-01

    The selection of high-redshift sources from broadband photometry using the Lyman-break galaxy (LBG) technique is a well established methodology, but the characterization of its contamination for the faintest sources is still incomplete. We use the optical and near-IR data from four (ultra)deep Hubble Space Telescope legacy fields to investigate the contamination fraction of LBG samples at z∼ 5{--}8 selected using a color–color method. Our approach is based on characterizing the number count distribution of interloper sources, that is, galaxies with colors similar to those of LBGs, but showing detection at wavelengths shorter than the spectral break. Without sufficient sensitivity at bluer wavelengths, a subset of interlopers may not be properly classified, and contaminate the LBG selection. The surface density of interlopers in the sky gets steeper with increasing redshift of LBG selections. Since the intrinsic number of dropouts decreases significantly with increasing redshift, this implies increasing contamination from misclassified interlopers with increasing redshift, primarily by intermediate redshift sources with unremarkable properties (intermediate ages, lack of ongoing star formation and low/moderate dust content). Using Monte-Carlo simulations, we estimate that the CANDELS deep data have contamination induced by photometric scatter increasing from ∼ 2 % at z∼ 5 to ∼ 6 % at z∼ 8 for a typical dropout color ≥slant 1 mag, with contamination naturally decreasing for a more stringent dropout selection. Contaminants are expected to be located preferentially near the detection limit of surveys, ranging from 0.1 to 0.4 contaminants per arcmin2 at {J}125 = 30, depending on the field considered. This analysis suggests that the impact of contamination in future studies of z> 10 galaxies needs to be carefully considered.

  1. An investigation of selected chemical contaminants in commercial pet foods in Egypt.

    Science.gov (United States)

    Abd-Elhakim, Yasmina M; El Sharkawy, Nabela I; Moustafa, Gihan G

    2016-01-01

    Our study aimed to identify the levels of various contaminants in both wet and dry commercial pet foods in Egypt. A total of 20 local and imported pet food products (3 samples each) were screened for heavy metals by atomic absorption spectroscopy, for mycotoxins by enzyme-linked immunosorbent assay, and for nitrate and nitrite levels by nitrate-nitrite spectrophotometry. Cat food, on average, had greater concentrations of the metals cadmium, chromium, lead, and tin than dog food. Of the investigated metals, only tin concentration exceeded the safe level compared with the standards of the National Research Council and the European Commission for the dog and cat. According to the guidelines of the Association of American Feed Control Officials for canned pet foods, the nitrate and nitrite contents of examined foods greatly exceeded the recommended level. No total aflatoxins were detected in the surveyed samples. None of the samples analyzed had levels above international limits established by the Food and Agriculture Organization (FAO) of the United Nations for ochratoxin, and only 1 sample exceeded the level for aflatoxin B1. Of the 20 samples analyzed for zearalenone, 4 samples had higher levels than the FAO maximum tolerable levels. These results indicate that pet foods marketed in Egypt, especially cat foods, occasionally contain contaminants that could result in adverse effects in pets. © 2016 The Author(s).

  2. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  3. The metazoan parasite communities of the shoal flounder (Syacium gunteri) as bioindicators of chemical contamination in the southern Gulf of Mexico.

    Science.gov (United States)

    Vidal-Martínez, Víctor Manuel; Centeno-Chalé, Oscar A; Torres-Irineo, Edgar; Sánchez-Ávila, Juan; Gold-Bouchot, Gerardo; Aguirre-Macedo, M Leopoldina

    2014-11-27

    Because agriculture and offshore oil extraction are significant economic activities in the southern Gulf of Mexico, high concentrations of nutrients and hydrocarbons are expected. As parasite communities are sensitive to environmental impacts, these contaminants should have an effect on metrics such as species richness, relative abundance and similarity. Consequently, these community metrics can be used as indicators of aquatic environmental health. Our objectives were to describe the parasite communities of the shoal flounder Syacium gunteri and to determine potential thresholds above which environmental contaminants become major controlling factors of parasite community metrics. The study area included 33 sampling sites in the southern Gulf of Mexico, where benthic sediments, water and shoal flounder individuals were collected. Data on ecto- and endo-parasites from flounder and nutrients, contaminants and physicochemical variables from the water and sediments were obtained. The statistical associations of the parasite community metrics at the component and infracommunity levels and the environmental data were analysed using redundancy analysis (RDA). Overall, 203 shoal flounder were examined for parasites, recovering 13 metazoan parasite species, and 48 physicochemical (e.g. temperature, nutrients) and contaminant (e.g. hydrocarbons, heavy metals) variables were obtained. The larval stages of the cestode Oncomegas wageneri and the nematodes Pseudoterranova decipiens and Hysterothylacium sp. were numerically dominant at the component and infracommunity levels. The parasite community metrics had significant negative statistical associations with both nitrate and total PAHs. With the exception of these two chemicals, which exceeded the threshold effect levels (TELs), no other environmental variable exceeded the range considered safe for marine organisms. The community metrics chosen generally had robust statistically significant associations with both

  4. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H2O2) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H2O2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost.

  5. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Small Items of Equipment

    Science.gov (United States)

    2012-06-22

    packing closed cell foam planks Expected to absorb and desorb chemical agents and trap nuclear and biological agents. May disintegrate when exposed...property-effects of liquids X 34 Peel/lap shear strength change X X X X 35 Adhesion (loss of), blistering , spalling X X X X X

  6. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry

    NARCIS (Netherlands)

    Lehotay, S.J.; Sapozhnikova, Y.; Mol, J.G.J.

    2015-01-01

    Although quantitative analytical methods must be empirically validated prior to their use in a variety of applications, including regulatory monitoring of chemical adulterants in foods, validation of qualitative method performance for the analytes and matrices of interest is frequently ignored, or g

  7. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry

    NARCIS (Netherlands)

    Lehotay, S.J.; Sapozhnikova, Y.; Mol, J.G.J.

    2015-01-01

    Although quantitative analytical methods must be empirically validated prior to their use in a variety of applications, including regulatory monitoring of chemical adulterants in foods, validation of qualitative method performance for the analytes and matrices of interest is frequently ignored, or

  8. Chemical identification of contaminants in paper and board food contact materials

    DEFF Research Database (Denmark)

    Bengtström, Linda

    was to develop a comprehensive extraction process that is compatible with both chemical and toxicological analyses. For this purpose, a purge-and-trap method was developed for the collection of small volatile organic compounds; in addition semi- and nonvolatile compounds were extracted by a boiling ethanol...

  9. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Sørensen, Karin Dreisig; Boberg, Julie

    2012-01-01

    and resistin from the cells. Butylparaben activated PPARγ as well, which may be a mediator of the adipogenic effect. Polychlorinated biphenyl (PCB)153 also stimulate adipogenesis and biomarker release, but did not affect PPARs. The data indicates that PPARγ activating chemicals often stimulate adipocyte...

  10. The Reduction of Microbial and Chemical Contaminants with Selected POU/POE Systems

    Science.gov (United States)

    Centralized drinking water treatment and distribution alone may not always be the most practical or cost-effective option. Also, some consumers seeking a proactive measure to reduce exposure to pathogens and chemicals not currently monitored or regulated might consider employing...

  11. High-resolution radiation mapping to investigate FDNPP derived contaminant migration.

    Science.gov (United States)

    Martin, P G; Payton, O D; Yamashiki, Y; Richards, D A; Scott, T B

    2016-11-01

    As of March 2016, five years will have passed since the earthquake and ensuing tsunami that crippled the Fukushima Daiichi Nuclear Power Plant on Japan's eastern coast, resulting in the explosive release of significant quantities of radioactive material. Over this period, significant time and resource has been expended on both the study of the contamination as well as its remediation from the affected environments. Presented in this work is a high-spatial resolution foot-based radiation mapping study using gamma-spectrometry at a site in the contaminated Iitate Village; conducted at different times, seventeen months apart. The specific site selected for this work was one in which consistent uniform agriculture was observed across its entire extent. From these surveys, obtained from along the main northwest trending line of the fallout plume, it was possible to determine the rate of reduction in the levels of contamination around the site attributable to the natural decay of the radiocesium, remediation efforts or material transport. Results from the work suggest that neither the natural decay of radiocesium nor its downward migration through the soil horizons were responsible for the decline in measured activity levels across the site, with the mobilisation of contaminant species likely adhered to soil particulate and the subsequent fluvial transport responsible for the measurable reduction in activity. This transport of contaminant via fluvial methods has already well studied implications for the input of contaminant material entering the neighbouring Pacific Ocean, as well as the deposition of material along rivers within previously decontaminated areas.

  12. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands national park, St. John, U.S. Virgin Islands.

    Science.gov (United States)

    Bargar, Timothy A; Alvarez, David A; Garrison, Virginia H

    2015-12-15

    Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r(2)=0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.

  13. Energetic neutral contamination in modern high-current implanters

    Science.gov (United States)

    Cherekdjian, S.; Weisenberger, W.

    1991-04-01

    The presence of energetic neutrals in a high-current, high-energy implant can result in nonuniformities on a silicon wafer. A larger concern is when the energetic neutrals are not of the desired energy. This is a major consideration when designing ion implanters with pre- and post-acceleration stages. This paper investigates the levels of pre-accelerated boron neutrals present in a 180 kV boron implant. The machines investigated were a Nova 20A and an Applied Materials PI9000. A comparison of their vacuum systems and their ability to cope with photoresist batches and argon backfill are presented. Silicon wafers were mapped by four-point probe resistivity measurements and the levels of pre-accelerated neutrals were quantified by spreading resistance profiles (SRPs). It is clearly demonstrated that good uniformity on a bare silicon wafer is not an indicator of a clean ion beam. Even though it is well understood that this problem is vacuum-related, modern high-current implanters are still being built and marketed with improper vacuum isolation and insufficient pumping capability.

  14. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.

    Science.gov (United States)

    Liang, S H; Chen, K F; Wu, C S; Lin, Y H; Kao, C M

    2014-05-01

    The objective of this study was to develop a controlled-oxidant-release technology combining in situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) concepts to remediate trichloroethene (TCE)-contaminated groundwater. In this study, a potassium permanganate (KMnO4)-releasing composite (PRC) was designed for KMnO4 release. The components of this PRC included polycaprolactone (PCL), KMnO4, and starch with a weight ratio of 1.14:2:0.96. Approximately 64% (w/w) of the KMnO4 was released from the PRC after 76 days of operation in a batch system. The results indicate that the released KMnO4 could oxidize TCE effectively. The results from a column study show that the KMnO4 released from 200 g of PRC could effectively remediate 101 pore volumes (PV) of TCE-contaminated groundwater (initial TCE concentration = 0.5 mg/L) and achieve up to 95% TCE removal. The effectiveness of the PRC system was verified by the following characteristics of the effluents collected after the PRC columns (barrier): (1) decreased TCE concentrations, (2) increased ORP and pH values, and (3) increased MnO2 and KMnO4 concentrations. The results of environmental scanning electron microscope (ESEM) analysis show that the PCL and starch completely filled up the pore spaces of the PRC, creating a composite with low porosity. Secondary micro-scale capillary permeability causes the KMnO4 release, mainly through a reaction-diffusion mechanism. The PRC developed could be used as an ISCO-based passive barrier system for plume control, and it has the potential to become a cost-effective alternative for the remediation of chlorinated solvent-contaminated groundwater.

  15. Ionic-liquid-based dispersive liquid-liquid microextraction for high-throughput multiple food contaminant screening.

    Science.gov (United States)

    Ho, Yee-Man; Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin

    2013-12-01

    This paper describes an innovation of dispersive liquid-liquid microextraction enabling multiple-component analysis of eight high-priority food contaminants in two chemically distinctive families: Sudan dyes and phthalate plasticizers. To provide convenient sample handling for solid and solid-containing matrices, a modified dispersive liquid-liquid microextraction procedure used an extractant precoated frit to perform simultaneous filtration, solvent mixing, and phase dispersion in one simple step. A binary ionic liquid extractant system was carefully tuned to deliver high quality analysis based only on affordable LC with diode array detector instrumentation. The method is comprehensively validated for robust quantification with good precision (6.9-9.8% RSD) in a linear 2-1000 μg/L range. Having accomplished enrichment factors up to 451, the treatment enables sensitive detection at 0.09-1.01 μg/L levels. Analysis of six high-risk solid condiments and sauces further verified its practical applicability within a 70-120% recovery range. Compared to other approaches, the current dispersive liquid-liquid microextraction treatment offers major advantages in terms of minimal solvent (1.5 mL) and sample (0.1 g) consumption, ultra-high analytical throughput (6 min), and the ability to handle complex solid matrices. The idea of performing simultaneous analysis for multiple contaminants presented here fosters a more effective mode of operation in food control routines.

  16. First-order reactant in homogeneous turbulence before the final period of decay. [contaminant fluctuations in chemical reaction

    Science.gov (United States)

    Kumar, P.; Patel, S. R.

    1974-01-01

    A method is described for studying theoretically the concentration fluctuations of a dilute contaminate undergoing a first-order chemical reaction. The method is based on Deissler's (1958) theory for homogeneous turbulence for times before the final period, and it follows the approach used by Loeffler and Deissler (1961) to study temperature fluctuations in homogeneous turbulence. Four-point correlation equations are obtained; it is assumed that terms containing fifth-order correlation are very small in comparison with those containing fourth-order correlations, and can therefore be neglected. A spectrum equation is obtained in a form which can be solved numerically, yielding the decay law for the concentration fluctuations in homogeneous turbulence for the period much before the final period of decay.

  17. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    Science.gov (United States)

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-04

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

  18. Vaporous Decontamination Methods: Potential Uses and Research Priorities for Chemical and Biological Contamination Control

    Science.gov (United States)

    2006-06-01

    resistant to commonly used disinfectants and require the use of chemical sterilants† to effectively decontaminate exposed areas. Since anthrax...all micro-organisms present, including B agents. † Sterilants and disinfectants differ only in their potency; disinfectants have relatively low...of H2O2 [10]. Currently there is no reported data on the use of O3-VHP against B or C agents. DSTO-GD-0465 6 The U.K. based BIOQUELL

  19. Risk managment of complex aquifers contaminated by chemical mixtures : numerical tools and human health risk assessment

    OpenAIRE

    Henri, Christopher

    2015-01-01

    Human impact on groundwater resources has led to a rapid growth of social concerns worldwide owing to an increasing presence of toxic chemicals released in the subsurface. Risk assessment provides the scientific tool needed to quantify the actual thread that these potential hazards pose to human health. Specifically, risk analysis enables decision makers to answer: What can happen? How likely is it to happen? What can be the consequences? Risk assessment is in this context essential. However,...

  20. An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella azteca.

    Science.gov (United States)

    McDonough, Kathleen M; Azzolina, Nicholas A; Hawthorne, Steven B; Nakles, David V; Neuhauser, Edward F

    2010-07-01

    The present study examined the ability of three chemical estimation methods to predict toxicity and nontoxicity of polycyclic aromatic hydrocarbon (PAH) -contaminated sediment to the freshwater benthic amphipod Hyalella azteca for 192 sediment samples from 12 field sites. The first method used bulk sediment concentrations of 34 PAH compounds (PAH34), and fraction of total organic carbon, coupled with equilibrium partitioning theory to predict pore-water concentrations (KOC method). The second method used bulk sediment PAH34 concentrations and the fraction of anthropogenic (black carbon) and natural organic carbon coupled with literature-based black carbon-water and organic carbon-water partition coefficients to estimate pore-water concentrations (KOCKBC method). The final method directly measured pore-water concentrations (pore-water method). The U.S. Environmental Protection Agency's hydrocarbon narcosis model was used to predict sediment toxicity for all three methods using the modeled or measured pore-water concentration as input. The KOC method was unable to predict nontoxicity (83% of nontoxic samples were predicted to be toxic). The KOCKBC method was not able to predict toxicity (57% of toxic samples were predicted to be nontoxic) and, therefore, was not protective of the environment. The pore-water method was able to predict toxicity (correctly predicted 100% of the toxic samples were toxic) and nontoxicity (correctly predicted 71% of the nontoxic samples were nontoxic). This analysis clearly shows that direct pore-water measurement is the most accurate chemical method currently available to estimate PAH-contaminated sediment toxicity to H. azteca.

  1. Multi-Channel High-Tc SQUID Detection System for Metallic Contaminants

    Science.gov (United States)

    Kitamura, Yoshihiro; Hatsukade, Yoshimi; Tanaka, Saburo; Ohtani, Takeyoshi; Suzuki, Shuichi

    Finding ultra-small metallic contaminants is a big issue for manufacturers of lithium-ion batteries nowadays. Therefore, we have developed high-Tc SQUID systems for detection of such fine magnetic metallic contaminants. In this paper, we constructed an eight channel high-Tc SQUID gradiometer system for inspection of a sheet electrode of a lithium ion battery with width of about 70 mm. By this system, a small iron ball of about 30 μm in diameter was successfully detected. It is shown that this system has a detectable range of 70 mm in width. These results suggest that the system is a promising tool for the detection of the contaminants in lithium ion batteries.

  2. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial

    Energy Technology Data Exchange (ETDEWEB)

    Lopareva-Pohu, Alena [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Avenue Maurice Schumann, 59140 Dunkerque (France); Pourrut, Bertrand; Waterlot, Christophe [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Garcon, Guillaume [Universite Lille Nord de France, Lille (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Avenue Maurice Schumann, 59140 Dunkerque (France); Bidar, Geraldine; Pruvot, Christelle [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Shirali, Pirouz [Universite Lille Nord de France, Lille (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Avenue Maurice Schumann, 59140 Dunkerque (France); Douay, Francis, E-mail: f.douay@isa-lille.fr [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France)

    2011-01-01

    Sustainable management of large surface areas contaminated with trace elements is a real challenge, since currently applied remediation techniques are too expensive for these areas. Aided phytostabilisation appears to be a cost efficient technique to reduce metal mobility in contaminated soils and contaminated particle spread. In this context, this study aimed at evaluating the long-term efficiency of aided phytostabilisation on former agricultural soils highly contaminated with trace elements. The influence of afforestation and fly ash amendments to reduce metal mobility was investigated. Before being planted with a tree mix, the study site was divided into three plots: a reference plot with no amendment, the second amended with silico-aluminous fly ash and the third with sulfo-calcic fly ash. After eight years, some soil physico-chemical parameters, including cadmium (Cd), lead (Pb) and zinc (Zn) extractability were modified. In particular, pH decreased on the whole site while organic carbon content increased. The alteration of these parameters influencing trace element mobility is explained by afforestation. Over time, concentrations of CaCl{sub 2}-extractable metals increased and were correlated with the soil pH decrease. In the amended soils, extractable Cd, Pb and Zn concentrations were lower than in the reference soil. The results indicated that the two fly ashes buffered natural soil acidification due to vegetation development and limited trace element mobility and thus could limit their bioavailability. For long-term phytostabilisation, special attention should be focused on the soil pH, metal mobility and phytoavailability analysis. - Research Highlights: {yields} Afforestation leads to soil pH decrease and organic carbon content increase. {yields} Fly ashes buffered natural soil acidification. {yields} Fly ashes limited metal mobility.

  3. Chemical Diversity in High-Mass Star Formation

    CERN Document Server

    Beuther, H; Bergin, E A; Sridharan, T K

    2008-01-01

    Massive star formation exhibits an extremely rich chemistry. However, not much evolutionary details are known yet, especially at high spatial resolution. Therefore, we synthesize previously published Submillimeter Array high-spatial-resolution spectral line observations toward four regions of high-mass star formation that are in various evolutionary stages with a range of luminosities. Estimating column densities and comparing the spatially resolved molecular emission allows us to characterize the chemical evolution in more detail. Furthermore, we model the chemical evolution of massive warm molecular cores to be directly compared with the data. The four regions reveal many different characteristics. While some of them, e.g., the detection rate of CH3OH, can be explained by variations of the average gas temperatures, other features are attributed to chemical effects. For example, C34S is observed mainly at the core-edges and not toward their centers because of temperature-selective desorption and successive g...

  4. Semi-passive, Chemical Oxidation Schemes for the Long-term Treatment of Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Frank W. Schwartz

    2005-12-13

    This research involves a combined experimental and modeling study that builds on our previous DOE-sponsored work in investigating how KMnO{sub 4} can be better used with in situ remediation of groundwater contaminated by chlorinated ethylenes (e.g., PCE, TCE, DCE). This study aims to provide scientific basis for developing a new long-term, semi-passive ISCO scheme that uses controlled release KMnO{sub 4} as a reactive barrier component. Specific objectives of the study are (1) to construct controlled release KMnO{sub 4} as a new reactive barrier component that could deliver permanganate at a controlled rate over long time periods of years, (2) to quantitatively describe release mechanisms associated with the controlled release KMnO{sub 4}, (3) to demonstrate efficacy of the new remediation scheme using proof-of-concept experiments, and (4) to design advanced forms of controlled release systems through numerical optimization. The new scheme operates in a long-term, semi-passive manner to control spreading of a dissolved contaminant plume with periodic replacement of the controlled release KMnO{sub 4} installed in the subsurface. As a first step in developing this remedial concept, we manufactured various prototype controlled release KMnO{sub 4} forms. Then we demonstrated using column experiments that the controlled release KMnO{sub 4} could deliver small amount of permanganate into flowing water at controlled rates over long time periods of years. An analytical model was also used to estimate the diffusivities and durations of the controlled release KMnO{sub 4}. Finally, proof-of-concept flow-tank experiments were performed to demonstrate the efficacy of the controlled release KMnO{sub 4} scheme in controlling dissolved TCE plume in a long-term, semi-passive manner. Another important thrust of our research effort involved numerical optimization of controlled release systems. This study used a numerical model that is capable of describing release patterns of active

  5. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2016-06-01

    Full Text Available Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT technique in combination with traditional chemical methods, such as HOAc (aqua regia, EDTA (ethylene diamine tetraacetic acid, NaOAc (sodium acetate, CaCl2, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p < 0.01 with the accumulation of Cd in plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only

  6. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment.

    Science.gov (United States)

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-06-15

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl₂, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to

  7. Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site.

    Science.gov (United States)

    Rhymes, J; Jones, L; Lapworth, D J; White, D; Fenner, N; McDonald, J E; Perkins, T L

    2015-04-01

    Nutrients and faecal contaminants can enter wetland systems in a number of ways, with both biological and potentially human-health implications. In this study we used a combination of inorganic chemistry, dissolved organic matter (DOM) fluorescence and Escherichia coli and total coliform (TC) count techniques to study the sources and multiple pathways of contamination affecting a designated sand dune site of international conservation importance, surrounded by agricultural land. Analysis of stream samples, groundwater and dune slack wetlands revealed multiple input pathways. These included riverbank seepage, runoff events and percolation of nutrients from adjacent pasture into the groundwater, as well as some on-site sources. The combined techniques showed that off-site nutrient inputs into the sand dune system were primarily from fertilisers, revealed by high nitrate concentrations, and relatively low tryptophan-like fulvic-like ratios<0.4Ramanunits (R.U.). The E. coli and TC counts recorded across the site confirm a relatively minor source of bacterial and nutrient inputs from on-site grazers. Attenuation of the nutrient concentrations in streams, in groundwater and in run-off inputs occurs within the site, restoring healthier groundwater nutrient concentrations showing that contaminant filtration by the sand dunes provides a valuable ecosystem service. However, previous studies show that this input of nutrients has a clear adverse ecological impact.

  8. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster.

    Science.gov (United States)

    Quesada-Calderón, Suany; Bacigalupe, Leonardo Daniel; Toro-Vélez, Andrés Fernando; Madera-Parra, Carlos Arturo; Peña-Varón, Miguel Ricardo; Cárdenas-Henao, Heiber

    2017-08-01

    Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.

  9. Draft Guidance: Response, Remediation, and Recovery Checklist for Chemically Contaminated Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Mancieri, S; Carlsen, T; Fish, C; Hirabayashi-Dethier, J; Intrepido, A; MacQueen, D; Michalik, R; Richards, J

    2007-09-04

    A key part of preparedness in the event of a chemical warfare agent (CWA) or toxic industrial chemical (TIC) release at a large facility, such as an airport or subway, is to develop a concept of operations that allows for an effective incident response and recovery. This document is intended as a component of the concept of operations and will be used in the Emergency Operations Center (EOC) as a decision tool for the Unified Command (UC). The Checklist for Facility Response, Remediation, and Recovery presented in this document is principally focused on the Consequence Management Phase (see Figure 1; LLNL 2007a and 2007b) of a chemical release. Information in this document conforms to the National Response Plan (NRP) (DHS 2004) and the National Incident Management System (NIMS 2004). Under these two guidance documents, personnel responsible for managing chemical response and recovery efforts--that is, the decision-makers--are members of an Incident Command (IC), which is likely to transition to a UC in the event of a CWA or TIC attack. A UC is created when more than one agency has incident jurisdiction or when incidents cross political jurisdictions. The location for primary, tactical-level command and management is referred to as the Incident Command Post (ICP), as described in the NRP. Thus, regardless of whether an IC or a UC is used, the responsible entities are located at an ICP. Agencies work together through designated members of the UC to establish their designated Incident Commanders at a single ICP and to establish a common set of objectives and strategies and a single Incident Action Plan. Initially during the Crisis Management Phase (see Figure 1), the Incident Commander is likely to be the Chief of the fire department that serves the affected facility. As life-safety issues are resolved and the Crisis Management Phase shifts to the Consequence Management Phase, the work of characterization, decontamination, and facility clearance begins. There will

  10. Non-equilibrium effects in high temperature chemical reactions

    Science.gov (United States)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  11. High pressure processing as an intervention for raw virus-contaminated shellfish

    Science.gov (United States)

    Over the past 7 years, the USDA ARS Seafood Safety Laboratory has evaluated the potential use of high pressure processing (HPP) as a processing strategy for virus-contaminated shellfish. HPP can inactivate hepatitis A virus, (HAV), the human norovirus surrogates feline calicivirus and murine norovi...

  12. A review of class I and class II pet food recalls involving chemical contaminants from 1996 to 2008.

    Science.gov (United States)

    Rumbeiha, Wilson; Morrison, Jamie

    2011-03-01

    Commercial pet food in USA is generally safe, but adulteration does occur. Adulterated food has to be recalled to protect pets and public health. All stakeholders, including food firms, distributors, and government agencies such as the Food and Drug Administration (FDA) participate in food recall. The objective of this review is to describe the pet food recall procedure from start to finish, and to review class I and II pet food recalls from 1996 to 2008, with a specific focus on those due to chemical contaminants/adulterants. Information was requested from the FDA by Freedom of Information Act. Only those recalls backed by the FDA scientific review were considered. The legal framework for food recalls in the Code of Federal Regulations, Title 21, Chapter 1, Part 7 and in the Food and Drug Administration Amendments Act of 2007, Title X was reviewed. From 1996 to 2008, there were a total of 22 class I and II pet food recalls. Of these, only six (27%) were due to chemical adulterants. The adulterants were aflatoxins, cholecalciferol, methionine, and melamine, and cyanuric acid. The causes of adulteration included inadequate testing of raw materials for toxins, use of wrong or faulty mixing equipment, and misformulation of raw materials. Overall, pet food manufactured in the USA is safe. Even with shortcomings in the recall process, the incidence of illness associated with pet food adulteration is low. Added changes can only make the system better in the future to safeguard pet and public safety. © American College of Medical Toxicology 2010

  13. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Robers [Pennsylvania State Univ., State College, PA (United States); Dryer, Frederick [Princeton Univ., NJ (United States); Ju, Yiguang [Princeton Univ., NJ (United States)

    2013-09-30

    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  14. Community-based risk assessment of water contamination from high-volume horizontal hydraulic fracturing.

    Science.gov (United States)

    Penningroth, Stephen M; Yarrow, Matthew M; Figueroa, Abner X; Bowen, Rebecca J; Delgado, Soraya

    2013-01-01

    The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking.

  15. Method for Producing Chemically Bonded Phosphate Ceramics and for Stabilizing Contaminants Encapsulated therein Utilizing Reducing Agents

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    1999-05-05

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions is stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  16. Chemical contamination and the annual summer die-off of striped bass (Morone saxatilis) in the Sacramento-San Joaquin Delta.

    Science.gov (United States)

    Cashman, J R; Maltby, D A; Nishioka, R S; Bern, H A; Gee, S J; Hammock, B D

    1992-01-01

    In 1987, striped bass (Morone saxatilis) that were nearly dead (moribund) were captured by hand net, and apparently healthy striped bass were caught by hook and line from adjacent waters in the Sacramento-San Joaquin Delta or, alternatively, caught by hook and line from the Pacific Ocean. The livers of these three groups of striped bass were examined for chemical contamination by gas chromatography, by gas chromatography-mass spectrometry, and by immunoassay. Moribund striped bass livers were greatly contaminated by chemicals compared to healthy fish caught in the Delta and the Pacific Ocean. The types of contaminant encountered suggested that industrial, agricultural, and urban pollutants were present in the livers of moribund fish. Although the variability in the amount of hepatic contaminants observed among the groups of fish does not provide direct proof of causation, the large amount of pollutants suggests that chemical contamination (possibly acting as multiple stressors) contributes to the hepatotoxic condition of the moribund striped bass and may lead to an explanation of the die-off in the Sacramento-San Joaquin Delta region.

  17. Development of a chemical process using nitric acid-cerium(IV) for decontamination of high-level waste canisters

    Energy Technology Data Exchange (ETDEWEB)

    Bray, L.A.

    1988-06-01

    A simple and effective method was developed for contamination of high-level waste containers. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a oxidant system (Ce(IV)) in nitric acid (HNO/sub 3/) solution to chemically mill a thin layer from the canister surface. Contaminated canisters are simply immersed in the solution at a controlled temperature and Ce(IV) concentration level. The spent solution is discarded to the high-level waste stream and added to subsequent glass batches. The Ce(IV)/HNO/sub 3/ solution has been shown to be effective in chemically milling the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. West Valley (WV) staff had previously evaluated several canister decontamination methods, including electropolishing, liquid abrasive blast, high-pressure water wash, and ultrasonic cleaning, before the Ce(IV)/HNO/sub 3/ redox solution on treatment was selected. The initial concept involved continuous electrochemical regeneration of the ceric ion. Extensive in-cell pumping and close-coupled heat transfer and electrochemical equipment were required. The objective of this study, was to simplify the original concept. 2 refs., 16 figs., 4 tabs.

  18. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea).

    Science.gov (United States)

    Amer, Ranya A; Mapelli, Francesca; El Gendi, Hamada M; Barbato, Marta; Goda, Doaa A; Corsini, Anna; Cavalca, Lucia; Fusi, Marco; Borin, Sara; Daffonchio, Daniele; Abdel-Fattah, Yasser R

    2015-01-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  19. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Ranya A. Amer

    2015-01-01

    Full Text Available Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt. Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  20. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    KAUST Repository

    Amer, Ranya A.

    2015-02-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  1. Chemical forms of heavy metal contaminants in sediments of Miyun reservoir

    Institute of Scientific and Technical Information of China (English)

    LIU; Xiaoduan; XU; Qing; GE; Xiaoli; LIU; Liu; WU; Dianwei

    2005-01-01

    The chemical forms, spatial distribution and sources of As, Hg, Cd, Pb and Zn in sediments of the Miyun reservoir were studied. The results of sequential extraction demonstrate that most of As, Pb and Zn were bound to the residual fraction, Hg was associated with the sulfide fraction while Cd was associated with the carbonate fraction and the residual fraction. On the vertical profiles the concentrations of the heavy metals in total and each fractions mostly decreased with increasing depths in sediments, suggesting that the heavy metals input from the upstream watershed increases yearly. Summation of the residual fraction, the sulfide fraction and the carbonate fraction accounts for 60.03%―85.60% of the total heavy metal contents in the sediments, which represent the geochemical background values of the elements and relate closely to soil erosion. Results of the main factor analysis show that most sediments of the reservoir come from the upstream soil erosion, the point source pollution and domestic waste. Moreover, the microbial activities taking place on the sediment-water interface are also one of the major factors to cause the increasing content of the organic matter fraction and the iron-manganese oxide fraction. Environmental change of the reservoir water could make the removability of the heavy metals increase, leading to the increase of their concentrations in pore water in sediments, and imperiling water quality of the reservoir.

  2. High speed, high resolution, and continuous chemical analysis of ice cores using a melter and ion chromatography.

    Science.gov (United States)

    Cole-Dai, Jihong; Budner, Drew M; Ferris, Dave G

    2006-11-01

    Measurement of trace chemical impurities in ice cores contributes to the reconstruction of records of the atmospheric environment and of the climate system. Ion chromatography (IC) is an effective analytical technique for ionic species in ice cores but has been used on discretely prepared ice samples, resulting in extensive and slow sample preparation and potential for contamination. A new technique has been developed that utilizes IC as the online detection technique in a melter-based continuous flow system for quantitative determination of major ionic chemical impurities. The system, called CFA-IC for continuous flow analysis with ion chromatography detection, consists of an ice core melter, several ion chromatographs, and an interface that distributes meltwater to the IC instruments. The CFA-IC technique combines the accuracy, precision, and ease of use of IC measurement with the enhanced speed and depth resolution of continuous melting systems and is capable of virtually continuous, high-speed and high-resolution chemical analysis of long ice cores. The new technique and operating procedures have been tested and validated with the analysis of over 100 m of ice cores from Antarctica. The current CFA-IC system provides an all-major-ion analysis speed of up to 8 m a day at a depth resolution of approximately 2 cm.

  3. Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon.

    Science.gov (United States)

    Picó, Yolanda; Barceló, Damià

    2015-08-01

    It is crucial to study the presence of transformation products (TPs) of emerging contaminants that can be potentially found in the environment after biological or chemical degradation. This review focuses on the potential and shortcomings of high-resolution mass spectrometry (HRMS) to identify these TPs, with emphasis on recent developments in mass analyzers, data evaluation, and compound identification workflows and applications. Advances in HRMS technologies, including direct introduction or in-line chromatographic separation modes, ionization techniques, mass analyzers, and detection methods, have led to powerful tools to assess the molecular changes and the opening of new horizons to identify unknown molecules. Advances in HRMS pertaining to the generation of analytical data for the main methods to identify TPs, including nontargeted and targeted approaches as they are applied to elucidate the structure of TPs, are also discussed.

  4. Passive sampling methods for the measurement of organic chemical contaminants and application to monitoring discharges from the offshore oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Christopher

    2009-07-01

    The presence of persistent organic pollutants in the environment has been of increasing concern and is subject to control through several international conventions. The ability of these compounds to accumulate in biological systems and cause adverse effects at vanishingly low concentrations requires comprehensive and cost-effective monitoring methods. Passive sampling techniques show promise to fulfill several of these requirements, with time integrated sampling that compensates for fluctuating discharges, and (equivalent) large volume samples that provide the low detection limits necessary. Additionally, they do not suffer from some of the complicating issues associated with using biological monitoring methods. Operational discharges from the offshore oil industry represent a significant point source of such pollutants to the marine environment. Concerns surrounding these discharges in the North Sea are due to a combination of the proved toxicity of several of the chemical components present, the increasing volume of the discharges in line with the age of the fields, and the lack of knowledge of the overall long term effects. As such they warrant investigation, and sensitive techniques are required to monitor levels in situ. The main objectives of this dissertation were; i) provide sampling rate data for environmentally important compounds; ii) test the applicability of an empirical uptake model for these compounds; iii) examine the effects of membrane fouling on uptake; iv) measure contaminant concentrations in the receiving waters around oil platforms; v) assess the biological relevance of passive sampler accumulations. In order to achieve these objectives, a suite of laboratory experiments were carried out using flow through exposures of passive samplers to known concentrations of contaminants. These exposures included comparisons between uptake of contaminants in fouled and non-fouled samplers and in fish. Field deployments of passive samplers were performed

  5. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    Science.gov (United States)

    Katz, B.G.; Chelette, A.R.; Pratt, T.R.

    2004-01-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  6. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    Science.gov (United States)

    Katz, Brian G.; Chelette, Angela R.; Pratt, Thomas R.

    2004-04-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m 3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO 3 values (1.7-13.8‰) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (δ 15N-NO 3=5.3-8.9‰) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA

  7. Recommendations for sampling for prevention of hazards in civil defense. On analytics of chemical, biological and radioactive contaminations. 2. ed.; Empfehlungen fuer die Probenahme zur Gefahrenabwehr im Bevoelkerungsschutz. Zur Analytik von chemischen, biologischen und radioaktiven Kontaminationen

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Udo; Derakshani, Nahid; Drobig, Matthias; Koenig, Mario; Mentfewitz, Joachim; Prast, Hartmut; Uelpenich, Gerhard; Vidmayer, Marc; Wilbert, Stefan; Wolf, Manfred

    2016-07-01

    The recommendations for sampling for prevention of hazards in civil defense (analytics of chemical, biological and radioactive contaminations) cover the following topics: Requirements for sampling, description of the materials (chemical, biological and radioactive contaminated materials), decontamination, sample transport and protocol documents.

  8. High spatial resolution image object classification for terrestrial oil spill contamination mapping in West Siberia

    Science.gov (United States)

    Hese, S.; Schmullius, C.

    2009-04-01

    This work is a part of the OSCaR pilot study (Oil Spill Contamination mapping in Russia). A synergetic concept for an object based and multi temporal mapping and classification system for terrestrial oil spill pollution using a test area in West Siberia is presented. An object oriented image classification system is created to map contaminated soils, vegetation and changes in the oil exploration well infrastructure in high resolution data. Due to the limited spectral resolution of Quickbird data context information and image object structure are used as additional features building a structural object knowledge base for the area. The distance of potentially polluted areas to industrial land use and infrastructure objects is utilized to classify crude oil contaminated surfaces. Additionally the potential of Landsat data for dating of oil spill events using change indicators is tested with multi temporal Landsat data from 1987, 1995 and 2001. OSCaR defined three sub-projects: (1) high resolution mapping of crude oil contaminated surfaces, (2) mapping of industrial infrastructure change, (3) dating of oil spill events using multi temporal Landsat data. Validation of the contamination mapping results has been done with field data from Russian experts provided by the Yugra State University in Khanty-Mansiyskiy. The developed image object structure classification system has shown good results for the severely polluted areas with good overall classification accuracy. However it has also revealed the need for direct mapping of hydrocarbon substances. Oil spill event dating with Landsat data was very much limited by the low spatial resolution of Landsat TM 5 data, small scale character of oil spilled surfaces and limited information about oil spill dates.

  9. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers.

    Science.gov (United States)

    Emmanuel, Evens; Pierre, Marie Gisèle; Perrodin, Yves

    2009-05-01

    Contamination of natural aquatic ecosystems by hospital wastewater is a major environmental and human health issue. Disinfectants, pharmaceuticals, radionuclides and solvents are widely used in hospitals for medical purposes and research. After application, some of these substances combine with hospital effluents and, in industrialised countries, reach the municipal sewer network. In certain developing countries, hospitals usually discharge their wastewater into septic tanks equipped with diffusion wells. The discharge of chemical compounds from hospital activities into the natural environment can lead to the pollution of water resources and risks for human health. The aim of this article is to present: (i) the steps of a procedure intended to evaluate risks to human health linked to hospital effluents discharged into a septic tank equipped with a diffusion well; and (ii) the results of its application on the effluents of a hospital in Port-au-Prince. The procedure is based on a scenario that describes the discharge of hospital effluents, via septic tanks, into a karstic formation where water resources are used for human consumption. COD, Chloroform, dichlomethane, dibromochloromethane, dichlorobromomethane and bromoform contents were measured. Furthermore, the presence of heavy metals (chrome, nickel and lead) and faecal coliforms were studied. Maximum concentrations were 700 NPP/100 ml for faecal coliforms and 112 mg/L for COD. A risk of infection of 10(-5) infection per year was calculated. Major chemical risks, particularly for children, relating to Pb(II), Cr(III), Cr(VI) and Ni(II) contained in the ground water were also characterised. Certain aspects of the scenario studied require improvement, especially those relating to the characterisation of drugs in groundwater and the detection of other microbiological indicators such as protozoa, enterococcus and viruses.

  10. Microbial and chemical contamination of water, sediment and soil in the Nakivubo wetland area in Kampala, Uganda.

    Science.gov (United States)

    Fuhrimann, Samuel; Stalder, Michelle; Winkler, Mirko S; Niwagaba, Charles B; Babu, Mohammed; Masaba, Godfrey; Kabatereine, Narcis B; Halage, Abdullah A; Schneeberger, Pierre H H; Utzinger, Jürg; Cissé, Guéladio

    2015-07-01

    The reuse of domestic and industrial wastewater in urban settings of the developing world may harm the health of people through direct contact or via contaminated urban agricultural products and drinking water. We assessed chemical and microbial pollutants in 23 sentinel sites along the wastewater and faecal sludge management and reuse chain of Kampala, Uganda. Water samples were examined for bacteria (thermotolerant coliforms (TTCs), Escherichia coli and Salmonella spp.) and helminth eggs. Physico-chemical parameters were determined. Water, sediment and soil samples and edible plants (yams and sugar cane) were tested for heavy metals. Water samples derived from the Nakivubo wetland showed mean concentrations of TTCs of 2.9 × 10(5) colony-forming units (CFU)/100 mL. Mean E. coli was 9.9 × 10(4) CFU/100 mL. Hookworm eggs were found in 13.5% of the water samples. Mean concentrations of iron (Fe), copper (Cu) and cadmium (Cd) were 21.5, 3.3 and 0.14 mg/L, respectively. In soil samples, we found a mean lead (Pb) concentration of 132.7 mg/L. In yams, concentrations of Cd, chromium (Cr) and Pb were 4.4, 4.0 and 0.2 mg/L, while the respective concentrations in sugar cane were 8.4, 4.3 and 0.2 mg/L. TTCs and E. coli in the water, Pb in soil, and Cd, Cr and Pb in the plants were above national thresholds. We conclude that there is considerable environmental pollution in the Nakivubo wetland and the Lake Victoria ecosystem in Kampala. Our findings have important public health implications, and we suggest that a system of sentinel surveillance is being implemented that, in turn, can guide adequate responses.

  11. Erythrocyte glutathione transferase: a general probe for chemical contaminations in mammals

    Science.gov (United States)

    Bocedi, A; Fabrini, R; Lai, O; Alfieri, L; Roncoroni, C; Noce, A; Pedersen, JZ; Ricci, G

    2016-01-01

    Glutathione transferases (GSTs) are enzymes devoted to the protection of cells against many different toxins. In erythrocytes, the isoenzyme (e-GST) mainly present is GSTP1-1, which is overexpressed in humans in case of increased blood toxicity, as it occurs in nephrophatic patients or in healthy subjects living in polluted areas. The present study explores the possibility that e-GST may be used as an innovative and highly sensitive biomarker of blood toxicity also for other mammals. All distinct e-GSTs from humans, Bos taurus (cow), Sus scrofa (pig), Capra hircus (goat), Equus caballus (horse), Equus asinus (donkey) and Ovis aries (sheep), show very similar amino acid sequences, identical kinetics and stability properties. Reference values for e-GST in all these mammals reared in controlled farms span from 3.5±0.2 U/gHb in the pig to 17.0±0.9 U/gHb in goat; such activity levels can easily be determined with high precision using only a few microliters of whole blood and a simple spectrophotometric assay. Possibly disturbing factors have been examined to avoid artifact determinations. This study provides the basis for future screening studies to verify if animals have been exposed to toxicologic insults. Preliminary data on cows reared in polluted areas show increased expression of e-GST, which parallels the results found for humans. PMID:27551520

  12. International journal of food contamination

    National Research Council Canada - National Science Library

    2014-01-01

    The International Journal of Food Contamination publishes baseline, monitoring data, indicating the qualitative and quantitative presence of microbiological and chemical contaminants in foods, animal...

  13. Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor.

    Science.gov (United States)

    Trinh, Trang; van den Akker, Ben; Coleman, Heather M; Stuetz, Richard M; Drewes, Jörg E; Le-Clech, Pierre; Khan, Stuart J

    2016-04-15

    Trace organic chemical (TrOC) contaminants are of concern for finished water from water recycling schemes because of their potential adverse environmental and public health effects. Understanding the impacts of seasonal variations on fate and removal of TrOCs is important for proper operation, risk assessment and management of treatment systems for water recycling such as membrane bioreactors (MBRs). Accordingly, this study investigated the fate and removal of a wide range of TrOCs through a full-scale MBR plant during summer and winter seasons. TrOCs included 12 steroidal hormones, 3 xeno-estrogens, 2 pesticides and 23 pharmaceuticals and personal care products. Seasonal differences in the mechanisms responsible for removing some of the TrOCs were evident. In particular the contribution of biotransformation and biomass adsorption to the overall removal of estrone, bisphenol A, 17β-estradiol and triclosan were consistently different between the two seasons. Substantially higher percentage removal via biotransformation was observed during the summer sampling period, which compensated for a reduction in removal attributed to biomass adsorption. The opposite was observed during winter, where the contribution of biotransformation to the overall removal of these TrOCs had decreased, which was offset by an improvement in biomass adsorption. The exact mechanisms responsible for this shift are unknown, however are likely to be temperature related as warmer temperatures can lower sorption efficiency, yet enhance biotransformation of these TrOCs.

  14. Chemical and microbial community analysis during aerobic biostimulation assays of non-sulfonated alkyl-benzene-contaminated groundwater.

    Science.gov (United States)

    Martínez-Pascual, Eulàlia; Jiménez, Nuria; Vidal-Gavilan, Georgina; Viñas, Marc; Solanas, A M

    2010-10-01

    A chemical and microbial characterization of lab-scale biostimulation assays with groundwater samples taken from an industrial site in which the aquifer had been contaminated by linear non-sulfonate alkyl benzenes (LABs) was carried out for further field-scale bioremediation purposes. Two lab-scale biodegradability assays were performed, one with a previously obtained gas-oil-degrading consortium and another with the native groundwater flora. Results for the characterization of the groundwater microbial population of the site revealed the presence of an important LAB-degrading microbial population with a strong degrading capacity. Among the microorganisms identified at the site, the detection of Parvibaculum lavamentivorans, which have been described in other studies as alkyl benzene sulfonates degraders, is worth mentioning. Incubation of P. lavamentivorans DSMZ13023 with LABs as reported in this study shows for the first time the metabolic capacity of this strain to degrade such compounds. Results from the biodegradation assays in this study showed that the indigenous microbial population had a higher degrading capacity than the gas-oil-degrading consortium, indicating the strong ability of the native community to adapt to the presence of LABs. The addition of inorganic nutrients significantly improved the aerobic biodegradation rate, achieving levels of biodegradation close to 90%. The results of this study show the potential effectiveness of oxygen and nutrients as in situ biostimulation agents as well as the existence of a complex microbial community that encompasses well-known hydrocarbon- and LAS-degrading microbial populations in the aquifer studied.

  15. Effect of Air Pollution, Contamination and High Altitude on Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Nesriene El margoushy*, Mohamad El Nashar**, Hatem Khairy*, Nihad El Nashar*, Hala Mohamad

    2013-01-01

    Full Text Available Epidemiological studies have shown that the prevalence of asthma has risen dramatically worldwide and evidence suggests that environmental factors have an important role in the etiology of the disease. Most respiratory diseases are caused by airborne agents. Our lungs are uniquely vulnerable to contamination from the air we breathe. Air pollution exposure is associated with increased asthma and allergy morbidity and is a suspected contributor to the increasing prevalence of allergic conditions. Observational studies continue to strengthen the association between air pollution and allergic respiratory disease. The effects of air pollution should be viewed in two different groups: healthy people and people with chronic heart or lung disease. Although the fundamental causes of asthma are not completely understood, the strongest risk factors for developing asthma are inhaled asthma triggers. These include: indoor allergens (for example house dust mites in bedding, carpets and stuffed furniture, pollution and pet dander, outdoor allergens (such as pollens and moulds, tobacco smoke and chemical irritants in the workplace. Other triggers can include cold air, extreme emotional arousal such as anger or fear, and physical exercise. Even certain medications can trigger asthma such as aspirin and other non-steroid anti-inflammatory drugs, and beta-blockers. Urbanization has also been associated with an increase in asthma; however the exact nature of this relationship is unclear. Medication is not the only way to control asthma. It is also important to avoid asthma triggers - stimuli that irritate and inflame the airways. Prevalence of asthma is generally low within the Middle East, although high rates have been recorded in the Kingdom of Saudi Arabia, Kuwait, Lebanon, and Israel. The prevalence of asthma and asthma-related symptoms is high among 16- to 18-year-old adolescents in Saudi Arabia, and the symptoms are more common in boys than in girls

  16. Influence of the contaminant size on the thermal damage of optical mirrors used in high energy laser system

    Science.gov (United States)

    Han, Kai; Song, Rui; Xu, Xiaojun; Liu, Zejin

    2016-09-01

    The laser induced damage is a troublesome issue in the application of optical mirrors, which is related to the robustness of the whole laser system. There are two types of mechanisms about the damage of optical mirrors: thermal effect and field effect, which are responsible for the high energy continuous wave (cw) laser induced damage and the high power pulsed laser induced damage, respectively. Under the irradiation of high energy laser, the contaminant on the mirror surface absorbs the laser energy and converts the laser energy to heat. With the heat accumulating, the optical mirror is likely to fuse and even be totally destroyed. The temperature of the contaminant was measured when it was irradiated by a cw high energy laser with power intensity 3.3kW/cm2. It is found that the contaminant achieves thermal equilibrium in a few seconds and then the temperature stays at 1700K. A physical model was established to describe the process of the thermal equilibrium. The influence of the contaminant size on the thermal damage of the optical mirror was studied theoretically. The results show that the contaminant size plays an important role in the thermal damage of the optical mirror. Only when the contaminant size is smaller than a critical size ( 10μm), the contaminant may reach thermal equilibrium and the optical mirror works well in the high energy laser system. If the contaminant size is quite large (mirror will damage under the irradiation of high energy laser.

  17. QCD Effective action at high temperature and small chemical potential

    CERN Document Server

    Villavicencio, C

    2007-01-01

    We present a construction of an effective Yang-Mills action for QCD, from the expansion of the fermionic determinant in terms of powers of the chemical potential at high temperature, for the case of massless quarks. We analyze this expansion in the perturbative region and find that it gives extra spurious information. We propose for the non-perturbative sector a simplified effective action which, in principle, contains only the relevant information.

  18. Reliability and Consistency of Surface Contamination Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouppert, F.; Rivoallan, A.; Largeron, C.

    2002-02-26

    Surface contamination evaluation is a tough problem since it is difficult to isolate the radiations emitted by the surface, especially in a highly irradiating atmosphere. In that case the only possibility is to evaluate smearable (removeable) contamination since ex-situ countings are possible. Unfortunately, according to our experience at CEA, these values are not consistent and thus non relevant. In this study, we show, using in-situ Fourier Transform Infra Red spectrometry on contaminated metal samples, that fixed contamination seems to be chemisorbed and removeable contamination seems to be physisorbed. The distribution between fixed and removeable contamination appears to be variable. Chemical equilibria and reversible ion exchange mechanisms are involved and are closely linked to environmental conditions such as humidity and temperature. Measurements of smearable contamination only give an indication of the state of these equilibria between fixed and removeable contamination at the time and in the environmental conditions the measurements were made.

  19. Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast.

    Science.gov (United States)

    Peltola, Pasi; Ivask, Angela; Aström, Mats; Virta, Marko

    2005-11-01

    Twenty urban soil samples, with a wide range of Pb (14-5323 mg/kg) and Cu (8-12987 mg/kg), were used to compare the operational speciation of a five-step sequential leach with the bioavailability determined with bioluminescent Pb (RN4220(pTOO24)) and Cu (MC1061(pSLcueR/pDNPcopAluc)) specific bacterial biosensors and a Cu specific yeast sensor. The bioavailable Pb concentrations were all similar or lower than the first sequential leach step (1M NaOAc). In contrast, in some samples the bioavailable concentrations of Cu clearly exceeded even the second sequential leach step (0.1 M Na4P2O7). With the yeast sensor 12/20 samples were below detection, however, the yeast sensor was capable of detecting all high Cu concentrations. The biosensors used in this study are not capable of detecting the natural soil concentrations of Pb and Cu in the studied area.

  20. Analysis of chemical contamination within a canal in a Mexican border colonia.

    Science.gov (United States)

    Owens, Janel E; Niemeyer, Emily D

    2006-04-01

    This study examines urban pollution within Derechos Humanos, a colonia popular in Matamoros, Tamaulipas, Mexico. General water quality indicators (coliform bacteria, total dissolved solids, ecologically relevant cations and anions), heavy metals (copper, lead, nickel, zinc, iron and cadmium), and volatile organic compounds (benzene, toluene, ethylbenzene, styrene, and dichlorobenzene and xylene isomers) were quantified within a wastewater canal running adjacent to the community. Water samples were collected at multiple sites along the banks of the canal and evidence of anthropogenic emissions existed at each sampling location. Sample site 2, approximately 10 m upstream of the colonia, contained both the widest range of hazardous pollutants and the greatest number exceeding US Environmental Protection Agency surface water standards. At each sampling location, high concentrations of total coliform (> 10(4) colonies/100 mL sample), lead (ranging from 0.05 to 0.40 mg/L), nickel (levels from 0.21 to 1.45 mg/L), and benzene (up to 9.80 mg/L) were noted.

  1. ORGANIC-CONTAMINANT DESTRUCTION UNIT ECO LOGIC PROCESS GAS PHASE CHEMICAL REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-06-17

    This report describes the Eco Logic Process and discusses the procedures and results of a pilot-scale treatability study on explosives in shell casings. The study was conducted as part of a contract which was awarded to Science Applications International Corporation (SAIC) and Eco Logic by the Department of Energy's Federal Energy Technology Center (FETC) in Morgantown, West Virginia to conduct treatability studies on complex hazardous wastes, energetic and low level mixed wastes. The U.S. Army currently decontaminates spent shell casings using a bailout or high pressure wash process that removes a large amount of the propellant from the casing but not enough to allow recycle of the entire casing intact; the U.S. Army currently projects the use of a metal parts furnace to completely decontaminate the shell casings. Use of the Eco Logic Process to decontaminate the shell casings would allow the shell casing to be reused intact. In addition to explosives commonly used by the Army such as TNT and Composition B, ARDEC personnel also were interested in the decontamination of shell casings with a residual of the propellant Yellow D which is a common energetic in artillery shell casings used by the Navy. A series of treatability tests on neat samples of explosive as well as shell casings containing each explosive were performed between June 9 and June 20, 1997 at the US Army's Edgewood Research Development, Engineering Center (ERDEC) toxic test chamber facility located at Aberdeen Proving Ground, Maryland., including a 2 gram neat sample of TNT and lO gram samples of TNT, composition B and Yellow D to determine optimal treatment conditions for each explosive followed by two tests on washed shell casings containing trace amounts of TNT and a total of six tests, two each on shell casings lined with 10 grams of TNT, composition B and Yellow D.

  2. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils: Stable isotope dilution, chemical extraction and model views.

    Science.gov (United States)

    Ren, Zong-Ling; Sivry, Yann; Tharaud, Mickaël; Cordier, Laure; Li, Yongtao; Dai, Jun; Benedetti, Marc F

    2017-06-01

    Correct characterization of metal speciation and reactivity is a prerequisite for the risk assessment and remedial activity management of contaminated soil. To better understand the intrinsic reactivity of Pb and Zn, nine heavily and poorly contaminated soils were investigated using the combined approaches of chemical extractions, multi-element stable isotopic dilution (ID) method, and multi-surface modelling. The ID results show that 0.1-38% of total Pb and 3-45% of total Zn in the studied soils are isotopically exchangeable after a 3-day equilibration. The intercomparison between experimental and modelling results evidences that single extraction with 0.43 M HNO3 solubilizes part of non-isotopically exchangeable fraction of Pb and Zn in the studied soils, and cannot be used as a surrogate for ID to assess labile Pb and Zn pools in soil. Both selective sequential extraction (SSE) and modelling reveal that Mn oxides are the predominant sorption surface for Pb in the studied soils; while Zn is predicted to be mainly associated with soil organic matter in the soil with low pH and Fe/Mn oxides in the soils with high pH. Multi-surface modelling can provide a reasonable prediction of Pb and Zn adsorption onto different soil constituents for the most of the studied soils. The modelling could be a promising tool to decipher the underlying mechanism that controls metal reactivity in soil, but the submodel for Mn oxides should be incorporated and the model parameters, especially for the 2-pK diffuse layer model for Mn oxides, should be updated in the further studies. Copyright © 2017. Published by Elsevier Ltd.

  3. Blood plasma clinical-chemical parameters as biomarker endpoints for organohalogen contaminant exposure in Norwegian raptor nestlings

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan O.; Herzke, Dorte;

    2012-01-01

    ), golden eagle (n=12) and white-tailed eagle (n=36) nestlings during three consecutive breeding seasons. We found that blood plasma concentrations of calcium, sodium, creatinine, cholesterol, albumin, total protein, urea, inorganic phosphate, protein:creatinine, urea:creatinine and uric acid...... were also negatively correlated to PCBs and PFCs, respectively. The most significant relationships were found for the highly contaminated northern goshawks and white-tailed eagles. The statistical relationships between OHCs and BCCPs indicate that biochemical pathways could be influenced while...... it is uncertain if such changes have any health effects. The OHC concentrations were below concentrations causing reproductive toxicity in adults of other raptor species but similar to those of concern for endocrine disruption of thyroid hormones in e.g., bald eagles....

  4. Metagenomic Approach Reveals Variation of Microbes with Arsenic and Antimony Metabolism Genes from Highly Contaminated Soil

    Science.gov (United States)

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  5. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    Science.gov (United States)

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.

  6. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  7. Reversible Electrochemical Sensor for Detection of High-Charge Density Polyanion Contaminants in Heparin.

    Science.gov (United States)

    Lester, Jacob; Chandler, Timothy; Gemene, Kebede L

    2015-11-17

    We present a simple, rapid, and inexpensive electrochemical sensor based on a reversible pulsed chronopotentiometric polyanion-selective membrane electrode for the detection and quantification of oversulfated chondroitin sulfate (OSCS) and other high charge-density polyanions that could potentially be used to adulterate heparin. The membrane is free of ion exchanger and is formulated with plasticized poly(vinyl chloride) (PVC) and an inert lipophilic salt, tridodecylmethylammonium-dinonylnaphthaline sulfonate (TDMA-DNNS). The neutral salt is used to reduce membrane resistance and to ensure reversibility of the sensor. More importantly, TDMA(+) is used as the recognition element for the polyanions. Here an anodic galvanostatic current pulse is applied across the membrane to cause the extraction of the polyanions from the sample into the membrane and potential is measured at the sample-membrane interface. The measured electromotive force (emf) is proportional to the concentration and the charge density of the polyanions. High charge-density polyanion contaminants and impurities in heparin can be detected using this method since the overall equilibrium potential response of polyions increases with increasing charge density of the polyions. Here, first the potential response of pure heparin is measured at a saturation concentration, the concentration beyond which further addition of heparin does not produce a change in potential response. Then the potential response of heparin tainted with different quantities of the high charge-density contaminant is measured at a fixed total polyion concentration (heparin concentration + contaminant concentration). The latter gives a greater negative potential response due to the presence of the high charge-density contaminant. The increase in the negative potential response can be used for detection and quantification of high charge-density contaminants in heparin. We demonstrate here that 0.3% (w/w) OSCS as well as 0.1% (w

  8. Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics.

    Science.gov (United States)

    Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; de Diego, Alberto; Arana, Gorka; Madariaga, Juan Manuel

    2014-03-01

    This work presents an innovative methodology to have a rapid diagnosis about the mobility of selected trace elements of known toxicity and biological risk (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn and Zn) present in contaminated sediments. The novel strategy presented in this work uses, therefore, the own estuarine water in contact with sediments as the extracting agent to perform the mobility tests, simulating the real situation of the estuary. This water suffers from different physico-chemical conditions (low and high tides) and gives consequently, rather better information than the one obtained by the routine sequential extraction procedures. The final step of this methodology was the use of spatial modelling by kriging method and multivariate chemometric analysis, both for a better interpretation of the results. To achieve this goal, sediment and water samples were strategically collected at eight different points (four in tributary rivers, one in a closed dock, two in the main channel and another one in the mouth) along the Nerbioi-Ibaizabal River estuary (Metropolitan Bilbao, Basque Country) approximately every three months (summer, autumn, winter and spring) during a whole year. Physico-chemical changes, such as pH, carbonate content and organic matter of the sediments, together with variations in water salinity appear to be responsible for metal mobility from the sediment to the water layer. The influence of these variables was higher in the sites located close to the sea. Moreover, the mobility of trace elements was even higher at high tide in sediments with lower metal content. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  10. Surface Sampling Collection and Culture Methods for Escherichia coli in Household Environments with High Fecal Contamination.

    Science.gov (United States)

    Exum, Natalie G; Kosek, Margaret N; Davis, Meghan F; Schwab, Kellogg J

    2017-08-22

    Empiric quantification of environmental fecal contamination is an important step toward understanding the impact that water, sanitation, and hygiene interventions have on reducing enteric infections. There is a need to standardize the methods used for surface sampling in field studies that examine fecal contamination in low-income settings. The dry cloth method presented in this manuscript improves upon the more commonly used swabbing technique that has been shown in the literature to have a low sampling efficiency. The recovery efficiency of a dry electrostatic cloth sampling method was evaluated using Escherichia coli and then applied to household surfaces in Iquitos, Peru, where there is high fecal contamination and enteric infection. Side-by-side measurements were taken from various floor locations within a household at the same time over a three-month period to compare for consistency of quantification of E. coli bacteria. The dry cloth sampling method in the laboratory setting showed 105% (95% Confidence Interval: 98%, 113%) E. coli recovery efficiency off of the cloths. The field application demonstrated strong agreement of side-by-side results (Pearson correlation coefficient for dirt surfaces was 0.83 (p samples (Pearson (0.53, p method can be utilized in households with high bacterial loads using either continuous (quantitative) or categorical (semi-quantitative) data. The standardization of this low-cost, dry electrostatic cloth sampling method can be used to measure differences between households in intervention and non-intervention arms of randomized trials.

  11. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments.

    Science.gov (United States)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-08-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments.

  12. Fowl play? Forensic environmental assessment of alleged discharge of highly contaminated effluent from a chicken slaughterhouse

    Science.gov (United States)

    Harvey, P.; Taylor, M. P.; Handley, H. K.

    2016-12-01

    Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including

  13. C2SM: a mobile system for detecting and 3D mapping of chemical, radiological, and nuclear contamination

    Science.gov (United States)

    Jasiobedzki, Piotr; Ng, Ho-Kong; Bondy, Michel; McDiarmid, C. H.

    2009-05-01

    CBRN Crime Scene Modeler (C2SM) is a prototype mobile CBRN mapping system for First Responders in events where Chemical, Biological, Radiological and Nuclear agents where used. The prototype operates on board a small robotic platform, increases situational awareness of the robot operator by providing geo-located images and data, and current robot location. The sensor suite includes stereo and high resolution cameras, a long wave infra red (thermal) camera and gamma and chemical detectors. The system collects and sends geo-located data to a remote command post in near real-time and automatically creates 3D photorealistic model augmented with CBRN measurements. Two prototypes have been successfully tested in field trials and a fully ruggedised commercial version is expected in 2010.

  14. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  15. Mantle mixing and crustal contamination as the origin of the high-Sr radiogenic magmatism of Stromboli (Aeolian arc)

    Science.gov (United States)

    Luais, Béatrice

    1988-04-01

    The temporal evolution of the volcanic activity on Stromboli (Aeolian arc) is characterized by high-K calc-alkaline magmatism followed by shoshonitic magmatism. Rocks from the two series can be distinguished by their K and P concentrations, hygromagmaphile element concentrations, and Sr isotopic ratios, which are higher in the shoshonitic series than in high-K calc-alkaline series. The mantle oxygen isotopic ratios of the shoshonitic series (Javoy, 1976 [39]) suggest that these characteristics are generated in the upper mantle. The geochemical and isotopic characteristics of the magmatism on Stromboli are midway between those of calc-alkaline rocks from the Aeolian arc and potassic rocks from Central Italy (Campanian region). The similarity between the most radiogenic and LILE-enriched samples of the shoshonitic series and the low-K magmatism in Central Italy suggests that the volcanism on Stromboli is the result of mantle mixing between a calc-alkaline magma and a radiogenic Sr/hygromagmaphile element-enriched magma, such as the high-K magmatism in Central Italy (Alban Hills). The chemical and isotopic characteristics of the differentiated samples can be explained by crustal contamination during the differentiation of the basic liquid by fractional crystallization. An anorthose-bearing xenolith with high Sr isotopic composition of crustal origin (0.71300) is a likely candidate for this crustal component.

  16. Mantle mixing and crustal contamination as the origin of the high-Sr radiogenic magmatism of Stromboli (Aeolian arc)

    Energy Technology Data Exchange (ETDEWEB)

    Luais, B.

    1988-04-01

    The temporal evolution of the volcanic activity on Stromboli (Aeolian arc) is characterized by high-K calc-alkaline magmatism followed by shoshonitic magmatism. Rocks from the two series can be distinguished by their K and P concentrations, hygromagmaphile element concentrations, and Sr isotopic ratios, which are higher in the shoshonitic series than in high-K calc-alkaline series. The mantle oxygen isotopic ratios of the shoshonitic series suggest that these characteristics are generated in the upper mantle. The geometrical and isotopic characteristics of the magmatism on Stromboli are midway between those of calc-alkaline rocks from the Aeolian arc and potassic rocks from Central Italy (Campanian region). The similarity between the most radiogenic and LILE-enriched samples of the shoshonitic series and the low-K magmatism in Central Italy suggests that the volcanism on Stromboli is the result of mantle mixing between a calc-alkaline magma and a radiogenic Sr/hygromagmaphile element-enriched magma, such as the high-K magmatism in Central Italy (Alban Hills). The chemical and isotopic characteristics of the differentiated samples can be explained by crustal contamination during the differentiation of the basic liquid by fractional crystallization. An anorthose-bearing xenolith with high Sr isotopic composition of crustal origin (0.71300) is a likely candidate for thus crustal component.

  17. Self-reported household impacts of large-scale chemical contamination of the public water supply, Charleston, West Virginia, USA.

    Directory of Open Access Journals (Sweden)

    Charles P Schade

    Full Text Available A January 2014 industrial accident contaminated the public water supply of approximately 300,000 homes in and near Charleston, West Virginia (USA with low levels of a strongly-smelling substance consisting principally of 4-methylcyclohexane methanol (MCHM. The ensuing state of emergency closed schools and businesses. Hundreds of people sought medical care for symptoms they related to the incident. We surveyed 498 households by telephone to assess the episode's health and economic impact as well as public perception of risk communication by responsible officials. Thirty two percent of households (159/498 reported someone with illness believed to be related to the chemical spill, chiefly dermatological or gastrointestinal symptoms. Respondents experienced more frequent symptoms of psychological distress during and within 30 days of the emergency than 90 days later. Sixty-seven respondent households (13% had someone miss work because of the crisis, missing a median of 3 days of work. Of 443 households reporting extra expenses due to the crisis, 46% spent less than $100, while 10% spent over $500 (estimated average about $206. More than 80% (401/485 households learned of the spill the same day it occurred. More than 2/3 of households complied fully with "do not use" orders that were issued; only 8% reported drinking water against advice. Household assessments of official communications varied by source, with local officials receiving an average "B" rating, whereas some federal and water company communication received a "D" grade. More than 90% of households obtained safe water from distribution centers or stores during the emergency. We conclude that the spill had major economic impact with substantial numbers of individuals reporting incident-related illnesses and psychological distress. Authorities were successful supplying emergency drinking water, but less so with risk communication.

  18. Self-reported household impacts of large-scale chemical contamination of the public water supply, Charleston, West Virginia, USA.

    Science.gov (United States)

    Schade, Charles P; Wright, Nasandra; Gupta, Rahul; Latif, David A; Jha, Ayan; Robinson, John

    2015-01-01

    A January 2014 industrial accident contaminated the public water supply of approximately 300,000 homes in and near Charleston, West Virginia (USA) with low levels of a strongly-smelling substance consisting principally of 4-methylcyclohexane methanol (MCHM). The ensuing state of emergency closed schools and businesses. Hundreds of people sought medical care for symptoms they related to the incident. We surveyed 498 households by telephone to assess the episode's health and economic impact as well as public perception of risk communication by responsible officials. Thirty two percent of households (159/498) reported someone with illness believed to be related to the chemical spill, chiefly dermatological or gastrointestinal symptoms. Respondents experienced more frequent symptoms of psychological distress during and within 30 days of the emergency than 90 days later. Sixty-seven respondent households (13%) had someone miss work because of the crisis, missing a median of 3 days of work. Of 443 households reporting extra expenses due to the crisis, 46% spent less than $100, while 10% spent over $500 (estimated average about $206). More than 80% (401/485) households learned of the spill the same day it occurred. More than 2/3 of households complied fully with "do not use" orders that were issued; only 8% reported drinking water against advice. Household assessments of official communications varied by source, with local officials receiving an average "B" rating, whereas some federal and water company communication received a "D" grade. More than 90% of households obtained safe water from distribution centers or stores during the emergency. We conclude that the spill had major economic impact with substantial numbers of individuals reporting incident-related illnesses and psychological distress. Authorities were successful supplying emergency drinking water, but less so with risk communication.

  19. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.

    Science.gov (United States)

    Pérez-Esteban, Javier; Escolástico, Consuelo; Moliner, Ana; Masaguer, Alberto

    2013-01-01

    A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Analysis and evaluation methods for chemical contaminants in clean room air; Kagaku osen no bunseki hyokaho clean room kukichu no kagaku osen busshitsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, T.

    1998-07-31

    As for, chemical contamination in a cleanroom air has taken up as a important problem. As the main source is building materials, after construction the execution of countermeasures is difficult. Out-gas evaluation and selection in building materials, chemical filters for removing specific organic matter and so on, are a large technical theme in the future and analytical techniques corresponding them become necessary. In this paper, analytical methods of airborne molecular contaminants (AMCs) are introduced. Main samples are AMCs in cleanroom atmosphere, on silicon wafer surface and out-gas from raw materials for cleanroom construction materials such as sealant, plastics and so on. Analytical methods consist of quantification of inorganic compounds, organic compounds and identification of abnormal spot with local/surface analysis. Various interesting findings with analytical data are obtained and investigated. 22 refs., 6 figs., 5 tabs.

  1. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  2. High surface area graphene foams by chemical vapor deposition

    Science.gov (United States)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  3. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  4. A COMPENDIUM OF CHEMICAL, PHYSICAL AND BIOLOGICAL METHODS FOR ASSESSING AND MONITORING THE REMEDIATION OF CONTAMINATED SEDIMENT SITES

    Science.gov (United States)

    Considering the many organizations which have published methods for monitoring contaminated sediments and the large number of documents on this subject, it can be a formidable task for a superfund project manager to find methods appropriate for his or her contaminated sediment si...

  5. Studies on high chemical reactivity of nano-NaH

    Institute of Scientific and Technical Information of China (English)

    FAN Yinheng; ZOU Yunling; JIN Dan; WU Qiang; LIU Tong; XU Jie

    2007-01-01

    A comparison between the initial reaction rates of nanometric and commercial Nail has been studied in four test reactions: 1) hydrogenolysis of chlorobenzene; 2) selec-tive reduction of cinnamaldehyde to cinnamyl alcohol; 3)metallation of dimethyl sulfoxide; and 4) catalytic hydroge-nation ofolefins. The experimental results indicate that when Nail is used as a chemical reagent in the first three reactions,the initial reaction rates of nano-NaH is 230, 120 and 110 times higher than those of the commercial ones respectively,and it is in agreement with the difference in specific surface areas between these two forms of Nail. When Nail is used as a catalyst component together with Cp2TiCl2 in the fourth reaction, catalyst with nano-NaH gives extremely high activity in the hydrogenation of olefins, while the one with commercial Nail gives no activity at all even ifa large amount of the commercial Nail is used to make the total surface area equivalent to that of nano-NaH. Thus, it is evident that although large specific surface area is important for nano-Nail to be used as a catalyst component, high surface energy with surface defects seems to be more important. The largespecific surface and the activated surface of nano-NaH withhigh surface energy should be the main factors for thei rextremely high chemical reactivity, while whether the former or the latter one plays a leading role depends on the type of reactions involved.

  6. Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment

    CERN Document Server

    Aguilar-Arevalo, A; Bertou, X; Bole, D; Butner, M; Cancelo, G; Vázquez, A Castañeda; Chavarria, A E; Neto, J R T de Mello; Dixon, S; D'Olivo, J C; Estrada, J; Moroni, G Fernandez; Torres, K P Hernández; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Liao, J; López, M; Molina, J; Moreno-Granados, G; Pena, J; Privitera, P; Sarkis, Y; Scarpine, V; Schwarz, T; Haro, M Sofo; Tiffenberg, J; Machado, D Torres; Trillaud, F; You, X; Zhou, J

    2015-01-01

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify $\\alpha$ and $\\beta$ particles. Uranium and thorium contamination in the CCD bulk was measured through $\\alpha$ spectroscopy, with an upper limit on the $^{238}$U ($^{232}$Th) decay rate of 5 (15) kg$^{-1}$ d$^{-1}$ at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from $^{32}$Si-$^{32}$P or $^{210}$Pb-$^{210}$Bi sequences of $\\beta$ decays. The decay rate of $^{32}$Si was found to be $80^{+110}_{-65}$ kg$^{-1}$ d$^{-1}$ (95% CI). An upper limit of $\\sim$35 kg$^{-1}$ d$^{-1}$ (95% CL) on the $^{210}$Pb decay rate was obtained independently by $\\alpha$ spectroscopy and the $\\beta$ decay sequence search. These levels of radioactive contamination are su...

  7. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley

    Science.gov (United States)

    Podgorski, Joel E.; Eqani, Syed Ali Musstjab Akber Shah; Khanam, Tasawar; Ullah, Rizwan; Shen, Heqing; Berg, Michael

    2017-01-01

    Arsenic-contaminated aquifers are currently estimated to affect ~150 million people around the world. However, the full extent of the problem remains elusive. This is also the case in Pakistan, where previous studies focused on isolated areas. Using a new data set of nearly 1200 groundwater quality samples throughout Pakistan, we have created state-of-the-art hazard and risk maps of arsenic-contaminated groundwater for thresholds of 10 and 50 μg/liter. Logistic regression analysis was used with 1000 iterations, where surface slope, geology, and soil parameters were major predictor variables. The hazard model indicates that much of the Indus Plain is likely to have elevated arsenic concentrations, although the rest of the country is mostly safe. Unlike other arsenic-contaminated areas of Asia, the arsenic release process in the arid Indus Plain appears to be dominated by elevated-pH dissolution, resulting from alkaline topsoil and extensive irrigation of unconfined aquifers, although pockets of reductive dissolution are also present. We estimate that approximately 50 million to 60 million people use groundwater within the area at risk, with hot spots around Lahore and Hyderabad. This number is alarmingly high and demonstrates the urgent need for verification and testing of all drinking water wells in the Indus Plain, followed by appropriate mitigation measures. PMID:28845451

  8. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    Science.gov (United States)

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  9. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  10. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.

  11. Presence of microbial and chemical source tracking markers in roof-harvested rainwater and catchment systems for the detection of fecal contamination.

    Science.gov (United States)

    Waso, M; Ndlovu, T; Dobrowsky, P H; Khan, S; Khan, W

    2016-09-01

    Microbial source tracking (MST) and chemical source tracking (CST) markers were utilized to identify fecal contamination in harvested rainwater and gutter debris samples. Throughout the sampling period, Bacteroides HF183 was detected in 57.5 % of the tank water samples and 95 % of the gutter debris samples, while adenovirus was detected in 42.5 and 52.5 % of the tank water and gutter debris samples, respectively. Human adenovirus was then detected at levels ranging from below the detection limit to 316 and 1253 genome copies/μL in the tank water and debris samples, respectively. Results for the CST markers showed that salicylic acid (average 4.62 μg/L) was the most prevalent marker (100 %) in the gutter debris samples, caffeine (average 18.0 μg/L) was the most prevalent in the tank water samples (100 %) and acetaminophen was detected sporadically throughout the study period. Bacteroides HF183 and salicylic acid (95 %) and Bacteroides HF183 and caffeine (80 %) yielded high concurrence frequencies in the gutter debris samples. In addition, the highest concurrence frequency in the tank water samples was observed for Bacteroides HF183 and caffeine (60 %). The current study thus indicates that Bacteroides HF183, salicylic acid and caffeine may potentially be applied as source tracking markers in rainwater catchment systems in order to supplement fecal indicator analyses.

  12. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    Science.gov (United States)

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and PAH16 was >ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    Science.gov (United States)

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  14. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology.

  15. Evaluation and comparison of high-level microwave oven disinfection with chemical disinfection of dental gypsum casts.

    Science.gov (United States)

    Meghashri, K; Kumar, Prasanna; Prasad, D Krishna; Hegde, Rakshit

    2014-06-01

    The aim of this study was to evaluate and compare microwave disinfection with chemical disinfection of dental gypsum casts. A total of 120 casts were prepared from a silicone mold using Type III dental stone. Of the 120 casts, 60 casts were contaminated with 1 ml suspension of Staphylococcus aureus and 60 casts were contaminated with 1 ml suspension of Pseudomonas aeruginosa. Then, the casts were disinfected with microwave irradiation and chemical disinfection using the microwave oven and 0.5% sodium hypochlorite. Bacteriologic procedures were performed; the cfu/ml for each cast was calculated as a weighted mean. The results were analyzed using Kruskal-Wallis test and Mann-Whitney test. The untreated casts showed Brain heart infusion broth counts of 106 log cfu/ml compared to irradiated and chemically disinfected casts, in which 105 log reduction of cfu/ml was seen. These results satisfied the requirements of current infection control guidelines for the dental laboratory. The results obtained for chemical disinfection were in equivalence with microwave disinfection. Within the limitation of this in vitro study, it was found that microwave disinfection of casts for 5 min at 900 W gives high-level disinfection that complies with the current infection control guidelines for the dental laboratory and microwave disinfection method is an effective and validated method as chemical disinfection. How to cite the article: Meghashri K, Kumar P, Prasad DK, Hegde R. Evaluation and comparison of high-level microwave oven disinfection with chemical disinfection of dental gypsum casts. J Int Oral Health 2014;6(3):56-60 .

  16. Geospatial modeling of widespread arsenic contamination in unconfined, high-pH aquifers in Pakistan

    Science.gov (United States)

    Podgorski, J. E.; Eqani, S. A. M. A. S.; Heqing, S.; Berg, M.

    2016-12-01

    Arsenic-contaminated aquifers are presently estimated to affect approximately 150 million people worldwide. However, the full extent of the problem remains unknown. This is the case also in Pakistan, where previously conducted studies have focused only on individual areas of limited extent. Using a new dataset of nearly 1,200 groundwater quality samples throughout Pakistan along with existing measurements, we have created statistically based hazard and risk models of arsenic contamination in groundwater for thresholds of 10 and 50 µg/L, corresponding to the WHO and local guidelines, respectively. Logistic regression analysis was conducted using a variety of environmental indicators selected for their potential association with arsenic release and accumulation. The best logistic regression was achieved using the predictor variables of slope, Holocene geology, fluvisols, soil pH and soil organic carbon. The resultant hazard model (attached figure) shows that much of the flat, arid Indus Plain has a high probability of elevated arsenic concentrations. Other indicators that are highly correlated with elevated arsenic are aridity and proportion of land under irrigation. Unlike other known arsenic-contaminated areas of Asia, the arsenic release process in the arid Indus Plain appears to be dominated by elevated-pH dissolution, which is a consequence of alkaline topsoil and unconfined aquifers. However, pockets of reductive dissolution may also occur, primarily as a result of local groundwater contamination from municipal and agricultural sewage. Although the average pH of surface soil in the Indus Plain generally ranges between 8.0-8.5, the average pH of groundwater samples with high arsenic from this area is only 7.6. A likely scenario is that pH-induced arsenic release is occurring in the surface sediments and migrating downward into the underlying unconfined aquifer. The role of irrigation in arsenic release is unclear, although it could have a significant influence

  17. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  18. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Directory of Open Access Journals (Sweden)

    Othman Soufan

    Full Text Available High-throughput screening (HTS experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  19. Mining Chemical Activity Status from High-Throughput Screening Assays.

    Science.gov (United States)

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  20. Screening of environmental contaminants in honey bee wax comb using gas chromatography-high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Gómez-Ramos, M M; García-Valcárcel, A I; Tadeo, J L; Fernández-Alba, A R; Hernando, M D

    2016-03-01

    This study reports an analytical approach intended to be used for investigation of non-targeted environmental contaminants and to characterize the organic pollution pattern of bee wax comb samples. The method comprises a generic extraction followed by detection with gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF-MS), operated in electron impact ionization (EI) mode. The screening approach for the investigation of non-targeted contaminants consisted of initial peak detection by deconvolution and matching the first-stage mass spectra EI-MS(1) with a nominal mass spectral library. To gain further confidence in the structural characterization of the contaminants under investigation, the molecular formula of representative ions (molecular ion when present in the EI spectrum) and, for at least other two fragment ions, was provided for those with an accurate mass scoring (mass error bee wax comb. This approach has allowed the tentative identification of some GC-amenable contaminants belonging to different chemical groups, among them, phthalates and polycyclic aromatic hydrocarbons (PAHs), along with residues of veterinary treatments used in apiculture.

  1. Aflatoxin Contamination of Red Chili Pepper From Bolivia and Peru, Countries with High Gallbladder Cancer Incidence Rates

    OpenAIRE

    2015-01-01

    Chilean red chili peppers contaminated with aflatoxins were reported in a previous study. If the development of gallbladder cancer (GBC) in Chile is associated with a high level of consumption of aflatoxin-contaminated red chili peppers, such peppers from other countries having a high GBC incidence rate may also be contaminated with aflatoxins. We aimed to determine whether this might be the case for red chili peppers from Bolivia and Peru. A total of 7 samples (3 from Bolivia, 4 from Peru) a...

  2. Miniaturized, High Flow, Low Dead Volume Pre-Concentrator for Trace Contaminants in Water under Microgravity Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high flow, low dead-volume pre-concentrator for monitoring trace levels of contaminants in water under...

  3. Chemical and Thermodynamic Properties at High Temperatures: A Symposium

    Science.gov (United States)

    Walker, Raymond F.

    1961-01-01

    This book contains the program and all available abstracts of the 90' invited and contributed papers to be presented at the TUPAC Symposium on Chemical and Thermodynamic Properties at High Temperatures. The Symposium will be held in conjunction with the XVIIIth IUPAC Congress, Montreal, August 6 - 12, 1961. It has been organized, by the Subcommissions on Condensed States and on Gaseous States of the Commission on High Temperatures and Refractories and by the Subcommission on Experimental Thermodynamics of the Commission on Chemical Thermodynamics, acting in conjunction with the Organizing Committee of the IUPAC Congress. All inquiries concerning participation In the Symposium should be directed to: Secretary, XVIIIth International Congress of Pure and Applied Chemistry, National Research Council, Ottawa, 'Canada. Owing to the limited time and facilities available for the preparation and printing of the book, it has not been possible to refer the proofs of the abstracts to the authors for checking. Furthermore, it has not been possible to subject the manuscripts to a very thorough editorial examination. Some obvious errors in the manuscripts have been corrected; other errors undoubtedly have been introduced. Figures have been redrawn only when such a step was essential for reproduction purposes. Sincere apologies are offered to authors and readers for any errors which remain; however, in the circumstances neither the IUPAC Commissions who organized the Symposium, nor the U. S. Government Agencies who assisted in the preparation of this book can accept responsibility for the errors.

  4. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  5. Mixtures of endocrine disrupting contaminants modelled on human high end exposures

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Kortenkamp, A.; Petersen, Marta Axelstad

    2012-01-01

    in vivo endocrine disrupting effects and information about human exposures was available, including phthalates, pesticides, UV‐filters, bisphenol A, parabens and the drug paracetamol. The mixture ratio was chosen to reflect high end human intakes. To make decisions about the dose levels for studies...... though each individual chemical is present at low, ineffective doses, but the effects of mixtures modelled based on human intakes have not previously been investigated. To address this issue for the first time, we selected 13 chemicals for a developmental mixture toxicity study in rats where data about...... in the rat, we employed the point of departure index (PODI) approach, which sums up ratios between estimated exposure levels and no‐observed‐adverse‐effect‐level (NOAEL) values of individual substances. For high end human exposures to the 13 selected chemicals, we calculated a PODI of 0.016. As only a PODI...

  6. Chemical characterization of selected high copper dental amalgams using XPS and XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Talik, E. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)]. E-mail: talik@us.edu.pl; Babiarz-Zdyb, R. [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Dziedzic, A. [Medical University of Silesia, Department of Conservative Dentistry and Periodontology, Akademicki 17 Sqr., 41-209 Bytom (Poland)

    2005-08-02

    The study was carried out to analyze some dependencies between the composition of seven high copper dental amalgams and mercury release behavior, as well as oxygen reactivity of metallic elements. Chemical comparative analysis of selected dental amalgams was carried out using X-ray photoelectron spectroscopy (XPS) technique and X-ray diffraction (XRD) method. The X-ray powder diffraction measurements revealed two main phases for measured amalgams: {gamma}{sub 1}-(Ag{sub 2}Hg{sub 3}) and {eta}'-(Cu{sub 6}Sn{sub 5}). The amount of mercury obtained by the XPS method was lower than the value quoted in the manufacturer's literature, which suggested evaporation of mercury under the UHV conditions. A linear decrease of oxygen and carbon contamination with the growing amount of Cu and Ag was observed. The XPS analysis showed that a high Sn concentration caused less resistance to oxidation. Some of the amalgams contained some extra elements, such as Bi, In, and Zn. All samples contained lead in metallic state and oxides. The amount of Ag, Cu, Sn ingredients determines the main properties of high copper amalgams and plays an important role in mercury evaporation. High tin concentration combined with the presence of smaller amounts of silver and copper (high Sn/Ag ratio) may influence the increase of mercury vaporization.

  7. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Venu, E-mail: venuanand@cense.iisc.ernet.in, E-mail: venuanand83@gmail.com; Shivashankar, S. A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012 (India); Nair, Aswathi R.; Mohan Rao, G. [Department of Instrumentation and Applied Physics (IAP), Indian Institute of Science (IISc), Bangalore 560012 (India)

    2015-08-31

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  8. High Arsenic contamination in drinking water Hand-Pumps in Khap Tola, West Champaran, Bihar, India

    Directory of Open Access Journals (Sweden)

    Siddharth eBhatia

    2014-11-01

    Full Text Available This study tests the drinking water supply of a marginalized village community of Khap Tola in the state of Bihar, a state in Northern India. Based on hand pump drinking water sample testing and analysis, we found that there was high levels of arsenic (maximum value being 397 ppb , in excess of the WHO limits of 10ppb. Analysis showed 57% of the samples from private hand-pumps in the shallow aquifer zone of 15-35m have arsenic greater than 200 ppb. Using GIS overlay analysis technique it was calculated that 25% of the residential area in the village is under high risk of arsenic contamination. Further using USEPA guidelines, it was calculated that children age group 5-10 years are under high risk of getting cancer. The Hazard Quotient calculated for 21 children taken for study, indicated that children may have adverse non-carcinogenic health impacts, in the future, with continued exposure. Since the area adds a new arsenic contaminated place in India, further geochemical analysis and health assessment needs to be done in this district of West Champaran in, Bihar.

  9. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  10. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  11. Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants.

    Science.gov (United States)

    Zagury, Gerald J; Neculita, Carmen-Mihaela; Bastien, Christian; Deschênes, Louise

    2006-04-01

    Mercury (Hg) fractionation, speciation, bioavailability, and ecotoxicity were investigated in three highly contaminated soils from chlor-alkali plants. Single extractions and a validated four-step sequential extraction scheme were used. Total, volatile, and methyl-Hg concentrations were determined. Mercury was then separated in fractions defined as water-soluble (F1), exchangeable (F2), organic (F3), and residual (F4). Germination and growth inhibition of barley (Hordeum vulgare) and mortality of earthworms (Eisenia andrei) were assessed, and tissue-Hg concentrations of exposed organisms were determined. Results revealed highly (295 +/- 18-11,500 +/- 500 microg Hg/g) contaminated soils, but extracted fractions indicated relatively low mobility of Hg. Nevertheless, the water-soluble and the CaCl2-extractable fractions represented significant Hg concentrations (299 +/- 18 microg/g in soil 3, 67.4 +/- 2.3 microg/g in soil 1, and 9.5 +/- 0.3 microg/g in soil 2), and volatile Hg ranged between 14 and 98% of total Hg. Overall, Hg concentrations reached 6,560 +/- 240 microg/g in roots, 4,200 +/- 1,070 microg/g in aerial plants, and 1,410 +/- 120 microg/g in E. andrei. Earthworm mortality was 100% after exposure to the soil with the highest concentration of mobile Hg. In the latter soil, earthworm fragmentation and chlorotic plants were observed. Bioconcentration factors (BCFs) were higher in barley compared to earthworms, but BCFs yielded misleading values after exposure to the extremely contaminated soil. This study shows that Hg accumulated primarily in the roots, but results also indicate uptake of gaseous Hg by the aerial plants of barley. Tissue-Hg concentrations of both exposed organisms were correlated with water-soluble and CaCl2-extractable Hg, and growth inhibition was in agreement with Hg fractionation.

  12. Bench-scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Straube, W.l.; Jones-Meehan, J.; Pritchard, P.H.; Jones, W.R. [University of Maryland Biotechnology Institute, Baltimore, MD (United States). Center of Marine Biotechnology

    1999-07-01

    The chemical composition of crude oil, creosote, and refined petroleum includes hundreds of different alkanes and aromatic hydrocarbons, among which are the carcinogenic polycyclic aromatic hydrocarbons (PAHs). Some compounds in hydrocarbon-contaminated soils are rapidly removed by the activities of autochthonous bacterial populations while other PAHs, especially those with four or more fused aromatic rings, are refractory to biodegradation. The persistence of high molecular weight of polyaromatic hydrocarbons (hPAHs) in soils implies either that their low solubility renders them poorly available to bacteria, or that autochthonous bacteria do not contain the metabolic or co-metabolic pathways required for their degradation or both. The rate and extent of PAH degradation in contaminated soil is not always predictable for standard biological treatment strategies. This study examines a matrix of treatments suitable for land farming in order to identify those that maximize the removal of hPAHs. The treatments include those intended to increase the bioavailability of hPAH, such as additions of biosurfactant-producing bacteria (i.e. Pseudomonas aeruginosa No. 64) and addition of light oils, as well as treatments intended to increase the metabolic potential of the bacterial community. The latter includes the addition of inorganic nutrients and bacterial strains capable of degrading hPAHs co-metabolically (i.e. Sphingomonas paucimobilis EPA 505). The efficacy of immobilizing PAH-degrading bacteria on vermiculite is also considered, as will be the monitoring of leachate for biodegradation of PAHs in a simulated land farming operation. 17 refs., 4 figs.

  13. Assessment of groundwater pathways and contaminant transport in Florida and Georgia using multiple chemical and microbiological indicators

    Science.gov (United States)

    Mahon, Gary L.

    2011-01-01

    The hydrogeology of Florida, especially in the northern part of the state, and southwestern Georgia is characterized by a predominance of limestone aquifers overlain by varying amounts of sands, silts, and clays. This karstic system of aquifers and their associated springs is particularly vulnerable to contamination from various anthropogenic activities at the land surface. Numerous sinkholes, disappearing streams, and conduit systems or dissolution pathways, often associated with large spring systems, allow rapid movement of contaminants from the land surface to the groundwater system with little or no attenuation or degradation. The fate of contaminants in the groundwater system is not fully understood, but traveltimes from sources are greatly reduced when conduits are intercepted by pumping wells and springs. Contaminant introduction to groundwater systems in Florida and Georgia is not limited to seepage from land surface, but can be associated with passive (drainage wells) and forced subsurface injection (aquifer storage and recovery, waste-water disposal).

  14. EMERGING TECHNOLOGY REPORT: BENCH-SCALE TESTING OF PHOTOLYSIS, CHEMICAL OXIDATION AND BIODEGRADATION OF PCB CONTAMINATED SOILS AND PHOTOLYSIS OF TCDD CONTAMINATED SOILS

    Science.gov (United States)

    This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...

  15. Environmental Contaminants in Foodstuffs

    Directory of Open Access Journals (Sweden)

    Mária Túri-Szerletics

    2008-06-01

    Full Text Available Consumers have specific concerns about food contaminants but often lack themeans to make appropriate judgements on what is high risk and what is not. Contaminantsin foods can be grouped according to their origin and nature. Environmental contaminantsof food-safety concern includes toxic metals and elements, organometallic compounds,agricultural chemicals and persistent organic pollutants such as halogenated hydrocarbonpesticides, polychlorinated biphenyls, dioxins, polycyclic aromatic hydrocarbons,phthalates, nirates, nitrites. These contaminants may present a potential hazard for humanhealth if exposure exceeds tolerable levels. This article shows the characteristics and thedietary intake of these elements and compounds. Further works need to concentrate onmechanism of different contaminants toxicity and metabolism, reevaluation of acceptablelimits, and their control in foods and in the environment.

  16. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  17. Interpretation of the titration and solubility curves of a soil contaminated by heavy metals using freeware chemical equilibrium speciation software

    OpenAIRE

    Gómez-Lahoz, C.; García Herruzo, Francisco; García Rubio, Ana; Paz García, J.M.; Villén Guzmán, M.D.

    2013-01-01

    The buffer capacity of the soil is one of the most important parameters in assessing the feasibility of different remediation techniques of soils contaminated by heavy metals (washing, flushing, electroremediation, etc.). In another work presented in this conference, we study the influence of the pH on the retention of lead in a soil from the mining district of Linares (Spain) contaminated by heavy metals. Two types of curves, the soil titration with different acid solutions and the resultant...

  18. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  19. Chronic toxicity of contaminated sediments on reproduction and histopathology of the crustacean Gammarus fossarum and relationship with the chemical contamination and in vitro effects

    Energy Technology Data Exchange (ETDEWEB)

    Mazurova, Edita; Hilscherova, Klara; Sidlova-Stepankova, Tereza; Blaha, Ludek [Faculty of Science, RECETOX, Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk Univ., Brno (Czech Republic); Koehler, Heinz R. [Animal Physiological Ecology, Univ. of Tuebingen (Germany); Triebskorn, Rita [Steinbeis-Transfer Center for Ecotoxicology and Ecophysiology, Rottenburg (Germany); Jungmann, Dirk [Inst. of Hydrobiology, Dresden Univ. of Tech. (Germany); Giesy, John P. [Dept. of Veterinary Biomedical Sciences and Toxicology Centre, Univ. of Saskatchewan, Saskatoon (Canada); Zoology Dept., National Food Safety and Toxicology Center, and Center for Integrative Toxicology Center, and Center for Integrative Toxicology, Michigan State Univ., East Lansing, MI (United States); Biology and Chemistry Dept., City Univ. of Hong Kong, Kowloon, Hong Kong (China); School of the Environment, Nanjing Univ. (China)

    2010-04-15

    The aim of the present study was to investigate possible relationships between the sediment contaminants and the occurrence of intersex in situ. Two of the studied sediments were from polluted sites with increased occurrence of intersex crustaceans (Lake Pilnok, black coal mining area in the Czech Republic, inhabited by the crayfish Pontastacus leptodactylus population with 18% of intersex; creek Lockwitzbach in Germany with Gammarus fossarum population with about 7% of intersex). Materials and methods Sediments were studied by a combined approach that included (1) determination of concentrations of metals and traditionally analyzed organic pollutants such as polychlorinated biphenyls, pesticides, and polycyclic aromatic hydrocarbons (PAHs); (2) examination of the in vitro potencies to activate aryl hydrocarbon (AhR), estrogen (ER), and androgen receptor-mediated responses; and (3) in vivo whole sediment exposures during a 12-week reproduction toxicity study with benthic amphipod G. fossarum. (orig.)

  20. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    Directory of Open Access Journals (Sweden)

    Silvia ede Candia

    2015-07-01

    Full Text Available This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria spp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays.The addition of naturally microbiologically contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria spp. strains, led to its complete inactivation after four days of treatment.To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly-used material in food packaging. These results could be useful for reducing pathogen cross-contamination phenomena during cold food storage.

  1. Fabrication and characterization of thermoplastic elastomer dry adhesives with high strength and low contamination.

    Science.gov (United States)

    Bin Khaled, Walid; Sameoto, Dan

    2014-05-14

    Polydimethylsiloxane (PDMS) and polyurethane elastomers have commonly been used to manufacture mushroom shaped gecko-inspired dry adhesives with high normal adhesion strength. However, the thermosetting nature of these two materials severely limits the commercial viability of their manufacturing due to long curing times and high material costs. In this work, we introduce poly(styrene-ethylene/butylene-styrene) (SEBS) thermoplastic elastomers as an alternative for the manufacture of mushroom shaped dry adhesives with both directional and nondirectional performance. These materials are attractive for their potential to be less contaminating via oligomer transfer than thermoset elastomers, as well as being more suited to mass manufacturing. Low material transfer properties are attractive for adhesives that could potentially be used in cleanroom environments for microscale assembly and handling in which device contamination is a serious concern. We characterized a thermoplastic elastomer in terms of oligomer transfer using X-ray photoelectron spectroscopy and found that the SEBS transfers negligible amounts of its own oligomers, during contact with a gold-coated silicon surface, which may be representative of the metallic bond pads found in micro-electro-mechanical systems devices. We also demonstrate the fabrication of mushroom shaped isotropic and anisotropic adhesive fibers with two different SEBS elastomer grades using thermocompression molding and characterize the adhesives in terms of their shear-enhanced normal adhesion strength. The overall adhesion of one of the thermoplastic elastomer adhesives was found to be stronger or comparable to their polyurethane counterparts with identical dimensions.

  2. Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site.

    Science.gov (United States)

    Whaley-Martin, K J; Koch, I; Reimer, K J

    2012-01-15

    Arsenic is ubiquitous in the tissues of marine organisms and in uncontaminated environments it is dominantly present as the highly soluble and easily extractable non-toxic arsenical, arsenobetaine. However in contaminated environments, higher proportions of inorganic arsenic, which is much less soluble, are accumulated into the tissues of marine organisms, resulting in lower extraction efficiencies (defined as the percent extracted arsenic of the total arsenic). This study carried out a comparative analysis between three different two-step arsenic extraction methods based on Foster et al. [27] from highly contaminated tissue of the marine periwinkle, Littorina littorea. The first extraction step used 100% water, 1:1 methanol-water, or a 9:1 methanol-water as the extraction solvent and the second step consisted of a gently heated dilute nitric acid extraction. The optimized two step extraction method was 1:1 methanol-water extraction followed by a 2% HNO(3) extraction, based on maximum amounts of extracted species, including organoarsenic species.

  3. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    Science.gov (United States)

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed.

  4. Observations of atmospheric chemical deposition to high Arctic snow

    Science.gov (United States)

    Macdonald, Katrina M.; Sharma, Sangeeta; Toom, Desiree; Chivulescu, Alina; Hanna, Sarah; Bertram, Allan K.; Platt, Andrew; Elsasser, Mike; Huang, Lin; Tarasick, David; Chellman, Nathan; McConnell, Joseph R.; Bozem, Heiko; Kunkel, Daniel; Duan Lei, Ying; Evans, Greg J.; Abbatt, Jonathan P. D.

    2017-05-01

    Rapidly rising temperatures and loss of snow and ice cover have demonstrated the unique vulnerability of the high Arctic to climate change. There are major uncertainties in modelling the chemical depositional and scavenging processes of Arctic snow. To that end, fresh snow samples collected on average every 4 days at Alert, Nunavut, from September 2014 to June 2015 were analyzed for black carbon, major ions, and metals, and their concentrations and fluxes were reported. Comparison with simultaneous measurements of atmospheric aerosol mass loadings yields effective deposition velocities that encompass all processes by which the atmospheric species are transferred to the snow. It is inferred from these values that dry deposition is the dominant removal mechanism for several compounds over the winter while wet deposition increased in importance in the fall and spring, possibly due to enhanced scavenging by mixed-phase clouds. Black carbon aerosol was the least efficiently deposited species to the snow.

  5. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS).

    Science.gov (United States)

    Brittain, S R; Cox, A G; Tomos, A D; Paterson, E; Siripinyanond, A; McLeod, C W

    2012-03-01

    Flow field flow fractionation (FlFFF) in combination with inductively coupled plasma mass spectrometry (ICP-MS) was used to study the chemical speciation of U and trace metals in depleted uranium (DU) contaminated soils. A chemical extraction procedure using sodium pyrophosphate, followed by isolation of humic and fulvic substances was applied to two dissimilar DU contaminated sample types (a sandy soil and a clay-rich soil), in addition to a control soil. The sodium pyrophosphate fractions of the firing range soils (Eskmeals and Kirkcudbright) were found to contain over 50% of the total U (measured after aqua regia digestion), compared to approximately 10% for the control soil. This implies that the soils from the contaminated sites contained a large proportion of the U within more easily mobile soil fractions. Humic and fulvic acid fractions each gave characteristic peak maxima for analytes of interest (Mn, Fe, Cu, Zn, Pb and U), with the fulvic acid fraction eluting at a smaller diameter (approximately 2.1 nm on average) than the humic fraction (approximately 2.4 nm on average). DU in the fulvic acid fraction gave a bimodal peak, not apparent for other trace elements investigated, including natural U. This implies that DU interacts with the fulvic acid fraction in a different way to all other elements studied. This journal is © The Royal Society of Chemistry 2012

  6. NCCOS National Status and Trends Bioeffects Assessment: Chemical contaminant data in the St. Thomas East End Reserves, U.S. Virgin Islands, from 2010-05-04 to 2012-06-22 (NCEI Accession 0146168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset provides valuable baseline data on sediment chemical contamination for the St. Thomas East End Reserve (STEER), U.S. Virgin Islands (USVI). From...

  7. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    Science.gov (United States)

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-03-15

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  8. Effects of mercury contaminated rice from typical chemical plant area in China on nitric oxide changes and c-fos expression of rats brain

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin-ping; WANG Wen-hua; JIA Jin-ping; HU Wei-xuan; SHI Wei; Lin Xue-yu

    2005-01-01

    China is one of countries with the highest mercury production in the world. The Guizhou Province in Southwestern China is currently one of the world's most important mercury production areas. In order to study the neurotoxicity of rice from Qingzhen Chemical Plant area and probe into the signal transduction molecular mechanism of injury in rat brain stimulation by mercury contaminated rice. The rats were exposed to mercury contaminated rice for 20 d. Both of the measurements of NO and NOS were processed according to the protocol of the kit. The effect of Hg contaminated rice on the expression of c-fos mRNA in rat brain and the expression of c-FOS protein in cortex, hippocampus were observed using reverse transcription polymerase chain reaction(RT-PCR) and immunocytochemical methods.The results showed the neural transmitter NO and NOS in brain were significantly change between exposure groups and control group; the mercury polluted rice induced significantly the expression of c-fos mRNA; the c-FOS positive cells in hippocampus and cortex of exposure groups were significant different from control group( p < 0.01). It could be concluded that nitric oxide was involved in mercury contaminated rice induced immediate early gene c-fos expressions in the rat brain. Through food chain, local ecosystem and health of local people iave been deteriorated seriously by mercury. This serious situation will last a long period. In order to alleviate mercury pollution, more work needs to do.

  9. Recharge heterogeneity and high intensity rainfall events increase contamination risk for Mediterranean groundwater resources

    Science.gov (United States)

    Hartmann, Andreas; Jasechko, Scott; Gleeson, Tom; Wada, Yoshihide; Andreo, Bartolomé; Barberá, Juan Antonio; Brielmann, Heike; Charlier, Jean-Baptiste; Darling, George; Filippini, Maria; Garvelmann, Jakob; Goldscheider, Nico; Kralik, Martin; Kunstmann, Harald; Ladouche, Bernard; Lange, Jens; Mudarra, Matías; Francisco Martín, José; Rimmer, Alon; Sanchez, Damián; Stumpp, Christine; Wagener, Thorsten

    2017-04-01

    Karst develops through the dissolution of carbonate rock and results in pronounced spatiotemporal heterogeneity of hydrological processes. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries like Austria or Slovenia. Previous work showed that karstic recharge processes enhance and alter the sensitivity of recharge to climate variability. The enhanced preferential flow from the surface to the aquifer may be followed by enhanced risk of groundwater contamination. In this study we assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of karst hydraulic properties, we were able to simulate karstic groundwater recharge including its heterogeneous spatiotemporal dynamics. The model is driven by gridded daily climate data from the Global Land Data Assimilation System (GLDAS). Transit time distributions are calculated using virtual tracer experiments. We evaluated our simulations by independent information on transit times derived from observed time series of water isotopes of >70 karst springs over Europe. The simulations indicate that, compared to humid, mountain and desert regions, the Mediterranean region shows a stronger risk of contamination in Europe because preferential flow processes are most pronounced given thin soil layers and the seasonal abundance of high intensity rainfall events in autumn and winter. Our modelling approach includes strong simplifications and its results cannot easily be generalized but it still highlights that the combined effects of variable climate and heterogeneous catchment properties constitute a strong risk on water quality.

  10. Simultaneous extraction and cleanup of high-lipid organs from white sturgeon (Acipenser transmontanus) for multiple legacy and emerging organic contaminants using QuEChERS sample preparation.

    Science.gov (United States)

    Morrison, Shane A; Sieve, Kristal K; Ratajczak, Robert E; Bringolf, Robert B; Belden, Jason B

    2016-01-01

    The objective of this research was to utilize the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method to extract a broad range of persistent organic pollutants from sturgeon organs (liver and gonad) as indicators of exposure. The analyte list was prioritized to include carcinogenic polyaromatic hydrocarbons (PAHs), the most commonly occurring polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), persistent bioaccumulative and toxic chemicals (PBTs), and emergent contaminants of concern (ECCs) as indicators of human sewage exposure. White sturgeon (Acipenser transmontanus) were selected for this study to support a larger ecotoxicological study to monitor contaminants as an assessment of fish health. Organ tissues contained high lipid content with percentages of 15% and 34% for liver and gonad, respectively. Overall recoveries from fortified sturgeon tissues were high, 71-98% for PAHs, 60-107% for PBDEs and PCBs, 86-107% for PBT chemicals, and 88-107% for ECCs with the exception of octinoxate (28%) from liver tissues. Analyte recovery trends decreased as analyte lipophilicity and molecular weight increased. These recoveries demonstrate that extraction using QuEChERS can be used for screening of the most common bioaccumulating organic compounds in high lipid fish tissue using a single extraction and analysis.

  11. Physical and chemical performances of high Al steels

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-chuan; DONG Yuan-chi; ZHANG Wen-ming; WANG Shi-jun; ZHOU Yun

    2005-01-01

    The effects of acid-soluble Al content on the physical and chemical performances of high Al steels were investigated. The results show that the distribution of acid-soluble Al in steel substrate is uniform. With increasing Al content, the strength and toughness of steels decrease a little but the hardness increases. The average yield strength and tensile strength are 425 MPa and 570 MPa, respectively, and the Rockwell hardness is 89.7. For non-Al steels the average oxidation rate is up to 0.421 mg/(cm2·h) at 1 373 K. For high Al steels, when the mass fraction of Al is less than 5%, there is a thinner gray oxidized layer on surface and the oxidation rate is high; when the mass fraction of Al is more than 8.0%, the thin, close and yellow glossing film still exists, and the average oxidation rate is only 0.016 mg/(cm2·h).

  12. Corrosion Behaviour of a Highly Alloyed Austenitic Alloy UB6 in Contaminated Phosphoric Acid

    Directory of Open Access Journals (Sweden)

    M. Boudalia

    2013-01-01

    Full Text Available The influence of temperature (20–80°C on the electrochemical behaviour of passive films anodically formed on UB6 stainless steel in phosphoric acid solution (5.5 M H3PO4 has been examined by using potentiodynamic curves, electrochemical impedance spectroscopy, and Mott-Schottky analysis. UB6 stainless steel in contaminated phosphoric acid is characterised by high interfacial impedance, thereby, illustrating its high corrosion resistance. The obtained results show that the films behave as n-type and p-type semiconductors in the potential range above and below the flat band potential, respectively. This behaviour is assumed to be the consequence of the semiconducting properties of the iron oxide and chromium oxide regions which compose the passive film.

  13. Presence of a highly efficient binding to bacterial contamination can distort data from binding studies

    Energy Technology Data Exchange (ETDEWEB)

    Balcar, V.J. (Department of Anatomy, University of Sydney, N.S.W. (Australia))

    1990-12-01

    {sup 3}HGABA at low concentrations (5-10 nM) was bound by what appeared to be a GABA receptor binding site in bacterial contamination originating from a batch of distilled water. Under experimental conditions similar to those usually employed in {sup 3}HGABA binding studies, the apparent binding displayed a very high specific component and a high efficiency in terms of {sup 3}HGABA bound per mg of protein. The binding was blocked by muscimol but not by isoguvacine, SR95531 and nipecotic acid. These characteristics suggest that the presence of such spurious binding in the experiments using 3H-labeled ligands in brain homogenates may not always be very obvious and, moreover, it can result in subtle, but serious, distortions of data from such studies, which may not be immediately recognized.

  14. Linking chemical elements in forest floor humus (O{sub h}-horizon) in the Czech Republic to contamination sources

    Energy Technology Data Exchange (ETDEWEB)

    Sucharova, Julie; Suchara, Ivan; Hola, Marie [Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Kvetnove namesti 391, 252 43 Pruhonice (Czech Republic); Reimann, Clemens, E-mail: Clemens.Reimann@ngu.no [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Boyd, Rognvald [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Filzmoser, Peter [Institute for Statistics and Probability Theory, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien (Austria); Englmaier, Peter [Faculty of Life Science, University of Vienna, Althanstr. 14, A-1090 Vienna (Austria)

    2011-05-15

    While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the 'environmental memory' of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km{sup 2} in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources. - Highlights: > Concentrations of 39 elements in forest floor humus are provided. > The capabilities of humus sampling for bio-monitoring purposes are demonstrated. > Geochemical anomalies are linked to known contamination sources. > The study shows the importance of scale for geochemical mapping projects. > Humus provides a picture of the long term contamination history of a country. - Forest floor humus, the atmosphere-biosphere-pedosphere interface, archives an environmental contamination signal over long time periods.

  15. Is chemical contamination responsible for the decline of the copper redhorse (Moxostoma hubbsi), an endangered fish species, in Canada?

    Science.gov (United States)

    de Lafontaine, Yves; Gilbert, Nicolas L; Dumouchel, François; Brochu, Charles; Moore, Serge; Pelletier, Emilien; Dumont, Pierre; Branchaud, Alain

    2002-10-21

    The copper redhorse (Catostomidae: Moxostoma hubbsi) is an endangered fish species whose worldwide distribution is limited to the St. Lawrence River and three of its tributaries, in Canada. Severe reproductive impairment and lack of successful recruitment reported in this species have been hypothetically associated with water pollution. In order to obtain an initial description of contamination levels in copper redhorse, seven accidentally-killed specimens from the Richelieu River were analyzed for trace metals, organochlorine pesticides, chlorobenzenes, PAHs, PCBs, dioxins and furans. Fish varied between 9 and 33 years of age, which corresponds to mature individuals. The levels of contaminants analyzed in different body tissues were close to and often lower than levels reported in other catostomid fish species from nearby locations within the St. Lawrence River basin. Concentrations of total mercury, cadmium and co-planar PCBs increased with fish age. The types and concentrations of contaminants found suggested that the Richelieu River spawning population of copper redhorse would migrate and spend time in the St. Lawrence River. Concentrations of many contaminants were often highest in gonadal tissues, but levels were much lower than reported in the literature as causing reproductive impairment or egg and fry mortality in fish. Further research is needed to assess the potential link between contaminants and reproductive failure in this endangered fish species.

  16. Non-targeted detection of chemical contamination in carbonated soft drinks using NMR spectroscopy, variable selection and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, Adrian J. [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)], E-mail: adrian.charlton@csl.gov.uk; Robb, Paul; Donarski, James A.; Godward, John [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)

    2008-06-23

    An efficient method for detecting malicious and accidental contamination of foods has been developed using a combined {sup 1}H nuclear magnetic resonance (NMR) and chemometrics approach. The method has been demonstrated using a commercially available carbonated soft drink, as being capable of identifying atypical products and to identify contaminant resonances. Soft-independent modelling of class analogy (SIMCA) was used to compare {sup 1}H NMR profiles of genuine products (obtained from the manufacturer) against retail products spiked in the laboratory with impurities. The benefits of using feature selection for extracting contaminant NMR frequencies were also assessed. Using example impurities (paraquat, p-cresol and glyphosate) NMR spectra were analysed using multivariate methods resulting in detection limits of approximately 0.075, 0.2, and 0.06 mM for p-cresol, paraquat and glyphosate, respectively. These detection limits are shown to be approximately 100-fold lower than the minimum lethal dose for paraquat. The methodology presented here is used to assess the composition of complex matrices for the presence of contaminating molecules without a priori knowledge of the nature of potential contaminants. The ability to detect if a sample does not fit into the expected profile without recourse to multiple targeted analyses is a valuable tool for incident detection and forensic applications.

  17. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking

    OpenAIRE

    Rahman, M. Azizur; Hasegawa, Hiroshi

    2011-01-01

    Rice is the staple food for the people of arsenic endemic South (S) and South-East (SE) Asian countries. In this region, arsenic contaminated groundwater has been used not only for drinking and cooking purposes but also for rice cultivation during dry season. Irrigation of arsenic-contaminated groundwater for rice cultivation has resulted high deposition of arsenic in topsoil and uptake in rice grain posing a serious threat to the sustainable agriculture in this region. In addition, cooking r...

  18. Illicit drugs and pharmaceuticals in the environment - Forensic applications of environmental data, Part 2: Pharmaceuticals as chemical markers of faecal water contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kasprzyk-Hordern, Barbara, E-mail: B.Kasprzyk-Hordern@hud.ac.u [University of Huddersfield, Department of Chemical and Biological Sciences, Queensgate, Huddersfield HD1 3DH (United Kingdom); University of Glamorgan, Sustainable Environment Research Centre, Faculty of Health, Sport and Science, Pontypridd CF37 1DL (United Kingdom); Dinsdale, Richard M.; Guwy, Alan J. [University of Glamorgan, Sustainable Environment Research Centre, Faculty of Health, Sport and Science, Pontypridd CF37 1DL (United Kingdom)

    2009-06-15

    This manuscript is part two of a two-part study aiming to provide a better understanding and application of environmental data not only for environmental aims but also to meet forensic objectives. In this paper pharmaceuticals were investigated as potential chemical indicators of water contamination with sewage. The monitoring program carried out in Wales revealed that some pharmaceuticals are particularly persistent and/or ubiquitous in contaminated river water and therefore might be considered as potential conservative or labile wastewater indicators. In particular, these include some anti-inflammatory/analgesics, antiepileptics, beta-blockers, some H2-receptor antagonists and antibacterial drugs. - Wastewater as an indicative source of information can be used in forensic applications.

  19. Application of surrogates, indicators, and high-resolution mass spectrometry to evaluate the efficacy of UV processes for attenuation of emerging contaminants in water.

    Science.gov (United States)

    Merel, Sylvain; Anumol, Tarun; Park, Minkyu; Snyder, Shane A

    2015-01-23

    In response to water scarcity, strategies relying on multiple processes to turn wastewater effluent into potable water are being increasingly considered by many cities. In such context, the occurrence of contaminants as well as their fate during treatment processes is a major concern. Three analytical approaches where used to characterize the efficacy of UV and UV/H2O2 processes on a secondary wastewater effluent. The first analytical approach assessed bulk organic parameters or surrogates before and after treatment, while the second analytical approach measured the removal of specific indicator compounds. Sixteen trace organic contaminants were selected due to their relative high concentration and detection frequency over eight monitoring campaigns. While their removal rate ranges from approximately 10 to >90%, some of these compounds can be used to gauge process efficacy (or failure). The third analytical approach assessed the fate of unknown contaminants through high-resolution time-of-flight (TOF) mass spectrometry with advanced data processing and demonstrated the occurrence of several thousand organic compounds in the water. A heat map clearly evidenced compounds as recalcitrant or transformed by the UV processes applied. In addition, those chemicals with similar fate were grouped together into clusters to identify new indicator compounds. In this manuscript, each approach is evaluated with advantages and disadvantages compared.

  20. Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation.

    Science.gov (United States)

    Grumiaux, Fabien; Demuynck, Sylvain; Pernin, Céline; Leprêtre, Alain

    2015-03-01

    Highly metal contaminated soils found in the North of France are the result of intense industrial past. These soils are now unfit for the cultivation of agricultural products for human consumption. Solutions have to be found to improve the quality of these soils, and especially to reduce the availability of trace elements (TEs). Phytostabilisation and ash-aided phytostabilisation applied since 2000 to an experimental site located near a former metallurgical site (Metaleurop-Nord) was shown previously as efficacious in reducing TEs mobility in soils. The aim of the study was to check whether this ten years trial had influenced earthworm communities. This experimental site was compared to plots located in the surroundings and differing by the use of soils. Main results are that: (1) whatever the use of soils, earthworm communities are composed of few species with moderate abundance in comparison with communities found in similar habitats outside the TEs-contaminated area, (2) the highest abundance and specific richness (4-5 species) were observed in afforested plots with various tree species, (3) ash amendments in afforested plots did not increase the species richness and modified the communities favoring anecic worms but disfavoring epigeic ones. These findings raised the questions of when and how to perform the addition of ashes firstly, to avoid negative effects on soil fauna and secondly, to keep positive effects on metal immobilization.

  1. Gettering of diffused Au and of Cu and Ni contamination in silicon by cavities induced by high energy He implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bouayadi, R. el; Regula, G.; Pichaud, B.; Lancin, M. [Faculte des Sciences et Techniques de St Jerome, Marseille (France). Lab. TECSEN; Dubois, C.; Ntsoenzok, E.

    2000-11-01

    Silicon samples were gold-diffused at different temperatures (870-950 C) and implanted with He ions at 1.6 MeV and fluences ranging from 2 x 10{sup 16} up to 10{sup 17} cm{sup -2}. The implantation induced defects observed by conventional and high resolution cross section electron microscopy were found to be essentially cavities 10 to 100 nm in size which are faceted mainly along {l_brace}111{r_brace}, but also along {l_brace}110{r_brace} and {l_brace}100{r_brace} planes. The cavities are located at the sample depth predicted by the transport range of ions in matter simulation. Secondary ion mass spectroscopy profiles exhibit a shouldered shape with a maximum at the projected range. They demonstrate that the cavities are very efficient sinks for Au atoms; the shoulder of the profile could be related to the presence of smaller cavities and dislocations in the vicinity of the projected range. Gold concentration in the cavity area was below the detection limit of the energy dispersive spectroscopy technique, but both Cu and Ni contamination gave rise to silicides and could be chemically analysed. Cu{sub 3}Si precipitates have grown in cavities as already reported in the literature, while NiSi{sub 2} precipitates were observed for the first time in cavities. (orig.)

  2. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  3. 40 CFR 799.5085 - Chemical testing requirements for certain high production volume chemicals.

    Science.gov (United States)

    2010-07-01

    ... (preferred species), rat, or Chinese hamster): 40 CFR 799.9538 OR Mammalian Erythrocyte Micronucleus Test (in... CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Multichemical Test Rules § 799.5085 Chemical testing... paragraph (j) of this section at any time from April 17, 2006 to the end of the test data...

  4. Assessment of Potential Location of High Arsenic Contamination Using Fuzzy Overlay and Spatial Anisotropy Approach in Iron Mine Surrounding Area

    Directory of Open Access Journals (Sweden)

    Thanes Weerasiri

    2014-01-01

    Full Text Available Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19±2.86, 6.60±3.04, and 4.90±2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest.

  5. Assessment of potential location of high arsenic contamination using fuzzy overlay and spatial anisotropy approach in iron mine surrounding area.

    Science.gov (United States)

    Weerasiri, Thanes; Wirojanagud, Wanpen; Srisatit, Thares

    2014-01-01

    Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest.

  6. Measurement of metallic contaminants in food with a high-T{sub c} SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Saburo; Natsume, Miyuki; Uchida, Masashi; Hotta, Naoki; Matsuda, Takemasa; Spanut, Zarina A; Hatsukade, Yoshimi [Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi Aichi 441-8580 (Japan)

    2004-04-01

    We have proposed and demonstrated a high-T{sub c} SQUID system for detecting metallic contaminants in foodstuffs. There is a demand for the development of systems for detecting not only magnetic materials but also non-magnetic materials such as Cu and aluminium in foodstuffs to ensure food safety. The system consists of a SQUID magnetometer, an excitation coil and a permanent magnet. For a non-magnetic sample, an AC magnetic field is applied during detection to induce an eddy current in the sample. For a magnetizable sample, a strong magnetic field is applied to the sample prior to the detection attempt. We were able to detect a stainless steel ball with a diameter of 0.1 mm and a Cu ball less than 1 mm in diameter, for example.

  7. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, S.P.; Bratton, W.L. [Applied Research Associates, Inc., South Royalton, VT (United States); Akard, M.L. [Chromatofast, Inc., Ann Arbor, MI (United States)] [and others

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  8. Plutonium Decontamination Using CBI Decon Gel 1101 in Highly Contaminated and Unique Areas at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Fischer, R P; Thoet, M M; O' Neill, M; Edgington, G

    2008-06-09

    A highly contaminated glove-box at LLNL containing plutonium was decontaminated using a strippable decontamination gel. 6 x 12 inch quadrants were mapped out on each of the surfaces. The gel was applied to various surfaces inside the glove-box and was allowed to cure. The radioactivity in each quadrant was measured using a LLNL Blue Alpha meter with a 1.5 inch standoff distance. The results showed decontamination factors of 130 and 210 on cast steel and Lexan{reg_sign} surfaces respectively after several applications. The gel also absorbed more than 91% of the radiation emitted from the surfaces during gel curing. The removed strippable film was analyzed by neutron multiplicity counting and gamma spectroscopy, yielding relative mass information and radioisotopic composition respectively.

  9. REMEDIATION OF SOILS CONTAMINATED WITH MOTOR OIL BY HIGHLY BIODEGRADABLE SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Ignacio Moya-Ramírez

    2014-06-01

    Full Text Available The remediation of a sandy soil contaminated with motor oil was studied by applying two different washing procedures: one discontinuous and the other continuous. In addition the capacity of three highly biodegradable surfactants, two synthetic (Glucopon 600 and Findet 1214N/23 and a biosurfactant from Bacillus subtilis, to enhance oil removal was tested. The results obtained with the continuous procedure were much better than those achieved with the discontinuous one, even in experiments conducted with distilled water. Both the addition of surfactants and the rise in temperature significantly increased the removal of the pollutant in experiments conducted with the discontinuous procedure, but the biosurfactant showed a higher capacity for soil remediation than the synthetic surfactants at concentrations close to its CMC. Conversely, when the continuous method was used, surfactant concentration seems to have a lower effect on motor oil removal, at least below the CMC.

  10. Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Charles J Werth; Albert J Valocchi, Hongkyu Yoon

    2011-05-21

    Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

  11. The risk of river pollution due to washout from contaminated floodplain water bodies during periods of high magnitude floods

    Science.gov (United States)

    Lyubimova, T.; Lepikhin, A.; Parshakova, Ya.; Tiunov, A.

    2016-03-01

    The risk of river pollution due to washout (removal of pollutants) from contaminated floodplain water bodies (floodplain lakes and quarries whose origin is related to the large-scale mining of nonmetallic building materials in the floodplain zone) during high magnitude flood periods is analyzed using a combination of one-, two- and three-dimensional hydrodynamic modeling and in situ measurements. The modeling performed for the floodplain water bodies contaminated by N compounds shows that during large magnitude floods washout occurs. The washout process consists of two stages: an initial rapid stage lasting about two hours during which the upper (3-4 m thick) layer is washed out, followed by a second stage when the concentration of NH4-N in the floodplain water body remains nearly constant. The maximum contaminant concentration in the river in the vicinity of a water intake for drinking water located 21 km downstream is attained about 9 h from the beginning of the flood; concentration of NH4-N can reach values several times larger than acceptable concentration guidelines. The initial primary peak in contaminant concentration at the water intake is followed by a slight decrease in contaminant concentration; a second peak related to the contaminant transport through the inundated floodplain subsequently occurs, after which the concentration slowly decreases, reaching acceptable values after 30-40 h. Contaminated floodplain water bodies located near drinking water supply systems are not significant sources of contamination during small and moderate floods, but during high magnitude floods, they can become sources of water pollution. Operational measures that can decrease potential health risks are discussed.

  12. Anisotropy vs chemical composition at ultra-high energies

    CERN Document Server

    Lemoine, Martin

    2009-01-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E_{thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E_{thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55EeV is not a statistical accident, and that no significant anisotropy has been observed at energies 10^{45}Z^{-2}erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data...

  13. Extraction Tools for Identification of Chemical Contaminants in Estuarine and Coastal Waters to Determine Toxic Pressure on Primary Producers

    NARCIS (Netherlands)

    Booij, P; Sjollema, S.B.; Leonards, P.E.G.; de Voogt, P.; Stroomberg, G.J.; Vethaak, A.D.; Lamoree, M.H.

    2013-01-01

    The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study.

  14. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants

    NARCIS (Netherlands)

    de Almeida Couto, Camila Rattes; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-01-01

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may

  15. 76 FR 1067 - Testing of Certain High Production Volume Chemicals; Second Group of Chemicals

    Science.gov (United States)

    2011-01-07

    ...; Albemarle Corporation (Albemarle); American Chemistry Council (ACC); Chlorinated Paraffins Industry... Responsible Medicine (PCRM), the Alternatives Research Development Foundation (ARDF), and the American Anti... Medicine. B. Are these chemical substances produced and/or imported in substantial quantities? EPA...

  16. Daily disinfection of high-touch surfaces in isolation rooms to reduce contamination of healthcare workers' hands.

    Science.gov (United States)

    Kundrapu, Sirisha; Sunkesula, Venkata; Jury, Lucy A; Sitzlar, Brett M; Donskey, Curtis J

    2012-10-01

    In a randomized nonblinded trial, we demonstrated that daily disinfection of high-touch surfaces in rooms of patients with Clostridium difficile infection and methicillin-resistant Staphylococcus aureus colonization reduced acquisition of the pathogens on hands after contacting high-touch surfaces and reduced contamination of hands of healthcare workers caring for the patients.

  17. Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks: Possible application in environmental protection

    Science.gov (United States)

    Németh, Gabriella; Mlinárik, Lilla; Török, Ákos

    2016-10-01

    Natural porous rocks, like limestone and rhyolite tuff are able to reduce heavy metal pollution by adsorbing or precipitating them from heavy metal containing solutions due to the favourable physical and chemical properties of these rocks. In our experiment, two porous rocks, a porous limestone and rhyolite tuff were used. Petrophysical parameters namely apparent density, real density, capillary water absorption, ultrasonic pulse velocity, total porosity and open porosity of the two porous rocks were determined in water-saturated and dried conditions. Powdered rock samples and cylindrical specimens were placed in lead-nitrate and zinc-sulphate solutions (initial concentration: 1000 ppm) and the amount of lead (II) and zinc (II) ions were identified by titration (chelatometry) of the residual solution. According to the experiments, powdered rocks and rock specimens of limestone and rhyolite tuff reduced the lead (II) and zinc (II) ion concentrations in aqueous solution. The results were cross-checked by ICP-MS. Heavy metal removal capacity was relatively high, 92-99% in each case. The treated powdered rocks and rock specimens were also studied by scanning electron microscope (SEM-EDS) and new heavy metal precipitates were identified. According to the tests result, it could be confirmed that these types of lithologies are capable of removing heavy metals and can be used in environmental protection technologies in a form of permeable reactive barrier.

  18. Evolution of levels of physico-chemical and heavy metal contamination in the river Llobregat; Evolucion de los parametros fisicoquimicos y metales pesados en el rio Llobregat

    Energy Technology Data Exchange (ETDEWEB)

    Casas Sabata, J. M.; Font Solers, S. [Universitat Politecnica de Catalunya. Manresa (Spain)

    2000-07-01

    Saline and heavy metal contamination in the River Llobregat was analysed on the basis of three studies conducted in 1987, 1992 and 1997. Over this period of time, the Llobregat basin has undergone major changes in terms of its environmental infrastructure. In 1991, a salt water collection system was established which channels the salt-saturated water from the Balsareny-Sallent mines in the Llobregat zone and the Cardona-Suria mines in the area of the River Cardener a location near the sea. Furthermore, biological water treatment plants have been set up in all the major population centres and the main contaminating industries now treat their waters prior to discharge with physicochemical treatment facilities. In order to gauge the evolution of the water quality the following physico-chemical parameters were determined; flow, temperature, pH, conductivity, dry solid matter, chloride, sulphate, calcium, magnesium, sodium and potassium. With regard to heavy metal contamination, the concentration of some of the heavy metals considered to be most toxic and most likely to be present in the zone due to the kind of industry found in the basin was determined, including cadmium, copper, chromium, nickel, lead and zinc. (Author) 7 refs.

  19. Development of haemostatic decontaminants for treatment of wounds contaminated with chemical warfare agents. 3: Evaluation of in vitro topical decontamination efficacy using damaged skin.

    Science.gov (United States)

    Lydon, Helen L; Hall, Charlotte A; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P

    2017-08-01

    Previous studies have demonstrated that haemostatic products with an absorptive mechanism of action retain their clotting efficiency in the presence of toxic materials and are effective in decontaminating chemical warfare (CW) agents when applied to normal, intact skin. The purpose of this in vitro study was to assess three candidate haemostatic products for effectiveness in the decontamination of superficially damaged porcine skin exposed to the radiolabelled CW agents, soman (GD), VX and sulphur mustard (HD). Controlled physical damage (removal of the upper 100 μm skin layer) resulted in a significant enhancement of the dermal absorption of all three CW agents. Of the haemostatic products assessed, WoundStat™ was consistently the most effective, being equivalent in performance to a standard military decontaminant (fuller's earth). These data suggest that judicious application of haemostatic products to wounds contaminated with CW agents may be a viable option for the clinical management of casualties presenting with contaminated, haemorrhaging injuries. Further studies using a relevant animal model are required to confirm the potential clinical efficacy of WoundStat™ for treating wounds contaminated with CW agents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Science.gov (United States)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  1. [Chemical residues and contaminants in food of animal origin in Brazil: history, legislation and actions of sanitary surveillance and other regulatory systems].

    Science.gov (United States)

    Spisso, Bernardete Ferraz; Nóbrega, Armi Wanderley de; Marques, Marlice Aparecida Sípoli

    2009-01-01

    Food safety became a relevant subject due to the increasing search for a better way of life and consciousness of the consumers to stand on one's rights to acquire healthy products. The use of substances in animals destined for human consumption requires from pharmacokinetics to residue depletion studies, with the establishment of limitative values so that do not constitute a risk to health. Beyond the substances used deliberately, others coming from environment contamination or contamination of feeding stuffs consumed by these animals may reach human through the diet. The aims of this paper are to collect and discuss the main federal acts covering chemical residues and contaminants in food of animal origin in Brazil, besides those on measures to control veterinary medicinal products and additives for use in animal nutrition. The chronological presentation of the legal basis intends to facilitate the interpretation of the acts inside respective political and economics scenarios. The actions proposed from the different agents involved into the regulatory systems are discussed from the public health point of view.

  2. RESEARCH ON CHEMICAL COMPOSITION AND MICROSTRUCTURE OF NEWLY-DEVELOPED HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; A.M. Guo; D.X. Luo; B.F. Xu; Z.X. Yuan; P.H. Li; S.K. Pu; S.B. Zhou

    2003-01-01

    The different chemical composition of silicon and manganese as well as different re-tained austenite fraction ranged from 4% to 10% of the high strength and high elon-gation steels were studied in the paper. The dislocations and carbon concentrationin retained austenite were observed by a transmission electron microscope and anelectric probe analyzer, respectively. The experimental results showed that silicon andmanganese are two fundamental alloying elements to stabilize austenite effectively butretaining austenite in different mechanisms. Meanwhile, the cooling processing playedan important role in controlling the fraction of retained austenite of the hot-rolledhigh strength and high plasticity steels.

  3. Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools.

    Science.gov (United States)

    Escher, Beate I; Lawrence, Michael; Macova, Miroslava; Mueller, Jochen F; Poussade, Yvan; Robillot, Cedric; Roux, Annalie; Gernjak, Wolfgang

    2011-06-15

    Advanced water treatment of secondary treated effluent requires stringent quality control to achieve a water quality suitable for augmenting drinking water supplies. The removal of micropollutants such as pesticides, industrial chemicals, endocrine disrupting chemicals (EDC), pharmaceuticals, and personal care products (PPCP) is paramount. As the concentrations of individual contaminants are typically low, frequent analytical screening is both laborious and costly. We propose and validate an approach for continuous monitoring by applying passive sampling with Empore disks in vessels that were designed to slow down the water flow, and thus uptake kinetics, and ensure that the uptake is only marginally dependent on the chemicals' physicochemical properties over a relatively narrow molecular size range. This design not only assured integrative sampling over 27 days for a broad range of chemicals but also permitted the use of a suite of bioanalytical tools as sum parameters, representative of mixtures of chemicals with a common mode of toxic action. Bioassays proved to be more sensitive than chemical analysis to assess the removal of organic micropollutants by reverse osmosis, followed by UV/H₂O₂ treatment, as many individual compounds fell below the quantification limit of chemical analysis, yet still contributed to the observed mixture toxicity. Nonetheless in several cases, the responses in the bioassays were also below their quantification limits and therefore only three bioassays were evaluated here, representing nonspecific toxicity and two specific end points for estrogenicity and photosynthesis inhibition. Chemical analytical techniques were able to quantify 32 pesticides, 62 PCPPs, and 12 EDCs in reverse osmosis concentrate. However, these chemicals could explain only 1% of the nonspecific toxicity in the Microtox assay in the reverse osmosis concentrate and 0.0025% in the treated water. Likewise only 1% of the estrogenic effect in the E-SCREEN could be

  4. Linking chemical elements in forest floor humus (Oh-horizon) in the Czech Republic to contamination sources.

    Science.gov (United States)

    Sucharova, Julie; Suchara, Ivan; Hola, Marie; Reimann, Clemens; Boyd, Rognvald; Filzmoser, Peter; Englmaier, Peter

    2011-05-01

    While terrestrial moss and other plants are frequently used for environmental mapping and monitoring projects, data on the regional geochemistry of humus are scarce. Humus, however, has a much larger life span than any plant material. It can be seen as the "environmental memory" of an area for at least the last 60-100 years. Here concentrations of 39 elements determined by ICP-MS and ICP AES, pH and ash content are presented for 259 samples of forest floor humus collected at an average sample density of 1 site/300 km2 in the Czech Republic. The scale of anomalies linked to known contamination sources (e.g., lignite mining and burning, metallurgical industry, coal fired power plants, metal smelters) is documented and discussed versus natural processes influencing humus quality. Most maps indicate a local impact from individual contamination sources: often more detailed sampling than used here would be needed to differentiate between likely sources.

  5. High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Poindexter, Jeremy R. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Hoye, Robert L. Z. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Nienhaus, Lea [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Kurchin, Rachel C. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Morishige, Ashley E. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Looney, Erin E. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Osherov, Anna [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Correa-Baena, Juan-Pablo [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Lai, Barry [Advanced; Bulović, Vladimir [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Stevanović, Vladan [Colorado School of Mines, 1500; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Bawendi, Moungi G. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States; Buonassisi, Tonio [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

    2017-07-05

    The relationship between charge-carrier lifetime and the tolerance of lead halide perovskite (LHP) solar cells to intrinsic point defects has drawn much attention by helping to explain rapid improvements in device efficiencies. However, little is known about how charge-carrier lifetime and solar cell performance in LHPs are affected by extrinsic defects (i.e., impurities), including those that are common in manufacturing environments and known to introduce deep levels in other semiconductors. Here, we evaluate the tolerance of LHP solar cells to iron introduced via intentional contamination of the feedstock and examine the root causes of the resulting efficiency losses. We find that comparable efficiency losses occur in LHPs at feedstock iron concentrations approximately 100 times higher than those in p-type silicon devices. Photoluminescence measurements correlate iron concentration with nonradiative recombination, which we attribute to the presence of deep-level iron interstitials, as calculated from first-principles, as well as iron-rich particles detected by synchrotron-based X-ray fluorescence microscopy. At moderate contamination levels, we witness prominent recovery of device efficiencies to near-baseline values after biasing at 1.4 V for 60 s in the dark. We theorize that this temporary effect arises from improved charge-carrier collection enhanced by electric fields strengthened from ion migration toward interfaces. Our results demonstrate that extrinsic defect tolerance contributes to high efficiencies in LHP solar cells, which inspires further investigation into potential large-scale manufacturing cost savings as well as the degree of overlap between intrinsic and extrinsic defect tolerance in LHPs and 'perovskite-inspired' lead-free stable alternatives.

  6. Heat and hazardous contaminant transports in ventilated high-rise industrial halls

    Institute of Scientific and Technical Information of China (English)

    王沨枫; 刘志强; Christoph van Treeck; 王汉青; 唐文武; 寇广孝

    2015-01-01

    Performances and efficiencies of displacement ventilation (DV) and partial ventilation (PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8´1010, 1.0´1012 and 2.1´1012) and two values of source contaminant flux (5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2´104, 5´104, 1.5´105 and 4.5´105 for DV and 5´105, 1´106, 2´106 and 4´106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV atRe=1´106with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice whenRa=5.8´1010. However, DVs atRe=5´104andRe=1.5´105 with center-located sources and floor-mounted air suppliers are the best choices forRa=1.0´1012 andRa=2.1´1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.

  7. Assessment of the chemical contamination in home-produced eggs in Belgium: General overview of the CONTEGG study

    Energy Technology Data Exchange (ETDEWEB)

    Van Overmeire, I., E-mail: ilse.vanovermeire@iph.fgov.be [Scientific Institute of Public Health. J. Wytsmanstraat 14, B-1050, Brussels (Belgium); Pussemier, L.; Waegeneers, N. [Veterinary and Agrochemical Research Centre (VAR-CODA-CERVA), Leuvensesteenweg 17, B-3080 Tervuren (Belgium); Hanot, V.; Windal, I.; Boxus, L. [Scientific Institute of Public Health. J. Wytsmanstraat 14, B-1050, Brussels (Belgium); Covaci, A. [Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Eppe, G. [CART Mass Spectrometry Laboratory, Chemistry Department, University of Liege, Allee de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege (Belgium); Scippo, M.L. [Laboratory of food analysis, faculty of veterinary medicine, CART (Centre of Analysis of Residue in Traces), University of Liege, B43b, bld de Colonster 20, Sart-Tilman, B-4000 Liege (Belgium); Sioen, I.; Bilau, M. [Department of Public Health, Ghent University, UZ 2 Blok A, De Pintelaan 185, B-9000 (Belgium); Gellynck, X.; De Steur, H. [Department of Agricultural Economics, Division Agro-Food marketing, Ghent University (Belgium); Tangni, E.K. [Veterinary and Agrochemical Research Centre (VAR-CODA-CERVA), Leuvensesteenweg 17, B-3080 Tervuren (Belgium); Goeyens, L. [Scientific Institute of Public Health. J. Wytsmanstraat 14, B-1050, Brussels (Belgium)

    2009-07-15

    This overview paper describes a study conducted for the Belgian Federal Public Service of Health, Food Chain Safety and Environment during 2006-2007. Home-produced eggs from Belgian private owners of hens were included in a large study aiming to determine concentration levels of various environmental contaminants. By means of the analyses of soil samples and of kitchen waste samples, obtained from the same locations, an investigation towards the possible sources of contaminants was possible. Eggs, soils, faeces and kitchen waste samples were checked for the presence of dioxins, PCBs (including dioxin-like PCBs), organochlorine pesticides, trace elements, PAHs, brominated flame retardants and mycotoxins. The study design, sampling methodology and primary conclusions of the study are given. It was found that in some cases dioxin-like compounds were present at levels that are of concern for the health of the egg consumers. Therefore, measures to limit their contamination in eggs, produced by hens of private owners, were proposed and deserve further attention.

  8. Use of qualitative and quantitative information in neural networks for assessing agricultural chemical contamination of domestic wells

    Science.gov (United States)

    Mishra, A.; Ray, C.; Kolpin, D.W.

    2004-01-01

    A neural network analysis of agrichemical occurrence in groundwater was conducted using data from a pilot study of 192 small-diameter drilled and driven wells and 115 dug and bored wells in Illinois, a regional reconnaissance network of 303 wells across 12 Midwestern states, and a study of 687 domestic wells across Iowa. Potential factors contributing to well contamination (e.g., depth to aquifer material, well depth, and distance to cropland) were investigated. These contributing factors were available in either numeric (actual or categorical) or descriptive (yes or no) format. A method was devised to use the numeric and descriptive values simultaneously. Training of the network was conducted using a standard backpropagation algorithm. Approximately 15% of the data was used for testing. Analysis indicated that training error was quite low for most data. Testing results indicated that it was possible to predict the contamination potential of a well with pesticides. However, predicting the actual level of contamination was more difficult. For pesticide occurrence in drilled and driven wells, the network predictions were good. The performance of the network was poorer for predicting nitrate occurrence in dug and bored wells. Although the data set for Iowa was large, the prediction ability of the trained network was poor, due to descriptive or categorical input parameters, compared with smaller data sets such as that for Illinois, which contained more numeric information.

  9. Assessment of the chemical contamination in home-produced eggs in Belgium: general overview of the CONTEGG study.

    Science.gov (United States)

    Van Overmeire, I; Pussemier, L; Waegeneers, N; Hanot, V; Windal, I; Boxus, L; Covaci, A; Eppe, G; Scippo, M L; Sioen, I; Bilau, M; Gellynck, X; De Steur, H; Tangni, E K; Goeyens, L

    2009-07-15

    This overview paper describes a study conducted for the Belgian Federal Public Service of Health, Food Chain Safety and Environment during 2006-2007. Home-produced eggs from Belgian private owners of hens were included in a large study aiming to determine concentration levels of various environmental contaminants. By means of the analyses of soil samples and of kitchen waste samples, obtained from the same locations, an investigation towards the possible sources of contaminants was possible. Eggs, soils, faeces and kitchen waste samples were checked for the presence of dioxins, PCBs (including dioxin-like PCBs), organochlorine pesticides, trace elements, PAHs, brominated flame retardants and mycotoxins. The study design, sampling methodology and primary conclusions of the study are given. It was found that in some cases dioxin-like compounds were present at levels that are of concern for the health of the egg consumers. Therefore, measures to limit their contamination in eggs, produced by hens of private owners, were proposed and deserve further attention.

  10. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.

    Science.gov (United States)

    Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

    2009-11-01

    The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

  11. Zambian pre-service junior high school science teachers' chemical reasoning and ability

    Science.gov (United States)

    Banda, Asiana

    The purpose of this study was two-fold: examine junior high school pre-service science teachers' chemical reasoning; and establish the extent to which the pre-service science teachers' chemical abilities explain their chemical reasoning. A sample comprised 165 junior high school pre-service science teachers at Mufulira College of Education in Zambia. There were 82 males and 83 females. Data were collected using a Chemical Concept Reasoning Test (CCRT). Pre-service science teachers' chemical reasoning was established through qualitative analysis of their responses to test items. The Rasch Model was used to determine the pre-service teachers' chemical abilities and item difficulty. Results show that most pre-service science teachers had incorrect chemical reasoning on chemical concepts assessed in this study. There was no significant difference in chemical understanding between the Full-Time and Distance Education pre-service science teachers, and between second and third year pre-service science teachers. However, there was a significant difference in chemical understanding between male and female pre-service science teachers. Male pre-service science teachers showed better chemical understanding than female pre-service science teachers. The Rasch model revealed that the pre-service science teachers had low chemical abilities, and the CCRT was very difficult for this group of pre-service science teachers. As such, their incorrect chemical reasoning was attributed to their low chemical abilities. These results have implications on science teacher education, chemistry teaching and learning, and chemical education research.

  12. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology.

  13. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  14. CHEMICALS

    CERN Document Server

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  15. TOP 08-2-111B Chemical, Biological, and Radiological (CBR) Contamination Survivability, Small Items of Equipment

    Science.gov (United States)

    2016-03-16

    chemical agents or agents of biological origin ( ABOs ), the test data must not be used without the establishment of an agent/simulant relationship. c...Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 08-2-111B Chemical, Biological, and Radiological (CBR...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Dugway Proving Ground West Desert Test Center

  16. Assessment of nonpoint-source contamination of the High Plains Aquifer in south-central Kansas, 1987

    Science.gov (United States)

    Helgesen, John O.; Stullken, Lloyd E.; Rutledge, A.T.

    1994-01-01

    Ground-water quality was assessed in a 5,000-square-mile area of the High Plains aquifer in south-central Kansas that is susceptible to nonpoint-source contamination from agricultural and petroleum-production activities. Of particular interest was the presence of agricultural chemicals and petroleum-derived hydrocarbons that might have been associated with brines that formerly were disposed into unlined ponds. Random sampling of ground water was done within a framework of discrete land-use areas (irrigated cropland, petroleum-production land containing former brine-disposal ponds, and undeveloped rangeland) of 3-10 square miles. Although true baseline water-quality conditions probably are rare, in this region they are represented most closely by ground water in areas of undeveloped rangeland. The sampling design enabled statistical hypothesis testing, using nonparametric procedures, of the effects of land use, unsaturated-zone lithology, and type of well sampled. Results indicate that regional ground-water quality has been affected by prevailing land-use activities, as shown by increased concentrations of several inorganic constituents. Ground water beneath irrigated cropland was characterized by significantly larger concentrations of hardness, alkalinity, calcium, magnesium, potassium, fluofide, and nitrite plus nitrate than was water beneath undeveloped rangeland. Few nondegraded pesticides were detected in the aquifer, probably because of degradation and sorption. Atrazine was the most common, but only in small concentrations. round water beneath petroleum-production land was characterized by significantly larger concentrations of hardness, alkalinity, dissolved solids, sodium, and chloride than was water beneath undeveloped rangeland. Nonpoint-source contamination by oil-derived hydrocarbons was not discernible. The occurrences of trace organic compounds were similar between petroleum-production land and undeveloped rangeland, which indicates a natural origin

  17. High resolution modeling of agricultural nitrogen to identify private wells susceptible to nitrate contamination.

    Science.gov (United States)

    Hoppe, Brendalynn; White, Denis; Harding, Anna; Mueller-Warrant, George; Hope, Bruce; Main, Eric

    2014-12-01

    Given the lack of data on private wells, public health and water quality specialists must explore alternative datasets for understanding associated exposures and health risks. Characterizing agricultural nitrogen inputs would be valuable for identifying areas where well water safety may be compromised. This study incorporated existing methods for estimating nutrient loading at the county level with datasets derived from a state permitting program for confined animal feeding operations and agricultural enterprise budget worksheets to produce a high resolution agricultural nitrogen raster map. This map was combined with data on soil leachability and new well locations. An algorithm was developed to calculate nitrogen loading and leachability within 1,000 meters of each well. Wells with a nonzero nitrogen total linked to soils with high leachability were categorized and displayed on maps communicating well susceptibility across the state of Oregon. Results suggest that 4% of recently drilled wells may be susceptible to nitrate contamination, while areas identified for mitigation are too restrictive to include all susceptible wells. Predicted increases in population density and the steady addition of approximately 3,800 new wells annually may lead to a large number of residents, especially those in rural areas, experiencing long-term exposures to nitrate in drinking water.

  18. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements.

    Directory of Open Access Journals (Sweden)

    Erik Kristiansson

    Full Text Available The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.

  19. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    Directory of Open Access Journals (Sweden)

    K. Stefan Svahn

    2012-05-01

    Full Text Available Background: Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods: In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results: Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion: This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules.

  20. Conception of PIPERADE: A high-capacity Penning-trap mass separator for high isobaric contamination at DESIR

    Energy Technology Data Exchange (ETDEWEB)

    Minaya Ramirez, E., E-mail: minaya@ipno.in2p3.fr [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Alfaurt, P.; Aouadi, M.; Ascher, P.; Blank, B. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Blaum, K. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Cam, J.-F. [Laboratoire de Physique Corpusculaire, Caen (France); Chauveau, P. [Grand Accélérateur National d’Ions Lourds CEA/DSM-CNRS-IN2P3, Caen (France); Daudin, L. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Delahaye, P. [Grand Accélérateur National d’Ions Lourds CEA/DSM-CNRS-IN2P3, Caen (France); Delalee, F. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Dupré, P. [Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay (France); El Abbeir, S.; Gerbaux, M.; Grévy, S.; Guérin, H. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Lunney, D. [Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay (France); Metz, F. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Naimi, S. [Riken, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Perrot, L. [Institut de Physique Nucléaire, Orsay (France); and others

    2016-06-01

    The DESIR (decay, excitation and storage of radioactive ions) facility at GANIL-SPIRAL2 will receive a large variety of exotic nuclei at low energy (up to 60 keV) with high intensities. However, the production methods of radioactive beams are non selective, limiting the purity of the beams of interest. Moreover, the high precision needed for nuclear structure and astrophysics studies using beta decay spectroscopy, laser spectroscopy and trap-based experiments at DESIR requires highly pure samples of exotic nuclei. The aim of the double-Pennig-trap mass separator PIPERADE is to deliver large and very pure samples of exotic nuclei to the different experiments in DESIR. New excitation schemes and a large inner diameter of the first trap will mitigate space charge effects to attempt trapping of up to 10{sup 5} ions per pulse. The purification cycle will be performed in a few milliseconds so that short-lived nuclei can be purified. To extract the nuclides of interest from the large amount of isobaric contaminants, a resolving power of 10{sup 5} is mandatory. Afterwards the ions of interest will be accumulated in the second trap until they constitute a sufficiently pure sample for the measurements. The status of the project is presented.

  1. Recent Advances in the Use of Chemical Markers for  Tracing Wastewater Contamination in Aquatic  Environment: A Review

    Directory of Open Access Journals (Sweden)

    Fang Yee Lim

    2017-02-01

    Full Text Available There has been increasing research focus on the detection and occurrence of wastewater contamination in aquatic environment. Wastewater treatment plants receive effluents containing various chemical pollutants. These chemicals may not be fully removed during treatment and could potentially enter the receiving water bodies. Detection of these chemical pollutants and source identification could be a challenging research task due to the diversified chemical and functional groups, concentration levels and fate and transportation mechanisms of these pollutants in the environment. Chemical markers such as pharmaceuticals and personal care products, artificial sweeteners, fluorescent whitening agents, sterols and stanols, and nitrate and nitrogen isotopics have been widely used by most research as markers. These markers served as indicators of wastewater contamination to the receiving bodies due to their frequent usage, resistance to biodegradability and, more importantly, anthropogenic origin. These markers are commonly used in combination to identify the contaminant source of different origins. This article discusses the main chemical markers that are used to identify wastewater contamination in receiving bodies, the current trends, and approach to select suitable chemical markers.

  2. Minimally invasive transcriptome profiling in salmon: Detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik; Stevenson, Mitchel R. [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Rieberger, Kevin J. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Aggelen, Graham van [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Meays, Cynthia L. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2013-10-15

    Highlights: •A minimally-invasive tail fin biopsy assay was developed for use in fish. •Quantitative real time polymerase reaction provided gene expression readout. •Results were comparable to classical liver tissue responses. •The approach was used on two salmonid species and can be coupled with genomic sex determination using an additional biopsy for maximal information. -- Abstract: An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in

  3. Chemical equilibrium in high pressure molecular fluid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.S.

    1993-09-01

    The N{sub atoms}PT Monte Carlo simulation method has been reformulated to incorporate multiple species and chemical reactions with changes in total number of molecules. While maintaining a constant number of each type of atom, the number of molecules is changed by turning on and off the interactions of any particular position with other molecules. Chemical reactions are allowed as a correlated move of atoms to differnt molecular locations. Equilibrium chemical composition is determined as an average over the simulation along with equation of state quantities. A large set of simulations has been made with the system N{sub 2} + O{sub 2} {rightleftharpoons} NO covering a wide range in P and T. Both Hugoniot states and the CJ point have been determined and are shown to be sensitive to the potentials between unlike species.

  4. Device and method for enhanced collection and assay of chemicals with high surface area ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S.; Li, Xiaohong Shari; Chouyyok, Wilaiwan; Cinson, Anthony D.; Bays, John T.; Wallace, Krys

    2016-02-16

    A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.

  5. Use of chemically activated cotton nut shell carbon for the removal of fluoride contaminated drinking water:Kinetics evaluation☆

    Institute of Scientific and Technical Information of China (English)

    Rajan Mariappan; Raj Vairamuthu; Alagumuthu GanapathY

    2015-01-01

    Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther-modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemical y activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemical y activated CTNSC is spon-taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models. A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride sorption.

  6. Impacts of physical and chemical aquifer heterogeneity on basin-scale solute transport: Vulnerability of deep groundwater to arsenic contamination in Bangladesh

    Science.gov (United States)

    Michael, Holly A.; Khan, Mahfuzur R.

    2016-12-01

    Aquifer heterogeneity presents a primary challenge in predicting the movement of solutes in groundwater systems. The problem is particularly difficult on very large scales, across which permeability, chemical properties, and pumping rates may vary by many orders of magnitude and data are often sparse. An example is the fluvio-deltaic aquifer system of Bangladesh, where naturally-occurring arsenic (As) exists over tens of thousands of square kilometers in shallow groundwater. Millions of people in As-affected regions rely on deep (≥150 m) groundwater as a safe source of drinking water. The sustainability of this resource has been evaluated with models using effective properties appropriate for a basin-scale contamination problem, but the extent to which preferential flow affects the timescale of downward migration of As-contaminated shallow groundwater is unknown. Here we embed detailed, heterogeneous representations of hydraulic conductivity (K), pumping rates, and sorptive properties (Kd) within a basin-scale numerical groundwater flow and solute transport model to evaluate their effects on vulnerability and deviations from simulations with homogeneous representations in two areas with different flow systems. Advective particle tracking shows that heterogeneity in K does not affect average travel times from shallow zones to 150 m depth, but the travel times of the fastest 10% of particles decreases by a factor of ∼2. Pumping distributions do not strongly affect travel times if irrigation remains shallow, but increases in the deep pumping rate substantially reduce travel times. Simulation of advective-dispersive transport with sorption shows that deep groundwater is protected from contamination over a sustainable timeframe (>1000 y) if the spatial distribution of Kd is uniform. However, if only low-K sediments sorb As, 30% of the aquifer is not protected. Results indicate that sustainable management strategies in the Bengal Basin should consider impacts of both

  7. Linking chemical elements in forest floor humus (O-h-horizon) in the Czech Republic to contamination sources

    Energy Technology Data Exchange (ETDEWEB)

    Sucharova, J.; Suchara, I.; Hola, M.; Reimann, C.; Boyd, R.; Filzmoser, P.; Englmaier, P. [Geological Survey of Norway, Trondheim (Norway)

    2011-05-15

    While terrestrial moss and other plants are f