WorldWideScience

Sample records for high carotenoid producing

  1. Method of producing purified carotenoid compounds

    Science.gov (United States)

    Eggink, Laura (Inventor)

    2007-01-01

    A method of producing a carotenoid in solid form includes culturing a strain of Chlorophyta algae cells in a minimal inorganic medium and separating the algae comprising a solid form of carotenoid. In one embodiment f the invention, the strain of Chlorophyta algae cells includes a strain f Chlamydomonas algae cells.

  2. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella zofingiensis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T.

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89 mg g-1 dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3 mg L-1 day-1, respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  3. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis.

    Science.gov (United States)

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89mgg(-1) dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3mgL(-1)day(-1), respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  4. Selection and taxonomic identification of carotenoid-producing marine actinomycetes.

    Science.gov (United States)

    Romero, Francisco; Fernández-Chimeno, Rosa Isabel; de la Fuente, Juan Luis; Barredo, José-Luis

    2012-01-01

    Carotenoids are important pigments produced by plants and many microorganisms, including fungi, microalgae, cyanobacteria, and bacteria. Marine actinomycetes are a group of bacteria that produce a variety of metabolites with economic potential. Here, we describe a general method of selecting marine actinomycetes as carotenoids' producers. The screening is carried out at two levels: the first one involves a quick selection of strains by visual color inspection, and the second consists in the analysis of the extracts by HPLC. The taxonomic analysis of the producing strains gives us an overview of the groups of actinomycetes in which carotenoids can be found.

  5. Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Carotenoids are natural pigments that exhibit many biological functions, such as antioxidants (i.e., promote oxidative stress resistance), membrane stabilizers, and precursors for vitamin A. The link between these biological activities and many health benefits (e.g., anticarcinogenic activity, prevention of chronic diseases, etc.) has raised the interest of several industrial sectors, especially in the cosmetics and pharmaceutical industries. The use of microorganisms in biotechnology to produce carotenoids is favorable by consumer and can help meet the growing demand for these bioactive compounds in the food, feed, and pharmaceutical industries. This methodological chapter details the development of a rapid and selective screening method for isolation and identification of carotenoid-producing microorganisms based on UV treatment, sequencing analysis of 16S rRNA genes, and carotenoids' analysis using rapid and effective High-Performance Liquid Chromatography-Diodearray-MS methods. The results of a comprehensive 16S rRNA gene-based phylogenetic analysis revealed a diversity of carotenoid-producing microorganisms (104 isolates) that were isolated at a high frequency from water samples collected at Misasa (Tottori, Japan), a region known for its high natural radioactivity content. These carotenoid-producing isolates were classified into 38 different species belonging to 7 bacterial classes (Flavobacteria, Sphingobacteria, α-Proteobacteria, γ-Proteobacteria, Deinococci, Actinobacteria, and Bacilli). The carotenoids produced by the isolates were zeaxanthin (6 strains), dihydroxyastaxanthin (24 strains), astaxanthin (27 strains), canthaxanthin (10 strains), and unidentified molecular species that were produced by the isolates related to Deinococcus, Exiguobacterium, and Flectobacillus. Here, we describe the methods used to isolate and classify these microorganisms.

  6. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals

    Directory of Open Access Journals (Sweden)

    Esther García-de Blas

    2016-09-01

    Full Text Available Colorful ornaments have been the focus of sexual selection studies since the work of Darwin. Yellow to red coloration is often produced by carotenoid pigments. Different hypotheses have been formulated to explain the evolution of these traits as signals of individual quality. Many of these hypotheses involve the existence of a signal production cost. The carotenoids necessary for signaling can only be obtained from food. In this line, carotenoid-based signals could reveal an individual’s capacity to find sufficient dietary pigments. However, the ingested carotenoids are often yellow and became transformed by the organism to produce pigments of more intense color (red ketocarotenoids. Biotransformation should involve oxidation reactions, although the exact mechanism is poorly known. We tested the hypothesis that carotenoid biotransformation could be costly because a certain level of oxidative stress is required to correctly perform the conversion. The carotenoid-based signals could thus reveal the efficiency of the owner in successfully managing this challenge. In a bird with ketocarotenoid-based ornaments (the red-legged partridge; Alectoris rufa, the availability of different carotenoids in the diet (i.e. astaxanthin, zeaxanthin and lutein and oxidative stress were manipulated. The carotenoid composition was analyzed and quantified in the ornaments, blood, liver and fat. A number of oxidative stress biomarkers were also measured in the same tissues. First, we found that color and pigment levels in the ornaments depended on food levels of those carotenoids used as substrates in biotransformation. Second, we found that birds exposed to mild levels of a free radical generator (diquat developed redder bills and deposited higher amounts of ketocarotenoids (astaxanthin in ornaments. Moreover, the same diquat-exposed birds also showed a weaker resistance to hemolysis when their erythrocytes were exposed to free radicals, with females also enduring

  7. Mallow carotenoids determined by high-performance liquid chromatography

    Science.gov (United States)

    Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...

  8. Draft Genome Sequence of Deinococcus xibeiensis R13, a New Carotenoid-Producing Strain

    OpenAIRE

    Hu, Yaochi; Xu, Xian; Song, Ping; Jiang, Ling; Zhang, Zhidong; Huang, He

    2013-01-01

    Deinococcus xibeiensis strain R13, isolated from radiation-contaminated soils, synthesizes a unique ketocarotenoid, deinoxanthin. Here, we present a 3.49-Mb assembly of its genome sequence, which can help us find the key genes of the deinoxanthin biosynthesis pathways and modify genes obtaining a high yield of the new carotenoid.

  9. Draft Genome Sequence of Deinococcus xibeiensis R13, a New Carotenoid-Producing Strain.

    Science.gov (United States)

    Hu, Yaochi; Xu, Xian; Song, Ping; Jiang, Ling; Zhang, Zhidong; Huang, He

    2013-12-05

    Deinococcus xibeiensis strain R13, isolated from radiation-contaminated soils, synthesizes a unique ketocarotenoid, deinoxanthin. Here, we present a 3.49-Mb assembly of its genome sequence, which can help us find the key genes of the deinoxanthin biosynthesis pathways and modify genes obtaining a high yield of the new carotenoid.

  10. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis Using fractional factorial design

    Science.gov (United States)

    Mandelli, Fernanda; Yamashita, Fábio; Pereira, José L.; Mercadante, Adriana Z.

    2012-01-01

    A fractional factorial design 25–1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch’s trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 µg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity. PMID:24031811

  11. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Fernanda Mandelli

    2012-03-01

    Full Text Available A fractional factorial design 2(5-1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch's trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS. The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 mg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity.

  12. Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study

    NARCIS (Netherlands)

    Mulders, K.J.M.; Weesepoel, Y.J.A.; Bodenes, C.; Lamers, P.P.; Vincken, J.P.; Martens, D.E.; Gruppen, H.; Wijffels, R.H.

    2015-01-01

    Natural carotenoids such as astaxanthin, ß,ß-carotene and lutein are pigments with a high market value. We studied the effects of nitrogen depletion on the carotenoid metabolism of Chlorella zofingiensis (Chlorophyta) and the subsequent treatment with diphenylamine (DPA), an inhibitor of the biosynt

  13. Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study

    NARCIS (Netherlands)

    Mulders, K.J.M.; Weesepoel, Y.J.A.; Bodenes, C.; Lamers, P.P.; Vincken, J.P.; Martens, D.E.; Gruppen, H.; Wijffels, R.H.

    2015-01-01

    Natural carotenoids such as astaxanthin, ß,ß-carotene and lutein are pigments with a high market value. We studied the effects of nitrogen depletion on the carotenoid metabolism of Chlorella zofingiensis (Chlorophyta) and the subsequent treatment with diphenylamine (DPA), an inhibitor of the

  14. Association Mapping of Total Carotenoids in Diverse Soybean Genotypes Based on Leaf Extracts and High-Throughput Canopy Spectral Reflectance Measurements.

    Directory of Open Access Journals (Sweden)

    Arun Prabhu Dhanapal

    Full Text Available Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L. Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro and a spectral reflectance index (iCaro. An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.

  15. Association Mapping of Total Carotenoids in Diverse Soybean Genotypes Based on Leaf Extracts and High-Throughput Canopy Spectral Reflectance Measurements

    Science.gov (United States)

    Dhanapal, Arun Prabhu; Ray, Jeffery D.; Singh, Shardendu K.; Hoyos-Villegas, Valerio; Smith, James R.; Purcell, Larry C.; King, C. Andy; Fritschi, Felix B.

    2015-01-01

    Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping. PMID:26368323

  16. Association Mapping of Total Carotenoids in Diverse Soybean Genotypes Based on Leaf Extracts and High-Throughput Canopy Spectral Reflectance Measurements.

    Science.gov (United States)

    Dhanapal, Arun Prabhu; Ray, Jeffery D; Singh, Shardendu K; Hoyos-Villegas, Valerio; Smith, James R; Purcell, Larry C; King, C Andy; Fritschi, Felix B

    2015-01-01

    Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.

  17. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid

    Directory of Open Access Journals (Sweden)

    Qian Lu

    2017-09-01

    Full Text Available Astaxanthin is a carotenoid of significant commercial value due to its superior antioxidant potential and wide applications in the aquaculture, food, cosmetic and pharmaceutical industries. A higher ratio of astaxanthin to the total carotenoids is required for efficient astaxanthin production. β-Carotene ketolase and hydroxylase play important roles in astaxanthin production. We first compared the conversion efficiency to astaxanthin in several β-carotene ketolases from Brevundimonas sp. SD212, Sphingomonas sp. DC18, Paracoccus sp. PC1, P. sp. N81106 and Chlamydomonas reinhardtii with the recombinant Escherichia coli cells that synthesize zeaxanthin due to the presence of the Pantoea ananatis crtEBIYZ. The B. sp. SD212 crtW and P. ananatis crtZ genes are the best combination for astaxanthin production. After balancing the activities of β-carotene ketolase and hydroxylase, an E. coli ASTA-1 that carries neither a plasmid nor an antibiotic marker was constructed to produce astaxanthin as the predominant carotenoid (96.6% with a specific content of 7.4 ± 0.3 mg/g DCW without an addition of inducer.

  18. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids.

    Science.gov (United States)

    Harada, Hisashi; Maoka, Takashi; Osawa, Ayako; Hattan, Jun-Ichiro; Kanamoto, Hirosuke; Shindo, Kazutoshi; Otomatsu, Toshihiko; Misawa, Norihiko

    2014-04-01

    The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3'-hydroxylase (CrtZ) and β,β-carotenoid 4,4'-ketolase (4,4'-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8%) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2% of total carotenoids), astaxanthin monoester (18.2%), and the free forms of astaxanthin (10.0%) and the other ketocarotenoids (17.5%), which indicated that artificial ketocarotenoids corresponded to 94.9% of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8%) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.

  19. PCR of crtNM combined with analytical biochemistry: An efficient way to identify carotenoid producing lactic acid bacteria.

    Science.gov (United States)

    Turpin, Williams; Renaud, Cécile; Avallone, Sylvie; Hammoumi, Aayah; Guyot, Jean-Pierre; Humblot, Christèle

    2016-03-01

    Lactic acid bacteria (LAB) synthesize a wide variety of biochemical compounds during food fermentation. Carotenoids provide important biological functions for bacteria, and their consumption by humans has many beneficial effects. In this study, the presence of several genes involved in the production of carotenoids was determined by BLAST analysis and PCR in a collection of 156 LAB isolated from traditional amylaceous African fermented foods. Only the crtE gene and the crtNM operon were present and detected in Lactobacillaceae. Most of the strains with positive PCR detection of the operon crtNM produced carotenoid-like compounds when grown in MRS broth. The carotenoids produced differed from compounds previously identified in other LAB except for one peak, which was closely related to 4,4'-diaponeurosporene already reported in the literature in Lactobacillus plantarum species. Most producing strains belonged to Lactobacillus fermentum and L. plantarum species but a few Pediococcus acidilactici were also producers. Furthermore, the most efficient L. plantarum was able to synthesize carotenoids in a cereal fermented food. Genetic screening was shown to be efficient since, in all cases, it eliminated the need for biochemical analysis of strains in which no amplicons of the operon crtNM were obtained.

  20. Ultra high performance liquid chromatography versus high performance liquid chromatography: stationary phase selectivity for generic carotenoid screening.

    Science.gov (United States)

    Bijttebier, Sebastiaan; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2014-03-07

    Aim of study was to find the most suitable LC column for generic carotenoid screening. To represent the diversity of carotenoids in nature and to optimize chromatographic separation, a set of carotenoid standards was carefully chosen to account for the various classes of carotenoids. The HPLC C30 column has since long been the 'golden standard' in the chromatographic separation of carotenoids. Since approximately one decade, new UHPLC technology has led to much shorter analysis times, smaller peak widths and higher chromatographic resolution. However, there are currently no UHPLC columns on the market containing the specific stationary phase chemistry of the HPLC C30 column. Therefore during this study, we investigated the separation of carotenoids on a set of UHPLC columns and compared it to their separation on the HPLC C30 column. Comparison of carotenoids separations on the different stationary phases with objective column comparison parameters clearly indicated that the HPLC C30 column is an overall better performer in the separation of carotenoids. This is due to the lack of UHPLC column chemistries that are adapted for carotenoid analysis. However, analysis time on the HPLC C30 column takes about four times longer compared to UHPLC analysis. Therefore, with the range of columns that are commercially available nowadays, a choice has to be made between very high selectivity (HPLC C30 column) and analysis times that are adapted to modern laboratory requirements (UHPLC technology). Therefore, carotenoid separations would be even more performing if an appropriate UHPLC C30 column would be available.

  1. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Odriozola-Serrano, Isabel; Oms-Oliu, Gemma; Lamuela-Raventós, Rosa M; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-12-01

    The effect of pulsed electric fields (PEF) on the carotenoid content of tomato juices was studied. First, moderate-intensity PEF (MIPEF) was applied to raw tomatoes. Afterwards, MIPEF-treated and untreated tomatoes were immediately refrigerated at 4 °C for 24 h and then, they were separately ground to produce tomato juices. Juices were treated by heat treatments or by high-intensity PEF (HIPEF) and stored under refrigeration for 56 days. MIPEF treatment of tomatoes increased the content of carotenoid compounds in tomato juices. An enhancement of 63-65% in 15-cis-lycopene was observed in juices prepared with MIPEF-treated tomatoes. A slight increase in cis-lycopene isomers was observed over time, whereas other carotenoids slightly decreased. However, HIPEF treated tomato juices maintained higher carotenoid content (10-20%) through the storage time than thermally and untreated juices. The combination of MIPEF and HIPEF treatments could be used not only to produce tomato juices with high carotenoid content but also, to maintain higher the carotenoid content during storage time.

  2. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    Science.gov (United States)

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361

  3. Variation in carotenoid-protein interaction in bird feathers produces novel plumage coloration.

    Science.gov (United States)

    Mendes-Pinto, Maria M; LaFountain, Amy M; Stoddard, Mary Caswell; Prum, Richard O; Frank, Harry A; Robert, Bruno

    2012-12-01

    Light absorption by carotenoids is known to vary substantially with the shape or conformation of the pigment molecule induced by the molecular environment, but the role of interactions between carotenoid pigments and the proteins to which they are bound, and the resulting impact on organismal coloration, remain unclear. Here, we present a spectroscopic investigation of feathers from the brilliant red scarlet ibis (Eudocimus ruber, Threskiornithidae), the orange-red summer tanager (Piranga rubra, Cardinalidae) and the violet-purple feathers of the white-browed purpletuft (Iodopleura isabellae, Tityridae). Despite their striking differences in colour, all three of these feathers contain canthaxanthin (β,β-carotene-4,4'-dione) as their primary pigment. Reflectance and resonance Raman (rR) spectroscopy were used to investigate the induced molecular structural changes and carotenoid-protein interactions responsible for the different coloration in these plumage samples. The results demonstrate a significant variation between species in the peak frequency of the strong ethylenic vibration (ν(1)) peak in the rR spectra, the most significant of which is found in I. isabellae feathers and is correlated with a red-shift in canthaxanthin absorption that results in violet reflectance. Neither polarizability of the protein environment nor planarization of the molecule upon binding can entirely account for the full extent of the colour shift. Therefore, we suggest that head-to-tail molecular alignment (i.e. J-aggregation) of the protein-bound carotenoid molecules is an additional factor.

  4. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables.

    Science.gov (United States)

    Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo

    2014-11-15

    The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology.

  5. Analysis of carotenoid and porphyrin pigments of geochemical interest by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Hajibrahim, S.K. (Univ. of Bristol, Eng.); Tibbetts, P.J.C.; Watts, C.D.; Maxwell, J.R.; Eglinton, G.; Colin, H.; Guiochon, G.

    1978-04-01

    High-performance liquid chromatography (HPLC) is shown to be a powerful tool in the analysis of carotenoid and porphyrin pigments. Columns packed with 5-..mu..m irregular silica gel particles by a high density and high constant pressure method allow efficient separation of mixtures of total nonsaponifiable carotenoids from recent sedimentary situations. Good reproducibility of retention times (within 2%) is achieved in the gradient elution mode. However, attention must be paid to reequilibration of the column after each injection by washing with the less polar solvent for a minimum of 15 min (for carotenoids) or of 30 min (for porphyrins). HPLC appears to be useful in ''fingerprinting'' petroporphyrin distributions in crude oil.

  6. Planococcus faecalis sp. nov., a carotenoid-producing species isolated from stools of Antarctic penguins.

    Science.gov (United States)

    Kim, Jin Ho; Kang, Hyung Jun; Yu, Byung Jo; Kim, Sun Chang; Lee, Pyung Cheon

    2015-10-01

    Taxonomic studies were performed on a novel carotenoid-producing strain, designated AJ003T, isolated from faeces of Antarctic penguins. Cells of strain AJ003T were aerobic, Gram-stain-positive, cocci-shaped and orange. Strain AJ003T was capable of growing in a broad temperature range, including sub-zero growth (below − 20 to 30 °C). 16S rRNA gene sequence analysis revealed that strain AJ003T was closely related to Planococcus halocryophilus Or1T (97.4 % similarity), Planococcus antarcticus DSM 14505T (97.3 %), Planococcus kocurii NCIMB 629T (97.3 %), and Planococcus donghaensis JH1T (97.1 %). The predominant cellular fatty acids were anteiso-C15 : 0, and iso-C16 : 0.MK-7 and MK-8 were the quinones identified, and the major pigment was glycosyl-4,4′-diaponeurosporen-4′-ol-4-oic acid. The major polar lipid was phosphatidylglycerol. DNA–DNA relatedness of strain AJ003T with respect to its closest phylogenetic neighbours was 38.2 ± 0.5 % for Planococcus halocryophilus DSM 24743T, 32.2 ± 0.2 % for Planococcus antarcticus DSM 14505T, 21.0 ± 0.3 % for Planococcus kocurii DSM 20747T and 18.6 ± 1.4 % for Planococcus donghaensis KCTC 13050T. The DNA G+C content of strain AJ003T was 40.0 ± 0.6 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain AJ003T is concluded to represent a novel species of the genus Planococcus, for which the name Planococcus faecalis sp. nov. is proposed. The type strain is AJ003T ( = KCTC 33580T = CECT 8759T).

  7. A high-throughput, simultaneous analysis of carotenoids, chlorophylls and tocopherol using sub two micron core shell technology columns.

    Science.gov (United States)

    Chebrolu, Kranthi K; Yousef, Gad G; Park, Ryan; Tanimura, Yoshinori; Brown, Allan F

    2015-09-15

    A high-throughput, robust and reliable method for simultaneous analysis of five carotenoids, four chlorophylls and one tocopherol was developed for rapid screening large sample populations to facilitate molecular biology and plant breeding. Separation was achieved for 10 known analytes and four unknown carotenoids in a significantly reduced run time of 10min. Identity of the 10 analytes was confirmed by their UV-Vis absorption spectras. Quantification of tocopherol, carotenoids and chlorophylls was performed at 290nm, 460nm and 650nm respectively. In this report, two sub two micron particle core-shell columns, Kinetex from Phenomenex (1.7μm particle size, 12% carbon load) and Cortecs from Waters (1.6μm particle size, 6.6% carbon load) were investigated and their separation efficiencies were evaluated. The peak resolutions were >1.5 for all analytes except for chlorophyll-a' with Cortecs column. The ruggedness of this method was evaluated in two identical but separate instruments that produced CV<2 in peak retentions for nine out of 10 analytes separated.

  8. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health

    Science.gov (United States)

    Vinkler, Michal; Albrecht, Tomáš

    2010-01-01

    Despite a reasonable scientific interest in sexual selection, the general principles of health signalisation via ornamental traits remain still unresolved in many aspects. This is also true for the mechanism preserving honesty of carotenoid-based signals. Although it is widely accepted that this type of ornamentation reflects an allocation trade-off between the physiological utilisation of carotenoids (mainly in antioxidative processes) and their deposition in ornaments, some recent evidence suggests more complex interactions. Here, we further develop the models currently proposed to explain the honesty of carotenoid-based signalisation of heath status by adding the handicap principle concept regulated by testosterone. We propose that under certain circumstances carotenoids may be dangerous for the organism because they easily transform into toxic cleavage products. When reserves of other protective antioxidants are insufficient, physiological trade-offs may exist between maintenance of carotenoids for ornament expression and their removal from the body. Furthermore, we suggest that testosterone which enhances ornamentation by increasing carotenoid bioavailability may also promote oxidative stress and hence lower antioxidant reserves. The presence of high levels of carotenoids required for high-quality ornament expression may therefore represent a handicap and only individuals in prime health could afford to produce elaborate colourful ornaments. Although further testing is needed, this ‘carotenoid maintenance handicap’ hypothesis may offer a new insight into the physiological aspects of the relationship between carotenoid function, immunity and ornamentation.

  9. Carotenoid fluorescence in Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Es, van M.A.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2010-01-01

    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid

  10. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    Science.gov (United States)

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency.

  11. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    Science.gov (United States)

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms.

  12. Highly sensitive and rapid profiling method for carotenoids and their epoxidized products using supercritical fluid chromatography coupled with electrospray ionization-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Matsubara, Atsuki; Uchikata, Takato; Shinohara, Masakazu; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi

    2012-06-01

    Epoxy carotenoids, which are products of carotenoid oxidation, are potential oxidative stress markers. However, it is difficult to profile epoxy carotenoids owing to their small amount and difficulty in their separation from hydroxy carotenoids. In this study, a high-performance analytical system based on supercritical fluid chromatography (SFC) coupled with tandem mass spectrometry (MS/MS) was developed for the simultaneous analysis of carotenoids and epoxy carotenoids. SFC is an effective separation technique for hydrophobic compounds, by which major carotenoids in human serum and their epoxidation products can be analyzed within 20 min. The use of MS/MS increased the sensitivity; the detection limit for each carotenoid was of the sub-fmol order. When the constructed method was applied to biological samples such as human serum and low-density lipoprotein (LDL), the precise detection of the target carotenoids was disturbed by several isomers. However, highly selective detection of epoxy carotenoids was performed by targeting product ions that were generated with a structure-specific neutral loss of 80Da. Furthermore, the sample volume needed for the analysis was only 0.1ml for the serum, indicating the efficiency of this system in performing small-scale analyses. Using the analytical system developed in this study, highly sensitive and selective analysis of epoxy carotenoids could be performed in a short time. These features show the usefulness of this system in application to screening analysis of carotenoid profiles that are easily modified by oxidative stress.

  13. Analysis and identification of astaxanthin and its carotenoid precursors from Xanthophyllomyces dendrorhous by high-performance liquid chromatography.

    Science.gov (United States)

    Lu, Mingbo; Zhang, Yang'e; Zhao, Chunfang; Zhou, Pengpeng; Yu, Longjiang

    2010-01-01

    This study presents an HPLC method for simultaneous analysis of astaxanthin and its carotenoid precursors from Xanthophyllomyces dendrorhous. The HPLC method is accomplished by employing a C18 column and the mobile phase methanol/water/acetonitrile/ dichloromethane (70:4:13:13, v/v/v/v). Astaxanthin is quantified by detection at 480 nm. The carotenoid precursors are identified by LC-APCI-MS and UV-vis absorption spectra. Peaks showed in the HPLC chromatogram are identified as carotenoids in the monocyclic biosynthetic pathway or their derivatives. In the monocyclic carotenoid pathway, 3,3'-dihydroxy-beta,psi-carotene-4,4'-dione (DCD) is produced through gamma-carotene and torulene.

  14. Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis.

    Science.gov (United States)

    Jin, Hui; Lao, Yong Min; Zhou, Jin; Zhang, Huai Jin; Cai, Zhong Hua

    2017-03-10

    A simple ultra-high-pressure liquid chromatography (UHPLC) method for rapidly and simultaneously identifying thirteen carotenoids in Haematococcus pluvialis was developed in this study. The method is capable of effectively separating two astaxanthin isomers, two ζ-carotene isomers, and three phytoene isomers on two simple C18 columns within 9 and 12min only by using methanol and acetonitrile, respectively. To our best knowledge, this is the rapidest method for these carotenoid isomers, currently. Using this method, carotenoid profiling in the astaxanthin-accumulating H. pluvialis under environmental stresses was successfully carried out. Results indicated that carotenoid biosynthesis was differentially perturbed by environmental stresses, indicating that this simple and rapid method is suitable to not only bacterial but also algal samples, with potential applications for a wide range of samples from plant to animal. Finally, possible reasons for the elution order of carotenoids were studied.

  15. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  16. PCR of crtNM combined with analytical biochemistry : an efficient way to identify carotenoid producing lactic acid bacteria

    OpenAIRE

    Turpin, W.; Renaud, Cécile; Avallone, S.; Hammoumi, A.; Guyot, Jean-Pierre; Humblot, Christèle

    2016-01-01

    Lactic acid bacteria (LAB) synthesize a wide variety of biochemical compounds during food fermentation. Carotenoids provide important biological functions for bacteria, and their consumption by humans has many beneficial effects. In this study, the presence of several genes involved in the production of carotenoids was determined by BLAST analysis and PCR in a collection of 156 LAB isolated from traditional amylaceous African fermented foods. Only the crtE gene and the crtNM operon were prese...

  17. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters.

    Science.gov (United States)

    Ahmed, Faruq; Fanning, Kent; Netzel, Michael; Turner, Warwick; Li, Yan; Schenk, Peer M

    2014-12-15

    Carotenoids are associated with various health benefits, such as prevention of age-related macular degeneration, cataract, certain cancers, rheumatoid arthritis, muscular dystrophy and cardiovascular problems. As microalgae contain considerable amounts of carotenoids, there is a need to find species with high carotenoid content. Out of hundreds of Australian isolates, 12 microalgal species were screened for carotenoid profiles, carotenoid productivity, and in vitro antioxidant capacity (total phenolic content (TPC) and ORAC). The top four carotenoid producers at 4.68-6.88 mg/g dry weight (DW) were Dunaliella salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina. TPC was low, with D. salina possessing the highest TPC (1.54 mg Gallic Acid Equivalents/g DW) and ORAC (577 μmol Trolox Equivalents/g DW). Results indicate that T. suecica, D. salina, P. salina and I. galbana could be further developed for commercial carotenoid production.

  18. Latin American food sources of carotenoids.

    Science.gov (United States)

    Rodriguez-Amaya, D B

    1999-09-01

    Latin America has a wide variety of carotenogenic foods, notable for the diversity and high levels of carotenoids. A part of this natural wealth has been analyzed. Carrot, red palm oil and some cultivars of squash and pumpkin are sources of both beta-carotene and alpha-carotene. beta-carotene is the principal carotenoid of the palm fruits burití, tucumã and bocaiuva, other fruits such as loquat, marolo and West Indian cherry, and sweet potato. Buriti also has high amounts of alpha-carotene and gamma-carotene. beta-Cryptoxanthin is the major carotenoid in caja, nectarine, orange-fleshed papaya, orange, peach, tangerine and the tree tomato. Lycopene predominates in tomato, red-fleshed papaya, guava, pitanga and watermelon. Pitanga also has substantial amounts of beta-cryptoxanthin, gamma-carotene and rubixanthin. Zeaxanthin, principal carotenoid of corn, is also predominant only in piquí. delta-Carotene is the main carotenoid of the peach palm and zeta-carotene of passion fruit. Lutein and beta-carotene, in high concentrations, are encountered in the numerous leafy vegetables of the region, as well as in other green vegetables and in some varieties of squash and pumpkin. Violaxanthin is the principal carotenoid of mango and mamey and is also found in appreciable amounts in green vegetables. Quantitative, in some cases also qualitative, differences exist among cultivars of the same food. Generally, carotenoids are in greater concentrations in the peel than in the pulp, increase considerably during ripening and are in higher levels in foods produced in hot places. Other Latin America indigenous carotenogenic foods must be investigated before they are supplanted by introduced crops, which are often poorer sources of carotenoids.

  19. Identification of chlorophylls and carotenoids in major teas by high-performance liquid chromatography with photodiode array detection.

    Science.gov (United States)

    Suzuki, Yasuyo; Shioi, Yuzo

    2003-08-27

    The separation and identification of pigments, chlorophylls, and carotenoids of seven teas and fresh leaf of tea (Camellia sinensis) by high-performance liquid chromatography (HPLC) are described. HPLC was carried out using a Symmetry C(8) column with a photodiode array detector. Pigments were eluted with a binary gradient of aqueous pyridine solution at a flow rate of 1.0 mL/min at 25 degrees C. HPLC analyses achieved the separation of more than 100 pigment peaks, and 79 pigment species, 41 chlorophylls, and 38 carotenoids were detected. The presence of degraded chlorophylls was a common feature, and the number and the variety of pigments differed with tea species. Generally, the numbers of chlorophyll species tended to increase with processing steps, while carotenoid species were decreased, especially by heating. Particularly in green teas, a change of carotenoid structure, conversion of violaxanthin to auroxanthin, occurred. In hot water extracts of teas, both chlorophylls and carotenoids were also detected, but the concentration of chlorophylls was less than 2% as compared with acetone extracts. The pigment compositions were compared between tea species, and they are discussed in terms of the differences in their manufacturing processes.

  20. Effect of carbon and nitrogen sources on carotenoids production by native strain of Aurantiochytrium Ch25

    Directory of Open Access Journals (Sweden)

    Mahdiye Esmizade

    2016-09-01

    Full Text Available Introduction: Microorganisms produce carotenoids as a part of their response to environmental stresses. Carotenoids have many applications in human health, such as antioxidant, anti-cancer, light protection activity and as a precursor for hormones. Materials and methods: In this study, the effect of different carbon and nitrogen sources was evaluated on carotenoids production by native Aurantiochytrium strain. The effects of different carbon and nitrogen sources were studied on biomass and carotenoid production. Then, carotenoids were extracted and analyzed by TLC, spectrophotometry and HPLC methods. Results: Results showed that glycerol is the best carbon source for production of high carotenoids content. Selected medium contained: glycerol (1.5% v/v, peptone (1g/l, yeast extract (1g/l and 50% of sea water. Total carotenoids content was 134.8 µg/g CDW in this medium. TLC analysis showed that the extracted carotenoid is included: beta-carotene, astaxanthin monoester, astaxanthin diester and free astaxanthin. The results of HPLC analysis showed presence of astaxanthin, canthaxanthin, echinenone and β-carotene in the carotenoid extract. Discussion and conclusion: In this research, production of carotenoids was investigated in native strain of Aurantiochytrium and carotenoids profile was included astaxanthin, canthaxanthin, β-carotene and echinenone.

  1. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium.

    Science.gov (United States)

    Asker, Dalal

    2017-09-18

    A high throughput screening approach for astaxanthin-producing bacteria led to the discovery of a novel highly selective astaxanthin-producing marine bacterium (strain N-5). Phylogenetic analysis based on partial 16S rRNA gene and phenotypic metabolic testing indicated it belongs to the genus Brevundimonas. Therefore, it was designated as Brevundimonas sp. strain N-5. To identify and quantify carotenoids produced by strain N-5, HPLC-DAD and HPLC-MS methods were used. The culture conditions including media, shaking and time had significant effects on cell growth and carotenoids production including astaxanthin. The total carotenoids were ~601.2 µg g-1 dry cells including a remarkable amount (364.6 µg g-1 dry cells) of optically pure astaxanthin (3S, 3'S) isomer, with high selectivity (~60.6%) under medium aeration conditions. Notably, increasing the culture aeration enhanced astaxanthin production up to 85% of total carotenoids. This is the first report that describes a natural, highly selective astaxanthin-producing marine bacterium.

  2. Factors influencing the chemical stability of carotenoids in foods.

    Science.gov (United States)

    Boon, Caitlin S; McClements, D Julian; Weiss, Jochen; Decker, Eric A

    2010-06-01

    In recent years, a number of studies have produced evidence to suggest that consuming carotenoids may provide a variety of health benefits including a reduced incidence of a number of cancers, reduced risk of cardiovascular disease, and improved eye health. Evolving evidence on the health benefits of several carotenoids has sparked interest in incorporating more carotenoids into functional food products. Unfortunately, the same structural attributes of carotenoids that are thought to impart health benefits also make these compounds highly susceptible to oxidation. Given the susceptibility of carotenoids to degradation, particularly once they have been extracted from biological tissues, it is important to understand the major mechanisms of oxidation in order to design delivery systems that protect these compounds when they are used as functional food ingredients. This article reviews current understanding of the oxidation mechanisms by which carotenoids are degraded, including pathways induced by heat, light, oxygen, acid, transition metal, or interactions with radical species. In addition, several carotenoid delivery systems are evaluated for their potential to decrease carotenoid degradation in functional food products.

  3. Identification of a Carotenoid Producing Strain%类胡萝卜素产生菌种的鉴定

    Institute of Scientific and Technical Information of China (English)

    刘卉琳; 刘绍; 兰时乐; 谢达平

    2011-01-01

    A pigment producing strain B-5 was isolated from red wine lees in Fujian.The pigment was qualitative analyzed and indicated that it was carotenoid.Morphologic, physiological, and biochemical characteristics of the strain were analyzed, and revealed that the cell of the strain was single, oval and budding, dark red colony with humid and sticky surface, regular edge on solid medium and easily be picked out from, producing deposition in liquid medium,no ascospore and pseudohypha.The strain showed negative response to glucose ferment, potassium nitrate test positive, hypertonic test negative, amyloid production negative, and grew at 37 ℃.Using 26S rDNAD1/D2 domain sequence analysis and comparison identification indicated that the strain and Rhodotorula mucilaginosa model strain had 100% homology, combined with morphologic, physiological and biochemical characteristics, the strain was characterized as Rhodotorula mucilaginosa.%于福建红酒酒糟中分离、筛选得到1株编号为B-5的产色素菌株.对该菌株所产色素进行定性分析,结果表明该色素为类胡萝卜素;对菌株进行常规形态和生理生化特性分析,结果表明该菌株为单细胞,呈卵圆形,芽殖;在固体培养基上,菌落呈深红色,菌落表面湿润、粘稠,边缘整齐,易被挑起;在液体培养基中,产生沉淀.无子囊孢子;无假菌丝形成.葡萄糖发酵试验为阴性,硝酸钾试验为阳性,耐高渗试验为阴性,产类淀粉化合物为阴性,37 ℃生长为阳性.利用26S rDNA D1/D2 区域序列分析法对该菌株进行序列比对鉴定,结果表明,该酵母菌的序列与粘性红圆酵母(Rhodotorula mucilaginosa) 模式菌株的序列同源性100%,结合该菌株常规形态和生理生化特性,鉴定该菌株为粘性红圆酵母(Rhodotorula mucilaginosa).

  4. Regulatory control of high levels of carotenoid accumulation in potato tubers

    NARCIS (Netherlands)

    Zhou, X.; McQuinn, R.; Fei, Z.; Wolters, A.M.A.; Eck, van J.; Brown, C.; Giovannoni, J.J.; Li, L.

    2011-01-01

    Potato (Solanum tuberosum L.) tubers contain a wide range of carotenoid contents. To decipher the key factors controlling carotenoid levels in tubers, four potato lines (Atlantic, Désirée, 91E22 and POR03) were examined by a combination of biochemical, molecular and genomics approaches. These lines

  5. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification

    NARCIS (Netherlands)

    Dias, M.G.; Oliveira, L.; Camoes, M.F.G.F.C.; Nunes, B.; Versloot, P.; Hulshof, P.J.M.

    2010-01-01

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids a-carotene, ß-carotene, ß-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the ana

  6. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    Science.gov (United States)

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum.

  7. Development of a high-performance liquid chromatography-based assay for carotenoids in human red blood cells: application to clinical studies.

    Science.gov (United States)

    Nakagawa, Kiyotaka; Kiko, Takehiro; Hatade, Keijiro; Asai, Akira; Kimura, Fumiko; Sookwong, Phumon; Tsuduki, Tsuyoshi; Arai, Hiroyuki; Miyazawa, Teruo

    2008-10-01

    Peroxidized phospholipid-mediated cytotoxicity is involved in the pathophysiology of many diseases; for example, there is an abnormal increase of phospholipid hydroperoxides in red blood cells (RBCs) of dementia patients. Dietary carotenoids have gained attention as potent inhibitors of RBC phospholipid hydroperoxidation, thereby making them plausible candidates for preventing disease. However, the occurrence of carotenoids in human RBCs is still unclear. This is in contradistinction to plasma carotenoids, which have been investigated thoroughly for analytical methods as well as biological significance. In this study, we developed a method to analyze RBC carotenoids using high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) diode array detection (DAD) and atmospheric pressure chemical ionization (APCI) mass spectrometry (MS). Under optimized conditions that included extraction, separation, and detection procedures, six carotenoids (lutein, zeaxanthin, beta-cryptoxanthin, alpha-carotene, beta-carotene, and lycopene) were separated, detected by DAD, and concurrently identified based on APCI/MS and UV spectra profiles when an extract from human RBCs was subjected to HPLC-DAD-APCI/MS. The amounts of carotenoids varied markedly (1.3-70.2 nmol/L packed cells), and polar oxygenated carotenoids (xanthophylls) were predominant in RBCs. The HPLC-DAD-APCI/MS method would be a useful tool for clinical studies for evaluating the bioavailability of RBC carotenoids.

  8. Carotenoid Biosynthesis in Fusarium

    Directory of Open Access Journals (Sweden)

    Javier Avalos

    2017-07-01

    Full Text Available Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusarium aquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin’s chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.

  9. Detrimental effects of carotenoid pigments: the dark side of bright coloration

    Science.gov (United States)

    Huggins, Kristal A.; Navara, Kristen J.; Mendonça, Mary T.; Hill, Geoffrey E.

    2010-07-01

    Carotenoid pigments produce yellow, orange, and red integumentary color displays that can serve as reliable signals of health and condition. In many birds and fish, individuals gain competitive or mating advantages by ingesting and utilizing large quantities of carotenoid pigments. Carotenoid pigments serve as antioxidants, performing important functions as free-radical scavengers. The beneficial effects of carotenoid pigments are well documented, but rarely have researchers considered potential detrimental effects of high-level accumulation of carotenoids. We maintained American goldfinches ( Carduelis tristis) on high- or low-carotenoid diets through molt and tested for damage to the liver and skeletal muscle. High intake of carotenoids had no measurable effect on liver enzymes but caused an increase in creatine kinase, an indicator of skeletal muscle breakdown, and a reduction in vertical flight performance, a measure of skeletal muscle integrity. The detrimental effects of high-level carotenoid accumulation were approximately equivalent to the negative effects of removing carotenoids from the diet. The adverse effects observed in this study have important implications for theories of the function and evolution of colorful plumage.

  10. Characterization of halophilic C50 carotenoid-producing archaea isolated from solar saltworks in Bohai Bay, China

    Science.gov (United States)

    Sui, Liying; Liu, Liangsen; Deng, Yuangao

    2014-11-01

    Halophilic archaea comprise the majority of microorganisms found in hypersaline environments. C50 carotenoids accumulated in archaea cells are considered potential biotechnological products and possess a number of biological functions. Ten red colonies were isolated from brine water in a saltern crystallizer pond of the Hangu Saltworks, China. 16S rRNA gene sequence analysis showed that the colonies belonged to the extremely halophilic archaea genera Halobacterium and Halorubrum. Two representative strains, Halobacterium strain SP-2 and Halorubrum strain SP-4, were selected for further study on the phenotypic characteristics and effects of salinity and pH on accumulation and composition of pigments in their cells. The archaeal strains were isolated and grown in a culture medium prepared by dissolving yeast extract (10 g/L) and acid-hydrolyzed casein (7.5 g/L) into brine water obtained from a local salt pond. Their optimum salinity and pH for growth were 250 and 7, respectively, although pigment accumulation (OD490 / mL broth) was highest at pH 8. In addition, at 150-300 salinity, increasing salinity resulted in decreasing pigment accumulation. Analysis of the UV-Vis spectrum, TLC and HLPC chromatograms showed that C50 carotenoid bacterioruberin is the major pigment in both strains.

  11. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants.

    Science.gov (United States)

    Huang, Junchao; Zhong, Yujuan; Sandmann, Gerhard; Liu, Jin; Chen, Feng

    2012-08-01

    β-Carotene ketolase (BKT) catalyzes the rate-limiting steps for the biosynthesis of astaxanthin. Several bkt genes have been isolated and explored to modify plant carotenoids to astaxanthin with limited success. In this study, five algal BKT cDNAs were isolated and characterized for the engineering of high-yield astaxanthin in plants. The products of the cDNAs showed high similarity in sequence and enzymatic activity of converting β-carotene into canthaxanthin. However, the enzymes exhibited extremely different activities in converting zeaxanthin into astaxanthin. Chlamydomonas reinhardtii BKT showed the highest conversion rate (ca 85%), whereas, Neochloris wimmeri BKT exhibited very poor activity of ketolating zeaxanthin. Expression of C. reinhardtii BKT in tobacco led to a twofold increase of total carotenoids in the leaves with astaxanthin being the predominant. The bkt genes described here provide a valuable resource for metabolic engineering of plants as cell factories for astaxanthin production.

  12. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification.

    Science.gov (United States)

    Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M

    2010-05-21

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method.

  13. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.

    Science.gov (United States)

    McGraw, Kevin J; Toomey, Matthew B

    2010-01-01

    Carotenoid pigments produce the bright yellow to red ornamental colors of many animals, especially birds, and must ultimately be derived from the diet. However, they are also valuable for many physiological functions (e.g., antioxidants, immunostimulants, photoprotection, visual tuning, yolk nourishment to embryos), and as a result they are present in numerous internal body tissues (e.g., liver, adipose tissue, retina) whose carotenoid types and amounts are rarely studied in the context of color acquisition. Because male and female animals typically place different priorities on fitness-enhancing activities (e.g., gametic investment in females, sexual attraction in males), carotenoid allocation may track such investment patterns in the two sexes, and we can test for such sex-specific priorities of carotenoids by assessing body-tissue distributions of these pigments. We used high-performance liquid chromatography to identify and quantify carotenoid pigments from the plasma, liver, adipose tissue, and retina as well as the beak and legs of male and female zebra finches (Taeniopygia guttata), a species in which males display sexually attractive, red, carotenoid-based beak coloration and females also display some (albeit a less rich orange) beak color. To our knowledge, this is the first study of the predictors of carotenoid-based leg coloration-another potentially important visual signal-in this species. The same suite of dietary (e.g., lutein, zeaxanthin, beta-cryptoxanthin) and metabolically derived (e.g., dehydrolutein, anhydrolutein) yellow and orange carotenoids was present in plasma, liver, and adipose tissue of both sexes. Retina contained two different metabolites (astaxanthin and galloxanthin) that serve specific functions in association with unique photoreceptor types in the eye. Beaks were enriched with four red ketocarotenoid derivatives in both sexes (alpha-doradexanthin, adonirubin, astaxanthin, and canthaxanthin), while the carotenoid profile of legs

  14. Effects of High Temperature Frying of Spinach Leaves in Sunflower Oil on Carotenoids, Chlorophylls, and Tocopherol Composition

    Science.gov (United States)

    Zeb, Alam; Nisar, Parveen

    2017-01-01

    Spinach is one of the highly consumed vegetable, with significant nutritional, and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls, and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45, and 60 min at 250°C. Reversed phase HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin, and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein, and its Z-isomers and chlorophyll b' isomer. There was significant decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes, and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability. PMID:28382299

  15. Effects of High Temperature Frying of Spinach Leaves in Sunflower Oil on Carotenoids, Chlorophylls, and Tocopherol Composition.

    Science.gov (United States)

    Zeb, Alam; Nisar, Parveen

    2017-01-01

    Spinach is one of the highly consumed vegetable, with significant nutritional, and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls, and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45, and 60 min at 250°C. Reversed phase HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin, and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein, and its Z-isomers and chlorophyll b' isomer. There was significant decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes, and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability.

  16. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids.

    Science.gov (United States)

    Schöner, Tim A; Gassel, Sören; Osawa, Ayako; Tobias, Nicholas J; Okuno, Yukari; Sakakibara, Yui; Shindo, Kazutoshi; Sandmann, Gerhard; Bode, Helge B

    2016-02-02

    Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria.

  17. Analysis of Carotenoid Production by Halorubrum sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake

    Science.gov (United States)

    Naziri, Davood; Hamidi, Masoud; Hassanzadeh, Salar; Tarhriz, Vahideh; Maleki Zanjani, Bahram; Nazemyieh, Hossein; Hejazi, Mohammd Amin; Hejazi, Mohammad Saeid

    2014-01-01

    Purpose: Carotenoids are of great interest in many scientific disciplines because of their wide distribution, diverse functions and interesting properties. The present report describes a new natural source for carotenoid production. Methods: Halorubrum sp., TBZ126, an extremely halophilic archaeon, was isolated from Urmia Lack following culture of water sample on marine agar medium and incubation at 30 °C. Then single colonies were cultivated in broth media. After that the cells were collected and carotenoids were extracted with acetone-methanol (7:3 v/v). The identification of carotenoids was performed by UV-VIS spectroscopy and confirmed by thin layer chromatography (TLC) in the presence of antimony pentachloride (SbCl5). The production profile was analyzed using liquid-chromatography mass spectroscopy (LC-MS) techniques. Phenotypic characteristics of the isolate were carried out and the 16S rRNA gene was amplified using polymerase chain reaction (PCR). Results: LC-MS analytical results revealed that produced carotenoids are bacterioruberin, lycopene and β-carotene. Bacterioruberin was found to be the predominant produced carotenoid. 16S rRNA analysis showed that TBZ126 has 100% similarity with Halorubrum chaoviator Halo-G*T (AM048786). Conclusion: Halorubrum sp. TBZ126, isolated from Urmia Lake has high capacity in the production of carotenoids. This extremely halophilic archaeon could be considered as a prokaryotic candidate for carotenoid production source for future studies. PMID:24409411

  18. Analysis of Carotenoid Production by Halorubrum sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake

    Directory of Open Access Journals (Sweden)

    Davood Naziri

    2014-03-01

    Full Text Available Purpose: Carotenoids are of great interest in many scientific disciplines because of their wide distribution, diverse functions and interesting properties. The present report describes a new natural source for carotenoid production. Methods: Halorubrum sp., TBZ126, an extremely halophilic archaeon, was isolated from Urmia Lack following culture of water sample on marine agar medium and incubation at 30 °C. Then single colonies were cultivated in broth media. After that the cells were collected and carotenoids were extracted with acetone-methanol (7:3 v/v. The identification of carotenoids was performed by UV-VIS spectroscopy and confirmed by thin layer chromatography (TLC in the presence of antimony pentachloride (SbCl5. The production profile was analyzed using liquid-chromatography mass spectroscopy (LC-MS techniques. Phenotypic characteristics of the isolate were carried out and the 16S rRNA gene was amplified using polymerase chain reaction (PCR. Results: LC-MS analytical results revealed that produced carotenoids are bacterioruberin, lycopene and β-carotene. Bacterioruberin was found to be the predominant produced carotenoid. 16S rRNA analysis showed that TBZ126 has 100% similarity with Halorubrum chaoviator Halo-G*T (AM048786. Conclusion: Halorubrum sp. TBZ126, isolated from Urmia Lake has high capacity in the production of carotenoids. This extremely halophilic archaeon could be considered as a prokaryotic candidate for carotenoid production source for future studies.

  19. Key to Xenobiotic Carotenoids

    Directory of Open Access Journals (Sweden)

    Hans-Richard Sliwka

    2012-03-01

    Full Text Available A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H and xanthophylls (C,H,O has become obsolete.

  20. High performance liquid chromatography (HPLC) evaluation of carotenoids in irradiated guavas; Avaliacao por cromatografia liquida de alta eficiencia (CLAE) de carotenoides em goiabas irradiadas

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Keila S. Cople; Vital, Helio C. [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil). Secao de Defesa Nuclear]. E-mail: keilacople@ig.com.br; Lima, Antonio L. Santos; Pereira, Maria Helena G. [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil). Secao de Quimica]. E-mail: stolima@ipd.eb.br; Godoy, Ronoel L. Oliveira; Fonseca, Marcos J.O. [Embrapa Agroindustria de Alimentos, Rio de Janeiro, RJ (Brazil)]. E-mail: ronoel@ctaa.embrapa.br

    2005-07-01

    The use of ionizing gamma irradiation has shown very effective as an auxiliary technology for the decrease of post-harvest waste, grains disinfestation, pathogenic microorganisms control, increase in shelf life for meats, fruits, vegetables and bulbs and tubercles sprouts inhibition, maintaining nutritional quality. The carotenoids are pigments widely found in fruits and vegetables and are beneficial to human being health. This work was undergone using the irradiator with cesium source at the Army Technological Center, Brazil, with maximum dose rate of 2 kGy per hour. The objective is to evaluate the low gamma radiation doses (0.5, 1.0 and 1.5 kGy) influence in the total carotenoid and content lycopene in guavas CV Pal uma, with excellent weight classification. The total carotenoid content was extracted from the guava with acetone and moved to petroleum ether and determined by spectrophotometer at 450 nm. The determination of lycopene was accomplished by HPLC. The results showed that, in spite of lycopene loss with irradiation, the best dose was 0.5 kGy. (author)

  1. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.

    Science.gov (United States)

    Chi, Shuang C; Mothersole, David J; Dilbeck, Preston; Niedzwiedzki, Dariusz M; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J; Jackson, Philip J; Martin, Elizabeth C; Li, Ying; Holten, Dewey; Neil Hunter, C

    2015-02-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.

  2. Carotenoid photoprotection in Diaptomus kenai

    Energy Technology Data Exchange (ETDEWEB)

    Hairston, N.G. Jr.

    1978-12-01

    Red copepods have been reported from a wide variety of aquatic environments. The red color is produced by a carotenoid pigment, in most cases astaxanthin and its esters, that the copepods cannot form de novo but derive from ingested pigments such as beta-carotene. In an earlier study, the adaptive advantage of carotenoid pigmentation was investigated. Copepods containing large amounts of astaxanthin had significantly better survival than copepods containing small amounts of the pigment when exposed to light of an intensity and color similar to that occurring in the lakes from which they were taken. This result suggested that the carotenoid pigment protected the copepods from photodamage by visible light. Here a second example of carotenoid photoprotection involving the copepod Diaptomus kenai found in fresh-water mountain lakes is described. Information on the vertical distributions of D. sicilis and D. nevadensis in relation to their pigmentation is summarized, as these data will be presented elsewhere.

  3. Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus.

    Science.gov (United States)

    Ouchane, S; Picaud, M; Vernotte, C; Astier, C

    1997-08-01

    Carotenoids are essential to protection against photooxidative damage in photosynthetic and non-photosynthetic organisms. In a previous study, we reported the disruption of crtD and crtC carotenoid genes in the purple bacterium Rubrivivax gelatinosus, resulting in mutants that synthesized carotenoid intermediates. Here, carotenoid-less mutants have been constructed by disruption of the crtB gene. To study the biological role of carotenoids in photoprotection, the wild-type and the three carotenoid mutants were grown under different conditions. When exposed to photooxidative stress, only the carotenoid-less strains (crtB-) gave rise with a high frequency to four classes of mutants. In the first class, carotenoid biosynthesis was partially restored. The second class corresponded to photosynthetic-deficient mutants. The third class corresponded to mutants in which the LHI antenna level was decreased. In the fourth class, synthesis of the photosynthetic apparatus was inhibited only in aerobiosis. Molecular analyses indicated that the oxidative stress induced mutations and illegitimate recombination. Illegitimate recombination events produced either functional or non-functional chimeric genes. The R. gelatinosus crtB- strain could be very useful for studies of the SOS response and of illegitimate recombination induced by oxidants in bacteria.

  4. Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests

    Science.gov (United States)

    Sakamoto, Yu; Mori, Kazuyuki; Matsuo, Yuuki; Mukojima, Nobuhiro; Watanabe, Wataru; Sobaru, Norio; Tamiya, Seiji; Nakao, Takashi; Hayashi, Kazuya; Watanuki, Hitomi; Nara, Kazuhiro; Yamazaki, Kaoru; Chaya, Masataka

    2017-01-01

    ‘Nagasaki Kogane’ is a new potato variety bred from a cross between ‘Saikai 35’ as a female parent and ‘Saikai 33’ as a male. ‘Saikai 35’ is resistant to bacterial wilt, contains the H1 and Rychc genes for resistance to the potato cyst nematode (PCN) and potato virus Y (PVY), respectively, and has high carotenoid content, while ‘Saikai 33’ has large and high-yielding tubers and is resistant to both bacterial wilt and PCN. The carotenoid content of ‘Nagasaki Kogane’ is higher than that of ‘Dejima’, a common double cropping variety. The taste quality of steamed ‘Nagasaki Kogane’ is comparable to that of ‘Inca-no-mezame’ tubers, which has high levels of carotenoid, and superior to ‘Nishiyutaka’, another popular double cropping variety. ‘Nagasaki Kogane’ is suitable for French fries, because its tuber has high starch content. The marketable yield of ‘Nagasaki Kogane’ was higher than that of ‘Inca-no-mezame’ in spring cropping, although it was lower than that of ‘Nishiyutaka’ in double cropping regions. ‘Nagasaki Kogane’ tubers are larger on average than ‘Inca-no-mezame’ tubers in spring cropping. Moreover, the ‘Nagasaki Kogane’ variety is resistant to PCN and PVY, and exhibits a high level of resistance to bacterial wilt. PMID:28744186

  5. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  6. Carotenoids of Microalgae Used in Food Industry and Medicine.

    Science.gov (United States)

    Gateau, Hélène; Solymosi, Katalin; Marchand, Justine; Schoefs, Benoît

    2016-08-08

    Since the industrial revolution, the consumption of processed food increased dramatically. During processing, food material loses many of its natural properties. The simple restoration of the original properties of the processed food as well as fortification require food supplementation with compounds prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by consumers than synthetic ones have strongly increased the demand for natural compounds. Because some of them have only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In addition, traditional and alternative, microalgal sources for industrial carotenoid extraction, the chemical and physical properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed.

  7. High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal Japanese female subjects: prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Minoru Sugiura

    Full Text Available INTRODUCTION: Recent epidemiological studies show that high intakes of carotenoids might be useful to maintain bone health, but little is known about the association of serum carotenoids with change of bone mineral density (BMD. The objective of this study was to investigate longitudinally whether serum carotenoids are associated with bone loss. METHODS: We conducted a follow-up on 146 male and 99 pre- and 212 post-menopausal female subjects from the Mikkabi study. Those who participated in previous BMD surveys and completed four years of follow-up were examined longitudinally. RESULTS: During a 4-year follow-up, 15 of the post-menopausal female subjects developed new-onset osteoporosis. In contrast, none of the male and pre-menopausal female subjects did. In male and pre-menopausal female subjects, the six serum carotenoids at the baseline were not associated with bone loss. On the other hand, in post-menopausal female subjects, the 4-year bone loss of radius was inversely associated with the serum carotenoid concentrations, especially in β-carotene. After adjustments for confounders, the odds ratios (OR for osteoporosis in the highest tertiles of serum β-carotene and β-cryptoxanthin against the lowest tertiles were 0.24 (95% confidence interval 0.05-1.21 and 0.07 (CI: 0.01-0.88, respectively. Serum β-cryptoxanthin was also inversely associated with the risk for osteopenia and/or osteoporosis (P for trend, 0.037. In addition, our retrospective analysis revealed that subjects who developed osteoporosis and/or osteopenia during the survey period had significantly lower serum concentrations of β-cryptoxanthin and β-carotene at the baseline than those in the normal group. CONCLUSIONS: Antioxidant carotenoids, especially β-cryptoxanthin and β-carotene, are inversely associated with the change of radial BMD in post-menopausal female subjects.

  8. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-08-01

    Full Text Available Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  9. Microscale extraction method for HPLC carotenoid analysis in vegetable matrices

    Directory of Open Access Journals (Sweden)

    Sidney Pacheco

    2014-10-01

    Full Text Available In order to generate simple, efficient analytical methods that are also fast, clean, and economical, and are capable of producing reliable results for a large number of samples, a micro scale extraction method for analysis of carotenoids in vegetable matrices was developed. The efficiency of this adapted method was checked by comparing the results obtained from vegetable matrices, based on extraction equivalence, time required and reagents. Six matrices were used: tomato (Solanum lycopersicum L., carrot (Daucus carota L., sweet potato with orange pulp (Ipomoea batatas (L. Lam., pumpkin (Cucurbita moschata Duch., watermelon (Citrullus lanatus (Thunb. Matsum. & Nakai and sweet potato (Ipomoea batatas (L. Lam. flour. Quantification of the total carotenoids was made by spectrophotometry. Quantification and determination of carotenoid profiles were formulated by High Performance Liquid Chromatography with photodiode array detection. Microscale extraction was faster, cheaper and cleaner than the commonly used one, and advantageous for analytical laboratories.

  10. Isolation and Identification of a Bacterium Strain with High Production Yield of Carotenoid%一株类胡萝卜素高产菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    罗金亮; 周礼红; 陈平

    2013-01-01

    以自然环境中松树林土壤、下水道淤泥、饭店周围油腻土壤、农田土壤、落花、十字花科蔬菜、辣椒以及实验室空气为类胡萝卜素产生菌的初分离材料,采用酸-热破壁法用丙酮提取类胡萝卜素,根据单位体积发酵液类胡萝卜素产量确定了一株高产光合细菌(BSⅡ6).进一步对其形态、生理生化特征、类胡萝卜素产量、分子生物学特征进行了初步研究,初步鉴定菌株BSⅡ6为无色杆菌属的一个种Achromobacter sp.,BSⅡ6所产色素主要成分为番茄红素,类胡萝卜素产量达到了7.46 μg/mL.%Pine forest soil,sewage sludge,oily soil around hotels,farmland soil,blossom dropping,cruciferous vegetables and pepper in nature environment,and laboratory air were used as the first isolated material for carotenoid producing strains.The carotenoid was extracted by acid-heat cell wall-breaking method with acetone.A high-yield photosynthetic bacterium strain (BSⅡ6) was isolated according to the carotenoid yield per unit volume of fermentation broth.Furthermore,the morphological,physiological and biochemical characteristics,carotenoid production yield and molecular characteristics of the strain was studied.The results showed that strain BSⅡ6 was preliminarily identified as Achromobacter sp.The main pigment component produced by BSⅡ6 was lycopene; with carotenoid yield up to 7.46 μg/mL.

  11. Carotenoids in Marine Animals

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2011-02-01

    Full Text Available Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade.

  12. Effects of spirulina carotenoid on carotenoid deposition and immunity in sex-reversed red tilapia

    Directory of Open Access Journals (Sweden)

    Phromkunthong, W.

    2007-09-01

    Full Text Available A study was conducted in 235-l glass tanks filled with 180-l water using closed recirculation water system of 1.2 l/min flow rate to determine the effects of spirulina carotenoid on its accumulation and immune in sex-reversed red tilapia. Feeding trial comprised 8 treatments with 3 replications each. Twenty fish of 21 g initial weight were stocked in each tanks into which feed were given in 2 rations daily over an 8 weeks period of study with completely randomized design. All feeds tested contained 30% protein, 6% lipid and 3,400 Kcal digestible energy/kg feed. Formula 1 feed was control, i.e., without fortified carotenoid; formulae 2, 3 and 4 were with 200 mg/kg feed of fortified synthetic carotenoids, i.e., astaxanthin, zeaxanthin and bata-carotene, respectively. Dried spirulina were incorporated in feed formulae 5 to 8 to obtain carotenoid concentration 50, 100, 150 and 200 mg/kg feed, respectively. Results showed that neither synthetic nor spirulina carotenoid produced an effect on fish growth or survival. Analysis of total carotenoid showed both sources of carotenoid elevated carotenoid content and color index in proportional to carotenoid level fortification. Highest accumulated carotenoid content was noted in feed with zeaxanthin in the feed though not different from that with 150 mg/kg spirulina carotenoid. Antibody against Streptococcus agalactiae was enhanced with carotenoid fortification in all formulae except that with beta-carotene. Carotenoid in the feed has no effect on total hemoglobin and hematocrit, though it increases red blood cell and white blood cell (p<0.05.

  13. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena.

    Science.gov (United States)

    Huang, Fong-Chin; Horváth, Györgyi; Molnár, Péter; Turcsi, Erika; Deli, József; Schrader, Jens; Sandmann, Gerhard; Schmidt, Holger; Schwab, Wilfried

    2009-03-01

    Several of the key flavor compounds in rose essential oil are C(13)-norisoprenoids, such as beta-damascenone, beta-damascone, and beta-ionone which are derived from carotenoid degradation. To search for genes putatively responsible for the cleavage of carotenoids, cloning of carotenoid cleavage (di-)oxygenase (CCD) genes from Rosa damascena was carried out by a degenerate primer approach and yielded a full-length cDNA (RdCCD1). The RdCCD1 gene was expressed in Escherichia coli and recombinant protein was assayed for its cleavage activity with a multitude of carotenoid substrates. The RdCCD1 protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrates. RdCCD1 could also cleave lycopene at the 5-6 and 5'-6' positions to produce 6-methyl-5-hepten-2-one. Expression of RdCCD1 was studied by real-time PCR in different tissues of rose. The RdCCD1 transcript was present predominantly in rose flower, where high levels of volatile C(13)-norisoprenoids are produced. Thus, the accumulation of C(13)-norisoprenoids in rose flower is correlated to the expression of RdCCD1.

  14. Carotenoids as signaling molecules in cardiovascular biology

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2014-09-01

    Full Text Available Oxidative stress and inflammation play important roles in the etiology of cardiovascular disease (CVD. Thus, natural antioxidant carotenoids existing in fruits and vegetables could have a significant role in the prevention of CVD. Nevertheless,clinical data are conflicting about the positive effect of some antioxidant carotenoids in reducing cardiovascular morbidity and mortality. Many biological actions of carotenoids have been attributed to their antioxidant effect; however, the precise mechanism by which carotenoids produce their beneficial effects is still under discussion. They might modulate molecular pathways involved in cell proliferation, acting at Akt, tyrosine kinases, mitogen activated protein kinase (MAP kinase and growth factor signaling cascades. Screening for a promising cardiovascular protective carotenoids therefore might be performed in vitro and in vivo with caution in cross-interaction with other molecules involved in signaling pathways especially those affecting microRNAs, performing a role in molecular modulation of cardiovascular cells.

  15. Selection and characterization of carotenoid-producing yeasts from Campinas region, Brazil Seleção e caracterização de leveduras produtoras decarotenóides na região de Campinas, Brasil

    Directory of Open Access Journals (Sweden)

    Iriani R. Maldonade

    2007-03-01

    Full Text Available The objective of the present study was to select and identify yeasts from Brazil capable of producing carotenoids. Pigmented yeasts were isolated from soil, leaves, fruits, flowers and a processed product. The samples were incubated at 30ºC in Erlenmeyer flasks, containing YM broth. After 48 hours, they were inoculated in Petri dishes with YM agar, and incubated at 30ºC during 120 hours. The yeast colonies, which presented yellow to red coloration, were transferred to culture tubes containing YM agar, and incubated at 30ºC for 72 hours. Out of 242 samples, only five had yellow to red color at high intensity. These highly pigmented yeasts were re-isolated in Petri dishes with YM agar and then transferred to tubes with GPYM agar. Identification through morphological and reproduction characteristics, along with physiological and biochemical tests, classified four strains as R. mucilaginosa and one strain as R. graminis. The main carotenoids extracted from them were identified through HPLC analysis as beta-carotene and torulene. The strains showed potential as promising microorganisms for the commercial production of carotenoids.Este trabalho teve como objetivo selecionar e identificar leveduras encontradas no Brasil capazes de produzir carotenóides. As leveduras pigmentadas foram isoladas de amostras de solos, folhas, frutos, flores e um alimento processado. As amostras foram colocadas em frascos de erlenmeyer, contendo meio de Extrato de Malte e Levedura (YM, e incubadas a 30ºC. Após 48 horas, as amostras foram inoculadas em placas de petri contendo meio YM ágar e incubadas a 30ºC por 120 horas. As colônias, que apresentaram coloração entre amarelo e vermelho, foram transferidas para os tubos de culturas, contendo meio YM ágar e incubadas a 30ºC por 72 horas. Das 242 amostras, somente cinco delas apresentaram coloração intensa entre amarelo e vermelho. Estas colônias de leveduras foram reisoladas, em placas de petri contendo YM

  16. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  17. Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress

    Directory of Open Access Journals (Sweden)

    Liang, C.

    2015-06-01

    Full Text Available Recently, H. pluvialis has been demonstrated to have significant potential for biofuel production. To explore the correlation between total lipid content and other physiological parameters under s tress conditions, the responses of H. pluvialis to high light intensity (HL, nitrogen deprivation (-N, and high light intensity with nitrogen deprivation (HL-N were investigated. The total lipid content in the control cells was 12.01% dw, whereas that of the cells exposed to HL, -N, and HL-N conditions was 56.92, 46.71, and 46.87% dw, respectively. The fatty acid profile was similar under all conditions, with the main components including palmitic acid, linoleic acid, and linolenic acid. A good correlation was found between individual carotenoid and total lipids, regardless of culture conditions. P hotosynthetic parameters and lipid content were also found to be well-correlated.Recientemente, H. pluvialis ha demostrado tener un gran potencial para la producción de biocombustibles. Para explorar la correlación entre el contenido total de lípidos y otros parámetros fisiológicos en condiciones de estrés, se investigaron las respuestas de H. pluvialis a una alta intensidad de luz (HL, una privación de nitrógeno (-N, y ambos, alta intensidad de la luz con privación de nitrógeno (HL-N. El contenido total de lípidos de las células control fue de 12,01% dw, mientras que el de las células expuestas a HL, N, y condiciones de HL-N fue de 56,92, 46,71, y 46,87% dw, respectivamente. El perfil de ácidos grasos fue similar para todas las condiciones, cuyos componentes principales fueron los ácidos palmítico, linoleico y linolénico. Se encontró una buena correlación entre carotenoides y lípidos totales individuales, independientemente de las condiciones de cultivo. También se encontró una buena correlación entre los parámetros fotosintéticos y el contenido de lípidos.

  18. The intake of carotenoids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Jakobsen, Jette; Andersen, N. L.

    2000-01-01

    To estimate the intake of carotenoids in the Danish population Danish fruits and vegetables were screened with an HPLC method consisting of extraction with ethanol:tetrahydrofuran, separation by reversed phase HPLC with the mobile phase acetonitril:methanol:dichlormethan, triethylamin, BHT...... in the foods the mean intake and intake distribution of the carotenoids were calculated. Carrots and tomatoes have both high contents of carotenoids (8,450 mu g/100 g alpha- + beta-carotene and 4,790 mu g/100 g lycopene, respectively) and high intakes (19 and 15 g/day, respectively) and were responsible for 47......% and 32%, respectively, of the mean intake of carotenoids of 4.8 mg/day A median value of 4.1 mg/day was found indicating skewed intake distributions. The difference between men and women was 0.4 mg/day (p carotenoids, alpha-carotene, beta-carotene, lutein and lycopene, contributed...

  19. Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers.

    Science.gov (United States)

    Sowani, Harshada; Mohite, Pallavi; Damale, Shailesh; Kulkarni, Mohan; Zinjarde, Smita

    2016-12-01

    The Actinomycete Gordonia amicalis HS-11 produced orange pigments when cultivated on n-hexadecane as the sole carbon source. When cells of this pigmented bacterium were incubated with 1mM chloroauric acid (HAuCl4) or silver nitrate (AgNO3), pH 9.0, at 25°C, gold and silver nanoparticles, respectively, were obtained in a cell associated manner. It was hypothesized that the pigments present in the cells may be mediating metal reduction reactions. After solvent extraction and High Performance Liquid Chromatography, two major pigments displaying UV-vis spectra characteristic of carotenoids were isolated. These were identified on the basis of Atmospheric Pressure Chemical Ionization Mass Spectrometry (APCI-MS) in the positive mode as 1'-OH-4-keto-γ-carotene (Carotenoid K) and 1'-OH-γ-carotene (Carotenoid B). The hydroxyl groups present in the carotenoids were eliminated under alkaline conditions and provided the reducing equivalents necessary for synthesizing nanoparticles. Cell associated and carotenoid stabilized nanoparticles were characterized by different analytical techniques. In vitro free radical scavenging activities of cells (control, gold and silver nanoparticle loaded), purified carotenoids and carotenoid stabilized gold and silver nanoparticles were evaluated. Silver nanoparticle loaded cells and carotenoid stabilized silver nanoparticles exhibited improved nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities compared to their control and gold counterparts. This paper thus reports cell associated nanoparticle synthesis by G. amicalis, describes for the first time the role of carotenoid pigments in metal reduction processes and demonstrates enhanced free radical scavenging activities of the carotenoid stabilized nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. PHARMACOLOGICAL EFFECTS OF CAROTENOIDS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Sumita S. Kadia

    2012-01-01

    Full Text Available Vitamin A is an essential vitamin which is required in the vision process, epithelial maintenance, mucous secretion and reproduction obtained from carotenoids. Carotenoids have been considered to provide benefits in age-related diseases, against some forms of cancer (in especial lung cancer, strokes, macular degeneration, and cataracts. Till date, more than 600 carotenoids are known and 50 of them are consumed in meals to be transformed into the essential nutrient vitamin A. After their absorption, these carotenoids are metabolized by an oxidative rupture to retinal, retinoic acid and small quantities of breakdown products and are transported by plasma lipoproteins. Carotenes are mainly associated with low-density lipoproteins, while xanthophylls show a uniform distribution between the low- and high-density lipoproteins. The present review provides an insight into the recent status of pharmacological aspects of carotenoids.

  1. High-resolution Orbitrap mass spectrometry for the analysis of carotenoids in tomato fruit: validation and comparative evaluation towards UV-VIS and tandem mass spectrometry.

    Science.gov (United States)

    Van Meulebroek, Lieven; Vanden Bussche, Julie; Steppe, Kathy; Vanhaecke, Lynn

    2014-04-01

    In this study, a generic extraction protocol and full-scan high-resolution Orbitrap-mass spectrometry (MS) detection method were developed, enabling the metabolomic screening for carotenoids in tomato fruit tissue. To this end, the carotenoids lutein, zeaxanthin, α-carotene, β-carotene, and lycopene (representing both xanthofylls and carotenes) were considered. The extraction procedure was optimized by means of a D-optimal design and consisted of a liquid-liquid extraction with methanol/tert-butyl methyl ether (1:1, v/v). The considered compounds were detected by a single-stage Exactive(TM) mass spectrometer, operating at a mass resolution of 100,000 full width at half maximum. The validation study demonstrated excellent performance in terms of linearity (R (2) > 0.99), repeatability (CV ≤ 10.6 %), within-laboratory reproducibility (CV ≤ 12.2 %), and mean corrected recovery (ranging from 85 to 106 %). Additionally, a comparative evaluation towards well-established detection techniques, i.e., tandem mass spectrometry (MS/MS) and ultraviolet-visible spectroscopy (UV-VIS) photodiode array, indicated superior performance of high-resolution Orbitrap-MS with regard to specificity/selectivity and sensitivity (with limits of detection ranging from 1.0 to 3.8 pg μL(-1)). As a result, it may be concluded that high-resolution Orbitrap-MS is a suited alternative for UV-VIS or MS/MS in analyzing carotenoids and may offer significant value in carotenoid research because of the metabolomic screening possibilities.

  2. Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins.

    Science.gov (United States)

    Rodrigo, María Jesús; Cilla, Antonio; Barberá, Reyes; Zacarías, Lorenzo

    2015-06-01

    Citrus fruits are a good source of carotenoids for the human diet; however, comparative studies of carotenoids in different citrus food matrices are scarce. In this work the concentration and bioaccessibility of carotenoids in sweet oranges and mandarins with marked differences in carotenoid composition were evaluated in pulp and compared to those in fresh juice. The pulp and juice of the red-fleshed Cara Cara sweet orange variety was highly rich in carotenes (mainly lycopene and phytoene) compared to standard Navel orange, while β-cryptoxanthin and phytoene predominated in mandarins. Total carotenoid content in the pulp of the ordinary Navel orange and in the red-fleshed Cara Cara orange, as well as in the Clementine mandarin were higher than in the corresponding juices, although individual carotenoids were differentially affected by juice preparation. Bioaccessibility of the bioactive carotenoids (the ones described to be absorbed by humans) was greater in both pulp and juice of the carotenoid-rich Cara Cara orange compared to the Navel orange while increasing levels of β-cryptoxanthin were detected in the bioaccessible fractions of pulp and juice of mandarins postharvest stored at 12 °C compared to freshly-harvested fruits. Overall, results indicated that higher soluble bioactive carotenoids from citrus fruits and, consequently, potential nutritional and health benefits are obtained by the consumption of pulp with respect to fresh juice.

  3. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry.

    Science.gov (United States)

    Jumaah, Firas; Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta; Sandahl, Margareta

    2016-08-01

    In this study, a rapid and sensitive ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS) method has been developed and partially validated for the separation of carotenoids within less than 6 min. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The length of polyene chain as well as the number of hydroxyl groups in the structure of the studied carotenoids determines their differences in the physiochemical properties and thus the separation that is achieved on this column. All of the investigated carotenoids were baseline separated with resolution values greater than 1.5. The effects of gradient program, back pressure, and column temperature were studied with respect to chromatographic properties such as retention and selectivity. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in both positive and negative mode, using both direct infusion and hyphenated with UHPSFC. The ESI in positive mode provided the highest response. The coefficient of determination (R (2)) for all calibration curves were greater than 0.998. Limit of detection (LOD) was in the range of 2.6 and 25.2 ng/mL for α-carotene and astaxanthin, respectively, whereas limit of quantification (LOQ) was in the range of 7.8 and 58.0 ng/mL for α-carotene and astaxanthin, respectively. Repeatability and intermediate precision of the developed UHPSFC-MS method were determined and found to be RSD supercritical fluid extracts of microalgae and rosehip. Graphical Abstract Ultra-high performance supercritical fluid chromatography-a rapid separation method for the analysis of carotenoids in rosehip and microalgae samples.

  4. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria.

    Science.gov (United States)

    Tian, Bing; Hua, Yuejin

    2010-11-01

    Bacteria from the phylum Deinococcus-Thermus are known for their resistance to extreme stresses including radiation, oxidation, desiccation and high temperature. Cultured Deinococcus-Thermus bacteria are usually red or yellow pigmented because of their ability to synthesize carotenoids. Unique carotenoids found in these bacteria include deinoxanthin from Deinococcus radiodurans and thermozeaxanthins from Thermus thermophilus. Investigations of carotenogenesis will help to understand cellular stress resistance of Deinococcus-Thermus bacteria. Here, we discuss the recent progress toward identifying carotenoids, carotenoid biosynthetic enzymes and pathways in some species of Deinococcus-Thermus extremophiles. In addition, we also discuss the roles of carotenoids in these extreme bacteria.

  5. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.

  6. Native carotenoids composition of some tropical fruits.

    Science.gov (United States)

    Murillo, Enrique; Giuffrida, Daniele; Menchaca, Dania; Dugo, Paola; Torre, Germana; Meléndez-Martinez, Antonio J; Mondello, Luigi

    2013-10-15

    Many tropical fruits can be considered a reservoir of bioactive substances with a special interest due to their possible health-promoting properties. The interest in carotenoids from a nutritional standpoint has recently greatly increased, because of their important health benefits. Here we report the native carotenoids composition in six tropical fruits from Panama, which is considered a region of great biodiversity. The native carotenoid composition was directly investigated by an HPLC-DAD-APCI-MS methodology, for the first time. In Corozo 32 different carotenoids were detected, including a high content of β-carotene and lycopene. Sastra showed the highest content of zeaxanthin among the fruit investigated. In Sapote 22 different carotenoids were detected, including β-carotene and 10 different zeaxanthin-di-esters. Frutita showed a very high content of the apo-carotenoid β-citraurin, and of a number of its esters. In Maracuyà chino 14 carotenoids were detected, including a high amounts of mono-esterified lauric acid with β-cryptoxanthin and with cryptocapsin. Mamey rojo was characterised by ketocarotenoids with κ rings, both hydroxylated and not hydroxylated.

  7. Carotenoid accumulation and carotenogenic gene expression during fruit development in novel interspecific inbred squash lines and their parents.

    Science.gov (United States)

    Nakkanong, Korakot; Yang, Jing Hua; Zhang, Ming Fang

    2012-06-13

    Carotenoid levels and composition during squash fruit development were compared in Cucurbita moschata , Cucurbita maxima , and two lines of their interspecific inbred lines, namely, Maxchata1 and Maxchata2. Eight genes associated with carotenoid biosynthesis were analyzed by quantitative RT-PCR. The two squash species and their interspecific inbred lines exhibited different qualitative and quantitative carotenoid profiles and regulatory mechanisms. C. moschata had the lowest total carotenoid content and mainly accumulated α-carotene and β-carotene, as expected in a fruit with pale-orange flesh. Low carotenoid content in this species was probably due to the comparatively low expression of all genes investigated, especially PSY1 gene, compared to the other squashes. The predominant carotenoids in C. maxima were violaxanthin and lutein, which produced a corresponding yellow flesh color in mature fruit. The relationship between the expression of the CHYB and ZEP genes may result in almost equal concentrations of violaxanthin and lutein in C. maxima at fruit ripening. In contrast, their interspecific inbred lines principally accumulated lutein and β-carotene, leading to orange flesh color. The PSY1 gene exhibited higher expression levels at earlier stages of fruit development in the Maxchata lines, potentially triggering the increased carotenoid accumulation seen in these fruits. Likewise, the higher transcription level of CHYB gene observed in the two interspecific inbred lines might be correlated with high lutein in these hybrids. However, this study could not explain the observed β-carotene accumulation on the basis of gene expression.

  8. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  9. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Directory of Open Access Journals (Sweden)

    Montserrat Rodrigo-Baños

    2015-08-01

    Full Text Available The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i many haloarchaeal species possess high carotenoids production availability; (ii downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv carotenoids are needed to support plant and animal life and human well-being; and (v carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei is also discussed.

  10. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-01-01

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed. PMID:26308012

  11. Production of Carotenoid-/Ergosterol-Supplemented Biomass by Red Yeast Rhodotorula glutinis Grown Under External Stress

    Directory of Open Access Journals (Sweden)

    Ivana Marova

    2010-01-01

    Full Text Available The aim of this study is to compare the production of biomass enriched with carotenoids and ergosterol by yeast strain Rhodotorula glutinis CCY 20-2-26 grown under optimal growth conditions and in the presence of exogenous stress factors. R. glutinis cells were exposed to UV irradiation, oxidative stress (2–10 mmol/L H2O2 and osmotic stress (2–10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. Experiments were carried out in Erlenmeyer flasks and in laboratory fermentor. First, R. glutinis cells were exposed to higher concentration of stress factors added into the production medium. Further, low concentrations of NaCl and H2O2 were added to the inoculum medium or to both inoculum and production media. Exposure of red yeast cells to all tested stress factors resulted in higher production of carotenoids as well as ergosterol, while biomass production was changed only slightly. Under high stress, 2–3 times increase of β-carotene was observed. The addition of low salt or peroxide concentration into the inoculation media led to about 2-fold increase of carotenoid production. In Erlenmeyer flasks the best effect on the carotenoid and ergosterol production (3- to 4-fold increase was exhibited by the combined stress: the addition of low amount of NaCl (2 mmol/L into the inoculum medium, followed by the addition of H2O2 (5 mmol/L into the production medium. The production of ergosterol in most cases increased simultaneously with the production of carotenoids. Cultivation of R. glutinis carried out in a 2-litre laboratory fermentor was as follows: under optimal conditions about 37 g/L of yeast biomass were obtained containing approx. 26.30 mg/L of total carotenoids and 7.8 mg/L of ergosterol. After preincubation with a mild stress factor, the yield of biomass as well as the production of carotenoids and ergosterol substantially increased. The best production of enriched

  12. A review on factors influencing bioaccessibility and bioefficacy of carotenoids.

    Science.gov (United States)

    Priyadarshani, A M B

    2017-05-24

    Vitamin A deficiency is one of the most prevalent deficiency disorders in the world. As shown by many studies plant food based approaches have a real potential on prevention of vitamin A deficiency in a sustainable way. Carotenoids are important as precursors of vitamin A as well as for prevention of cancers, coronary heart diseases, age-related macular degeneration, cataract etc. Bioaccessibility and bioefficacy of carotenoids are known to be influenced by numerous factors including dietary factors such as fat, fiber, dosage of carotenoid, location of carotenoid in the plant tissue, heat treatment, particle size of food, carotenoid species, interactions among carotenoids, isomeric form and molecular linkage and subject characteristics. Therefore even when carotenoids are found in high quantities in plant foods their utilization may be unsatisfactory because some factors are known to interfere as negative effectors.

  13. Beta-carotene-rich carotenoid-protein preparation and exopolysaccharide production by Rhodotorula rubra GED8 grown with a yogurt starter culture.

    Science.gov (United States)

    Frengova, Ginka I; Simova, Emilina D; Beshkova, Dora M

    2006-01-01

    The underlying method for obtaining a beta-carotene-rich carotenoid-protein preparation and exopolysaccharides is the associated cultivation of the carotenoid-synthesizing lactose-negative yeast strain Rhodotorula rubra GED8 with the yogurt starter culture (Lactobacillus bulgaricus 2-11 + Streptococcus thermophilus 15HA) in whey ultrafiltrate (45 g lactose/l) with a maximum carotenoid yield of 13.37 mg/l culture fluid on the 4.5th day. The chemical composition of the carotenoid-protein preparation has been identified. The respective carotenoid and protein content is 497.4 microg/g dry cells and 50.3% per dry weight, respectively. An important characteristic of the carotenoid composition is the high percentage (51.1%) of beta-carotene (a carotenoid pigment with the highest provitamin A activity) as compared to 12.9% and 33.7%, respectively, for the other two individual pigments--torulene and torularhodin. Exopolysaccharides (12.8 g/l) synthesized by the yeast and lactic acid cultures, identified as acid biopolymers containing 7.2% glucuronic acid, were isolated in the cell-free supernatant. Mannose, produced exclusively by the yeast, predominated in the neutral carbohydrate biopolymer component (76%). The mixed cultivation of R. rubra GED8 with the yogurt starter (L. bulgaricus 2-11 + S. thermophilus 15HA) in ultrafiltrate under conditions of intracellular production of maximum amount of carotenoids and exopolysaccharides synthesis enables combined utilization of the culture fluid from the fermentation process.

  14. Raw Glycerol and Parboiled Rice Effluent for Carotenoid Production: Effect of the Composition of Culture Medium
and Initial pH

    Science.gov (United States)

    Silva, Carolina Moroni; de Matos de Borba, Thais; Kalil, Susana Juliano

    2016-01-01

    Summary Search for naturally grown food has stimulated the biotechnological production of carotenoids. Therefore, the use of the yeast Xanthophyllomonas dendrorhous has been researched due to its abilities to assimilate different sources as substrates and to produce high amounts of carotenoids. Furthermore, alternative sources have been used as the culture medium to reduce costs and environmental impact. A potent carotenoid is astaxanthin in view of its health-promoting and antioxidative properties. It consists of different geometrical isomers with trans and cis configuration. In X. dendrorhous this carotenoid is mostly found in the trans form, but cis isomers can also be found. Carotenoid production was investigated in culture medium containing by-products such as raw glycerol (from biodiesel) and parboiled rice effluent. The effects of the culture medium components on biomass concentration and specific and volumetric productions of carotenoids were verified by the Plackett-Burman design. Cultivations were carried out with yeast Xanthophyllomonas dendrorhous NRRL Y-17268 at 25 °C and 150 rpm for 168 h. In this study, maximum production of carotenoids was obtained under the following conditions (in g/L): raw glycerol 10, glucose 10, yeast extract 10, malt extract 10 and peptone 1 at pH=6. Resulting specific and volumetric productions of carotenoids were 326.8 and 4.1 µg/g, respectively. PMID:28115908

  15. Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis.

    Science.gov (United States)

    Nogareda, Carmina; Moreno, Jose A; Angulo, Eduardo; Sandmann, Gerhard; Portero, Manuel; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-01-01

    Carotenoids are health-promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β-carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high-carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid-rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives.

  16. Optimization of carotenoids extraction from Penaeus semisulcatus shrimp wastes

    OpenAIRE

    Gholamreza jahed Khaniki; Parisa Sadighara; Ramin Nabizadeh Nodehi; Mahmood Alimohammadi; Naiema Vakili Saatloo

    2013-01-01

    Objective: To find effective method for carotenoids extraction from shrimp waste which is one of the important sources of natural carotenoids and produced in large quantities in Iran. Methods: Two methods of carotenoids extraction, enzymatic and alkaline (NaOH 1 normal) treatment, were assayed. About 5 g of gritted shrimp wastes were used at each stage. For alkaline treatment, sodium hydroxide were added to shrimp waste. After 48 h, the mixture was filtered and centrifuged. ...

  17. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  18. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  19. Encapsulation of Carotenoids

    Science.gov (United States)

    Ribeiro, Henelyta S.; Schuchmann, Heike P.; Engel, Robert; Walz, Elke; Briviba, Karlis

    Carotenoids are natural pigments, which are synthesized by microorganisms and plants. More than 600 naturally occurring carotenoids have been found in the nature. The main sources of carotenoids are fruits, vegetables, leaves, peppers, and certain types of fishes, sea foods, and birds. Carotenoids may protect cells against photosensitization and work as light-absorbing pigments during photosynthesis. Some carotenoids may inhibit the destructive effect of reactive oxygen species. Due to the antioxidative properties of carotenoids, many investigations regarding their protective effects against cardiovascular diseases and certain types of cancers, as well as other degenerative illnesses, have been carried out in the last years (Briviba et al. 2004; Krinsky et al. 2004; Kirsh et al. 2006). A diet rich in carotenoids may also contribute to photoprotection against UV radiation (Stahl et al. 2006). In vitro studies have shown that carotenoids such as β-cryptoxanthin and lycopene stimulate bone formation and mineralization. The results may be related to prevention of osteoporosis (Kim et al. 2003; Yamaguchi and Uchiyama 2003; 2004; Yamaguchi et al. 2005).

  20. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  1. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  2. Optimization of carotenoids extraction from Penaeus semisulcatus shrimp wastes

    Institute of Scientific and Technical Information of China (English)

    Gholamreza jahed Khaniki; Parisa Sadighara; Ramin Nabizadeh Nodehi; Mahmood Alimohammadi; Naiema Vakili Saatloo

    2013-01-01

    Objective: To find effective method for carotenoids extraction from shrimp waste which is one of the important sources of natural carotenoids and produced in large quantities in Iran. Methods: Two methods of carotenoids extraction, enzymatic and alkaline (NaOH 1 normal) treatment, were assayed. About 5 g of gritted shrimp wastes were used at each stage. For alkaline treatment, sodium hydroxide were added to shrimp waste. After 48 h, the mixture was filtered and centrifuged.Results:Alcalase extraction produced (234.00±2.00) mg/L carotenoid and NaOH extraction produced (170.00±1.53) mg/L carotenoid. Based on the samples analyzed, alcalase enzyme showed more efficiency than NaOH extraction to achieve carotenoids from shrimp waste.Conclusions:It can be concluded that using alcalase enzyme for carotenoids extraction can produce higher carotenoids concentration than NaOH extraction method. So alcalase enzyme method can be used for achieving this kind of antioxidant.

  3. Testosterone treatment can increase circulating carotenoids but does not affect yellow carotenoid-based plumage colour in blue tits

    NARCIS (Netherlands)

    Peters, A.; Roberts, M.L.; Kurvers, R.H.J.M.; Delhey, K.

    2012-01-01

    A number of mechanisms are responsible for producing the variation in natural colours, and these need not act in isolation. A recent hypothesis states that carotenoid-based coloration, in addition to carotenoid availability, is also enhanced by elevated levels of circulating testosterone (T). This h

  4. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    OpenAIRE

    María del Rocío Gómez-García; Neftalí Ochoa-Alejo

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ be...

  5. Carotenoid content and in vitro bioaccessibility of lycopene from guava (Psidium guajava) and watermelon (Citrullus lanatus) by high-performance liquid chromatography diode array detection.

    Science.gov (United States)

    Chandrika, U G; Fernando, K S S P; Ranaweera, K K D S

    2009-11-01

    The carotenoid content and in vitro accessibility of the 'Sugar baby' variety of watermelon and the 'Horana red' variety of guava from Sri Lanka was determined using high-performance liquid chromatography. The high-performance liquid chromatography chromatogram showed that the Guava 'Horana red' variety contained almost exclusively lycopene (45.3 +/- 8.0 microg/g fresh weight (FW)), with a small amount of lutein (2.1 +/- 0.6 microg/g FW), beta-carotene (2.0 +/- 0.2 microg/g FW) and beta-cryptoxanthin. As far as carotenoids in the sugar baby variety of watermelon are concerned, it contained lycopene, lutein and beta-carotene of 37.2 +/- 4.0 microg/g FW, 2.1 +/- 0.6 microg/g FW and 0.3 +/- 1 microg/g FW, respectively. The studies showed that guava contains more lycopene (45.3+/-8.0 microg/g FW) than watermelon (37.2 +/- 4.0 microg/g FW), and that the in vitro accessibility of lycopene in guava (73%) is more than that in watermelon (25.8%). Therefore it can be concluded that guava can be used as a better lycopene source than watermelon.

  6. BIOSYNTHESIS OF YEAST CAROTENOIDS

    Science.gov (United States)

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  7. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Hiroshi, E-mail: yoshii@nirs.go.jp [Research Center for Radiation Emergency Medicine, National Institute of Radiological Science, Chiba 263-8555 (Japan); Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Yoshii, Yukie, E-mail: yukiey@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Asai, Tatsuya [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Faculty of Engineering, University of Fukui, Fukui 910-8507 (Japan); Furukawa, Takako [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Takaichi, Shinichi [Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063 (Japan); Fujibayashi, Yasuhisa [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Some photo-excited carotenoids have photosensitizing ability. Black-Right-Pointing-Pointer They are able to produce ROS. Black-Right-Pointing-Pointer Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as {beta}-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  8. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.).

    Science.gov (United States)

    González-Verdejo, Clara I; Obrero, Ángeles; Román, Belén; Gómez, Pedro

    2015-06-01

    Carotenoids are important dietary components that can be found in vegetable crops. The accumulation of these compounds in fruit and vegetables is altered by the activity of carotenoid cleavage dioxygenases (CCDs) enzymes that produce their degradation. The aim of this work was to study the possible implication of CCD genes in preventing carotenoid storage in the horticultural crop summer squash (Cucurbita pepo L.). The relationship between the presence of these compounds and gene expression for CCDs was studied in three varieties showing different peel and flesh colour. Expression analysis for the CCD genes CpNCED1, CpNCED2, CpNCED3, CpNCED9, CpCCD1, CpCCD4a, CpCCD4b and CpCCD8 was carried out on different organs and at several fruit developmental stages. The results showed that the CpCCD4a and CpCCD4b genes were highly expressed in the variety with lowest carotenoid content suggesting a putative role in carotenoid accumulation pattern in summer squash fruit.

  9. The carotenoid-continuum: carotenoid-based plumage ranges from conspicuous to cryptic and back again

    Directory of Open Access Journals (Sweden)

    Roberts Mark L

    2010-05-01

    Full Text Available Abstract Background Carotenoids are frequently used by birds to colour their plumage with green, yellow, orange or red hues, and carotenoid-based colours are considered honest signals of quality, although they may have other functions, such as crypsis. It is usually assumed that red through yellow colours have a signalling function while green is cryptic. Here we challenge this notion using the yellow and green colouration of blue tits (Cyanistes caeruleus, great tits (Parus major and greenfinches (Carduelis chloris as a model. Results The relationship between colouration (chroma, computed using visual sensitivities of conspecifics and detectability (contrast against natural backgrounds as perceived by conspecifics and avian predators followed a similar curvilinear pattern for yellow and green plumage with minimum detectability at intermediate levels of carotenoid deposition. Thus, for yellow and green plumage, colours at or close to the point of minimum detectability may aid in crypsis. This may be the case for blue and great tit green and yellow plumage, and greenfinch green plumage, all of which had comparably low levels of detectability, while greenfinch yellow plumage was more chromatic and detectable. As yellow and green blue tit colouration are strongly affected by carotenoid availability during moult, variation in pigment availability between habitats may affect the degree of background-matching or the costliness of producing cryptic plumage. Conclusions Increasing carotenoid-deposition in the integument does not always lead to more conspicuous colours. In some cases, such as in blue or great tits, carotenoid deposition may be selected through enhanced background-matching, which in turn suggests that producing cryptic plumage may entail costs. We stress however, that our data do not rule out a signalling function of carotenoid-based plumage in tits. Rather, it shows that alternative functions are plausible and that assuming a signalling

  10. Optimization and development of a high-performance liquid chromatography method for the simultaneous determination of vitamin E and carotenoids in tomato fruits.

    Science.gov (United States)

    Irakli, Maria; Chatzopoulou, Paschalina; Kadoglidou, Kalliopi; Tsivelika, Nektaria

    2016-09-01

    A simple and reliable high-performance liquid chromatography method was developed and validated for the simultaneous determination of lipophilic antioxidants in tomato fruits using C30 column operated at 15°C and a gradient mobile phase based on acetonitrile/methanol/dichloromethane in a total run time of 30 min. Diode array and fluorescence detectors were used respectively for the detection of carotenoids (lutein, zeaxanthin, cryptoxanthin, lycopene, and β-carotene) and vitamin E analogs (α-, β-, γ-, and δ-tocopherols, and tocotrienols). The best extraction yield of analytes in tomato fruits was achieved by employing ethyl acetate/hexane (1:1, v/v) after several treatments with various solvents. In addition, low extraction yields were obtained for carotenoids compared to tocopherols by adopting solid-phase extraction as a second clean-up step. The method was validated on the basis of recovery, precision, linearity, and limit of detection and quantification using spiked tomato samples. The method was applied to cherry and medium-sized tomato fruits. Lycopene was found to be present in largest amount in tomato pulp, followed by β-carotene and lutein. Due to its simplicity, rapidity, and efficiency, the method is suitable for routine analysis of lipophilic antioxidants in tomato fruits, and may also be applied to other vegetables of similar phytochemical profiles.

  11. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.H.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid

  12. Development of a rapid, simple assay of plasma total carotenoids

    Directory of Open Access Journals (Sweden)

    Donaldson Michael

    2012-09-01

    Full Text Available Abstract Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions.

  13. Carotenoid Formation by Staphylococcus aureus

    Science.gov (United States)

    Hammond, Ray K.; White, David C.

    1970-01-01

    The carotenoid pigments of Staphylococcus aureus U-71 were identified as phytoene; ζ-carotene; δ-carotene; phytofluenol; a phytofluenol-like carotenoid, rubixanthin; and three rubixanthin-like carotenoids after extraction, saponification, chromatographic separation, and determination of their absorption spectra. There was no evidence of carotenoid esters or glycoside ethers in the extract before saponification. During the aerobic growth cycle the total carotenoids increased from 45 to 1,000 nmoles per g (dry weight), with the greatest increases in the polar, hydroxylated carotenoids. During the anaerobic growth cycle, the total carotenoids increased from 20 nmoles per g (dry weight) to 80 nmoles per g (dry weight), and only traces of the polar carotenoids were formed. Light had no effect on carotenoid synthesis. About 0.14% of the mevalonate-2-14C added to the culture was incorporated into the carotenoids during each bacterial doubling. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The total carotenoids did not lose radioactivity when grown in the absence of 14C for 2.5 bacterial doublings. The incorporation and turnover of 14C indicated the carotenes were sequentially desaturated and hydroxylated to form the polar carotenoids. PMID:5423369

  14. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moïse, Alexander R.

    2014-01-08

    Carotenoid synthesis is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. Carotenoids are tetraterpenes derived through the condensation of the five-carbon (C5) universal isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological roles that extend beyond serving as precursors of lycopene. This concept is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. The feedback regulation of early carotenoid synthetic genes in response to a block in upstream metabolism represents a paradigm shift in our understanding of the mechanism and regulation of carotenoid synthesis and of metabolic regulation in general. The molecular details of a signaling pathway that regulates carotenogenesis in response to the levels of carotenoid precursors are still unclear.

  15. Stable, fertile, high polyhydroxyalkanoate producing plants and methods of producing them

    Energy Technology Data Exchange (ETDEWEB)

    Bohmert-Tatarev, Karen; McAvoy, Susan; Peoples, Oliver P.; Snell, Kristi D.

    2015-08-04

    Transgenic plants that produce high levels of polyhydroxybutyrate and methods of producing them are provided. In a preferred embodiment the transgenic plants are produced using plastid transformation technologies and utilize genes which are codon optimized. Stably transformed plants able to produce greater than 10% dwt PHS in tissues are also provided.

  16. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  17. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  18. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.

    Directory of Open Access Journals (Sweden)

    Matthew B Toomey

    Full Text Available BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus, we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full and dimmer low-contrast (red-filtered lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina, but declined among birds with very high levels (>2.0 µg/retina. CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific

  19. EFFECTS OF MICROELEMENTS ON THE CAROTENOID SYNTHESIS BY SOME BASIDIOMYCETES STRAINS

    Directory of Open Access Journals (Sweden)

    A. K. Velygodska

    2016-08-01

    Full Text Available The effect of microelements on growth and accumulation of carotenoids highly productive strains of basidiomycetes at surface cultivation on glucose-peptone medium was investigated. The objects of research are 3 wood destroying strain. There are Laetiporus sulphureus (Bull. Murrill Ls-08, Fomes fomentarius (L. Fr. Ff-1201 from the order Polyporales and Fistulina hepatica (Schaeff. Sibth Fh-18 from the order Agaricales. Research materials are strains mycelium and culture filtrate (CF. Absolutely dry biomass (ADB mycelium was determined by the gravimetric method, the content of carotenoids was determined by spectrophotometric method in acetone extracts of the Vetshteyn formula. Established individual influence of microelements on the accumulation of biomass and carotenoids of basidiomycetes strains. The possibility of the regulation of these processes by introducing into the glucose-peptone medium of various Fe, Cu, Zn, Ni and Mn sulphate. So, the best to increase the intensity of the growth processes and the accumulation of carotenoids strain of L. sulphureus Ls-08 is an experimental environment which includes Zn sulfate in a concentration of 8 mmol/L. To induce the accumulation of ADB and carotenoids in the mycelium and CF of strain F fomentarius Ff-1201 making in is expedient Mn sulfate in a concentration of 1.6 mmol/L. To improve carotenogenesis of F. hepatica Fh-18 strain expedient entry in GPM Mn sulphate at concentration of 8 mmol/L. These allow to optimize the concentration of microelements in nutrient medium for the cultivation of carotenoids high-producing strains of Basidiomycetes.

  20. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  1. A carotenoid health index based on plasma carotenoids and health outcomes.

    Science.gov (United States)

    Donaldson, Michael S

    2011-12-01

    While there have been many studies on health outcomes that have included measurements of plasma carotenoids, this data has not been reviewed and assembled into a useful form. In this review sixty-two studies of plasma carotenoids and health outcomes, mostly prospective cohort studies or population-based case-control studies, are analyzed together to establish a carotenoid health index. Five cutoff points are established across the percentiles of carotenoid concentrations in populations, from the tenth to ninetieth percentile. The cutoff points (mean ± standard error of the mean) are 1.11 ± 0.08, 1.47 ± 0.08, 1.89 ± 0.08, 2.52 ± 0.13, and 3.07 ± 0.20 µM. For all cause mortality there seems to be a low threshold effect with protection above every cutoff point but the lowest. But for metabolic syndrome and cancer outcomes there tends to be significant positive health outcomes only above the higher cutoff points, perhaps as a triage effect. Based on this data a carotenoid health index is proposed with risk categories as follows: very high risk: 4 µM. Over 95 percent of the USA population falls into the moderate or high risk category of the carotenoid health index.

  2. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  3. Producing a highly concentrated coal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mokudzu, K.; Atsudzima, T.; Kiyedzuka, Y.

    1983-06-03

    Coal from wet and dry grinding is loaded into a mixer with a mixer arm with the acquisition of a highly concentrated suspension. Foamers (for instance, alkylbenzolsulfonate) and foam stabilizers (for instance diethanolamide of lauric acid) are added in a ratio of 10 to (2 to 5). The high fluidity of the suspension is maintained by injecting air into the suspension and an 80 percent concentration of the suspension is achieved.

  4. Carotenoids: potential allies of cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-02-01

    Full Text Available Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD prevention. In fact, the oxidation of low-density lipoproteins (LDL in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein, and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

  5. Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies.

    Science.gov (United States)

    Mayne, Susan T; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V; Gellermann, Werner

    2013-11-15

    Resonance Raman spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes.

  6. Macular Carotenoid Supplementation Improves Visual Performance, Sleep Quality, and Adverse Physical Symptoms in Those with High Screen Time Exposure.

    Science.gov (United States)

    Stringham, James M; Stringham, Nicole T; O'Brien, Kevin J

    2017-06-29

    The dramatic rise in the use of smartphones, tablets, and laptop computers over the past decade has raised concerns about potentially deleterious health effects of increased "screen time" (ST) and associated short-wavelength (blue) light exposure. We determined baseline associations and effects of 6 months' supplementation with the macular carotenoids (MC) lutein, zeaxanthin, and mesozeaxanthin on the blue-absorbing macular pigment (MP) and measures of sleep quality, visual performance, and physical indicators of excessive ST. Forty-eight healthy young adults with at least 6 h of daily near-field ST exposure participated in this placebo-controlled trial. Visual performance measures included contrast sensitivity, critical flicker fusion, disability glare, and photostress recovery. Physical indicators of excessive screen time and sleep quality were assessed via questionnaire. MP optical density (MPOD) was assessed via heterochromatic flicker photometry. At baseline, MPOD was correlated significantly with all visual performance measures (p visual performance measures, versus placebo (p visual performance and, in turn, improves several undesirable physical outcomes associated with excessive ST. The improvement in sleep quality was not directly related to increases in MPOD, and may be due to systemic reduction in oxidative stress and inflammation.

  7. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  8. Plastids and carotenoid accumulation

    Science.gov (United States)

    Plastids are ubiquitously in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids except proplastids can synth...

  9. Carotenoids and cardiovascular health.

    Science.gov (United States)

    Voutilainen, Sari; Nurmi, Tarja; Mursu, Jaakko; Rissanen, Tiina H

    2006-06-01

    Cardiovascular disease (CVD) is the main cause of death in Western countries. Nutrition has a significant role in the prevention of many chronic diseases such as CVD, cancers, and degenerative brain diseases. The major risk and protective factors in the diet are well recognized, but interesting new candidates continue to appear. It is well known that a greater intake of fruit and vegetables can help prevent heart diseases and mortality. Because fruit, berries, and vegetables are chemically complex foods, it is difficult to pinpoint any single nutrient that contributes the most to the cardioprotective effects. Several potential components that are found in fruit, berries, and vegetables are probably involved in the protective effects against CVD. Potential beneficial substances include antioxidant vitamins, folate, fiber, and potassium. Antioxidant compounds found in fruit and vegetables, such as vitamin C, carotenoids, and flavonoids, may influence the risk of CVD by preventing the oxidation of cholesterol in arteries. In this review, the role of main dietary carotenoids, ie, lycopene, beta-carotene, alpha-carotene, beta-cryptoxanthin, lutein, and zeaxanthin, in the prevention of heart diseases is discussed. Although it is clear that a higher intake of fruit and vegetables can help prevent the morbidity and mortality associated with heart diseases, more information is needed to ascertain the association between the intake of single nutrients, such as carotenoids, and the risk of CVD. Currently, the consumption of carotenoids in pharmaceutical forms for the treatment or prevention of heart diseases cannot be recommended.

  10. KAROTENOID DARI MAKROALGAE DAN MIKROALGAE: POTENSI KESEHATAN APLIKASI DAN BIOTEKNOLOGI [Carotenoids from Macroalgae and Microalgae: Health Potential, Application and Biotechnology

    Directory of Open Access Journals (Sweden)

    Leenawaty Limantara3

    2012-12-01

    Full Text Available Algae, both micro and macroalgae, is one of the largest producers of carotenoids. The major composition of carotenoid on algae are β-carotene, astaxanthin, luthein, zeaxanthin, cryptoxanthin, and fucoxanthin which have important roles for human health. Carotenoids were produced by several microalgae species such as Dunaliella sallina, Haemotococcus pluvialis, Chlorella pyrenoidosa, Spirulina platensis, Nannnochloropsis oculata, and also from some macroalgae species such as Kappaphycus alvarezii, Sargassum sp, and Caulerpa sp. Carotenoids from algae has been proven as a powerful antioxidant and may prevent some degenerative diseases, cardiovascular, and cancer. Carotenoid also has been applied as a natural dye and dietary supplements. Biotechnology has been developed to increase the production of carotenoids from micro- and macroalgae. The large-scale cultivation of microalgae, either in open or closed system are shown to increase carotenoid production. During cultivation, some stress conditions can be specifically manipulated to optimize carotenoid production from microalgae.

  11. Manipulation of Carotenoid Content in Plants to Improve Human Health.

    Science.gov (United States)

    Alós, Enriqueta; Rodrigo, Maria Jesús; Zacarias, Lorenzo

    2016-01-01

    Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health.

  12. Carotenoids in bird testes: links to body carotenoid supplies, plumage coloration, body mass and testes mass in house finches (Carpodacus mexicanus).

    Science.gov (United States)

    Rowe, Melissah; Tourville, Elizabeth A; McGraw, Kevin J

    2012-01-01

    Carotenoid pigments can be allocated to different parts of the body to serve specific functions. In contrast to other body tissues, studies of carotenoid resources in the testes of animals are relatively scarce. We used high-performance liquid chromatography to determine the types and concentrations of carotenoids in the testes of house finches (Carpodacus mexicanus). Additionally, we examined the relationships between testes carotenoid concentrations and carotenoid pools in other body tissues, as well as body mass, testes mass and plumage coloration. We detected low concentrations of several carotenoids - lutein (the predominant carotenoid), zeaxanthin, anhydrolutein, β-cryptoxanthin, β-carotene and an unknown carotene - in the testes of wild house finches. We also found that testes lutein levels were significantly and positively associated with circulating lutein levels, while the concentration of zeaxanthin in testes was positively associated with zeaxanthin levels in liver, though in this instance the relationship was much weaker and only marginally significant. Furthermore, lutein levels in testes were significantly negatively associated with testes mass. Finally, plumage coloration was not associated with either the concentration of carotenoids in the testes or relative testes mass. These results suggest that testes carotenoids are reflective of the pool of circulating carotenoids in house finches, and that plumage coloration is unlikely to signal either the carotenoid content of testes tissue or a male's capacity for sperm production.

  13. Molecular factors controlling photosynthetic light harvesting by carotenoids.

    Science.gov (United States)

    Polívka, Tomás; Frank, Harry A

    2010-08-17

    lutein, neoxanthin, and violaxanthin to transfer energy to chlorophyll. The third, the peridinin-chlorophyll-protein (PCP) from the dinoflagellate Amphidinium carterae, is the only known complex in which the bound carotenoid (peridinin) pigments outnumber the chlorophylls. The last is xanthorhodopsin from the eubacterium Salinibacter ruber. This complex contains the carotenoid salinixanthin, which transfers energy to a retinal chromophore. The carotenoids in these pigment-protein complexes transfer energy with high efficiency by optimizing both the distance and orientation of the carotenoid donor and chlorophyll acceptor molecules. Importantly, the versatility and robustness of carotenoids in these light-harvesting pigment-protein complexes have led to their incorporation in the design and synthesis of nanoscale antenna systems. In these bioinspired systems, researchers are seeking to improve the light capture and use of energy from the solar emission spectrum.

  14. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse.

    Science.gov (United States)

    Fernandes, Bruna Soares; Vieira, João Paulo Fernandes; Contesini, Fabiano Jares; Mantelatto, Paulo Eduardo; Zaiat, Marcelo; Pradella, José Geraldo da Cruz

    2017-12-01

    This review aims to present an innovative concept of high value added lipids produced by heterotrophic microorganisms, bacteria and fungi, using carbon sources, such as sugars, acids and alcohols that could come from sugarcane vinasse, which is the main byproduct from ethanol production that is released in the distillation step. Vinasse is a rich carbon source and low-cost feedstock produced in large amounts from ethanol production. In 2019, the Brazilian Ministry of Agriculture, Livestock and Food Supply estimates that growth of ethanol domestic consumption will be 58.8 billion liters, more than double the amount in 2008. This represents the annual production of more than 588 billion liters of vinasse, which is currently used as a fertilizer in the sugarcane crop, due to its high concentration of minerals, mainly potassium. However, studies indicate some disadvantages such as the generation of Greenhouse Gas emission during vinasse distribution in the crop, as well as the possibility of contaminating the groundwater and soil. Therefore, the development of programs for sustainable use of vinasse is a priority. One profitable alternative is the fermentation of vinasse, followed by an anaerobic digester, in order to obtain biomaterials such as lipids, other byproducts, and methane. Promising high value added lipids, for instance carotenoids and polyunsaturated fatty acids (PUFAS), with a predicted market of millions of US$, could be produced using vinasse as carbon source, to guide an innovative concept for sustainable production. Example of lipids obtained from the fermentation of compounds present in vinasse are vitamin D, which comes from yeast sucrose fermentation and Omega 3, which can be obtained by bacteria and fungi fermentation. Additionally, several other compounds present in vinasse can be used for this purpose, including sucrose, ethanol, lactate, pyruvate, acetate and other carbon sources. Finally, this paper illustrates the potential market and

  15. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant.

    Science.gov (United States)

    Gassel, Sören; Breitenbach, Jürgen; Sandmann, Gerhard

    2014-01-01

    The yeast Xanthophyllomyces dendrorhous is one of the rare organisms which can synthesize the commercially interesting carotenoid astaxanthin. However, astaxanthin yield in wild-type and also in classical mutants is still too low for an attractive bioprocess. Therefore, we combined classical mutagenesis with genetic engineering of the complete pathway covering improved precursor supply for carotenogenesis, enhanced metabolite flow into the pathway, and efficient conversion of intermediates into the desired end product astaxanthin. We also constructed new transformation plasmids for the stepwise expression of the genes of 3-hydroxymethyl-3-glutaryl coenzyme A reductase, geranylgeranyl pyrophosphate synthase, phytoene synthase/lycopene cyclase, and astaxanthin synthase. Starting from two mutants with a 15-fold higher astaxanthin, we obtained transformants with an additional 6-fold increase in the final step of pathway engineering. Thus, a maximum astaxanthin content of almost 9 mg per g dry weight was reached in shaking cultures. Under optimized fermenter conditions, astaxanthin production with these engineered transformants should be comparable to Haematococcus pluvialis, the leading commercial producer of natural astaxanthin.

  16. Biodisponibilidad de carotenoides

    Directory of Open Access Journals (Sweden)

    César M. Baracaldo

    1998-12-01

    Full Text Available La vitamina A y sus derivados conocidos como retinoides (de origen animal y compuestos pro-vitamina A denominados carotenoides (de origen vegetal son importantes en la prevención de cáncer, enfermedades crónicas y enfermedades relacionadas con la deficiencia de vitamina A; por tanto, es importante conocer la absorción, metabolismo, transporte y almacenamiento de estos compuestos en humanos. Debido a lo compleja que ha sido la utilización de modelos humanos para estudiar la biodisponibilidad de carotenoides de fuentes naturales y sintéticas, recientemente se han desarrollado modelos animales que permiten avances significativos en áreas de poca conocimiento. Esta revisión pretende dar la mayor información acerca de la farmacocinética y el metabolismo de este nutriente que permita a los interesados utilizar el modelo más apropiado para los fines que persiga.

  17. Resonance Raman detection of carotenoid antioxidants in living human tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, M.; Ermakova, Maia; Gellermann, W.

    2011-01-01

    Increasing evidence points to the beneficial effects of carotenoid antioxidants in the human body. Several studies, for example, support the protective role of lutein and zeaxanthin in the prevention of age-related eye diseases. If present in high concentrations in the macular region of the retina, lutein and zeaxanthin provide pigmentation in this most light sensitive retinal spot, and as a result of light filtering and/or antioxidant action, delay the onset of macular degeneration with increasing age. Other carotenoids, such as lycopene and beta-carotene, play an important role as well in the protection of skin from UV and short-wavelength visible radiation. Lutein and lycopene may also have protective function for cardiovascular health, and lycopene may play a role in the prevention of prostate cancer. Motivated by the growing importance of carotenoids in health and disease, and recognizing the lack of any accepted noninvasive technology for the detection of carotenoids in living human tissue, we explore resonance Raman spectroscopy as a novel approach for noninvasive, laser optical carotenoid detection. We review the main results achieved recently with the Raman detection approach. Initially we applied the method to the detection of macular carotenoid pigments, and more recently to the detection of carotenoids in human skin and mucosal tissues. Using skin carotenoid Raman instruments, we measure the carotenoid response from the stratum corneum layer of the palm of the hand for a population of 1375 subjects and develope a portable skin Raman scanner for field studies. These experiments reveal that carotenoids are a good indicator of antioxidant status. They show that people with high oxidative stress, like smokers, and subjects with high sunlight exposure, in general, have reduced skin carotenoid levels, independent of their dietary carotenoid consumption. We find the Raman technique to be precise, specific, sensitive, and well suitable for clinical as well as

  18. Use of Several waste substrates for carotenoid-rich yeast biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Marova, I.; Carnecka, M.; Halienova, A.; Dvorakova, T.; Haronikova, A.

    2009-07-01

    Carotenoids are industrially significant pigments produced in many bacteria, fungi, and plants. Carotenoid biosynthesis in yeasts is involved in stress response mechanisms. Thus, control ed physiological and nutrition stress can be used for enhanced pigment production. Huge commercial demand for natural carotenoids has focused attention on developing of suitable biotechnological techniques including use of liquid waste substrates as carbon and/or nitrogen source. (Author)

  19. Raman measurement of carotenoid composition in human skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2004-07-01

    The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.

  20. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.).

    Science.gov (United States)

    Hempel, Judith; Schädle, Christopher N; Sprenger, Jasmin; Heller, Annerose; Carle, Reinhold; Schweiggert, Ralf M

    2017-03-01

    Goji berries (Lycium barbarum L.) have been known to contain strikingly high levels of zeaxanthin, while the physical deposition form and bioaccessibility of the latter was yet unknown. In the present study, we associated ripening-induced modifications in the profile of carotenoids with fundamental changes of the deposition state of carotenoids in goji berries. Unripe fruit contained common chloroplast-specific carotenoids being protein-bound within chloroplastidal thylakoids. The subsequent ripening-induced transformation of chloroplasts to tubular chromoplasts was accompanied by an accumulation of up to 36mg/100g FW zeaxanthin dipalmitate and further minor xanthophyll esters, prevailing in a presumably liquid-crystalline state within the nano-scaled chromoplast tubules. The in vitro digestion unraveled the enhanced liberation and bioaccessibility of zeaxanthin from these tubular aggregates in goji berries as compared to protein-complexed lutein from spinach. Goji berries therefore might represent a more potent source of macular pigments than green leafy vegetables like spinach.

  1. Carotenoids and lung cancer prevention

    Science.gov (United States)

    Understanding the molecular actions of carotenoids is critical for human studies involving carotenoids for prevention of lung cancer and cancers at other tissue sites. While the original hypothesis prompting the beta-carotene intervention trials was that beta-carotene exerts beneficial effects thro...

  2. Oxidation of carotenoids by heat and tobacco smoke.

    Science.gov (United States)

    Hurst, John S; Contreras, Janice E; Siems, Werner G; Van Kuijk, Frederik J G M

    2004-01-01

    The stability to autoxidation of the polar carotenoids, lutein and zeaxanthin, was compared to that of the less polar carotenoids, beta-carotene and lycopene at physiologically or pathophysiologically relevant concentrations of 2 and 6 microM, after exposure to heat or cigarette smoke. Three methodological approaches were used: 1) Carotenoids dissolved in solvents with different polarities were incubated at 37 and 80 degrees C for different times. 2) Human plasma samples were subjected to the same temperature conditions. 3) Methanolic carotenoid solutions and plasma were also exposed to whole tobacco smoke from 1-5 unfiltered cigarettes. The concentrations of individual carotenoids in different solvents were determined spectrophotometrically. Carotenoids from plasma were extracted and analyzed using high performance liquid chromatography. Carotenoids were generally more stable at 37 than at 80 degrees C. In methanol and dichloromethane the thermal degradation of beta-carotene and lycopene was faster than that of lutein and zeaxanthin. However, in tetrahydrofuran beta-carotene and zeaxanthin degraded faster than lycopene and lutein. Plasma carotenoid levels at 37 degrees C did not change, but decreased at 80 degrees C. The decrease of beta-carotene and lycopene levels was higher than those for lutein and zeaxanthin. Also in the tobacco smoke experiments the highest autoxidation rates were found for beta-carotene and lycopene at 2 microM, but at 6 microM lutein and zeaxanthin depleted to the same extent as beta-carotene. These data support our previous studies suggesting that oxidative stress degrade beta-carotene and lycopene faster than lutein and zeaxanthin. The only exception was the thermal degradation of carotenoids solubilized in tetrahydrofuran, which favors faster breakdown of beta-carotene and zeaxanthin.

  3. Carotenoids in white- and red-fleshed loquat fruits.

    Science.gov (United States)

    Zhou, Chun-Hua; Xu, Chang-Jie; Sun, Chong-De; Li, Xian; Chen, Kun-Song

    2007-09-19

    Fruits of 23 loquat ( Eriobotrya japonica Lindl.) cultivars, of which 11 were white-fleshed and 12 red-fleshed, were analyzed for color, carotenoid content, and vitamin A values. Color differences between two loquat groups were observed in the peel as well as in the flesh. beta-Carotene and lutein were the major carotenoids in the peel, which accounted for about 60% of the total colored carotenoids in both red- and white-fleshed cultivars. beta-Cryptoxanthin and, in some red-fleshed cultivars, beta-carotene were the most abundant carotenoids in the flesh, and in total, they accounted for over half of the colored carotenoids. Neoxanthin, violaxanthin, luteoxanthin, 9- cis-violaxanthin, phytoene, phytofluene, and zeta-carotene were also identified, while zeaxanthin, alpha-carotene, and lycopene were undetectable. Xanthophylls were highly esterified. On average, 1.3- and 10.8-fold higher levels of colored carotenoids were observed in the peel and flesh tissue of red-fleshed cultivars, respectively. The percentage of beta-carotene among colored carotenoids was higher in both the peel and the flesh of red-fleshed cultivars. Correlations between the levels of total colored carotenoids and the color indices were analyzed. The a* and the ratio of a*/ b* were positively correlated with the total content of colored carotenoids, while L*, b*, and H degrees correlated negatively. Vitamin A values, as retinol equivalents (RE), of loquat flesh were 0.49 and 8.77 microg/g DW (8.46 and 136.41 microg/100 g FW) on average for white- and red-fleshed cultivars, respectively. The RE values for the red-fleshed fruits were higher than fruits such as mango, red watermelon, papaya, and orange as reported in the literature, suggesting that loquat is an excellent source of provitamin A.

  4. Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content.

    Science.gov (United States)

    Villarreal, Pablo; Carrasco, Mario; Barahona, Salvador; Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2016-01-01

    Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.

  5. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process

    Science.gov (United States)

    2013-01-01

    Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen

  6. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process.

    Science.gov (United States)

    Skjånes, Kari; Rebours, Céline; Lindblad, Peter

    2013-06-01

    Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen

  7. Mass production of C50 carotenoids by Haloferax mediterranei in using extruded rice bran and starch under optimal conductivity of brined medium.

    Science.gov (United States)

    Chen, C Will; Hsu, Shu-hui; Lin, Ming-Tse; Hsu, Yi-hui

    2015-12-01

    Microbial carotenoids have potentially healthcare or medical applications. Haloferax mediterranei was difficult to economically grow into a large quantities as well as producing a valuable pigment of carotenoids. This study reports a novel investigation into the optimal conductivity on the mass production of carotenoids from H. mediterranei. The major component at about 52.4% in the extracted red pigment has been confirmed as bacterioruberin, a C50 carotenoids, by liquid chromatography separation and mass spectrometry analysis. By maintaining higher conductivity of 40 S/m in the brined medium, the cell concentration attained to 7.73 × 10(9) cells/L with low pigments concentration of 125 mg/L. When the conductivity was controlled at about 30 S/m, we obtained the highest cell concentration to 1.29 × 10(10) cells/L with pigments of 361.4 mg/L. When the conductivity was maintained at optimal 25 S/m, the pigments can be increased to maximum value of 555.6 mg/L at lower cell concentration of 9.22 × 10(9) cells/L. But conductivity below 20 S/m will cause the significant decrease in cell concentration as well as pigments due to the osmotic stress around the cells. Red pigment of carotenoids from an extremely halophilic archaebacterium could be efficiently produced to a high concentration by applying optimal conductivity control in the brined medium with extruded low-cost rice bran and corn starch.

  8. ASTAXANTHIN: A POTENTIAL CAROTENOID

    Directory of Open Access Journals (Sweden)

    Jyotika Dhankhar et al.

    2012-05-01

    Full Text Available Astaxanthin, a member of the carotenoid family, is a dark-red pigment which is the main carotenoid found in the marine world of algae and aquatic animals. Astaxanthin, is present in many types of seafood, including salmon, trout, red sea bream, shrimp and lobster, as well as in birds such as flamingo and quail. Synthetic Astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural Astaxanthin, are the green algae haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses unusual antioxidant property which has caused a surge in the nutraceutical market of the encapsulated products. Numerous studies have shown that astaxanthin has potential health-promoting effects in the prevention and treatment of various diseases, such as cancers, chronic inflammatory diseases, metabolic syndrome, diabetes, diabetic nephropathy, cardiovascular diseases, gastrointestinal diseases, liver diseases, neurodegenerative diseases, eye diseases, skin diseases, exercise-induced fatigue, male infertility, and renal failure. In this article, the currently available scientific literature regarding the most significant activities of astaxanthin is reviewed.

  9. Producing Ceramic High Tc Superconductors for Strong Current Applications

    Institute of Scientific and Technical Information of China (English)

    Jian-Xun Jin; Yuan-Chang Guo; Xue-Kei Fu; Shi-Xue Dou

    2000-01-01

    @@ Strong current and large-scale application is the most important prospect of high Tc superconductors (HTS).Practical HTS samples, both in forms of wire and bulk, have been produced with high critical currents operated at economic cryogenic temperatures, and studied for engineering applications with various prototype devices. The applicable HTS materials produced are introduced in this paper with regard to processing, characterization and application.

  10. Ultra high pressure in the second dimension of a comprehensive two-dimensional liquid chromatographic system for carotenoid separation in red chili peppers.

    Science.gov (United States)

    Cacciola, Francesco; Donato, Paola; Giuffrida, Daniele; Torre, Germana; Dugo, Paola; Mondello, Luigi

    2012-09-14

    A comprehensive normal-phase × reversed-phase (NP-LC × RP-LC) liquid chromatography system was developed, and applied for analysis of the intact carotenoid composition of red chili peppers, with photodiode array and mass spectrometry detection. A micro-bore cyano column (250 mm × 1.0 mm, 5 μm d.p.) was chosen for the first dimension ((1)D) separation, interfaced to a second dimension ((2)D) C18 column (30 mm × 4.6 mm, 2.7 μm d.p.) packed with fused-core particles. Subsequently, two columns of the same stationary phase were coupled serially for second dimension separation, and operated under ultra high pressure LC conditions (UHPLC), within a cycle time of 1.50 or 1.00 min, and equal modulation times. Performances of the three different set-ups were evaluated, in terms of peak capacity values (n(c)), and afterwards corrected by taking into account both the under-sampling, and the orthogonality effects. After these adjustments, the peak capacity values were estimated as follows: n(c) 526, for the NP-LC × RP-LC system, n(c) 373, for the NP-LC × RP-UHPLC system with a 1.50 min modulation time, n(c) 639, for the NP-LC × RP-UHPLC system, with a 1.00 min modulation time. A total of 33 compounds were separated into 10 different chemical classes in the two-dimensional space, and identified by accurate IT-TOF (ion trap-time of flight) MS detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds.

    Science.gov (United States)

    Thomas, Daniel B; McGraw, Kevin J; Butler, Michael W; Carrano, Matthew T; Madden, Odile; James, Helen F

    2014-08-07

    The broad palette of feather colours displayed by birds serves diverse biological functions, including communication and camouflage. Fossil feathers provide evidence that some avian colours, like black and brown melanins, have existed for at least 160 million years (Myr), but no traces of bright carotenoid pigments in ancient feathers have been reported. Insight into the evolutionary history of plumage carotenoids may instead be gained from living species. We visually surveyed modern birds for carotenoid-consistent plumage colours (present in 2956 of 9993 species). We then used high-performance liquid chromatography and Raman spectroscopy to chemically assess the family-level distribution of plumage carotenoids, confirming their presence in 95 of 236 extant bird families (only 36 family-level occurrences had been confirmed previously). Using our data for all modern birds, we modelled the evolutionary history of carotenoid-consistent plumage colours on recent supertrees. Results support multiple independent origins of carotenoid plumage pigmentation in 13 orders, including six orders without previous reports of plumage carotenoids. Based on time calibrations from the supertree, the number of avian families displaying plumage carotenoids increased throughout the Cenozoic, and most plumage carotenoid originations occurred after the Miocene Epoch (23 Myr). The earliest origination of plumage carotenoids was reconstructed within Passeriformes, during the Palaeocene Epoch (66-56 Myr), and not at the base of crown-lineage birds.

  12. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    Science.gov (United States)

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  13. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)

    NARCIS (Netherlands)

    Verdoes, J.C.; Sandmann, G.; Visser, H.; Diaz, M.; Mossel, van M.; Ooyen, van A.J.J.

    2003-01-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both si

  14. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)

    NARCIS (Netherlands)

    Verdoes, J.C.; Sandmann, G.; Visser, H.; Diaz, M.; Mossel, van M.; Ooyen, van A.J.J.

    2003-01-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both

  15. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma).

    Science.gov (United States)

    Verdoes, Jan C; Sandmann, Gerhard; Visser, Hans; Diaz, Maria; van Mossel, Minca; van Ooyen, Albert J J

    2003-07-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both single and double crossover events, resulting in non-carotenoid-producing transformants. In addition, the crtYB gene, linked to either its homologous or a glyceraldehyde-3-phosphate dehydrogenase promoter, was overexpressed in the wild type and a beta-carotene-accumulating mutant of X. dendrorhous. In several transformants containing multiple copies of the crtYB gene, the total carotenoid content was higher than in the control strain. This increase was mainly due to an increase of the beta-carotene and echinone content, whereas the total content of astaxanthin was unaffected or even lower. Overexpression of the phytoene synthase-encoding gene (crtI) had a large impact on the ratio between mono- and bicyclic carotenoids. Furthermore, we showed that in metabolic engineered X. dendrorhous strains, the competition between the enzymes phytoene desaturase and lycopene cyclase for lycopene governs the metabolic flux either via beta-carotene to astaxanthin or via 3,4-didehydrolycopene to 3-hydroxy-3'-4'-didehydro-beta-psi-caroten-4-one (HDCO). The monocylic carotenoid torulene and HDCO, normally produced as minority carotenoids, were the main carotenoids produced in these strains.

  16. Studies on Fermentation Conditions of Carotenoid Produced by Rhodotorula sp. RY-08%红酵母RY-08产类胡萝卜素的发酵条件研究

    Institute of Scientific and Technical Information of China (English)

    夏铁骑; 武模戈; 院宗启

    2011-01-01

    Effects of carbon and nitrogen source on carotenoid production of Rhodotorula sp.RY-08 were investigated,and the conditions for carotenoid fermentation were optimized by orthogonal test method.It indicated that the cell biomass,carotenoid content and yield from strain RY-08 could respectively reach 19.7 g/L,418.6 μg/g and 8.2 mg/L under the fermentation conditions: glucose 40 g/L,tryptone 20 g/L,medium 30 mL(in 250 mL flask),and culture time 72 h.%研究不同碳源和氮源对红酵母RY-08产类胡萝卜素的影响,并用正交试验对碳源、氮源、装液量及发酵时间进行优化。结果表明在葡萄糖40 g/L,蛋白胨20 g/L,装液量30 mL/250 mL,发酵时间72 h的发酵条件下其生物量、类胡萝卜素含量和产量分别达到19.7 g/L,418.6μg/g,8.2 mg/L。

  17. Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat. Flower

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2015-06-01

    Full Text Available The flowers of twenty-three cultivars of Dendranthema grandiflorum Ramat. were investigated to determine anthocyanin and carotenoid levels and to confirm the effects of the pigments on the flower colors using high-performance liquid chromatography (HPLC and electrospray ionization-mass spectrometry (ESI-MS. The cultivars contained the anthocyanins cyanidin 3-glucoside (C3g and cyanidin 3-(3ʺ-malonoyl glucoside (C3mg and the following carotenoids: lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, α-carotene, trans-β-carotene, and 9-cis-β-carotene. The cultivar “Magic” showed the greatest accumulation of total and individual anthocyanins, including C3g and C3gm. On the other hand, the highest level of lutein and zeaxanthin was noted in the cultivar “Il Weol”. The cultivar “Anastasia” contained the highest amount of carotenoids such as trans-β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. The highest accumulation of β-cryptoxanthin and α-carotene was noted in the cultivar “Anastasia” and “Il Weol”. Our results suggested that ‘Magic”, “Angel” and “Relance’ had high amounts of anthocyanins and showed a wide range of red and purple colors in their petals, whereas “Il Weol’, “Popcorn Ball’ and “Anastasia” produced higher carotenoid contents and displayed yellow or green petal colors. Interestingly, “Green Pang Pang”, which contained a high level of anthocyanins and a medium level of carotenoids, showed the deep green colored petals. “Kastelli”, had high level of carotenoids as well as a medium level of anthocyanins and showed orange and red colored petals. It was concluded that each pigment is responsible for the petal’s colors and the compositions of the pigments affect their flower colors and that the cultivars could be a good source for pharmaceutical, floriculture, and pigment industries.

  18. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  19. Supercritical CO(2) extraction of carotenoids from pitanga fruits (Eugenia uniflora L.)

    OpenAIRE

    FILHO, Genival L.; ROSSO, VeridianaV. De; M. Angela A. MEIRELES; ROSA, Paulo T. V.; OLIVEIRA, Alessandra L.; MERCADANTE, Adriana Z.; CABRAL,Fernando A.

    2008-01-01

    Supercritical carbon dioxide (SC-CO(2)) extraction was employed to extract carotenoids from the freeze-dried pulp of pitanga fruits (Eugenia uniflora L.), an exotic fruit, rich in carotenoids and still little explored commercially. The SC-CO(2) extraction was carried out at two temperatures, 40 and 60 degrees C, and seven pressures, 100, 150, 200, 250, 300, 350 and 400 bar. The carotenoids were determined by high-performance liquid chromatography connected to photodiode array and mass spectro...

  20. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.).

    Science.gov (United States)

    Gómez-García, María del Rocío; Ochoa-Alejo, Neftalí

    2013-09-16

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  1. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.

    Directory of Open Access Journals (Sweden)

    María del Rocío Gómez-García

    2013-09-01

    Full Text Available Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  2. Raman detection of carotenoid pigments in the human retina

    Science.gov (United States)

    Gellermann, Werner; Ermakov, Igor V.; McClane, Robert W.; Bernstein, Paul S.

    2000-04-01

    We have used resonance Raman scattering as a novel, non- invasive, in-vivo optical technique to measure the concentration of carotenoid pigment in the human retina. Using argon laser excitation we are able to measure two strong carotenoid resonance Raman signals at 1159 and 1525 wave numbers, respectively. The required laser power levels are within the limits given by safety standards for ocular exposure. Of the approximately ten carotenoid pigment found in normal human serum, the species lutein and zeaxanthin are concentrated in high amounts in the cells of the human macula, which is an approximately 5 mm diameter area of the retina in which the visual acuity is highest. These carotenoids give the macula a characteristic yellow coloration, and it is speculated that these molecules function as filter to attenuate photochemical damage and/or image degradation under bright UV/blue light exposures. In addition, they are thought to act as free-radical scavenging antioxidants. Studies have shown that there may be a link between macular degenerative diseases, the leading cause of blindness in the elderly in the US, and the presence or absence of the carotenoids. We describe an instrument capable of measuring the macular carotenoids in human subjects in a non-invasive, rapid and quantitative way.

  3. Analysis on Carotenoids Content and Other Quality Traits of 185 Wheat Varieties

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU; Yuanyuan WU; Wenyin ZHENG; Wenming ZHANG; Wenshang GUO; Danian YAO

    2015-01-01

    In order to provide the reference of improving the nutritional quality traits in carotenoids and screening its resources of wheat varieties, 185 wheat varieties or lines were selected as materials to test the carotenoids content, lipoxygenase activ-ity, whiteness, yel owness and some other quality traits of whole mil in wheat.The results showed that there were highly significant variations in lipoxygenase activity , carotenoids content, whiteness and yel owness among those sample of wheat vari-eties; carotenoids content was significantly and positively correlated with yel owness. Cluster analysis was performed based on carotenoids content clustered al the vari-eties or lines into three major groups. Additional y, carotenoids were discussed in the application of nutritional quality improvement in wheat.

  4. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    Science.gov (United States)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  5. Multiple transformation with the crtYB gene of the limiting enzyme increased carotenoid synthesis and generated novel derivatives in Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Ledetzky, Nadine; Osawa, Ayako; Iki, Kanoko; Pollmann, Hendrik; Gassel, Sören; Breitenbach, Jürgen; Shindo, Kazutoshi; Sandmann, Gerhard

    2014-03-01

    Xanthophyllomces dendrorhous (in asexual state named as Phaffia rhodozyma) is a fungus which produces astaxanthin, a high value carotenoid used in aquafarming. Genetic pathway engineering is one of several steps to increase the astaxanthin yield. The limiting enzyme of the carotenoid pathway is phytoene synthase. Integration plasmids were constructed for transformation with up to three copies of the crtYB gene. Upon stepwise transformation, the copy numbers of crtYB was continuously increased leading to an almost saturated level of phytoene synthase as indicated by total carotenoid content. Several carotenoid intermediates accumulated which were absent in the wild type. Some of them are substrates and intermediates of astaxanthin synthase. They could be further converted into astaxanthin by additional transformation with the astaxanthin synthase gene. However, three intermediates exhibited an unusual optical absorbance spectrum not found before. These novel keto carotenoid were identified by HPLC co-chromatography with reference compounds generated in Escherichia coli and one of them 3-HO-4-keto-7',8'-dihydro-β-carotene additionally by NMR spectroscopy. The others were 4-keto-β-zeacarotene and 4-keto-7',8'-dihydro-β-carotene. A biosynthesis pathway with their origin from neurosporene and the reason for their synthesis especially in our transformants has been discussed.

  6. Resonant Raman detectors for noninvasive assessment of carotenoid antioxidants in human tissue

    Science.gov (United States)

    Gellermann, Werner; Sharifzadeh, Mohsen; Ermakova, Maia R.; Ermakov, Igor V.; Bernstein, P. S.

    2003-07-01

    Carotenoid antioxidants form an important part of the human body's anti-oxidant system and are thought to play an important role in disease prevention. Studies have shown an inverse correlation between high dietary intake of carotenoids and risk of certain cancers, heart disease and degenerative diseases. For example, the carotenoids lutein and zeaxanthin, which are present in high concentrations in the human retina, are thought to prevent age-related macular degeneration, the leading cause of blindness in the elderly in the Western world. We have developed various clinical prototype instruments, based on resonance Raman spectroscopy, that are able to measure carotenoid levels directly in the tissue of interest. At present we use the Raman technology to quantify carotenoid levels in the human retina, in skin, and in the oral cavity. We use resonant excitation of the π-conjugated molecules in the visible wavelength range and detect the molecules' carbon-carbon stretch frequencies. The spectral properties of the various carotenoids can be explored to selectively measure in some cases individual carotenoid species linked ot the prevention of cancer, in human skin. The instrumentation involves home-built, compact, high-throughput Raman systems capable of measuring physiological carotenoid concentrations in human subjects rapidly and quantitatively. The instruments have been demonstrated for field use and screening of tissue carotenoid status in large populations. In Epidemiology, the technology holds promise as a novel, noninvasive and objective biomarker of fruit and vegetable uptake.

  7. Marine Carotenoids: Biological Functions and Commercial Applications

    Directory of Open Access Journals (Sweden)

    José M. Vega

    2011-03-01

    Full Text Available Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon.

  8. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, JTM; Ocelík, Vašek; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  9. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.

    Science.gov (United States)

    Hyun, Tae Kyung; Rim, Yeonggil; Jang, Hui-Jeong; Kim, Cheol Hong; Park, Jongsun; Kumar, Ritesh; Lee, Sunghoon; Kim, Byung Chul; Bhak, Jong; Nguyen-Quoc, Binh; Kim, Seon-Won; Lee, Sang Yeol; Kim, Jae-Yean

    2012-07-01

    The ripe fruit of Momordica cochinchinensis Spreng, known as gac, is featured by very high carotenoid content. Although this plant might be a good resource for carotenoid metabolic engineering, so far, the genes involved in the carotenoid metabolic pathways in gac were unidentified due to lack of genomic information in the public database. In order to expedite the process of gene discovery, we have undertaken Illumina deep sequencing of mRNA prepared from aril of gac fruit. From 51,446,670 high-quality reads, we obtained 81,404 assembled unigenes with average length of 388 base pairs. At the protein level, gac aril transcripts showed about 81.5% similarity with cucumber proteomes. In addition 17,104 unigenes have been assigned to specific metabolic pathways in Kyoto Encyclopedia of Genes and Genomes, and all of known enzymes involved in terpenoid backbones biosynthetic and carotenoid biosynthetic pathways were also identified in our library. To analyze the relationship between putative carotenoid biosynthesis genes and alteration of carotenoid content during fruit ripening, digital gene expression analysis was performed on three different ripening stages of aril. This study has revealed putative phytoene synthase, 15-cis-phytone desaturase, zeta-carotene desaturase, carotenoid isomerase and lycopene epsilon cyclase might be key factors for controlling carotenoid contents during aril ripening. Taken together, this study has also made availability of a large gene database. This unique information for gac gene discovery would be helpful to facilitate functional studies for improving carotenoid quantities.

  10. Validation model for Raman based skin carotenoid detection.

    Science.gov (United States)

    Ermakov, Igor V; Gellermann, Werner

    2010-12-01

    Raman spectroscopy holds promise as a rapid objective non-invasive optical method for the detection of carotenoid compounds in human tissue in vivo. Carotenoids are of interest due to their functions as antioxidants and/or optical absorbers of phototoxic light at deep blue and near UV wavelengths. In the macular region of the human retina, carotenoids may prevent or delay the onset of age-related tissue degeneration. In human skin, they may help prevent premature skin aging, and are possibly involved in the prevention of certain skin cancers. Furthermore, since carotenoids exist in high concentrations in a wide variety of fruits and vegetables, and are routinely taken up by the human body through the diet, skin carotenoid levels may serve as an objective biomarker for fruit and vegetable intake. Before the Raman method can be accepted as a widespread optical alternative for carotenoid measurements, direct validation studies are needed to compare it with the gold standard of high performance liquid chromatography. This is because the tissue Raman response is in general accompanied by a host of other optical processes which have to be taken into account. In skin, the most prominent is strongly diffusive, non-Raman scattering, leading to relatively shallow light penetration of the blue/green excitation light required for resonant Raman detection of carotenoids. Also, sizable light attenuation exists due to the combined absorption from collagen, porphyrin, hemoglobin, and melanin chromophores, and additional fluorescence is generated by collagen and porphyrins. In this study, we investigate for the first time the direct correlation of in vivo skin tissue carotenoid Raman measurements with subsequent chromatography derived carotenoid concentrations. As tissue site we use heel skin, in which the stratum corneum layer thickness exceeds the light penetration depth, which is free of optically confounding chromophores, which can be easily optically accessed for in vivo RRS

  11. Enhancement of carotenoid-to-chlorophyll singlet energy transfer by carotenoid-carotenoid interaction.

    Science.gov (United States)

    Zurdo, J; Fernández-Cabrera, C; Ramírez, J M

    1992-06-01

    The apparent quantum yield of singlet-singlet spirilloxanthin-to-bacteriochlorophyll a energy transfer increases linearly with the residual spirilloxanthin content in Rhodospirillum rubrum membrane vesicles from which this carotenoid has been partially removed. Since it has been previously shown that carotenoid-carotenoid interaction is a linear function of the residual spirilloxanthin level in the major pigment-protein complex of those vesicles (Zurdo, J., R. M. Lozano, C. Fernandez-Cabrera, and J. M. Ramirez. 1991. Biochem. J. 274:881-884), it appears that such degenerate interaction enhances singlet energy transfer. Part of the enhancement may be explained if the energy donor is the spirilloxanthin 1Bu----1Ag (S2----S0) transition, because exciton coupling probably brings its energy closer to that of the Qx (S2----S0) transition of bacteriochlorophyll. In contrast, it seems that the possible stabilization of the spirilloxanthin 2Ag (S1) state would hardly improve energy transfer, because this hidden state probably lies below the S1 bacteriochlorophyll state. In any case, the stabilizing effects of carotenoid-carotenoid interactions seem insufficient to explain the enhancement of energy transfer. Direct or indirect effects of carotenoid dimerization on the three-dimensional structure of the pigment cluster appear to be required to account for such enhancement.

  12. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  13. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-09-01

    Full Text Available Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  14. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Distribution of retinal cone photoreceptor oil droplets, and identification of associated carotenoids in crow (Corvus macrorhynchos).

    Science.gov (United States)

    Rahman, Mohammad Lutfur; Yoshida, Kazuyuki; Maeda, Isamu; Tanaka, Hideuki; Sugita, Shoei

    2010-06-01

    The topography of cone oil droplets and their carotenoids were investigated in the retina of jungle crow (Corvus macrorhynchos). Fresh retina was sampled for the study of retinal cone oil droplets, and extracted retinal carotenoids were saponified using methods adapted from a recent study, then identified with reverse-phase high-performance liquid chromatography (HPLC). To assess the effects of saponification conditions on carotenoid recovery from crow retina, we varied base concentration and total time of saponification across a wide range of conditions, and again used HPLC to compare carotenoid concentrations. Based on colors, at least four types of oil droplets were recognized, i.e., red, orange, green, and translucent, across the retina. With an average of 91,202 /mm(2), density gradually declines in an eccentric manner from optic disc. In retina, the density and size of droplets are inversely related. In the peripheral zone, oil droplets were significantly larger than those of the central area. The proportion of orange oil droplets (33%) was higher in the central area, whereas green was predominant in other areas. Three types of carotenoid (astaxanthin, galloxanthin and lutein), together with one unknown carotenoid, were recovered from the crow retina; astaxanthin was the dominant carotenoid among them. The recovery of carotenoids was affected by saponification conditions. Astaxanthin was well recovered in weak alkali (0.06 M KOH), in contrast, xanthophyllic carotenoids were best recovered in strong alkali (0.6 M KOH) after 12 h of saponification at freeze temperature.

  16. Molecular characterisation and the light-dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Jae Kwang; Kim, Yeon Bok; Lee, Sanghyun; Park, Sang Un

    2013-12-15

    Seven partial-length cDNAs and 1 full-length cDNA that were involved in carotenoid biosynthesis and 2 partial-length cDNAs that encoded carotenoid cleavage dioxygenases were first isolated and characterised in 2 tartary buckwheat cultivars (Fagopyrum tataricum Gaertn.), Hokkai T8 and Hokkai T10. They were constitutively expressed at high levels in the leaves and flowers, where carotenoids are mostly distributed. During the seed development of tartary buckwheat, an inverse correlation between transcription level of carotenoid cleavage dioxygenase and carotenoid content was observed. The light-grown sprouts exhibited higher levels of expression of carotenoid biosynthetic genes in T10 and carotenoid content in both T8 and T10 compared to the dark-grown sprouts. The predominant carotenoids in tartary buckwheat were lutein and β-carotene, and very abundant amounts of these carotenoids were found in light-grown sprouts. This study might broaden our understanding of the molecular mechanisms involved in carotenoid biosynthesis and indicates targets for increasing the production of carotenoids in tartary buckwheat.

  17. Raman spectroscopic analysis of the increase of the carotenoid antioxidant concentration in human skin after a 1-week diet with ecological eggs

    Science.gov (United States)

    Hesterberg, Karoline; Lademann, Jürgen; Patzelt, Alexa; Sterry, Wolfram; Darvin, Maxim E.

    2009-03-01

    Skin aging is mainly caused by the destructive action of free radicals, produced by the UV light of the sun. The human skin has developed a protection system against these highly reactive molecules in the form of the antioxidative potential. Carotenoids are one of the main components of the antioxidants of the human skin. From former studies, it is known that skin aging is reduced in individuals with high levels of carotenoids. Because most of the antioxidants cannot be produced by the human organism, they must be up taken by nutrition. Using noninvasive Raman spectroscopic measurements it is demonstrated that not only fruits and vegetables but also eggs contain high concentrations of antioxidants including carotenoids, which are even doubled in the case of ecological eggs. After a 1-week diet with ecological eggs performed by six volunteers, it is found that the concentration of the carotenoids in the skin of the volunteers increased by approx. 20%. Our study does not intend to recommend exorbitant egg consumption, as eggs also contain harmful cholesterol. But in the case of egg consumption, ecological eggs from hens kept on pasture should be preferred to also receive a benefit for the skin.

  18. Thermal processing differentially affects lycopene and other carotenoids in cis-lycopene containing, tangerine tomatoes.

    Science.gov (United States)

    Cooperstone, Jessica L; Francis, David M; Schwartz, Steven J

    2016-11-01

    Tangerine tomatoes, unlike red tomatoes, accumulate cis-lycopenes instead of the all-trans isomer. cis-Lycopene is the predominating isomeric form of lycopene found in blood and tissues. Our objective was to understand how thermal processing and lipid concentration affect carotenoid isomerisation and degradation in tangerine tomatoes. We conducted duplicated factorial designed experiments producing tangerine tomato juice and sauce, varying both processing time and lipid concentration. Carotenoids were extracted and analysed using high-performance liquid chromatography with photodiode array detection. Phytoene, phytofluene, ζ-carotene, neurosporene, tetra-cis-lycopene, all-trans-lycopene and other-cis-lycopenes were quantified. Tetra-cis-lycopene decreased with increasing heating time and reached 80% of the original level in sauce after processing times of 180min. All-trans-lycopene and other-cis-lycopenes increased with longer processing times. Total carotenoids and total lycopene decreased with increased heating times while phytoene and phytofluene were unchanged. These data suggest limiting thermal processing of tangerine tomato products if delivery of tetra-cis-lycopene is desirable.

  19. Carotenoid Derivates in Achiote (Bixa orellana Seeds: Synthesis and Health Promoting Properties

    Directory of Open Access Journals (Sweden)

    Renata Rivera-Madrid

    2016-09-01

    Full Text Available Bixa orellana (family Bixaceae is a neotropical fast growing perennial tree of great agro-industrial value because its seeds have a high carotenoid content, mainly bixin. It has been used since pre-colonial times as a culinary colorant and spice, and for healing purposes. It is currently used as a natural pigment in the food, in pharmaceutical, and cosmetic industries, and it is commercially known as annatto. Recently, several studies have addressed the biological and medical properties of this natural pigment, both as potential source of new drugs or because its ingestion as a condiment or diet supplement may protect against several diseases. The most documented properties are anti-oxidative; but its anti-cancer, hypoglucemic, antibiotic and anti-inflammatory properties are also being studied. Bixin’s pathway elucidation and its regulation mechanisms are critical to improve the produce of this important carotenoid. Even though the bixin pathway has been established, the regulation of the genes involved in bixin production remains largely unknown. Our laboratory recently published B. orellana’s transcriptome and we have identified most of its MEP (methyl-D-erythritol 4-phosphate and carotenoid pathway genes. Annatto is a potential source of new drugs and can be a valuable nutraceutical supplement. However, its nutritional and healing properties require further study.

  20. Carotenoid Derivates in Achiote (Bixa orellana) Seeds: Synthesis and Health Promoting Properties

    Science.gov (United States)

    Rivera-Madrid, Renata; Aguilar-Espinosa, Margarita; Cárdenas-Conejo, Yair; Garza-Caligaris, Luz E.

    2016-01-01

    Bixa orellana (family Bixaceae) is a neotropical fast growing perennial tree of great agro-industrial value because its seeds have a high carotenoid content, mainly bixin. It has been used since pre-colonial times as a culinary colorant and spice, and for healing purposes. It is currently used as a natural pigment in the food, in pharmaceutical, and cosmetic industries, and it is commercially known as annatto. Recently, several studies have addressed the biological and medical properties of this natural pigment, both as potential source of new drugs or because its ingestion as a condiment or diet supplement may protect against several diseases. The most documented properties are anti-oxidative; but its anti-cancer, hypoglucemic, antibiotic and anti-inflammatory properties are also being studied. Bixin’s pathway elucidation and its regulation mechanisms are critical to improve the produce of this important carotenoid. Even though the bixin pathway has been established, the regulation of the genes involved in bixin production remains largely unknown. Our laboratory recently published B. orellana’s transcriptome and we have identified most of its MEP (methyl-D-erythritol 4-phosphate) and carotenoid pathway genes. Annatto is a potential source of new drugs and can be a valuable nutraceutical supplement. However, its nutritional and healing properties require further study. PMID:27708658

  1. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content.

    Science.gov (United States)

    Matselyukh, B P; Matselyukh, D Ya; Golembiovska, S L; Polishchuk, L V; Lavrinchuk, V Ya

    2013-01-01

    Hyperpigmented mutants of Streptomyces globisporus 1912-Hp7 and Blakeslea trispora 18(+), 184(-) were isolated by action of hydrogen peroxide and nitrosoguanidine, correspondingly, from initial strains S. globisporus 1912-4Lcp and B. trispora 72(-), 198(+). The carotenoids of dry biomass of obtained strains, rubbed thoroughly with glass powder by a pestle in porcelain mortar were extracted by acetone and purified by TLC. Identification of the individual carotenoids was performed by means of HPLC and LC/MS spectrometry. It was shown that strain S. globisporus 1912-4Crt produced beta-carotene/lycopene (6.91/3.24 mg/L), mutants 1912-4Lcp and 1912-7Hp synthesized only lycopene (26.05 and 50.9 mg/L, respectively), and strains B. trispora 18(+) and 184(-)-beta-carotene (6.2% in dry biomass or more 2.5 g/L) without illumination in shake flasks. It is the first example of high constitutive production of the carotenoids by the representative of genus Streptomyces without photoinduction or increased synthesis of sigma factor The improved strains of B. trispora 18(+) and 184(-) can be used for biotechnological production of beta-carotene in industrial conditions.

  2. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  3. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids.

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk; Lee, Pyung Cheon

    2013-06-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8'-carotenal at 3 positions, C-13 C-14, C-15 C-15', and C-13' C-14', revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4'-diaponeurosporene, 4,4'-diaponeurosporen-4'-al, 4,4'-diaponeurosporen-4'-oic acid, 4,4'-diapotorulene, and 4,4'-diapotorulen-4'-al to generate novel cleavage products (apo-14'-diaponeurosporenal, apo-13'-diaponeurosporenal, apo-10'-diaponeurosporenal, apo-14'-diapotorulenal, and apo-10'-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro.

  4. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  5. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Kazutoshi Shindo

    2014-03-01

    Full Text Available Marine bacteria have not been examined as extensively as land bacteria. We screened carotenoids from orange or red pigments-producing marine bacteria belonging to rare or novel species. The new acyclic carotenoids with a C30 aglycone, diapolycopenedioc acid xylosylesters A–C and methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, were isolated from the novel Gram-negative bacterium Rubritalea squalenifaciens, which belongs to phylum Verrucomicrobia, as well as the low-GC Gram-positive bacterium Planococcus maritimus strain iso-3 belonging to the class Bacilli, phylum Firmicutes, respectively. The rare monocyclic C40 carotenoids, (3R-saproxanthin and (3R,2′S-myxol, were isolated from novel species of Gram-negative bacteria belonging to the family Flavobacteriaceae, phylum Bacteroidetes. In this review, we report the structures and antioxidant activities of these carotenoids, and consider relationships between bacterial phyla and carotenoid structures.

  6. Carotenoids located in human lymphocyte subpopulations and Natural Killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Garritsen, H.S.P.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  7. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications

    NARCIS (Netherlands)

    Lamers, P.P.; Janssen, M.G.J.; Vos, de C.H.; Bino, R.J.; Wijffels, R.H.

    2008-01-01

    The unicellular alga Dunaliella salina is the most interesting cell factory for the commercial production of ß-carotene because this species accumulates carotenoids to high concentrations. Nevertheless, little is known about the underlying mechanisms of carotenoid accumulation. Here, we review the

  8. High maltose-producing. cap alpha. -amylase of Penicillium expansum

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E.M.; Kelly, C.T.; Fogarty, W.M.

    1989-05-01

    An ..cap alpha..-amylase capable of producing exceptionally high levels of maltose (74%) from starch has been identified from a strain of Penicillium expansum. The enzyme is produced extracellularly and was purified to homogeneity by starch adsorption and Sephadex gel filtration chromatography. P. expansum ..cap alpha..-amylase has a pH optimum of 4.5 and is stable in the pH range of 3.6-6.0. Other properties include a temperature optimum of 60/sup 0/C, a molecular weight of 69 000 and and isoelectrtic point of 3.9. The most outstanding feature of the P. expansum enzyme is its ability to yield 14% more maltose and 17.1% less maltotriose than a currently used commercial enzyme. This may be partly explained by the greater affinity of this new enzyme for maltotriose (K/sub m/=0.76 mM) relative to the commercial enzyme, Fungamyl (K/sub m/=2.9 mM). The enzyme reported here is unique among fungal ..cap alpha..-amylases in being able to produce such high levels of maltose and its physicochemical properties suggest that it has potential for commercial development.

  9. Carotenoid composition of hydroponic leafy vegetables.

    Science.gov (United States)

    Kimura, Mieko; Rodriguez-Amaya, Delia B

    2003-04-23

    Because hydroponic production of vegetables is becoming more common, the carotenoid composition of hydroponic leafy vegetables commercialized in Campinas, Brazil, was determined. All samples were collected and analyzed in winter. Lactucaxanthin was quantified for the first time and was found to have concentrations similar to that of neoxanthin in the four types of lettuce analyzed. Lutein predominated in cress, chicory, and roquette (75.4 +/- 10.2, 57.0 +/- 10.3, and 52.2 +/- 12.6 microg/g, respectively). In the lactucaxanthin-containing lettuces, beta-carotene and lutein were the principal carotenoids (ranging from 9.9 +/- 1.5 to 24.6 +/- 3.1 microg/g and from 10.2 +/- 1.0 to 22.9 +/- 2.6 microg/g, respectively). Comparison of hydroponic and field-produced curly lettuce, taken from neighboring farms, showed that the hydroponic lettuce had significantly lower lutein, beta-carotene, violaxanthin, and neoxanthin contents than the conventionally produced lettuce. Because the hydroponic farm had a polyethylene covering, less exposure to sunlight and lower temperatures may have decreased carotenogenesis.

  10. Very high coercivity magnetic stripes produced by particle rotation

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, R.B.

    1992-12-01

    This paper describes a current research program at Sandia National Laboratories whereby magnetic stripes are produced through the use of a new particle rotation technology. This new process allows the stripes to be produced in bulk and then held in a latent state so that they may be encoded at a later date. Since particle rotation is less dependent on the type of magnetic particle used, very high coercivity particles could provide a way to increase both magnetic tamper-resistance and accidental erasure protection. This research was initially funded by the Department of Energy, Office of Safeguard and Security as a portion of their Science and Technology Base Development, Advanced Security Concepts program. Current program funding is being provided by Sandia National Laboratories as part of their Laboratory Directed Research and Development program.

  11. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato.

    Science.gov (United States)

    Koul, Archana; Yogindran, Sneha; Sharma, Deepak; Kaul, Sanjana; Rajam, Manchikatla Venkat; Dhar, Manoj K

    2016-11-01

    Carotenoid biosynthetic pathway is one of the highly significant and very well elucidated secondary metabolic pathways in plants. microRNAs are the potential regulators, widely known for playing a pivotal role in the regulation of various biological as well as metabolic processes. miRNAs may assist in the metabolic engineering of the secondary metabolites for the production of elite genotypes with increased biomass and content of various metabolites. miRNA mediated regulation of carotenoid biosynthetic genes has not been elucidated so far. To illustrate the potential regulatory role of miRNAs in carotenoid biosynthesis, transcript profiling of the known miRNAs and their possible target carotenoid genes was undertaken at eight different developmental stages of tomato, using stem-loop PCR approach combined with quantitative RT-PCR. The inter-relationship amongst carotenoid content, biosynthetic genes and miRNAs was studied in depth. Comparative expression profiles of miRNA and target genes showed variable expression in different tissues studied. The expression level of miRNAs and their target carotenoid genes displayed similar pattern in the vegetative tissues as compared to the reproductive ones, viz. fruit (different stages), indicating the possibility of regulation of carotenoid biosynthesis at various stages of fruit development. This was later confirmed by the HPLC analysis of the carotenoids. The present study has further enhanced the understanding of regulation of carotenoid biosynthetic pathway in plants. The identified miRNAs can be employed to manipulate the biosynthesis of different carotenoids, through metabolic engineering for the production of lycopene rich tomatoes.

  12. Carotenoid-dependent signals and the evolution of plasma carotenoid levels in birds.

    Science.gov (United States)

    Simons, Mirre J P; Maia, Rafael; Leenknegt, Bas; Verhulst, Simon

    2014-12-01

    Sexual selection has resulted in a wide array of ornaments used in mate choice, and such indicator traits signal quality honestly when they bear costs, precluding cheating. Carotenoid-dependent coloration has attracted considerable attention in this context, because investing carotenoids in coloration has to be traded off against its physiological functions; carotenoids are antioxidants and increase immunocompetence. This trade-off is hypothesized to underlie the honesty of carotenoid-dependent coloration, signaling the "handicap" of allocating carotenoids away from somatic maintenance toward sexual display. Utilizing recent advances in modeling adaptive evolution, we used a comparative approach to investigate the evolution of plasma carotenoid levels using a species-level phylogeny of 178 bird species. We find that the evolutionary optimum for carotenoid levels is higher in lineages that evolved carotenoid-dependent coloration, with strong attraction toward this optimum. Hence, carotenoids do not appear to be limiting, given that higher carotenoid levels readily evolve in response to the evolution of carotenoid-dependent coloration. These findings challenge the assumption that carotenoids are a scarce resource and thus also challenge the hypothesis that physiological resource value of carotenoids underlies honesty of carotenoid-dependent traits. Therefore, the comparative evidence suggests that other factors, such as the acquisition and incorporation of carotenoids, are involved in maintaining signal honesty.

  13. Fruit over sunbed: carotenoid skin colouration is found more attractive than melanin colouration.

    Science.gov (United States)

    Lefevre, Carmen E; Perrett, David I

    2015-01-01

    Skin colouration appears to play a pivotal part in facial attractiveness. Skin yellowness contributes to an attractive appearance and is influenced both by dietary carotenoids and by melanin. While both increased carotenoid colouration and increased melanin colouration enhance apparent health in Caucasian faces by increasing skin yellowness, it remains unclear, firstly, whether both pigments contribute to attractiveness judgements, secondly, whether one pigment is clearly preferred over the other, and thirdly, whether these effects depend on the sex of the face. Here, in three studies, we examine these questions using controlled facial stimuli transformed to be either high or low in (a) carotenoid colouration, or (b) melanin colouration. We show, firstly, that both increased carotenoid colouration and increased melanin colouration are found attractive compared to lower levels of these pigments. Secondly, we show that carotenoid colouration is consistently preferred over melanin colouration when levels of colouration are matched. In addition, we find an effect of the sex of stimuli with stronger preferences for carotenoids over melanin in female compared to male faces, irrespective of the sex of the observer. These results are interpreted as reflecting preferences for sex-typical skin colouration: men have darker skin than women and high melanization in male faces may further enhance this masculine trait, thus carotenoid colouration is not less desirable, but melanin colouration is relatively more desirable in males compared to females. Taken together, our findings provide further support for a carotenoid-linked health-signalling system that is highly important in mate choice.

  14. Expression of the carotenoid biosynthesis genes in Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Lodato, P; Alcaíno, J; Barahona, S; Niklitschek, M; Carmona, M; Wozniak, A; Baeza, M; Jiménez, A; Cifuentes, V

    2007-01-01

    In the yeast Xanthophyllomyces dendrorhous the genes idi, crtE, crtYB, crtl and ast are involved in the biosynthesis of astaxanthin from isopentenyl pyrophosphate. The carotenoid production and the kinetics of mRNA expression of structural genes controlling the carotenogenesis in a wild-type ATCC 24230 and in carotenoid overproducer deregulated atxS2 strains were studied. The biosynthesis of carotenoid was induced at the late exponential growth phase in both strains. However, the cellular carotenoid concentration was four times higher in atxS2 than in the wild-type strain in the exponential growth phase, suggesting that carotenogenesis was deregulated in atxS2 at the beginning of growth. In addition, the maximum expression of the carotenogenesis genes at the mRNA level was observed during the induction period of carotenoid biosynthesis in the wild-type strain. The mRNA level of the crtYB, crtl, ast genes and to a lesser extent the idi gene, decayed at the end of the exponential growth phase. The mRNA levels of the crtE gene remained high along the whole growth curve of the yeast. In the atxS2 strain the mRNA levels of crtE gene were about two times higher than the wild-type strain in the early phase of the growth cycle.

  15. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    Science.gov (United States)

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  16. Development of High Cordycepin-Producing Cordyceps militaris Strains.

    Science.gov (United States)

    Kang, Naru; Lee, Hyun-Hee; Park, Inmyoung; Seo, Young-Su

    2017-03-01

    Cordyceps militaris, known as Dong-Chong-Xia-Cao, produces the most cordycepin among Cordyceps species and can be cultured artificially. For these reasons, C. militaris is widely used as herb or functional food in the East Asia. In this study, we developed a new strain of C. militaris that produces higher cordycepin content than parent strains through mating-based sexual reproduction. Twenty parent strains were collected and identified as C. militaris based on internal trasncrived spacer and rDNA sequences. Seven single spores of MAT 1-1 idiomorph and five single spores of MAT 1-2 idiomorph were isolated from 12 parent strains. When 35 combinations were mated on the brown rice medium with the isolated single spores, eight combinations formed a stroma with a normal perithecia and confirmed mated strains. High pressure liquid chromatography analysis showed that mated strain KSP8 produced the most cordycepin in all the media among all the tested strains. This result showed due to genetic recombination occurring during the sexual reproduction of C. militaris. The development of C. militaris strain with increased cordycepin content by this approach can help not only to generate new C. militaris strains, but also to contribute to the health food or medicine industry.

  17. Free Radical Exposure Creates Paler Carotenoid-Based Ornaments: A Possible Interaction in the Expression of Black and Red Traits

    Science.gov (United States)

    Alonso-Alvarez, Carlos; Galván, Ismael

    2011-01-01

    Oxidative stress could be a key selective force shaping the expression of colored traits produced by the primary animal pigments in integuments: carotenoids and melanins. However, the impact of oxidative stress on melanic ornaments has only recently been explored, whereas its role in the expression of carotenoid-based traits is not fully understood. An interesting study case is that of those animal species simultaneously expressing both kinds of ornaments, such as the red-legged partridge (Alectoris rufa). In this bird, individuals exposed to an exogenous source of free radicals (diquat) during their development produced larger eumelanin-based (black) plumage traits than controls. Here, we show that the same red-legged partridges exposed to diquat simultaneously developed paler carotenoid-based ornaments (red beak and eye rings), and carried lower circulating carotenoid levels as well as lower levels of some lipids involved in carotenoid transport in the bloodstream (i.e., cholesterol). Moreover, partridges treated with a hormone that stimulates eumelanin production (i.e., alpha-melanocyte-stimulating hormone) also increased blood carotenoid levels, but this effect was not mirrored in the expression of carotenoid-based traits. The redness of carotenoid-based ornaments and the size of a conspicuous eumelanic trait (the black bib) were negatively correlated in control birds, suggesting a physiological trade-off during development. These findings contradict recent studies questioning the sensitivity of carotenoids to oxidative stress. Nonetheless, the impact of free radicals on plasma carotenoids seems to be partially mediated by changes in cholesterol metabolism, and not by direct carotenoid destruction/consumption. The results highlight the capacity of oxidative stress to create multiple phenotypes during development through differential effects on carotenoids and melanins, raising questions about evolutionary constraints involved in the production of multiple

  18. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Science.gov (United States)

    Jeon, Sookyoung; Neuringer, Martha; Johnson, Emily E.; Kuchan, Matthew J.; Pereira, Suzette L.; Johnson, Elizabeth J.; Erdman, John W.

    2017-01-01

    Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group). All samples were analyzed by high pressure liquid chromatography (HPLC). Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions. PMID:28075370

  19. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  20. Rewiring carotenoid biosynthesis in plants using a viral vector

    Science.gov (United States)

    Majer, Eszter; Llorente, Briardo; Rodríguez-Concepción, Manuel; Daròs, José-Antonio

    2017-01-01

    Plants can be engineered to sustainably produce compounds of nutritional, industrial or pharmaceutical relevance. This is, however, a challenging task as extensive regulation of biosynthetic pathways often hampers major metabolic changes. Here we describe the use of a viral vector derived from Tobacco etch virus to express a whole heterologous metabolic pathway that produces the health-promoting carotenoid lycopene in tobacco tissues. The pathway consisted in three enzymes from the soil bacteria Pantoea ananatis. Lycopene is present at undetectable levels in chloroplasts of non-infected leaves. In tissues infected with the viral vector, however, lycopene comprised approximately 10% of the total carotenoid content. Our research further showed that plant viruses that express P. ananatis phytoene synthase (crtB), one of the three enzymes of the heterologous pathway, trigger an accumulation of endogenous carotenoids, which together with a reduction in chlorophylls eventually result in a bright yellow pigmentation of infected tissues in various host-virus combinations. So, besides illustrating the potential of viral vectors for engineering complex metabolic pathways, we also show a yellow carotenoid-based reporter that can be used to visually track infection dynamics of plant viruses either alone or in combination with other visual markers. PMID:28139696

  1. Carotenoids play a positive role in the degradation of heterocycles by Sphingobium yanoikuyae.

    Directory of Open Access Journals (Sweden)

    Xiaorui Liu

    Full Text Available BACKGROUND: Microbial oxidative degradation is a potential way of removing pollutants such as heterocycles from the environment. During this process, reactive oxygen species or other oxidants are inevitably produced, and may cause damage to DNA, proteins, and membranes, thereby decreasing the degradation rate. Carotenoids can serve as membrane-integrated antioxidants, protecting cells from oxidative stress. FINDINGS: Several genes involved in the carotenoid biosynthetic pathway were cloned and characterized from a carbazole-degrading bacterium Sphingobium yanoikuyae XLDN2-5. In addition, a yellow-pigmented carotenoid synthesized by strain XLDN2-5 was identified as zeaxanthin that was synthesized from β-carotene through β-cryptoxanthin. The amounts of zeaxanthin and hydrogen peroxide produced were significantly and simultaneously enhanced during the biodegradation of heterocycles (carbazole < carbazole + benzothiophene < carbazole + dibenzothiophene. These higher production levels were consistent with the transcriptional increase of the gene encoding phytoene desaturase, one of the key enzymes for carotenoid biosynthesis. CONCLUSIONS/SIGNIFICANCE: Sphingobium yanoikuyae XLDN2-5 can enhance the synthesis of zeaxanthin, one of the carotenoids, which may modulate membrane fluidity and defense against intracellular oxidative stress. To our knowledge, this is the first report on the positive role of carotenoids in the biodegradation of heterocycles, while elucidating the carotenoid biosynthetic pathway in the Sphingobium genus.

  2. Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source.

    Science.gov (United States)

    Wozniak, Aniela; Lozano, Carla; Barahona, Salvador; Niklitschek, Mauricio; Marcoleta, Andrés; Alcaíno, Jennifer; Sepulveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor

    2011-05-01

    Xanthophyllomyces dendrorhous is a basidiomycetous yeast of considerable biotechnological interest because it synthesizes astaxanthin as its main carotenoid. The carotenoid production increases when it is grown using nonfermentable compounds as the sole carbon source. This work analyzes the expression of the carotenogenic genes and their relationship with the amount and types of carotenoids produced when X. dendrorhous is grown using a nonfermentable (succinate) or a fermentable carbon source (glucose). When X. dendrorhous is grown in succinate, carotenoid production is approximately three times higher than when it is grown in glucose. Moreover, carotenoid biosynthesis occurs at the start of the growth cycle when X. dendrorhous is grown in succinate, whereas when it is grown in glucose, carotenoids are produced at the end of the exponential phase. Additionally, we observed that some carotenogenic genes, such as alternative transcripts of crtYB and crtI, are differentially expressed when the yeast is grown in these carbon sources; other genes, such as crtS, exhibit a similar pattern of expression. Our data indicate that transcriptional regulation is not sufficient to explain the differences in carotenoid production between the two culture conditions, indicating that additional regulatory mechanisms may be operating in the carotenogenic pathway of X. dendrorhous.

  3. Teores de carotenóides em mamão e pêssego determinados por cromatografia líquida de alta eficiência Carotenoid levels in papaya and peach determined by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Michelle Andriati Sentanin

    2007-03-01

    high performance liquid chromatography, the principal carotenoids of three cultivars of papaya (Formosa, Golden and Sunrise and three cultivars of peach (Xiripá, Coral and Diamante. For each cultivar, five sample lots were analyzed, collected during the year for papaya and during the season for peach. The three papaya cultivars had a similar composition, the mean total contents of lycopene, beta-cryptoxanthin and beta-carotene varied from 18.5 to 23.9, 8.2 to 11.7 and 0.5 to 1.2 µg.g -1, respectively. In relation to peach, the cultivars Coral and Xiripá had very low levels of carotenoids. The cultivar Diamante had a mean total content of 6.4 µg.g -1 of beta-cryptoxanthin, the major carotenoid.

  4. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism.

    Science.gov (United States)

    Llorente, Briardo; D'Andrea, Lucio; Ruiz-Sola, M Aguila; Botterweg, Esther; Pulido, Pablo; Andilla, Jordi; Loza-Alvarez, Pablo; Rodriguez-Concepcion, Manuel

    2016-01-01

    Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health-promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome-interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF-mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self-shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co-opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid-enriched fruits.

  5. Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation.

    Science.gov (United States)

    Xia, Shuqin; Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Qin, Fang

    2015-04-01

    Liposomes have become an attractive alternative to encapsulate carotenoids to improve their solubility, stability and bioavailability. The interaction mechanism of carotenoid with lipid bilayer is one of the major concerns in improving the delivery efficiency of liposomes. In this study, the microstructure and carotenoid encapsulation efficiency of liposomes composed of native phospholipid (egg yolk phosphatidylcholine, EYPC) and nonionic surfactant Tween 80 were investigated by atomic force microscopy, dynamic light scattering, and Raman spectroscopy, respectively. Subsequently, the effects of carotenoid incorporation on the physical properties of liposomal membrane were performed by Raman spectroscopy, fluorescence polarization, and electron paramagnetic resonance. Results showed that the incorporation of carotenoids affected the liposomes morphology, size and size distribution to various extents. Analysis on the Raman characteristic peaks of carotenoids revealed that lutein exhibited the strongest incorporating ability into liposomes, followed by β-carotene, lycopene, and canthaxanthin. Furthermore, it was demonstrated that carotenoids modulated the dynamics, structure and hydrophobicity of liposomal membrane, highly depending on their molecular structures and incorporated concentration. These modulations were closely correlated with the stabilization of liposomes, including mediating particle aggregation and fusion. These findings should guide the rationale designing for liposomal encapsulation technology to efficiently deliver carotenoids in pharmaceutics, nutraceuticals and functional foods.

  6. Optical detection of carotenoid antioxidants in human bone and surrounding tissue.

    Science.gov (United States)

    Ermakov, Igor V; Ermakova, Maia R; Rosenberg, Thomas D; Gellermann, Werner

    2013-11-01

    Carotenoids are known to play an important role in health and disease state of living human tissue based on their antioxidant and optical filtering functions. In this study, we show that carotenoids exist in human bone and surrounding fatty tissue both in significant and individually variable concentrations. Measurements of biopsied tissue samples with molecule-specific Raman spectroscopy and high-performance liquid chromatography reveal that all carotenoids that are known to exist in human skin are also present in human bone. This includes all carotenes, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. We propose quantitative reflection imaging as a noncontact optical method suitable for the measurement of composite carotenoid levels in bone and surrounding tissue exposed during open surgeries such as total knee arthroplasty, and as a proof of concept, demonstrate carotenoid measurements in biopsied bone samples. This will allow one to establish potential correlations between internal tissue carotenoid levels and levels in skin and to potentially use already existing optical skin carotenoid tests as surrogate marker for bone carotenoid status.

  7. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS.

    Science.gov (United States)

    de Faria, A F; de Rosso, V V; Mercadante, A Z

    2009-06-01

    Carotenoids are pigments responsible for the yellow-reddish color of many foods and are related to important functions and physiological actions, preventing several chronic-degenerative diseases. The objective of this study was to confirm the carotenoid composition of jackfruit by high-performance liquid chromatography connected to photodiode array and mass spectrometry detectors (HPLC-PDA-MS/MS). The main carotenoids were all-trans-lutein (24-44%), all-trans-beta-carotene (24-30%), all-trans-neoxanthin (4-19%), 9-cis-neoxanthin (4-9%) and 9-cis-violaxanthin (4-10%). Either qualitative or quantitative differences, mainly related to the lutein proportion, were found among three batches of jackfruit. Since the fruits from batch A showed significantly lower contents for almost all carotenoids, it also had the lowest total carotenoid content (34.1 microg/100 g) and provitamin A value, whereas the total carotenoid ranged from 129.0 to 150.3 microg/100 g in the other batches. The provitamin A values from batches B and C were 3.3 and 4.3 microg RAE/100 g, respectively. The carotenoid composition of jackfruit was successfully determined, where 14 of the 18 identified carotenoids were reported for first time. Differences among batches may be due to genetic and/or agricultural factors.

  8. Carotenoid-rich bananas: a potential food source for alleviating vitamin A deficiency.

    Science.gov (United States)

    Englberger, Lois; Darnton-Hill, Ian; Coyne, Terry; Fitzgerald, Maureen H; Marks, Geoffrey C

    2003-12-01

    This review article points out that bananas are an important food for many people in the world. Thus, banana cultivars rich in provitamin A carotenoids may offer a potential food source for alleviating vitamin A deficiency, particularly in developing countries. Many factors are associated with the presently known food sources of vitamin A that limit their effectiveness in improving vitamin A status. Acceptable carotenoid-rich banana cultivars have been identified in Micronesia, and some carotenoid-rich bananas have been identified elsewhere. Bananas are an ideal food for young children and families for many regions of the world, because of their sweetness, texture, portion size, familiarity, availability, convenience, versatility, and cost. Foods containing high levels of carotenoids have been shown to protect against chronic disease, including certain cancers, cardiovascular disease, and diabetes. Because the coloration of the edible flesh of the banana appears to be a good indicator of likely carotenoid content, it may be possible to develop a simple method for selecting carotenoid-rich banana cultivars in the community. Research is needed on the identification of carotenoid-rich cultivars, targeting those areas of the world where bananas are a major staple food; investigating factors affecting production, consumption, and acceptability; and determining the impact that carotenoid-rich bananas may have on improving vitamin A status. Based on these results, interventions should be undertaken for initiating or increasing homestead and commercial production.

  9. Detection of carotenoids in psychrotrophic bacteria by spectroscopic approach

    Directory of Open Access Journals (Sweden)

    Kirti Kushwaha

    2014-12-01

    Full Text Available The combination of Raman and Infrared spectroscopic signatures were used to find the different vibrational modes of individual carotenoid as their spectral fingerprint. Both have been previously demonstrated to be highly useful methodology for the identification and/or typing of microorganisms. In this study, we set out to evaluate whether these technologies could be applied to detect the presence of carotenoids in psychrotrophic bacterial isolates. FTIR and Raman spectra of four psychrotrophic bacteria viz. Kocuria rosea, K. turfanensis, Sanguibacter suarezii and Planococcus maritimus were examined during the investigation. FTIR spectra bands at 1653-1661cm-1 in different samples were assigned as part of chlorophyll, 1424-1426 cm-1 as -C-H- (CH2 bending vibration from methylene of carotenoids or lycopene, 1366-1367 cm-1 band as the -ionone ring of β-carotene due to the C-H, (–CH3 symmetrical bending. Interestingly, Raman spectra revealed intense Raman bands in the range of 1511-1530, 1153-1159 and 1003-1010 cm-1 representing bacterial carotenoids. We hypothesize the biosynthesis of carotenoid as adaptive strategy to cope up inhospitable cold environments of Leh and Ladakh. The strong, scattering bands by different isolates attributable to ν(C=C phase stretching, ν(C-C and δ(C-CH3 methyl components systems, which could be probably membrane-associated C50 carotenoids. Their high intensities are due to resonance enhancement. It can be concluded that Raman spectroscopy is a sensitive and convenient detection tool for typing of the bacterial biomarkers with less time consumption.

  10. Metabolic Regulation of Carotenoid-Enriched Golden Rice Line.

    Science.gov (United States)

    Gayen, Dipak; Ghosh, Subhrajyoti; Paul, Soumitra; Sarkar, Sailendra N; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Vitamin A deficiency (VAD) is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy) and phytoene desaturase (crtI). In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase, and glucose-1-phosphate adenylyltransferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 μg/g) was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244) after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  11. Metabolic regulation of carotenoid-enriched Golden rice line

    Directory of Open Access Journals (Sweden)

    Dipak Gayen

    2016-10-01

    Full Text Available Vitamin A deficiency (VAD is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy and phytoene desaturase (crtI. In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase and glucose-1-phosphate adenylyl transferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 µg/g was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244 after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  12. The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe'i Group Musa Cultivar.

    Science.gov (United States)

    Buah, Stephen; Mlalazi, Bulukani; Khanna, Harjeet; Dale, James L; Mortimer, Cara L

    2016-04-27

    The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.

  13. Cloning and Characterization of a Lycium chinense Carotenoid Isomerase Gene Enhancing Carotenoid Accumulation in Transgenic Tobacco

    Institute of Scientific and Technical Information of China (English)

    李招娣; 季静; 王罡

    2015-01-01

    Carotenoid isomerase(CRTISO)is a key enzyme that catalyzes the conversion of cis-lycopene to all-trans lycopene. In this study, we isolated and characterized the CRTISO gene from Lycium chinense (LcCRTISO) for the first time. The open reading frame of LcCRTISO was 1 815 bp encoding a protein of 604 amino acids with a molecular mass of 66.24 kDa. Amino acid sequence analysis revealed that the LcCRTISO had a high level of simi-larity to other CRTISO. Phylogenetic analysis displayed that LcCRTISO kept a closer relationship with the CRTISO of plants than with those of other species. Semi-quantitative PCR analysis indicated that LcCRTISO gene was expressed in all tissues tested with the highest expression in maturing fruits. The overexpression of LcCRTISO gene in transgenic tobacco resulted in an increase of total carotenoids in the leaves withβ-carotene and lutein being the predominants. The results obtained here clearly suggested that the LcCRTISO gene was a promising candidate for carotenoid production.

  14. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems.

    Science.gov (United States)

    Cuaresma, María; Casal, Carlos; Forján, Eduardo; Vílchez, Carlos

    2011-01-01

    Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate high-value compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This microalga accumulates high concentrations of lutein, a very well-known natural antioxidant. The aim of this study is to assess use of different carbon sources (CO(2), glucose, glycerol, starch, urea, and glycine) for efficient growth of and carotenoid production by C. acidophila. Our results reveal that growth of the microalga on different carbon sources resulted in different algal biomass productivities, urea being as efficient as CO(2) when used as sole carbon source (~20 g dry biomass m(-2) day(-1)). Mixotrophic growth on glucose was also efficient in terms of biomass production (~14 g dry biomass m(-2) day(-1)). In terms of carotenoid accumulation, mixotrophic growth on urea resulted in even higher productivity of carotenoids (mainly lutein, probably via α-carotene) than obtained with photoautotrophic cultures (70% versus 65% relative abundance of lutein, respectively). The accumulated lutein concentrations of C. acidophila reported in this work (about 10 g/kg dry weight, produced in batch systems) are among the highest reported for a microalga. Glycerol and glycine seem to enhance β-carotene biosynthesis, and when glycine is used as carbon source, zeaxanthin becomes the most accumulated carotenoid in the microalga. Strategies for production of lutein and zeaxanthin are suggested based on the obtained results.

  15. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  16. Animal models in carotenoids research and lung cancer prevention.

    Science.gov (United States)

    Kim, Jina; Kim, Yuri

    2011-10-01

    Numerous epidemiological studies have consistently demonstrated that individuals who eat more fruits and vegetables (which are rich in carotenoids) and who have higher serum β-carotene levels have a lower risk of cancer, especially lung cancer. However, two human intervention trials conducted in Finland and in the United States have reported contrasting results with high doses of β-carotene supplementation increasing the risk of lung cancer among smokers. The failure of these trials to demonstrate actual efficacy has resulted in the initiation of animal studies to reproduce the findings of these two studies and to elucidate the mechanisms responsible for the harmful or protective effects of carotenoids in lung carcinogenesis. Although these studies have been limited by a lack of animal models that appropriately represent human lung cancer induced by cigarette smoke, ferrets and A/J mice are currently the most widely used models for these types of studies. There are several proposed mechanisms for the protective effects of carotenoids on cigarette smoke-induced lung carcinogenesis, and these include antioxidant/prooxidant effects, modulation of retinoic acid signaling pathway and metabolism, induction of cytochrome P450, and molecular signaling involved in cell proliferation and/or apoptosis. The technical challenges associated with animal models include strain-specific and diet-specific effects, differences in the absorption and distribution of carotenoids, and differences in the interactions of carotenoids with other antioxidants. Despite the problems associated with extrapolating from animal models to humans, the understanding and development of various animal models may provide useful information regarding the protective effects of carotenoids against lung carcinogenesis.

  17. Carotenoids in the sea urchin Paracentrotus lividus: occurrence of 9'-cis-echinenone as the dominant carotenoid in gonad colour determination.

    Science.gov (United States)

    Symonds, Rachael C; Kelly, Maeve S; Caris-Veyrat, Catherine; Young, Andrew J

    2007-12-01

    Regular sampling of wild Paracentrotus lividus was carried out over a 12-month period to examine seasonal effects on the pigment profile and content of the gonads, especially in comparison to gonad colour. The major pigments detected in the gut wall were breakdown products of fucoxanthin, namely fucoxanthinol and amarouciaxanthin A. Lower levels of other dietary carotenoids (lutein and beta-carotene) together with some carotenoids not found in the diet, namely isozeaxanthin and echinenone ( approximately 20% total carotenoid) were also detected in the gut wall. The presence of echinenone in the gut wall demonstrates that this organ acts as a major site of carotenoid metabolism. Echinenone is the dominant carotenoid in the gonads, accounting for approx. 50-60% of the total pigment. Both all-trans and 9'-cis forms of echinenone were detected in both the gut wall and in the gonad, with levels of the 9'-cis form typically 10-fold greater than the all-trans form in the gonad. The detection of large levels of 9'-cis-echinenone in wild sea urchins is unexpected due to the absence of 9- or 9'-cis forms of carotenoids in the natural, algal, diet. Whilst echinenone clearly contributes towards gonad pigmentation, levels of this carotenoid, cannot be directly linked to a qualitative assessment of gonad colour in terms of market acceptability. Indeed, unacceptable gonad colouration can be seen with both very low and high levels of echinenone and total carotenoid. The presence of 9'-cis-echinenone as the major carotenoid contributing to the pigmentation/colour of the gonad is an important observation in terms of developing artificial diets for urchin cultivation.

  18. Determination of free and esterified carotenoid composition in rose hip fruit by HPLC-DAD-APCI(+)-MS.

    Science.gov (United States)

    Zhong, Lijie; Gustavsson, Karl-Erik; Oredsson, Stina; Głąb, Bartosz; Yilmaz, Jenny Lindberg; Olsson, Marie E

    2016-11-01

    Rose hip fruit, which contains high concentration of carotenoids is commonly used for different food products in Europe and it is considered to have medical properties. In this study, a simple, rapid and efficient HPLC-DAD-APCI(+)-MS method was developed and applied to identify and quantify the carotenoids in rose hip fruit of four rose species, including both unsaponified and saponified extract. In the unsaponified extract 23 carotenoid esters were detected, in which either rubixanthin ester or violaxanthin ester was the dominant component of the ester composition. In the saponified extract 21 carotenoids, including 11 xanthophylls and 10 carotenes were detected. This is the first time the total carotenoid composition, including the carotenoid esters in rose hip fruit were identified and quantified. This work reveals the potential of rose hip fruit to be utilized as a healthy dietary material and give chemical information for the possible future development in the pharmacology field.

  19. Effect of alcoholic fermentation on the carotenoid composition and provitamin A content of orange juice.

    Science.gov (United States)

    Cerrillo, Isabel; Escudero-López, Blanca; Hornero-Méndez, Dámaso; Martín, Francisco; Fernández-Pachón, María-Soledad

    2014-01-29

    Orange juice is considered a rich source of carotenoids, which are thought to have diverse biological functions. In recent years, a fermentation process has been carried out in fruits resulting in products that provide higher concentrations of bioactive compounds than their original substrates. The aim of this study was to evaluate the effect of a controlled alcoholic fermentation process (15 days) on the carotenoid composition of orange juice. Twenty-two carotenoids were identified in samples. The carotenoid profile was not modified as result of the fermentation. Total carotenoid content and provitamin A value significantly increased from day 0 (5.37 mg/L and 75.32 RAEs/L, respectively) until day 15 (6.65 mg/L and 90.57 RAEs/L, respectively), probably due to a better extractability of the carotenoids from the food matrix as a result of processing. Therefore, the novel beverage produced could provide a rich source of carotenoids and exert healthy effects similar to those of orange juice.

  20. Pink shrimp (P. brasiliensis and P. paulensis) residue: influence of extraction method on carotenoid concentration.

    Science.gov (United States)

    Mezzomo, Natália; Maestri, Bianca; dos Santos, Renata Lazzaris; Maraschin, Marcelo; Ferreira, Sandra R S

    2011-09-15

    The main residue from the shrimp processing is formed by head and carapace and represents from 40 to 50% (w/w) of the integral shrimp. The recovery of the carotenoid fraction from this residue stands for an alternative to increase its aggregated value. Therefore, the objective of this study was to use the pink shrimp waste as raw material to obtain carotenoid enriched extracts, evaluating different pre-treatments and extraction methods. The shrimp waste was supplied by a local public market (Florianópolis, SC, Brazil). The investigation of the different pre-treatments applied to the raw material shows that cooking associated with milling and drying produced the extract richest in carotenoid fraction. The extraction methods considered in this work were Soxhlet, maceration and ultrasound by means of different organic solvents and also a vegetable oil as solvent. The extracts were evaluated in terms of yield, carotenoid profile, total carotenoid content (TCC), UV-Visible scanning spectrophotometry and mid-Fourier transform infrared spectroscopy (FTIR). The results indicate that shrimp waste can provide carotenoid enriched extracts, particularly astaxanthin, in concentrations up to 252 μg(astaxanthin)g(extract)(-1). The most adequate solvents were acetone and hexane: isopropanol (50:50, v/v) used in the maceration procedure. The UV-Vis results revealed the presence of carotenoids and flavonoids in the extracts while the FTIR spectroscopy indicated the existence of fatty acids, proteins, and phenolics.

  1. EFFECT OF NITROGEN NUTRITION SOURCES ON CAROTENOIDS SYNTHESIS FOR SOME BASIDIOMYCETES STRAINS

    Directory of Open Access Journals (Sweden)

    A. K. Veligodska

    2014-03-01

    Full Text Available The influence of certain nitrogen compounds - components of glucose-peptone medium (GPM on the accumulation of carotenoids by some strains was investigated by surface cultivating basidiomycetes. The total carotenoid content was set in acetone extracts of mycological material spectrophotometrically and calculated using the Vetshteyn formula. As the nitrogen-containing components used GPM with 9 compounds, such as peptone, DL-valine, L-asparagine, DL-serine, DL-tyrosine, L-proline, L-alanine, urea, NaNO3. The effect on the accumulation of specific compounds both in the mycelium and in the culture fluid of carotenoids by culturing certain strains of Basidiomycetes was identified. Adding to standard glucose-peptone medium peptone at 5 g/l causes an increase of carotenoid accumulation by strain L. sulphureus Ls-08, and in a concentration of 4 g/l by strains of F. hepatica Fh-18 and F. fomentarius Ff-1201. In order to increase the accumulation of carotenoids in the mycelium  we suggested to make a standard glucose-peptone medium with proline or valine for cultivating of L. sulphureus Ls- 08 strain; alanine for F. fomentarius Ff-1201 strain; proline, asparagine and serine - for strain Fh-18 of F. hepatica. The results can be implemented in further optimization of the composition of the nutrient medium for culturing strains of Basidiomycetes wich producing carotenoids. Keywords: nitrogen-containing substances, Basidiomycetes, mycelium, culture filtrate, carotenoids

  2. Analysis of carotenoid compounds in aphids by Raman imaging and mass spectrometry

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Pierre Brat, Jean Christophe Valmalette, Christian Mertz, George de Sousa, Aviv Dombrovsky, Maria Capovilla & Alain Robichon ### Abstract Carotenoids are compounds synthesized in plants, bacteria and fungi, closely associated to the chlorophyll to perform photosynthesis. A spectacular evolutionary achievement allowed the aphid to produce carotenoids obviously by lateral transfer of genes from fungi. We have recently documented that these molecules are involved in photo c...

  3. Analysis of carotenoid compounds in aphids by Raman imaging and mass spectrometry

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Pierre Brat, Jean Christophe Valmalette, Christian Mertz, George de Sousa, Aviv Dombrovsky, Maria Capovilla & Alain Robichon ### Abstract Carotenoids are compounds synthesized in plants, bacteria and fungi, closely associated to the chlorophyll to perform photosynthesis. A spectacular evolutionary achievement allowed the aphid to produce carotenoids obviously by lateral transfer of genes from fungi. We have recently documented that these molecules are involved in photo c...

  4. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Verwaal, René; Wang, Jing; Meijnen, Jean-Paul; Visser, Hans; Sandmann, Gerhard; van den Berg, Johan A; van Ooyen, Albert J J

    2007-07-01

    To determine whether Saccharomyces cerevisiae can serve as a host for efficient carotenoid and especially beta-carotene production, carotenogenic genes from the carotenoid-producing yeast Xanthophyllomyces dendrorhous were introduced and overexpressed in S. cerevisiae. Because overexpression of these genes from an episomal expression vector resulted in unstable strains, the genes were integrated into genomic DNA to yield stable, carotenoid-producing S. cerevisiae cells. Furthermore, carotenoid production levels were higher in strains containing integrated carotenogenic genes. Overexpression of crtYB (which encodes a bifunctional phytoene synthase and lycopene cyclase) and crtI (phytoene desaturase) from X. dendrorhous was sufficient to enable carotenoid production. Carotenoid production levels were increased by additional overexpression of a homologous geranylgeranyl diphosphate (GGPP) synthase from S. cerevisiae that is encoded by BTS1. Combined overexpression of crtE (heterologous GGPP synthase) from X. dendrorhous with crtYB and crtI and introduction of an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) into carotenoid-producing cells resulted in a successive increase in carotenoid production levels. The strains mentioned produced high levels of intermediates of the carotenogenic pathway and comparable low levels of the preferred end product beta-carotene, as determined by high-performance liquid chromatography. We finally succeeded in constructing an S. cerevisiae strain capable of producing high levels of beta-carotene, up to 5.9 mg/g (dry weight), which was accomplished by the introduction of an additional copy of crtI and tHMG1 into carotenoid-producing yeast cells. This transformant is promising for further development toward the biotechnological production of beta-carotene by S. cerevisiae.

  5. Carotenoids in a Corynebacterineae, Gordonia terrae AIST-1: carotenoid glucosyl mycoloyl esters.

    Science.gov (United States)

    Takaichi, Shinichi; Maoka, Takashi; Akimoto, Naoshige; Carmona, Marvelisa L; Yamaoka, Yukiho

    2008-10-01

    We isolated a strain of Corynebacterineae from surface seawater from the Inland Sea of Japan. This strain, AIST-1, was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The colony was red-colored, and the pigments were identified to be carotenoid derivatives. The structures of two major carotenoids were (2'S)-deoxymyxol 1'-glucoside, a dihydroxyl derivative of gamma-carotene with 12 conjugated double bonds, and (2'S)-4-ketodeoxymyxol 1'-glucoside. Their glucosyl acyl esters and mycoloyl esters were also identified. While these carotenoid moieties have been found in only a few other bacteria, the carotenoid mycoloyl esters are novel carotenoid derivatives. The type strain of G. terrae NBRC 10016T also contained the same carotenoids, but the composition of the two carotenoid glucosides was low and the total carotenoid content was less than one tenth of that of strain AIST-1.

  6. Composição de carotenoides em canistel (Pouteria campechiana (Kunth Baehni Carotenoids composition of canistel (Pouteria campechiana (Kunth Baehni

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini Costa

    2010-09-01

    results indicate that this fruit presented very high levels of total carotenoids when compared to other fruits regularly consumed, and may be considered as a good source of pro-vitamin A (59 ± 6 RAE/100g. However, the main carotenoids found in Canistel have no pro-vitamin A activity.

  7. Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men.

    Directory of Open Access Journals (Sweden)

    Jouni Karppi

    Full Text Available BACKGROUND: Several previous epidemiologic studies have shown that high blood levels of carotenoids may be protective against early atherosclerosis, but results have been inconsistent. We assessed the association between atherosclerotic progression, measured by intima-media thickness of the common carotid artery wall, and serum levels of carotenoids. METHODS: We studied the effect of carotenoids on progression of early atherosclerosis in a population-based study. The association between concentrations of serum carotenoids, and intima-media thickness of the common carotid artery wall was explored in 840 middle-aged men (aged 46-65 years from Eastern Finland. Ultrasonography of the common carotid arteries were performed at baseline and 7-year follow-up. Serum levels of carotenoids were analyzed at baseline. Changes in mean and maximum intima media thickness of carotid artery wall were related to baseline serum carotenoid levels in covariance analyses adjusted for covariates. RESULTS: In a covariance analysis with adjustment for age, ultrasound sonographer, maximum intima media thickness, examination year, body mass index, systolic blood pressure, smoking, physical activity, serum LDL cholesterol, family history of coronary heart disease, antihypertensive medication and serum high sensitivity C-reactive protein, 7-year change in maximum intima media thickness was inversely associated with lycopene (p = 0.005, α-carotene (p = 0.002 and β-carotene (p = 0.019, respectively. CONCLUSIONS: The present study shows that high serum concentrations of carotenoids may be protective against early atherosclerosis.

  8. Carotenoids in Aquaculture: Fish and Crustaceans

    Science.gov (United States)

    Bjerkeng, Bjorn

    This Chapter deals with selected topics on the use of carotenoids for colouration in aquaculture and incudes examples from ecological studies which support our understanding of functions and actions of carotenoids and colouration in fishes and crustaceans. Animal colours may be physical or structural in origin [1], e.g. Tyndall blues and iridescent diffraction colours, or they may be due to pigments, including carotenoids (Chapter 10).

  9. Foraging for carotenoids: do colorful male hihi target carotenoid-rich foods in the wild?

    Science.gov (United States)

    Walker, Leila K; Thorogood, Rose; Karadas, Filiz; Raubenheimer, David; Kilner, Rebecca M; Ewen, John G

    2014-09-01

    Dietary access to carotenoids is expected to determine the strength of carotenoid-based signal expression and potentially to maintain signal honesty. Species that display carotenoid-based yellow, orange, or red plumage are therefore expected to forage selectively for carotenoid-rich foods when they are depositing these pigments during molt, but whether they actually do so is unknown. We set out to address this in the hihi (Notiomystis cincta), a New Zealand passerine where males, but not females, display yellow carotenoid-based plumage. We measured circulating carotenoid concentrations in male and female hihi during breeding and molt, determined the nutritional content of common foods in the hihi diet, and conducted feeding observations of male and female hihi during molt. We found that although male and female hihi do not differ significantly in plasma carotenoid concentration, male hihi have a greater proportion of carotenoid-rich foods in their diet than do females. This is a consequence of a greater fruit and lower invertebrate intake than females and an avoidance of low-carotenoid content fruit. By combining behavioral observations with quantification of circulating carotenoids, we present evidence that colorful birds forage to maximize carotenoid intake, a conclusion we would not have drawn had we examined plasma carotenoids alone.

  10. Isolation,Identification and Characterization of Extremely Halophilic C50 Carotenoid-Producing Archaeon%1株产C50类胡萝卜素极端嗜盐古菌的筛选鉴定及特性分析

    Institute of Scientific and Technical Information of China (English)

    刘良森; 邓元告; 隋丽英

    2014-01-01

    An extremely halophilic C50 carotenoid-producing red archaeon was isolated from the crystalli-zer ponds in solar saltworks.The isolated strain is Gram-negative and short rod.The optimum salinity and pH for growth is 250 and 7,respectively.Phenotypic and molecular analyses of this strain indicated that it belonged to extremely halophilic archaea genus Halorubrum and named Halorubrum Sp1 (16S rRNA Genbank registration number KF697239).UV-visible scanning spectrum showed that C50 carote-noid was the major pigments presented in this strain.Pigment accumulation was maximizing at pH 8. In the salinity range of 150~300,increasing salinity resulted in declined pigment accumulation.%从日晒盐场结晶池中筛选到1株产C50类胡萝卜素的红色极端嗜盐古菌。该菌株为革兰氏阴性菌,短棒状,最适生长盐度为250,最适生长pH 为7。表型鉴定方法结合16S rDNA序列分析判定,该菌属于极端嗜盐古菌盐红菌属 Halorubrum,命名为 Halorubrum sp.Sp1(16S rRNA Genbank 登录号为KF697239)。根据紫外-可见光扫描特征光谱,确定该菌株主要色素为 C50类胡萝卜素。pH 8时单位细胞色素积累量最大,在盐度150~300范围内随盐度升高,单位细胞色素积累量逐渐降低。

  11. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with thermal efficiency is

  12. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Directory of Open Access Journals (Sweden)

    Mahesha M. Poojary

    2016-11-01

    Full Text Available Marine microalgae and seaweeds (microalgae represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield, selectivity (purity, high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  13. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    Science.gov (United States)

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  14. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Science.gov (United States)

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  15. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  16. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta.

    Science.gov (United States)

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim

    2010-08-01

    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta.

  17. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo.

    Science.gov (United States)

    Azevedo-Meleiro, Cristiane H; Rodriguez-Amaya, Delia B

    2007-05-16

    Squashes and pumpkins are important dietary sources of carotenoids worldwide. The carotenoid composition has been determined, but reported data have been highly variable, both qualitatively and quantitatively. In the present work, the carotenoid composition of squashes and pumpkins currently marketed in Campinas, Brazil, were determined by HPLC-DAD, complemented by HPLC-MS for identification. Cucurbita moschata 'Menina Brasileira' and C. moschata 'Goianinha' had similar profiles, with beta-carotene and alpha-carotene as the major carotenoids. The hybrid 'Tetsukabuto' resembled the Cucurbita pepo 'Mogango', lutein and beta-carotene being the principal carotenoids. Cucurbita maxima 'Exposição' had a different profile, with the predominance of violaxanthin, followed by beta-carotene and lutein. Combining data from the current study with those in the literature, profiles for the Cucurbita species could be observed. The principal carotenoids in C. moschata were beta-carotene and alpha-carotene, whlereas lutein and beta-carotene dominate in C. maxima and C. pepo. It appears that hydroxylation is a control point in carotenoid biosynthesis.

  18. Profiling of carotenoids in tomato juice by one- and two-dimensional NMR.

    Science.gov (United States)

    Tiziani, Stefano; Schwartz, Steven J; Vodovotz, Yael

    2006-08-09

    Epidemiological data have shown a link between dietary intake of tomatoes and tomato products (rich in carotenoids) and a decreased risk of chronic diseases. The carotenoid profile in tomato products depends on tomato variety as well as the thermal conditions used in processing. The final carotenoid profile may affect the bioaccessibility and bioavailability of these biomolecules. Therefore, nondestructive, reliable methods are needed to characterize the structural and stereochemical variation of carotenoids. CDCl(3) rapid extraction was used to extract carotenoids from tomato juice as an alternative rapid procedure that minimizes solvents and time consumption prior to NMR analysis. The profile of these biomolecules was characterized by application of high-resolution multidimensional NMR techniques using a cryogenic probe. The combination of homonuclear and heteronuclear two-dimensional NMR techniques served to identify (all-E)-, (5Z)-, (9Z)-, and (13Z)-lycopene isomers and other carotenoids such as (all-E)-beta-carotene and (15Z)-phytoene dissolved in the extracted lipid mixture. The use of one-dimensional NMR enabled the rapid identification of lycopene isomers, thereby minimizing further isomerization of (all-E)-lycopene as compared to HPLC data. On the basis of the assignments accomplished, the carotenoid profile of typical tomato juice was successfully determined with minimal purification procedures.

  19. Evaluation of carotenoid contents in irradiated buriti (Mauritia flexuosa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jaqueline M. da; Coelho, Maysa J.; Lima, Keila S.C.; Lima, Antonio L.S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear]. E-mail: maysa@ime.eb.br; Godoy, Ronoel L.O.; Pacheco, Sidney [EMBRAPA Agroindustria de Alimentos, Rio de Janeiro, RJ (Brazil)]. E-mail: ronoel@ctaa.embrapa.br; Ferreira, Rubemar S. [Centro Regional de Ciencias Nucleares do Centro-Oeste CRCN-CO/CNEN, Abadia de Goias, GO (Brazil); E-mail: rferreira@cnen.gov.br

    2007-07-01

    Buriti (Mauritia flexuosa L.), a typical Brazilian fruit, can be found at north, northeast and center-west regions in Brazil. It has a high nutritional value and is considered an excellent source of vitamin A precursors, called carotenoids, showing a majority of {beta}-carotene. It can be used in many regional dishes. In this study, Buriti in natura was treated with gamma irradiation, deriving from a cavity type research irradiator which has a Cs-137 radiation source, with the doses of 0.5 and 1.0 kGy. The objective is to evaluate the irradiation effects on nutritional quality maintenance and conservation of Buriti, focusing in optimizer the processing conditions and increase consumption as a way to fight vitamin A deficiency. Clinical, biological and dietetic studies have indicated that the lack of vitamin A is the main cause of night blindness and xerophthalmia. The use of food irradiation is growing and represents an economic benefit to the agriculture through the reduction of post harvesting losses. The irradiated fruits and the control group were evaluated through the total carotenoids analysis, by spectrophotometry, and the carotenoids (a and b-carotene and luteine) determined by High Performance Liquid Chromatography (HPLC). ANOVA was used to treat the results. The results show that buriti is an excellent source of total carotenoids, with a concentration of 44500 {mu}g/100 g in the pulp (70% of {beta}-carotene). The reduction of carotenoids contents due to the irradiation process does not compromise its nutritional quality that is still very above of recommendations, being the dose of 0.5 kGy more appropriate. (author)

  20. Method for producing high surface area chromia materials for catalysis

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe; Tillotson, Thomas; Hrubesh, Lawrence; Simpson, Randall

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  1. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Pei, Y.T.; Kumar, A; Chung, YW; Moore, JJ; Doll, GL; Yatsui, K; Misra, DS

    2002-01-01

    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is fo

  2. Carotenoid metabolism and regulation in horticultural crops

    Science.gov (United States)

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  3. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  4. Carotenoids in Algae: Distributions, Biosyntheses and Functions

    Directory of Open Access Journals (Sweden)

    Shinichi Takaichi

    2011-06-01

    Full Text Available For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type, Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP and orange carotenoid protein (OCP are also established. Some functions of carotenoids in photosynthesis are also briefly summarized.

  5. Carotenoids, but not vitamin A, improve iron uptake and ferritin synthesis by Caco-2 cells from ferrous fumarate and NaFe-EDTA.

    Science.gov (United States)

    García-Casal, María N; Leets, Irene

    2014-04-01

    Due to the high prevalence of iron and vitamin A deficiencies and to the controversy about the role of vitamin A and carotenoids in iron absorption, the objectives of this study were to evaluate the following: (1) the effect of a molar excess of vitamin A as well as the role of tannic acid on iron uptake by Caco-2 cells; (2) iron uptake and ferritin synthesis in presence of carotenoids without pro-vitamin A activity: lycopene, lutein, and zeaxantin; and (3) iron uptake and ferritin synthesis from ferrous fumarate and NaFe-EDTA. Cells were incubated 1 h at 37 °C in PBS pH 5.5, containing (59) Fe and different iron compounds. Vitamin A, ferrous fumarate, β-carotene, lycopene, lutein, zeaxantin, and tannic acid were added to evaluate uptake. Ferritin synthesis was measured 24 h after uptake experiments. Vitamin A had no effect on iron uptake by Caco-2 cells, and was significantly lower from NaFe-EDTA than from ferrous fumarate (15.2 ± 2.5 compared with 52.5 ± 8.3 pmol Fe/mg cell protein, respectively). Carotenoids increase uptake up to 50% from fumarate and up to 300% from NaFe-EDTA, since absorption from this compound is low when administered alone. We conclude the following: (1) There was no effect of vitamin A on iron uptake and ferritin synthesis by Caco-2cells. (2) Carotenoids significantly increased iron uptake from ferrous fumarate and NaFe-EDTA, and were capable of partially overcoming the inhibition produced by tannic acid. (3) Iron uptake by Caco-2 cell from NaFe-EDTA was significantly lower compared to other iron compounds, although carotenoids increased and tannic acid inhibited iron uptake comparably to ferrous fumarate. © 2014 Institute of Food Technologists®

  6. Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: a first step towards identification of unknowns.

    Science.gov (United States)

    Bijttebier, Sebastiaan K A; D'Hondt, Els; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2013-06-01

    Vegetables are a major source of carotenoids and carotenoids are identified as potentially important natural antioxidants that may aid in the prevention of several human chronic degenerative diseases. Characterization of carotenoids in organic biological matrices is a crucial step in any research valorization trajectory. This study reports for the first time the use of high mass resolution and exact mass orbitrap technology for the elucidation of carotenoid fragmentation pathways. This contributes to the generation of new tools for identifying unknown carotenoids based on fragmentation patterns. Two different chromatographic methods making use of different mobile phases resulted in the generation of different ion species because of the large influence of the mobile phase solvent composition on ionization. It was shown that depending on the molecular ion species that are generated (protonated ions or radical molecular ions), different fragments are formed when applying higher energy collisional dissociation. Fragmentation and the abundance of fragments provide valuable structural information on the type of functional groups, the polyene backbone and the location of double bonds in ring structures of carotenoids. Furthermore, coherence between specific substructures in the molecules and characteristic fragmentation patterns was observed allowing the assignment of fragmentation patterns for carotenoid substructures that can theoretically be extrapolated to carotenoids with similar (sub)structures. Differentiation between isomeric carotenoids by compound specific fragments could however not be made for all the isomeric groups under study. As a wide variety of isomeric forms of carotenoids exist in nature, the combination of good chromatographic separation with high resolution mass spectrometry and other complementary qualitative structure elucidation techniques such as a photo diode array detector and/or nuclear magnetic resonance spectroscopy are indispensable for

  7. Carotenoid Metabolism: Biosynthesis, Regulation,and Beyond

    Institute of Scientific and Technical Information of China (English)

    Shan Lu; Li Li

    2008-01-01

    Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.

  8. Spectroscopic biofeedback on cutaneous carotenoids as part of a prevention program could be effective to raise health awareness in adolescents.

    Science.gov (United States)

    Yu, Ruo-Xi; Köcher, Wolfgang; Darvin, Maxim E; Büttner, Monika; Jung, Sora; Lee, Bich Na; Klotter, Christoph; Hurrelmann, Klaus; Meinke, Martina C; Lademann, Jürgen

    2014-11-01

    The cutaneous carotenoid concentration correlates with the overall antioxidant status of a person and can be seen as biomarker for nutrition and lifestyle. 50 high school students were spectroscopically measured for their cutaneous carotenoid concentrations initially in a static phase, followed by an intervention phase with biofeedback of their measured values, living a healthy lifestyle and on healthy food this time. The volunteers showed higher carotenoid concentrations than found in previous studies. A significant correlation of healthy lifestyle habits and a high antioxidant status could be determined. Subjects improved their nutritional habits and significantly increased their carotenoid concentration during intervention. Follow-up five months later showed a consolidation of the increase. The investigations show that a healthy diet and a well-balanced lifestyle correlate with a high cutaneous antioxidant concentration and that spectroscopic biofeedback measurement of cutaneous carotenoids as part of an integrated prevention program is a feasible and effective means to raise the health awareness in adolescents.

  9. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  10. Isolation and selection of new astaxanthin producing strains of Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Libkind, Diego; Moliné, Martín; Tognetti, Celia

    2012-01-01

    Astaxanthin is a xanthophyll pigment of high economic value for its use as a feeding component in aquaculture. Xanthophyllomyces dendrorhous is a basidiomycetous fungi able to synthesize astaxanthin as its major carotenoid, and the only known yeast species bearing the capability to produce this type of carotenoid. Recently, the habitat and intraspecific variability of this species have been found to be wider than previously expected, encouraging the search for new wild strains with potential biotechnological applications. Here we describe effective procedures for isolation of X. dendrorhous from environmental samples, accurate identification of the strains, analysis of their astaxanthin content, and proper conservation of the isolates.

  11. An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense.

    Science.gov (United States)

    Thirunavukkarasu, Nagarajan; Mishra, Mukti Nath; Spaepen, Stijn; Vanderleyden, Jos; Gross, Carol A; Tripathi, Anil K

    2008-07-01

    Strains Sp7 and Cd of Azospirillum brasilense, a plant growth-promoting rhizobacterium, differ in synthesis of carotenoids. While colonies of strain Sp7 have a white-cream colour on plates, colonies of strain Cd are orange-pink coloured because of the synthesis of carotenoids. Screening of a mini-Tn5 mutant library of A. brasilense Sp7 revealed two orange-pink-coloured mutants that produced carotenoids. Cloning and sequencing of the Tn5 flanking region in both the carotenoid-producing mutants of Sp7 revealed insertion of Tn5 in an ORF encoding anti-sigma factor, a ChrR-like protein. The upstream region of the Tn5-mutated ORF contained another ORF that encoded an extra-cytoplasmic function (ECF)-class sigma factor (sigma(E), RpoE). When the nucleotide sequences of the corresponding ORFs from the carotenoid-producing strain Cd were analysed, the sequence of the Cd sigma(E) was identical to that of the carotenoid non-producing strain Sp7, but the Cd anti-sigma(E) ORF had a deletion that caused frame shifting and creation of a stop codon. This resulted in the premature termination of the protein, which was about 7 kDa smaller than the Sp7 anti-sigma(E). Cloning of Sp7 anti-sigma(E) in a broad-host-range expression vector and expression in A. brasilense Cd and in the anti-sigma(E) knockout mutant of A. brasilense Sp7 resulted in the inhibition of carotenoid synthesis. Similarly, cloning and overexpression of A. brasilense Sp7 sigma(E) in A. brasilense Sp7 resulted in the production of carotenoids. These observations clearly indicate that carotenoid synthesis in A. brasilense is controlled by sigma(E) with its cognate anti-sigma(E).

  12. Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology

    Directory of Open Access Journals (Sweden)

    Gunjan Singh

    2016-10-01

    Full Text Available As a replacement to existing fossil fuels, biofuels, have proven their worth; however, their widespread use is limited due to inconsistent yields, higher costs and poor productivity. An oleaginous yeast, Rhodosporidium toruloides has been reported to accumulate substantial amounts of lipids (that can be converted to biofuels and therefore, it was selected for study and optimization. Apart from lipids, R. toruloides is also reported to produce carotene that can be used as a therapeutic agent. In this study, the culture medium was statistically modelled and optimized for concomitant production of lipids and carotenoids and for improving and maximizing the productivity of lipids as well as carotenes. The two metabolites were expressed differentially in the growth cycle of this organism. Culture medium components were simultaneously varied at 5 different levels using statistical modelling employing RSM. Osmotic stress was introduced in order to simulate saline conditions and optimize the production process to be used in conditions with high salt contents. In this study, we demonstrate 36.2% (w/v lipid production and 27.2% (w/v carotenoid production, under osmotic stress with high salt concentrations, for the first time.

  13. Increased carotenoid production in Xanthophyllomyces dendrorhous G276 using plant extracts.

    Science.gov (United States)

    Kim, Soo-Ki; Lee, Jun-Hyeong; Lee, Chi-Ho; Yoon, Yoh-Chang

    2007-04-01

    The red yeast Xanthophyllomyces dendrorhous (previously named Phaffia rhodozyma) produces astaxanthin pigment among many carotenoids. The mutant X. dendrorhous G276 was isolated by chemical mutagenesis. The mutant produced about 2.0 mg of carotenoid per g of yeast cell dry weight and 8.0 mg/L of carotenoid after 5 days batch culture with YM media; in comparison, the parent strain produced 0.66 mg/g of yeast cell dry weight and a carotenoid concentration of 4.5 mg/L. We characterized the utilization of carbon sources by the mutant strain and screened various edible plant extracts to enhance the carotenoid production. The addition of Perilla frutescens (final concentration, 5%) or Allium fistulosum extracts (final concentration, 1%) enhanced the pigment production to about 32 mg/L. In a batch fermentor, addition of Perilla frutescens extract reduced the cultivation time by two days compared to control (no extract), which usually required five-day incubation to fully produce astaxanthin. The results suggest that plant extracts such as Perilla frutescens can effectively enhance astaxanthin production.

  14. Metabolic Regulation of Carotenoid-Enriched Golden Rice Line

    OpenAIRE

    Gayen, Dipak; Ghosh, Subhrajyoti; Paul,Soumitra; Sarkar, Sailendra N.; Datta, Swapan K.; Datta, Karabi

    2016-01-01

    Vitamin A deficiency (VAD) is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy) and phytoene desaturase (crtI). In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation ...

  15. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.

    Science.gov (United States)

    Owens, Brenda F; Lipka, Alexander E; Magallanes-Lundback, Maria; Tiede, Tyler; Diepenbrock, Christine H; Kandianis, Catherine B; Kim, Eunha; Cepela, Jason; Mateos-Hernandez, Maria; Buell, C Robin; Buckler, Edward S; DellaPenna, Dean; Gore, Michael A; Rocheford, Torbert

    2014-12-01

    Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.

  16. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids.

    Science.gov (United States)

    Kachanovsky, David E; Filler, Shdema; Isaacson, Tal; Hirschberg, Joseph

    2012-11-13

    Tomato (Solanum lycopersicum) fruit accumulate the red carotenoid pigment lycopene. The recessive mutation yellow-flesh (locus r) in tomato eliminates fruit carotenoids by disrupting the activity of the fruit-specific phytoene synthase (PSY1), the first committed step in the carotenoid biosynthesis pathway. Fruits of the recessive mutation tangerine (t) appear orange due to accumulation of 7,9,7',9'-tetra-cis-lycopene (prolycopene) as a result of a mutation in the carotenoid cis-trans isomerase. It was established 60 y ago that tangerine is epistatic to yellow-flesh. This uncharacteristic epistasis interaction defies a paradigm in biochemical genetics arguing that mutations that disrupt enzymes acting early in a biosynthetic pathway are epistatic to other mutations that block downstream steps in the same pathway. To explain this conundrum, we have investigated the interaction between tangerine and yellow-flesh at the molecular level. Results presented here indicate that allele r(2997) of yellow-flesh eliminates transcription of PSY1 in fruits. In a genetic background of tangerine, transcription of PSY1 is partially restored to a level sufficient for producing phytoene and downstream carotenoids. Our results revealed the molecular mechanism underlying the epistasis of t over r and suggest the involvement of cis-carotenoid metabolites in a feedback regulation of PSY1 gene expression.

  17. Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501.

    Science.gov (United States)

    Paliwal, Chetan; Pancha, Imran; Ghosh, Tonmoy; Maurya, Rahulkumar; Chokshi, Kaumeel; Vamsi Bharadwaj, S V; Ram, Shristi; Mishra, Sandhya

    2015-12-01

    Nutrients are the deciding factors in the biological production of bioactive compounds. Various growth media like BG11, Zarrouk's and Chu's 10 were studied for carotenoid production in Synechocystis sp. CCNM 2501. Maximum carotenoid content (dry weight basis) was found in Zarrouk's medium (ZM, 7.99mgg(-1)) followed by BG11 (5.13mgg(-1)). Echinenone content was 4 times higher in ZM (3.81mgg(-1)) as compared to BG11 (0.95mgg(-1)) and Chu's 10 (0.77mgg(-1)). Being an economical medium, BG11 was selected for carotenoid production. Further, increase in salinity from 0 to 0.2M in BG11 medium increases total carotenoid content from 5.82 to 7.05mgg(-1) and later it declines to 6.23mgg(-1) (1M). 3 times more β-carotene is produced at 1M salinity as compared to control BG11. The variation in carotenoid composition with change in nutrients/salinity can be a good strategy to enhance certain targeted carotenoids.

  18. Carotenoid gene expression explains the difference of carotenoid accumulation in carrot root tissues.

    Science.gov (United States)

    Perrin, Florent; Hartmann, Laura; Dubois-Laurent, Cécile; Welsch, Ralf; Huet, Sébastien; Hamama, Latifa; Briard, Mathilde; Peltier, Didier; Gagné, Séverine; Geoffriau, Emmanuel

    2017-04-01

    Main conclusion Variations in gene expression can partially explain the difference of carotenoid accumulation in secondary phloem and xylem of fleshy carrot roots. The carrot root is well divided into two different tissues separated by vascular cambium: the secondary phloem and xylem. The equilibrium between these two tissues represents an important issue for carrot quality, but the knowledge about the respective carotenoid accumulation is sparse. The aim of this work was (i) to investigate if variation in carotenoid biosynthesis gene expression could explain differences in carotenoid content in phloem and xylem tissues and (ii) to investigate if this regulation is differentially modulated in the respective tissues by water-restricted growing conditions. In this work, five carrot genotypes contrasting by their root color were studied in control and water-restricted conditions. Carotenoid content and the relative expression of 13 genes along the carotenoid biosynthesis pathway were measured in the respective tissues. Results showed that in orange genotypes and the purple one, carotenoid content was higher in phloem compared to xylem. For the red one, no differences were observed. Moreover, in control condition, variations in gene expression explained the different carotenoid accumulations in both tissues, while in water-restricted condition, no clear association between gene expression pattern and variations in carotenoid content could be detected except in orange-rooted genotypes. This work shows that the structural aspect of carrot root is more important for carotenoid accumulation in relation with gene expression levels than the consequences of expression changes upon water restriction.

  19. The Importance of Carotenoid Dose in Supplementation Studies with Songbirds.

    Science.gov (United States)

    Koch, Rebecca E; Wilson, Alan E; Hill, Geoffrey E

    2016-01-01

    Carotenoid coloration is the one of the most frequently studied ornamental traits in animals. Many studies of carotenoid coloration test the associations between carotenoid coloration and measures of performance, such as immunocompetence and oxidative state, proceeding from the premise that carotenoids are limited resources. Such studies commonly involve supplementing the diets of captive birds with carotenoids. In many cases, however, the amount of carotenoid administered is poorly justified, and even supposedly carotenoid-limited diets may saturate birds' systems. To quantify the relationships among the amount of carotenoids administered in experiments, levels of circulating carotenoids, and quantities of carotenoids deposited into colored ornaments, we performed a meta-analysis of 15 published studies that supplemented carotenoids to one of seven songbird species. We used allometric scaling equations to estimate the per-gram carotenoid consumption of each study's subjects, and we used meta-regression to evaluate the effects of this carotenoid dose on differences in coloration and plasma carotenoid levels between supplemented and control groups of birds. After accounting for supplementation duration and species, we observed a significant positive correlation between carotenoid intake and response of plasma carotenoid level to supplementation. The presence of supplemental carotenoids also tended to increase the expression of ornamental coloration, but the magnitude of the carotenoid dose did not significantly affect how strongly coloration changed with supplementation. Further, coloration effect sizes had no significant relationship with plasma carotenoid effect sizes. We also found significant heterogeneity in responses among studies and species, and the parameters used to measure color significantly affected response to supplementation. Our results emphasize the importance of performing dosage trials to determine what supplementation levels provide limited

  20. Phytochrome-mediated Carotenoids Biosynthesis in Ripening Tomatoes.

    Science.gov (United States)

    Thomas, R L; Jen, J J

    1975-09-01

    Red light induced and far red light inhibited carotenoid biosynthesis in ripening tomatoes (Lycopersicon esculentum Mill.) when compared to controls kept in the dark. Red illumination following far red illumination reversed the inhibitory action of far red light on carotenoid biosynthesis, suggesting a phytochrome-mediated process. Quantitation of individual carotenoids favored the hypothesis of two separate carotenoid biosynthetic pathways in tomatoes.

  1. Producing high fidelity single photons with optimal brightness

    CERN Document Server

    Laiho, K; Silberhorn, Ch

    2009-01-01

    Parametric down-conversion (PDC) offers the possibility to control the fabrication of non-Gaussian states such as Fock states. However, in conventional PDC sources energy and momentum conservation introduce strict frequency and photon number correlations, which impact the fidelity of the prepared state. In our work we optimize the preparation of single-photon Fock state from the emission of waveguided PDC via spectral filtering. We study the effect of correlations via photon number resolving detection and quantum interference. Our measurements show how the reduction of mixness due to filtering can be evaluated. Interfering the prepared photon with a coherent state we establish an experimentally measured fidelity of the produced target state of 78%.

  2. Coincidence spectroscopy of high-lying Rydberg states produced in strong laser fields

    Science.gov (United States)

    Larimian, Seyedreza; Erattupuzha, Sonia; Lemell, Christoph; Yoshida, Shuhei; Nagele, Stefan; Maurer, Raffael; Baltuška, Andrius; Burgdörfer, Joachim; Kitzler, Markus; Xie, Xinhua

    2016-09-01

    We demonstrate the detection of high-lying Rydberg states produced in strong laser fields with coincidence spectroscopy. Electron emission after the interaction of strong laser pulses with atoms and molecules is measured together with the parent ions in coincidence measurements. These electrons originate from high-lying Rydberg states with quantum numbers from n ˜20 up to n ≲120 formed by frustrated field ionization. Ionization rates are retrieved from the measured ionization signal of these Rydberg states. Simulations show that both tunneling ionization by a weak dc field and photoionization by blackbody radiation contribute to delayed electron emission on the nano- to microsecond scale. Furthermore, the dependence of the Rydberg-state production on the ellipticity of the driving laser field indicates that such high-lying Rydberg states are populated through electron recapture. The present experiment provides detailed quantitative information on Rydberg production in strong-field interaction.

  3. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit.

    Science.gov (United States)

    Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A

    2013-12-01

    Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes.

  4. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, Dragan [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia); Markovic, Dejan [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia)], E-mail: markovic57@info-net.co.yu

    2008-01-15

    Antioxidant action of four selected carotenoids (two carotenes, {beta}-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.

  5. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits.

    Science.gov (United States)

    de Rosso, Veridiana V; Mercadante, Adriana Z

    2007-06-27

    The major and minor carotenoids from six fruits, buriti (Mauritia vinifera), mamey (Mammea americana), marimari (Geoffrola striata), peach palm (Bactrys gasipaes), physalis (Physalis angulata), and tucuma (Astrocaryum aculeatum), all native to the Amazonia region, were determined by high-performance liquid chromatography-photodiode array detector-mass spectrometry detector (HPLC-PDA-MS/MS), fulfilling the recommended criteria for identification. A total of 60 different carotenoids were separated on a C30 column, all-trans-beta-carotene being the major carotenoid found in all fruits. The presence of apo-10'-beta-carotenol, found in mamey, was not previously reported in foods. In addition, this is the first time that the identification of beta-zeacarotene in natural sources is supported by MS data. The total carotenoid content ranged from 38 microg/g in marimari to 514 microg/g in buriti. All fruits analyzed can be considered good sources of provitamin A, especially buriti, with 7280 RE/100 g.

  6. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    Science.gov (United States)

    Cvetkovic, Dragan; Markovic, Dejan

    2008-01-01

    Antioxidant action of four selected carotenoids (two carotenes, β-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.

  7. Carotenoids and health in older people.

    Science.gov (United States)

    Woodside, Jayne V; McGrath, Alanna J; Lyner, Natalie; McKinley, Michelle C

    2015-01-01

    As the proportion of older people increases, so will chronic disease incidence and the proportion of the population living with disability. Therefore, new approaches to maintain health for as long as possible in this age group are required. Carotenoids are a group of polyphenolic compounds found predominantly in fruit and vegetables that have been proposed to have anti-inflammatory and antioxidant effects. Such properties may impact on the risk diseases which predominate in older people, and also ageing-related physiological changes. Working out the effect of carotenoid intake versus fruit and vegetable intake is difficult, and the strong correlation between individual carotenoid intakes also complicates any attempt to examine individual carotenoid health effects. Similarly, research to determine whether carotenoids consumed as supplements have similar benefits to increased dietary intake through whole foods, is still required. However, reviewing the recent evidence suggests that carotenoid intake and status are relatively consistently associated with reduced CVD risk, although β-carotene supplementation does not reduce CVD risk and increases lung cancer risk. Increased lycopene intake may reduce prostate cancer progression, with a potential role for carotenoids at other cancer sites. Lutein and zeaxanthin have a plausible role in the maintenance of eye health, whilst an association between carotenoid intake and cognitive and physical health appears possible, although research is limited to date. Given this accruing evidence base to support a specific role for certain carotenoids and ageing, current dietary advice to consume a diet rich in fruit and vegetables would appear prudent, and efforts maintained to encourage increased intake.

  8. Carotenoid composition of the flowers of Mimulus lewisii and related species: Implications regarding the prevalence and origin of two unique, allenic pigments.

    Science.gov (United States)

    LaFountain, Amy M; Frank, Harry A; Yuan, Yao-Wu

    2015-05-01

    The genus Mimulus has been used as a model system in a wide range of ecological and evolutionary studies and contains many species with carotenoid pigmented flowers. However, the detailed carotenoid composition of these flowers has never been reported. In this paper the floral carotenoid composition of 11 Mimulus species are characterized using high-performance liquid chromatography, mass spectrometry and chemical methods with a particular focus on the genetic model species, Mimulus lewisii. M. lewisii flowers have five major carotenoids: antheraxanthin, violaxanthin, neoxanthin, and the unique allenic carotenoids, deepoxyneoxanthin and mimulaxanthin. This carotenoid profile is consistent with the expression levels of putative carotenoid biosynthetic genes in the M. lewisii flower. The other 10 species possess the same five carotenoids or a subset of these. Comparison of the carotenoid profiles among species in a phylogenetic context provides new insights into the biosynthesis and evolution of deepoxyneoxanthin and mimulaxanthin. This work also lays the foundation for future studies regarding transcriptional control of the carotenoid biosynthesis pathway in Mimulus flowers.

  9. The high-producing dairy cow and its reproductive performance

    DEFF Research Database (Denmark)

    Dobson, H; Smith, Rf; Royal, Md;

    2007-01-01

    There is evidence that the reproductive performance of dairy cows has declined as milk yields have increased over the last 40 years. Identifying the precise cause(s) of this problem may provide focused solutions. Intensive genetic selection for very high yields has reduced fertility, due mainly t...

  10. A METHOD FOR PRODUCING A HIGH QUALITY SOLENOIDAL FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B.; Brown, I.G.; Halbach, K.; Kunkel, W.B.

    1981-01-01

    A relatively simple and inexpensive device is described which can be used to provide a highly homogeneous solenoidal magnetic field when the solenoid windings are inadequate. Design considerations and experimental measurements are presented. A field straightness of approximately 10{sup -4} radians has been achieved.

  11. Genetic variations involved in interindividual variability in carotenoid status.

    OpenAIRE

    Borel, Patrick

    2012-01-01

    International audience; As shown in most clinical studies dedicated to carotenoids, there is a huge interindividual variability in absorption, and blood and tissue responses, of dietary carotenoids. The recent discovery that several proteins are involved in carotenoid metabolism in humans has prompted a possible explanation for this phenomenon: genetic variants in genes encoding for these proteins may affect their expression or activity, and in turn carotenoid metabolism and carotenoid status...

  12. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain.

    Science.gov (United States)

    Luque, Eva M; Gutiérrez, Gabriel; Navarro-Sampedro, Laura; Olmedo, María; Rodríguez-Romero, Julio; Ruger-Herreros, Carmen; Tagua, Víctor G; Corrochano, Luis M

    2012-01-01

    The ascomycete fungus Neurospora is present in many parts of the world, in particular in tropical and subtropical areas, where it is found growing on recently burned vegetation. We have sampled the Neurospora population across Spain. The sampling sites were located in the region of Galicia (northwestern corner of the Iberian peninsula), the province of Cáceres, the city of Seville, and the two major islands of the Canary Islands archipelago (Tenerife and Gran Canaria, west coast of Africa). The sites covered a latitude interval between 27.88° and 42.74°. We have identified wild-type strains of N. discreta, N. tetrasperma, N. crassa, and N. sitophila and the frequency of each species varied from site to site. It has been shown that after exposure to light Neurospora accumulates the orange carotenoid neurosporaxanthin, presumably for protection from UV radiation. We have found that each Neurospora species accumulates a different amount of carotenoids after exposure to light, but these differences did not correlate with the expression of the carotenogenic genes al-1 or al-2. The accumulation of carotenoids in Neurospora shows a correlation with latitude, as Neurospora strains isolated from lower latitudes accumulate more carotenoids than strains isolated from higher latitudes. Since regions of low latitude receive high UV irradiation we propose that the increased carotenoid accumulation may protect Neurospora from high UV exposure. In support of this hypothesis, we have found that N. crassa, the species that accumulates more carotenoids, is more resistant to UV radiation than N. discreta or N. tetrasperma. The photoprotection provided by carotenoids and the capability to accumulate different amounts of carotenoids may be responsible, at least in part, for the distribution of Neurospora species that we have observed across a range of latitudes.

  13. Extraction and chromatography of carotenoids from pumpkin.

    Science.gov (United States)

    Seo, Jung Sook; Burri, Betty Jane C; Quan, Zhejiu; Neidlinger, Terry R

    2005-05-06

    Vitamin A deficiency is a health problem in Southeast Asia that can be corrected by feeding orange fruits and vegetables such as mango. Pumpkin is a traditional Korean food that is easy to store and is already believed to have health benefits. We extracted carotenoids from pumpkin by liquid-liquid extraction and by supercritical fluid extraction. We measured carotenoids by reversed-phase chromatography with diode array detection. The major carotenoid in pumpkin (> 80%) is beta-carotene, with lesser amounts of lutein, lycopene, alpha-carotene and cis-beta-carotene. Pumpkin is a rich source of beta-carotene and might be useful for preventing Vitamin A deficiency.

  14. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Kloz, Miroslav [VU Univ., Amsterdam (Netherlands); Pillai, Smitha [Arizona State Univ., Tempe, AZ (United States); Kodis, Gerdenis [Arizona State Univ., Tempe, AZ (United States); Gust, Devens [Arizona State Univ., Tempe, AZ (United States); Moore, Thomas A. [Arizona State Univ., Tempe, AZ (United States); Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States); van Grondelle, Rienk [VU Univ., Amsterdam (Netherlands); Kennis, John T. M. [VU Univ., Amsterdam (Netherlands)

    2011-04-14

    A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S1 signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S1 state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)1Pc to Car S1 energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between 1Pc and Car S1 and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment

  15. Carotenoid levels during the period of growth and ripening in fruits of different olive varieties (Hojiblanca, Picual and Arbequina).

    Science.gov (United States)

    Roca, María; Mínguez-Mosquera, María Isabel

    2003-05-01

    During fruit growth and development, carotenoid accumulation follows the same qualitative pattern in three olive varieties (Olea europaea L.). In the stage of ripening, the Arbequina variety is differentiated from Hojiblanca and Picual by its possession of esterified xanthophylls. The Chl a/b ratio is higher in Arbequina than in Hojiblanca and Picual throughout the life cycle of the fruit, while the percentage of lutein is always lower, and that of beta-carotene higher. Independent of the high (Hojiblanca and Picual) or low (Arbequina) pigment content, the chlorophyll/carotenoid ratio (a + b)/(x + c) is similar for the three varieties. There is evident carotenoid breakdown at the onset of ripening in the fruits of the Hojiblanca and Picual varieties, while in Arbequina there is a new period of carotenoid accumulation. As ripening proceeds in Arbequina fruits, a slow carotenoid-breakdown process is initiated.

  16. The Synergistic Effect of Anionic Surfactant on Adsorption Enhancement of the Carotenoids Extract using Mesoporous Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Supalak Kongsri

    2015-09-01

    Full Text Available Fish hydroxyapatite (FHAp was prepared from fish scale waste by alkaline heat treatment. The obtained nanoparticles (21 nm of FHAp with high crystallinity (89.5% were used as biocompatible adsorbent for an adsorption of plant carotenoids extract. For optimum conditions of batch adsorption study, experimental parameters including pH of solution, adsorbent dosage, an initial concentration of carotenoids, amount of sodium dodecyl sulfate (SDS, contact time and temperature were investigated in details. From the results, the carotenoids adsorption of the FHAp was drastically enhanced in the presence of SDS through their hydrophobic interactions between the carotenoids and the cationic element FHAp via the anionic head of SDS by electrostatic and ion-exchange interactions and surface complexation. The adsorption behaviors fitted well by pseudo-second order kinetic model and Freundlich adsorption isotherm. Thermodynamic data demonstrated that the adsorption behaviors of the carotenoids on the hydroxyapatite nanoparticles were spontaneously endothermic and physisorption process.

  17. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-04-21

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  18. Carotenoids profile and total polyphenols in fruits of Pereskia aculeata Miller

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini-Costa

    2012-03-01

    Full Text Available Pereskia aculeata Mill. (Ora-pro-nóbis is a native cactaceae from tropical America, whose leaves have high protein content. In Brazil it is found in all territorial extension between the states of Bahia and Rio Grande do Sul. Most studies have focused on chemical characterization of the leaves of this specie. The objective was to assess the carotenoids profile and the total polyphenols present in the fruits of P. aculeate. Carotenoids were determined by HPLC-PAD (high performance liquid chromatography - photodiode array detector, total polyphenols were determined by Folin-Ciocalteu and vanillin methods. Trans-β-carotene was the main carotenoid, followed by α-carotene, lutein and other minor carotenoids. It was found 64.9 ± 1.1 mg.100g-1 of gallic acid equivalent, 14.8 ± 0.2 mg.100g-1 of catechin equivalent. Carotenoid identification of P. aculeate fruits are presented here by the first time and indicate that these fruits can be researched as source of bioactive substances, especially antioxidant and provitamin A carotenoids.

  19. Self-Assembly of Carotenoids During Solution Casting of Solar Devices

    Science.gov (United States)

    Alwis, Dusantha; Ratnaweera, Dilru; Etampawala, Thusitha; Dadmun, Mark; Chandrika, Udumalagala; Jayaweera, Pradeep

    2015-03-01

    Self assembly of carotenoids is a common phenomenon in nature and seems to be closely related to the functions of these natural dyes in solar devices. The large absorption coefficients in the visible region of carotenoids make them a well suited natural resource for dye-sensitized solar cells (DSSC). The performance of carotenoid based solar devices mainly depends on the photo-electrochemical properties of the active material (carotenoids) and their self-assembled morphology within solar devises. These associations of molecules will affect the light absorption, emission and energy harvesting abilities of these solar devices. Two types of highly conjugated natural carotenoids having mono and dicarboxy terminal groups, namely bixin and norbixin, were extracted from annatto seeds. In the current study, small angle neutron scattering experiments were carried out to examine the modes of assemblies of bixin and norbixin during solution processing of DSSCs. Spherical shape aggregates with rough interfaces were observed in acetone medium, which is a good solvent for hydrocarbon chain. The shape of the aggregates slightly deviates from spherical to slightly elongated shape at high volume fractions of carotenoids. Bixin and norbixin show different association behaviors as a function of their concentration.

  20. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): diversity and stability to the heat treatment.

    Science.gov (United States)

    Cardoso, Leandro de Morais; Pinheiro, Soraia Silva; da Silva, Letícia Linhares; de Menezes, Cícero Beserra; de Carvalho, Carlos Wanderlei Piler; Tardin, Flávio Dessaune; Queiroz, Valéria Aparecida Vieira; Martino, Hércia Stampini Duarte; Pinheiro-Sant'Ana, Helena Maria

    2015-04-01

    The content and stability (retention) to dry heat in a conventional oven (DHCO) and extrusion of tocochromanols and carotenoids in sorghum genotypes were evaluated. One hundred sorghum genotypes showed high variability in tocochromanol content (280.7-2962.4 μg/100g in wet basis) and 23% of the genotypes were classified as source of vitamin E. The total carotenoid varied from 2.12 to 85.46 μg/100g in one hundred sorghum genotypes. According to the genetic variability for carotenoids and tocochromanols, the 100 genotypes were grouped into 7 groups. The retention of the total tocochromanols and α-tocopherol equivalent decreased after extrusion (69.1-84.8% and 52.4-85.0%, respectively) but increased after DHCO (106.8-114.7% and 109.9-115.8%, respectively). Sorghum carotenoids were sensitive to extrusion (30.7-37.1%) and DHCO (58.6-79.2%). In conclusion, the tocochromanols profile in sorghum varied widely and the genotypes presented high genetic variability for carotenoids and tocochromanols. Sorghum was a source of tocochromanols, which increased after DHCO and decreased after extrusion. The carotenoid content in sorghum decreased after DHCO and extrusion.

  1. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.: A Review

    Directory of Open Access Journals (Sweden)

    Miriana Durante

    2014-04-01

    Full Text Available Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp. flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE, have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2 extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1 dehydration pre-treatments; (2 extraction parameters (temperature and pressure; the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  2. Screening South African potato, tomato and wheat cultivars for five carotenoids

    Directory of Open Access Journals (Sweden)

    Charlotte S. Mashaba

    2011-09-01

    Full Text Available In South Africa malnutrition is of great concern. Vitamin A deficiency is one of the leading causes of infections as a result of micronutrient malnutrition. Although supplementation and food fortification programmes exist, these either are not available or are unaffordable to communities in remote rural areas. The selection of crops that are naturally rich in provitamin A (β-carotene and other carotenoids that can be recommended to small-scale farmers for breeding and for food production, could be an effective way to address vitamin A deficiencies and associated diseases. The aim of this study was to profile two cultivars each of potato, tomato, bread wheat and durum wheat, which are highly consumed crops in South Africa, for their carotenoid content using high-performance liquid chromatography. To this effect, reliable extraction and quantification of five carotenoids – lutein, zeaxanthin, canthaxanthin, β-carotene and lycopene – were performed for these crops. Lutein and zeaxanthin were found to be the major carotenoids in potato, whilst lycopene was the major carotenoid in tomato. In durum wheat, only lutein and zeaxanthin were identified whilst bread wheat contained lutein, zeaxanthin and β-carotene. The methodology used proved to be robust and suitable to screen a large number of potato, tomato and wheat cultivars for their carotenoid content.

  3. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health.

    Science.gov (United States)

    Khachik, Frederick; Carvalho, Lorena; Bernstein, Paul S; Muir, Garth J; Zhao, Da-You; Katz, Nikita B

    2002-11-01

    Recent epidemiological studies have suggested that the consumption of tomatoes and tomato-based food products reduce the risk of prostate cancer in humans. This protective effect has been attributed to carotenoids, which are one of the major classes of phytochemicals in this fruit. The most abundant carotenoid in tomato is lycopene, followed by phytoene, phytofluene, zeta-carotene, gamma-carotene, beta-carotene, neurosporene, and lutein. The distribution of lycopene and related carotenoids in tomatoes and tomato-based food products has been determined by extraction and high-performance liquid chromatography-UV/Visible photodiode array detection. Detailed qualitative and quantitative analysis of human serum, milk, and organs, particularly prostate, have revealed the presence of all the aforementioned carotenoids in biologically significant concentrations. Two oxidative metabolites of lycopene, 2,6-cyclolycopene-1,5-diols A and B, which are only present in tomatoes in extremely low concentrations, have been isolated and identified in human serum, milk, organs (liver, lung, breast, liver, prostate, colon) and skin. Carotenoids may also play an important role in the prevention of age-related macular degeneration, cataracts, and other blinding disorders. Among 25 dietary carotenoids and nine metabolites routinely found in human serum, mainly (3R,3'R,6'R)-lutein, (3R,3'R)-zeaxanthin, lycopene, and their metabolites were detected in ocular tissues. In this review we identified and quantified the complete spectrum of carotenoids from pooled human retinal pigment epithelium, ciliary body, iris, lens, and in the uveal tract and in other tissues of the human eye to gain a better insight into the metabolic pathways of ocular carotenoids. Although (3R,3'R,6'R)-lutein, (3R,3'R)-zeaxanthin, and their metabolites constitute the major carotenoids in human ocular tissues, lycopene and a wide range of dietary carotenoids have been detected in high concentrations in ciliary body and

  4. Method for producing highly conformal transparent conducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Mane, Anil U.

    2016-07-26

    A method for forming a transparent conducting oxide product layer. The method includes use of precursors, such as tetrakis-(dimethylamino) tin and trimethyl indium, and selected use of dopants, such as SnO and ZnO for obtaining desired optical, electrical and structural properties for a highly conformal layer coating on a substrate. Ozone was also input as a reactive gas which enabled rapid production of the desired product layer.

  5. Dietary carotenoids are associated with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations.

    Science.gov (United States)

    Wang, Ying; Chung, Sang-Jin; McCullough, Marjorie L; Song, Won O; Fernandez, Maria Luz; Koo, Sung I; Chun, Ock K

    2014-07-01

    Hyperlipidemia and elevated circulating C-reactive protein (CRP) and total homocysteine (tHcy) concentrations are cardiovascular disease (CVD) risk factors. Previous studies indicated that higher serum carotenoid concentrations were inversely associated with some of these biomarkers. However, whether dietary carotenoid intake is inversely associated with these CVD risk biomarkers is not well known. We assessed the associations between individual dietary carotenoid intake and CVD risk biomarkers and tested whether the serum carotenoid concentrations explain (mediate) or influence the strength of (moderate) the associations, if any association exists. Dietary data collected from 2 24-h dietary recalls and serum measurements in adult men (n = 1312) and women (n = 1544) from the NHANES 2003-2006 were used. Regression models designed for survey analysis were used to examine the associations between individual dietary carotenoids and log-transformed blood cholesterol, CRP, and tHcy. The corresponding individual serum carotenoid concentration was considered as mediator (and moderator if applicable). After adjustment for covariates, significant inverse associations with LDL cholesterol were observed for dietary β-carotene (P carotenoids (P carotenoid concentrations, indicating the complete mediation effects of serum carotenoids. Serum β-carotene significantly moderated the associations between dietary β-carotene and CRP (P-interaction 0.43 μmol/L. In this population-based cross-sectional study, serum carotenoids were mediators of dietary carotenoids and CVD risk biomarker associations. Serum β-carotene was also a moderator of the dietary β-carotene and CRP association. These findings may help in the design of future intervention studies on dietary carotenoids in the prevention of CVD.

  6. Estabilidad del Carotenoide Licopeno en Tomates en Conserva Lycopene Carotenoide Stability in Canned Tomatoes

    Directory of Open Access Journals (Sweden)

    Alicia L Ordóñez

    2009-01-01

    Full Text Available El objetivo de este trabajo fue determinar la estabilidad del carotenoide licopeno durante el proceso de elaboración de conservas de tomates peritas y evaluar la misma durante su almacenamiento como producto terminado. Se trabajó con muestras provenientes de elaboraciones industriales extraídas en distintos puntos del proceso: tomates frescos, en la boquilla de alimentación de la línea; tomate pelado, a la salida de la peladora termofísica y producto terminado a la salida del esterilizador-enfriador, de distintos lotes de elaboración y en tres ocasiones durante la temporada 2007. El producto terminado, envasado en hojalata, fue evaluado durante un año, cada tres meses. El licopeno fue extraído con una mezcla de hexano-acetona-etanol y determinado por espectrofotometría visible a 472nm. Los resultados se analizaron estadísticamente mostrando que la esterilización industrial produce liberación celular del licopeno.The objective of this work was to determine lycopene carotenoid stability during manufacturing process in canned peeled whole tomatoes and during its storage as final product. Samples were taken during industrial manufacturing at different process points: fresh tomatoes when they were feeding to process line, peeled tomatoes from thermophysical peeler and finished product after it passed the cooker-cooler. Samples were obtained from different manufacturing lots at three times during the 2007 harvesting season. Canned tomatoes were analyzed every three months, during one year. Lycopene was extracted with hexane-acetone-ethyl alcohol and measured by spectrophotometry at 472 nm. Statistical analysis of the results shows that industrial sterilization produces cell release of lycopene.

  7. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas.

  8. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Honkanen, Suvi; Kelly, Sharon; Niedzwiedzki, Dariusz M; Blankenship, Robert E; Shimizu, Yuuki; Wang-Otomo, Zheng-Yu; Cogdell, Richard J

    2014-11-01

    This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila.

  9. Holographic films from carotenoid pigments

    Science.gov (United States)

    Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.

  10. Enhanced Carotenoid Production by a Mutant of the Marine Yeast Rhodotorula sp. hidai

    Institute of Scientific and Technical Information of China (English)

    CONG Li; CHI Zhenming; LI Jing; WANG Xianghong

    2007-01-01

    After a serial of UV, EMS and NTG mutagenesis, a mutant named MM of the red marine yeast strain Rhodotorula sp.hidai was obtained. The mutant MM could produce 603.93 μg g-1 of carotenoid within 5 days in the medium containing 4.0 g sucrose,1.5 g yeast extract, 0.1 g MgSO4, and 100 mL of sea water, with pH 6.0 and at 30 ℃, while only 213.18 μg g-1 of carotenoid was produced by the wild type under the same conditions.

  11. An in vitro digestion method adapted for carotenoids and carotenoid esters: moving forward towards standardization.

    Science.gov (United States)

    Rodrigues, Daniele Bobrowski; Mariutti, Lilian Regina Barros; Mercadante, Adriana Zerlotti

    2016-12-07

    In vitro digestion methods are a useful approach to predict the bioaccessibility of food components and overcome some limitations or disadvantages associated with in vivo methodologies. Recently, the INFOGEST network published a static method of in vitro digestion with a proposal for assay standardization. The INFOGEST method is not specific for any food component; therefore, we aimed to adapt this method to assess the in vitro bioaccessibility of carotenoids and carotenoid esters in a model fruit (Byrsonima crassifolia). Two additional steps were coupled to the in vitro digestion procedure, centrifugation at 20 000g for the separation of the aqueous phase containing mixed micelles and exhaustive carotenoid extraction with an organic solvent. The effect of electrolytes, enzymes and bile acids on carotenoid micellarization and stability was also tested. The results were compared with those found with a simpler method that has already been used for carotenoid bioaccessibility analysis. These values were in the expected range for free carotenoids (5-29%), monoesters (9-26%) and diesters (4-28%). In general, the in vitro bioaccessibility of carotenoids assessed by the adapted INFOGEST method was significantly higher (p carotenoid form (free, monoester or diester), isomerization (Z/E) and the in vitro digestion protocol. To the best of our knowledge, it was the first time that a systematic identification of carotenoid esters by HPLC-DAD-MS/MS after in vitro digestion using the INFOGEST protocol was carried out.

  12. High strength alumina produced by direct coagulation casting

    Energy Technology Data Exchange (ETDEWEB)

    Baader, F.H.; Will, J.; Tieche, D. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    1995-09-01

    Direct Coagulation Casting is a new colloidal forming technique. Double layer stabilized, concentrated alumina suspensions are solidified by shifting the suspensions pH from 4 towards the isoelectric point at 9 using the in situ enzyme-catalyzed decomposition of urea. This reaction minimizes the repulsive forces between the suspended particles. The remaining, attractive Van der Waals forces form a stiff particle network. Suspensions with low viscosities (0.3 Pa*s, 59 vol%) were prepared at pH 4. Deagglomeration of the suspensions by ball milling reduced the agglomerate size below 5 pm. The coagulation kinetics could be influenced either by the urease concentration or by the suspension temperature. Process variables were established, providing long idle times, which allowed additional filtration and degassing steps. Coagulation was followed by drying and sintering, whereby densities of more than 3.97 g/cm{sup 3}, a 4-point bending strength of 685 MPa (HIPed) and a high reliablility (m = 40) for high purity alumina were achieved. DCC has the potential to improve the reliability of alumina components of complex shape, as well as to avoid expensive molding.

  13. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes

    OpenAIRE

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between t...

  14. High density THz frequency comb produced by coherent synchrotron radiation

    CERN Document Server

    Tammaro, S; Roy, P; Lampin, J -F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2014-01-01

    Frequency combs (FC) have radically changed the landscape of frequency metrology and high-resolution spectroscopy investigations extending tremendously the achievable resolution while increasing signal to noise ratio. Initially developed in the visible and near-IR spectral regions, the use of FC has been expanded to mid-IR, extreme ultra-violet and X-ray. Significant effort is presently dedicated to the generation of FC at THz frequencies. One solution based on converting a stabilized optical frequency comb using a photoconductive terahertz emitter, remains hampered by the low available THz power. Another approach is based on active mode locked THz quantum-cascade-lasers providing intense FC over a relatively limited spectral extension. Alternatively, here we show that dense powerful THz FC is generated over one decade of frequency by coherent synchrotron radiation (CSR). In this mode, the entire ring behaves in a similar fashion to a THz resonator wherein electron bunches emit powerful THz pulses quasi-synch...

  15. Differential effects of environment on potato phenylpropanoid and carotenoid expression

    Directory of Open Access Journals (Sweden)

    Payyavula Raja S

    2012-03-01

    Full Text Available Abstract Background Plant secondary metabolites, including phenylpropanoids and carotenoids, are stress inducible, have important roles in potato physiology and influence the nutritional value of potatoes. The type and magnitude of environmental effects on tuber phytonutrients is unclear, especially under modern agricultural management that minimizes stress. Understanding factors that influence tuber secondary metabolism could facilitate production of more nutritious crops. Metabolite pools of over forty tuber phenylpropanoids and carotenoids, along with the expression of twenty structural genes, were measured in high-phenylpropanoid purple potatoes grown in environmentally diverse locations in North America (Alaska, Texas and Florida. Results Phenylpropanoids, including chlorogenic acid (CGA, were higher in samples from the northern latitudes, as was the expression of phenylpropanoid genes including phenylalanine ammonia lyase (PAL, which had over a ten-fold difference in relative abundance. Phenylpropanoid gene expression appeared coordinately regulated and was well correlated with metabolite pools, except for hydroxycinnamoyl-CoA:quinatehydroxcinnamoyl transferase (HQT; r = -0.24. In silico promoter analysis identified two cis-acting elements in the HQT promoter not found in the other phenylpropanoid genes. Anthocyanins were more abundant in Alaskan samples and correlated with flavonoid genes including DFR (r = 0.91, UFGT (r = 0.94 and F3H (r = 0.77. The most abundant anthocyanin was petunidin-3-coum-rutinoside-5-glu, which ranged from 4.7 mg g-1 in Alaska to 2.3 mg g-1 in Texas. Positive correlations between tuber sucrose and anthocyanins (r = 0.85, suggested a stimulatory effect of sucrose. Smaller variation was observed in total carotenoids, but marked differences occurred in individual carotenoids, which had over a ten-fold range. Violaxanthin, lutein or zeaxanthin were the predominant carotenoids in tubers from Alaska, Texas and Florida

  16. Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux1[OPEN

    Science.gov (United States)

    Ohali, Shachar; Meir, Ayala; Sa’ar, Uzi; Mazourek, Michael; Lewinsohn, Efraim; Schaffer, Arthur A.; Burger, Joseph

    2017-01-01

    β-Carotene adds nutritious value and determines the color of many fruits, including melon (Cucumis melo). In melon mesocarp, β-carotene accumulation is governed by the Orange gene (CmOr) golden single-nucleotide polymorphism (SNP) through a yet to be discovered mechanism. In Arabidopsis (Arabidopsis thaliana), OR increases carotenoid levels by posttranscriptionally regulating phytoene synthase (PSY). Here, we identified a CmOr nonsense mutation (Cmor-lowβ) that lowered fruit β-carotene levels with impaired chromoplast biogenesis. Cmor-lowβ exerted a minimal effect on PSY transcripts but dramatically decreased PSY protein levels and enzymatic activity, leading to reduced carotenoid metabolic flux and accumulation. However, the golden SNP was discovered to not affect PSY protein levels and carotenoid metabolic flux in melon fruit, as shown by carotenoid and immunoblot analyses of selected melon genotypes and by using chemical pathway inhibitors. The high β-carotene accumulation in golden SNP melons was found to be due to a reduced further metabolism of β-carotene. This was revealed by genetic studies with double mutants including carotenoid isomerase (yofi), a carotenoid-isomerase nonsense mutant, which arrests the turnover of prolycopene. The yofi F2 segregants accumulated prolycopene independently of the golden SNP. Moreover, Cmor-lowβ was found to inhibit chromoplast formation and chloroplast disintegration in fruits from 30 d after anthesis until ripening, suggesting that CmOr regulates the chloroplast-to-chromoplast transition. Taken together, our results demonstrate that CmOr is required to achieve PSY protein levels to maintain carotenoid biosynthesis metabolic flux but that the mechanism of the CmOr golden SNP involves an inhibited metabolism downstream of β-carotene to dramatically affect both carotenoid content and plastid fate. PMID:27837090

  17. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Young Philip R

    2012-06-01

    berries. Conclusions The carotenoid metabolic pathway is well characterised, and the genes and enzymes have been studied in a number of plants. The study of the 42 carotenoid pathway genes of grapevine showed that they share a high degree of similarity with other eudicots. Expression and pigment profiling of developing berries provided insights into the most complete grapevine carotenoid pathway representation. This study represents an important reference study for further characterisation of carotenoid biosynthesis and catabolism in grapevine.

  18. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Science.gov (United States)

    2012-01-01

    carotenoid metabolic pathway is well characterised, and the genes and enzymes have been studied in a number of plants. The study of the 42 carotenoid pathway genes of grapevine showed that they share a high degree of similarity with other eudicots. Expression and pigment profiling of developing berries provided insights into the most complete grapevine carotenoid pathway representation. This study represents an important reference study for further characterisation of carotenoid biosynthesis and catabolism in grapevine. PMID:22702718

  19. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California, using laser Raman spectroscopy.

    Science.gov (United States)

    Winters, Y D; Lowenstein, T K; Timofeeff, M N

    2013-11-01

    Carotenoids are common components of many photosynthetic organisms and are well known from the red waters of hypersaline ecosystems where they are produced by halophilic algae and prokaryotes. They are also of great interest as biomarkers in extraterrestrial samples. Few laser Raman spectroscopy studies have examined ancient field samples, where pigments and microscopic life are less defined. Here, we have identified carotenoids in ancient halite brine inclusions, 9 ka to 1.44 Ma in age, from borehole cores taken from Death Valley, Saline Valley, and Searles Lake, California, for the first time with laser Raman spectroscopy. Carotenoids occurred in fluid inclusions as colorless to red-brown amorphous and crystalline masses associated with spheroidal algal cells similar in appearance to the common halophilic alga Dunaliella. Spectra from carotenoid standards, including β-carotene, lycopene, and lutein, were compared to microscopically targeted carotenoids in fluid inclusions. Carotenoids produced characteristic bands in the Raman spectrum, 1000-1020 cm⁻¹ (v₃), 1150-1170 cm⁻¹ (v₂), and 1500-1550 cm⁻¹ (v₁), when exposed to visible laser excitation. Laser Raman analyses confirmed the presence of carotenoids with these characteristic peaks in ancient halite. A number of band sets were repeated at various depths (ages), which suggests the stability of this class of organic molecules. Carotenoids appear well preserved in ancient salt, which supports other observations, for example, preserved DNA and live cells, that fluid inclusions in buried halite deposits preserve intact halophilic microbial ecosystems. This work demonstrates the value of laser Raman spectroscopy and carotenoids in extraterrestrial exploration for remnants of microbial life.

  20. Iridate compound produces extraordinarily high coercive magnetic field

    Science.gov (United States)

    Zapf, Vivien; Topping, Craig; Kim, Jae-Wook; Mun, Eun-Deok; Goddard, Paul; Ghannadzadeh, Saman; Luo, Xuan; Cheong, Sang-Wook; Singleton, John

    2014-03-01

    We present a data on an iridate compound that shows an extraordinarily large magnetic hysteresis loop. The coercive magnetic field exceeds 40 Tesla in single-crystal samples. The hysteresis coexists with a linear background, and the total remanent magnetization is about half a Bohr magneton. We will discuss the emergence of these properties from the interplay of spin-orbit coupling, magnetic exchange and possible frustration. The single crystalline material exhibits a magnetic hysteresis loop for one orientation of the magnetic field and a smooth linear increase in the magnetization with field for the other. Measurements were conducted in 65 T short-pulse magnets and the 60 Tesla shaped-pulse magnet at the National High Magnetic Field Lab in Los Alamos. We do not observe any dependence of the magnetic hysteresis on magnetic field sweep rate. Compounds containing Ir4 + have attracted attention recently due to strong spin-orbit coupling that competes with crystal-electric field and exchange interactions. This competition can result in non-Hund's-rule ground states with unusual properties.

  1. IMPORTANCE OF CAROTENOIDS FOR HUMAN HEALTH

    Directory of Open Access Journals (Sweden)

    Semih ÖTLEŞ

    1997-01-01

    Full Text Available Carotenoids are brightly yellow to red pigments occuring in plants and are introduced into humans through dietary intake of vegetables and fruits. They do not dissolve in water, they can give maximum absorption in UV region at 400-450 nm., and they are stable in alkali. Some carotenoids have provitamin A activity and they are important because of the synthesis of Vitamin A needed to be taken into the body. In addition to this function, carotenoids play very important roles in preventing diseases caused by Vitamin A deficiency, coronary heart diseases, and cancer. They are effective in preventing or at least slowering cancer as a result of their antioxidative properties. Studies are shown that cancer risk (especially the lung cancer decreases with the intake of carotenoids. As a conclusion vegetables and fruits-rich diet is always important and valuable for healty populations.

  2. Positive Carotenoid Balance Correlates with Greater Reproductive Performance in a Wild Bird

    Science.gov (United States)

    Safran, Rebecca J.; McGraw, Kevin J.; Wilkins, Matthew R.; Hubbard, Joanna K.; Marling, Julie

    2010-01-01

    Background Carotenoids can confer somatic and reproductive benefits, but most evidence is from captive animal experimentation or single time-point sampling. Another perhaps more informative means by which to assess physiological contributions to animal performance is by tracking an individual's ability to increase or sustain carotenoids or other health-related molecules over time, as these are likely to be temporally variable. Methodology/Principal Findings In a field study of North American barn swallows (Hirundo rustica erythrogaster), we analyzed within-individual changes in carotenoid concentrations by repeatedly sampling the carotenoid profiles of individuals over the course of the breeding season. Our results demonstrate that carotenoid concentrations of individuals are temporally dynamic and that season-long balance of these molecules, rather than single time-point samples, predict reproductive performance. This was true even when controlling for two important variables associated with reproductive outcomes: (1) timing of breeding and (2) sexually selected plumage coloration, which is itself positively correlated with and concomitantly changes with circulating carotenoid concentrations. Conclusions/Significance While reproduction itself is purported to impose health stress on organisms, these data suggest that free-ranging, high-quality individuals can mitigate such costs, by one or several genetic, environmental (diet), or physiological mechanisms. Moreover, the temporal variations in both health-linked physiological measures and morphological traits we uncover here merit further examination in other species, especially when goals include the estimation of signal information content or the costs of trait expression. PMID:20195540

  3. Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds.

    Science.gov (United States)

    Federico, M L; Schmidt, M A

    There is an increasing demand for carotenoids, which are fundamental components of the human diet, for example as precursors of vitamin A. Carotenoids are also potent antioxidants and their health benefits are becoming increasingly evident. Protective effects against prostate cancer and age-related macular degeneration have been proposed for lycopene and lutein/zeaxanthin, respectively. Additionally, β-carotene, astaxanthin and canthaxanthin are high-value carotenoids used by the food industry as feed supplements and colorants. The production and consumption of these carotenoids from natural sources, especially from seeds, constitutes an important step towards fortifying the diet of malnourished people in developing nations. Therefore, attempts to metabolically manipulate β-carotene production in plants have received global attention, especially after the generation of Golden Rice (Oryza sativa). The endosperms of Golden Rice seeds synthesize and accumulate large quantities of β-carotene (provitamin A), yielding a characteristic yellow color in the polished grains. Classical breeding efforts have also focused in the development of cultivars with elevated seed carotenoid content, with maize and other cereals leading the way. In this communication we will summarize transgenic efforts and modern breeding strategies to fortify various crop seeds with nutraceutical carotenoids.

  4. Positive carotenoid balance correlates with greater reproductive performance in a wild bird.

    Directory of Open Access Journals (Sweden)

    Rebecca J Safran

    Full Text Available BACKGROUND: Carotenoids can confer somatic and reproductive benefits, but most evidence is from captive animal experimentation or single time-point sampling. Another perhaps more informative means by which to assess physiological contributions to animal performance is by tracking an individual's ability to increase or sustain carotenoids or other health-related molecules over time, as these are likely to be temporally variable. METHODOLOGY/PRINCIPAL FINDINGS: In a field study of North American barn swallows (Hirundo rustica erythrogaster, we analyzed within-individual changes in carotenoid concentrations by repeatedly sampling the carotenoid profiles of individuals over the course of the breeding season. Our results demonstrate that carotenoid concentrations of individuals are temporally dynamic and that season-long balance of these molecules, rather than single time-point samples, predict reproductive performance. This was true even when controlling for two important variables associated with reproductive outcomes: (1 timing of breeding and (2 sexually selected plumage coloration, which is itself positively correlated with and concomitantly changes with circulating carotenoid concentrations. CONCLUSIONS/SIGNIFICANCE: While reproduction itself is purported to impose health stress on organisms, these data suggest that free-ranging, high-quality individuals can mitigate such costs, by one or several genetic, environmental (diet, or physiological mechanisms. Moreover, the temporal variations in both health-linked physiological measures and morphological traits we uncover here merit further examination in other species, especially when goals include the estimation of signal information content or the costs of trait expression.

  5. Effect of maternal Chlorella supplementation on carotenoid concentration in breast milk at early lactation.

    Science.gov (United States)

    Nagayama, Junya; Noda, Kiyoshi; Uchikawa, Takuya; Maruyama, Isao; Shimomura, Hiroshi; Miyahara, Michiyoshi

    2014-08-01

    Breast milk carotenoids provide neonates with a source of vitamin A and potentially, oxidative stress protection and other health benefits. Chlorella, which has high levels of carotenoids such as lutein, zeaxanthin and β-carotene, is an effective dietary source of carotenoids for humans. In this study, the effect of maternal supplementation with Chlorella on carotenoid levels in breast milk at early lactation was investigated. Ten healthy, pregnant women received 6 g of Chlorella daily from gestational week 16-20 until the day of delivery (Chlorella group); ten others did not (control group). Among the carotenoids detected in breast milk, lutein, zeaxanthin and β-carotene concentrations in the Chlorella group were 2.6-fold (p = 0.001), 2.7-fold (p = 0.001) and 1.7-fold (p = 0.049) higher, respectively, than those in the control group. Our study shows that Chlorella intake during pregnancy is effective in improving the carotenoid status of breast milk at early lactation.

  6. Resonance Raman measurements of carotenoids using light emitting diodes

    CERN Document Server

    Bergeson, S D; Eyring, N J; Fralick, J F; Stevenson, D N; Ferguson, S B

    2008-01-01

    We report on the development of a compact commercial instrument for measuring carotenoids in skin tissue. The instrument uses two light emitting diodes (LEDs) for dual-wavelength excitation and four photomultiplier tubes for multichannel detection. Bandpass filters are used to select the excitation and detection wavelengths. The f/1.3 optical system has high optical throughput and single photon sensitivity, both of which are crucial in LED-based Raman measurements. We employ a signal processing technique that compensates for detector drift and error. The sensitivity and reproducibility of the LED Raman instrument compares favorably to laser-based Raman spectrometers. This compact, portable instrument is used for non-invasive measurement of carotenoid molecules in human skin with a repeatability better than 10%.

  7. Correlations Between Macular, Skin, and Serum Carotenoids

    Science.gov (United States)

    Conrady, Christopher D.; Bell, James P.; Besch, Brian M.; Gorusupudi, Aruna; Farnsworth, Kelliann; Ermakov, Igor; Sharifzadeh, Mohsen; Ermakova, Maia; Gellermann, Werner; Bernstein, Paul S.

    2017-01-01

    Purpose Ocular and systemic measurement and imaging of the macular carotenoids lutein and zeaxanthin have been employed extensively as potential biomarkers of AMD risk. In this study, we systematically compare dual wavelength retinal autofluorescence imaging (AFI) of macular pigment with skin resonance Raman spectroscopy (RRS) and serum carotenoid levels in a clinic-based population. Methods Eighty-eight patients were recruited from retina and general ophthalmology practices from a tertiary referral center and excluded only if they did not have all three modalities tested, had a diagnosis of macular telangiectasia (MacTel) or Stargardt disease, or had poor AFI image quality. Skin, macular, and serum carotenoid levels were measured by RRS, AFI, and HPLC, respectively. Results Skin RRS measurements and serum zeaxanthin concentrations correlated most strongly with AFI macular pigment volume under the curve (MPVUC) measurements up to 9° eccentricity relative to MPVUC or rotationally averaged macular pigment optical density (MPOD) measurements at smaller eccentricities. These measurements were reproducible and not significantly affected by cataracts. We also found that these techniques could readily identify subjects taking oral carotenoid-containing supplements. Conclusions Larger macular pigment volume AFI and skin RRS measurements are noninvasive, objective, and reliable methods to assess ocular and systemic carotenoid levels. They are an attractive alternative to psychophysical and optical methods that measure MPOD at a limited number of eccentricities. Consequently, skin RRS and MPVUC at 9° are both reasonable biomarkers of macular carotenoid status that could be readily adapted to research and clinical settings. PMID:28728169

  8. Marine Carotenoids and Cardiovascular Risk Markers

    Directory of Open Access Journals (Sweden)

    Lorenza Speranza

    2011-06-01

    Full Text Available Marine carotenoids are important bioactive compounds with physiological activities related to prevention of degenerative diseases.found principally in plants, with potential antioxidant biological properties deriving from their chemical structure and interaction with biological membranes. They are substances with very special and remarkable properties that no other groups of substances possess and that form the basis of their many, varied functions and actions in all kinds of living organisms. The potential beneficial effects of marine carotenoids have been studied particularly in astaxanthin and fucoxanthin as they are the major marine carotenoids. Both these two carotenoids show strong antioxidant activity attributed to quenching singlet oxygen and scavenging free radicals. The potential role of these carotenoids as dietary anti-oxidants has been suggested to be one of the main mechanisms for their preventive effects against cancer and inflammatory diseases. The aim of this short review is to examine the published studies concerning the use of the two marine carotenoids, astaxanthin and fucoxanthin, in the prevention of cardiovascular diseases.

  9. Raman spectroscopy technology to monitor the carotenoids in skin of thalassemia patients: a novel non-invasive tool relating oxidative stress with iron burden

    Directory of Open Access Journals (Sweden)

    Anna Perrone

    2014-09-01

    Full Text Available In this work we approach the relationship between redox state and iron overload by noninvasive instrumental techniques. Intracardiac, liver iron and liver fibrosis have been monitored in transfusion-dependent thalassemia patients by magnetic resonance imaging and hepatic transient elastography examinations. These measurements have been matched with a non-invasive, and yet unexplored in clinical practice, evaluation of body’s oxidative stress through measurement of antioxidant carotenoids in skin, by a spectroscopic method based on Raman technology (RRS. The global body’s antioxidant status results from a balance between the level of antioxidants in cells and body fluids, including blood, and pro-oxidant species endogenously produced or coming from external sources. On this basis, the level of skin carotenoids can be considered a biomarker of the entire antioxidant status. In our work the use of RRS method provided information on the redox state of thalassemia patients, which was correlated with the iron status of the patients. Due to the highly adverse effects of accumulated iron, the novel, simple, non-invasive RRS to monitor dermal carotenoids with high compliance of the patients may be a useful tool for the management of thalassemia patients.

  10. The role of cis-carotenoids in abscisic acid biosynthesis.

    Science.gov (United States)

    Parry, A D; Babiano, M J; Horgan, R

    1990-08-01

    Evidence has been obtained which is consistent with 9'-cis-neoxanthin being a major precursor of abscisic acid (ABA) in higher plants. A mild, rapid procedure was developed for the extraction and analysis of carotenoids from a range of tissues. Once purified the carotenoids were identified from their light-absorbance properties, reactions with dilute acid, high-performance liquid chromatography Rts, mass spectra and the quasiequilibria resulting from iodine-catalysed or chlorophyllsensitised photoisomerisation. Two possible ABA precursors, 9'-cis-neoxanthin and 9-cis-violaxanthin, were identified in extracts of light-grown and etiolated leaves (of Lycopersicon esculentum, Phaseolus vulgaris, Vicia faba, Pisum sativum, Cicer arietinum, Zea mays, Nicotiana plumbaginifolia, Plantago lanceolata and Digitalis purpurea), and roots of light-grown and etiolated plants (Lycopersicon, Phaseolus and Zea). The 9,9'-di-cisisomer of violaxanthin was synthesised but its presence was not detected in any extracts. Levels of 9'-cis-neoxanthin and all-trans-violaxanthin were between 20- to 100-fold greater than those of ABA in light-grown leaves. The levels of 9-cis-violaxanthin were similar to those of ABA but unaffected by water stress. Etiolated Phaseolus leaves contained reduced amounts of carotenoids (15-20% compared with light-grown leaves) but retained the ability to synthesise large amounts of ABA. The amounts of ABA synthesised, measured as increases in ABA and its metabolites phaseic acid and dihydrophaseic acid, were closely matched by decreases in the levels of 9'-cis-neoxanthin and all-trans-violaxanthin. In etiolated seedlings grown on 50% D2O, deuterium incorporation into ABA was similar to that into the xanthophylls. Relative levels of carotenoids in roots and light-grown and etiolated leaves of the ABA-deficient mutants, notabilis, flacca and sitiens were the same as those found in wild-type tomato tissues.

  11. Carotenoid-dependent signals and the evolution of plasma carotenoid levels in birds

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Maia, Rafael; Leenknegt, Bas; Verhulst, Simon

    2014-01-01

    Sexual selection has resulted in a wide array of ornaments used in mate choice, and such indicator traits signal quality honestly when they bear costs, precluding cheating. Carotenoid-dependent coloration has attracted considerable attention in this context, because investing carotenoids in colorati

  12. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes.

    Science.gov (United States)

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between the carotenoid profile and the expression of carotenoid-biosynthetic genes is discussed. Finally, recent results of quantitative trait locus (QTL) analyses of carotenoid contents and expression levels of carotenoid-biosynthetic genes in citrus fruit are shown.

  13. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  14. Evidence for a photoprotective function for secondary carotenoids of snow algae

    Energy Technology Data Exchange (ETDEWEB)

    Bidigare, R.R.; Ondrusek, M.E. (Univ. of Hawaii, Honolulu, HI (United States)); Kennicutt, M.C. II (Geochemical Environmental Research Group, College Station, TX (United States)); Iturriaga, R. (Univ. of Southern California, Los Angeles, CA (United States)); Harvey, H.R. (Univ. of Maryland, Solomons, MD (United States)); Hoham, R.W. (Colgate Univ., Hamilton, NY (United States)); Macko, S.A. (Univ. of Virginia, Charlottesville, VA (United States))

    1993-08-01

    Snow algae occupy a unique habitat in high altitude and polar environments. These algae are often subject to extremes in nutrient availability, acidity, solar irradiance, desiccation, and ambient temperature. This report documents the accumulation of secondary carotenoids by snow algae in response to the availability of nitrogenous nutrients. Unusually large accumulations of astaxanthin esters in extra-chloroplastic lipid globules produce the characteristic red pigmentation typical of some snow algae (e.g., Chlamydomonas nivalis (Bauer) Wille). Consequently, these compounds greatly reduce the amount of light available for absorption by the light-harvesting pigment-protein complexes, thus potentially limiting photoinhibition and photodamage caused by intense solar radiation. The esterification of astaxanthin with fatty acids represents a possible mechanism by which this chromophore can be concentrated within cytoplasmic globules to maximize its photoprotective efficiency. 53 refs., 2 figs., 4 tabs.

  15. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture.

    Directory of Open Access Journals (Sweden)

    So-Hyun Kim

    Full Text Available Time-course variation of lipid and carotenoid production under high light (300 μE/m²s and nitrogen starvation conditions was determined in a Dunaliella tertiolecta strain. Nanoelectrospray (nanoESI chip based direct infusion was used for lipid analysis and ultra-performance liquid chromatography (UPLC coupled with a photodiode array (PDA or atmospheric chemical ionization mass spectrometry (APCI-MS was used for carotenoid analysis. A total of 29 lipids and 7 carotenoids were detected. Alterations to diacylglyceryltrimethylhomoserine (DGTS and digalactosyldiacylglycerol (DGDG species were significant observations under stress conditions. Their role in relation to the regulation of photosynthesis under stress condition is discussed in this study. The total carotenoid content was decreased under stress conditions, while ã-carotene was increased under nitrate-deficient cultivation. The highest productivity of carotenoid was attained under high light and nitrate sufficiency (HLNS condition, which result from the highest level of biomass under HLNS. When stress was induced at stationary phase, the substantial changes to the lipid composition occurred, and the higher carotenoid content and productivity were exhibited. This is the first report to investigate the variation of lipids, including glycerolipid, glycerophospholipid, and carotenoid in D. tertiolecta in response to stress conditions using lipidomics tools.

  16. Stable isotopes link diet to avian yolk carotenoid allocation: a comparative study of five auk species (Charadriiformes: Alcidae).

    Science.gov (United States)

    Hipfner, J Mark; Hobson, Keith A; Dale, James; McGraw, Kevin J

    2010-01-01

    The allocation of important but environmentally limited nutrients, such as carotenoids, often represents a trade-off between homeostasis and reproduction. However, key questions remain about how diet and species traits influence carotenoid allocation. We studied yolk carotenoid profiles and yolk color in relation to trophic level (based on delta(15)N values) in five species of seabirds belonging to the family Alcidae: common murre (Uria aalge), pigeon guillemot (Cepphus columba), Cassin's auklet (Ptychoramphus aleuticus), rhinoceros auklet (Cerorhinca monocerata), and tufted puffin (Fratercula cirrhata). In three species, which ranged from low (tufted puffin) to high (pigeon guillemot) trophic level, yolks had pink to red hues and contained exclusively astaxanthin, while yolks of species from a high trophic level (common murre) and from a generalist forager (rhinoceros auklet) had yellow to orange hues and contained astaxanthin, lutein, and zeaxanthin. The absence of a systematic relationship between trophic level and carotenoid types suggests that these species possess adaptations for the uptake and use of specific carotenoids. In contrast, total yolk carotenoid concentrations were best explained by the combination of species and trophic level: lower-trophic-level feeding was linked to production of carotenoid-rich yolks, both across species and within the one generalist species. We conclude that both behavioral and physiological traits can play strong roles in the acquisition and allocation of critical nutrients from mothers to their offspring.

  17. Carotene Hydroxylase Activity Determines the Levels of Both α-Carotene and Total Carotenoids in Orange Carrots[W

    Science.gov (United States)

    Arango, Jacobo; Jourdan, Matthieu; Geoffriau, Emmanuel; Beyer, Peter; Welsch, Ralf

    2014-01-01

    The typically intense carotenoid accumulation in cultivated orange-rooted carrots (Daucus carota) is determined by a high protein abundance of the rate-limiting enzyme for carotenoid biosynthesis, phytoene synthase (PSY), as compared with white-rooted cultivars. However, in contrast to other carotenoid accumulating systems, orange carrots are characterized by unusually high levels of α-carotene in addition to β-carotene. We found similarly increased α-carotene levels in leaves of orange carrots compared with white-rooted cultivars. This has also been observed in the Arabidopsis thaliana lut5 mutant carrying a defective carotene hydroxylase CYP97A3 gene. In fact, overexpression of CYP97A3 in orange carrots restored leaf carotenoid patterns almost to those found in white-rooted cultivars and strongly reduced α-carotene levels in the roots. Unexpectedly, this was accompanied by a 30 to 50% reduction in total root carotenoids and correlated with reduced PSY protein levels while PSY expression was unchanged. This suggests a negative feedback emerging from carotenoid metabolites determining PSY protein levels and, thus, total carotenoid flux. Furthermore, we identified a deficient CYP97A3 allele containing a frame-shift insertion in orange carrots. Association mapping analysis using a large carrot population revealed a significant association of this polymorphism with both α-carotene content and the α-/β-carotene ratio and explained a large proportion of the observed variation in carrots. PMID:24858934

  18. Carotene Hydroxylase Activity Determines the Levels of Both α-Carotene and Total Carotenoids in Orange Carrots.

    Science.gov (United States)

    Arango, Jacobo; Jourdan, Matthieu; Geoffriau, Emmanuel; Beyer, Peter; Welsch, Ralf

    2014-05-01

    The typically intense carotenoid accumulation in cultivated orange-rooted carrots (Daucus carota) is determined by a high protein abundance of the rate-limiting enzyme for carotenoid biosynthesis, phytoene synthase (PSY), as compared with white-rooted cultivars. However, in contrast to other carotenoid accumulating systems, orange carrots are characterized by unusually high levels of α-carotene in addition to β-carotene. We found similarly increased α-carotene levels in leaves of orange carrots compared with white-rooted cultivars. This has also been observed in the Arabidopsis thaliana lut5 mutant carrying a defective carotene hydroxylase CYP97A3 gene. In fact, overexpression of CYP97A3 in orange carrots restored leaf carotenoid patterns almost to those found in white-rooted cultivars and strongly reduced α-carotene levels in the roots. Unexpectedly, this was accompanied by a 30 to 50% reduction in total root carotenoids and correlated with reduced PSY protein levels while PSY expression was unchanged. This suggests a negative feedback emerging from carotenoid metabolites determining PSY protein levels and, thus, total carotenoid flux. Furthermore, we identified a deficient CYP97A3 allele containing a frame-shift insertion in orange carrots. Association mapping analysis using a large carrot population revealed a significant association of this polymorphism with both α-carotene content and the α-/β-carotene ratio and explained a large proportion of the observed variation in carrots. © 2014 American Society of Plant Biologists. All rights reserved.

  19. Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits.

    Science.gov (United States)

    Kilambi, Himabindu Vasuki; Kumar, Rakesh; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2013-04-01

    Tomato (Solanum lycopersicum) high-pigment mutants with lesions in diverse loci such as DNA Damage-Binding Protein1 (high pigment1 [hp1]), Deetiolated1 (hp2), Zeaxanthin Epoxidase (hp3), and Intense pigment (Ip; gene product unknown) exhibit increased accumulation of fruit carotenoids coupled with an increase in chloroplast number and size. However, little is known about the underlying mechanisms exaggerating the carotenoid accumulation and the chloroplast number in these mutants. A comparison of proteome profiles from the outer pericarp of hp1 mutant and wild-type (cv Ailsa Craig) fruits at different developmental stages revealed at least 72 differentially expressed proteins during ripening. Hierarchical clustering grouped these proteins into three clusters. We found an increased abundance of chromoplast-specific carotenoid-associated protein (CHRC) in hp1 fruits at red-ripe stage that is also reflected in its transcript level. Western blotting using CHRC polyclonal antibody from bell pepper (Capsicum annuum) revealed a 2-fold increase in the abundance of CHRC protein in the red-ripe stage of hp1 fruits compared with the wild type. CHRC levels in hp2 were found to be similar to that of hp1, whereas hp3 and Ip showed intermediate levels to those in hp1, hp2, and wild-type fruits. Both CHRC and carotenoids were present in the isolated plastoglobules. Overall, our results suggest that loss of function of DDB1, DET1, Zeaxanthin Epoxidase, and Ip up-regulates CHRC levels. Increase in CHRC levels may contribute to the enhanced carotenoid content in these high-pigment fruits by assisting in the sequestration and stabilization of carotenoids.

  20. Carotenoid intake and head and neck cancer: a pooled analysis in the International Head and Neck Cancer Epidemiology Consortium.

    Science.gov (United States)

    Leoncini, Emanuele; Edefonti, Valeria; Hashibe, Mia; Parpinel, Maria; Cadoni, Gabriella; Ferraroni, Monica; Serraino, Diego; Matsuo, Keitaro; Olshan, Andrew F; Zevallos, Jose P; Winn, Deborah M; Moysich, Kirsten; Zhang, Zuo-Feng; Morgenstern, Hal; Levi, Fabio; Kelsey, Karl; McClean, Michael; Bosetti, Cristina; Schantz, Stimson; Yu, Guo-Pei; Boffetta, Paolo; Lee, Yuan-Chin Amy; Chuang, Shu-Chun; Decarli, Adriano; La Vecchia, Carlo; Boccia, Stefania

    2016-04-01

    Food and nutrition play an important role in head and neck cancer (HNC) etiology; however, the role of carotenoids remains largely undefined. We explored the relation of HNC risk with the intake of carotenoids within the International Head and Neck Cancer Epidemiology Consortium. We pooled individual-level data from 10 case-control studies conducted in Europe, North America, and Japan. The analysis included 18,207 subjects (4414 with oral and pharyngeal cancer, 1545 with laryngeal cancer, and 12,248 controls), categorized by quintiles of carotenoid intake from natural sources. Comparing the highest with the lowest quintile, the risk reduction associated with total carotenoid intake was 39 % (95 % CI 29-47 %) for oral/pharyngeal cancer and 39 % (95 % CI 24-50 %) for laryngeal cancer. Intakes of β-carotene equivalents, β-cryptoxanthin, lycopene, and lutein plus zeaxanthin were associated with at least 18 % reduction in the rate of oral and pharyngeal cancer (95 % CI 6-29 %) and 17 % reduction in the rate of laryngeal cancer (95 % CI 0-32 %). The overall protective effect of carotenoids on HNC was stronger for subjects reporting greater alcohol consumption (p < 0.05). The odds ratio for the combined effect of low carotenoid intake and high alcohol or tobacco consumption versus high carotenoid intake and low alcohol or tobacco consumption ranged from 7 (95 % CI 5-9) to 33 (95 % CI 23-49). A diet rich in carotenoids may protect against HNC. Persons with both low carotenoid intake and high tobacco or alcohol are at substantially higher risk of HNC.

  1. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    Science.gov (United States)

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  2. Enzymology of the carotenoid cleavage dioxygenases: reaction mechanisms, inhibition and biochemical roles.

    Science.gov (United States)

    Harrison, Peter J; Bugg, Timothy D H

    2014-02-15

    Carotenoid cleavage dioxygenases (CCDs) are a large family of non-heme iron (II) dependent enzymes. CCDs catalyse the selective oxidative cleavage of carotenoids to produce apocarotenoids. Apocarotenoid derived molecules form important signalling molecules in plants in the form of abscisic acid and strigolactone and in mammals in the form of retinal. Very little is known biochemically about the CCDs and only a handful of CCDs have been biochemically characterised. Mechanistically, debate surrounds whether CCDs utilise a mono or dioxygenase mechanism. Here, we review the biochemical roles of CCDs, discuss the mechanisms by which CCD cleavage is proposed to occur, and discuss recent reports of selective CCD enzyme inhibitors.

  3. Comparison of three spectrophotometric methods for analysis of egg yolk carotenoids.

    Science.gov (United States)

    Islam, K M S; Schweigert, F J

    2015-04-01

    Carotenoids accumulated in the egg yolk are of importance for two reasons. Firstly they are important pigments influencing customer acceptance and secondly they are essential components with positive health effects either as antioxidants or as precursor of vitamin A. Different analytical methods are available to quantitatively identify carotenoids from egg yolk such as spectrophotometric methods described by AOAC (Association of Official Analytical Chemists) and HPLC (High Performance Liquid Chromatography). Both methods have in common that they are time consuming, need a laboratory environment and well trained technical operators. Recently, a rapid lab-independent spectrophotometric method (iCheck, BioAnalyt GmbH, Germany) has been introduced that claims to be less time consuming and easy to operate. The aim of the current study was therefore to compare the novel method with the two standard methods. Yolks of 80 eggs were analysed as aliquots by the three methods in parallel. While both spectrometric methods are only able measure total carotenoids as total ß-carotene, HPLC enables the determination of individual carotenoids such lutein, zeaxanthin, canthaxanthin, ß-carotene and β-apocarotenoic ester. In general, total carotenoids levels as obtained by AOAC were in average 27% higher than those obtained by HPLC. Carotenoid values obtained by the reference methods AOAC and HPLC are highly correlated with the iCheck method with r(2) of 0.99 and 0.94 for iCheck vs. AOAC and iCheck vs. HPLC, respectively (both p<0.001). Bland Altman analysis showed that the novel iCheck method is comparable to the reference methods. In conclusion, the novel rapid and portable iCheck method is a valid and effective tool to determine total carotenoid of egg yolk under laboratory-independent conditions with little trained personal.

  4. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage.

    Science.gov (United States)

    Gayen, Dipak; Ali, Nusrat; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2015-07-01

    Down-regulation of lipoxygenase enzyme activity reduces degradation of carotenoids of bio-fortified rice seeds which would be an effective tool to reduce huge post-harvest and economic losses of bio-fortified rice seeds during storage. Bio-fortified provitamin A-enriched rice line (golden rice) expressing higher amounts of β-carotene in the rice endosperm provides vitamin A for human health. However, it is already reported that degradation of carotenoids during storage is a major problem. The gene responsible for degradation of carotenoids during storage has remained largely unexplored till now. In our previous study, it has been shown that r9-LOX1 gene is responsible for rice seed quality deterioration. In the present study, we attempted to investigate if r9-LOX1 gene has any role in degradation of carotenoids in rice seeds during storage. To establish our hypothesis, the endogenous lipoxygenase (LOX) activity of high-carotenoid golden indica rice seed was silenced by RNAi technology using aleurone layer and embryo-specific Oleosin-18 promoter. To check the storage stability, LOX enzyme down-regulated high-carotenoid T3 transgenic rice seeds were subjected to artificial aging treatment. The results obtained from biochemical assays (MDA, ROS) also indicated that after artificial aging, the deterioration of LOX-RNAi lines was considerably lower compared to β-carotene-enriched transgenic rice which had higher LOX activity in comparison to LOX-RNAi lines. Furthermore, it was also observed by HPLC analysis that down-regulation of LOX gene activity decreases co-oxidation of β-carotene in LOX-RNAi golden rice seeds as compared to the β-carotene-enriched transgenic rice, after artificial aging treatment. Therefore, our study substantially establishes and verifies that LOX is a key enzyme for catalyzing co-oxidation of β-carotene and has a significant role in deterioration of β-carotene levels in the carotenoid-enriched golden rice.

  5. Reaction of carotenoids with CCl3OO· by using pulse radiolysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Wenen; (赵文恩); YAO; Side; (姚思德); WANG; Qiang; (王强); QIAN; Suping; (钱素平); WANG; Wenfeng; (王文峰); HAN; Yashan; (韩雅珊)

    2003-01-01

    The interactions of carotenoids (bixin, β-carotene and lycopene) with CCl3OO@ in aqueous and i-propylalcohol solution saturated with air have been studied by pulse radiolysis. For bixin and β-carotene reaction products from forming process, absorbing in the region of 650 nm, is observed with concomitant carotenoid bleaching (bixin at 500 nm, β-carotene at 450 nm). Their rate constants from forming process are 1.78×108 and 7.8×107 mol-1@L@s-1 respectively. However, in the case of lycopene, no such a forming process of reaction as bixin and β-carotene can be observed although there is the bleaching reaction (rate constant 4×107 mol-1@L@s-1). The results suggest that the carotenoid radical cationand an additional radical are produced in the case of bixin and β-carotene, whereas lycopene undergoes electron transfer with CCl3OO@, forming cation radical.

  6. Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit.

    Science.gov (United States)

    Rodríguez-Concepción, Manuel; Querol, Jordi; Lois, Luisa María; Imperial, Santiago; Boronat, Albert

    2003-07-01

    Carotenoids are plastidic isoprenoid pigments of great biological and biotechnological interest. The precursors for carotenoid production are synthesized through the recently elucidated methylerythritol phosphate (MEP) pathway. Here we have identified a tomato ( Lycopersicon esculentum Mill.) cDNA sequence encoding a full-length protein with homology to the MEP pathway enzyme hydroxymethylbutenyl 4-diphosphate synthase (HDS, also called GCPE). Comparison with other plant and bacterial HDS sequences showed that the plant enzymes contain a plastid-targeting N-terminal sequence and two highly conserved plant-specific domains in the mature protein with no homology to any other sequence in the databases. The ubiquitous distribution of HDS-encoding expressed sequence tags (ESTs) in the tomato collections suggests that the corresponding gene is likely expressed throughout the plant. The role of HDS in controlling the supply of precursors for carotenoid biosynthesis was estimated from the bioinformatic and molecular analysis of transcript abundance in different stages of fruit development. No significant changes in HDS gene expression were deduced from the statistical analysis of EST distribution during fruit ripening, when an active MEP pathway is required to support a massive accumulation of carotenoids. RNA blot experiments confirmed that similar transcript levels were present in both the wild-type and carotenoid-depleted yellow ripe ( r) mutant fruit independent of the stage of development and the carotenoid composition of the fruit. Together, our results are consistent with a non-limiting role for HDS in carotenoid biosynthesis during tomato fruit ripening.

  7. Supercritical Fluid Extraction of Palm Carotenoids

    Directory of Open Access Journals (Sweden)

    Puah C. Wei

    2005-01-01

    Full Text Available The extraction of carotenoids from crude palm oil was carried out in a dynamic (flow- through supercritical fluid extraction system. The carotenoids obtained were quantified using off-line UV-visible spectrophotometry. The effects of operating pressure and temperature, flow rate of the supercritical carbon dioxide (SC-CO2, sample size of feed used on the solubility of palm carotenoids were investigated. The results showed that the extraction of carotenoids was governed by its solubility in the SC-CO2 and can be enhanced by increasing pressure at a constant temperature or decreasing temperature at a constant pressure. Increasing the flow rate and decreasing the sample size can reduce the extraction time but do not enhance the solubility. Palm carotenoids have very low solubility in SC-CO2 in the range of 1.31 x 10-4 g kg-1 to 1.58 x 10-3 g kg-1 for the conditions investigated in this study. The experimental data obtained were compared with those published by other workers and correlated by a density-based equation as proposed by Chrastil.

  8. Determination of Carotenoids in the Fruit of Elaeagnus conferta Roxb. by High Performance Liquid Chromatography%密花胡颓子果实主要类胡萝卜素组分及含量分析

    Institute of Scientific and Technical Information of China (English)

    胡海涛; 金晓琴; 成龙平; 杨莉; 陈建华; 番汝昌; 杨玲

    2014-01-01

    Objective]The berry of Elaeagnus umbellata Thunb. was found to accumulate lycopene up to 54 mg per 100 g of fresh weight, which is about 17 times higher than that of tomato. However, little is known about the carotenoid composition and content in the big and good tasty flesh of E. conferta Roxb., also a member of Elaeagnaceae family. This study aimed to analyze carotenoid components and contents in the fruit of E. conferta Roxb. by high performance liquid chromatograph(HPLC)method.[Method] Methanol:chloroform (1:2 v/v) was used to extract carotenoids from ripe fruits of E. conferta Roxb.. The separation was carried on a YMC C30 (4.6 mm×250 mm, 5 µm, column temperature 235℃) and an injection volume was 20μL. Methanol (A), 80%methanol containing 0.2%ammonium acetate (B) and methyl tert-butyl ether (C) were used as the mobile phase at a flow rate of 1.0 mL·min-1 through gradient elution: (1) 0-6 min, 95%A+5%B; (2) 7-11 min, 80%A+5%B+15%C; (3) 12-32 min, 30%A+5%B+65%C;(4) 33 min to end, 95%A+5%B. The eluent was detected at 244 nm. [Result] Lycopene andβ-carotene were two major carotenoids in the flesh of E. conferta Roxb., and their content differed markedly between two genetic genotypes. Theβ-carotene content in Detianmihuahutuizi 1 was up to (231.84±16.00) µg·g-1DW, which is one of the highest ones in the known species. The flesh of Detianmihuahutuizi 2 contained lycopene of (1 054.10±29.19) µg·g-1DW, which is about seven times higher than that of tomato.[Conclusion]The results showed that the flesh of E. conferta Roxb. accumulated abundant lycopene andβ-carotene, which endow E. conferta Roxb. as a wilding fruit resource with great development and application value. Meanwhile, E. conferta Roxb. also is an ideal research material for studying molecular mechanism of high accumulation of lycopene andβ-carotene in fruit.%【目的】胡颓子属植物牛奶子果实大量积累番茄红素,高达番茄的17倍,而该属中果实大、口感好的密

  9. Genetics of carotenoids for provitamin A biofortification in tropical-adapted maize

    Directory of Open Access Journals (Sweden)

    Alhassan D. Halilu

    2016-08-01

    Full Text Available Yellow maize contains high levels of β-carotene (βC, making it an important crop for combating vitamin A deficiency through biofortification. In this study, nine maize inbred lines were selected at random from 31 provitamin A (PVA maize inbred lines and crossed in a partial diallel mating design to develop 36 crosses. The crosses were evaluated in the field in two locations (Samaru and Kerawa and their seed carotenoid content were determined by high-performance liquid chromatography. The modes of gene action, heritability, and correlations between agronomic traits and carotenoid content were estimated. Additive genetic variances (σ2a were lower than non-additive genetic variances (σ2d for all the carotenoids, plant height (PH, and grain yield (GY, suggesting a preponderance of non-additive gene action. Broad-sense heritability (H2 was high (H2 > 60% for zeaxanthin, days to anthesis, and PH, moderate (30% < H2 < 60% for lutein and GY, and low (H2 < 30% for alpha carotene, beta cryptoxanthin, βC, and PVA. Genetic advance as a percentage of mean, considered with H2, also suggests a preponderance of non-additive gene action for PVA carotenoids. Hybrid variety development is thus an appropriate approach to improving grain yield and PVA. GY showed no significant genotypic correlations with carotenoid content, suggesting that these traits can be improved concurrently. Thus, there is ample scope for improvement of PVA and GY in the sample of tropical-adapted maize.

  10. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara).

    Science.gov (United States)

    San-Jose, Luis M; Granado-Lorencio, Fernando; Sinervo, Barry; Fitze, Patrick S

    2013-03-01

    Abstract Carotenoids typically need reflective background components to shine. Such components, iridophores, leucophores, and keratin- and collagen-derived structures, are generally assumed to show no or little environmental variability. Here, we investigate the origin of environmentally induced variation in the carotenoid-based ventral coloration of male common lizards (Lacerta vivipara) by investigating the effects of dietary carotenoids and corticosterone on both carotenoid- and background-related reflectance. We observed a general negative chromatic change that was prevented by β-carotene supplementation. However, chromatic changes did not result from changes in carotenoid-related reflectance or skin carotenoid content but from changes in background-related reflectance that may have been mediated by vitamin A1. An in vitro experiment showed that the encountered chromatic changes most likely resulted from changes in iridophore reflectance. Our findings demonstrate that chromatic variation in carotenoid-based ornaments may not exclusively reflect differences in integumentary carotenoid content and, hence, in qualities linked to carotenoid deposition (e.g., foraging ability, immune response, or antioxidant capacity). Moreover, skin carotenoid content and carotenoid-related reflectance were related to male color polymorphism, suggesting that carotenoid-based coloration of male common lizards is a multicomponent signal, with iridophores reflecting environmental conditions and carotenoids reflecting genetically based color morphs.

  11. Subchromoplast sequestration of carotenoids affects regulatory mechanisms in tomato lines expressing different carotenoid gene combinations.

    Science.gov (United States)

    Nogueira, Marilise; Mora, Leticia; Enfissi, Eugenia M A; Bramley, Peter M; Fraser, Paul D

    2013-11-01

    Metabolic engineering of the carotenoid pathway in recent years has successfully enhanced the carotenoid contents of crop plants. It is now clear that only increasing biosynthesis is restrictive, as mechanisms to sequestrate these increased levels in the cell or organelle should be exploited. In this study, biosynthetic pathway genes were overexpressed in tomato (Solanum lycopersicum) lines and the effects on carotenoid formation and sequestration revealed. The bacterial Crt carotenogenic genes, independently or in combination, and their zygosity affect the production of carotenoids. Transcription of the pathway genes was perturbed, whereby the tissue specificity of transcripts was altered. Changes in the steady state levels of metabolites in unrelated sectors of metabolism were found. Of particular interest was a concurrent increase of the plastid-localized lipid monogalactodiacylglycerol with carotenoids along with membranous subcellular structures. The carotenoids, proteins, and lipids in the subchromoplast fractions of the transgenic tomato fruit with increased carotenoid content suggest that cellular structures can adapt to facilitate the sequestration of the newly formed products. Moreover, phytoene, the precursor of the pathway, was identified in the plastoglobule, whereas the biosynthetic enzymes were in the membranes. The implications of these findings with respect to novel pathway regulation mechanisms are discussed.

  12. High-throughput screening of high Monascus pigment-producing strain based on digital image processing.

    Science.gov (United States)

    Xia, Meng-lei; Wang, Lan; Yang, Zhi-xia; Chen, Hong-zhang

    2016-04-01

    This work proposed a new method which applied image processing and support vector machine (SVM) for screening of mold strains. Taking Monascus as example, morphological characteristics of Monascus colony were quantified by image processing. And the association between the characteristics and pigment production capability was determined by SVM. On this basis, a highly automated screening strategy was achieved. The accuracy of the proposed strategy is 80.6 %, which is compatible with the existing methods (81.1 % for microplate and 85.4 % for flask). Meanwhile, the screening of 500 colonies only takes 20-30 min, which is the highest rate among all published results. By applying this automated method, 13 strains with high-predicted production were obtained and the best one produced as 2.8-fold (226 U/mL) of pigment and 1.9-fold (51 mg/L) of lovastatin compared with the parent strain. The current study provides us with an effective and promising method for strain improvement.

  13. Differential Contribution of the First Two Enzymes of the MEP Pathway to the Supply of Metabolic Precursors for Carotenoid and Chlorophyll Biosynthesis in Carrot (Daucus carota)

    Science.gov (United States)

    Simpson, Kevin; Quiroz, Luis F.; Rodriguez-Concepción, Manuel; Stange, Claudia R.

    2016-01-01

    Carotenoids and chlorophylls are photosynthetic pigments synthesized in plastids from metabolic precursors provided by the methylerythritol 4-phosphate (MEP) pathway. The first two steps in the MEP pathway are catalyzed by the deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR) enzymes. While DXS has been recently shown to be the main flux-controlling step of the MEP pathway, both DXS and DXR enzymes have been proven to be able to promote an increase in MEP-derived products when overproduced in diverse plant systems. Carrot (Daucus carota) produces photosynthetic pigments (carotenoids and chlorophylls) in leaves and in light-exposed roots, whereas only carotenoids (mainly α- and β-carotene) accumulate in the storage root in darkness. To evaluate whether DXS and DXR activities influence the production of carotenoids and chlorophylls in carrot leaves and roots, the corresponding Arabidopsis thaliana genes were constitutively expressed in transgenic carrot plants. Our results suggest that DXS is limiting for the production of both carotenoids and chlorophylls in roots and leaves, whereas the regulatory role of DXR appeared to be minor. Interestingly, increased levels of DXS (but not of DXR) resulted in higher transcript abundance of endogenous carrot genes encoding phytoene synthase, the main rate-determining enzyme of the carotenoid pathway. These results support a central role for DXS on modulating the production of MEP-derived precursors to synthesize carotenoids and chlorophylls in carrot, confirming the pivotal relevance of this enzyme to engineer healthier, carotenoid-enriched products. PMID:27630663

  14. Carotenoid diagenesis in a marine sediment

    Science.gov (United States)

    Watts, C. D.; Maxwell, J. R.

    1977-01-01

    The major carotenoids at three levels (3, 40, and 175 m below the sediment-water interface) in a core from a marine sediment (Cariaco Trench, off Venezuela) have been examined. Mass and electronic spectral data have provided evidence for the onset of a progressive reduction of carotenoids in the geological column. The time scale of the process appears to depend on the particular carotenoid. Reduction of up to two double bonds is observed for the diol, zeaxanthin, in the oldest sediment (about 340,000 years old) but no reduction is observed in the younger samples (about 5000 and 56,000 years old). The diketone, canthaxanthin, shows evidence of reduction of up to two double bonds in the 56,000-yr sample and up to five double bonds in the oldest sample. No reduction of beta-carotene was observed in any of the samples.

  15. Application of a new red carotenoid pigment-producing bacterium ...

    African Journals Online (AJOL)

    reading 7

    microorganisms, especially in nearly all photosynthetic species (Marresca et al., 2007). ... the light (3,000 Lux), of Philips, a standard bulb, with compact size of 60 W. The culture broth was ... ml of the reaction mixture per min. Tanskul et al. 65.

  16. Ketocarotenoid circulation, but not retinal carotenoid accumulation, is linked to eye disease status in a wild songbird.

    Science.gov (United States)

    McGraw, Kevin J; Giraudeau, Mathieu; Hill, Geoffrey E; Toomey, Matthew B; Staley, Molly

    2013-11-15

    diseases of the eye evidently), our results point to either a high physiological cost of ketocarotenoid synthesis (as is argued in models of sexually selected carotenoid coloration) or high benefit of using this ketocarotenoid to combat infection.

  17. Dehydrolutein: a metabolically derived carotenoid never observed in raptors

    Institute of Scientific and Technical Information of China (English)

    David COSTANTINI; Vittorio BERTACCHE; Barbara PASTURA; Anthony TURK

    2009-01-01

    @@ Carotenoids are fat-soluble pigments synthesised by photosynthetic organisms (Brush, 1990). Conversely, animals are incapable of synthesizing carotenoids de novo, and they must obtain them through their diet. However, some animal species are able to make some alterations to the basic chemical structure, converting ingested carotenoids into more oxidized and differently coloured forms (Schiedt, 1998).

  18. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to d

  19. The fate of carotenoids in sediments: An overview

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.

    1997-01-01

    Despite carotenoids being abundant natural products, there are only scattered literature reports of carotenoid derivatives (mainly in the form of their 'perhydro' derivatives) in ancient sediments and petroleum. This was thought to be due to the sensitivity of carotenoids toward oxygen and their

  20. Dietary factors that affect the bioavailability of carotenoids

    NARCIS (Netherlands)

    Hof, van het K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G.A.J.

    2000-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. Various dietary factors have an effect on the bioavailability of carotenoids. The type of food matrix in which carotenoids are located is a major factor. The bioavailability of ß-carotene from

  1. Dietary intake of carotenoids and risk of type 2 diabetes

    NARCIS (Netherlands)

    Sluijs, I.; Cadier, E.; Beulens, J. W J; van der A, D. L.; Spijkerman, A. M W; van der Schouw, Y. T.

    2015-01-01

    Background and aims: Carotenoids may reduce diabetes risk, due to their antioxidant properties. However, the association between dietary carotenoids intake and type 2 diabetes risk is still unclear. Therefore, the objective of this study was to examine whether higher dietary carotenoid intakes assoc

  2. Carotenoid composition and vitamin A value in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.), 2 pepper species from the Andean region.

    Science.gov (United States)

    Rodríguez-Burruezo, Adrián; González-Mas, Maria del Carmen; Nuez, Fernando

    2010-10-01

    The carotenoid patterns of fully ripe fruits from 12 Bolivian accessions of the Andean peppers Capsicum baccatum (ají) and C. pubescens (rocoto) were determined by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA)-mass spectrometry (MS). We include 2 California Wonder cultivars as C. annuum controls. A total of 16 carotenoids were identified and differences among species were mostly found at the quantitative level. Among red-fruited genotypes, capsanthin was the main carotenoid in the 3 species (25% to 50% contribution to carotenoid fraction), although ajíes contained the lowest contribution of this carotenoid. In addition, the contribution of capsanthin 5,6-epoxide to total carotenoids in this species was high (11% to 27%) in comparison to rocotos and red C. annuum. Antheraxanthin and violaxanthin were, in general, the next most relevant carotenoids in the red Andean peppers (6.1% to 10.6%). Violaxanthin was the major carotenoid in yellow-/orange-fruited genotypes of the 3 species (37% to 68% total carotenoids), although yellow rocotos were characterized by lower levels (<45%). Cis-violaxanthin, antheraxanthin, and lutein were the next most relevant carotenoids in the yellow/orange Andean peppers (5% to 14%). As a whole, rocotos showed the highest contributions of provitamin A carotenoids to the carotenoid fraction. In terms of nutritional contribution, both ajíes and rocotos provide a remarkable provitamin A activity, with several accessions showing a content in retinol equivalents higher than California Wonder controls. Furthermore, levels of lutein in yellow/orange ajíes and rocotos were clearly higher than California Wonder pepper (≥1000 μg·100/g). Finally, the Andean peppers, particularly red ajíes, can be also considered as a noticeable source of capsanthin, the most powerful antioxidant compound among pepper carotenoids. Practical Application: Capsicum peppers are known for their content in carotenoids, although there is

  3. Determination of Other Related Carotenoids Substances in Astaxanthin Crystals Extracted from Adonis amurensis.

    Science.gov (United States)

    Zhang, Li-hua; Peng, Yong-jian; Xu, Xin-de; Wang, Sheng-nan; Yu, Lei-ming; Hong, Yi-min; Ma, Jin-ping

    2015-01-01

    Astaxanthin is a kind of important carotenoids with powerful antioxidation capacity and other health functions. Extracting from Adonis amurensis is a promising way to obtain natural astaxanthin. However, how to ensure the high purity and to investigate related substances in astaxanthin crystals are necessary issues. In this study, to identify possible impurities, astaxanthin crystal was first extracted from Adonis amurensis, then purified by saponification and separation. The concentration of total carotenoids in purified astaxanthin crystals was as high as 97% by weight when analyzed by UV-visible absorption spectra. After identified with TLC, HPLC and MS, besides free astaxanthin as main ingredient in the crystals, there existed four other unknown related substances, which were further investigated by HPLC/ESI/MS with the positive ion mode combining with other auxiliary reference data obtained in stress tests, at last it was confirmed that four related carotenoids substances were three structural isomers of semi-astacene and adonirubin.

  4. A small-scale method for quantitation of carotenoids in bacteria and yeasts.

    Science.gov (United States)

    Kaiser, Philipp; Surmann, Peter; Vallentin, Gerald; Fuhrmann, Herbert

    2007-07-01

    Microbial carotenoids are difficult to extract because of their embedding into a compact matrix and prominent sensitivity to degradation. Especially for carotenoid analysis of bacteria and yeasts, there is lack of information about capability, precision and recovery of the method used. Accordingly, we investigated feasibility, throughput and validity of a new small-scale method using Micrococcus luteus and Rhodotorula glutinis for testing purposes. For disintegration and extraction, we combined primarily mild techniques: enzymatically we used combinations of lysozyme and lipase for bacteria as well as lyticase and lipase for yeasts. Additional mechanical treatment included sonication and freeze-thawing cycles. Chemical treatment with dimethylsulfoxide was applied for yeasts only. For extraction we used a methanol-chloroform mixture stabilized efficiently with butylated hydroxytoluene and alpha-tocopherol. Separation of compounds was achieved with HPLC, applying a binary methanol/tert-butyl methyl ether gradient on a polymer reversed C30 phase. Substances of interest were detected and identified applying a photodiode-array (PDA) and carotenoids quantitated as all-trans-beta-carotene equivalents. For evaluation of recovery and reproducibility of the extraction method, we used beta-8'-apo-carotenal as internal standard. The method provides a sensitive tool for the determination of carotenoids from bacteria and yeasts and also for small changes in carotenoid spectrum of a single species. Corequisite large experiments are facilitated by the high throughput of the method.

  5. Spatial and Temporal Variation of Carotenoids in Four Species of Trentepohlia (Trentepohliales, Chlorophyta

    Directory of Open Access Journals (Sweden)

    Diana Kharkongor

    2015-01-01

    Full Text Available Trentepohlia Martius, a dominant green subaerial alga, grows abundantly in Shillong and imparts the yellow, red, and orange colours to most of the tree barks, walls, rocks, and electric poles because of high accumulation of carotenoids in their filaments. This study emphasised the seasonal changes in carotenoid content amongst four different species of Trentepohlia, that is, T. diffracta, T. arborum, T. umbrina, and T. abietina, collected from four different substrata, that is, wall, rock, electric pole, and three types of tree bark (smooth, fissured, and rough. Quantitative estimation of different carotenoids, namely, β-cryptoxanthin, lutein, and β-carotene, from HPLC chromatogram peak showed a significant seasonal variation in all of the four species and β-carotene was threefold more in winter compared to summer. Amongst the selected species, T. diffracta collected from wall contained the highest amount of β-carotene both in summer and in winter, followed by T. arborum from rock and T. abietina from bark, and least amount was in T. umbrina collected from electric pole. Comparing the carotenoid content in Trentepohlia abietina growing in different types of barks, sample from smooth bark had the highest amount of carotenoids both in summer and in winter, followed by the sample from rough bark, and lowest amount was noted in fissured bark.

  6. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology.

    Science.gov (United States)

    Jehlička, Jan; Edwards, Howell G M; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-12-13

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings.

  7. Identification and quantitative analysis of carotenoids and their esters from sarsaparilla (Smilax aspera L.) berries.

    Science.gov (United States)

    Delgado-Pelayo, Raúl; Hornero-Méndez, Dámaso

    2012-08-22

    The carotenoid composition of sarsaparilla ( Smilax aspera L.) berries has been analyzed for the first time. Lycopene was found to be the main carotenoid (242.44 μg/g fresh wt) in the pulp, followed by β-carotene (65.76 μg/g fresh wt) and β-cryptoxanthin (42.14 μg/g fresh wt; including the free and esterified forms). Other minor carotenoids were lycophyll (13.70 μg/g fresh wt), zeaxanthin (8.56 μg/g fresh wt; including the free and esterified forms), lutein (0.94 μg/g fresh wt), and antheraxanthin (0.58 μg/g fresh wt). β-Cryptoxanthin and zeaxanthin were present in free and esterified forms. β-Cryptoxanthin was mainly esterified with saturated fatty acids (capric, lauric, myristic, palmitic, and stearic), although a low amount of β-cryptoxanthin oleate was also detected. In the case of zeaxanthin, only a monoester with myristic acid (zeaxanthin monomyristate) was identified. The diverse carotenoid profile, some with provitamin A activity, together with the relatively high content, up to 375 μg/g fresh wt, makes sarsaparilla berries a potential source of carotenoids for the food, animal feed, and pharmaceutical industries.

  8. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Sun Ha; Park, Seyeon; Lee, Hyeong-Un; Lee, Joon Seol; Park, Woo Sung; Ahn, Mi-Jeong; Kim, Yun-Hee; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-01-01

    Sweetpotato [Ipomoea batatas (L.) Lam] is an important root crop that produces low molecular weight antioxidants such as carotenoids and anthocyanin. The sweetpotato orange (IbOr) protein is involved in the accumulation of carotenoids. To increase the levels of carotenoids in the storage roots of sweetpotato, we generated transgenic sweetpotato plants overexpressing IbOr-Ins under the control of the cauliflower mosaic virus (CaMV) 35S promoter in an anthocyanin-rich purple-fleshed cultivar (referred to as IbOr plants). IbOr plants exhibited increased carotenoid levels (up to 7-fold) in their storage roots compared to wild type (WT) plants, as revealed by HPLC analysis. The carotenoid contents of IbOr plants were positively correlated with IbOr transcript levels. The levels of zeaxanthin were ∼ 12 times elevated in IbOr plants, whereas β-carotene increased ∼ 1.75 times higher than those of WT. Quantitative RT-PCR analysis revealed that most carotenoid biosynthetic pathway genes were up-regulated in the IbOr plants, including PDS, ZDS, LCY-β, CHY-β, ZEP and Pftf, whereas LCY-ɛ was down-regulated. Interestingly, CCD1, CCD4 and NCED, which are related to the degradation of carotenoids, were also up-regulated in the IbOr plants. Anthocyanin contents and transcription levels of associated biosynthetic genes seemed to be altered in the IbOr plants. The yields of storage roots and aerial parts of IbOr plants and WT plants were not significantly different under field cultivation. Taken together, these results indicate that overexpression of IbOr-Ins can increase the carotenoid contents of sweetpotato storage roots.

  9. Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines ( Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand.

    Science.gov (United States)

    Stuetz, Wolfgang; Prapamontol, Tippawan; Hongsibsong, Surat; Biesalski, Hans-Konrad

    2010-05-26

    Polymethoxylated flavones (PMFs) and flavanone glycosides (FGs) were analyzed in hand-pressed juice and the peeled fruit of 'Sainampueng' tangerines ( Citrus reticulata Blanco cv. Sainampueng) grown in northern Thailand. The tangerines were collected from a citrus cluster of small orchard farmers and were cultivated as either agrochemical-based (AB), agrochemical-safe (AS), or organic grown fruits. Juice samples were also measured on contents of carotenoids, ascorbic acid, and tocopherols. The peel-deriving PMFs tangeretin, nobiletin, and sinensetin were found with high concentrations in juice as a result of simple squeezing, whereas amounts of those PMFs were negligibly low in peeled tangerine fruit. In contrast, the mean concentrations of the FGs narirutin, hesperidin, and didymin were several fold higher in peeled fruit than in tangerine juice and significantly higher in organic than AS and AB tangerines. Narirutin and hesperidin in juice from organic produces as well as narirutin in juice from AS produces were significantly higher than respective mean concentrations in juice from AB produces. beta-Cryptroxanthin was the predominant carotenoid beside zeaxanthin, lutein, lycopene, and beta-carotene in tangerine juice. Ascorbic acid concentrations were not predicted by the type of cultivation, whereas alpha-tocopherol was significantly higher in juice from organic than AS produces. In summary, hand-pressed juice of C. reticulata Blanco cv. Sainampueng serves as a rich source of PMFs, FGs, carotenoids, and antioxidants: 4-5 tangerine fruits ( approximately 80 g of each fruit) giving one glass of 200 mL hand-pressed juice would provide more than 5 mg of nobiletin and tangeretin and 36 mg of hesperidin, narirutin, and didymin, as well as 30 mg of ascorbic acid, >1 mg of provitamin A active beta-cryptoxanthin, and 200 microg of alpha-tocopherol.

  10. Carotenoid composition and in vitro pharmacological activity of rose hips.

    Science.gov (United States)

    Horváth, Györgyi; Molnár, Péter; Radó-Turcsi, Erika; Deli, József; Kawase, Masami; Satoh, Kazue; Tanaka, Toru; Tani, Satoru; Sakagami, Hiroshi; Gyémánt, Nóra; Molnár, József

    2012-01-01

    The aim of the present study was to compare carotenoid extracts of Rose hips (Rosa canina L.) with regard to their phytochemical profiles and their in vitro anti-Helicobacter pylori (H. pylori), cytotoxic, multidrug resistance (MDR) reversal and radical scavenging activity. Carotenoid composition was investigated in the different fractionation of rose hips, using extraction methods. Six main carotenoids - epimers of neochrome, lutein, zeaxanthin, rubixanthin, lycopene, β,β-carotene - were identified from Rose hips by their chromatographic behavior and UV-visible spectra, which is in accordance with other studies on carotenoids in this plant material. The active principles in the carotenoid extract might differ, depending upon the extraction procedures.

  11. Patterns of serum carotenoid accumulation and skin colour variation in kestrel nestlings in relation to breeding conditions and different terms of carotenoid supplementation

    NARCIS (Netherlands)

    Casagrande, Stefania; Costantini, David; Fanfani, Alberto; Tagliavini, James; Dell'Omo, Giacomo

    2007-01-01

    Carotenoids are pigments synthesised by autotrophic organisms. For nestlings of raptorial species, which obtain carotenoids from the consumption of other heterotrophic species, the access to these pigments can be crucial. Carotenoids, indeed, have fundamental health maintenance functions, especially

  12. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids

    Science.gov (United States)

    Minhas, Amritpreet K.; Hodgson, Peter; Barrow, Colin J.; Adholeya, Alok

    2016-01-01

    Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions. PMID:27199903

  13. S-layer proteins as a source of carotenoids: Isolation of the carotenoid cofactor deinoxanthin from its S-layer protein DR_2577.

    Science.gov (United States)

    Farci, Domenica; Esposito, Francesca; El Alaoui, Sabah; Piano, Dario

    2017-09-01

    S-layers are regular paracrystalline arrays of proteins or glycoproteins that characterize the outer envelope of several bacteria and archaea. The auto-assembling properties of these proteins make them suitable for application in nanotechnologies. However, the bacterial cell wall and its S-layer are also an important binding sites for carotenoids and they may represent a potential source of these precious molecules for industrial purposes. The S-layer structure and its components were extensively studied in the radio-resistant bacterium Deinococcus radiodurans, which for long time represented one of the model organisms in this respect. The protein DR_2577 has been shown to be one of the naturally over-expressed S-layer components in this bacterium. The present report describes a high scale purification procedure of this protein in solution. The purity of the samples, assayed by native and denaturing electrophoresis, showed how this method leads to a selective and high efficient recovery of the pure DR_2577. Recently, we have found that the deinoxanthin, a carotenoid typical of D. radiodurans, is a cofactor non covalently bound to the protein DR_2577. The pure DR_2577 samples may be precipitated or lyophilized and used as a source of the carotenoid cofactor deinoxanthin by an efficient extraction using organic solvents. The procedure described in this work may represent a general approach for the isolation of S-layer proteins and their carotenoids with potentials for industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  15. Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state

    Science.gov (United States)

    Zigmantas, Donatas; Hiller, Roger G.; Sundström, Villy; Polívka, Tomáš

    2002-01-01

    Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin–chlorophyll-a–protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600–1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency. PMID:12486228

  16. Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guajava L. cv. ´Criolla´) during fruit ripening.

    Science.gov (United States)

    Rojas-Garbanzo, Carolina; Gleichenhagen, Maike; Heller, Annerose; Esquivel, Patricia; Schulze-Kaysers, Nadine; Schieber, Andreas

    2017-03-16

    Pigments of pericarp and pulp of pink guava (Psidium guajava L. cv. ´Criolla´) were investigated to elucidate the profile and the accumulation of main carotenoids during four stages of fruit ripening by using HPLC-DAD and APCI-MS/MS analysis. Seventeen carotenoids were identified and changes in their profile during fruit ripening were observed. The carotenoids all-trans-β-carotene, 15-cis-lycopene, and all-trans-lycopene were present in all ripening stages, but all-trans-lycopene was found to be predominant (from 63 % to 92 % of total carotenoids) and responsible for the high lipophilic antioxidant capacity determined by spectrophotometric assays. By using light- and transmission electron microscopy, the development of chromoplasts in pericarp and pulp could be demonstrated. The accumulation of all-trans-lycopene and all-trans-β-carotene coincided with the development of large crystals; the chromoplasts of pink guava belong, therefore, to the crystalline type.

  17. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.

    Science.gov (United States)

    Cobbs, Cassidy; Heath, Jeremy; Stireman, John O; Abbot, Patrick

    2013-08-01

    Carotenoids are conjugated isoprenoid molecules with many important physiological functions in organisms, including roles in photosynthesis, oxidative stress reduction, vision, diapause, photoperiodism, and immunity. Until recently, it was believed that only plants, microorganisms, and fungi were capable of synthesizing carotenoids and that animals acquired them from their diet, but recent studies have demonstrated that two arthropods (pea aphid and spider mite) possess a pair of genes homologous to those required for the first step of carotenoid biosynthesis. Absent in all other known animal genomes, these genes appear to have been acquired by aphids and spider mites in one or several lateral gene transfer events from a fungal donor. We report the third case of fungal carotenoid biosynthesis gene homologs in an arthropod: flies from the family Cecidomyiidae, commonly known as gall midges. Using phylogenetic analyses we show that it is unlikely that lycopene cyclase/phytoene synthase and phytoene desaturase homologs were transferred singly to an ancient arthropod ancestor; instead we propose that genes were transferred independently from related fungal donors after divergence of the major arthropod lineages. We also examine variation in intron placement and copy number of the carotenoid genes that may underlie function in the midges. This trans-kingdom transfer of carotenoid genes may represent a key innovation, underlying the evolution of phytophagy and plant-galling in gall midges and facilitating their extensive diversification across plant lineages.

  18. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria.

    Science.gov (United States)

    Šlouf, Václav; Kuznetsova, Valentyna; Fuciman, Marcel; de Carbon, Céline Bourcier; Wilson, Adjélé; Kirilovsky, Diana; Polívka, Tomáš

    2017-01-01

    A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.

  19. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  20. Continuous production of carotenoids from Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2011-01-01

    During the in situ extraction of ß-carotene from Dunaliella salina, the causal relationship between carotenoid extraction and cell death indicated that cell growth and cell death should be at equilibrium for a continuous in situ extraction process. In a flat-panel photobioreactor that was operated a

  1. The intake of carotenoids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Jakobsen, Jette; Andersen, N. L.

    2000-01-01

    To estimate the intake of carotenoids in the Danish population Danish fruits and vegetables were screened with an HPLC method consisting of extraction with ethanol:tetrahydrofuran, separation by reversed phase HPLC with the mobile phase acetonitril:methanol:dichlormethan, triethylamin, BHT...

  2. Influence of Phenylalanine on Carotenoid Aggregation

    Science.gov (United States)

    Lu, L.; Ni, X.; Luo, X.

    2015-01-01

    The carotenoids lutein and β-carotene form, in 1:1 ethanol-water mixtures H-aggregates, of different strengths. The effects of phenylalanine on these aggregates were recorded by UV-Vis absorption, steady-state fluorescence, and Raman spectra. The H-aggregate of lutein was characterized by a large 78 nm blue shift in the absorption spectra, confirming the strong coupling between hydroxyl groups of adjacent molecules. The 15 nm blue shift in the β-carotene mixture also indicates that it was assembled by weak coupling between polyenes. After adding phenylalanine, the reducing absorption strength of the aggregates of lutein and reappearance of vibrational substructure indicate that the hydroxyl and amino groups of phenylalanine may coordinate to lutein and disaggregate the H-aggregates. However, phenylalanine had no effect on aggregates of β-carotene. The Raman spectra show three bands of carotenoids whose intensities decreased with increasing phenylalanine concentration. The frequency of ν1 corresponding to the length of the conjugated region was more sensitive to the solution of lutein. This coordination of phenylalanine to lutein could increase the length of the conjugated region. In addition, phenylalanine significantly affected the excited electronic states of carotenoids, which were crucial in the energy transfer from carotenoids to chlorophyll a in vivo.

  3. Long-lived coherence in carotenoids

    Science.gov (United States)

    Davis, J. A.; Cannon, E.; Van Dao, L.; Hannaford, P.; Quiney, H. M.; Nugent, K. A.

    2010-08-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the langS2|S0rang superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  4. Continuous production of carotenoids from Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2011-01-01

    During the in situ extraction of ß-carotene from Dunaliella salina, the causal relationship between carotenoid extraction and cell death indicated that cell growth and cell death should be at equilibrium for a continuous in situ extraction process. In a flat-panel photobioreactor that was operated

  5. Physalis alkekengi carotenoidic extract inhibitor of soybean lipoxygenase-1 activity.

    Science.gov (United States)

    Chedea, Veronica Sanda; Pintea, Adela; Bunea, Andrea; Braicu, Cornelia; Stanila, Andreea; Socaciu, Carmen

    2014-01-01

    The aim of this study was to evaluate the effect of the carotenoidic saponified extract of Physalis alkekengi sepals (PA) towards the lipoxygenase (LOX) oxidation of linoleic acid. Lipoxygenase activity in the presence of carotenoids, standard and from extract, was followed by its kinetic behaviour determining the changes in absorption at 234 nm. The standard carotenoids used were β-carotene (β-car), lutein (Lut), and zeaxanthin (Zea). The calculated enzymatic specific activity (ESA) after 600 s of reaction proves that PA carotenoidic extract has inhibitory effect on LOX oxidation of linoleic acid. A longer polyenic chain of carotenoid structure gives a higher ESA during the first reaction seconds. This situation is not available after 600 s of reaction and may be due to a destruction of this structure by cooxidation of carotenoids, besides the classical LOX reaction. The PA carotenoidic extract inhibiting the LOX-1 reaction can be considered a source of lipoxygenase inhibitors.

  6. Accumulation and bioavailability of dietary carotenoids in vegetable crops.

    Science.gov (United States)

    Kopsell, Dean A; Kopsell, David E

    2006-10-01

    Carotenoids are lipid-soluble pigments found in many vegetable crops that are reported to have the health benefits of cancer and eye disease reduction when consumed in the diet. Research shows that environmental and genetic factors can significantly influence carotenoid concentrations in vegetable crops, and that changing cultural management strategies could be advantageous, resulting in increased vegetable carotenoid concentrations. Improvements in vegetable carotenoid levels have been achieved using traditional breeding methods and molecular transformations to stimulate biosynthetic pathways. Postharvest and processing activities can alter carotenoid chemistry, and ultimately affect bioavailability. Bioavailability data emphasize the importance of carotenoid enhancement in vegetable crops and the need to characterize potential changes in carotenoid composition during cultivation, storage and processing before consumer purchase.

  7. TRACKING CHANGES IN CHLOROPHYLL AND CAROTENOIDS IN THE PRODUCTION PROCESS OF FROZEN SPINACH PURÉE

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2014-02-01

    Full Text Available Spinach is in the professional and general public considered highly nutritious vegetable with many beneficial effects on human health. It is a rich source of antioxidant active substances, especially chlorophyll, carotenoids, flavonoids and minerals especially zinc and copper. This work studies the changes of chlorophyll and carotenoids that occur after mass production technology of freezing at -37 °C. Before freezing was used blanching operation. In this work we used a variety Boeing, Boa, Beaver, Hudson and Chica. The highest content of all monitored parameters are found in fresh leaves of sampled Hudson. We found that within the processing decreases chlorophyll in 16.6%, 13.8% of chlorophyll b and carotenoids of 6.15%. This decrease was in all cases statistically significant.

  8. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  9. Simple saponification method for the quantitative determination of carotenoids in green vegetables.

    Science.gov (United States)

    Larsen, Erik; Christensen, Lars P

    2005-08-24

    A simple, reliable, and gentle saponification method for the quantitative determination of carotenoids in green vegetables was developed. The method involves an extraction procedure with acetone and the selective removal of the chlorophylls and esterified fatty acids from the organic phase using a strongly basic resin (Ambersep 900 OH). Extracts from common green vegetables (beans, broccoli, green bell pepper, chive, lettuce, parsley, peas, and spinach) were analyzed by high-performance liquid chromatography (HPLC) for their content of major carotenoids before and after action of Ambersep 900 OH. The mean recovery percentages for most carotenoids [(all-E)-violaxanthin, (all-E)-lutein epoxide, (all-E)-lutein, neolutein A, and (all-E)-beta-carotene] after saponification of the vegetable extracts with Ambersep 900 OH were close to 100% (99-104%), while the mean recovery percentages of (9'Z)-neoxanthin increased to 119% and that of (all-E)-neoxanthin and neolutein B decreased to 90% and 72%, respectively.

  10. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  11. What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards

    Science.gov (United States)

    Kopena, Renata; López, Pilar; Martín, José

    2014-12-01

    In spite that carotenoid-based sexual ornaments are one of the most popular research topics in sexual selection of animals, the antioxidant and immunostimulatory role of carotenoids, presumably signaled by these colorful ornaments, is still controversial. It has been suggested that the function of carotenoids might not be as an antioxidant per se, but that colorful carotenoids may indirectly reflect the levels of nonpigmentary antioxidants, such as melatonin or vitamin E. We experimentally fed male Iberian green lizards ( Lacerta schreiberi) additional carotenoids or vitamin E alone, or a combination of carotenoids and vitamin E dissolved in soybean oil, whereas a control group only received soybean oil. We examined the effects of the dietary supplementations on phytohaemagglutinin (PHA)-induced skin-swelling immune response and body condition. Lizards that were supplemented with vitamin E alone or a combination of vitamin E and carotenoids had greater immune responses than control lizards, but animals supplemented with carotenoids alone had lower immune responses than lizards supplemented with vitamin E and did not differ from control lizards. These results support the hypothesis that carotenoids in green lizards are not effective as immunostimulants, but that they may be visually signaling the immunostimulatory effects of non-pigmentary vitamin E. In contrast, lizards supplemented with carotenoids alone have higher body condition gains than lizards in the other experimental groups, suggesting that carotenoids may be still important to improve condition.

  12. Evaluation of dietary patterns among Norwegian postmenopausal women using plasma carotenoids as biomarkers.

    Science.gov (United States)

    Markussen, Marianne S; Veierød, Marit B; Sakhi, Amrit K; Ellingjord-Dale, Merete; Blomhoff, Rune; Ursin, Giske; Andersen, Lene F

    2015-02-28

    A number of studies have examined dietary patterns in various populations. However, to study to what extent such patterns capture meaningful differences in consumption of foods is of interest. In the present study, we identified important dietary patterns in Norwegian postmenopausal women (age 50-69 years, n 361), and evaluated these patterns by examining their associations with plasma carotenoids. Diet was assessed by a 253-item FFQ. These 253 food items were categorised into forty-six food groups, and dietary patterns were identified using principal component analysis. We used the partial correlation coefficient (r(adj)) and multiple linear regression analysis to examine the associations between the dietary patterns and the plasma carotenoids α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene and zeaxanthin. Overall, four dietary patterns were identified: the 'Western'; 'Vegetarian'; 'Continental'; 'High-protein'. The 'Western' dietary pattern scores were significantly inversely correlated with plasma lutein, zeaxanthin, lycopene and total carotenoids (-0·25 ≤ r(adj) ≤ -0·13). The 'Vegetarian' dietary pattern scores were significantly positively correlated with all the plasma carotenoids (0·15 ≤ r(adj) ≤ 0·24). The 'Continental' dietary pattern scores were significantly inversely correlated with plasma lutein and α-carotene (r(adj) = -0·13). No significant association between the 'High-protein' dietary pattern scores and the plasma carotenoids was found. In conclusion, the healthy dietary pattern, the 'Vegetarian' pattern, is associated with a more favourable profile of the plasma carotenoids than our unhealthy dietary patterns, the 'Western' and 'Continental' patterns.

  13. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution.

    Science.gov (United States)

    Fu, Weiqi; Guðmundsson, Olafur; Paglia, Giuseppe; Herjólfsson, Gísli; Andrésson, Olafur S; Palsson, Bernhard O; Brynjólfsson, Sigurður

    2013-03-01

    There is a particularly high interest to derive carotenoids such as β-carotene and lutein from higher plants and algae for the global market. It is well known that β-carotene can be overproduced in the green microalga Dunaliella salina in response to stressful light conditions. However, little is known about the effects of light quality on carotenoid metabolism, e.g., narrow spectrum red light. In this study, we present UPLC-UV-MS data from D. salina consistent with the pathway proposed for carotenoid metabolism in the green microalga Chlamydomonas reinhardtii. We have studied the effect of red light-emitting diode (LED) lighting on growth rate and biomass yield and identified the optimal photon flux for D. salina growth. We found that the major carotenoids changed in parallel to the chlorophyll b content and that red light photon stress alone at high level was not capable of upregulating carotenoid accumulation presumably due to serious photodamage. We have found that combining red LED (75 %) with blue LED (25 %) allowed growth at a higher total photon flux. Additional blue light instead of red light led to increased β-carotene and lutein accumulation, and the application of long-term iterative stress (adaptive laboratory evolution) yielded strains of D. salina with increased accumulation of carotenoids under combined blue and red light.

  14. Screening and breeding of high taxol producing fungi by genome shuffling

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To apply the fundamental principles of genome shuffling in breeding of taxol-producing fungi, Nodulisporium sylviform was used as starting strain in this work. The procedures of protoplast fusion and genome shuffling were studied. Three hereditarily stable strains with high taxol production were obtained by four cycles of genome shuffling. The qualitative and quantitative analysis of taxol produced was confirmed using thin-layer chromatography (TLC), high performance liquid chromatography (HPLC) and LC-MS. A high taxol producing fungus, Nodulisporium sylviform F4-26, was obtained, which produced 516.37 μg/L taxol. This value is 64.41% higher than that of the starting strain NCEU-1 and 31.52%―44.72% higher than that of the parent strains.

  15. Screening and breeding of high taxol producing fungi by genome shuffling

    Institute of Scientific and Technical Information of China (English)

    ZHAO Kai; PING WenXiang; ZHANG LiNa; LIU Jun; LIN Yan; JIN Tao; ZHOU DongPo

    2008-01-01

    To apply the fundamental principles of genome shuffling in breeding of taxol-producing fungi,Nodulisporium sylviform was used as starting strain in this work. The procedures of protoplast fusion and genome shuffling were studied. Three hereditarily stable strains with high taxol production were obtained by four cycles of genome shuffling. The qualitative and quantitative analysis of taxol produced was confirmed using thin-layer chromatography (TLC), high performance liquid chromatography (HPLC) and LC-MS. A high taxol producing fungus, Nodulisporlum sylviform F4-26, was obtained,which produced 516.37 μg/L taxol. This value is 64.41% higher than that of the starting strain NCEU-1 and 31.52%-44.72% higher than that of the parent strains.

  16. Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation

    Directory of Open Access Journals (Sweden)

    Toomey Matthew B

    2012-01-01

    Full Text Available Abstract Background The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviours and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus and assessed their mate choice behavior in response to color-manipulated male finches. Results Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited. Conclusions Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

  17. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women

    Directory of Open Access Journals (Sweden)

    Marcello Maggio

    2015-08-01

    Full Text Available Background. In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2 in a cohort of late post-menopausal women. Methods. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998–2000 by High-Performance Liquid Chromatography. Estradiol and testosterone (T levels were assessed by Radioimmunometry (RIA and testosterone-to-estradiol ratio (T/E2, as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1 and further adjusted for other confounders including Body Mass Index (BMI BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2 were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. Results. After adjustment for age, α-carotene (β ± SE = −0.01 ± 0.004, p = 0.02 and β-carotene (β ± SE = −0.07 ± 0.02, p = 0.0007 were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01. After adjustment for other confounders (Model 2, the inverse relationship between α-carotene (β ± SE = −1.59 ± 0.61, p = 0.01, β-carotene (β ± SE = −0.29

  18. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women

    Science.gov (United States)

    Maggio, Marcello; de Vita, Francesca; Lauretani, Fulvio; Bandinelli, Stefania; Semba, Richard D.; Bartali, Benedetta; Cherubini, Antonio; Cappola, Anne R.; Ceda, Gian Paolo; Ferrucci, Luigi

    2015-01-01

    Background. In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2) in a cohort of late post-menopausal women. Methods. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998–2000) by High-Performance Liquid Chromatography. Estradiol and testosterone (T) levels were assessed by Radioimmunometry (RIA) and testosterone-to-estradiol ratio (T/E2), as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1) and further adjusted for other confounders including Body Mass Index (BMI) BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2) were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. Results. After adjustment for age, α-carotene (β ± SE = −0.01 ± 0.004, p = 0.02) and β-carotene (β ± SE = −0.07 ± 0.02, p = 0.0007) were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01). After adjustment for other confounders (Model 2), the inverse relationship between α-carotene (β ± SE = −1.59 ± 0.61, p = 0.01), β-carotene (β ± SE = −0.29 ± 0.08, p

  19. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers

    Directory of Open Access Journals (Sweden)

    Pizzichini Daniele

    2007-03-01

    Full Text Available Abstract Background Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch and violaxanthin (in the beta-beta branch. None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold. Results In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species. Conclusion Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content.

  20. Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source

    Directory of Open Access Journals (Sweden)

    Chih-Chiang Wang

    2016-03-01

    Full Text Available Background: The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911 has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. Objective: This study aims to investigate the components of Lycogen™ and its anti-inflammatory properties and anti-oxidative activity. Design and results: The mutant strain R. sphaeroides (WL-APD911 whose carotenoid 1,2-hydratase gene has been altered by chemical mutagenesis was used for the production of a new carotenoid. The strain was grown at 30°C on Luria–Bertani (LB agar plates. After a 4-day culture period, the mutant strain displayed a 3.5-fold increase in carotenoid content, relative to the wild type. In the DPPH test, Lycogen™ showed more potent anti-oxidative activity than lycopene from the wild-type strain. Primary skin irritation test with hamsters showed no irritation response in hamster skins after 30 days of treatment with 0.2% Lycogen™. Chemical investigations of Lycogen™ using nuclear magnetic resonance (NMR 1H, 13C, and COSY/DQCOSY spectra have identified spheroidenone and methoxyneurosporene. Quantitative analysis of these identified compounds based on spectral intensities indicates that spheroidenone and methoxyneurosporene are major components (approximately 1:1; very small quantities of other derivatives are also present in the sample. Conclusions: In this study, we identified the major carotenoid compounds contained in Lycogen™, including spheroidenone and methoxyneurosporene by high-resolution NMR spectroscopy analysis. The carotenoid content of this mutant strain of R. sphaeroides was 3.5-fold higher than that in normal strain. Furthermore, Lycogen™ from the mutant strain is more potent than lycopene from the wild-type strain and does not cause irritation in hamster skins. These findings suggest that this mutant strain has the

  1. Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae).

    Science.gov (United States)

    Prum, Richard O; LaFountain, Amy M; Berro, Julien; Stoddard, Mary Caswell; Frank, Harry A

    2012-12-01

    Carotenoid pigments were extracted from 29 feather patches from 25 species of cotingas (Cotingidae) representing all lineages of the family with carotenoid plumage coloration. Using high-performance liquid chromatography (HPLC), mass spectrometry, chemical analysis, and ¹H-NMR, 16 different carotenoid molecules were documented in the plumages of the cotinga family. These included common dietary xanthophylls (lutein and zeaxanthin), canary xanthophylls A and B, four well known and broadly distributed avian ketocarotenoids (canthaxanthin, astaxanthin, α-doradexanthin, and adonixanthin), rhodoxanthin, and seven 4-methoxy-ketocarotenoids. Methoxy-ketocarotenoids were found in 12 species within seven cotinga genera, including a new, previously undescribed molecule isolated from the Andean Cock-of-the-Rock Rupicola peruviana, 3'-hydroxy-3-methoxy-β,β-carotene-4-one, which we name rupicolin. The diversity of cotinga plumage carotenoid pigments is hypothesized to be derived via four metabolic pathways from lutein, zeaxanthin, β-cryptoxanthin, and β-carotene. All metabolic transformations within the four pathways can be described by six or seven different enzymatic reactions. Three of these reactions are shared among three precursor pathways and are responsible for eight different metabolically derived carotenoid molecules. The function of cotinga plumage carotenoid diversity was analyzed with reflectance spectrophotometry of plumage patches and a tetrahedral model of avian color visual perception. The evolutionary history of the origin of this diversity is analyzed phylogenetically. The color space analyses document that the evolutionarily derived metabolic modifications of dietary xanthophylls have resulted in the creation of distinctive orange-red and purple visual colors.

  2. Carotenoids intake and asthma prevalence in Thai children

    Directory of Open Access Journals (Sweden)

    Sanguansak Rerksuppaphol

    2012-02-01

    Full Text Available Several antioxidant nutrients have been described to inversely correlate with asthma. In order to quantify the intake of these substances, it is possible to measure skin levels by Raman spectroscopy, a novel non-invasive technique that can also be used in children. This cross-sectional school-based study involved 423 children from a rural area of Thailand. Asthmatic children were diagnosed according to a Health Interview for Asthma Control questionnaire. Skin carotenoid levels were measured with Raman spectroscopy. Demographic data were obtained by directly interviewing children and their parents, whereas anthropometric parameters were measured by trained staff. Intake of carotenoids, vitamin A and C were evaluated by a food frequency questionnaire. Overall incidence of asthma in Thai schoolchildren (aged 3.5-17.8 years was 17.3%. There was no significant difference in dietary intake of carotenoids and vitamin A and C, and skin carotenoid level between asthmatic and nonasthmatic children. Skin carotenoid level significantly correlated with all carotenoids and vitamin A intake (P<0.05. Carotenoids and vitamin A and C intakes, and skin carotenoid levels were not associated with the risk of asthma in Thai children. Skin carotenoids correlated with all carotenoids and vitamin A intake in mild to moderate degrees. Raman spectroscopy was confirmed to be a useful tool to determine antioxidant skin levels.

  3. Resonance Raman imaging as a tool to assess the atmospheric pollution level: carotenoids in Lecanoraceae lichens as bioindicators.

    Science.gov (United States)

    Ibarrondo, I; Prieto-Taboada, N; Martínez-Arkarazo, I; Madariaga, J M

    2016-04-01

    Raman spectroscopy differentiation of carotenoids has traditionally been based on the ν 1 position (C = C stretching vibrations in the polyene chain) in the 1500-1600 cm(-1) range, using a 785 nm excitation laser. However, when the number of conjugated double bonds is similar, as in the cases of zeaxanthin and β-carotene, this distinction is still ambiguous due to the closeness of the Raman bands. This work shows the Raman results, obtained in resonance conditions using a 514 mm laser, on Lecanora campestris and Lecanora atra species, which can be used to differentiate and consequently characterize carotenoids. The presence of the carotenoid found in Lecanoraceae lichens has been demonstrated to depend on the atmospheric pollution level of the environment they inhabit. Astaxanthin, a superb antioxidant, appears as the principal xanthophyll in highly polluted sites, usually together with the UV screening pigment scytonemin; zeaxanthin is the major carotenoid in medium polluted environments, while β-carotene is the major carotenoid in cleaner environments. Based on these observations, an indirect classification of the stress suffered in a given environment can be assessed by simply analysing the carotenoid content in the Lecanoraceae lichens by using resonance Raman imaging.

  4. Dietary Carotenoids Regulate Astaxanthin Content of Copepods and Modulate Their Susceptibility to UV Light and Copper Toxicity

    Science.gov (United States)

    Caramujo, Maria-José; de Carvalho, Carla C. C. R.; Silva, Soraya J.; Carman, Kevin R.

    2012-01-01

    High irradiation and the presence of xenobiotics favor the formation of reactive oxygen species in marine environments. Organisms have developed antioxidant defenses, including the accumulation of carotenoids that must be obtained from the diet. Astaxanthin is the main carotenoid in marine crustaceans where, among other functions, it scavenges free radicals thus protecting cell compounds against oxidation. Four diets with different carotenoid composition were used to culture the meiobenthic copepod Amphiascoides atopus to assess how its astaxanthin content modulates the response to prooxidant stressors. A. atopus had the highest astaxanthin content when the carotenoid was supplied as astaxanthin esters (i.e., Haematococcus meal). Exposure to short wavelength UV light elicited a 77% to 92% decrease of the astaxanthin content of the copepod depending on the culture diet. The LC50 values of A. atopus exposed to copper were directly related to the initial astaxanthin content. The accumulation of carotenoids may ascribe competitive advantages to certain species in areas subjected to pollution events by attenuating the detrimental effects of metals on survival, and possibly development and fecundity. Conversely, the loss of certain dietary items rich in carotenoids may be responsible for the amplification of the effects of metal exposure in consumers. PMID:22822352

  5. Dietary Carotenoids Regulate Astaxanthin Content of Copepods and Modulate Their Susceptibility to UV Light and Copper Toxicity

    Directory of Open Access Journals (Sweden)

    Kevin R. Carman

    2012-04-01

    Full Text Available High irradiation and the presence of xenobiotics favor the formation of reactive oxygen species in marine environments. Organisms have developed antioxidant defenses, including the accumulation of carotenoids that must be obtained from the diet. Astaxanthin is the main carotenoid in marine crustaceans where, among other functions, it scavenges free radicals thus protecting cell compounds against oxidation. Four diets with different carotenoid composition were used to culture the meiobenthic copepod Amphiascoides atopus to assess how its astaxanthin content modulates the response to prooxidant stressors. A. atopus had the highest astaxanthin content when the carotenoid was supplied as astaxanthin esters (i.e., Haematococcus meal. Exposure to short wavelength UV light elicited a 77% to 92% decrease of the astaxanthin content of the copepod depending on the culture diet. The LC50 values of A. atopus exposed to copper were directly related to the initial astaxanthin content. The accumulation of carotenoids may ascribe competitive advantages to certain species in areas subjected to pollution events by attenuating the detrimental effects of metals on survival, and possibly development and fecundity. Conversely, the loss of certain dietary items rich in carotenoids may be responsible for the amplification of the effects of metal exposure in consumers.

  6. Dietary carotenoids regulate astaxanthin content of copepods and modulate their susceptibility to UV light and copper toxicity.

    Science.gov (United States)

    Caramujo, Maria-José; de Carvalho, Carla C C R; Silva, Soraya J; Carman, Kevin R

    2012-05-01

    High irradiation and the presence of xenobiotics favor the formation of reactive oxygen species in marine environments. Organisms have developed antioxidant defenses, including the accumulation of carotenoids that must be obtained from the diet. Astaxanthin is the main carotenoid in marine crustaceans where, among other functions, it scavenges free radicals thus protecting cell compounds against oxidation. Four diets with different carotenoid composition were used to culture the meiobenthic copepod Amphiascoides atopus to assess how its astaxanthin content modulates the response to prooxidant stressors. A. atopus had the highest astaxanthin content when the carotenoid was supplied as astaxanthin esters (i.e., Haematococcus meal). Exposure to short wavelength UV light elicited a 77% to 92% decrease of the astaxanthin content of the copepod depending on the culture diet. The LC(50) values of A. atopus exposed to copper were directly related to the initial astaxanthin content. The accumulation of carotenoids may ascribe competitive advantages to certain species in areas subjected to pollution events by attenuating the detrimental effects of metals on survival, and possibly development and fecundity. Conversely, the loss of certain dietary items rich in carotenoids may be responsible for the amplification of the effects of metal exposure in consumers.

  7. Preparation of carotenoids and chlorophylls from Gynostemma pentaphyllum (Thunb.) Makino and their antiproliferation effect on hepatoma cell.

    Science.gov (United States)

    Tsai, Yu-Chian; Wu, Wen-Bin; Chen, Bing-Huei

    2010-12-01

    A preparative column chromatographic method for isolation of carotenoids and chlorophylls from Gynostemma pentaphyllum, a traditional Chinese herb, was developed to evaluate their antiproliferative effects on the hepatoma cell Hep3B. An open column containing 70 g of magnesium oxide-diatomaceous earth (1:2.5, wt/wt) was used to elute carotenoid with 2% ethanol in ethyl acetate and chlorophyll with 50% ethanol in acetone. After high-performance liquid chromatography-mass spectrometry analysis, the carotenoid fraction was composed of all-trans- and cis-isomers of lutein, α-carotene, and β-carotene as well as epoxy-containing carotenoids, while the chlorophyll fraction consisted of chlorophylls a and b and their derivatives. Both carotenoid and chlorophyll fractions as well as lutein and chlorophyll a standards at 50-100 μg/mL were effective against Hep3B cells with a dose-dependent response with the following order: carotenoid fraction > chlorophyll fraction > lutein > chlorophyll a. For all treatments, the cell cycle was arrested in the G₀/G₁ phase, with Hep3B cells undergoing necrosis or apoptosis.

  8. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae.

    Science.gov (United States)

    Kvíčalová, Zuzana; Alster, Jan; Hofmann, Eckhard; Khoroshyy, Petro; Litvín, Radek; Bína, David; Polívka, Tomáš; Pšenčík, Jakub

    2016-04-01

    Room temperature transient absorption spectroscopy with nanosecond resolution was used to study quenching of the chlorophyll triplet states by carotenoids in two light-harvesting complexes of the dinoflagellate Amphidinium carterae: the water soluble peridinin-chlorophyll protein complex and intrinsic, membrane chlorophyll a-chlorophyll c2-peridinin protein complex. The combined study of the two complexes facilitated interpretation of a rather complicated relaxation observed in the intrinsic complex. While a single carotenoid triplet state was resolved in the peridinin-chlorophyll protein complex, evidence of at least two different carotenoid triplets was obtained for the intrinsic light-harvesting complex. Most probably, each of these carotenoids protects different chlorophylls. In both complexes the quenching of the chlorophyll triplet states by carotenoids occurs with a very high efficiency (~100%), and with transfer times estimated to be in the order of 0.1ns or even faster. The triplet-triplet energy transfer is thus much faster than formation of the chlorophyll triplet states by intersystem crossing. Since the triplet states of chlorophylls are formed during the whole lifetime of their singlet states, the apparent lifetimes of both states are the same, and observed to be equal to the carotenoid triplet state rise time (~5ns).

  9. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses.

    Science.gov (United States)

    Tian, Bing; Xu, Zhenjian; Sun, Zongtao; Lin, Jun; Hua, Yuejin

    2007-06-01

    Deinococcus radiodurans is highly resistant to reactive oxygen species (ROS). The antioxidant effect of carotenoids in D. radiodurans was investigated by using a targeted mutation of the phytoene synthase gene to block the carotenoid synthesis pathway and by evaluating the survival of cells under environmental stresses. The colorless mutant R1DeltacrtB of D. radiodurans failed to synthesize carotenoids, and was more sensitive to ionizing radiation, hydrogen peroxide, and desiccation than the wild type, suggesting that carotenoids in D. radiodurans help in combating environmental stresses. Chemiluminescence analyses showed that deinoxanthin, a major product in the carotenoid synthesis pathway, had significantly stronger scavenging ability on H2O2 and singlet oxygen than two carotenes (lycopene and beta-carotene) and two xanthophylls (zeaxanthin and lutein). Deinoxanthin also exhibited protective effect on DNA. Our findings suggest that the stronger antioxidant effect of deinoxanthin contribute to the resistance of D. radiodurans. The higher antioxidant effect of deinoxanthin may be attributed to its distinct chemical structure which has an extended conjugated double bonds and the presence of a hydroxyl group at C-1' position, compared with other tested carotenoids.

  10. Effect of sulfur and nitrogen fertilization on the content of nutritionally relevant carotenoids in spinach ( Spinacia oleracea ).

    Science.gov (United States)

    Reif, Constance; Arrigoni, Eva; Neuweiler, Reto; Baumgartner, Daniel; Nyström, Laura; Hurrell, Richard F

    2012-06-13

    Spinach is an important dietary source of lutein and β-carotene. Their synthesis is closely linked to chlorophyll synthesis and dependent upon an adequate supply of sulfur and nitrogen. Soils may become sulfur-deficient during winter because microorganisms convert atmospheric SO2 less efficiently to sulfate. The influence of sulfur and nitrogen fertilization on the carotenoid and chlorophyll contents of spinach grown in summer or winter was investigated. Carotenoid and chlorophyll levels were positively correlated. Lutein and β-carotene were 25% higher in summer than in winter. Winter levels were increased by 35-40% by sulfur fertilization in one location but not in the other, with the impact depending upon soil type, growing location, and atmospheric conditions. Carotenoids were little or not affected by nitrogen addition in winter or sulfur addition in summer. It is concluded that sulfur fertilization of spinach in winter may modestly increase carotenoids but high carotenoid levels are best assured with carotenoid-rich cultivars grown in summer.

  11. RICE PARBOILING WASTEWATER IN THE MAXIMIZATION OF CAROTENOIDS BIOPRODUCTION BY Phaffia rhodozyma

    Directory of Open Access Journals (Sweden)

    Danielle Alves da Silva Rios

    2015-08-01

    Full Text Available The interest in carotenoid production from natural sources has increased based in their possible use as dyes and their powerful biological antioxidant capacity. This study evaluated the use of rice parboiling wastewater (RPW as an alternative substrate for the bioproduction of carotenoids using the yeast Phaffia rhodozyma and found it to be promising as the only source of nutrients, reaching a concentration of 0.6 μg mL-1 (259.1 μg g-1 in 48 h. To increase the potential use of this industrial effluent, a study of supplementation was carried out to enhance the production of carotenoids using the methodology of experimental design (a 2IV 6-2 fractional factorial design sequenced by a 24 central composite design. The conditions for maximizing the production of carotenoids were (g L-1 malt extract (16.25, peptone (8.75, sucrose (15 and rice parboiling wastewater (87.5, with a pH of 5 at 25 °C and 150 rpm for 144 h, which produced a concentration 5.3 μg mL-1 (628.8 μg g-1.

  12. Simultaneous extraction and quantitation of carotenoids, chlorophylls, and tocopherols in Brassica vegetables.

    Science.gov (United States)

    Guzman, Ivette; Yousef, Gad G; Brown, Allan F

    2012-07-25

    Brassica oleracea vegetables, such as broccoli (B. oleracea L. var. italica) and cauliflower (B. oleracea L. var. botrytis), are known to contain bioactive compounds associated with health, including three classes of photosynthetic lipid-soluble compounds: carotenoids, chlorophylls, and tocopherols. Carotenoids and chlorophylls are photosynthetic pigments. Tocopherols have vitamin E activity. Due to genetic and environmental variables, the amounts present in vegetables are not constant. To aid breeders in the development of Brassica cultivars with higher provitamin A and vitamin E contents and antioxidant activity, a more efficient method was developed to quantitate carotenoids, chlorophylls, and tocopherols in the edible portions of broccoli and cauliflower. The novel UPLC method separated five carotenoids, two chlorophylls, and two tocopherols in a single 30 min run, reducing the run time by half compared to previously published protocols. The objective of the study was to develop a faster, more effective extraction and quantitation methodology to screen large populations of Brassica germplasm, thus aiding breeders in producing superior vegetables with enhanced phytonutrient profiles.

  13. Variation in retinol and carotenoid content of milk and milk products in the Netherlands

    NARCIS (Netherlands)

    Hulshof, P.J.M.; Roekel-Jansen, van G.C.; Bovenkamp, van de P.; West, C.E.

    2006-01-01

    Retinol and carotenoids were measured in Dutch milk and dairy products using a validated approach based on complete extraction of fat, followed by mild saponification and analysis by high-performance liquid chromatography. Raw milk, full fat milk, semi-skimmed milk and butter contain about 10 ¿g

  14. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hartgers, W.A.; Requejo, A.G.; Allan, J.; Hayes, J.M.; Ling, Y.; Xie, T.-M.; Primack, J.; Leeuw, J.W. de

    1994-01-01

    Pyrolysates of high-molecular-weight sedimentary fractions of the Duvernay Formation (Western Canada Basin) are dominated by 1,2,3,4- and 1,2,3,5-tetramethylbenzene, which, generated via beta-cleavage, indicate the presence of diaromatic carotenoids in the macromolecular aggregates. This was substan

  15. Exploiting direct and indirect methods for the detection of the total carotenoid content in dried pasta

    NARCIS (Netherlands)

    Doka, O.; Bicanic, D.D.; Végvári, G.; Buijnsters, J.G.; Spruijt, R.B.; Luterotti, S.

    2010-01-01

    The total carotenoid concentration (TCC) of several commercially available dried pastas prepared with or without eggs was assessed by means of the two well-established destructive approaches [spectrophotometry (SP) and high-performance liquid chromatography (HPLC)] and three non-destructive, direct

  16. Variation in retinol and carotenoid content of milk and milk products in the Netherlands

    NARCIS (Netherlands)

    Hulshof, P.J.M.; Roekel-Jansen, van G.C.; Bovenkamp, van de P.; West, C.E.

    2006-01-01

    Retinol and carotenoids were measured in Dutch milk and dairy products using a validated approach based on complete extraction of fat, followed by mild saponification and analysis by high-performance liquid chromatography. Raw milk, full fat milk, semi-skimmed milk and butter contain about 10 ¿g ret

  17. Exploiting direct and indirect methods for the detection of the total carotenoid content in dried pasta

    NARCIS (Netherlands)

    Doka, O.; Bicanic, D.D.; Végvári, G.; Buijnsters, J.G.; Spruijt, R.B.; Luterotti, S.

    2010-01-01

    The total carotenoid concentration (TCC) of several commercially available dried pastas prepared with or without eggs was assessed by means of the two well-established destructive approaches [spectrophotometry (SP) and high-performance liquid chromatography (HPLC)] and three non-destructive, direct

  18. Method for producing high carrier concentration p-Type transparent conducting oxides

    Science.gov (United States)

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  19. Carotenoid 3',4'-desaturase is involved in carotenoid biosynthesis in the radioresistant bacterium Deinococcus radiodurans.

    Science.gov (United States)

    Tian, Bing; Sun, Zongtao; Xu, Zhenjian; Shen, Shaochuan; Wang, Hu; Hua, Yuejin

    2008-12-01

    Deinococcus radiodurans strain R1 synthesizes deinoxanthin, a unique carotenoid product, which contributes to cell resistance following various stresses. The biosynthetic pathway of deinoxanthin is unclear, although several enzymes are presumed to be involved. The gene (dr2250) predicted by gene homologue analysis to encode carotenoid 3',4'-desaturase (CrtD) was deleted to investigate its function. A mutant deficient in the gene homologue of crtLm (dr0801) was also constructed to verify the catalytic function of the gene product in the native host. Carotenoid analysis of the resultant mutants verified that DR2250 encodes carotenoid 3',4'-desaturase, which catalyses the C-3',4'-desaturation of the monocyclic precursor of deinoxanthin but not acyclic carotenoids. Mutation of the gene homologue of crtLm (dr0801) resulted in accumulation of lycopene, confirming that it encodes the lycopene cyclase in the native host. The lack of CrtD decreased the antioxidant capacity of the mutant deficient in dr2250 compared with the wild-type, indicating that the C-3',4'-desaturation step contributes to the antioxidant capacity of deinoxanthin in D. radiodurans.

  20. Assessment of high and low enterotoxin A producing Staphylococcus aureus strains on pork sausage.

    Science.gov (United States)

    Zeaki, Nikoleta; Cao, Rong; Skandamis, Panagiotis N; Rådström, Peter; Schelin, Jenny

    2014-07-16

    Three Staphylococcus aureus strains representing different alleles of the Siphoviridae prophage-encoded enterotoxin A (SEA) gene, including two high-SEA-producing strains and one low-SEA-producing strain were studied to investigate sea expression and SEA formation on a frankfurter type of sausage. The effect of lactic acid, an antimicrobial compound used as a preservative in food, was also investigated on the same product. All three strains were grown on pork sausages at 15°C for 14days in the presence or absence of lactic acid (1 or 2% v/v). Growth, sea mRNA expression and SEA formation were regularly monitored and compared between non-treated and treated sausages. For all experiments performed, the extracellular SEA formation significantly differed between the high- and low-SEA-producing strains, although growth and viability were overall the same. For the low producer (Sa51), the accumulated amount of extracellular SEA formed after 14days was close to the detection limit (less than 1ng/g) in all conditions; while Sa21 and Sa17, the two high-producing strains, formed 250±25.37ng/g and 750±82.65ng/g in non-treated sausage and 150±75.75ng/g and 300±83.89ng/g when treated with 1% lactic acid, respectively, after 14days. Sausages treated with 2% lactic acid followed the same pattern as above, but with an extended lag phase to 4days and reduced levels of enterotoxin formed for all strains. The difference in the level of SEA between the two high-producing strains is most likely due to the different clonal lineages of the sea-encoded Siphoviridae phages where induction of the prophage potentially could be the reason for higher production of SEA in one of the lines. Furthermore, a prolonged expression of sea gene in the two high-producing strains was observed during the entire incubation period, while the sea expression was under the detection limit in the low-producing strain. This study indicates that the high-SEA-producing strains, especially the strains with the

  1. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    Science.gov (United States)

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  2. Quantitative determination of gibberellins by high performance liquid chromatography from various gibberellins producing Fusarium strains.

    Science.gov (United States)

    Bhalla, Kirti; Singh, Shashi Bala; Agarwal, Rashmi

    2010-08-01

    High performance liquid chromatographic (HPLC) method was developed for analysis of seven gibberellins, i.e., GA3, GA4, GA7, GA3 methyl ester, GA7 methyl ester 3,13 diacetate, GA7 methyl ester, and fusaric acid, using an isocratic system. Method was used for estimation of gibberellins from different Fusarium strains. Gibberellins were extracted from 28 strains of Fusarium, out of which six strains of Fusarium were isolated from soil of different parts of India and 22 strains were procured from the Indian Type Culture Collection, Indian Agricultural Research Institute, New Delhi. Extracts were analyzed for qualitative and quantitative estimation of gibberellins by thin layer chromatography and HPLC, respectively. On the basis of quantitative analysis of produced gibberellins by HPLC, they were categorized as low, moderate, and high gibberellin producing strain. For the first time, Fusarium solani was also reported as high GA3 producing strain.

  3. A visual method for direct selection of high-producing Pichia pastoris clones

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2011-03-01

    Full Text Available Abstract Background The methylotrophic yeast, Pichia pastoris, offers the possibility to generate a high amount of recombinant proteins in a fast and easy way to use expression system. Being a single-celled microorganism, P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. A simple and direct method for the selection of high-producing clones can dramatically enhance the whole production process along with significant decrease in production costs. Results A visual method for rapid selection of high-producing clones based on mannanase reporter system was developed. The study explained that it was possible to use mannanase activity as a measure of the expression level of the protein of interest. High-producing target protein clones were directly selected based on the size of hydrolysis holes in the selected plate. As an example, the target gene (9elp-hal18 was expressed and purified in Pichia pastoris using this technology. Conclusions A novel methodology is proposed for obtaining the high-producing clones of proteins of interest, based on the mannanase reporter system. This system may be adapted to other microorganisms, such as Saccharomyces cerevisiae for the selection of clones.

  4. Biotechnological production of value-added carotenoids from microalgae

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae. PMID:24691165

  5. Carotenoid:β-cyclodextrin stability is independent of pigment structure.

    Science.gov (United States)

    Fernández-García, Elisabet; Pérez-Gálvez, Antonio

    2017-04-15

    Carotenoids refer to a wide class of lipophilic pigments synthesized by plants, exert photoprotective and antioxidant properties that are lost upon carotenoid degradation. Their inclusion into hydrophilic host-molecules could improve their stability. Cyclodextrins, provide a hydrophobic cavity in the core of their structure while the outer configuration is suitable with aqueous environments. Carotenoids can accommodate into the hydrophobic core of cyclodextrins and therefore, they are protected from exogenous stress. Literature reported that carotenoid structure could modulate stability of the complexes, however no conclusions can be drawn as the studies performed so far were not completely analogous. We describe the synthesis of several carotenoids/β-CDs inclusion complexes and provide experimental evidences that β-CDs inclusion renders these compounds more stability towards the oxidizing agents (2,2'-azobis, 2-methylpropionamidine dihydrochloride and hydrogen peroxide). Esterified carotenoids were also used in this work to screen the influence of this particular structural configuration of xanthophylls against oxidation.

  6. Carotenoid extraction methods: A review of recent developments.

    Science.gov (United States)

    Saini, Ramesh Kumar; Keum, Young-Soo

    2018-02-01

    The versatile use of carotenoids in feed, food, cosmetic and pharmaceutical industries has emphasized the optimization of extraction methods to obtain the highest recovery. The choice of method for carotenoid extraction from food matrices is crucial, owing to the presence of diverse carotenoids with varied levels of polarity, and the presence of various physical and chemical barriers in the food matrices. This review highlights the theoretical aspects and recent developments of various conventional and nonconventional methods used for the extraction of carotenoids, including ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE). Recent applications of non-toxic and environmentally safe solvents (green solvents) and ionic liquids (IL) for carotenoid extraction are also described. Additionally, future research challenges in the context of carotenoids extractions are also identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Raman spectra of carotenoids in natural products

    Science.gov (United States)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  8. Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy.

    Science.gov (United States)

    Rubio-Diaz, Daniel E; Santos, Alejandra; Francis, David M; Rodriguez-Saona, Luis E

    2010-08-11

    Chemical changes in carotenoids and lipids were studied during production and storage of canned tomato juice using ATR infrared spectroscopy and HPLC. Samples from 10 groups of tomatoes with different carotenoid profiles were analyzed fresh, after hot-break and screening, after canning, and at five different time points during 1 year of storage. An apparent increase of carotenoids was observed after hot-break due to improved extraction efficiency. This increase was accompanied by some degree of lipid oxidation and carotenoid isomerization. Canning produced the most intense changes in the lipid profile with breakdown of triglycerides ( approximately 1743 cm(-1)), formation of fatty acids ( approximately 1712 cm(-1)), and degradation and isomerization of trans-carotenoids ( approximately 960 and approximately 3006 cm(-1)). Isomerization was corroborated by the relative increase of HPLC areas corresponding to carotenoid cis isomers. Canning reduced trans-lycopene, trans-delta-carotene, trans-beta-carotene, and trans-lutein by 30, 34, 43, and 67%, respectively. HPLC data indicate that canning causes a drastic reduction of tetra-cis-lycopene and promotes its isomerization to other geometric forms, including all-trans-lycopene. Infrared spectra of tomato juice lipid fractions correlated well with the number of days in storage (SECV 0.99), demonstrating continuous degradation of lipids. Results demonstrated that individual carotenoids and their isomeric forms behave differently during production and storage of canned tomato juice. Information collected by infrared spectroscopy complemented well that of HPLC, providing marker bands to further the understanding of chemical changes taking place during processing and storage of tomato juice.

  9. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  10. Dietary carotenoids in normal and pathological tissues of corpus uteri.

    Directory of Open Access Journals (Sweden)

    Sławomir Wołczyński

    2008-12-01

    Full Text Available Carotenoids and retinyl esters are the source of vitamin A in the human body and its natural derivatives takes part in the regulation of cell replication and differentiation in the human endometrium, may induce the leiomyoma growth and has a role in differentiation of endometrial adenocarcinoma. The aim of the study was to demonstrate the presence of carotenoids in tissues from the normal uterus and from various tumors of the uterine corpus, as well as to compare the total content, major carotenoids and % of carotenoids belonging to the provitamin A group between the tissues examined. Using three independent methods of chromatography (CC, TLC, HPLC we analysed 140 human samples. We identified 13 carotenoids belonging to the eg. provitamin A group and epoxy carotenoids. In all the samples beta-carotene, beta-cryptoxanthin, lutein, neoxanthin, violaxanthin and mutatoxanthin were isolated. In normal tissues, the mean carotenoid content was the highest in the follicular phase endometrium (9.9 microg/g, while the highest percentage of carotenoids belonging to provitamin A group was found in the luteal phase (18.2%. In the pathological group, the highest mean values were demonstrated for epithelial lesions (8.0 microg/g, and within this group - in endometrioid adenocarcinoma (10.8 microg/g. In both groups, violaxanthin, beta-cryptoxanthin, lutein epoxide and mutatoxanthin were the predominant carotenoids. We have demonstrated that all uterine tissues show a concentration of beta-carotene and beta-cryptoxanthin, being the source of vitamin A. The highest total values of carotenoids obtained in the group of endometrioid adenocarcinoma seem to confirm certain enzymatic defects in carotenoid metabolism in the course of the neoplastic process or some metabolic modifications. The finding of astaxanthin - the major antioxidant among carotenoids - in 63% of tissues examined is also significant.

  11. Carotenoid Antenna Binding and Function in Retinal Proteins

    Science.gov (United States)

    2012-08-13

    REPORT Carotenoid antenna binding and function in retinal proteins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Xanthorhodopsin, a proton pump from the...eubacterium Salinibacter ruber, is a unique dual chromophore system that contains, in addition to retinal, the carotenoid salinixanthin as a light... carotenoid ring near the retinal ring. Substitution of the small glycine with bulky tryptophan in this site eliminates binding. The second factor is the 4

  12. Effects of experimental brood size manipulation and gender on carotenoid levels of Eurasian Kestrels Falco tinnunculus

    NARCIS (Netherlands)

    Laaksonen, T.; Negro, J.J.; Lyytinen, S.; Valkama, J.; Ots, I.; Korpimäki, E.

    2008-01-01

    Animals use carotenoid-pigments for coloration, as antioxidants and as enhancers of the immune system. Carotenoid-dependent colours can thus signal individual quality and carotenoids have also been suggested to mediate life-history trade-offs.

  13. Presence of high-risk clones of OXA-23-producing Acinetobacter baumannii (ST79) and SPM-1-producing Pseudomonas aeruginosa (ST277) in environmental water samples in Brazil.

    Science.gov (United States)

    Turano, Helena; Gomes, Fernando; Medeiros, Micheli; Oliveira, Silvane; Fontes, Lívia C; Sato, Maria I Z; Lincopan, Nilton

    2016-09-01

    This study reports the presence of hospital-associated high-risk lineages of OXA-23-producing ST79 Acinetobacter baumannii and SPM-1-producing ST277 Pseudomonas aeruginosa in urban rivers in Brazil. These findings indicate that urban rivers can act as reservoirs of clinically important multidrug-resistant bacteria, which constitute a potential risk to human and animal health.

  14. Evaluation of Carotenoids and Chlorophyll as Natural Resources for Food in Spirulina Microalgae

    Directory of Open Access Journals (Sweden)

    M Ghaeni

    2014-12-01

    Full Text Available Microalgae can produce various natural products such as pigments, enzymes, unique fatty acids and vitamins that benefit humans. The objective of the study was evaluation of carotenoids (β-carotene, zeathanthin, lutein, lycopene and astaxanthin and chlorophyll a in spirulina microalgae. Spirulina powder has been produced by Jordan’s method in Iran. Carotenoids were extracted from Spirulina platensis by adopting a method described by Reboul; then the sample was prepared and injected into a HPLC instrument with triplicate injection. Chlorophyll`s biomass content was determined by spectrophotometer. After assaying the curves of HPLC, the amount of chlorophyll a, astaxanthin, beta carotene, lycopene, zeaxanthin and lutein in spirulina was determined as 4.3±0.14, 0.21±0.02, 7393±2.76, 741±2.32, 6652±3.69 and 424±2.83 μg/ml respectively (p<0.05.

  15. Cyclisation and aromatisation of carotenoids during sediment diagenesis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koster, J.; Baas, M.; Koopmans, M.; Kaam-Peters, H.M.E. van; Geenevasen, J.A.J.; Kruk, C.

    1995-01-01

    A novel diaryl isoprenoid with an additional aromatic ring, formed from the diaromatic carotenoid isorenieratene by cyclisation and aromatisation during sediment diagenesis, is identified in carbonaceous sedimentary rocks.

  16. Specific appetite for carotenoids in a colorful bird.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Senar

    Full Text Available BACKGROUND: Since carotenoids have physiological functions necessary for maintaining health, individuals should be selected to actively seek and develop a specific appetite for these compounds. METHODOLOGY/PRINCIPAL FINDINGS: Great tits Parus major in a diet choice experiment, both in captivity and the field, preferred carotenoid-enriched diets to control diets. The food items did not differ in any other aspects measured besides carotenoid content. CONCLUSIONS/SIGNIFICANCE: Specific appetite for carotenoids is here demonstrated for the first time, placing these compounds on a par with essential nutrients as sodium or calcium.

  17. Carboidratos e carotenoides totais em duas variedades de mangarito

    Directory of Open Access Journals (Sweden)

    Ana Paula Sato Ferreira

    2014-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição de carboidratos e carotenoides em rizomas mãe e filhos das variedades de mangarito (Xanthosoma riedelianum pequeno e gigante. Amostras dos rizomas coletadas ao longo do ciclo cultural e após 90 dias de armazenamento foram avaliadas quanto aos teores de carboidratos e carotenoides totais. Os rizomas apresentaram aumento no teor de carboidratos, e o rizoma-mãe da variedade pequeno apresentou acréscimos lineares no teor de carotenoides, ao longo do cultivo. O armazenamento reduz os teores de carboidratos e de carotenoides totais em todos os rizomas.

  18. The effects of space travel to Deinococcus radiodurans and the carotenoid Deinoxanthin

    Science.gov (United States)

    Rettberg, Petra; De Vera, Jean-Pierre; Bohmeier, Maria; Leuko, Stefan; Boettger, Ute; Hanke, Franziska

    Carotenoids are common, vital components of many organisms. They (1) protect chlorophyll from oxidative damage; (2) create harmless products from toxic singlet oxygen; (3) assist light absorption in chloroplasts as they collect energy in the spectrum where chlorophyll cannot; (4) transport harvested light energy to retinal based proton pumps; and (5) provide structure via the polyene chain to plastid membranes (Winters et al. 2013). More than 600 carotenoids have been isolated from natural sources and there is a rising interest in the use of carotenoids as possible biomarkers for life on other planets. It is therefore of great interest to investigate if the harboring organisms and the associated carotenoids are able to cope with simulated and real space conditions. These questions are addressed by the Low Earth Orbit (LEO) experiment Biology and Mars experiment (BIOMEX). BIOMEX is an interdisciplinary and international space research project and the prime objective is to measure to what extent biomarkers are resistant to and able to maintain their stability under space and Mars-like conditions. Part of the research focusses on the extreme radiation resistant Deinococcus radiodurans and the effect and influence of Deinoxanthin to fitness and survival following exposure to space conditions. Furthermore, the resistance of crude extracted Deinoxanthin to space conditions is of great interest and was tested. As part of environmental verification tests (EVT’s), D. radiodurans and D. radiodurans ΔcrtB (a mutant not able to produce Deinoxanthin) were exposed to several space relevant environmental factors. Interestingly, both strains showed similar survival abilities. To investigate if the carotenoid within the cell took damage, samples were investigated by RAMAN spectroscopy. Raman spectroscopy is a non-destructive technique, the feasibility of this method which is able to detect carotenoids is well known and has been proposed to be onboard the ExoMars mission

  19. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  20. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this

  1. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    1994-01-01

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this alpha-amylas

  2. Characterization of a new Bacillus stearothermophilus isolate : a highly thermostable α-amylase-producing strain

    NARCIS (Netherlands)

    Wind, R.D.; Buitelaar, R.M.; Eggink, G.; Huizing, H.J.; Dijkhuizen, L.

    1994-01-01

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known α-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable α-amylase. The half-time of inactivation of this α-amylase was 5.1 h

  3. Highly toxinogenic but avirulent Park-Williams 8 strain of Corynebacterium diphtheriae does not produce siderophore.

    OpenAIRE

    Russell, L. M.; Holmes, R K

    1985-01-01

    The highly toxinogenic Park-Williams 8 strain of Corynebacterium diphtheriae grows slowly in vitro and is avirulent. C. diphtheriae Park-Williams 8 is defective in iron uptake and does not produce the corynebacterial siderophore corynebactin. Addition of partially purified corynebactin stimulated iron uptake and growth of iron-deprived C. diphtheriae Park-Williams 8 cells.

  4. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Martin, Elizabeth C; Bocian, David F; Hunter, C Neil; Holten, Dewey

    2017-03-01

    Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, "blue" form with an S2 (1(1)B u(+) ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, "red" form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (1(1)B u(+) ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (1(1)B u(+) ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (1(1)B u(+) ) → S0 (1(1)A g(-) ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid-protein interactions, including the inferred hydrogen bonding.

  5. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces.

    Science.gov (United States)

    Wen, Xin; Hempel, Judith; Schweiggert, Ralf M; Ni, Yuanying; Carle, Reinhold

    2017-08-02

    Carotenoid profiles of fruits and calyces of red (Physalis alkekengi L.) and yellow (P. pubescens L.) Physalis were characterized by HPLC-DAD-APCI-MS(n). Altogether 69 carotenoids were detected in red Physalis, thereof, 45 were identified. In yellow Physalis, 40 carotenoids were detected and 33 were identified. Zeaxanthin esters with various fatty acids were found to be the most abundant carotenoids in red Physalis, accounting for 51-63% of total carotenoids, followed by β-cryptoxanthin esters (16-24%). In yellow Physalis, mainly free carotenoids such as lutein and β-carotene were found. Total carotenoid contents ranged between 19.8 and 21.6 mg/100 g fresh red Physalis fruits and 1.28-1.38 mg/100 g fresh yellow Physalis fruits, demonstrating that Physalis fruits are rich sources of dietary carotenoids. Yellow Physalis calyces contained only 153-306 μg carotenoids/g dry weight, while those of red Physalis contained substantially higher amounts (14.6-17.6 mg/g dry weight), thus possibly exhibiting great potential as a natural source for commercial zeaxanthin extraction.

  6. Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum.

    Science.gov (United States)

    Maresca, Julia A; Bryant, Donald A

    2006-09-01

    The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.

  7. Effect of biomass concentration on secondary carotenoids and triacylglycerol (TAG) accumulation in nitrogen-depleted Chlorella zofingiensis

    NARCIS (Netherlands)

    Mulders, K.J.M.; Janssen, J.H.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P.

    2014-01-01

    The effect of biomass-specific photon absorption rate on triacylglycerol (TAG) and secondary carotenoid yield was studied. Chlorella zofingiensis (Chlorophyta) was cultivated batch-wise with sufficient initial nitrogen to produce 2.5, 3.4 and 4.1 g L-1 prior to nitrogen depletion, which resulted in

  8. Highly oil-producing microalgae selected through directed-evolution on a microfludic chip

    Science.gov (United States)

    Mestler, Troy; Estevez-Torres, Andre; Lambert, Guillaume; Austin, Robert H.

    2009-03-01

    Some species of photosynthetic microalgae produce signi?cant amounts of oil which can be easily converted to diesel fuel. However, as it stands today, biodiesel is signi?cantly more expensive than fossil fuels. We wish to improve the oil yield and production rate of a single species of microalgae through directed evolution. We propose to utilize our microfabication technology to create microhabitats to control the nutrient environment of the species, monitor oil production through Raman Spectroscopy, and punish colonies of algae which have low oil yield. We believe this process will produce a mutant species with a high oil yield.

  9. Rapid detection of haloarchaeal carotenoids via liquid-liquid microextraction enabled direct TLC MALDI-MS.

    Science.gov (United States)

    Manikandan, Muthu; Hasan, Nazim; Wu, Hui-Fen

    2013-03-30

    For the first time, we demonstrate the use of TiO2 nanoparticles (NPs) for enhancing the carotenoid production by the extremophilic haloarchea, Haloferax mediterranei. TiO2 NPs at optimal concentration of 375 mg/L results in a 95% increase in the production of carotenoid pigment compared to the control (no TiO2 NPs). The carotenoid pigments extracted from TiO2 NPs treated H. mediterranei cells, were separated using thin layer chromatography (TLC). The separated carotenoid spots were subjected directly for MALDI MS detection. To limit the sample diffusion during matrix addition on TLC plates, a simple bordering mode was exercised. Using this method we were able to detect the pigments successfully using MALDI-MS, directly from TLC plates after separation. In addition, we also applied the Pt NPs capped with ODT via Liquid-liquid microextraction (LLME) for extracting the pigment molecules from the halobacteria in MALDI-MS. These novel NP approaches possess numerous advantages such as; rapidity, ease in synthesis, high sensitivity and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Carotenoid-based bill coloration functions as a social, not sexual, signal in songbirds (Aves: Passeriformes).

    Science.gov (United States)

    Dey, C J; Valcu, M; Kempenaers, B; Dale, J

    2015-01-01

    Many animals use coloration to communicate with other individuals. Although the signalling role of avian plumage colour is relatively well studied, there has been much less research on coloration in avian bare parts. However, bare parts could be highly informative signals as they can show rapid changes in coloration. We measured bill colour (a ubiquitous bare part) in over 1600 passerine species and tested whether interspecific variation in carotenoid-based coloration is consistent with signalling to potential mates or signalling to potential rivals in a competitive context. Our results suggest that carotenoid bill coloration primarily evolved as a signal of dominance, as this type of coloration is more common in species that live in social groups in the nonbreeding season, and species that nest in colonies; two socio-ecological conditions that promote frequent agonistic interactions with numerous and/or unfamiliar individuals. Additionally, our study suggests that carotenoid bill coloration is independent of the intensity of past sexual selection, as it is not related to either sexual dichromatism or sexual size dimorphism. These results pose a significant challenge to the conventional view that carotenoid-based avian coloration has evolved as a developmentally costly, condition-dependent sexual signal. We also suggest that bare part ornamentation may often signal different information than plumage ornaments. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  11. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Lieven Van Meulebroek

    2016-05-01

    Full Text Available As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita. Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS m−1 was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant’s genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant’s salinity response (at the fruit level, whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  12. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits.

    Science.gov (United States)

    Van Meulebroek, Lieven; Hanssens, Jochen; Steppe, Kathy; Vanhaecke, Lynn

    2016-05-26

    As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita). Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS) m(-1)) was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant's genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant's salinity response (at the fruit level), whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  13. Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    Science.gov (United States)

    Dijkstra, Cor; Tagliavini, James; Goerlich, Vivian C.; Groothuis, Ton G. G.

    2010-01-01

    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion rate may partly explain some contradictory findings in the literature. Moreover, most studies on the effect of T on sexual signals have focused on the male sex only, while in many species females show the same signal, albeit to a lesser extent. We studied the effects of T, DHT, and E2 treatment in male and female diamond doves Geopelia cuneata in which both sexes have an enlarged red eye ring, which is more pronounced in males. We first showed that this periorbital ring contains very high concentration of carotenoids, of which most are lutein esters. Both T and DHT were effective in enhancing hue, UV-chroma and size in both sexes, while E2 was ineffective. However, E2 dramatically increased the concentration of circulating lipoproteins. We conclude that in both sexes both color and size of the secondary sexual trait are androgen dependent. The action of androgens is independent of lipoproteins regulation. Potential mechanisms and their consequences for trade-off are discussed. PMID:20824278

  14. Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway.

    Science.gov (United States)

    Farre, Gemma; Naqvi, Shaista; Sanahuja, Georgina; Bai, Chao; Zorrilla-López, Uxue; Rivera, Sol M; Canela, Ramon; Sandman, Gerhard; Twyman, Richard M; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2012-01-01

    Combinatorial nuclear transformation is used to generate populations of transgenic plants containing random selections from a collection of input transgenes. This is a useful approach because it provides the means to test different combinations of genes without the need for separate transformation experiments, allowing the comprehensive analysis of metabolic pathways and other genetic systems requiring the coordinated expression of multiple genes. The principle of combinatorial nuclear transformation is demonstrated in this chapter through protocols developed in our laboratory that allow combinations of genes encoding enzymes in the carotenoid biosynthesis pathway to be introduced into rice and a white-endosperm variety of corn. These allow the accumulation of carotenoids to be screened initially by the colour of the endosperm, which ranges from white through various shades of yellow and orange depending on the types and quantities of carotenoids present. The protocols cover the preparation of DNA-coated metal particles, the transformation of corn and rice plants by particle bombardment, the regeneration of transgenic plants, the extraction of carotenoids from plant tissues, and their analysis by high-performance liquid chromatography.

  15. Combinatorial Biosynthesis of Novel Multi-Hydroxy Carotenoids in the Red Yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Hendrik Pollmann

    2017-02-01

    Full Text Available The red yeast Xanthophyllomyces dendrorhous is an established platform for the synthesis of carotenoids. It was used for the generation of novel multi oxygenated carotenoid structures. This was achieved by a combinatorial approach starting with the selection of a β-carotene accumulating mutant, stepwise pathway engineering by integration of three microbial genes into the genome and finally the chemical reduction of the resulting 4,4’-diketo-nostoxanthin (2,3,2’,3’-tetrahydroxy-4,4’-diketo-β-carotene and 4-keto-nostoxanthin (2,3,2’,3’-tetrahydroxy-4-monoketo-β-carotene. Both keto carotenoids and the resulting 4,4’-dihydroxy-nostoxanthin (2,3,4,2’,3’,4’-hexahydroxy-β-carotene and 4-hydroxy-nostoxanthin (2,3,4,2’3’-pentahydroxy-β-carotene were separated by high-performance liquid chromatography (HPLC and analyzed by mass spectrometry. Their molecular masses and fragmentation patterns allowed the unequivocal identification of all four carotenoids.

  16. Effect of salt stress on expression of carotenoid pathway genes in tomato

    Directory of Open Access Journals (Sweden)

    Merlene Ann Babu

    2011-09-01

    Full Text Available Carotenoids, the naturally occurring isoprenoids form essential components of photosynthetic antenna and reaction centre complexes. Thus they play a significant role in absorption, dissipation and transfer of light energy for the process of photosynthesis. The effects of salt stress on carotenoid gene expression in tomato leaves were studied. For that tomato plants were subjected to different concentration of salt water. Morphological characters such as plant height, no. of fruits per plant, chlorophyll content and expression of four major carotenoid pathway genes such as phytoene synthase, phytoene desaturase, zeta carotene desaturase and lycopene beta cyclase were analysed. The quantitative expression analysis using real time PCR has shown a decrease in the expression of all the studied genes as the salt concentration increased. Among the different concentrations of NaCl used for the experiment, it was seen that 200 mM was most detrimental for the carotenoid gene expression. Lycopene beta cyclase, the enzyme that converts lycopene to beta carotene was seen to be highly affected compared to other genes studied showing a 1.87 fold inhibition in its expression at 200 mM NaCl.

  17. Cloning and Functional Characterization of the Maize (Zea mays L. Carotenoid Epsilon Hydroxylase Gene.

    Directory of Open Access Journals (Sweden)

    Shu Chang

    Full Text Available The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73 and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1 gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity.

  18. Carotenoids concentration of Gac (Momordica cochinchinensis Spreng.) fruit oil using cross-flow filtration technology.

    Science.gov (United States)

    Mai, Huỳnh Cang; Truong, Vinh; Debaste, Frédéric

    2014-11-01

    Gac (Momordica cochinchinensis Spreng.) fruit, a traditional fruit in Vietnam and other countries of eastern Asia, contains an oil rich in carotenoids, especially lycopene and β-carotene. Carotenoids in gac fruit oil were concentrated using cross-flow filtration. In total recycle mode, effect of membrane pore size, temperature, and transmembrane pressure (TMP) on permeate flux and on retention coefficients has been exploited. Resistance of membrane, polarization concentration, and fouling were also analyzed. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. In batch mode, retentate was analyzed through index of acid, phospholipids, total carotenoids content (TCC), total antioxidant activity, total soluble solids, total solid content, color measurement, and viscosity. TCC in retentate is higher 8.6 times than that in feeding oil. Lipophilic antioxidant activities increase 6.8 times, while hydrophilic antioxidant activities reduce 40%. The major part of total resistance is due to polarization (55%) while fouling and intrinsic membrane contribute about 30% and 24%, respectively. © 2014 Institute of Food Technologists®

  19. Health Effects of Carotenoids during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Monika A. Zielińska

    2017-08-01

    Full Text Available Adequate nutrition is particularly important during pregnancy since it is needed not only for maintaining the health of the mother, but also determines the course of pregnancy and its outcome, fetus development as well as the child’s health after birth and during the later period of life. Data coming from epidemiological and interventions studies support the observation that carotenoids intake provide positive health effects in adults and the elderly population. These health effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently hypothesized that carotenoids can play an important role in the prevention of preterm birth and intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status of the mother, but little is known about the transfer of carotenoids from the mother to the fetus. Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by the mother’s diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant role in the development of vision and nervous system (among others, they are important for the development of retina as well as energy metabolism and brain electrical activity. Furthermore, more scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting preterm

  20. Two-step cleanup procedure for the identification of carotenoid esters by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Rodrigues, Daniele Bobrowski; Mariutti, Lilian Regina Barros; Mercadante, Adriana Zerlotti

    2016-07-29

    Carotenoids are naturally found in both free form and esterified with fatty acids in most fruits; however, up to now the great majority of studies only evaluated their composition after saponification. This fact is easily explained by the difficult to analyze carotenoid esters. Preliminary studies showed that cleanup procedures in the extract are necessary for further analysis by LC-MS/MS since triacylglycerols (TAGs) impair the MS detection. Considering these facts, we developed a new cleanup procedure to remove TAGs and other lipids from carotenoid fruit extracts. This procedure is based on physical removal of solid lipids at low temperature followed by open column chromatography on MgO and diatomaceous earth. Before cleanup, four carotenoid diesters and two free xanthophylls were identified in murici (Byrsonyma crassifolia), corresponding to about 65% of the total chromatogram area. After carrying out the two-step cleanup procedure, 35 carotenoids were identified, being 14 monoesters, six free carotenoids and 15 carotenoid diesters. We can conclude that this two-step procedure was successfully applied to murici, an Amazonian fruit, which contains high amounts of lipids.

  1. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages.

    Science.gov (United States)

    Rodríguez-Roque, María Janeth; de Ancos, Begoña; Sánchez-Vega, Rogelio; Sánchez-Moreno, Concepción; Cano, M Pilar; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2016-01-01

    The biological activity of carotenoids depends on their bioaccessibility and solubilization in the gastrointestinal tract. These compounds are poorly dispersed in the aqueous media of the digestive tract due to their lipophilic nature. Thus, it is important to analyze the extent to which some factors, such as the food matrix and food processing, may improve their bioaccessibility. Beverages formulated with a blend of fruit juices and water (WB), milk (MB) or soymilk (SB) were treated by high-intensity pulsed electric fields (HIPEF) (35 kV cm(-1) with 4 μs bipolar pulses at 200 Hz for 1800 μs), high-pressure processing (HPP) (400 MPa at 40 °C for 5 min) or thermal treatment (TT) (90 °C for 1 min) in order to evaluate the influence of food matrix and processing on the bioaccessibility of carotenoids and on the lipophilic antioxidant activity (LAA). The bioaccessibility of these compounds diminished after applying any treatment (HIPEF, HPP and TT), with the exception of cis-violaxanthin + neoxanthin, which increased by 79% in HIPEF and HPP beverages. The lowest carotenoid bioaccessibility was always obtained in TT beverages (losses up to 63%). MB was the best food matrix for improving the bioaccessibility of carotenoids, as well as the LAA. The results demonstrate that treatment and food matrix modulated the bioaccessibility of carotenoids as well as the lipophilic antioxidant potential of beverages. Additionally, HIPEF and HPP could be considered as promising technologies to obtain highly nutritional and functional beverages.

  2. Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension.

    Science.gov (United States)

    Stevens, Bart; Guin, Tyler; Sarwar, Owais; John, Alyssa; Paton, Keith R; Coleman, Jonathan N; Grunlan, Jaime C

    2016-09-27

    Rapid, large-scale exfoliation of graphene in water has expanded its potential for use outside niche applications. This work focuses on utilizing aqueous graphene dispersions to form thin films using layer-by-layer processing, which is an effective method to produce large-area coatings from water-based solutions of polyelectrolytes. When layered with polyethyleneimine, graphene flakes stabilized with cholate are shown to be capable of producing films thinner than 100 nm. High surface coverage of graphene flakes results in electrical conductivity up to 5500 S m(-1) . With the relative ease of processing, the safe, cost effective nature of the ingredients, and the scalability of the deposition method, this system should be industrially attractive for producing thin conductive films for a variety of electronic and antistatic applications.

  3. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  4. High emergence of ESBL-producing E. coli cystitis: Time to get smarter in Cyprus

    Directory of Open Access Journals (Sweden)

    Leon eCantas

    2016-01-01

    Full Text Available Background: Widespread prevalence of extended-spectrum βeta-lactamase producing Escherichia coli (ESBL-producing E. coli limits the infection therapeutic options and is a growing global health problem. In this study our aim was to investigate the antimicrobial resistance profile of the E. coli in hospitalized and out- patients in Cyprus. Results: During the period 2010-2014, 389 strains of E. coli were isolated from urine samples of hospitalized and out-patients in Cyprus. ESBL-producing E. coli, was observed in 53% of hospitalized and 44% in out-patients, latest one being in 2014. All ESBL-producing E. coli remained susceptible to amikacin, carbapenems except ertapenem (in-patients= 6%, out-patients= 11%. Conclusions: High emerging ESBL-producing E. coli from urine samples in hospitalized and out-patients is an extremely worrisome sign of development of untreatable infections in the near future on the island. We therefore emphasize the immediate need for establishment of optimal therapy guidelines based on the country specific surveillance programs. The need for urgent prescription habit changes and ban of over-the-counter sale of antimicrobials at each segment of healthcare services is also discussed in this research.

  5. High Emergence of ESBL-Producing E. coli Cystitis: Time to Get Smarter in Cyprus.

    Science.gov (United States)

    Cantas, Leon; Suer, Kaya; Guler, Emrah; Imir, Turgut

    2015-01-01

    Widespread prevalence of extended-spectrum βeta-lactamase producing Escherichia coli (ESBL-producing E. coli) limits the infection therapeutic options and is a growing global health problem. In this study our aim was to investigate the antimicrobial resistance profile of the E. coli in hospitalized and out-patients in Cyprus. During the period 2010-2014, 389 strains of E. coli were isolated from urine samples of hospitalized and out-patients in Cyprus. ESBL-producing E. coli, was observed in 53% of hospitalized and 44% in out-patients, latest one being in 2014. All ESBL-producing E. coli remained susceptible to amikacin, carbapenems except ertapenem (in-patients = 6%, out-patients = 11%). High emerging ESBL-producing E. coli from urine samples in hospitalized and out-patients is an extremely worrisome sign of development of untreatable infections in the near future on the island. We therefore emphasize the immediate need for establishment of optimal therapy guidelines based on the country specific surveillance programs. The need for new treatment strategies, urgent prescription habit changes and ban of over-the-counter sale of antimicrobials at each segment of healthcare services is also discussed in this research.

  6. Carotenóides da cianobactéria Synechocystis pevalekii produzida em condições normais e sob limitação de nutrientes Carotenoids of the cyanobacterium Synechocystis pevalekii produced under normal conditions and under nutrient limitation

    Directory of Open Access Journals (Sweden)

    Marcos Coelho Müller

    2003-12-01

    Full Text Available O uso de microalgas e cianobactérias como fontes de nutrientes e substâncias bioativas para alimentos e suplementos alimentares vem despertando grande interesse nos últimos anos. Por meio de cromatografia em coluna aberta com espectrofotometria de absorção, cromatografia líquida de alta eficiência com detector de conjunto de diodos, cromatografia em camada delgada e reações de grupos funcionais, foram identificados trans-e cis-²-caroteno, equininona, ²-criptoxantina,3-hidroxi-4'-cetocarotenóide, zeaxantina e 3,3-diidroxi-4'-cetocarotenóide em Synechocystis pevalekii. A cianobactéria Synechocystis pevalekiiapresentou-se verde em condições normais de cultivo devido à presença de clorofilas. Com o cultivo em condições de "stress" (redução de 80% dos nutrientes do meio Conway original, as clorofilas desapareceram e a cianobactéria apresentou coloração laranja. O ²-caroteno diminuiu de 307 para 248 µg/g e a ²-criptoxantina de 94 para 13 µg/g.Por outro lado, a zeaxantina aumentou de 29 para 220 µg/g. S. pevalekii, portanto, apresenta potencial comercial como fonte de zeaxantina, carotenóide apontado como responsável pela ação protetora contra a degeneração macular e catarata, junto com a luteína. Os resultados demonstram que as condições de produção da cianobatéria podem ser estabelecidas de tal forma que a biossíntese de carotenóides importantes para saúde humana, de difícil obtenção, seja favorecida. Já existem várias fontes comerciais de ²-caroteno, mas são raras as fontes de zeaxantina.The use of microalgae and cyanobacteria as sources of nutrients and bioactive substances for food and dietary supplements has attracted a lot of interest in recent years. Through open column chromatography-visible absorption spectrophotometry, high performance liquid chromatography with a photodiode array detector, thin layer chromatography and functional group chemical reactions, trans- and cis

  7. Polarized Th2 like cells, in the absence of Th0 cells, are responsible for lymphocyte produced IL-4 in high IgE-producer schistosomiasis patients

    Directory of Open Access Journals (Sweden)

    Soares-Silveira Alda

    2002-07-01

    Full Text Available Abstract Background Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-γ or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Results Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. Conclusions High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-γ.

  8. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    Science.gov (United States)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  9. Carotenoid Biosynthesis in Calothrix sp. 336/3: Composition of Carotenoids on Full Medium, During Diazotrophic Growth and After Long-Term H2 Photoproduction.

    Science.gov (United States)

    Kosourov, Sergey; Murukesan, Gayathri; Jokela, Jouni; Allahverdiyeva, Yagut

    2016-11-01

    The carotenoid composition of the filamentous heterocystous N2-fixing cyanobacterium Calothrix sp. 336/3 was investigated under three conditions: in full medium (non-diazotrophic growth); in the absence of combined nitrogen (diazotrophic growth); and after long-term H2 photoproduction (diazotrophic medium and absence of nitrogen in the atmosphere). Anabaena sp. PCC 7120 and its ΔhupL mutant with disrupted uptake hydrogenase were used as reference strains. Analysis of identified carotenoids and enzymes involved in carotenogenesis showed the presence of three distinct biosynthetic pathways in Calothrix sp. 336/3. The first one is directed towards biosynthesis of myxoxanthophylls, such as myxol 2'-methylpentoside and 2-hydroxymyxol 2'-methylpentoside. The second pathway results in production of hydroxylated carotenoids, such as zeaxanthin, caloxanthin and nostoxanthin, and the last pathway is responsible for biosynthesis of echinenone and hydroxylated forms of ketocarotenoids, such as 3'-hydroxyechinenone and adonixanthin. We found that carotenogenesis in filamentous heterocystous cyanobacteria varies depending on the nitrogen status of the cultures, with significant accumulation of echinenone during diazotrophic growth at the expense of β-carotene. Under the severe N deficiency and high CO2 supply, which leads to efficient H2 photoproduction, cyanobacteria degrade echinenone and β-carotene, and accumulate glycosylated and hydroxylated carotenoids, such as myxol (or ketomyxol) 2'-methylpentosides, 3'-hydroxyechinenone and zeaxanthin. We suggest that the stability of the photosynthetic apparatus in Calothrix sp. 336/3 cells under N deficiency and high carbon conditions, which also appeared as the partial recovery of the pigment composition by the end of the long-term (∼1 month) H2 photoproduction process, might be mediated by a high content of hydroxycarotenoids.

  10. Regulatory control of carotenoid accumulation in winter squash during storage

    Science.gov (United States)

    Postharvest storage of fruits and vegetables is often required and frequently results in nutritional quality change. In this study, we investigated carotenoid storage plastids, carotenoid content, and its regulation during 3-month storage of winter squash butternut fruits. We showed that storage imp...

  11. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  12. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    NARCIS (Netherlands)

    Beekwilder, M.J.; Meer, van der I.M.; Simic, A.; Uitdewilligen, J.; Arkel, van J.; Vos, de C.H.; Jonker, H.H.; Verstappen, F.W.A.; Bouwmeester, H.J.; Sibbesen, O.; Qvist, I.; Mikkelsen, J.D.; Hall, R.D.

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as ¿-ionone and ß-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry

  13. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    NARCIS (Netherlands)

    Beekwilder, M.J.; Meer, van der I.M.; Simic, A.; Uitdewilligen, J.; Arkel, van J.; Vos, de C.H.; Jonker, H.H.; Verstappen, F.W.A.; Bouwmeester, H.J.; Sibbesen, O.; Qvist, I.; Mikkelsen, J.D.; Hall, R.D.

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as ¿-ionone and ß-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry

  14. Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits.

    Science.gov (United States)

    Marri, Viviana; Richner, Heinz

    2014-05-01

    Oxidative stress is the imbalance between the production of reactive species and antioxidants, which causes damage to lipids, proteins and DNA. Antioxidants, like vitamins and carotenoids, can limit oxidative damage and can therefore regulate the trade-off between growth, which is a period of high reactive species production, and self-maintenance. However, the role of carotenoids as antioxidants in vivo has been debated, and it has been suggested that carotenoid-based signals indicate the availability of non-pigmentary antioxidants (e.g. vitamins) that protect carotenoids from oxidation, known as the 'protection hypothesis'. To evaluate the importance of vitamins versus carotenoids as antioxidants during growth and to test the protection hypothesis, we supplemented nestling great tits, Parus major, 3, 5 and 7 days after hatching with a single dose of carotenoids and/or vitamins in a 2×2 full-factorial design. We subsequently measured body condition, antioxidant capacity, oxidative damage, fledging success and plumage reflectance. Vitamins enhanced antioxidant capacity, but did not affect oxidative damage. Vitamin-treated nestlings had higher growth rates and higher probability of fledging. In contrast, carotenoids did not affect any of these traits. Furthermore, carotenoid-based colouration increased over the breeding season in nestlings that received vitamins only. This study shows that vitamins are limiting for growth rate and fledging success, and suggests that vitamins could regulate the trade-off between growth and self-maintenance in favour of the former. Moreover, our results are consistent with the idea that carotenoids are minor antioxidants in birds, but they do not support the protection hypothesis.

  15. Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise

    Science.gov (United States)

    Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)

    1997-01-01

    A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.

  16. Centrifugal Step Emulsification can Produce Water in Oil Emulsions with Extremely High Internal Volume Fractions

    Directory of Open Access Journals (Sweden)

    Friedrich Schuler

    2015-08-01

    Full Text Available The high throughput preparation of emulsions with high internal volume fractions is important for many different applications, e.g., drug delivery. However, most emulsification techniques reach only low internal volume fractions and need stable flow rates that are often difficult to control. Here, we present a centrifugal high throughput step emulsification disk for the fast and easy production of emulsions with high internal volume fractions above 95%. The disk produces droplets at generation rates of up to 3700 droplets/s and, for the first time, enables the generation of emulsions with internal volume fractions of >97%. The coefficient of variation between droplet sizes is very good (4%. We apply our system to show the in situ generation of gel emulsion. In the future, the recently introduced unit operation of centrifugal step emulsification may be used for the high throughput production of droplets as reaction compartments for clinical diagnostics or as starting material for micromaterial synthesis.

  17. Importancia nutricional de los pigmentos carotenoides

    OpenAIRE

    Meléndez Martínez, Antonio Jesús; Vicario Romero, Isabel; Heredia Mira, Francisco José

    2004-01-01

    Los pigmentos carotenoides son compuestos responsables de la coloración de gran número de alimentos vegetales y animales, como zanahorias, zumo de naranja, tomates, salmón y yema del huevo. Desde hace muchos años, se sabe que algunos de estos compuestos, como a y b-caroteno, así como la b-criptoxantina, son provitaminas A. No obstante, estudios recientes han puesto de manifiesto las propiedades antioxidantes de estos pigmentos, así como su eficacia en la prevención de ciertas enfermedades del...

  18. The Aluminum Based Composite Produced by Self Propagating High Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Agus PRAMONO

    2016-05-01

    Full Text Available Self-propagating high-temperature synthesis method can be used for producing aluminum and boron carbide based composites. The experimental composites were fabricated using cobalt and carbon as catalysts. The microstructure of the material was studied using Scanning Electron Microscopy and the mechanical properties were determined using micro-hardness testing. Al/B4C based composites with improved properties were obtained and the role of Co/C catalysts was studied.

  19. Carotenoid Intake and Adipose Tissue Carotenoid Levels in Relation to Prostate Cancer Aggressiveness among African-American and European-American Men in the North Carolina-Louisiana Prostate Cancer Project (PCaP)

    Science.gov (United States)

    Antwi, Samuel O.; Steck, Susan E.; Su, L. Joseph; Hebert, James R.; Zhang, Hongmei; Craft, Neal E.; Fontham, Elizabeth T. H.; Smith, Gary J.; Bensen, Jeannette T.; Mohler, James L.; Arab, Lenore

    2016-01-01

    Background Associations between carotenoid intake and prostate cancer (CaP) incidence have varied across studies. This may be due to combining indolent with aggressive disease in most studies. This study examined whether carotenoid intake and adipose tissue carotenoid levels were inversely associated with CaP aggressiveness. Methods Data on African-American (AA, n=1,023) and European-American (EA, n=1,079) men with incident CaP from North Carolina and Louisiana were analyzed. Dietary carotenoid intake was assessed using a detailed food frequency questionnaire, and abdominal adipose tissue samples were analyzed for carotenoid concentrations using high-performance liquid chromatography. Multivariable logistic regression was used in race-stratified analysis to calculate odds ratios (ORs) and 95% confidence intervals (95%CI) comparing high aggressive CaP with low/intermediate aggressive CaP. Results Carotenoid intake differed significantly between AAs and EAs, which included higher intake of lycopene among EAs and higher β–cryptoxanthin intake among AAs. Comparing the highest and lowest tertiles, dietary lycopene was associated inversely with high aggressive CaP among EAs (OR=0.55, 95%CI: 0.34–0.89, Ptrend=0.02), while an inverse association was observed between dietary β–cryptoxanthin intake and high aggressive CaP among AAs (OR=0.56, 95%CI: 0.36–0.87, Ptrend=0.01). Adipose tissue α–carotene and lycopene (cis + trans) concentrations were higher among EAs than AAs, and marginally significant inverse linear trends were observed for adipose α–carotene (Ptrend=0.07) and lycopene (Ptrend=0.11), and CaP aggressiveness among EAs only. Conclusions These results suggest that diets high in lycopene and β–cryptoxanthin may protect against aggressive CaP among EAs and AAs, respectively. Differences in dietary behaviors may explain the racial differences in associations. PMID:27271547

  20. Herbicide treatments alter carotenoid profiles for 14C tracer production from tomato ( Solanum lycopersicum cv. VFNT cherry) cell cultures.

    Science.gov (United States)

    Engelmann, Nancy J; Rogers, Randy B; Lila, Mary Ann; Erdman, John W

    2009-06-10

    Progress in learning about underlying carotenoid bioactivity mechanisms has been limited because of the lack of commercially available radiolabeled lycopene (LYC), phytoene (PE), and phytofluene (PF). Tomato ( Solanum lycopersicum cv. VFNT cherry) cell cultures have been treated to produce [(14)C]-PE and PF but with relatively low yields. To increase carotenoid production, two bleaching herbicides were administered during the culture incubation, 2-(4-chlorophenyl-thio)triethylamine and norflurazon, separately or in combination to produce varying ratios of PE, PF, and LYC. Treatment with both herbicides resulted in optimal production of all three carotenoids. Subsequently, cultures were incubated in [(14)C]-sucrose-containing media to produce labeled LYC, PE, and PF. Adding [(14)C]-sucrose on day 1 of the 14 day culture incubation cycle to norflurazon-treated cultures led to a small increase in labeling efficiency compared to adding it on day 7. Improved culture conditions efficiently provided sufficient (14)C-carotenoids for future cell culture and animal metabolic tracking studies.

  1. Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals

    Science.gov (United States)

    Schulz, Dietmar F.; Schott, Rena T.; Voorrips, Roeland E.; Smulders, Marinus J. M.; Linde, Marcus; Debener, Thomas

    2016-01-01

    Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related Fragaria and Prunus genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that

  2. Carotenoids and their isomers: color pigments in fruits and vegetables.

    Science.gov (United States)

    Khoo, Hock-Eng; Prasad, K Nagendra; Kong, Kin-Weng; Jiang, Yueming; Ismail, Amin

    2011-02-18

    Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as 'functional food ingredients'. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  3. Carotenoids in Marine Invertebrates Living along the Kuroshio Current Coast

    Directory of Open Access Journals (Sweden)

    Yoshikazu Sakagami

    2011-08-01

    Full Text Available Carotenoids of the corals Acropora japonica, A. secale, and A. hyacinthus, the tridacnid clam Tridacna squamosa, the crown-of-thorns starfish Acanthaster planci, and the small sea snail Drupella fragum were investigated. The corals and the tridacnid clam are filter feeders and are associated with symbiotic zooxanthellae. Peridinin and pyrrhoxanthin, which originated from symbiotic zooxanthellae, were found to be major carotenoids in corals and the tridacnid clam. The crown-of-thorns starfish and the sea snail D. fragum are carnivorous and mainly feed on corals. Peridinin-3-acyl esters were major carotenoids in the sea snail D. fragum. On the other hand, ketocarotenoids such as 7,8-didehydroastaxanthin and astaxanthin were major carotenoids in the crown-of-thorns starfish. Carotenoids found in these marine animals closely reflected not only their metabolism but also their food chains.

  4. Carotenoid incorporation into microsomes: yields, stability and membrane dynamics

    Science.gov (United States)

    Socaciu, Carmen; Jessel, Robert; Diehl, Horst A.

    2000-12-01

    The carotenoids β-carotene (BC), lycopene (LYC), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CTX) and astaxanthin (ASTA) have been incorporated into pig liver microsomes. Effective incorporation concentrations in the range of about 1-6 nmol/mg microsomal protein were obtained. A stability test at room temperature revealed that after 3 h BC and LYC had decayed totally whereas, gradually, CTX (46%), LUT (21%), ASTA (17%) and ZEA (5%) decayed. Biophysical parameters of the microsomal membrane were changed hardly by the incorporation of carotenoids. A small rigidification may occur. Membrane anisotropy seems to offer only a small tolerance for incorporation of carotenoids and seems to limit the achievable incorporation concentrations of the carotenoids into microsomes. Microsomes instead of liposomes should be preferred as a membrane model to study mutual effects of carotenoids and membrane dynamics.

  5. Biosynthesis of Carotenoids in Plants: Enzymes and Color.

    Science.gov (United States)

    Rosas-Saavedra, Carolina; Stange, Claudia

    2016-01-01

    Carotenoids are the most important biocolor isoprenoids responsible for yellow, orange and red colors found in nature. In plants, they are synthesized in plastids of photosynthetic and sink organs and are essential molecules for photosynthesis, photo-oxidative damage protection and phytohormone synthesis. Carotenoids also play important roles in human health and nutrition acting as vitamin A precursors and antioxidants. Biochemical and biophysical approaches in different plants models have provided significant advances in understanding the structural and functional roles of carotenoids in plants as well as the key points of regulation in their biosynthesis. To date, different plant models have been used to characterize the key genes and their regulation, which has increased the knowledge of the carotenoid metabolic pathway in plants. In this chapter a description of each step in the carotenoid synthesis pathway is presented and discussed.

  6. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2011-02-01

    Full Text Available Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as ‘functional food ingredients’. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  7. Enhanced biological activity of carotenoids stabilized by phenyl groups.

    Science.gov (United States)

    You, Ji Suk; Jeon, Sunhwa; Byun, Youn Jung; Koo, Sangho; Choi, Shin Sik

    2015-06-15

    Carotenoids are lipid soluble food ingredients with multifunction including antioxidant and anticancer activities. However, carotenoids are destructively oxidized upon reaction with radicals resulting in toxic effects on biological systems. Two synthetic carotenoids (BAS and BTS) containing the aromatic phenyl groups with a para-substituent (OMe and Me, respectively) at C-13 and C-13' position were prepared in order to overcome a structural instability of carotenoid. Both BAS and BTS exerted stronger radical scavenging activity than β-carotene in DPPH and ABTS assays. In particular, BTS significantly reduced in vivo ROS (reactive oxygen species) levels and improved body growth and reproduction of Caenorhabditiselegans. BTS has a great potential for the advanced and modified carotenoid material with stability leading to enhanced bioavailability.

  8. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In, E-mail: nsi12@jbnu.ac.kr [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Jeon, Ye-Jin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Seok-Soon, E-mail: sskim@kunsan.ac.kr [Department of Nano and Chemical Engineering, Kunsan National University, Kunsan, Jeollabuk-do 753-701 (Korea, Republic of); Kim, Tae-Wook [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of)

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  9. Polydiacetylene-Based High-Throughput Screen for Surfactin Producing Strains of Bacillus subtilis

    Science.gov (United States)

    Zhu, Lingyan; Xu, Qing; Jiang, Ling; Huang, He; Li, Shuang

    2014-01-01

    Although traditional mutation is still an attractive approach for strain improvement, it is tedious, time-consuming, and inefficient to screen for surfactin producing strains. To overcome this, we developed a high-throughput screening method for surfactin producing mutants by applying polydiacetylene (PDA) vesicles as sensors with visible chromatic change from blue to red, detected as colorimetric response (CR%) signal, which can even semi-quantify the yields of surfactin. Bacillus subtilis 723 was used as parent strain and multiply mutated with atmospheric and room temperature plasma (ARTP). Mutants were cultured in MicroFlask by Duetz (24 square deepwell plates, Applikon Biotechnology) and surfactin titers were tested in 96-well plates with PDA vesicles. Mutants with surfactin titers above150 mg/L (CR% value above 26%) were selected as high-yield strains and further quantified by HPLC. By integrating MicroFlask cultivation and the PDA vesicles detection, we screened 27,000 mutants and found 37 high-yield strains. From these, one mutant produced 473.6 mg/L surfactin (including 353.1 mg/L C15 surfactin), which was 5.4-fold than that of the parent strain. This method is efficient, cost-effective and provides wider application in screening for various surfactants. PMID:24498439

  10. Extraction, Identification and Photo-Physical Characterization of Persimmon (Diospyros kaki L.) Carotenoids

    Science.gov (United States)

    Zaghdoudi, Khalil; Ngomo, Orleans; Vanderesse, Régis; Arnoux, Philippe; Myrzakhmetov, Bauyrzhan; Frochot, Céline; Guiavarc’h, Yann

    2017-01-01

    Carotenoid pigments were extracted and purified from persimmon fruits using accelerated solvent extraction (ASE). Eleven pigments were isolated and five of them were clearly identified as all-trans-violaxanthine, all-trans-lutein, all-trans-zeaxanthin all-trans-cryptoxanthin and all-trans-β-carotene. Absorption and fluorescence spectra were recorded. To evaluate the potential of 1O2 quenching of the purified carotenoids, we used a monocarboxylic porphyrin (P1COOH) as the photosensitizer to produce 1O2. The rate constants of singlet oxygen quenching (Kq) were determined by monitoring the near-infrared (1270 nm) luminescence of 1O2 produced by photosensitizer excitation. The lifetime of singlet oxygen was measured in the presence of increasing concentrations of carotenoids in hexane. Recorded Kq values show that all-trans-β-cryptoxanthin, all-trans-β-carotene, all-trans-lycopene and all-trans-zeaxanthin quench singlet oxygen in hexane efficiently (associated Kq values of 1.6 × 109, 1.3 × 109, 1.1 × 109 and 1.1 × 109 M−1·s−1, respectively). The efficiency of singlet oxygen quenching of β-cryptoxanthin can thus change the consideration that β-carotene and lycopene are the most efficient singlet oxygen quenchers acting as catalysts for deactivation of the harmful 1O2. PMID:28231085

  11. Extraction, Identification and Photo-Physical Characterization of Persimmon (Diospyros kaki L. Carotenoids

    Directory of Open Access Journals (Sweden)

    Khalil Zaghdoudi

    2017-01-01

    Full Text Available Carotenoid pigments were extracted and purified from persimmon fruits using accelerated solvent extraction (ASE. Eleven pigments were isolated and five of them were clearly identified as all-trans-violaxanthine, all-trans-lutein, all-trans-zeaxanthin all-trans-cryptoxanthin and all-trans-β-carotene. Absorption and fluorescence spectra were recorded. To evaluate the potential of 1O2 quenching of the purified carotenoids, we used a monocarboxylic porphyrin (P1COOH as the photosensitizer to produce 1O2. The rate constants of singlet oxygen quenching (Kq were determined by monitoring the near-infrared (1270 nm luminescence of 1O2 produced by photosensitizer excitation. The lifetime of singlet oxygen was measured in the presence of increasing concentrations of carotenoids in hexane. Recorded Kq values show that all-trans-β-cryptoxanthin, all-trans-β-carotene, all-trans-lycopene and all-trans-zeaxanthin quench singlet oxygen in hexane efficiently (associated Kq values of 1.6 × 109, 1.3 × 109, 1.1 × 109 and 1.1 × 109 M−1·s−1, respectively. The efficiency of singlet oxygen quenching of β-cryptoxanthin can thus change the consideration that β-carotene and lycopene are the most efficient singlet oxygen quenchers acting as catalysts for deactivation of the harmful 1O2.

  12. Extraction, Identification and Photo-Physical Characterization of Persimmon (Diospyros kaki L.) Carotenoids.

    Science.gov (United States)

    Zaghdoudi, Khalil; Ngomo, Orleans; Vanderesse, Régis; Arnoux, Philippe; Myrzakhmetov, Bauyrzhan; Frochot, Céline; Guiavarc'h, Yann

    2017-01-12

    Carotenoid pigments were extracted and purified from persimmon fruits using accelerated solvent extraction (ASE). Eleven pigments were isolated and five of them were clearly identified as all-trans-violaxanthine, all-trans-lutein, all-trans-zeaxanthin all-trans-cryptoxanthin and all-trans-β-carotene. Absorption and fluorescence spectra were recorded. To evaluate the potential of ¹O₂ quenching of the purified carotenoids, we used a monocarboxylic porphyrin (P1COOH) as the photosensitizer to produce ¹O₂. The rate constants of singlet oxygen quenching (Kq) were determined by monitoring the near-infrared (1270 nm) luminescence of ¹O₂ produced by photosensitizer excitation. The lifetime of singlet oxygen was measured in the presence of increasing concentrations of carotenoids in hexane. Recorded Kq values show that all-trans-β-cryptoxanthin, all-trans-β-carotene, all-trans-lycopene and all-trans-zeaxanthin quench singlet oxygen in hexane efficiently (associated Kq values of 1.6 × 10⁸, 1.3 × 10⁸, 1.1 × 10⁸ and 1.1 × 10⁸ M(-1)·s(-1), respectively). The efficiency of singlet oxygen quenching of β-cryptoxanthin can thus change the consideration that β-carotene and lycopene are the most efficient singlet oxygen quenchers acting as catalysts for deactivation of the harmful ¹O₂.

  13. Carotenoid supplementation enhances reproductive success in captive strawberry poison frogs (Oophaga pumilio).

    Science.gov (United States)

    Dugas, Matthew B; Yeager, Justin; Richards-Zawacki, Corinne L

    2013-01-01

    Amphibians are currently experiencing the most severe declines in biodiversity of any vertebrate, and their requirements for successful reproduction are poorly understood. Here, we show that supplementing the diet of prey items (fruit flies) with carotenoids has strong positive effects on the reproduction of captive strawberry poison frogs (Oophaga pumilio), substantially increasing the number of metamorphs produced by pairs. This improved reproduction most likely arose via increases in the quality of both the fertilized eggs from which tadpoles develop and trophic eggs that are fed to tadpoles by mothers. Frogs in this colony had previously been diagnosed with a Vitamin A deficiency, and this supplementation may have resolved this issue. These results support growing evidence of the importance of carotenoids in vertebrate reproduction and highlight the nuanced ways in which nutrition constrains captive populations.

  14. Isolation of carotenoid hyperproducing mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by flow cytometry and cell sorting.

    Science.gov (United States)

    Brehm-Stecher, Byron F; Johnson, Eric A

    2012-01-01

    Approaches for improving astaxanthin yields in Xanthophyllomyces dendrorhous include optimization of fermentation conditions and generation of hyperproducing mutants through random mutagenesis using chemical or physical means. A key limitation of classical mutagenesis is the labor-intensive nature of the screening processes required to find relatively rare mutants having increased carotenoid content, as these are present against a high background of low-interest cells. Here, flow cytometry is described as a high-throughput, single-cell method for primary enrichment of mutagenized cells expressing high levels of astaxanthin. This approach improves the speed and productivity of classical strain selection, enhancing the chances for isolating the carotenoid hyperproducing mutants (CHMs) needed to enable high-titer, economical production of natural astaxanthin.

  15. Assessment of carotenoids in pumpkins after different home cooking conditions

    Directory of Open Access Journals (Sweden)

    Lucia Maria Jaeger de Carvalho

    2014-06-01

    Full Text Available Carotenoids have antioxidant activity, but few are converted by the body into retinol, the active form of vitamin A. Among the 600 carotenoids with pro-vitamin A activity, the most common are α- and β-carotene. These carotenoids are susceptible to degradation (e.g., isomerization and oxidation during cooking. The aim of this study was to assess the total carotenoid, α- and β-carotene, and 9 and 13-Z- β-carotene isomer contents in C. moschata after different cooking processes. The raw pumpkin samples contained 236.10, 172.20, 39.95, 3.64 and 0.8610 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-cis-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked in boiling water contained 258.50, 184.80, 43.97, 6.80, and 0.77 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-Z-β-carotene, and 9-Z-β-carotene, respectively. The steamed samples contained 280.77, 202.00, 47.09, 8.23, and 1.247 µg.g- 1 of total carotenoids, β-carotene, α-carotene,13-Z-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked with added sugar contained 259.90, 168.80, 45.68, 8.31, and 2.03 µg.g- 1 of total carotenoid, β-carotene, α-carotene, 13-Z- β-carotene, and 9-Z- β-carotene, respectively. These results are promising considering that E- β-carotene has 100% pro-vitamin A activity. The total carotenoid and carotenoid isomers increased after the cooking methods, most likely as a result of a higher availability induced by the cooking processes.

  16. Single v. multiple measures of skin carotenoids by resonance Raman spectroscopy as a biomarker of usual carotenoid status

    Science.gov (United States)

    Scarmo, Stephanie; Cartmel, Brenda; Lin, Haiqun; Leffell, David J.; Ermakov, Igor V.; Gellermann, Werner; Bernstein, Paul S.; Mayne, Susan T.

    2013-01-01

    Resonance Raman spectroscopy (RRS) is a non-invasive method of assessing carotenoid status in the skin, which has been suggested as an objective indicator of fruit/vegetable intake. The present study assessed agreement and identified predictors of single v. multiple RRS measures of skin carotenoid status. A total of seventy-four participants had their skin carotenoid status measured in the palm of the hand by RRS at six time points over 6 months. Questionnaires were administered to collect information on demographic, lifestyle and dietary data. Mean age of the participants was 36.6 years, 62.2% were female, 83.8% Caucasian and 85.1% were non-smoking at baseline. There was a good agreement between a single measure of skin carotenoids by RRS and multiple measures (weighted κ = 0.80; 95% CI 0.72, 0.88). The same variables were significantly associated with carotenoid status based on single or multiple measures, including a positive association with intake of total carotenoids (Pseason of measurement (P≤0.05). The exception was recent sun exposure, which emerged as a significant predictor of lower carotenoid status only when using multiple RRS measures (P≤0.01). A single RRS measure was reasonably accurate at classifying usual skin carotenoid status. Researchers using RRS may want to take into account other factors that are associated with the biomarker, including season of measurement and recent sun exposure. PMID:23351238

  17. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification.

    Science.gov (United States)

    Fernandez-Orozco, Rebeca; Gallardo-Guerrero, Lourdes; Hornero-Méndez, Dámaso

    2013-12-01

    The carotenoid profile of sixty potato cultivars (commercial, bred, old and native cultivars) has been characterised in order to provide information to be used in selective breeding programs directed to improve the nutritional value of this important staple food. Cultivars were segregated into three groups according to the major pigment in the carotenoid profile: violaxanthin (37 cultivars; especially those with higher carotenoid content), lutein (16 cultivars), and neoxanthin (7 cultivars). Other minor carotenoids were antheraxanthin, β-cryptoxanthin and β-carotene, while zeaxanthin was absent in all sample. The total carotenoid content ranged from 50.0 to 1552.0 μg/100 g dry wt, with an average value of about 435.3 μg/100 g dry wt. Sipancachi, Poluya and Chaucha native cultivars showed the highest carotenoid content (1020.0, 1478.2 and 1551.2 μg/100 g dry wt, respectively). Xanthophyll esters were present in most cultivars, mainly as diesterified forms, being observed a direct correlation between the carotenoid content and the esterified fraction, suggesting that the esterification process facilitates the accumulation of these lipophilic compounds within the plastids. Therefore, the presence of xanthophyll esters should be a phenotypic character to be included in the breeding studies, and more efforts should be dedicated to the understanding of the biochemical process leading to this structural modification of carotenoids in plants.

  18. Amarginal contribution of selected carotenoids to the supression of UV-irradiation-induced lecithin peroxidation in hexane solution

    Directory of Open Access Journals (Sweden)

    DRAGAN CVETKOVIC

    2007-03-01

    Full Text Available The aim of this work was to study the anticipated antioxidant role of four selected carotenoids in mixtures with lecithin lipoidal compounds in hexane solution, under continuous UV-irradiation in three different ranges (UV-A, UV-B and UV-C. Two carotenes (b-carotene and licopene and two xantophylls (lutein and neoxanthin were employed to control the lipid peroxidation process generated by UV-irradiation, by scavenging the involved free radicals. The results show that while carotenoids undergo a substantial, structural dependent destruction (bleaching, which is highly dependent on energy of the UV-photons, their contribution to the expected suppression of lecithin peroxidation is of marginal importance, not exceeding a maximum of 20%. The marginal antioxidant behaviour has been attributed to a highly unordered hexane solution, where the scavenging action of the carotenoids becomes less competitive.

  19. Fatty acid, tocopherol and carotenoid content in herbage and milk affected by sward composition and season of grazing

    DEFF Research Database (Denmark)

    Larsen, Mette Krogh; Fretté, Xavier; Kristensen, Troels

    2012-01-01

    BACKGROUND: The aim of the present work was to study to what extent grazing large amounts ofwhite clover (WCL), red clover (RCL), lucerne (LUC) or chicory (CHI) was suitable for production of bovine milk with a high milk fat content of tocopherols, carotenoids, α-linolenic acid and conjugated......), carotenoids (6 μg g−1) and α-tocopherol (21 μg g−1 milk fat). There were minor differences between herbage types and periods, but multivariate analysis of these data showed no clear grouping. Chemical composition of herbage varied with species as well as period, but it was not possible to relatemilk and feed...... contents of specific fatty acids, carotenoids or tocopherols. CONCLUSION: All four herbages tested were suitable for production of milk with a high content of beneficial compounds. Thus any of these herbages could be used in production of such differentiated milk based on a large proportion of grazing...

  20. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.

    Science.gov (United States)

    Navarro, Pilar; Savoie, Jean-Michel

    2015-01-01

    To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  1. Change Law of Hyperspectral Data in Related with Chlorophyll and Carotenoid in Rice at Different Developmental Stages

    Institute of Scientific and Technical Information of China (English)

    DENG Zhi-rui; TANG Yan-lin; ZHANG Rong-xian; HUANG Jing-feng; WANG Ren-chao

    2004-01-01

    The hyperspectral reflectances of the canopy, the first and the third unfolding leaves from the top and the panicles of two rice varieties (Xiushui 110 and Xieyou 9308) were measured by a ASD FieldSpec Pro FRTM in field and indoor environments under three nitrogen levels at different developmental stages. The concentrations of chlorophyll and carotenoid in leaves and panicle corresponding to the spectra were determined by biochemical method. The spectral differences were significant for rice under different nitrogen levels, and the concentrations of chlorophyll and carotenoid in leaves increased along with increasing applied nitrogen. There were more pronounced differences for the pigment concentrations in rice leaves with different nitrogen levels. The spectral reflectance of canopy was gradually getting smaller in the visible region and bigger in the near infrared region as the growth edge in the spectra of canopy, leaves and panicle after heading. The concentrations of chlorophyll and carotenoid in leaves presented S-shape change. The concentrations of chlorophyll and carotenoid in canopies, leaves and panicles were highly significantly correlated to the hyperspectral vegetation indices (Vis) R990/R553, R1200/R553, R750/R553, R553/R670, R800/R553, PSSRa,PSNDa and the red edge position λ red, indicating that these Vis could be used to estimate the concentrations of chlorophyll and carotenoid in canopies, leaves and panicles of rice.

  2. Novel Bread Wheat Lines Enriched in Carotenoids Carrying Hordeum chilense Chromosome Arms in the ph1b Background

    Science.gov (United States)

    Rey, María-Dolores; Calderón, María-Carmen; Rodrigo, María Jesús; Zacarías, Lorenzo; Alós, Enriqueta; Prieto, Pilar

    2015-01-01

    The use of crop wild relative species to improve major crops performance is well established. Hordeum chilense has a high potential as a genetic donor to increase the carotenoid content of wheat. Crosses between the 7Hch H. chilense substitution lines in wheat and the wheat pairing homoeologous1b (ph1b) mutant allowed the development of wheat-H. chilense translocation lines for both 7Hchα and 7Hchβ chromosome arms in the wheat background. These translocation lines were characterized by in situ hybridization and using molecular markers. In addition, reverse phase chromatography (HPLC) analysis was carried out to evaluate the carotenoid content and both 7Hchα∙7AL and 7AS∙7Hchβ disomic translocation lines. The carotenoid content in 7Hchα∙7AL and 7AS∙7Hchβ disomic translocation lines was higher than the wheat-7Hch addition line and double amount of carotenoids than the wheat itself. A proteomic analysis confirmed that the presence of chromosome 7Hch introgressions in wheat scarcely altered the proteomic profile of the wheat flour. The Psy1 (Phytoene Synthase1) gene, which is the first committed step in the carotenoid biosynthetic pathway, was also cytogenetically mapped on the 7Hchα chromosome arm. These new wheat-H. chilense translocation lines can be used as a powerful tool in wheat breeding programs to enrich the diet in bioactive compounds. PMID:26241856

  3. Novel Bread Wheat Lines Enriched in Carotenoids Carrying Hordeum chilense Chromosome Arms in the ph1b Background.

    Directory of Open Access Journals (Sweden)

    María-Dolores Rey

    Full Text Available The use of crop wild relative species to improve major crops performance is well established. Hordeum chilense has a high potential as a genetic donor to increase the carotenoid content of wheat. Crosses between the 7Hch H. chilense substitution lines in wheat and the wheat pairing homoeologous1b (ph1b mutant allowed the development of wheat-H. chilense translocation lines for both 7Hchα and 7Hchβ chromosome arms in the wheat background. These translocation lines were characterized by in sit