WorldWideScience

Sample records for high bath ratio

  1. Water-bathing synthesis of high-surface-area zeolite P from diatomite

    Institute of Scientific and Technical Information of China (English)

    Yucheng Du; Shuli Shi; Hongxing Dai

    2011-01-01

    Zeolite P was synthesized for the first time via a novel water-bathing route at 90℃ using scrubbed diatomite, sodium hydroxide, and aluminum hydroxide as precursor, with SiO2/Al2O3, SiO2/Na2O, and H2O/Na2O molar ratios of 7.43, 3.81, and 80.00, respectively. The as-fabricated samples were characterized by means of scanning electron microscopy, X-ray diffraction, and nitrogen adsorption measurements. This study showed that (i) treating the diatomite raw material with sodium hexametaphosphate could open the pores in the diatomite via removal of the clay clogged in its pores; (ii) tetragonal mesoporous zeolite P samples with a surface area of 56-60 m2/g could be generated after 6-24 h of water-bathing reaction at 90 C; (iii) extension of water-bathing reaction time could improve the mesoporous structure of zeolite P;and (iv) Ca2+ adsorption capacity of the zeolite P sample was about 300 cmol/kg. Such high-surface-area porous zeolite P could be used as an effective adsorbent for the treatment of water containing calcium and magnesium ions.

  2. High quality antireflective ZnS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tec-Yam, S.; Rojas, J.; Rejon, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico); Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico)

    2012-10-15

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl{sub 2}, NH{sub 4}NO{sub 3}, and CS(NH{sub 2}){sub 2} were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 Degree-Sign C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300-800 nm wavelength range, and a reflectance below 25% in the UV-Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: Black-Right-Pointing-Pointer High quality ZnS thin films were prepared by chemical bath deposition (CBD). Black-Right-Pointing-Pointer Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. Black-Right-Pointing-Pointer Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  3. Properties of PAN Fibers Solution Spun into a Chilled Coagulation Bath at High Solvent Compositions

    Directory of Open Access Journals (Sweden)

    E. Ashley Morris

    2015-12-01

    Full Text Available In this work, multifilament, continuous polyacrylonitrile (PAN fiber tow was solution spun mimicking industrial processing at the small pilot scale (0.5 k tow, while carefully altering the composition of the coagulation bath, in order to determine the effect on the resulting fiber shape, density, orientation, and tensile properties at varying points in the spinning process. Novel here are the abnormally high coagulation bath solvent compositions investigated, which surpass those often reported in the literature. In addition, the coagulation bath was maintained at a slightly chilled temperature, contrary to reported methods to produce round fibers. Further, by altering the composition of the bath in a step-wise fashion during a single spinning run, variations in all other process parameters were minimized. We found that with increasing solvent composition in the coagulation bath, the fibers not only became round in cross section, but also became smaller in diameter, which persisted down the spin line. With this decrease in diameter, all else equal, came an accompanying increase in apparent fiber density via a reduction in microvoid content. In addition, molecular orientation and tensile properties also increased. Therefore, it was found that inadequate understanding of the coagulation bath effects, and spinning at low coagulation bath solvent compositions, can hinder the ability of the fiber to reach optimum properties.

  4. High-Ratio Gear Train

    Science.gov (United States)

    Lefever, A. E.

    1982-01-01

    Proposed arrangement of two connected planetary differentials results in gear ratio many times that obtainable in conventional series gear assembly of comparable size. Ratios of several thousand would present no special problems. Selection of many different ratios is available with substantially similar gear diameters. Very high gear ratios would be obtained from small mechanism.

  5. Structural, Surface Morphology and Optical Properties of ZnS Films by Chemical Bath Deposition at Various Zn/S Molar Ratios

    Directory of Open Access Journals (Sweden)

    Fei-Peng Yu

    2014-01-01

    Full Text Available In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH2 also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.

  6. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  7. High-temperature conductivity in chemical bath deposited copper selenide thin films

    Science.gov (United States)

    Dhanam, M.; Manoj, P. K.; Prabhu, Rajeev. R.

    2005-07-01

    This paper reports high-temperature (305-523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu 2-xSe) and copper (II) selenide (Cu 3Se 2) thin films. Cu 2-xSe and Cu 3Se 2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu 2-xSe and Cu 3Se 2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.

  8. Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method

    NARCIS (Netherlands)

    van 't Hof, J.A.; van 't Hof, J.A.; Reuvers, A.J.; Reuvers, A.J.; Boom, R.M.; Boom, R.M.; Rolevink, Hendrikus H.M.; Smolders, C.A.; Smolders, C.A.

    1992-01-01

    A new method for the preparation of gas separation membranes in a one-step procedure is presented, where common, non-volatile solvents can be used in the polymer solution. It concerns contacting of a polymer solution with two successive nonsolvent baths, whereby the first bath initiates the formatio

  9. Float processing of high-temperature complex silicate glasses and float baths used for same

    Science.gov (United States)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  10. Properties of PAN Fibers Solution Spun into a Chilled Coagulation Bath at High Solvent Compositions

    National Research Council Canada - National Science Library

    Morris, E; Weisenberger, Matthew; Rice, Gregory

    2015-01-01

    ...), while carefully altering the composition of the coagulation bath, in order to determine the effect on the resulting fiber shape, density, orientation, and tensile properties at varying points in the spinning process...

  11. Exposures to high levels of carbon monoxide from wood-fired temazcal (steam bath) use in highland Guatemala.

    Science.gov (United States)

    Thompson, Lisa M; Clark, Michael; Cadman, Brie; Canúz, Eduardo; Smith, Kirk R

    2011-01-01

    The temazcal is a wood-fired steam bath used in the rural highlands of Guatemala for bathing and healing. We measured carbon monoxide (CO) among 288 participants in 72 temazcales. Participants were drawn from communities who participated in the RESPIRE (Randomized Exposure Study of Pollution Indoors and Respiratory Effects) chimney stove intervention trial. Temazcal CO exposures were extremely high, averaging 431 parts per million (time-weighted average). Compared to kitchen wood-smoke exposures, the temazcal contributes significantly to weekly exposures, despite the fact that the population spends less time in the temazcal than in the kitchen. This report 1) describes temazcal use patterns; 2) reports participants' signs and symptoms during temazcal use; 3) models the distribution of temazcal CO concentrations; 4) assesses reliability of exhaled breath CO as a biomarker of CO exposure; and 5) provides a proportional analysis of CO concentrations from temazcal use, as compared to kitchen concentrations.

  12. ["Legal highs" from the German internet--"bath salt drugs" on the rise].

    Science.gov (United States)

    Musshoff, Frank; Hottmann, Lidia; Hess, Cornelius; Madea, Burkhard

    2013-01-01

    The appearance of dangerous and insufficiently studied designer drugs has increased substantially within the last few years. Mixtures containing centrally active compounds are often declared as "bath salt", "incense", "plant food", "bong cleaners" and are marketed in head shops and on the Internet. As the majority of the ingredients of such products are not subject to regulations of the German Narcotics Law (Betäubungsmittelgesetz, BtMG), the vendors and consumers mistake the sale of such products for legal. An alternative possibility to prosecute the distribution of so-called "legal highs" arises from the regulations of the German Medicinal Products Act (Arzneimittelgesetz, AMG). Indicating a private address, several products were purchased via the Internet. The products were analyzed by gas chromatography- mass spectrometry using computer-assisted database search and potential hits were checked for plausibility. The analysis of 100 samples revealed centrally acting compounds (including caffeine) in 98 % (75 % of all samples positive for caffeine). In 16 % of the samples, drugs subject to the BtMG at the time of purchase (end of 2011) were found including 2,5-dimethoxy-4-methylamphetamine, amphetamine, etilamphetamine, N-benzylpiperazine, mephedrone, methcathinone, and phenobarbital. In 55 % of the samples, drugs subject to the current BtMG were found (after its amendment on 20 July 2012). In 37 % of the samples, substances subject to the AMG were found (e.g. ephedrine). In 35 % of the samples, drugs with a potential psychotropic effect were found. In 57.3 % of the positive samples, more than one active ingredient was determined and in some cases up to five active components were found. Other interesting pharmacologically active ingredients found were 4-methylcathinone (n=13), flephedrone (n=8), trifluoromethylphenyl-piperazine (n=7), methylone (n=5), butylone (n=2), hordenine (n=2), and harmane (n=2). Most of the substances not covered by the BtMG can be

  13. Spectral response of CdS/CdTe solar cells obtained with different S/Cd ratios for the CdS chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O.; Sastre-Hernandez, J.; Contreras-Puente, G.; Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, 07738 Mexico D. F. (Mexico); Arias-Carbajal, A. [Facultad de Quimica, IMRE, Universidad de La Habana, 10400 La Habana (Cuba); Mendoza-Perez, R. [Universidad Autonoma de la Ciudad de Mexico, 09970 Mexico, D. F. (Mexico); Santana, G. [Instituto de Investigacion en Materiales, UNAM, 04510 Mexico, D. F. (Mexico); Morales-Acevedo, A. [Departamento de Ingenieria Electrica, CINVESTAV-IPN, 07360 Mexico, D. F. (Mexico)

    2006-09-22

    In this work, the influence of the variation of chemical bath thiourea concentration in the solution for depositing CdS layers upon the spectral response of chemical bath deposition (CBD)-CdS/CdTe solar cells is studied. Although changes in the short and long wavelength range for the spectral response of the cells were observed in dependence of the thiourea concentration, no significant changes were observed in the diffusion length of minority carriers in the CdTe layer, as determined from the constant photocurrent method, when the thiourea concentration is increased in the CdS deposition solution. (author)

  14. Noise of Embedded High Aspect Ratio Nozzles

    Science.gov (United States)

    Bridges, James E.

    2011-01-01

    A family of high aspect ratio nozzles were designed to provide a parametric database of canonical embedded propulsion concepts. Nozzle throat geometries with aspect ratios of 2:1, 4:1, and 8:1 were chosen, all with convergent nozzle areas. The transition from the typical round duct to the rectangular nozzle was designed very carefully to produce a flow at the nozzle exit that was uniform and free from swirl. Once the basic rectangular nozzles were designed, external features common to embedded propulsion systems were added: extended lower lip (a.k.a. bevel, aft deck), differing sidewalls, and chevrons. For the latter detailed Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) simulations were made to predict the thrust performance and to optimize parameters such as bevel length, and chevron penetration and azimuthal curvature. Seventeen of these nozzles were fabricated at a scale providing a 2.13 inch diameter equivalent area throat." ! The seventeen nozzles were tested for far-field noise and a few data were presented here on the effect of aspect ratio, bevel length, and chevron count and penetration. The sound field of the 2:1 aspect ratio rectangular jet was very nearly axisymmetric, but the 4:1 and 8:1 were not, the noise on their minor axes being louder than the major axes. Adding bevel length increased the noise of these nozzles, especially on their minor axes, both toward the long and short sides of the beveled nozzle. Chevrons were only added to the 2:1 rectangular jet. Adding 4 chevrons per wide side produced some decrease at aft angles, but increased the high frequency noise at right angles to the jet flow. This trend increased with increasing chevron penetration. Doubling the number of chevrons while maintaining their penetration decreased these effects. Empirical models of the parametric effect of these nozzles were constructed and quantify the trends stated above." Because it is the objective of the Supersonics Project that

  15. Characterization of CBD-CdS layers with different S/Cd ratios in the chemical bath and their relation with the efficiency of CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico)]. E-mail: osvaldo@esfm.ipn.mx; Morales-Acevedo, A. [CINVESTAV-IPN, Electrical Engineering Departament, Av. IPN No 2508, 07360 Mexico D. F. (Mexico); Cruz-Gandarilla, F. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Jimenez-Escamilla, M.G. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Sastre-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Ramon-Garcia, M.L. [Centro de Investigaciones en Energia.UNAM. Privada Xochicalco s/n Col. Centro Temixco. CP. 62580 Morelos (Mexico)

    2007-05-31

    In previous papers we have reported the improvement of the efficiency of CdS/CdTe solar cells by varying the thiourea/CdCl{sub 2} ratio (R {sub tc}) in the chemical bath solution used for the deposition of the CdS layers. In this work, a more complete study concerning the physical properties of Chemical Bath Deposited (CBD) CdS layers studied by photoluminescence, X-ray diffraction and optical spectroscopy are correlated to the I-V characteristics under AM 1.5 sunlight and the spectral response of CdS/CdTe solar cells. It is confirmed that the optimum R {sub tc} for the CBD CdS films is R {sub tc} = 5, since in this case the best solar cells were obtained and these films show the better optical and structural characteristics.

  16. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Redwing, Joan [Pennsylvania State Univ., University Park, PA (United States). Dept. of Material Science and Engineering; Mallouk, Tom [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemistry; Mayer, Theresa [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering; Dickey, Elizabeth [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Wronski, Chris [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematic and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (Voc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion

  17. MANSION BATHS OF CYPRUS

    Directory of Open Access Journals (Sweden)

    Enes Kavalçalan

    2015-12-01

    Full Text Available From the very beginning of the human history, body cleanliness is one of the basic needs. At first, human beings have supplied the needs of cleaning from rivers and lakes. With the development of civilizations they have started to build baths. In Roman Period these baths have been combined with Gymnasiums and become a part of the social life while they were merely small places of bathing in Ancient Greek. In the course of time, bath architecture which gained new functions and typologies with the effects of different nations and geographic places has maintained its own existence in Turkish culture as a popular ingredient in it. In this paper, mansion baths that were built in Ottoman period in Cyprus are studied. Firstly all locations of baths were determinated, photographed and measured during the research. Then, the determinated baths have been tried to being described comprehensively in the light of the documents and knowledges that are achievable. Main plan in mansion baths was built on the basis of “dressing” and “hotness” sections. Also, there are installation parts like “water tank” and “boiler room”. The baths which have a peculiar schema in itself constitute the exceptional examples of bath typology. With this paper, introduction to science world of mansion baths which are generally ignored in most of the researches because of the small sizes, are aimed.

  18. The baby and the bath water: improving metaphors and analogies in high school biology texts

    Science.gov (United States)

    Shors, Luke

    This dissertation is concerned with understanding how metaphors and analogies function in biology education and whether some of the philosophical critiques of the language used in the field of biology -- and in particular its accompanying metaphors and analogies, have a basis in the educational materials used to teach the subject. This inquiry was carried out through examining the pedagogical features and content of metaphors and analogies from three high school biology textbooks. After identifying over two hundred and twenty-five verbal and pictorial metaphors and analogies, these figures of speech were coded based on prior research that establishes effective characteristics for their use. In tandem with this quantitative analysis, a philosophical analysis considers how well the content of these metaphors and analogies aligns with current scientific understanding and what misunderstandings may be engendered through the use of these metaphors and analogies. The major findings of the analysis include: 1) Textbook authors are much more likely to utilize metaphors and analogies as well as signal their presence to students compared with past analyses; 2) A number of metaphors and analogies either contain errors in analogical mapping or use source analogues that are too antiquated to support today's students; 3) The content of many metaphors and analogies is frequently outdated in reference to current scientific understanding; and 4) Many metaphors and analogies tend to reinforce tacit elements of past scientific paradigms - these are termed 'reinforcing metaphors' in the dissertation and include nature as machine, nature as blueprint or information, nature as business and nature as war. The present work submits several implications for students learning biology as well as the manner in which students come to understand the natural world. The work suggests ways to reduce ineffective metaphors and analogies as well as reliance on reinforcing metaphors. It offers new

  19. Fabrication and Characteristics of High Capacitance Al Thin Films Capacitor Using a Polymer Inhibitor Bath in Electroless Plating Process.

    Science.gov (United States)

    Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong

    2015-10-01

    An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.

  20. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  1. Design parameter investigation of industrial size ultrasound textile treatment bath.

    Science.gov (United States)

    Perincek, Seher; Uzgur, A Erman; Duran, Kerim; Dogan, Aydin; Korlu, Aysegul E; Bahtiyari, Ibrahim M

    2009-01-01

    Design requirements for industrial size ultrasound bath for textile treatments have been determined. For this purpose, effects of sound pressure level, bath temperature, bath volume, textile material type and hydrophility degree of fabric were examined extensively. Finite element analysis (FEA) was used to investigate spacing and alignment of the ultrasound source transducers to reach effective and homogenous acoustic pressure distribution in the bath. It was found that textile material type, bath temperature and volume led to significant changes at sound pressure level. These parameters should be taken into consideration in designing of industrial size ultrasound bath for textile treatments. Besides, wettability of textiles is highly dependent to the distance from the transducers.

  2. High/variable mixture ratio O2/H2 engine

    Science.gov (United States)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  3. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...

  4. Fabrication of high-aspect ratio SU-8 micropillar arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Keller, Stephan S.; Heiskanen, Arto

    2012-01-01

    SU-8 is the preferred photoresist for development and fabrication of high aspect ratio (HAR) three dimensional patterns. However, processing of SU-8 is a challenging task, especially when the film thickness as well as the aspect ratio is increasing and the size of the features is close to the res...

  5. Aqueous solution route to high-aspect-ratio zinc oxide nanostructures on indium tin oxide substrates.

    Science.gov (United States)

    Ku, Chen-Hao; Wu, Jih-Jen

    2006-07-06

    High-aspect-ratio ZnO nanowires and nanotubes are formed on indium tin oxide (ITO) substrates using a three-step route at low temperatures. The three steps, including successive ionic layer absorption and reaction (SILAR) deposition of the ZnO seed layer, hydrothermal annealing of the seed layer, and chemical bath deposition (CBD) of the one-dimensional (1D) ZnO nanostructures, are all conducted in aqueous solutions at temperatures below 120 degrees C. Both the hydrothermal annealing of the SILAR seed layer and the low-concentration precursor solution employed in the CBD process are crucial in order to synthesize the uniform and high-aspect-ratio ZnO nanostructures on the ITO substrate. TEM analyses reveal that both the nanowire and the nanotube possess the single-crystal structure and are grown along [001] direction. Room-temperature cathodoluminescence spectrum of the 1D ZnO nanostructures shows a sharp ultraviolet emission at 375 nm and a broad green-band emission.

  6. Efficiency of nonstandard and high contact ratio involute spur gears

    Science.gov (United States)

    Anderson, N. E.; Loewenthal, S. H.

    1986-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  7. Scattering and extinction from high-aspect-ratio trenches

    DEFF Research Database (Denmark)

    Roberts, Alexander Sylvester; Søndergaard, Thomas; Chirumamilla, Manohar;

    2015-01-01

    We construct a semi-analytical model describing the scattering, extinction and absorption properties of a high aspect-ratio trench in a metallic film. We find that these trenches act as highly efficient scatterers of free waves. In the perfect conductor limit, which for many metals is approached...

  8. Computation of compressible flows with high density ratio and pressure ratio

    Institute of Scientific and Technical Information of China (English)

    CHEN Rong-san

    2008-01-01

    The WENO method, RKDG method, RKDG method with original ghost fluid method, and RKDG method with modified ghost fluid method are applied to single-medium and two-medium air-air, air-liquid compressible flows with high density and pressure ratios. We also provide a numerical comparison and analysis for the above methods. Numerical results show that, compared with the other methods, the RKDG method with modified ghost fluid method can obtain high resolution results and the correct position of the shock, and the computed solutions are converged to the physical solutions as the mesh is refined.

  9. Interpreting high [O III]/Hbeta ratios with maturing starbursts

    CERN Document Server

    Stanway, E R; Greis, S M L; Davies, L J M; Wilkins, S M; Bremer, M N

    2014-01-01

    Star forming galaxies at high redshift show ubiquitously high ionization parameters, as measured by the ratio of optical emission lines. We demonstrate that local (z < 0.2) sources selected as Lyman break analogues also manifest high line ratios with a typical [O III]/H beta = 3.36(+0.14,-0.04) - comparable to all but the highest ratios seen in star forming galaxies at z ~ 2-4. We argue that the stellar population synthesis code BPASS can explain the high ionization parameters required through the ageing of rapidly formed star populations, without invoking any AGN contribution. Binary stellar evolution pathways prolong the age interval over which a starburst is likely to show elevated line ratios, relative to those predicted by single stellar evolution codes. As a result, model galaxies at near-Solar metallicities and with ages of up to ~100 Myr after a starburst typically have a line ratio [O III]/H beta~3, consistent with those seen in Lyman break galaxies and local sources with similar star formation de...

  10. Is China’s Investment Ratio Too High?

    Institute of Scientific and Technical Information of China (English)

    张汉亚

    2007-01-01

    In recent years,overseas observers have reached a consensus upon attributing China’s sustained rapid economic growth primarily to high investment.This consensus opinion has also struck a resonant chord among a large number of domestic researchers who acknowledge the tremendous contribution of continued high fixed asset investment to China’s economic growth,and often wonder whether"the investment ratio is too high"and"the economy is overheating".In this article,renowned economist Zhang Hanya elaborates upon the real economic meaning of"investment ratio",and sets out reasonable criteria for the"investment/consumption ratio".His explanations help us to clarify our understanding and judgments regarding the related issues.

  11. Study of High Capacitance Ratios CPW MEMS Shunt Switches

    Institute of Scientific and Technical Information of China (English)

    Jianhai Sun; Dafu Cui

    2006-01-01

    This paper describes a fixed-fixed beam ohmic switch in series with a fixed capacitor as a replacement for a capacitive switch. In this switch, a metal plate deposited on the dielectric ensures perfectly contact with the dielectric layer in the down state. The area size of the metal plate directly influences the capacitance ratio of the switch, as the area size of the metal cap decreases, the capacitance ratio dramatically rises up. The down/up capacitance ratio can exceed 800 times over the conventional designs using the same materials and the equal size. Measurement results show that high capacitance ratio of the switches has a large effect on the isolation, and can actually improve the performance of the switches.

  12. Portable thermal bath

    OpenAIRE

    2010-01-01

    [EN] A bath, particularly for use in laboratory experiments and research centres, for heating a liquid (10) unifonnly all along the length thereof, with temperature variations of les s than ±0.5°C, said liquid (10) remaining under static conditions, said bath comprising a channel (2) containing a volume ofliquid (10) to be heated; a resistance heating wire (3) on the outside face of the channel (2), connected to an external power source (11) that supplies it with electricity, heating...

  13. Cross section to multiplicity ratios at very high energy

    Energy Technology Data Exchange (ETDEWEB)

    Block, M.M. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Stodolsky, L. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2014-06-27

    Recent data from the LHC makes it possible to examine an old speculation that at very high energy the total multiplicity and the cross section in elementary particle interactions vary in parallel with energy. Using fits incorporating the new data, it appears that the ratios of the total, elastic, and inelastic cross sections to the average multiplicity N can in fact approach constants at very high energy. The approach to the limit is however quite slow for the total and inelastic cross sections and is not yet reached at LHC energies. The elastic ratio σ{sup el}/N at 7 TeV, however, is not far from its asymptotic value.

  14. What Are Bath Salts?

    Science.gov (United States)

    ... in Missouri. She won the 3rd place 2013 Addiction Science Award . Read More » 0 Comments Bath Salts: An Emerging Danger February 05, 2013 / Sara Bellum ... copy Listen Drug Facts ... Nicotine, & E-Cigarettes Brain and Addiction Drug Overdoses in Youth HIV/AIDS and Drug ...

  15. High-aspect ratio magnetic nanocomposite polymer cilium

    Science.gov (United States)

    Rahbar, M.; Tseng, H. Y.; Gray, B. L.

    2014-03-01

    This paper presents a new fabrication technique to achieve ultra high-aspect ratio artificial cilia micro-patterned from flexible highly magnetic rare earth nanoparticle-doped polymers. We have developed a simple, inexpensive and scalable fabrication method to create cilia structures that can be actuated by miniature electromagnets, that are suitable to be used for lab-on-a chip (LOC) and micro-total-analysis-system (μ-TAS) applications such as mixers and flow-control elements. The magnetic cilia are fabricated and magnetically polarized directly in microfluidic channels or reaction chambers, allowing for easy integration with complex microfluidic systems. These cilia structures can be combined on a single chip with other microfluidic components employing the same permanently magnetic nano-composite polymer (MNCP), such as valves or pumps. Rare earth permanent magnetic powder, (Nd0.7Ce0.3)10.5Fe83.9B5.6, is used to dope polydimethylsiloxane (PDMS), resulting in a highly flexible M-NCP of much higher magnetization and remanence [1] than ferromagnetic polymers typically employed in magnetic microfluidics. Sacrificial poly(ethylene-glycol) (PEG) is used to mold the highly magnetic polymer into ultra high-aspect ratio artificial cilia. Cilia structures with aspect ratio exceeding 8:0.13 can be easily fabricated using this technique and are actuated using miniature electromagnets to achieve a high range of motion/vibration.

  16. High lift generation of low-aspect-ratio wings

    Science.gov (United States)

    Devoria, Adam; Mohseni, Kamran

    2016-11-01

    The time-averaged flow field in the center-span of low-aspect-ratio rectangular wings is experimentally measured. It is shown that lift stall is preceded by shedding of strong trailing-edge vorticity. The induced downwash of the tip vortices delays the growth of the attached boundary layer as well as leading-edge separation. Reattached flow occurs for sufficiently low aspect ratios and results in a smooth merging of the flow at the trailing edge thus assisting in satisfying a Kutta condition there. As a consequence, the strength of vorticity shed from the trailing edge is decreased and allows for continued lift generation at high angles of attack. When the reattachment point passes beyond the trailing edge, a strong shear layer is generated there and represents negative lift, leading to stall with a slight increase in angle of attack or aspect ratio.

  17. Formation of High Aspect Ratio Microcoil Using Dipping Method

    Science.gov (United States)

    Noda, Daiji; Yamashita, Shuhei; Matsumoto, Yoshifumi; Setomoto, Masaru; Hattori, Tadashi

    Coils are used in many electronic devices as inductors in mobile units such as mobile phone, digital cameras, etc. Inductance and quality factor of coils are very important value of the performance. Therefore, the requests for coils are small size, high inductance, low power consumption, etc. However, coils are unsuitable for miniaturization because of its structure. Therefore, we have proposed and developed the microcoils of high aspect ratio with the dipping method and an X-ray lithography technique. In dipping method, centrifugal force and highly viscous photoresist solution were key points to evenly apply resist in the form of thick film on metal bar. The film thickness of resist on bar was achieved about 50 μm after single coating. Using these techniques, we succeeded in creating threaded groove structure with 10 μm lines and spaces on 1 mm brass bar. In this case, the aspect ratio was achieved five. It is very expected the high performance microcoil with high aspect ratio lines could be manufactured in spite of the miniature size.

  18. Performance and Loss Analyses of High-Efficiency Chemical Bath Deposition (CBD)-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells

    Science.gov (United States)

    Pudov, Alexei; Sites, James; Nakada, Tokio

    2002-06-01

    Chemically deposited ZnS has been investigated as a buffer layer alternative to cadmium sulfide (CdS) in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency of up to 18.1% based on chemical bath deposition (CBD)-ZnS{\\slash}CIGS heterostructures have been fabricated. This paper presents the performance and loss analyses of these cells based on the current-voltage (J-V) and spectral response curves, as well as comparisons with high efficiency CBD-CdS/CIGS and crystalline silicon counterparts. The CBD-ZnS/CIGS devices have effectively reached the efficiency of the current record CBD-CdS/CIGS cell. The effects of the superior current of the CBD-ZnS/CIGS cell and the superior junction quality of the CBD-CdS/CIGS cell on overall performance nearly cancel each other.

  19. Bathing a patient in bed

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000427.htm Bathing a patient in bed To use the sharing features on this page, please enable JavaScript. Some patients cannot safely leave their beds to bathe. For ...

  20. Aeroelastic stability analysis of high aspect ratio aircraft wings

    OpenAIRE

    Banerjee, J. R.; Liu, X.; Kassem, H. I.

    2014-01-01

    Free vibration and flutter analyses of two types of high aspect ratio aircraft wings are presented. The wing is idealised as an assembly of bending-torsion coupled beams using the dynamic stiffness method leading to a nonlinear eigenvalue problem. This problem is solved using the Wattrick-Williams algorithm yielding natural frequencies and mode shapes. The flutter analysis is carried out using the normal mode method in conjunction with generalised coordinates and two-dimensional unsteady aero...

  1. High-performance metasurface polarizers with extinction ratios exceeding 12000.

    Science.gov (United States)

    Kurosawa, Hiroyuki; Choi, Bongseok; Sugimoto, Yoshimasa; Iwanaga, Masanobu

    2017-02-20

    High-performance ultrathin polarizers have been experimentally demonstrated employing stacked complementary (SC) metasurfaces, which were produced using nanoimprint lithography. It is experimentally determined that the metasurface polarizers composed of Ag and Au have large extinction ratios exceeding 17000 and 12000, respectively, in spite of the subwavelength thickness. It is also shown that the ultrathin polarizers of the SC structures are optimized at telecommunication wavelengths.

  2. Baths and becks \\ud

    OpenAIRE

    Gupta, A.F.

    2005-01-01

    A report on two prominent dialectal variables in England. Using rather informally collected data, The author looks here at two well-known variables in the English of England: first, whether there is a short or long vowel in words such as grass and bath; second, what regional words people know for streams. The treatment of these variables is consistent over time, and seems to have little to do with social status or carefulness of speech.\\ud

  3. Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage

    Science.gov (United States)

    Merchant, Ali; Kerrebrock, Jack L.; Adamczyk, John J.; Braunscheidel, Edward

    2004-01-01

    The experimental investigation of an aspirated fan stage designed to achieve a pressure ratio of 3.4:1 at 1500 ft/sec is presented in this paper. The low-energy viscous flow is aspirated from diffusion-limiting locations on the blades and flowpath surfaces of the stage, enabling a very high pressure ratio to be achieved in a single stage. The fan stage performance was mapped at various operating speeds from choke to stall in a compressor facility at fully simulated engine conditions. The experimentally determined stage performance, in terms of pressure ratio and corresponding inlet mass flow rate, was found to be in good agreement with the three-dimensional viscous computational prediction, and in turn close to the design intent. Stage pressure ratios exceeding 3:1 were achieved at design speed, with an aspiration flow fraction of 3.5 percent of the stage inlet mass flow. The experimental performance of the stage at various operating conditions, including detailed flowfield measurements, are presented and discussed in the context of the computational analyses. The sensitivity of the stage performance and operability to reduced aspiration flow rates at design and off design conditions are also discussed.

  4. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high (aspect......We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...

  5. High aspect ratio transmission line circuits micromachined in silicon

    Science.gov (United States)

    Todd, Shane Truman

    The performance of complimentary metal-oxide-semiconductor (CMOS) monolithic microwave integrated circuits (MMICs) fabricated on silicon has improved dramatically. The scaling down of silicon transistors has increased the maximum frequency of transistors to the point where silicon MMICs have become a viable alternative to compound semiconductor MMICs in certain applications. A fundamental problem still exists in silicon MMICs however in that transmission lines fabricated on silicon can suffer from high loss due to the finite conductivity of the silicon substrate. A novel approach for creating low-loss transmission lines on silicon is presented in this work. Low-loss transmission lines are created on low resistivity silicon by using a micromachining method that combines silicon deep reactive ion etching (DRIE), thermal oxidation, electroplating, and planarization. Two types of high aspect ratio transmission lines are created with this method including high aspect ratio coplanar waveguide (hicoplanar) and semi-rectangular coaxial (semicoaxial). Transmission lines with impedances ranging from 20--80 O have been fabricated with minimum measured loss lower than 1 dB/cm at 67 GHz. Low-loss dielectrics are created for the high aspect ratio transmission lines using the mesa merging method. The mesa merging method works by creating silicon mesa arrays using DRIE and then converting and merging the mesa arrays into a solid oxide dielectric using thermal oxidation. The transmission lines are designed so that the fields penetrate the low-loss oxide dielectric and are isolated from the lossy silicon substrate. The mesa merging method has successfully created large volume oxide with depth up to 65 microm and width up to 240 microm in short oxidation times. Other advantages of the high aspect ratio transmission lines are demonstrated including low-loss over a wide impedance range, high isolation, and high coupling for coupled-line circuits. Transmission line models have been

  6. Rapid homogeneous endothelialization of high aspect ratio microvascular networks.

    Science.gov (United States)

    Naik, Nisarga; Hanjaya-Putra, Donny; Haller, Carolyn A; Allen, Mark G; Chaikof, Elliot L

    2015-08-01

    Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A 'stretch - seed - seal' operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

  7. High aspect ratio channels in glass and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.D. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Dang, Z.Y. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Wu, J.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Kan, J.A. van; Qureshi, S. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Ynsa, M.D.; Torres-Costa, V. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid, Campus de Cantoblanco Edif. 22, Faraday 3, E-28049 Madrid (Spain); Maira, A. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Venkatesan, T.V. [Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Breese, M.B.H., E-mail: phymbhb@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2017-03-01

    We have developed a micromachining process to produce high-aspect-ratio channels and holes in glass and porous silicon. Our process utilizes MeV proton beam irradiation of silicon using direct writing with a focused beam, followed by electrochemical etching. To increase throughput we have also developed another process for large area ion irradiation based on a radiation-resistant gold surface mask, allowing many square inches to be patterned. We present a study of the achievable channel width, depth and period and sidewall verticality for a range of channels which can be over 100 μm deep or 100 nm wide with aspect ratios up to 80. This process overcomes the difficulty of machining glass on a micro- and nanometer scale which has limited many areas of applications in different fields such as microelectronics and microfluidics.

  8. High aspect ratio channels in glass and porous silicon

    Science.gov (United States)

    Liang, H. D.; Dang, Z. Y.; Wu, J. F.; van Kan, J. A.; Qureshi, S.; Ynsa, M. D.; Torres-Costa, V.; Maira, A.; Venkatesan, T. V.; Breese, M. B. H.

    2017-03-01

    We have developed a micromachining process to produce high-aspect-ratio channels and holes in glass and porous silicon. Our process utilizes MeV proton beam irradiation of silicon using direct writing with a focused beam, followed by electrochemical etching. To increase throughput we have also developed another process for large area ion irradiation based on a radiation-resistant gold surface mask, allowing many square inches to be patterned. We present a study of the achievable channel width, depth and period and sidewall verticality for a range of channels which can be over 100 μm deep or 100 nm wide with aspect ratios up to 80. This process overcomes the difficulty of machining glass on a micro- and nanometer scale which has limited many areas of applications in different fields such as microelectronics and microfluidics.

  9. Small, high pressure ratio compressor: Aerodynamic and mechanical design

    Science.gov (United States)

    Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.

    1973-01-01

    The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.

  10. High aspect ratio 3D nanopatterning using Proton Beam Writing

    Science.gov (United States)

    van Kan, Jeroen A.

    2009-03-01

    Proton beam writing (PBW) is a new direct write lithography using MeV protons, and is unique because of its ability to fabricate 3D structures of high aspect ratio structures directly in resist material like PMMA, SU-8 and HSQ. The introduction by CIBA, Singapore of a dedicated PBW facility, capable of writing at the micro- and nano- scale has facilitated high aspect ratio nanostructuring. PBW has demontrated high aspect ratio walls in HSQ down to the 20nm level. In recent experiments details down to sub 20 nm have been achieved in PMMA. Monte-Carlo calculations have shown that structuring down to the nanometer level is feasible. All this is possible because of the virtual absence of proximity effects (unwanted resist exposure by stray secondary electrons). The design and performance of this unique nanoprobe facility will be discussed. Two potential fields of application (eg nanofluidics and nanowire integration) of PBW will be discussed. Currently nanofluidics devices have typically only one critical dimension below 100 nm. Here we will introduce PBW as a powerful technique to fabricate molds for replication of PDMS nanofluidic circuits down to the sub 100 nm level in two dimensions. Initial chips with dimension down to 150 nm have successfully been used to study DNA folding in quasi-1d nanochannels in tandem with fluorescence imaging. Since the size of these PDMS nanochannels is not limited by the PDMS or PBW further miniaturization down to the sub 100 nm level is a realistic goal and initial results will be discussed. Nanowires are a potential building block for nano-electronic devices, and one critical problem is the integration of nanowires to form contacts. Porous alumina templates and high energy ion-tracks have been used for the production of nanowire templates in a random orientation. Since PBW is the only true 3D direct write nanolithographic technique it can be used to fabricate nanowire templates in a controlled manner.

  11. Dielectric spectroscopy of high aspect ratio graphene-polyurethane nanocomposites

    Science.gov (United States)

    Jan, Rahim; Habib, Amir; Abbassi, Hina; Amir, Shahid

    2015-03-01

    High aspect ratio graphene nanosheets (GNS), prepared via liquid exfoliation, are homogeneously dispersed in thermoplastic polyurethane (TPU). Dielectric spectroscopy results are reported for these nanocomposites (up to 0.55 vol. % GNS) in the frequency range of 100 Hz to 5 MHz. The as-prepared GNS increased the AC conductivity 10-1000 times across the given frequency range. The dielectric constant is increased 5-6 times at 100 Hz for the maximum loading of GNS when compared with the pristine TPU, with subsequently high dielectric loss making them a suitable candidate for high energy dissipation applications such as EMI shielding. The temperature effects on the dielectric characteristics of 0.55 vol. % GNS/TPU nanocomposites beyond 400 K are more pronounced due to the interfacial and orientation polarization. Mechanical characteristics evaluation of GNS/TPU composites shows a marked increase in the ultimate tensile strength without compromising their ductility and stiffness. [Figure not available: see fulltext.

  12. Anomalous dynamic behaviour of optically trapped high aspect ratio nanowires

    CERN Document Server

    Toe, Wen Jun; Angstmann, Christopher; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati; Henry, Bruce; Reece, Peter J

    2015-01-01

    We investigate the dynamics of high aspect ratio nanowires trapped axially in a single gradient force optical tweezers. A power spectrum analysis of the Brownian dynamics reveals a broad spectral resonance of the order of a kHz with peak properties that are strongly dependent on the input trapping power. Modelling of the dynamical equations of motion of the trapped nanowire that incorporate non-conservative effects through asymmetric coupling between translational and rotational degrees of freedom provides excellent agreement with the experimental observations. An associated observation of persistent cyclical motion around the equilibrium trapping position using winding analysis provides further evidence for the influence of non-conservative forces.

  13. High Aspect-Ratio Neural Probes using Conventional Blade Dicing

    Science.gov (United States)

    Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Correia, J. H.

    2016-10-01

    Exploring deep neural circuits has triggered the development of long penetrating neural probes. Moreover, driven by brain displacement, the long neural probes require also a high aspect-ratio shafts design. In this paper, a simple and reproducible method of manufacturing long-shafts neural probes using blade dicing technology is presented. Results shows shafts up to 8 mm long and 200 µm wide, features competitive to the current state-of-art, being its outline simply accomplished by a single blade dicing program. Therefore, conventional blade dicing presents itself as a viable option to manufacture long neural probes.

  14. High frequency wide-band transformer uses coax to achieve high turn ratio and flat response

    Science.gov (United States)

    De Parry, T.

    1966-01-01

    Center-tap push-pull transformer with toroidal core helically wound with a single coaxial cable creates a high frequency wideband transformer. This transformer has a high-turn ratio, a high coupling coefficient, and a flat broadband response.

  15. Guidelines for bath PUVA, bathing suit PUVA and soak PUVA

    Directory of Open Access Journals (Sweden)

    Sathish B Pai

    2015-01-01

    Full Text Available Background: The aim of these guidelines is to encourage dermatologists to use bath psoralen plus ultraviolet A (PUVA, bathing suit PUVA and soak PUVA in the treatment of psoriasis vulgaris and other conditions. Methods: Evidence was collected using searches of the PubMed, MEDLINE and COCHRANE databases using the keywords “bath PUVA,” “soak PUVA,” “bathing suit PUVA” and “turban PUVA.” Only publications in English were reviewed. Results: One hundred and thirty-eight studies were evaluated, 57 of which fulfilled the criteria for inclusion. Conclusions: Both bath PUVA and bathing suit PUVA are very effective and safe treatments for generalized stable plaque psoriasis (strength of recommendation, A. Soak PUVA is very effective in the treatment of both palmoplantar psoriasis and chronic palmoplantar eczema (strength of recommendation, A.

  16. Large eddy simulation of a high aspect ratio combustor

    Science.gov (United States)

    Kirtas, Mehmet

    The present research investigates the details of mixture preparation and combustion in a two-stroke, small-scale research engine with a numerical methodology based on large eddy simulation (LES) technique. A major motivation to study such small-scale engines is their potential use in applications requiring portable power sources with high power density. The investigated research engine has a rectangular planform with a thickness very close to quenching limits of typical hydrocarbon fuels. As such, the combustor has a high aspect ratio (defined as the ratio of surface area to volume) that makes it different than the conventional engines which typically have small aspect ratios to avoid intense heat losses from the combustor in the bulk flame propagation period. In most other aspects, this engine involves all the main characteristics of traditional reciprocating engines. A previous experimental work has identified some major design problems and demonstrated the feasibility of cyclic combustion in the high aspect ratio combustor. Because of the difficulty of carrying out experimental studies in such small devices, resolving all flow structures and completely characterizing the flame propagation have been an enormously challenging task. The numerical methodology developed in this work attempts to complement these previous studies by providing a complete evolution of flow variables. Results of the present study demonstrated strengths of the proposed methodology in revealing physical processes occuring in a typical operation of the high aspect ratio combustor. For example, in the scavenging phase, the dominant flow structure is a tumble vortex that forms due to the high velocity reactant jet (premixed) interacting with the walls of the combustor. Since the scavenging phase is a long process (about three quarters of the whole cycle), the impact of the vortex is substantial on mixture preparation for the next combustion phase. LES gives the complete evolution of this flow

  17. High extinction ratio bandgap of photonic crystals in LNOI wafer

    Science.gov (United States)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang

    2017-02-01

    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  18. High pressure ratio cryocooler with integral expander and heat exchanger

    Science.gov (United States)

    Crunkleton, J. A.; Smith, J. L., Jr.; Iwasa, Y.

    A new 1 W, 4.2 K cryocooler is under development that is intended to miniaturize helium temperature refrigeration systems using a high-pressure-ratio Collins-type cycle. The configuration resulted from optimization studies of a saturated vapor compression (SCV) cycle that employs miniature parallel-plate heat exchangers. The basic configuration is a long displacer in a close-fitting, thin-walled cylinder. The displacer-to-cylinder gap is the high-pressure passage of the heat exchanger, and the low-pressure passage is formed by a thin tube over the OD of the cylinder. A solenoid-operated inlet valve admits 40 atm helium to the displacer-to-cylinder gap at room temperature, while the solenoid-operated exhaust valve operates at 4 atm. The single-stage cryocooler produces 1 W of refrigeration at 40 K without precooling and at 20 K with liquid nitrogen precooling.

  19. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    Science.gov (United States)

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-09

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

  20. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    Science.gov (United States)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  1. High transformer ratio of multi-channel dielectric wakefield structures

    Science.gov (United States)

    Shchelkunov, Sergey V.; Marshall, Thomas C.; Sotnikov, Gennadij V.; Hirshfield, Jay L.

    2016-09-01

    Dielectric wakefield (DWA) accelerator concepts are receiving attention on account of their promising performance, mechanical simplicity, and anticipated low cost. Interest in DWA physics directed toward an advanced high-gradient accelerator has been enhanced by a finding that some dielectrics can withstand very high fields (>1 GV/m) for the short times during the passage of charged bunches along dielectric-lined channels. In a two-channel structure, a drive bunch train propagates in a first channel, and in the second adjacent channel where a high gradient wakefield develops, a witness bunch is accelerated. Compared with single-channel DWA's, a two-beam accelerator delivers a high transformer ratio, and thereby reduces the number of drive beam sections needed to achieve a given final test beam energy. An overview of multi-channel DWA structures will be given, with an emphasis on two-channel structures, presenting their advantages and drawbacks, and potential impact on the field. Studies aimed to examine charging rate and charge distribution in a thin walled dielectric wakefield accelerator from a passing charge bunch and the physics of conductivity and discharge phenomena in dielectric materials useful for such accelerator applications are presented in a separate paper in the EAAC-2015 conference proceedings.

  2. High transformer ratio of multi-channel dielectric wakefield structures

    Energy Technology Data Exchange (ETDEWEB)

    Shchelkunov, Sergey V., E-mail: sergey.shchelkunov@gmail.com [Omega-P R& D, Inc, CT 06511 (United States); Yale University, CT (United States); Marshall, Thomas C. [Omega-P R& D, Inc, CT 06511 (United States); Sotnikov, Gennadij V. [NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Hirshfield, Jay L. [Omega-P R& D, Inc, CT 06511 (United States)

    2016-09-01

    Dielectric wakefield (DWA) accelerator concepts are receiving attention on account of their promising performance, mechanical simplicity, and anticipated low cost. Interest in DWA physics directed toward an advanced high-gradient accelerator has been enhanced by a finding that some dielectrics can withstand very high fields (>1 GV/m) for the short times during the passage of charged bunches along dielectric-lined channels. In a two-channel structure, a drive bunch train propagates in a first channel, and in the second adjacent channel where a high gradient wakefield develops, a witness bunch is accelerated. Compared with single-channel DWA's, a two-beam accelerator delivers a high transformer ratio, and thereby reduces the number of drive beam sections needed to achieve a given final test beam energy. An overview of multi-channel DWA structures will be given, with an emphasis on two-channel structures, presenting their advantages and drawbacks, and potential impact on the field. Studies aimed to examine charging rate and charge distribution in a thin walled dielectric wakefield accelerator from a passing charge bunch and the physics of conductivity and discharge phenomena in dielectric materials useful for such accelerator applications are presented in a separate paper in the EAAC-2015 conference proceedings.

  3. Comparison of Microstructural and Morphological Properties of Electrodeposited Fe-Cu Thin Films with Low and High Fe : Cu Ratio

    Directory of Open Access Journals (Sweden)

    Umut Sarac

    2013-01-01

    Full Text Available Fe-Cu films with low and high Fe : Cu ratio have been produced from the electrolytes with different Fe ion concentrations at a constant deposition potential of −1400 mV versus saturated calomel electrode (SCE by electrodeposition technique onto indium tin oxide (ITO coated conducting glass substrates. It was observed that the variation of Fe ion concentration in the electrolyte had a very strong influence on the compositional, surface morphological, and microstructural properties of the Fe-Cu films. An increase in the Fe ion concentration within the plating bath increased the Fe content, consequently Fe : Cu ratio within the films. The crystallographic structure analysis showed that the Fe-Cu films had a mixture of face-centered cubic (fcc Cu and body centered cubic (bcc α-Fe phases. The average crystallite size decreased with the Fe ion concentration. The film electrodeposited from the electrolyte with low Fe ion concentration exhibited a morphology consisting of dendritic structures. However, the film morphology changed from dendritic structure to cauliflower-like structure at high Fe ion concentration. The surface roughness and grain size were found to decrease significantly with increasing Fe ion concentration in the electrolyte. The significant differences observed in the microstructural and morphological properties caused by the change of Fe ion concentration in the electrolyte were ascribed to the change of Fe : Cu ratio within the films.

  4. Verification of impact of morning showering and mist sauna bathing on human physiological functions and work efficiency during the day

    Science.gov (United States)

    Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo

    2015-09-01

    Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.

  5. Improving acousto-optical interaction by high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    In recent years experiments have shown that optical waves in waveguides can be modulated by mechanical stresses from surface acoustic waves (SAW), which have most of their energy density concentrated at the surface. In these experiments the SAWs are generated in piezoelectric materials...... by conventional interdigital transducers consisting of thin electrodes deposited at the surface. In this work the finite element method is employed to investigate if the acousto-optical interaction can be enhanced by generating the SAWs by interdigital transducers consisting of high aspect ratio electrodes....... With a periodic model it is first shown that these tall electrodes introduce several new confined SAW modes with slow phase velocities because of mechanical energy storage in the electrodes. The periodic model is then extended to a finite model by using perfectly matched layers at the substrate borders...

  6. The Dynamic Behaviour of Gears with High Transmission Ratio

    Directory of Open Access Journals (Sweden)

    Ivana Atanasovska

    2012-06-01

    Full Text Available This paper describes the dynamic behaviour of helical gears with new standpoint for calculation of influence variables: mesh teeth stiffness, contact lines lengths and load distribution during mesh period. Nonlinear contact Finite Element Analysis and the new iteration procedure are used for calculation of meshed teeth deformations, stiffness and contact loads. The normal load distribution calculated with this procedure is used for evaluation of nonlinear dynamic analytical model of helical gears motion. Described investigation is especially important for gear pairs with high value of transmission ratio, often used in large transport machines. The presented models and results can be used for helical gears modeling when standard procedures don’t cover the requirements.

  7. Photoimageable Polyimide: A Dielectric Material For High Aspect Ratio Structures

    Science.gov (United States)

    Cech, Jay M.; Oprysko, Modest M.; Young, Peter L.; Li, Kin

    1986-07-01

    Polyimide has been identified as a useful material for microelectronic packaging because of its low dielectric constant and high temperature stability. Difficulties involved with reactive ion etching (RIE), a conventional technique for patterning thick polyimide films (thickness greater than 5 microns) with vertical walls, can be overcome by using photimageable polyimide precursors. The processing steps are similar to those used with negative photoresists. EM Chemical's HTR-3 photosensitive polyimide has been spun on up to a thickness of 12 microns. Exposure with a dose of 780 mJcm-2 of ultraviolet light, followed by spin development produces clean patterns as small as 5 microns corresponding to an aspect ratio of 2.4. When the patterned precursor is heated, an imidization reaction occurs converting the patterned film to polyimide. Baking to ca. 400 degrees C results in substantial loss in the thickness and in line width. However, shrinkage occurs reproducibly so useful rules for mask design can be formulated. Near vertical wall structures can be fabricated by taking advantage of the optical and shrinkage properties of the polyimide precursor. After development, an undercut wall profile can be produced since the bottom of the film receives less exposure and is hence more soluble in the developer. During heating, lateral shrinkage pulls the top of the film inward producing a vertical wall since the bottom is fixed to the substrate by adhesion. As a result, fully cured polyimide structures with straight walls and aspect ratios greater than one can be obtained. Dielectric properties of the fully imidized films were investigated with capacitor test structures. A relative dielectric constant of 3.3 and a loss tangent of .002 were measured at 20 kHz. It was also found that the dielectric constant increases as a linear function of relative humidity.

  8. A high pressure ratio DC compressor for tactical cryocoolers

    Science.gov (United States)

    Chen, Weibo; Cameron, Benjamin H.; Zagarola, Mark V.; Narayanan, Sri R.

    2016-05-01

    A high pressure ratio DC compressor is a critical component for many cryocooler cycles. Prior research has focused on the adaptation of commercial compressor technology (scroll, screw, linear with rectification valves, and regenerative) for use in cryogenic applications where long-life and oil-free (i.e., volatile contamination free) are unique requirements. In addition, many cryocooler applications are for cooling imaging instruments making low vibration an additional requirement. Another candidate compressor technology has emerged from the fuel cell industry. Proton Exchange Membranes (PEMs) are used in fuel cells to separate reactants and transport protons, and these capabilities may be used in cryocoolers to compress hydrogen from low to high pressure. A particular type of PEM utilizing an anhydrous membrane forms the basis of a solid-state cryocooler. Creare has been investigating the use of PEM compressors for low temperature Joule-Thomson and dilution cryocoolers. These cryocoolers have no moving parts, can operate at temperatures down to nominally 23 K, produce no vibration, and are low cost. Our work on the cycle optimization, cryocooler design, and development and demonstration of the compressor technology is the subject of this paper.

  9. High signal-to-noise ratio quantum well bolometer materials

    Science.gov (United States)

    Wissmar, Stanley; Höglund, Linda; Andersson, Jan; Vieider, Christian; Savage, Susan; Ericsson, Per

    2006-09-01

    Novel single crystalline high-performance temperature sensing materials (quantum well structures) have been developed for the manufacturing of uncooled infrared bolometers. SiGe/Si and AlGaAs/GaAs quantum wells are grown epitaxially on standard Si and GaAs substrates respectively. The former use holes as charge carriers utilizing the discontinuities in the valence band structure, whereas the latter operate in a similar manner with electrons in the conduction band. By optimizing parameters such as the barrier height (by variation of the germanium/aluminium content respectively) and the fermi level E f (by variation of the quantum well width and doping level) these materials provide the potential to engineer layer structures with a very high temperature coefficient of resistance, TCR, as compared with conventional thin film materials such as vanadium oxide and amorphous silicon. In addition, the high quality crystalline material promises very low 1/f-noise characteristics promoting an outstanding signal to noise ratio and well defined and uniform material properties, A comparison between the two (SiGe/Si and AlGaAs/GaAs) quantum well structures and their fundamental theoretical limits are discussed and compared to experimental results. A TCR of 2.0%/K and 4.5%/K have been obtained experimentally for SiGe/Si and AlGaAs/GaAs respectively. The noise level for both materials is measured as being several orders of magnitude lower than that of a-Si and VOx. These uncooled thermistor materials can be hybridized with read out circuits by using conventional flip-chip assembly or wafer level adhesion bonding. The increased bolometer performance so obtained can either be exploited for increasing the imaging system performance, i. e. obtaining a low NETD, or to reduce the vacuum packaging requirements for low cost applications (e.g. automotive).

  10. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  11. Aerodynamic Properties of Rough Surfaces with High Aspect-Ratio Roughness Elements: Effect of Aspect Ratio and Arrangements

    Science.gov (United States)

    Sadique, Jasim; Yang, Xiang I. A.; Meneveau, Charles; Mittal, Rajat

    2017-05-01

    We examine the effect of varying roughness-element aspect ratio on the mean velocity distributions of turbulent flow over arrays of rectangular-prism-shaped elements. Large-eddy simulations (LES) in conjunction with a sharp-interface immersed boundary method are used to simulate spatially-growing turbulent boundary layers over these rough surfaces. Arrays of aligned and staggered rectangular roughness elements with aspect ratio >1 are considered. First the temporally- and spatially-averaged velocity profiles are used to illustrate the aspect-ratio effects. For aligned prisms, the roughness length (z_o) and the friction velocity (u_*) increase initially with an increase in the roughness-element aspect ratio, until the values reach a plateau at a particular aspect ratio. The exact value of this aspect ratio depends on the coverage density. Further increase in the aspect ratio changes neither z_o, u_* nor the bulk flow above the roughness elements. For the staggered cases, z_o and u_* continue to increase for the surface coverage density and the aspect ratios investigated. To model the flow response to variations in roughness aspect ratio, we turn to a previously developed phenomenological volumetric sheltering model (Yang et al., in J Fluid Mech 789:127-165, 2016), which was intended for low to moderate aspect-ratio roughness elements. Here, we extend this model to account for high aspect-ratio roughness elements. We find that for aligned cases, the model predicts strong mutual sheltering among the roughness elements, while the effect is much weaker for staggered cases. The model-predicted z_o and u_* agree well with the LES results. Results show that the model, which takes explicit account of the mutual sheltering effects, provides a rapid and reliable prediction method of roughness effects in turbulent boundary-layer flows over arrays of rectangular-prism roughness elements.

  12. Long-term dynamics of high mass ratio multiples

    Science.gov (United States)

    Li, Gongjie

    This thesis presents a series of studies on the dynamics of high mass ratio multiples, with applications to planetary systems orbiting stars and stellar systems orbiting supermassive black holes (SMBHs). Almost two thousand exoplanetary systems have recently been discovered, and their configurations gave rise to new puzzles to planetary formation theories. We studied the dynamics of planetary systems aiming to understand how the configuration of planetary system is sculptured and to probe the origin of planetary systems. First, we discussed hierarchical three-body dynamics, which can be applied to planets that are orbiting a star while perturbed by a planet or a star that is farther away. The perturbation from the farther object can flip the planetary orbits and produce counter orbiting hot Jupiters, which cannot be formed in the classical planetary formation theory. In addition, we have studied the scatter encounter of planetary systems in clusters, which produce eccentric and inclined planets. Moreover, we investigated the obliquity variation of planets, which can be applied to exoplanetary systems. The obliquity variation is important to the habitability of the exoplanets. The long term dynamics is also important to stellar systems orbiting SMBHs. SMBHs are common in the center of galaxies and lead to rich dynamical interactions with nearby stars. At the same time, dynamical features of the nearby stars reveal important properties of the SMBHs. The aforementioned hierarchical three-body dynamics can be applied to stars near SMBH binaries, which are natural consequences of galaxy mergers. We found that the distribution of stars surrounding one of the SMBHs results in a shape of torus due to the perturbation from the other SMBH, and the dynamical interactions contribute to an enhancement of tidal disruption rates, which can help identify the SMBH binaries. In addition, we investigated the heating of stars near SMBHs, where the heating of stars due to gravitational

  13. Parameters optimization of high stability bath for electroless copper plating%高稳定性化学镀铜液的参数优化

    Institute of Scientific and Technical Information of China (English)

    杨超; 陈金菊; 冯哲圣; 王大勇; 薛文明

    2014-01-01

    The stability of bath, the speed and the brightness of coating were taken as indexes to optimize the bath of electroless copper plating through the single factor experiment method. Electrochemical test of plating solution was done to study the influence of additives on polarization performance of bath. The stability of solution decreases with the concentration of CuSO4·5H2O and HCHO increasing. The addition of appropriate complexing agent and stabilizers can effectively increase the stability of the plating solution. The copper deposition rate reaches to 4.93μm/h for plating 30 min. The stable time of plating bath is more than two hours in 80℃ water bath. Copper layer appears shiny pale pink, and copper particles are close together. The magnitude of copper layer resistivity is 3.67×10-8Ω·m. The adhesion strength between copper layer and substrate is up to 10 N/mm2.%采用单因素实验法,以镀液稳定性、镀速及镀层光亮度为指标,优化了化学镀铜液参数以提高镀液稳定性,并研究了添加剂对镀液电化学极化性能的影响。试验结果表明:随着CuSO4·5H2O和HCHO浓度的增加,镀液稳定性有所下降;适量的络合剂和稳定剂的加入能有效提高镀液稳定性。采用优化后的镀液施镀30 min,镀速为4.93μm/h;施镀后的镀液在80℃水浴中的稳定时间大于2 h;所得铜层为具有金属光泽的淡粉红色,铜颗粒排列紧密;镀铜层电阻率低至3.67×10-8Ω·m,铜层与基体之间的附着强度提高至10 N/mm2。

  14. Assessment of monocyte to high density lipoprotein cholesterol ratio and lymphocyte-to-monocyte ratio in patients with metabolic syndrome.

    Science.gov (United States)

    Vahit, Demir; Mehmet, Kadri Akboga; Samet, Yilmaz; Hüseyin, Ede

    2017-07-01

    We aimed to investigate the relationships between metabolic syndrome (MS) and monocyte to high density lipoprotein cholesterol ratio (MHR) and lymphocyte-to-monocyte ratio (LMR). 762 patients (n = 371 MS present and n = 391 MS absent) were enrolled. MHR was significantly higher [13.9 (10.5-18.1) vs 11.1 (8.0-14.8); p MHR [OR: 1.052 (95% CI: 1.018-1.088); p = 0.003] and C-reactive protein [OR: 1.048 (95% CI: 1.032-1.065); p MHR may be novel and useful indicators of MS.

  15. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  16. High-Temperature CO2 Sorption on Hydrotalcite Having a High Mg/Al Molar Ratio.

    Science.gov (United States)

    Kim, Suji; Jeon, Sang Goo; Lee, Ki Bong

    2016-03-09

    Hydrotalcites having a Mg/Al molar ratio between 3 and 30 have been synthesized as promising high-temperature CO2 sorbents. The existence of NaNO3 in the hydrotalcite structure, which originates from excess magnesium nitrate in the precursor, markedly increases CO2 sorption uptake by hydrotalcite up to the record high value of 9.27 mol kg(-1) at 240 °C and 1 atm CO2.

  17. Maintaining high-Q in an optical microresonator coated with high-aspect-ratio gold nanorods

    Science.gov (United States)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2013-10-01

    We report methods to coat fused-silica microresonators with solution-grown high-aspect-ratio (AR) gold nanorods (NRs). Microresonators coated using our method maintain an optical quality factor (Q) greater than 107 after coating. The more successful method involves silanization of the surface of the microresonator with 3-mercaptopropylmethyldimethoxysilane (MPMDMS), to enable the adhesion of gold NRs. The high-AR NR-coated microresonator combines the field enhancement of localized surface plasmon resonances with the cavity-enhanced evanescent components of high-Q whispering-gallery modes, making it useful for plasmonic sensing applications in the infrared. By coating with NRs having a different aspect ratio, the enhancement regime can be selected within a wide range of wavelengths.

  18. High-performance deployable structures for the support of high-concentration ratio solar array modules

    Science.gov (United States)

    Mobrem, M.

    1985-01-01

    A study conducted on high-performance deployable structures for the support of high-concentration ratio solar array modules is discussed. Serious consideration is being given to the use of high-concentration ratio solar array modules or applications such as space stations. These concentrator solar array designs offer the potential of reduced cost, reduced electrical complexity, higher power per unit area, and improved survivability. Arrays of concentrators, such as the miniaturized Cassegrainian concentrator modules, present a serious challenge to the structural design because their mass per unit area (5.7 kg/square meters) is higher than that of flexible solar array blankets, and the requirement for accurate orientation towards the Sun (plus or minus 0.5 degree) requires structures with improved accuracy potentials. In addition, use on a space station requires relatively high structural natural frequencies to avoid deleterious interactions with control systems and other large structural components. The objective here is to identify and evaluate conceptual designs of structures suitable for deploying and accurately supporting high-concentration ratio solar array modules.

  19. Likelihood ratio based verification in high dimensional spaces

    NARCIS (Netherlands)

    Hendrikse, Anne; Veldhuis, Raymond; Spreeuwers, Luuk

    2013-01-01

    The increase of the dimensionality of data sets often lead to problems during estimation, which are denoted as the curse of dimensionality. One of the problems of Second Order Statistics (SOS) estimation in high dimensional data is that the resulting covariance matrices are not full rank, so their i

  20. Likelihood ratio based verification in high dimensional spaces

    NARCIS (Netherlands)

    Hendrikse, A.J.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    The increase of the dimensionality of data sets often lead to problems during estimation, which are denoted as the curse of dimensionality. One of the problems of Second Order Statistics (SOS) estimation in high dimensional data is that the resulting covariance matrices are not full rank, so their

  1. Microbiologists meet geologists in Bath

    Science.gov (United States)

    Onstott, T. C.

    A diverse group of microbiologists, molecular biologists, chemical engineers, and geologists met in Bath, United Kingdom, in September 1993 to reach across the barriers separating their disciplines and report new findings in the expanding field of geomicrobiology. The occasion was the second International Symposium on Subsurface Microbiology, cosponsored by the Subsurface Science Program of the U.S. Department of Energy. Historically, Bath was a resort centered around the emission of thermal waters credited with the potential to cure numerous ills. The location was appropriate given that biotechnology appears to have considerable potential to cure some challenging environmental ailments.

  2. Bathing and Associated Treatments in Atopic Dermatitis.

    Science.gov (United States)

    Gittler, Julia K; Wang, Jason F; Orlow, Seth J

    2017-02-01

    Atopic dermatitis is one of the most common complaints presenting to dermatologists, and patients typically inquire as to appropriate bathing recommendations. Although many dermatologists, allergists, and primary-care practitioners provide explicit bathing instructions, recommendations regarding frequency of bathing, duration of bathing, and timing related to emollient and medication application relative to bathing vary widely. Conflicting and vague guidelines stem from knowledge related to the disparate effects of water on skin, as well as a dearth of studies, especially randomized controlled trials, evaluating the effects of water and bathing on the skin of patients with atopic dermatitis. We critically review the literature related to bathing and associated atopic dermatitis treatments, such as wet wraps, bleach baths, bath additives, and balneotherapy. We aim to provide readers with a comprehensive understanding of the impact of water and related therapies on atopic dermatitis as well as recommendations based upon the published data.

  3. Uniformly accelerated observer in a thermal bath

    CERN Document Server

    Kolekar, Sanved

    2013-01-01

    We investigate the quantum field aspects in flat spacetime for an uniformly accelerated observer moving in a thermal bath. In particular, we obtain an exact closed expression of the reduced density matrix for an uniformly accelerated observer with acceleration $a = 2\\pi T$ when the state of the quantum field is a thermal bath at temperature $T^\\prime$. We find that the density matrix has a simple form with an effective partition function $Z$ being a product, $Z = Z_T Z_{T^\\prime}$, of two thermal partition functions corresponding to temperatures $T$ and $T^\\prime$ and hence is not thermal, even when $T = T^\\prime$. We show that, even though the partition function has a product structure, the two thermal baths are, in fact, interacting systems; although in the high frequency limit $\\omega_k \\gg T$ and $\\omega_k \\gg T^\\prime$, the interactions are found to become sub-dominant. We further demonstrate that the resulting spectrum of the Rindler particles can be interpreted in terms of spontaneous and stimulated em...

  4. Quantum kicked harmonic oscillator in contact with a heat bath

    Science.gov (United States)

    Prado Reynoso, M. Á.; López Vázquez, P. C.; Gorin, T.

    2017-02-01

    We consider the quantum harmonic oscillator in contact with a finite-temperature bath, modeled by the Caldeira-Leggett master equation. Applying periodic kicks to the oscillator, we study the system in different dynamical regimes between classical integrability and chaos, on the one hand, and ballistic or diffusive energy absorption, on the other. We then investigate the influence of the heat bath on the oscillator in each case. Phase-space techniques allow us to simulate the evolution of the system efficiently. In this way, we calculate high-resolution Wigner functions at long times, where the system approaches a quasistationary cyclic evolution. Thereby, we perform an accurate study of the thermodynamic properties of a nonintegrable, quantum chaotic system in contact with a heat bath at finite temperature. In particular, we find that the heat transfer between harmonic oscillator and heat bath is governed by Fourier's law.

  5. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  6. Hot punching of high-aspect-ratio 3D polymeric microstructures for drug delivery

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Boisen, Anja

    2015-01-01

    Hot punching: a highly versatile method of fabricating high-aspect-ratio 3D microstructures for drug delivery with good replication fidelity and yield.......Hot punching: a highly versatile method of fabricating high-aspect-ratio 3D microstructures for drug delivery with good replication fidelity and yield....

  7. High aspect ratio MEMS capacitor for high frequency impedance matching applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    We present a microelectromechanical tunable capacitor with a low control voltage, a wide tuning range and adequate electrical quality factor. The device is fabricated in a single-crystalline silicon layer using deep reactive ion etching (DRIE) for obtaining high-aspect ratio (> 20) parallel comb-...... response and it was found that the device is a suitable passive component to be used in impedance matching applications, band-pass filtering or voltage controlled oscillators in the Very High Frequency (VHF) and Ultra High Frequency (UHF) bands.......We present a microelectromechanical tunable capacitor with a low control voltage, a wide tuning range and adequate electrical quality factor. The device is fabricated in a single-crystalline silicon layer using deep reactive ion etching (DRIE) for obtaining high-aspect ratio (> 20) parallel comb......-drive structures with vertical sidewalls. The process sequence for fabrication of the devices uses only one lithographic masking step and can be completed in a short time. The fabricated device was characterized with respect to electrical quality factor, tuning range, self-resonance frequency and transient...

  8. "Roman Baths" in Contemporary Spa Tourism

    Directory of Open Access Journals (Sweden)

    Vesna Merc

    2005-07-01

    Full Text Available The commercialisation of images and symbols from antiquity, so characteristic of Slovenia since its independence, has been reflected over the last decade in spa tourism as well. Since the great crises in the sixties, and especially since the eighties, fifteen Slovene natural health resorts have concentrated on developing wellness and activities programs. This change in orientation has been accompanied by renovations, an expansion of the water surfaces and capacities, and new wellbeing, wellness, spirituality and beauty programs. An analysis of Slovene spas, wellness centres and hotel web pages shows that they frequently offer rooms, usually saunas, which are imitations of the Roman baths. These rooms are usually called "Roman saunas", "Tepidarium", "Caldarium", and "Roman-Irish baths". At Terme Ptuj, Zdravilišče Laško, Šmarješke Toplice, Grand Hotel Palace in Portorož, and Terme Čatež, saunas have been built or renovated in the Roman style. This trend of Roman rooms is a novelty, less than a decade old in Slovenia. The first sauna with a Roman theme, a Roman-Irish bath, was opened in 1997 in the Health and Beauty Centre at Terme Čatež. Modern Roman saunas are very popular, found not only in Slovenia but also in other parts of Europe, especially Germany and Austria. Their popularity has spread from the areas formerly occupied by the Romans to other parts of world, for example the USA and the Republic of South Africa. An analysis of Slovene saunas and wellness centres reveals a well-established trend to recreate certain parts of the Roman baths. This is attempted not only through Roman-style decorations, but also through certain structures particular to the Roman baths, such as the caldarium, tepidarium, and in one case even a laconicum. The approach, however, is highly eclectic, blending Roman, Greek and, above all, modern elements. The purpose of such rooms is to increase the appeal of the spas, while their design is mostly based on

  9. [Turpentined vapour baths with coniferous oil].

    Science.gov (United States)

    Raynal, Cécile

    2007-10-01

    This article presents the history of turpentined vapour baths used to treat rheumatismes. In the same time appeared patent medicines made with coniferous oil, sold by chemist near those baths establishments.

  10. Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles inclusions

    NARCIS (Netherlands)

    Ende, D.A. van den; Kempen, S.E. van; Wu, X.; Groen, W.A.; Randall, C.A.; Zwaag, S. van der

    2012-01-01

    Piezoelectric composites were prepared by dielectrophoretic alignment of high aspect ratio piezoelectric particles in a thermosetting polymer matrix. A high level of alignment was achieved in the cured composite from a resin containing randomly oriented high aspect ratio particles. Upon application

  11. Effect of bath and luminal potassium concentration on ammonia production and secretion by mouse proximal tubules perfused in vitro.

    OpenAIRE

    Nagami, G T

    1990-01-01

    To determine the effects of acute changes in K+ concentration in vitro on ammonia production and secretion by the proximal tubule, we studied mouse S2 segments perfused with and bathed in Krebs-Ringer bicarbonate buffers containing various K+ concentrations. All bath solutions contained L-glutamine as the ammoniagenic substrate. High bath and luminal K+ concentrations (8 mM), but not high luminal K+ concentration alone, inhibited total ammonia production rates by 26%, while low bath and lumin...

  12. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.

    Science.gov (United States)

    Chen, Xi; Yang, Fan; Zhang, Cheng; Zhou, Jing; Guo, L Jay

    2016-04-26

    Plasmonic lithography, which utilizes subwavelength confinement of surface plasmon polartion (SPP) waves, has the capability of breaking the diffraction limit and delivering high resolution. However, all previously reported results suffer from critical issues, such as shallow pattern depth and pattern nonuniformity even over small exposure areas, which limit the application of the technology. In this work, periodic patterns with high aspect ratios and a half-pitch of about 1/6 of the wavelength were achieved with pattern uniformity in square centimeter areas. This was accomplished by designing a special mask and photoresist (PR) system to select a single high spatial frequency mode and incorporating the PR into a waveguide configuration to ensure uniform light exposure over the entire depth of the photoresist layer. In addition to the experimental progress toward large-scale applications of plasmonic interference lithography, the general criteria of designing such an exposure system is also discussed, which can be used for nanoscale fabrication in this fashion for various applications with different requirements for wavelength, pitch, aspect ratio, and structure.

  13. Intensity ratio measurements for density sensitive lines of highly charged Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Safdar, E-mail: safdaruetian@gmail.com; Shimizu, Erina [Institute for Laser Science, The University of Electro-Communications (Japan); Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi [National Institute for Fusion Science (Japan); Yamamoto, Norimasa [Chubu University (Japan); Hara, Hirohisa; Watanabe, Tetsuya [The Graduate University of Advanced Studies (SOKENDAI) (Japan); Nakamura, Nobuyuki, E-mail: n-nakamu@ils.uec.ac.jp [Institute for Laser Science, The University of Electro-Communications (Japan)

    2015-11-15

    Intensity ratio of density sensitive emission lines emitted from Fe ions in the extreme ultraviolet region is important for astrophysics applications. We report high-resolution intensity ratio measurements for Fe ions performed at Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer. The experimental intensity ratios of Fe X and Fe XII are plotted as a function of electron density for different electron beam currents. The experimental results are compared with the predicted intensity ratios from the model calculations.

  14. High contrast ratio, high uniformity multiple quantum well spatial light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yuyang; Yang Chen; Yang Hui [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Liu, H C; Cui Guoxin; Bian Lifeng; Zhang Yaohui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China); Wasilewski, Z R; Buchanan, M; Laframboise, S R, E-mail: yhzhang2006@sinano.ac.c [Institute for Microstructural Sciences, National Research Council, Ottawa K1A 0R6 (Canada)

    2010-03-15

    Our latest research results on GaAs-AlGaAs multiple quantum well spatial light modulators are presented. The thickness uniformity of the epitaxial layers across the 3-inch wafer grown by our molecular beam epitaxy is better than 0.1% and the variation of cavity resonance wavelength within the wafer is only 0.9 nm. A contrast ratio (CR) of 102 by varying bias voltage from 0 to 6.7 V is achieved after fine tuning the cavity by etching an adjust layer. Both theoretical and experimental results demonstrate that incorporating an adjust layer is an effective tuning method for obtaining high CR. (semiconductor integrated circuits)

  15. 21 CFR 890.5110 - Paraffin bath.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food and... PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a) Identification. A paraffin bath is a device intended for medical purposes that consists of a tub to be filled...

  16. Water bath synthesis of tin oxide nanostructure coating for a molecular sensor.

    Science.gov (United States)

    Masuda, Yoshitake; Ohji, Tatsuki; Kato, Kazumi

    2014-03-01

    Tin oxide nanostructures were fabricated using a water bath technique. The structures were modified with dye-labeled DNAs for a molecular sensor. Sensing mechanism of the sensor was based on a photoelectric conversion effect. Photoluminescence intensities from the tin oxide nanostructures reached to 16 times larger than that from SnO2:F films. High photocurrent of 5.5 x 10(-6) A and high signal-to-noise ratio of 29 were achieved in this system. Photoelectric conversion on a combination of the dye-labeled DNA and the tin oxide was an essence of the sensing system. Surface nanospaces were effectively utilized to increase photoluminescence and photocurrent.

  17. High-aspect-ratio silicon-cell metallization technical status report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Two features of the silicon concentrator solar cell are addressed which affect output at high concentration levels. The first is the development of narrow but high electroplated grid lines with improved conductivity. The object is a reduction in cell series resistance without increase in shadowing. This goal is accomplished by electroplating through a thick photo resist mask to produce lines .7 mil wide by .7 mil high. Advance pulse plating techniques are combined with pure silver plating baths to produce a deposit conductivity equal to the bulk silver conductivity (a 1.5 to 2 X improvement over conventional silver plating). The second feature is a double diffused selectively textured front surface. This development employs a deep diffusion in the silicon under the grid lines. Only the non grid line open area is selectively texture etched removing the deep junction. This open textured area is then given a second shallow diffusion for optimum cell efficiency. This selective procedure maintains the original highly polished wafer surface under the grid lines so that high resolution narrow grid lines are possible. The double diffusion protects the junction from metal diffusion while enabling the optimum shallow junction in the illuminated regions. Combining these two features has produced a large area concentrator cells (8 cm/sup 2/) with peak efficiency above 16% and exhibiting a broad peak efficiency extending from 50 to 175 suns above 15%.

  18. Highly sensitive glucose biosensor based on Au-Ni coaxial nanorod array having high aspect ratio.

    Science.gov (United States)

    Hsu, Che-Wei; Wang, Gou-Jen

    2014-06-15

    An effective glucose biosensor requires a sufficient amount of GOx immobilizing on the electrode surface. An electrode of a 3D nanorod array, having a larger surface-to-volume ratio than a 2D nanostructure, can accommodate more GOx molecules to immobilize onto the surface of the nanorods. In this study, a highly sensitive Au-Ni coaxial nanorod array electrode fabricated through the integration of nano electroforming and immersion gold (IG) method for glucose detection was developed. The average diameter of the as-synthesized Ni nanorods and that of the Au-Ni nanorods were estimated to be 150 and 250 nm, respectively; both had a height of 30 μm. The aspect ratio was 120. Compared to that of a flat Au electrode, the effective sensing area was enhanced by 79.8 folds. Actual glucose detections demonstrated that the proposed Au-Ni coaxial nanorod array electrode could operate in a linear range of 27.5 μM-27.5mM with a detection limit of 5.5μM and a very high sensitivity of 769.6 μA mM(-1)cm(-2). Good selectivity of the proposed sensing device was verified by sequential injections of uric acid (UA) and ascorbic acid (AA). Long-term stability was examined through successive detections over a period of 30 days.

  19. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts

    Science.gov (United States)

    Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.

    2016-09-01

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ˜103) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  20. High on/off ratio ns laser pulses for a triggered single-photon source

    CERN Document Server

    Jin, Gang; He, Jun; Wang, Junmin

    2016-01-01

    852nm nano-second laser pulse chain with a high on/off ratio is generated via chopping a continuous-wave laser beam by using of a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). Detailed analysis and dependence of the on/off ratio on the splitting ratio, the co-splitting ratio, and the arms loss of MZ-EIOM are presented. By optimizing the polarization of incident laser beam and stabilizing MZ-EOIM temperature, the static on/off ratio of 12600:1 is achieved. Also the dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. This high on/off ratio ns pulsed laser system has served as the excitation pulse source for a triggered single-photon source based on trapped single cesium atom, which reveals a representative anti-bunching.

  1. Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials

    OpenAIRE

    Raluca M Fratila; Rivera-Fernández, Sara; Fuente, Jesús M. de la

    2015-01-01

    High aspect ratio magnetic nanomaterials possess anisotropic properties that make them attractive for biological applications. Their elongated shape enables multivalent interactions with receptors through the introduction of multiple targeting units on their surface, thus enhancing cell internalization. Moreover, due to their magnetic anisotropy, high aspect ratio nanomaterials can outperform their spherical analogues as contrast agents for magnetic resonance imaging (MRI) applications. In th...

  2. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  3. [The use of white and yellow turpentine baths with diabetic patients].

    Science.gov (United States)

    Davydova, O B; Turova, E A; Golovach, A V

    1998-01-01

    In patients with insulin-dependent diabetes mellitus while and yellow turpentine baths produced a positive effect on carbohydrate metabolism. White baths were more effective in respect to lipid metabolism, blood viscosity, produced a good effect on plasmic hemocoagulation factors. Both while and yellow turpentine baths were beneficial for capillary blood flow: initially high distal blood flow in patients with prevailing distal polyneuropathy decreased while in patients with macroangiopathy initially subnormal blood flow increased. Both white and yellow turpentine baths promoted better pulse blood filling of the lower limbs and weaker peripheral resistance of large vessels. In patients with non-insulin-dependent diabetes mellitus white and yellow turpentine baths contributed to normalization of carbohydrate metabolism. Yellow baths were more effective in lowering lipids. White baths induced inhibition of platelet aggregation but had no effect on coagulation, yellow baths promoted a reduction of fibrinogen but had no effect on platelet aggregation. Yellow baths produced more pronounced effect than white ones on blood viscosity and microcirculation. Both yellow and white baths stimulated pulse blood filling, corrected peripheral resistance of large and small vessels of the lower limbs.

  4. Research and development on transonic compressor of high pressure ratio turbocharger for vehicle internal combustion engines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pressure ratio required for a turbocharger centrifugal compressor increases with internal combustion engine power density. High pressure ratio causes a transonic flow field at the impeller inducer. Transonic flow narrows the stable flow range and de-teriorates stage efficiency. In this work, an advanced high pressure ratio transonic compressor was designed. The experimental results show that the maximum pressure ratio of this turbocharger is about 4.2, the maximum efficiency is above 80% and the stable flow range at the designed rotating speed is up to 34%. A turbocharger with this transonic compressor has been applied to some vehicle research actually, and improved power density by 40%.

  5. Impact of the Solidification Rate on the Chemical Composition of Frozen Cryolite Bath

    Directory of Open Access Journals (Sweden)

    Sándor Poncsák

    2017-03-01

    Full Text Available Solidification of cryolite (Na3AlF6-based bath takes place at different rates along the sideledge, and around alumina rafts and new anodes. The solidification rate has a significant impact on the structure and the chemical composition that determine the thermal conductivity and thus the thickness of sideledge, or the duration of the existence of the temporary frozen bath layers in other cases. Unfortunately, samples that can be collected in industrial cells are formed under unknown, spatially and temporally varying conditions. For this reason, frozen bath samples were created under different heat flux conditions in a well-controlled laboratory environment using the so-called cold finger technique. The samples were analyzed by X-ray Diffractometer (XRD and Scanning Electron Microscope (SEM in Back Scattering (BS mode in order to obtain spatial distribution of chemical composition. Results were correlated with structural analysis. XRD confirmed our earlier hypothesis of recrystallization of cryolite to chiolite under medium heat flux regime. Lower α-alumina, and higher γ-alumina content in the samples obtained with very high heating rate suggest that fast cooling reduces α–γ conversion. In accordance with the expectation, SEM-BS revealed significant variation of the Na/Al ratio in the transient sample.

  6. Reinforcing Effects of Binary Mixtures of Common Bath Salt Constituents: Studies with 3,4-Methylenedioxypyrovalerone (MDPV), 3,4-Methylenedioxymethcathinone (Methylone), and Caffeine in Rats.

    Science.gov (United States)

    Gannon, Brenda M; Galindo, Kayla I; Mesmin, Melson P; Rice, Kenner C; Collins, Gregory T

    2017-07-05

    'Bath salts' use is associated with high rates of abuse, toxicity, and death. bath salt preparations often contain mixtures of drugs including multiple synthetic cathinones (eg, 3,4-methylenedioxypyrovalerone (MDPV) or 3,4-methylenedioxymethcathinone (methylone)) or synthetic cathinones and caffeine; however, little is known about whether interactions among bath salt constituents contribute to the abuse-related effects of bath salts preparations. This study used male Sprague-Dawley rats responding under a progressive ratio schedule to quantify the reinforcing effectiveness of MDPV, methylone, and caffeine, administered alone and as binary mixtures (n=12 per mixture). Each mixture was evaluated at four ratios (10 : 1, 3 : 1, 1 : 1, and 1 : 3) relative to the mean ED50 for each drug alone. Dose-addition analyses were used to determine the predicted, additive effect for each dose pair within each drug mixture. MDPV, methylone, and caffeine maintained responding in a dose-dependent manner, with MDPV being the most potent and effective, and caffeine being the least potent and effective of the three bath salts constituents. High levels of responding were also maintained by each of the bath salts mixtures. Although the nature of the interactions tended toward additivity for most bath salts mixtures, supra-additive (3 : 1 MDPV : caffeine, and 3 : 1 and 1 : 1 methylone : caffeine) and sub-additive (3 : 1, 1 : 1, and 1 : 3 MDPV : methylone) interactions were also observed. Together, these findings demonstrate that the composition of bath salts preparations can have an impact on both their reinforcing potency and effectiveness, and suggest that such interactions among constituent drugs could contribute to the patterns of use and effects reported by human bath salts users.Neuropsychopharmacology advance online publication, 2 August 2017; doi:10.1038/npp.2017.141.

  7. High-aspect-ratio photoresist processing for fabrication of high resolution and thick micro-windings

    Science.gov (United States)

    Anthony, Ricky; Laforge, Elias; Casey, Declan P.; Rohan, James F.; O'Mathuna, Cian

    2016-10-01

    DC winding losses remain a major roadblock in realizing high efficiency micro-magnetic components (inductors/transformers). This paper reports an optimized photoresist process using negative tone and acrylic based THB-151N (from JSR Micro), to achieve one of the highest aspect ratio (17:1) and resolution (~5 µm) resist patterns for fabrication of thick (~80 µm) micro-winding using UV lithography. The process was optimized to achieve photoresist widths from 5 µm to 20 µm with resist thickness of ~85 µm in a single spin step. Unlike SU-8, this resist can be readily removed and shows a near-vertical (~91°) electroplated Cu side-wall profile. Moreover, the high resolution compared to available resist processes enables a further reduction in the footprint area and can potentially increase the number of winding thereby increasing the inductance density for micro-magnetic components. Resistance measurements of electroplated copper winding of air-core micro-inductors within the standard 0402 size (0.45 mm2 footprint area) suggested a 42% decrease in resistance (273 mΩ-159 mΩ) with the increase in electroplated Cu thickness (from 50 µm to 80 µm). Reduction of the spacings (from 10 µm to 5 µm) enabled further miniaturisation of the device footprint area (from 0.60 mm2 to 0.45 mm2) without significant increase in resistance.

  8. Equilibrium states of a test particle coupled to finite-size heat baths.

    Science.gov (United States)

    Wei, Qun; Smith, S Taylor; Onofrio, Roberto

    2009-03-01

    We report on numerical simulations of the dynamics of a test particle coupled to competing Boltzmann heat baths of finite size. After discussing some features of the single bath case, we show that the presence of two heat baths further constrains the conditions necessary for the test particle to thermalize with the heat baths. We find that thermalization is a spectral property in which the oscillators of the bath with frequencies in the range of the test particle characteristic frequency determine its degree of thermalization. We also find an unexpected frequency shift of the test particle response with respect to the spectra of the two heat baths. Finally, we discuss implications of our results for the study of high-frequency nanomechanical resonators through cold damping cooling techniques and for engineering reservoirs capable of mitigating the back action on a mechanical system.

  9. Mechanical Properties of Recycled Aggregate Concrete at Low and High Water/Binder Ratios

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2013-01-01

    Full Text Available This paper presents an experimental research on mechanical properties of recycled aggregate concrete (RAC at low and high water/binder (W/B ratios. Concrete at two W/B ratios (0.255 and 0.586 was broken into recycled concrete aggregates (RCA. A type of thermal treatment was employed to remove mortar attached to RCA. The RAC at a certain (low or high W/B ratio was prepared with RCA made from demolished concrete of the same W/B ratio. Tests were conducted on aggregate to measure water absorption and crushing values and on both RAC and natural aggregate concrete (NAC to measure compressive strength, tensile splitting strength, and fracture energy. The mechanical properties of RAC were lower than those of NAC at an identical mix proportion. Moreover, the heating process caused a decrease in compressive strength and fracture energy in the case of low W/B ratio but caused an increase in those properties in the case of high W/B ratio. The main type of flaw in RCA from concrete at a low W/B ratio should be microcracks in gravel, and the main type of flaw in RCA from concrete at a high W/B ratio should be attached mortar.

  10. Relationship Model Between Nightlight Data and Floor Area Ratio from High Resolution Images

    Science.gov (United States)

    Yan, M.; Xu, L.

    2017-09-01

    It is a hotpot that extraction the floor area ratio from high resolution remote sensing images. It is a development trend of using nightlight data to survey the urban social and economic information. This document aims to provide a conference relationship model for VIIRS/NPP nightlight data and floor Area Ratio from High Resolution ZY-3 Images. It shows that there is a lineal relationship between the shadow and the floor area ratio, and the R2 is 0.98. It shows that there is a quadratic polynomial relationship between the floor area ratio and the nightlight, and the R2 is 0.611. We can get a conclusion that, VIIRS/NPP nightlights data may show the floor area ratio in an extent at level of administrative street.

  11. Flow visualization study in high aspect ratio cooling channels for rocket engines

    Science.gov (United States)

    Meyer, Michael L.; Giuliani, James E.

    1993-11-01

    The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this

  12. High-speed microprobe for roughness measurements in high-aspect-ratio microstructures

    Science.gov (United States)

    Doering, Lutz; Brand, Uwe; Bütefisch, Sebastian; Ahbe, Thomas; Weimann, Thomas; Peiner, Erwin; Frank, Thomas

    2017-03-01

    Cantilever-type silicon microprobes with an integrated tip and a piezoresistive signal read out have successfully proven to bridge the gap between scanning force microscopy and stylus profilometry. Roughness measurements in high-aspect-ratio microstructures (HARMS) with depths down to 5 mm and widths down to 50 µm have been demonstrated. To improve the scanning speed up to 15 mm s‑1, the wear of the tip has to be reduced. The atomic layer deposition (ALD) technique with alumina (Al2O3) has been tested for this purpose. Repeated wear measurements with coated and uncoated microprobe cantilevers have been carried out on a roughness standard at a speed of 15 mm s‑1. The tip shape and the wear have been measured using a new probing tip reference standard containing rectangular silicon grooves with widths from 0.3 µm to 3 µm. The penetration depth of the microprobe allows one to measure the wear of the tip as well as the tip width and the opening angle of the tip. The roughness parameters obtained on the roughness standard during wear experiments agree well with the reference values measured with a calibrated stylus instrument, nevertheless a small amount of wear still is observable. Further research is necessary in order to obtain wear resistant microprobe tips for non-destructive inspection of microstructures in industry and microform measurements, for example in injection nozzles.

  13. Microstructure and Property of High Carbonic-Chromium Cast Steel with Different Hot Deformation Ratio

    Institute of Scientific and Technical Information of China (English)

    XU Tao; WANG Jiu-liang; ZHANG Run-jun; CHAO Guo-hua; LIU Jian-hua

    2004-01-01

    The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied. The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation, and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %, which leads to the morphology change of eutectic carbide and the precipitation of granular carbides.

  14. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth;

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...... FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown....

  15. Taking a Bath In Tibetan Medicinal Water

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Lighting incense in a room and planting oneself into the environment scented by the smoke is one of the ways Tibetans keep fit. And they say they are taking a bath when doing so.According to the Tibetan medical code, the Tibetans had long produced many ways for "taking baths" to cleanse themselves, build up their physique and prolong life. Most popular ones include taking baths in

  16. Investigation of High Molar Ratio Potassium Solution Used in Zinc-Rich Coatings

    Institute of Scientific and Technical Information of China (English)

    LI Sheng; WU Hang; YAN Rui

    2004-01-01

    High molar ratio potassium silicate solution used in zinc-rich water-base coatings was prepared by adding the nanosize SiO2 to the low molar ratio potassium silicate solution, and its microstructure was investigated by SEM and IR.Furthermore, the zinc-rich coatings was prepared by adding the zinc powders to this type of solution, and the properties of the coatings were evaluated. The test results show that the high molar ratio potassium silicate solution is the bonder of zinc-rich inorganic coatings with excellent property.

  17. Displacement of an Electrically Charged Drop on a Vibrating Bath

    Science.gov (United States)

    Brandenbourger, M.; Vandewalle, N.; Dorbolo, S.

    2016-01-01

    In this work, the manipulation of an electrically charged droplet bouncing on a vertically vibrated bath is investigated. When a horizontal, uniform, and static electric field is applied to it, a motion is induced. The droplet is accelerated when the droplet is small. On the other hand, large droplets appear to move with a constant speed that depends linearly on the applied electrical field. In the latter regime, high-speed imaging of one bounce reveals that the droplet experiences an acceleration due to the electrical force during the flight and decelerates to 0 when interacting with the surface of the bath. Thus, the droplet moves with a constant average speed on a large time scale. We propose a criterion based on the force necessary to move a charged droplet at the surface of the bath to discriminate between constant speed and accelerated droplet regimes.

  18. REGENABATH -- novel regeneration methods for strongly acidic metal treatment baths

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J. [Capenhurst Tech Limited, Capenhurst, Chester (United Kingdom); Hendou, M. [Lacaze S.A., Leyme (France)

    2001-07-01

    This European Union-sponsored project is designed to investigate the potential of integrating existing and novel technologies for use in regenerating strong acids used in the treatment of metal surfaces. At present, the acid bath must be bled off to remove the metal content, or the whole bath may be periodically discarded, a process which is hazardous, costly and injurious to the environment. This paper provides a full description of the project objectives, expected results, challenges, proposed applications and technology transfer potential. It is expected that the techniques developed can be extended to other highly acidic waste streams generated by metallurgical facilities.

  19. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    Science.gov (United States)

    Taheri, Ali; Saramad, Shahyar; Setayeshi, Saeed

    2016-12-01

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodeposition setup with an acceptable quality.

  20. Adherent and Conformal Zn(S,O,OH) Thin Films by Rapid Chemical Bath Deposition with Hexamethylenetetramine Additive.

    Science.gov (United States)

    Opasanont, Borirak; Van, Khoa T; Kuba, Austin G; Choudhury, Kaushik Roy; Baxter, Jason B

    2015-06-03

    ZnS is a wide band gap semiconductor whose many applications, such as photovoltaic buffer layers, require uniform and continuous films down to several nanometers thick. Chemical bath deposition (CBD) is a simple, low-cost, and scalable technique to deposit such inorganic films. However, previous attempts at CBD of ZnS have often resulted in nodular noncontinuous films, slow growth rates at low pH, and high ratio of oxygen impurities at high pH. In this work, ZnS thin films were grown by adding hexamethylenetetramine (HMTA) to a conventional recipe that uses zinc sulfate, nitrilotriacetic acid trisodium salt, and thioacetamide. Dynamic bath characterization showed that HMTA helps the bath to maintain near-neutral pH and also acts as a catalyst, which leads to fast nucleation and deposition rates, continuous films, and less oxygen impurities in the films. Films deposited on glass from HMTA-containing bath were uniform, continuous, and 90 nm thick after 1 h, as opposed to films grown without HMTA that were ∼3 times thinner and more nodular. On Cu2(Zn,Sn)Se4, films grown with HMTA were continuous within 10 min. The films have comparatively few oxygen impurities, with S/(S+O) atomic ratio of 88%, and high optical transmission of 98% at 360 nm. The Zn(S,O,OH) films exhibit excellent adhesion to glass and high resistivity, which make them ideal nucleation layers for other metal sulfides. Their promise as a nucleation layer was demonstrated with the deposition of thin, continuous Sb2S3 overlayers. This novel HMTA chemistry enables rapid deposition of Zn(S,O,OH) thin films to serve as a nucleation layer, a photovoltaic buffer layer, or an extremely thin continuous coating for thin film applications. HMTA may also be applied in a similar manner for solution deposition of other metal chalcogenide and oxide thin films with superior properties.

  1. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Osamu [School of Environmental Science and Technology, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 (Japan); Nitta, Noriko, E-mail: nitta.noriko@kochi-tech.ac.jp [School of Environmental Science and Technology, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 (Japan); Center for Nanotechnology, Research Institute, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 (Japan); Taniwaki, Masafumi [School of Environmental Science and Technology, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 (Japan)

    2016-11-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  2. Alcohol intake and triglycerides/high-density lipoprotein cholesterol ratio in men with hypertension.

    Science.gov (United States)

    Wakabayashi, Ichiro

    2013-07-01

    The triglycerides/high-density lipoprotein cholesterol (TG/HDL-C) ratio has been proposed to be a good predictor of cardiovascular disease. The relationship between alcohol consumption and TG/HDL-C ratio in patients with hypertension is unknown. Subjects were normotensive and hypertensive men aged 35-60 years who were divided by daily ethanol intake into non-, light (<22g/day), heavy (≥22 but <44g/day), and very heavy (≥44g/day) drinkers. The TG/HDL-C ratio was significantly higher in the hypertensive group than in the normotensive group. Both in the normotensive and hypertensive groups, TG/HDL-C ratio was significantly lower in light, heavy, and very heavy drinkers than in nondrinkers and was lowest in light drinkers. In the hypertensive group, odds ratios (ORs) for high TG/HDL-C ratio (≥3.75) in light, heavy, and very heavy drinkers vs. nondrinkers were significantly lower (P < 0.01) than a reference level of 1.00 (light drinkers: OR = 0.49, 95% confidence interval (CI) = 0.40-0.59; heavy drinkers: OR = 0.59, 95% CI = 0.52-0.67; very heavy drinkers: OR = 0.70, 95% CI = 0.61-0.80) and were significantly lower than the corresponding ORs in the normotensive group. The ORs for hypertension in subjects with vs. subjects without high TG/HDL-C ratio were significantly higher than the reference level in all the alcohol groups and were significantly lower in light, heavy, and very heavy drinkers than in nondrinkers. The results suggest that there is an inverted J-shaped relationship between alcohol and TG/HDL-C ratio in individuals with hypertension and that alcohol weakens the positive association between TG/HDL-C ratio and hypertension.

  3. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    Dissolved gas ratios and isotopic compositions provide essential information about the biological and physical mechanisms influencing N-2, O-2, and Ar in aquatic systems. Current methods available are either limited by overall cost, labor-intensive sample collection and analysis, or insufficient ...

  4. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  5. Behavior of High Water-cement Ratio Concrete under Biaxial Compression after Freeze-thaw Cycles

    Institute of Scientific and Technical Information of China (English)

    SHANG Huaishuai; SONG Yupu; OU Jinping

    2008-01-01

    The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied.Strength and deformations of plain concrete specimens after 0,25,50 cycles of freeze-thaw.Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed aecording to the experimental results.Based on the test data,the failure criterion expressed in terms of principal stress after difierent cycles of freeze-thaw,and the failure criterion with consideration of the influence of freeze-thaw cycle and sffess ratio were proposed respectively.

  6. Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique.

    Science.gov (United States)

    Xie, Quan; Zhou, Qing; Xie, Fei; Sang, Jianming; Wang, Wei; Zhang, Haixia Alice; Wu, Wengang; Li, Zhihong

    2012-03-01

    This paper introduced a wafer-scale fabrication approach for the preparation of nanochannels with high-aspect ratio (the ratio of the channel depth to its width). Edge lithography was used to pattern nanogaps in an aluminum film, which was functioned as deep reactive ion etching mask thereafter to form the nanochannel. Nanochannels with aspect ratio up to 172 and width down to 44 nm were successfully fabricated on a 4-inch Si wafer with width nonuniformity less than 13.6%. A microfluidic chip integrated with nanometer-sized filters was successfully fabricated by utilizing the present method for geometric-controllable nanoparticle packing.

  7. Measurement of the Ratio of High Energy Neutron in the Pulse Nuclear Reactor

    Institute of Scientific and Technical Information of China (English)

    MAO; Guo-shu; DING; You-qian; YANG; Lei; MA; Peng; YU; Zhen-hua

    2012-01-01

    <正>In the production of radioisotopes and neutron activation analysis, the fast neutron densities are very important to estimate the yields of the radioisotopes. In order to determine the fast neutron flux ratio, different foils are used to measure the thermal neutron flux and the fast neutron flux. In this paper 238U was used as only a monitor to measure the ratio of high energy neutron (>6 MeV). By measuring the

  8. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  9. Physical Delivery of Macromolecules using High-Aspect Ratio Nanostructured Materials.

    Science.gov (United States)

    Lee, Kunwoo; Lingampalli, Nithya; Pisano, Albert P; Murthy, Niren; So, Hongyun

    2015-10-28

    There is great need for the development of an efficient delivery method of macromolecules, including nucleic acids, proteins, and peptides, to cell cytoplasm without eliciting toxicity or changing cell behavior. High-aspect ratio nanomaterials have addressed many challenges present in conventional methods, such as cell membrane passage and endosomal degradation, and have shown the feasibility of efficient high-throughput macromolecule delivery with minimal perturbation of cells. This review describes the recent advances of in vitro and in vivo physical macromolecule delivery with high-aspect ratio nanostructured materials and summarizes the synthesis methods, material properties, relevant applications, and various potential directions.

  10. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    NARCIS (Netherlands)

    Ende, D.A. van den; Maier, R.A.; Neer, P.L.M.J. van; Zwaag, S. van der; Randall, C.A.; Groen, W.A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT - polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the compo

  11. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  12. Raised mortality from lung cancer and high sex ratios of births associated with industrial pollution.

    Science.gov (United States)

    Lloyd, O L; Smith, G; Lloyd, M M; Holland, Y; Gailey, F

    1985-07-01

    Geographical and temporal associations were shown between high mortality from lung cancer and a high sex ratio of births both in the town of Bathgate (Scotland) and in the area of that town which was most exposed to polluted air from a local steel foundry. These findings constituted a replication of a similar association in an adjacent town.

  13. Growth of high aspect ratio ZnO nanorods by solution process: Effect of polyethyleneimine

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Han-Seok; Vaseem, Mohammad; Kim, Sang Gon; Im, Yeon-Ho [School of Semiconductor and Chemical Engineering, Dept. of BIN Fusion Technology, BK 21 Centre for Future Energy Materials and Devices, and Nanomaterials Processing Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hahn, Yoon-Bong, E-mail: ybhahn@chonbuk.ac.kr [School of Semiconductor and Chemical Engineering, Dept. of BIN Fusion Technology, BK 21 Centre for Future Energy Materials and Devices, and Nanomaterials Processing Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-05-15

    High aspect ratio ZnO nanorods were grown vertically on ZnO seed layer deposited silicon, glass and polyimide substrates by a solution process at low-temperature using zinc nitrate hexahydrate and hexamethylenetetramine. We studied the effect of polyethlyeneimine (PEI) on the growth of ZnO nanorods. It was found that PEI has a prominent effect on controlling the aspect ratio of ZnO nanorods in solution. The morphological and photoluminescence properties of the ZnO nanorods were also examined with varying the growth temperature (60-90 Degree-Sign C). - Graphical abstract: With addition of polyehyleneimine (PEI) high aspect-ratio ZnO nanorods were grown. It is believed that during ZnO nanorods growth, protonized form of linear PEI molecules inhibits the lateral growth by being adsorbed on non-polar lateral planes. Thus the vertical growth is favored. Highlights: Black-Right-Pointing-Pointer A controlled growth of high aspect ratio ZnO nanorods on different substrates. Black-Right-Pointing-Pointer A prominent effect of polyethlyeneimine (PEI) on controlling the aspect ratio of ZnO nanorods in solution. Black-Right-Pointing-Pointer Precursor concentration and growth temperature effect for various aspect ratio ZnO nanorods.

  14. Jet noise of high aspect-ratio rectangular nozzles with application to pneumatic high-lift devices

    Science.gov (United States)

    Munro, Scott Edward

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. This jet sheet is essentially a high aspect-ratio rectangular jet. This study directly compared far-field noise emissions from a state-of-the-art circulation control wing high lift configuration, and a conventional wing also configured for high lift. Results indicated that a circulation control wing had a significant acoustic advantage over a conventional wing for identical lift performance. A high aspect-ratio nozzle was fabricated to study the general characteristics of high aspect-ratio jets with aspect ratios from 100 to 3000. The results of this study provided the basic elements in understanding how to reduce the noise from a circulation control wing. High aspect-ratio nozzle results showed that the jet noise of this type of jet was proportional to the 8th power of the jet velocity. It was also found that the jet noise was proportional to the slot height to the 3/2 power and slot width to the 1/2 power. Fluid dynamic experiments were also performed on the high aspect-ratio nozzle. Single hot-wire experiments indicated that the jet exhaust from the high aspect-ratio nozzle was similar to a 2-d turbulent jet. Two-wire space-correlation experiments were performed to attempt to find a relationship between the slot height of the jet and the length-scale of the flow noise generating turbulence structure. The turbulent eddy convection velocity was also calculated, and was found to vary with the local centerline velocity, and also as a function of the frequency of the eddy.

  15. Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites

    Science.gov (United States)

    Ren, Liyun

    The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network

  16. Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials.

    Science.gov (United States)

    Fratila, Raluca M; Rivera-Fernández, Sara; de la Fuente, Jesús M

    2015-05-14

    High aspect ratio magnetic nanomaterials possess anisotropic properties that make them attractive for biological applications. Their elongated shape enables multivalent interactions with receptors through the introduction of multiple targeting units on their surface, thus enhancing cell internalization. Moreover, due to their magnetic anisotropy, high aspect ratio nanomaterials can outperform their spherical analogues as contrast agents for magnetic resonance imaging (MRI) applications. In this review, we first describe the two main synthetic routes for the preparation of anisotropic magnetic nanomaterials: (i) direct synthesis (in which the anisotropic growth is directed by tuning the reaction conditions or by using templates) and (ii) assembly methods (in which the high aspect ratio is achieved by assembly from individual building blocks). We then provide an overview of the biomedical applications of anisotropic magnetic nanomaterials: magnetic separation and detection, targeted delivery and magnetic resonance imaging.

  17. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  18. Development of high-aspect-ratio microchannel heat exchanger based on multi-tool milling process

    Institute of Scientific and Technical Information of China (English)

    潘敏强; 李金恒; 汤勇

    2008-01-01

    A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels with manifold structures. On the basis of multi-tool milling process, the structural design of the manifold side height, microchannel length, width, number, and interval were analyzed. The heat transfer performances of high-aspect-ratio microchannel heat exchangers with two different manifolds were investigated by experiments, and the influencing factors were analyzed. The results indicate that the magnitude of heat transfer area per unit volume dominates the heat transfer performances of plate-type micro heat exchanger, while the velocity distribution between microchannels has little effects on the heat transfer performances.

  19. Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials

    Science.gov (United States)

    Fratila, Raluca M.; Rivera-Fernández, Sara; de La Fuente, Jesús M.

    2015-04-01

    High aspect ratio magnetic nanomaterials possess anisotropic properties that make them attractive for biological applications. Their elongated shape enables multivalent interactions with receptors through the introduction of multiple targeting units on their surface, thus enhancing cell internalization. Moreover, due to their magnetic anisotropy, high aspect ratio nanomaterials can outperform their spherical analogues as contrast agents for magnetic resonance imaging (MRI) applications. In this review, we first describe the two main synthetic routes for the preparation of anisotropic magnetic nanomaterials: (i) direct synthesis (in which the anisotropic growth is directed by tuning the reaction conditions or by using templates) and (ii) assembly methods (in which the high aspect ratio is achieved by assembly from individual building blocks). We then provide an overview of the biomedical applications of anisotropic magnetic nanomaterials: magnetic separation and detection, targeted delivery and magnetic resonance imaging.

  20. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles

    Science.gov (United States)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-05-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  1. Fabrication of High Aspect Ratio SU-8 Structures for Integrated Spectrometers

    DEFF Research Database (Denmark)

    Anhøj, Thomas Aarøe

    2007-01-01

    of photolithography. Successful fabrication of re ection gratings requires a high degree of precision in the photolithographic process. The fabrication process has thus been optimized by optimizing the photolithographic process for fabrication of high aspect ratio structures, i.e. structures with details...... that are small compared to the height of the structure. A decisive factor is the ability of the process to separate closely- spaced structures. The primary measure of quality is thus the aspect ratio of the narrowest trench which it is possible to resolve in the lithographic process. The optimization...

  2. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.

  3. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes

    KAUST Repository

    Seo, Jeongsuk

    2012-01-01

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V RHE for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity. © 2012 The Royal Society of Chemistry.

  4. Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath

    Science.gov (United States)

    Xu, Xunnong; Purdy, Thomas; Taylor, Jacob M.

    2017-06-01

    Optomechanical systems show tremendous promise for the high-sensitivity sensing of forces and modification of mechanical properties via light. For example, similar to neutral atoms and trapped ions, laser cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce an additional damping channel to mechanical motion while keeping its thermal noise at the same level, and, as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of the temperature to the quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an approach for simultaneously reducing the thermal load on a mechanical resonator while improving its quality factor. In essence, we use the optical interaction to dynamically modify the dominant damping mechanism, providing an optomechanically induced effect analogous to a phononic band gap. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red-detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme.

  5. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    Science.gov (United States)

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO2, while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μm depth, corresponding to an aspect ratio of ≈ 53.

  6. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  7. Does the bathing water classification depend on sampling strategy? A bootstrap approach for bathing water quality assessment, according to Directive 2006/7/EC requirements.

    Science.gov (United States)

    López, Iago; Alvarez, César; Gil, José L; Revilla, José A

    2012-11-30

    Data on the 95th and 90th percentiles of bacteriological quality indicators are used to classify bathing waters in Europe, according to the requirements of Directive 2006/7/EC. However, percentile values and consequently, classification of bathing waters depend both on sampling effort and sample-size, which may undermine an appropriate assessment of bathing water classification. To analyse the influence of sampling effort and sample size on water classification, a bootstrap approach was applied to 55 bacteriological quality datasets of several beaches in the Balearic Islands (Spain). Our results show that the probability of failing the regulatory standards of the Directive is high when sample size is low, due to a higher variability in percentile values. In this way, 49% of the bathing waters reaching an "Excellent" classification (95th percentile of Escherichia coli under 250 cfu/100 ml) can fail the "Excellent" regulatory standard due to sampling strategy, when 23 samples per season are considered. This percentage increases to 81% when 4 samples per season are considered. "Good" regulatory standards can also be failed in bathing waters with an "Excellent" classification as a result of these sampling strategies. The variability in percentile values may affect bathing water classification and is critical for the appropriate design and implementation of bathing water Quality Monitoring and Assessment Programs. Hence, variability of percentile values should be taken into account by authorities if an adequate management of these areas is to be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Early high ratio platelet transfusion in trauma resuscitation and its outcomes

    Science.gov (United States)

    Peralta, Ruben; Vijay, Adarsh; El-Menyar, Ayman; Consunji, Rafael; Afifi, Ibrahim; Mahmood, Ismail; Asim, Mohammed; Latifi, Rifat; Al-Thani, Hassan

    2016-01-01

    Introduction: The optimal ratio of platelets (PLTs) to packed red blood cell (PRBC) in trauma patients requiring massive transfusion protocol (MTP) is still controversial. This report aims to describe the effect of attaining a high PLT:PRBC ratio (≥1:1.5) within 4 h postinjury on the outcomes of trauma patients receiving MTP. Methods: Over a 24-month period, records of all adult patients with traumatic injury who received MTP were retrospectively reviewed. Data were analyzed with respect to PLT:PRBC ratio ([high-MTP ≥1:1.5] [HMTP] vs. [low-MTP 4 and 24 h). Baseline demographic, clinical characteristics, complications, and outcomes were compared according to HMTP and LMTP. Results: Of the total 3244 trauma patients, PLT:PRBC ratio was attainable in 58 (1.2%) patients who fulfilled the inclusion criteria. The mean age was 32.3 ± 10.7 years; the majority were males (89.6%) with high mean Injury Severity Score (ISS): 31.9 ± 11.5 and Revise Trauma Score (RTS): 5.1 ± 2.2. There was no significant association between age, gender, type of injury, presenting hemoglobin, International Normalized Ratio, ISS, and RTS. The rate of ventilator–associated pneumonia (38.9% vs. 10.8%; P = 0.02) and wound infection (50% vs. 10.8%; P = 0.002) were significantly higher in the HMTP group. However, HMTP was associated with lower rate of multiple organ failure (MOF) (42.1% vs. 87.2%, P = 0.001) and mortality (36.8% vs. 84.6%, P = 0.001) within the first 30 days postinjury. Conclusions: Our study revealed that early attainment of high PLT/PRBC ratio within 4 h postinjury is significantly associated with lower MOF and mortality in trauma patients. PMID:28149824

  9. Different methods to alter surface morphology of high aspect ratio structures

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M., E-mail: moritz.leber@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Shandhi, M.M.H. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Hogan, A. [Blackrock Microsystems, Salt Lake City, UT (United States); Solzbacher, F. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Bhandari, R.; Negi, S. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Blackrock Microsystems, Salt Lake City, UT (United States)

    2016-03-01

    Graphical abstract: Surface engineering of high aspect ratio silicon structures. - Highlights: • Multiple roughening techniques for high aspect ratio devices were investigated. • Modification of surface morphology of high aspect ratio silicon devices (1:15). • Decrease of 76% in impedance proves significant increase in surface area. - Abstract: In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several

  10. Film Cooling from Two Staggered Rows of Compound Angle Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations at high blowing ratios. These film cooling configurations are important because they are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 3d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 0.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes which becomes more pronounced as blowing ratio increases.

  11. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  12. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.;

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  13. Improving surface acousto-optical interaction by high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    The acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes that are stro...

  14. Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Hansen, Rasmus

    2015-01-01

    In this work we present high-aspect ratio carbon pillars (1.4 μm in diameter and ∼11 μm in height) on top of interdigitated electrode arrays to be used for electrochemical applications. For this purpose, different types of 2D and 3D pyrolysed carbon structures were fabricated and characterised...

  15. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids.

    Science.gov (United States)

    Sasikala, Suchithra Padmajan; Henry, Lucile; Yesilbag Tonga, Gulen; Huang, Kai; Das, Riddha; Giroire, Baptiste; Marre, Samuel; Rotello, Vincent M; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-05-24

    This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.

  16. Russian bath%俄罗斯浴

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The history of Russian bath originates in old times. From descriptions of Greece Herodotus1,it is possible to find out that the Scythians that lived in Ukraine in ancient times used bath.They established three poles inclined by the top ends to each other,and covered them with felt.Then threw into the tub put in the middle of this hut the red-hot stones. They brought hempen2 seeds into this felt bath and threw them on the heated stones.

  17. Patterned growth of high aspect ratio silicon wire arrays at moderate temperature

    Science.gov (United States)

    Morin, Christine; Kohen, David; Tileli, Vasiliki; Faucherand, Pascal; Levis, Michel; Brioude, Arnaud; Salem, Bassem; Baron, Thierry; Perraud, Simon

    2011-04-01

    High aspect ratio silicon wire arrays with excellent pattern fidelity over wafer-scale area were grown by chemical vapor deposition at moderate temperature, using a gas mixture of silane and hydrogen chloride. An innovative two-step process was developed for in situ doping of silicon wires by diborane. This process led to high p-type doping levels, up to 10 18-10 19 cm -3, without degradation of the silicon wire array pattern fidelity.

  18. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    Directory of Open Access Journals (Sweden)

    Hurt Robert H

    2011-05-01

    Full Text Available Abstract Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90 and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs. Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2 of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1 as well as profibrotic (M2 phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model

  19. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  20. Proton beam writing and electroplating for the fabrication of high aspect ratio Au microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Yue Weisheng [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Ren Yaping [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Kan, Jeroen Anton van; Chiam, S.-Y. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jian, Linke; Moser, Herbert O. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Osipowicz, Thomas [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore)], E-mail: phyto@nus.edu.sg; Watt, Frank [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2009-07-01

    We present an approach to fabricate tall high aspect ratio Au microstructures by means of proton beam direct writing. Combining proton beam direct writing and electroplating, we successfully produced gold structures with sub-micrometer lateral dimensions, structure heights in excess of 11 {mu}m, and aspect ratios over 28. Sidewall quality of the Au structures was improved by lowering the process temperature to 20 deg. C when developing PMMA patterns with GG developer. The application of such structures as X-ray masks for deep X-ray lithography with synchrotron radiation was demonstrated.

  1. Electro-mechanical power coupling system for PHEV with high price-performance ratio

    Institute of Scientific and Technical Information of China (English)

    Federmann Florian; Yue CHENG; Xin LI; Bo ZHANG; Jia-jia XIE; Yang YU

    2014-01-01

    The price-performance ratio of PHEV determines its market penetration.Besides en-gine and battery,the power coupling system including traction motor and automatic transmission is a key influence factor of system performance and costs.This article introduces an electro-me-chanical power coupling system for PHEV with high price-performance ratio,which integrates an electro-mechanical CVT and a flat traction motor.As an example,a PHEV system is configured to conform the vehicle dynamic specifications.

  2. A review on non-linear aeroelasticity of high aspect-ratio wings

    Science.gov (United States)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  3. Design and implementation of a high dimming ratio LED drive controller

    Institute of Scientific and Technical Information of China (English)

    徐孝如; 吴晓波; 赵梦恋; 严晓浪

    2009-01-01

    This paper presents a high dimming ratio light emitting diode (LED) drive controller chip with digital mode dimming (DMD). The chip is composed of a boost power converter and a dimming control block. A novel constant on time (COT) control strategy is proposed for boost converter to achieve high dimming ratio. In addition, a fast enough load transient response of the converter power stage ensures its high dimming ratio. The COT control circuit operates mainly based on two current-capacitor timers and a finite state machine (FSM). The LED drive con-troller chip is designed and fabricated in 1.5μm bipolar CMOS-DMOS (BCD) process with a die area of 1.31 × 1.43 mm2. Experimental results show that the proposed LED drive system works well. And, as expected, the minimum LED dimming on time of 1.0μs and the corresponding dimming ratio of 1000 : 1 at 1 kHz dimming frequency are successfully achieved.

  4. Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio

    Indian Academy of Sciences (India)

    Tao Jiang; Qiwei Gong; Ruofan Qiu; Anlin Wang

    2014-10-01

    An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice Boltzmann equation through the equilibrium velocity. Compared to the SC model, external forces in our model are discretized directly into the discrete lattice Boltzmann equation, as proposed by Guo et al. We develop it into a new multicomponent lattice Boltzmann (LB) model which has the ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and to reduce `spurious velocity’. In this work, the improved model is validated and studied using the central bubble case and the rising bubble case. It finds good applications in both static and dynamic cases for multicomponent simulations with different relaxation time ratios.

  5. Single-Molecule Diodes with High On/Off Ratios Through Environmental Control

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Dell, Emma; Adak, Olgun; Liu, Zhen-Fei; Neaton, Jeffrey; Campos, Luis; Venkataraman, Latha

    2015-03-01

    Single-Molecule diodes were first proposed with an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Progress in molecular electronics has led to the realization of several single-molecule diodes; these have relied on asymmetric molecular backbones, asymmetric molecule-electrode linkers, or asymmetric electrode materials. Despite these advances, molecular diodes have had limited potential for functional applications due to several pitfalls, including low rectification ratios (``on''/``off'' current ratios environment instead of an asymmetric molecule, we reproducibly achieve high rectification ratios at low operating voltages for molecular junctions based on a family of symmetric small-gap molecules. This technique serves as an unconventional approach for developing functional molecular-scale devices and probing their charge transport characteristics. Furthermore, this technique should be applicable to other nanoscale devices, providing a general route for tuning device properties.

  6. Micro precision casting based on investment casting for micro structures with high aspect ratio

    Institute of Scientific and Technical Information of China (English)

    YANG Chuang; LI Bang-sheng; REN Ming-xing; FU Heng-zhi

    2009-01-01

    Microcasting is one of the significant technologies for the production of metallic micro parts with high aspect ratio (ratio of flow length to diameter). A micro precision casting technology based on investment casting using centrifugal method was investigated. The micro parts of Zn-4%Al alloy with an aspect ratio up to 200 was produced at the centrifugal speed of 1 500 r/min and the mold temperature of 270 ℃. The investigations on the relationship between flow length and rotational speed were carried out. For microcasting, the flow length is not only dependent on the centrifugal speed under the constant centrifugal radius, but also on the preheating temperature of mold. The flow length increases as the rotational speed and the mold temperature increase, and is much higher at a mold temperature of 270 ℃ than at other mold temperatures.

  7. A simple method for fabrication of high-aspect-ratio all-silicon grooves

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yuncan; Pan, An; Si, Jinhai, E-mail: jinhaisi@mail.xjtu.edu.cn; Chen, Tao; Chen, Feng; Hou, Xun

    2013-11-01

    A simple method using 800-nm femtosecond laser irradiation and chemical selective etching has been proposed for fabrication of high-aspect-ratio all-silicon grooves. Grooves with the maximum aspect ratio of 44 were produced. A scanning electronic microscopy equipped with an energy dispersive X-ray spectroscopy was employed to characterize the morphology and chemical composition of the grooves respectively. The formation mechanism of the grooves was attributed to the chemical reaction of the laser induced refractive index change microstructures and hydrofluoric acid solution. The dependences of the aspect ratio of the grooves on the laser irradiation parameters, such as: the numerical aperture of the microscope objective lens, the laser average power and the laser scanning velocity, are discussed.

  8. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    Science.gov (United States)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  9. Bath Stone - a Possible Global Heritage Stone from England

    Science.gov (United States)

    Marker, Brian

    2014-05-01

    The Middle Jurassic strata of England have several horizons of oolitic and bioclastic limestones that provide high quality dimension stone. One of the most important is found in and near the City of Bath. The Great Oolite Group (Upper Bathonian) contains the Combe Down and Bath Oolites, consisting of current bedded oolites and shelly oolites, that have been used extensively as freestones for construction nearby, for prestigious buildings through much of southern England and more widely. The stone has been used to some extent since Roman times when the city, then known as Aquae Sulis, was an important hot spa. The stone was used to a limited extent through medieval times but from the early 18th century onwards was exploited on a large scale through surface quarrying and underground mining. The City was extensively redeveloped in the 18th to early 19th century, mostly using Bath Stone, when the spas made it a fashionable resort. Buildings from that period include architectural "gems" such as the Royal Crescent and Pulteney Bridge, as well as the renovated Roman Baths. Many buildings were designed by some of the foremost British architects of the time. The consistent use of this stone gives the City an architectural integrity throughout. These features led to the designation of the City as a World Heritage Site. It is a requirement in current City planning policy documents that Bath Stone should be used for new building to preserve the appearance of the City. More widely the stone was used in major houses (e.g. Buckingham Palace and Apsley House in London; King's Pavilion in Brighton); civic buildings (e.g. Bristol Guildhall; Dartmouth Naval College in Devon); churches and cathedrals (e.g. Truro Cathedral in Cornwall); and engineered structures (e.g. the large Dundas Aqueduct on the Kennet and Avon Canal). More widely, Bath Stone has been used in Union Station in Washington DC; Toronto Bible College and the Town Hall at Cape Town, South Africa. Extraction declined in

  10. Suppression of decoherence by bath ordering

    Institute of Scientific and Technical Information of China (English)

    Jing Jun; Ma Hong-Ru

    2007-01-01

    The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an extended model of the TessieriWilkie Hamiltonian. The pair of spins served as an open subsystem is prepared in one of the Bell states and the bath consisting of some spins-1/2 is in a thermal equilibrium state from the very beginning. It is found that with increasing coupling strength of the bath spins, the bath forms a resonant antiferromagnetic order. The polarization correlation between the two spins of the subsystem and the concurrence of it are recovered to some extent in the isolated subsystem. This suppression of the subsystem decoherence may be used to control the quantum devices in practical applications.

  11. High Turndown Ratio, High Delta-Emittance, Variable Emissivity Electrochromics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable-emittance materials are in high demand for applications ranging from manned and unmanned space platforms (e.g. in radiators at the Moon's poles where damage...

  12. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  13. Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches

    Science.gov (United States)

    Erkens, I. J. M.; Verheijen, M. A.; Knoops, H. C. M.; Keuning, W.; Roozeboom, F.; Kessels, W. M. M.

    2017-02-01

    To date, conventional thermal atomic layer deposition (ALD) has been the method of choice to deposit high-quality Pt thin films grown typically from (MeCp)PtMe3 vapor and O2 gas at 300 °C. Plasma-assisted ALD of Pt using O2 plasma can offer several advantages over thermal ALD, such as faster nucleation and deposition at lower temperatures. In this work, it is demonstrated that plasma-assisted ALD at 300 °C also allows for the deposition of highly conformal Pt films in trenches with high aspect ratio ranging from 3 to 34. Scanning electron microscopy inspection revealed that the conformality of the deposited Pt films was 100% in trenches with aspect ratio (AR) up to 34. These results were corroborated by high-precision layer thickness measurements by transmission electron microscopy for trenches with an aspect ratio of 22. The role of the surface recombination of O-radicals and the contribution of thermal ALD reactions is discussed.

  14. Nickel electrodeposition from novel citrate bath

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new type of electroplating bath suitable for nickel electrodeposition was developed. Trisodium citrate was used as a complexing agent and a buffer in the bath. The buffering capacity between trisodium citrate and boric acid were compared. The effects were investigated under different conditions of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency and throwing index, as well as the electrical conductivity of these baths. The optimum conditions for producing sound and satisfactory nickel deposits were: NiSO4·6H2O 350 g/L, NiC12·6H2O 45 g/L and Na3C6H5O7 30 g/L at pH=4 and 55 ℃. The surface morphology of the as-plated Ni deposit was examined by SEM. The results reveal that the nickel deposition obtained from the optimum conditions are composed of compact, non-porous fine grains covering the entire surface. X-ray analysis shows that nickel deposits obtained from the citrate bath have a fine crystal structure compared with deposits from the Watts bath.

  15. CdS films deposited by chemical bath under rotation

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)

    2010-08-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  16. Petrogenetic significance of high Fe/Mn ratios of the Cenozoic basalts from Eastern China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Cenozoic basalts from eastern China show commonly high Fe/Mn ratios (average = 68.6 ± 11.5) coupled with OIB-type trace element signature. The Cenozoic basalts form the northern margin and the southern margin of the North China Craton are studied in detail. Model calculations point out that the coupling feature of high Fe/Mn ratio with OIB-type trace element signature of these basalts cannot be produced by neither pyroxene/olivine crystallization nor remelting of previously melted mantle, but require partial melting of a garnet pyroxenite-rich mantle source. Combining these features of the Cenozoic basalts with the Phanerozoic lithospheric evolution of the eastern China, we suggest that the Cenozoic basalts were derived from a garnet pyroxenite-rich mantle source associated with continental crust delamination or oceanic crust subduction.

  17. An implicit wetting and drying approach for non-hydrostatic flows in high aspect ratio domains

    CERN Document Server

    Candy, Adam S

    2013-01-01

    A wetting and drying approach for free surface flows governed by the three-dimensional, non-hydrostatic Navier-Stokes equations in high aspect ratio domains is developed. This has application in the modelling of inundation processes in geophysical domains, where dynamics takes place over a large horizontal extent relative to vertical resolution, such as in the evolution of a tsunami, or an urban fluvial flooding scenario. The approach is novel in that it solves for three dimensional dynamics in these very high aspect ratio domains, to include non-hydrostatic effects and accurately model dispersive processes. These become important in shallow regions with steep gradients, a particularly acute problem where man-made structures exist such as buildings or flood defences in an urban environment. It is implicit in time to allow efficient time integration over a range of mesh element sizes. Specific regularisation methods are introduced to improve conditioning of the full three-dimensional pressure Poisson problem i...

  18. Optimal design and installation of ultra high bypass ratio turbofan nacelle

    Science.gov (United States)

    Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey

    2016-10-01

    The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.

  19. Shear softening of Earth's inner core indicated by its high Poisson's ratio and elastic anisotropy

    CERN Document Server

    Wu, Zhongqing

    2016-01-01

    Earth's inner core exhibits an unusually high Poisson's ratio and noticeable elastic anisotropy. The mechanisms responsible for these features are critical for understanding the evolution of the Earth but remain unclear. This study indicates that once the correct formula for the shear modulus is used, shear softening can simultaneously explain the high Poisson's ratio and strong anisotropy of the inner core. Body-centred-cubic (bcc) iron shows shear instability at the pressures found in the inner-core and can be dynamically stabilized by temperature and light elements. It is very likely that some combinations of light elements stabilize the bcc iron alloy under inner-core conditions. Such a bcc phase would exhibit significant shear softening and match the geophysical constraints of the inner core. Identifying which light elements and what concentrations of these elements stabilize the bcc phase will provide critical information on the light elements of the inner core.

  20. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  1. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  2. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography.

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-02

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  3. Few-layer SnSe{sub 2} transistors with high on/off ratios

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Tengfei; Bao, Lihong, E-mail: lhbao@iphy.ac.cn; Wang, Guocai; Ma, Ruisong; Yang, Haifang; Li, Junjie; Gu, Changzhi; Du, Shixuan; Gao, Hong-jun [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Pantelides, Sokrates [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381 (United States)

    2016-02-01

    We report few-layer SnSe{sub 2} field effect transistors (FETs) with high current on/off ratios. By trying different gate configurations, 300 nm SiO{sub 2} and 70 nm HfO{sub 2} as back gate only and 70 nm HfO{sub 2} as back gate combined with a top capping layer of polymer electrolyte, few-layer SnSe{sub 2} FET with a current on/off ratio of 10{sup 4} can be obtained. This provides a reliable solution for electrically modulating quasi-two-dimensional materials with high electron density (over 10{sup 13} cm{sup −2}) for field-effect transistor applications.

  4. Petrogenetic significance of high Fe/Mn ratios of the Cenozoic basalts from Eastern China

    Institute of Scientific and Technical Information of China (English)

    ZHANG BinHui; LIU YongSheng; GAO Shan

    2008-01-01

    The Cenozoic basalts from eastern China show commonly high Fe/Mn ratios (average = 68.6 卤 11.5) coupled with OIB-type trace element signature. The Cenozoic basalts form the northern margin and the southern margin of the North China Craton are studied in detail. Model calculations point out that the coupling feature of high Fe/Mn ratio with OIB-type trace element signature of these basalts cannot be produced by neither pyroxene/olivine crystallization nor remelting of previously melted mantle, but require partial melting of a garnet pyroxenite-rich mantle source. Combining these features of the Cenozoic basalts with the Phanerozoic lithospheric evolution of the eastern China, we suggest that the Cenozoic basalts were derived from a garnet pyroxenite-rich mantle source associated with continental crust delamination or oceanic crust subduction.

  5. On the Elastic Vibration Model for High Length-Diameter Ratio Rocket with Attitude Control System

    Institute of Scientific and Technical Information of China (English)

    朱伯立; 杨树兴

    2003-01-01

    An elastic vibration model for high length-diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.

  6. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  7. Simulation and Measurement of Neuroelectrodes' Characteristics with Integrated High Aspect Ratio Nano Structures

    Directory of Open Access Journals (Sweden)

    Christoph Nick

    2015-07-01

    Full Text Available Improving the interface between electrodes and neurons has been the focus of research for the last decade. Neuroelectrodes should show small geometrical surface area and low impedance for measuring and high charge injection capacities for stimulation. Increasing the electrochemically active surface area by using nanoporous electrode material or by integrating nanostructures onto planar electrodes is a common approach to improve this interface. In this paper a simulation approach for neuro electrodes' characteristics with integrated high aspect ratio nano structures based on a point-contact-model is presented. The results are compared with experimental findings conducted with real nanostructured microelectrodes. In particular, effects of carbon nanotubes and gold nanowires integrated onto microelectrodes are described. Simulated and measured impedance properties are presented and its effects onto the transfer function between the neural membrane potential and the amplifier output signal are studied based on the point-contact-model. Simulations show, in good agreement with experimental results, that electrode impedances can be dramatically reduced by the integration of high aspect ratio nanostructures such as gold nanowires and carbon nanotubes. This lowers thermal noise and improves the signal-to-noise ratio for measuring electrodes. It also may increase the adhesion of cells to the substrate and thus increase measurable signal amplitudes.

  8. Fabrication of Aspheric Micro-Lens Mold with High Aspect Ratio

    Science.gov (United States)

    Naniwa, Irizo; Kanamaru, Masatoshi; Nakamura, Shigeo; Shimano, Takeshi; Horino, Masaya

    The optical pickup of our Small-Form-Factor Optical Disc Drives (SFFODDs) requires a micro-objective whose profile is composed of two aspheric surfaces. However, it is difficult to fabricate a micro-objective with an arbitrary aspheric surface and high aspect ratio using conventional techniques. We propose here a new method to fabricate an aspheric micro-lens mold with high aspect ratio. This method uses the micro-loading effect in Deep Reactive Ion Etching (DRIE) and isotropic Reactive Ion Etching (RIE). The micro-loading effect is a phenomenon that leads to different etching depths depending on the aperture size of the mask layer used in etching. We fabricated an aspheric micro-lens mold for the prototype by using the proposed method after experimental evaluations of the micro-loading effect for a feasibility study. The profile of the first prototype was slightly different from the designed one according as the distance from the lens center increase. The profile error of the second prototype was reduced by using a mask that had multiple apertures with the smallest aperture located outside the area where the crater was formed. Our proposed method was found to be effective for fabricating a micro-lens mold with an arbitrary aspheric surface and high aspect ratio.

  9. δ-Phosphorene: a two dimensional material with a highly negative Poisson's ratio.

    Science.gov (United States)

    Wang, Haidi; Li, Xingxing; Li, Pai; Yang, Jinlong

    2017-01-05

    As a basic mechanical parameter, Poisson's ratio (ν) measures the mechanical responses of solids against external loads. In rare cases, materials have a negative Poisson's ratio (NPR), and present an interesting auxetic effect. That is, when a material is stretched in one direction, it will expand in the perpendicular direction. To design modern nanoscale electromechanical devices with special functions, two dimensional (2D) auxetic materials are highly desirable. In this work, based on first principles calculations, we rediscover the previously proposed δ-phosphorene (δ-P) nanosheets [Jie Guan, et al., Phys. Rev. Lett., 2014, 113, 046804] which are good auxetic materials with a high NPR. The results show that the Young's modulus and Poisson's ratio of δ-P are all anisotropic. The NPR value along the grooved direction is up to -0.267, which is much higher than the recently reported 2D auxetic materials. The auxetic effect of δ-P originating from its puckered structure is robust and insensitive to the number of layers due to weak interlayer interactions. Moreover, δ-P possesses good flexibility because of its relatively small Young's modulus and high critical crack strain. If δ-P can be synthesized, these extraordinary properties would endow it with great potential in designing low dimensional electromechanical devices.

  10. High triglyceride-to-HDL cholesterol ratio associated with albuminuria in type 2 diabetic subjects.

    Science.gov (United States)

    Lee, I Te; Wang, Chih-Yuan; Huang, Chien-Ning; Fu, Chen-Chung; Sheu, Wayne H H

    2013-01-01

    Emerging evidence indicates that metabolic syndrome (MetS) predisposes diabetic subjects to nephropathy. Aside from hypertension and hyperglycemia, it is unclear which component of MetS also contributes to increased urinary albumin excretion (UAE). We compared the MetS profiles of subjects divided into two groups based on their UAE. The Asia Pacific Real-Life Effectiveness and Care Patterns of Diabetes Management (AP RECAP-DM) study is a cross-sectional survey in which type 2 diabetic subjects using oral anti-hyperglycemic drugs were enrolled. We analyzed the data of 162 type 2 diabetic subjects with normotension or taking antihypertensive medications. There were 123 subjects with normal UAE (HDL) cholesterol (odds ratio=3.27, P=0.022) were both independently associated with abnormal UAE. Using 3.4 as a cut-off value, a high triglyceride-to-HDL cholesterol ratio was a useful marker (odds ratio=15.05, PHDL cholesterol ratio was found to be an important risk factor for nephropathy in type 2 diabetic subjects. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Science.gov (United States)

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-01

    Heulser alloys Fe2Cr1-xCoxSi (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 106 erg/cm3. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe2CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  12. Design requirements for high-efficiency high concentration ratio space solar cells

    Science.gov (United States)

    Rauschenbach, H.; Patterson, R.

    1980-01-01

    A miniaturized Cassegrainian concentrator system concept was developed for low cost, multikilowatt space solar arrays. The system imposes some requirements on solar cells which are new and different from those imposed for conventional applications. The solar cells require a circular active area of approximately 4 mm in diameter. High reliability contacts are required on both front and back surfaces. The back area must be metallurgically bonded to a heat sink. The cell should be designed to achieve the highest practical efficiency at 100 AMO suns and at 80 C. The cell design must minimize losses due to nonuniform illumination intensity and nonnormal light incidence. The primary radiation concern is the omnidirectional proton environment.

  13. Shallow bath chemical deposition of CdS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Y.S. [Department of Molecule Science and Engineering, National Taipei University of Science and Technology, Taipei, 10617, Taiwan (China); Choubey, R.K. [Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi, 835 215 (India); Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China); Yu, W.C. [Department of Molecule Science and Engineering, National Taipei University of Science and Technology, Taipei, 10617, Taiwan (China); Hsu, W.T. [Green Energy and Environmental Research Laboratory, Industrial Technology Research Institute, Hsin-Chu, Taiwan (China); Lan, C.W., E-mail: cwlan@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China)

    2011-10-31

    Cadmium sulfide thin film was grown by shallow chemical bath deposition technique. This technique used a highly conducted hot plate to heat the substrate, while using a shallow bath for higher thermal gradients. As a result, large area uniformity could be achieved and the homogeneous nucleation was suppressed. More importantly, the solution used was greatly reduced, which is crucial for cost reduction in practice. The effects of temperature and shaking on the growth kinetics and film properties were investigated. The reaction activation energy was obtained to be 0.84 eV, and was not affected much by shaking indicating that the deposition is essentially reaction controlled. Furthermore, the films deposited at low or high temperature conditions had better photoconductivity.

  14. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  15. Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios

    Science.gov (United States)

    Dyroff, C.; Fütterer, D.; Zahn, A.

    2010-02-01

    The tunable diode-laser absorption spectrometer ISOWAT for airborne measurements of the water-isotope ratios 18O/16O and D/H is described. The spectrometer uses a distributed feedback (DFB) diode laser to probe fundamental rovibrational water-absorption lines at around 2.66 μm. Very-low-noise system components along with signal averaging allow for a detection limit of 1.2 and 4.5 ‰ for measurements of 18O/16O and D/H, respectively, for a water-vapour mixing ratio of 100 ppmv and an averaging time of 60 s. This corresponds to a minimum detectable absorbance of ˜5×10-6 or ˜6.6×10-10 cm-1 when normalized to pathlength. In addition to its high sensitivity, the spectrometer is highly compact (19-inch rack at a height of 35 cm, excluding pump and calibration unit) and light weight (automated. ISOWAT will be calibrated during flight with known water-isotope ratios using a compact calibration-gas source.

  16. a Brief Climatology of Cirrus LIDAR Ratios Measured by High Spectral Resolution LIDAR

    Science.gov (United States)

    Kuehn, R.; Holz, R.; Hair, J. W.; Vaughan, M. A.; Eloranta, E. W.

    2015-12-01

    Our ability to detect and probe the vertical extent of cirrus was hugely improved with the launch of the NASA-CNES CALIPSO mission in April 2006. However, our skill at retrieving the optical properties of the cirrus detected by the CALIPSO lidar is not yet commensurate with our detection abilities. As with any new observing system, CALIPSO faces challenges and uncertainties in the retrieval of the geophysical parameters from its fundamental measurements. Specifically, extinction and optical depth retrievals for elastic backscatter lidars like CALIPSO typically rely on a priori assumptions about layer-mean extinction-to-backscatter ratios (AKA lidar ratios), which can vary regionally and for which uncertainties are high. To improve CALIPSO optical properties retrievals, we show High Spectral Resolution Lidar (HSRL) measurements acquired with systems from the University of Wisconsin and NASA Langley. HSRLs can directly determine ice cloud extinction and lidar ratio by separately measuring the molecular and particulate components of the total backscattered signal, thus largely eliminating many of the uncertainties inherent in elastic backscatter retrievals. These measurements were acquired during the SEAC4RS (Huntsville, AL, USA and Singapore), and FRAPPE/DISCOVER-AQ 2014 (BAO tower near Boulder, CO, USA) field campaigns, and an intensive operations period in Hampton, VA, USA.

  17. Podiatry impact on high-low amputation ratio characteristics: A 16-year retrospective study.

    Science.gov (United States)

    Schmidt, Brian M; Wrobel, James S; Munson, Michael; Rothenberg, Gary; Holmes, Crystal M

    2017-04-01

    Complications from diabetes mellitus including major lower extremity amputation may have significant impact on a patient's mortality. This study determined what impact the addition of a limb salvage and diabetic foot program involving podiatry had at an academic institution over 16years by analyzing high-low amputation ratio data. The high-low amputation ratio in the diabetic population who underwent non-traumatic amputation of the lower extremity was retrospectively evaluated at an academic institution via cohort discovery of the electronic medical record and analysis of billing over 16years. We directly compared two eras, one without podiatry and one with a podiatry presence. It was found that with the addition of a podiatry program, limb salvage rates significantly increased (R(2) (without podiatry)=0.45, R(2) (with podiatry)=0.26), with a significant change in both the rate of limb salvage per year (-0.11% per year versus -0.36% per year; pamputation ratio (0.89 without podiatry to 0.60 with podiatry). Of note, approximately 40 major lower extremity amputations were avoided per year with the addition of a podiatry program (pamputations can be avoided and more limbs can be salvaged, thus preventing some of the moribund complications from this condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High Bypass Ratio Jet Noise Reduction and Installation Effects Including Shielding Effectiveness

    Science.gov (United States)

    Thomas, Russell H.; Czech, Michael J.; Doty, Michael J.

    2013-01-01

    An experimental investigation was performed to study the propulsion airframe aeroacoustic installation effects of a separate flow jet nozzle with a Hybrid Wing Body aircraft configuration where the engine is installed above the wing. Prior understanding of the jet noise shielding effectiveness was extended to a bypass ratio ten application as a function of nozzle configuration, chevron type, axial spacing, and installation effects from additional airframe components. Chevron types included fan chevrons that are uniform circumferentially around the fan nozzle and T-fan type chevrons that are asymmetrical circumferentially. In isolated testing without a pylon, uniform chevrons compared to T-fan chevrons showed slightly more low frequency reduction offset by more high frequency increase. Phased array localization shows that at this bypass ratio chevrons still move peak jet noise source locations upstream but not to nearly the extent, as a function of frequency, as for lower bypass ratio jets. For baseline nozzles without chevrons, the basic pylon effect has been greatly reduced compared to that seen for lower bypass ratio jets. Compared to Tfan chevrons without a pylon, the combination with a standard pylon results in more high frequency noise increase and an overall higher noise level. Shielded by an airframe surface 2.17 fan diameters from nozzle to airframe trailing edge, the T-fan chevron nozzle can produce reductions in jet noise of as much as 8 dB at high frequencies and upstream angles. Noise reduction from shielding decreases with decreasing frequency and with increasing angle from the jet inlet. Beyond an angle of 130 degrees there is almost no noise reduction from shielding. Increasing chevron immersion more than what is already an aggressive design is not advantageous for noise reduction. The addition of airframe control surfaces, including vertical stabilizers and elevon deflection, showed only a small overall impact. Based on the test results, the best

  19. Coherence and control of quantum registers based on electronic spin in a nuclear spin bath.

    Science.gov (United States)

    Cappellaro, P; Jiang, L; Hodges, J S; Lukin, M D

    2009-05-29

    We consider a protocol for the control of few-qubit registers comprising one electronic spin embedded in a nuclear spin bath. We show how to isolate a few proximal nuclear spins from the rest of the bath and use them as building blocks for a potentially scalable quantum information processor. We describe how coherent control techniques based on magnetic resonance methods can be adapted to these solid-state spin systems, to provide not only efficient, high fidelity manipulation but also decoupling from the spin bath. As an example, we analyze feasible performances and practical limitations in the realistic setting of nitrogen-vacancy centers in diamond.

  20. Chemistry in isolation: High CCH/HCO+ line ratio in the AMIGA galaxy CIG 638

    CERN Document Server

    Martin, S; Aladro, R; Espada, D; Argudo-Fernandez, M; Kramer, C; Scott, T C

    2014-01-01

    Multi-molecule observations towards an increasing variety of galaxies have been showing that the relative molecular abundances are affected by the type of activity. However, these studies are biased towards bright active galaxies, which are typically in interaction. We study the molecular composition of one of the most isolated galaxies in the local Universe where the physical and chemical properties of their molecular clouds have been determined by intrinsic mechanisms. We present 3 mm broad band observations of the galaxy CIG 638, extracted from the AMIGA sample of isolated galaxies. The emission of the J=1-0 transitions of CCH, HCN, HCO+, and HNC are detected. Integrated intensity ratios between these line are compared with similar observations from the literature towards active galaxies including starburst galaxies (SB), active galactic nuclei (AGN), luminous infrared galaxies (LIRG), and GMCs in M33. A significantly high ratio of CCH with respect to HCN, HCO+, and HNC is found towards CIG 638 when compar...

  1. Nanofabrication of low extinction coefficient and high-aspect-ratio Si structures for metaphotonic applications

    Science.gov (United States)

    Lee, JeongYub; Song, Byonggwon; Kim, Jaekwan; Lee, Chang-Won; Han, Seunghoon; Baik, Chan-Wook; Jeong, Heejeong; Kim, Yongsung; Lee, Chang Seung

    2016-09-01

    We investigated forming of high refractive index (n), low extinction coefficient (k) of Si dielectrics in visible wavelength ranges. To decrease k, pulsed green laser annealing (GLA) with line beam of a 532-nm wavelength was applied in this study for homogeneous melting. By AFM, XRD and TEM analysis, we examined the defect reduction in various conditions during poly-crystallization. We achieved dielectric nanostructures having optical properties of n>4.2, k<0.06 at 550 nm wavelength and fine pitches down to 40 nm (aspect ratio 3:1) and 130 nm (aspect ratio 7:1) with +/-5% size accuracy. Finally, we realized optical metasurfaces for optical band filters, flat lens and beam deflectors.

  2. FeII/MgII Emission Line Ratio in High Redshift Quasars

    DEFF Research Database (Denmark)

    Dietrich, M.; Hamann, F.; Appenzeller, I.

    2003-01-01

    We present results of the analysis of near infrared spectroscopic observations of 6 high-redshift quasars (z > 4), emphasizing the measurement of the ultraviolet FeII/MgII emission line strength in order to estimate the beginning of intense star formation in the early universe. To investigate...... the evolution of the FeII/MgII ratio over a wider range in cosmic time, we measured this ratio for composite quasar spectra which cover a redshift range of 0 4 quasars must have started already at an epoch corresponding to z_f = 6 to 9, when the age of the universe was ~0.5 Gyr (H_o = 72 km/s/Mpc, Omega_M = 0...

  3. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ, Incheon (Korea, Republic of)

    2016-08-15

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

  4. Pilot Study of Inhaled Aerosols Targeted via Magnetic Alignment of High Aspect Ratio Particles in Rabbits

    Directory of Open Access Journals (Sweden)

    Gillian E. S. Redman

    2011-01-01

    Full Text Available Recently, inhaled pharmaceutical aerosols have seen increased investigation in the treatment of lung cancer, where the inability to deliver adequate therapeutic drug concentrations to tumour sites may be overcome with improved targeted delivery to the site of the tumour. In this study, the feasibility of magnetically targeted delivery of high aspect ratio particles loaded with iron oxide nanoparticles was studied in 19 New Zealand White rabbits. Half of the exposed rabbits had a magnetic field placed externally over their right lung. Iron sensitive magnetic resonance images of the lungs were acquired to determine the iron concentrations in the right and left lung of each animal. The right/left ratio increased in the middle and basal regions of the lung where, due to the morphology of the rabbit lung, this method of targeting is most effective. With further optimization, this technique could be an effective method for increasing the dose of drug delivered to a specific site within the lung.

  5. High Stellar FUV/NUV Ratio and Oxygen Contents in the Atmospheres of Potentially Habitable Planets

    CERN Document Server

    Tian, Feng; Linsky, Jeffrey L; Mauas, Pablo J D; Vieytes, Mariela C

    2013-01-01

    Recent observations of several planet-hosting M dwarfs show that most have FUV/NUV flux ratios 1000 times greater than that of the Sun. Here we show that the atmospheric oxygen contents (O2 and O3) of potentially habitable planets in this type of UV environment could be 2~3 orders of magnitude greater than those of their counterparts around Sun-like stars as a result of decreased photolysis of O3, H2O2, and HO2. Thus detectable levels of atmospheric oxygen, in combination with the existence of H2O and CO2, may not be the most promising biosignatures on planets around stars with high FUV/NUV ratios such as the observed M dwarfs.

  6. Multiscale Domain Decomposition Methods for Elliptic Problems with High Aspect Ratios

    Institute of Scientific and Technical Information of China (English)

    Jфrg Aarnes; Thomas Y. Hou

    2002-01-01

    In this paper we study some nonoverlapping domain decomposition methods for solving a class of elliptic problems arising from composite materials and flows in porous media which contain many spatial scales. Our preconditioner differs from traditional domain decomposition preconditioners by using a coarse solver which is adaptive to small scale heterogeneous features. While the convergence rate of traditional domain decomposition algorithms using coarse solvers based on linear or polynomial interpolations may deteriorate in the presence of rapid small scale oscillations or high aspect ratios, our preconditioner is applicable to multiplescale problems without restrictive assumptions and seems to have a convergence rate nearly independent of the aspect ratio within the substructures. A rigorous convergence analysis based on the Schwarz framework is carried out, and we demonstrate the efficiency and robustness of the proposed preconditioner through numerical experiments which include problems with multiple-scale coefficients, as well problems with continuous scales.

  7. High precision and high aspect ratio laser drilling: challenges and solutions

    Science.gov (United States)

    Uchtmann, Hermann; He, Chao; Gillner, Arnold

    2016-03-01

    Laser drilling is a very versatile tool to produce high accuracy bores in small and large geometries using different technologies. In large and deep hole drilling laser drilling can be found in drilling cooling holes into turbomachinery components such as turbine blades. In micro drilling, the technology is used for the generation of nozzles and filters. However, especially in macro drilling, the process often causes microstructure changes and induces defects such as recast layers and cracks. The defects are caused by the melt dominated drilling process by using pulse durations in the range of some 100 μm up to a few ms. A solution of this problem is the use of ultrashort pulsed laser radiation with pulse durations in the range of some 100 fs up to a few ps, however with the disadvantage of long drilling times. Thus, the aim of this work is to combine the productive process by using ms pulsed fiber laser radiation with subsequent ablation of existing recast layers at the hole wall by using ultrashort pulsed laser radiation. By using fast scanning techniques the recast layer can be avoided almost completely. With a similar technology also very small hole can be produced. Using a rotating dove prism a circular oscillation of the laser spots is performed and holes are drilled at intervals in 1 mm thick stainless steel (1.4301) by ultra-short laser pulses of 7 ps at 515 nm. The formation of hole and the behavior of energy deposition differ from other drilling strategies due to the helical revolution. The temporal evolution of the hole shape is analyzed by means of SEM techniques from which three drilling phases can be distinguished.

  8. Avian Assemblages at Bird Baths: A Comparison of Urban and Rural Bird Baths in Australia.

    Science.gov (United States)

    Cleary, Gráinne P; Parsons, Holly; Davis, Adrian; Coleman, Bill R; Jones, Darryl N; Miller, Kelly K; Weston, Michael A

    2016-01-01

    Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas.

  9. Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings

    Science.gov (United States)

    Rudolph, Peter K. C.

    1998-01-01

    The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that

  10. Maintaining high precision of isotope ratio analysis over extended periods of time.

    Science.gov (United States)

    Brand, Willi A

    2009-06-01

    Stable isotope ratios are reliable and long lasting process tracers. In order to compare data from different locations or different sampling times at a high level of precision, a measurement strategy must include reliable traceability to an international stable isotope scale via a reference material (RM). Since these international RMs are available in low quantities only, we have developed our own analysis schemes involving laboratory working RM. In addition, quality assurance RMs are used to control the long-term performance of the delta-value assignments. The analysis schemes allow the construction of quality assurance performance charts over years of operation. In this contribution, the performance of three typical techniques established in IsoLab at the MPI-BGC in Jena is discussed. The techniques are (1) isotope ratio mass spectrometry with an elemental analyser for delta(15)N and delta(13)C analysis of bulk (organic) material, (2) high precision delta(13)C and delta(18)O analysis of CO(2) in clean-air samples, and (3) stable isotope analysis of water samples using a high-temperature reaction with carbon. In addition, reference strategies on a laser ablation system for high spatial resolution delta(13)C analysis in tree rings is exemplified briefly.

  11. Different methods to alter surface morphology of high aspect ratio structures

    Science.gov (United States)

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  12. Static synthesis of high-quality MCM-22 zeolite with high SiO2/Al2O3 ratio

    Institute of Scientific and Technical Information of China (English)

    LIU Zhicheng; SHEN Shaodian; TIAN Bozhi; SUN Jinyu; TU Bo; ZHAO Dongyuan

    2004-01-01

    We demonstrate a synthesis method to broaden the range of SiO2/Al2O3 ratio (30-100) of high-silica MCM-22 zeolites by prolonging the aging time of the gel before the crystallization. The synthesis conditions such as silica sources, chemical compositions of initial gel and aging time of gel were investigated in detail. High quality MCM-22products with various morphologies have been synthesized by optimize their synthesis conditions. Our results show that increasing of the aging time can make the gel be homogenization and promote their nucleus formation, which may avoid the formation of impurity phase and thus broaden the range of SiO2/Al2O3 ratio.

  13. Numerical renormalization group for quantum impurities in a bosonic bath

    Science.gov (United States)

    Bulla, Ralf; Lee, Hyun-Jung; Tong, Ning-Hua; Vojta, Matthias

    2005-01-01

    We present a detailed description of the recently proposed numerical renormalization group method for models of quantum impurities coupled to a bosonic bath. Specifically, the method is applied to the spin-boson model, both in the Ohmic and sub-Ohmic cases. We present various results for static as well as dynamic quantities and discuss details of the numerical implementation, e.g., the discretization of a bosonic bath with arbitrary continuous spectral density, the suitable choice of a finite basis in the bosonic Hilbert space, and questions of convergence with respect to truncation parameters. The method is shown to provide high-accuracy data over the whole range of model parameters and temperatures, which are in agreement with exact results and other numerical data from the literature.

  14. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tagami, Keiko [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)], E-mail: k_tagami@nirs.go.jp; Uchida, Shigeo [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2008-05-05

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of {delta}{sup 13}C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH{sub 2}PO{sub 4} at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR{sup TM} column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH{sub 2}PO{sub 4} aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical.

  15. Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining.

    Science.gov (United States)

    Mitra, Sambit; Chanal, Margaux; Clady, Raphaël; Mouskeftaras, Alexandros; Grojo, David

    2015-08-20

    We report on a functional experimental design for Bessel beam generation capable of handling high-energy ultrashort pulses (up to 1.2 mJ per pulse of 50 fs duration). This allows us to deliver intensities exceeding the breakdown threshold for air or any dielectric along controlled micro-filaments with lengths exceeding 4 mm. It represents an unprecedented upscaling in comparison to recent femtosecond Bessel beam micromachining experiments. We produce void microchannels through glass substrates to demonstrate that aspect ratios exceeding 1200∶1 can be achieved by using single high-intensity pulses. This demonstration must lead to new methodologies for deep-drilling and high-speed cutting applications.

  16. A new multifunctional platform based on high aspect ratio interdigitated NEMS structures

    Energy Technology Data Exchange (ETDEWEB)

    Ghatnekar-Nilsson, S; Karlsson, I; Kvennefors, A; Luo, G; Zela, V; Parker, T; Litwin, A [NEMS AB, Solvegatan 16, S-223 62 Lund (Sweden); Arlelid, M [Electrical and Information Technology, Lund University, PO Box 118, S-221 00 Lund (Sweden); Montelius, L [Solid State Physics/The Nanometer Structure Consortium, Lund University, PO Box 118, S-221 00 Lund (Sweden)], E-mail: andrej.litwin@nems.se

    2009-04-29

    A multifunctional NEMS platform based on a mass-producible, surface relief grating has been developed and fabricated directly in polymer materials. The pattern consists of high aspect ratio interdigitated nanometer-sized pairs of walls and can be produced in a low-complexity one-step patterning process with nanoimprint lithography. In this paper, we demonstrate the usefulness of the platform primarily by showing an application as a high-sensitivity mass sensor in air. The sensors, which are based on the high frequency resonant response of around 200 MHz, show a mass responsivity of the order of 0.1 Hz/zg per wall at room temperature and in ambient air. Their ability to selectively adsorb airborne target molecules, such as thiols, is also demonstrated. We also show that the same device can function as a varactor for electronic circuits based on its large tunable capacitive range.

  17. A new multifunctional platform based on high aspect ratio interdigitated NEMS structures.

    Science.gov (United States)

    Ghatnekar-Nilsson, S; Karlsson, I; Kvennefors, A; Luo, G; Zela, V; Arlelid, M; Parker, T; Montelius, L; Litwin, A

    2009-04-29

    A multifunctional NEMS platform based on a mass-producible, surface relief grating has been developed and fabricated directly in polymer materials. The pattern consists of high aspect ratio interdigitated nanometer-sized pairs of walls and can be produced in a low-complexity one-step patterning process with nanoimprint lithography. In this paper, we demonstrate the usefulness of the platform primarily by showing an application as a high-sensitivity mass sensor in air. The sensors, which are based on the high frequency resonant response of around 200 MHz, show a mass responsivity of the order of 0.1 Hz/zg per wall at room temperature and in ambient air. Their ability to selectively adsorb airborne target molecules, such as thiols, is also demonstrated. We also show that the same device can function as a varactor for electronic circuits based on its large tunable capacitive range.

  18. Analytical Expressions of the Efficiency of Standard and High Contact Ratio Involute Spur Gears

    Directory of Open Access Journals (Sweden)

    Miguel Pleguezuelos

    2013-01-01

    Full Text Available Simple, traditional methods for computation of the efficiency of spur gears are based on the hypotheses of constant friction coefficient and uniform load sharing along the path of contact. However, none of them is accurate. The friction coefficient is variable along the path of contact, though average values can be often considered for preliminary calculations. Nevertheless, the nonuniform load sharing produced by the changing rigidity of the pair of teeth has significant influence on the friction losses, due to the different relative sliding at any contact point. In previous works, the authors obtained a nonuniform model of load distribution based on the minimum elastic potential criterion, which was applied to compute the efficiency of standard gears. In this work, this model of load sharing is applied to study the efficiency of both standard and high contact ratio involute spur gears (with contact ratio between 1 and 2 and greater than 2, resp.. Approximate expressions for the friction power losses and for the efficiency are presented assuming the friction coefficient to be constant along the path of contact. A study of the influence of some transmission parameters (as the gear ratio, pressure angle, etc. on the efficiency is also presented.

  19. Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications

    Science.gov (United States)

    Liang, Jinxing; Kohsaka, Fusao; Matsuo, Takahiro; Ueda, Toshitsugu

    Z cut α-quartz wafers were etched in saturated ammonium bifluoride solution at 87 degrees C. The side wall profiles were observed using the scanning electron microscopy (SEM) and plotted dependent on the polar direction. This research focused on investigating high aspect ratio trench and through-hole, which were dependent on the polar direction to the crystal axis. Aspect ratio in dependence on polar direction was also plotted and microchannels with aspect ratio > 3 could be achieved at the polar angle between 30° to 60°. The possibility of application for microcapillary was discussed, and the trench at 45° was considered best. Double-sided etching technique was used for manufacturing through-hole structures. Through-hole at 0° was demonstrated effective for fabrication of capacitive MEMS tilt sensor. Through-holes at 15° and 105° were proposed for fabrication of 90°-arranged two axis capactive tilt sensor, taking advantage of the twofold symmetry property around X axis and threefold symmetry property around Z axis.

  20. Nanofabrication of high aspect ratio structures using an evaporated resist containing metal

    Science.gov (United States)

    Con, Celal; Zhang, Jian; Cui, Bo

    2014-05-01

    Organic electron beam resists are typically not resistant to the plasma etching employed to transfer the pattern into the underlying layer. Here, the authors present the incorporation of a metal hard mask material into negative resist polystyrene by co-evaporation of the polystyrene and the metal onto a substrate. With a volume ratio of 1:15 between Cr and polystyrene, this nanocomposite resist showed an etching selectivity to silicon one order higher than pure polystyrene resist. Silicon structures of 100 nm width and 3.5 μm height (aspect ratio 1:35) were obtained using a non-switching deep silicon etching recipe with SF6 and C4F8 gas. Moreover, unlike the common spin coating method, evaporated nanocomposite resist can be coated onto irregular and non-flat surfaces such as optical fibers and AFM cantilevers. As a proof of concept, we fabricated high aspect ratio structures on top of an AFM cantilever. Nanofabrication on non-flat surfaces may find applications in the fields of (AFM) tip enhanced Raman spectroscopy for chemical analysis and lab-on-fiber technology.

  1. Mixing Characteristics of Coaxial Injectors at High Gas to Liquid Momentum Ratios

    Science.gov (United States)

    Strakey, P. A.; Talley, D. G.; Hutt, J. J.

    1999-01-01

    A study of the spray of a swirl coaxial gas-liquid injector operating at high gas to liquid momentum ratios is reported. Mixing and droplet size characteristics of the swirl injector are also compared to a shear coaxial injector, currently being used in the Space Shuttle Main Engine fuel preburner. The injectors were tested at elevated chamber pressures using water as a LOX simulant and nitrogen and helium as gaseous hydrogen simulants. The elevated chamber pressure allowed for matching of several of the preburner injector conditions including; gas to liquid momentum ratio, density ratio and Mach number. Diagnostic techniques used to characterize the spray included; strobe back-light imaging, laser sheet spray imaging, mechanical patternation, and a phase Doppler interferometry. Results thus far indicate that the radial spreading of the swirl coaxial spray is much less than was reported in previous studies of swirl injectors operating at atmospheric back-pressure. The swirl coaxial spray does, however, exhibit a smaller overall droplet size which may be interpreted as an increase in local mixing.

  2. Modulating Cationic Ratios for High-Performance Transparent Solution-Processed Electronics.

    Science.gov (United States)

    John, Rohit Abraham; Nguyen, Anh Chien; Chen, Yuxin; Shukla, Sudhanshu; Chen, Shi; Mathews, Nripan

    2016-01-20

    Amorphous oxide semiconductors such as indium zinc tin oxide (IZTO) are considered favorites to serve as channel materials for thin film transistors (TFTs) because they combine high charge carrier mobility with high optical transmittance, allowing for the development of transparent electronics. Although the influence of relative cationic concentrations in determining the electronic properties have been studied in sputtered and PLD films, the development of printed transparent electronics hinges on such dependencies being explored for solution-processed systems. Here, we study solution-processed indium zinc tin oxide thin film transistors (TFTs) to investigate variation in their electrical properties with change in cationic composition. Charge transport mobility ranging from 0.3 to 20.3 cm(2)/(V s), subthreshold swing ranging from 1.2 to 8.4 V/dec, threshold voltage ranging from -50 to 5 V, and drain current on-off ratio ranging from 3 to 6 orders of magnitude were obtained by examining different compositions of the semiconductor films. Mobility was found to increase with the incorporation of large cations such as In(3+) and Sn(4+) due to the vast s-orbital overlap they can achieve when compared to the intercationic distance. Subthreshold swing decreased with an increase in Zn(2+) concentration due to reduced interfacial state formation between the semiconductor and dielectric. The optimized transistor obtained at a compositional ratio of In/Zn/Sn = 1:1:1, exhibited a high field-effect mobility of 8.62 cm(2)/(V s), subthreshold swing of 1.75 V/dec, and current on-off ratio of 10(6). Such impressive performances reaffirm the promise of amorphous metal oxide semiconductors for printed electronics.

  3. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles

    Science.gov (United States)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Bhutiani, P. K.; Vogt, P. G.

    1984-01-01

    The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts.

  4. Characterization of the optical parameters of high aspect ratio polymer micro-optical components

    Science.gov (United States)

    Krajewski, Rafal; Van Erps, Jurgen; Wissmann, Markus; Kujawinska, Malgorzata; Parriaux, Olivier; Tonchev, S.; Mohr, Jurgen; Thienpont, Hugo

    2008-04-01

    Over the last decades the significant grow of interest of photonics devices is observed in various fields of applications. Due to the market demands, the current research studies are focused on the technologies providing miniaturized, reliable low-cost micro-optical systems, particularly the ones featuring the fabrication of high aspect ratio structures. A high potential of these technologies comes from the fact that fabrication process is not limited to single optical components, but entire systems integrating sets of elements could be fabricated. This could in turn result in a significant saving on the assembly and packaging costs. We present a brief overview of the most common high aspect ratio fabrication technologies for micro-optical components followed by some characterization studies of these techniques. The sidewall quality and internal homogeneity will be considered as the most crucial parameters, having an impact on the wavefront propagation in the fabricated components. We show the characterization procedure and measurement results for components prototyped with Deep Proton Writing and glass micromachining technology replicated with Hot Embossing and Elastomeric Mould Vacuum Casting technology. We discuss the pros and cons for using these technologies for the production of miniaturized interferometers blocks. In this paper we present the status of our research on the new technology chain and we show the concept of microinterferometers to be fabricated within presented technology chain.

  5. High On/Off Conductance Switching Ratio via H-Tautomerization in Quinone.

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2015-09-01

    Through first-principles electron transport simulations using the nonequilibrium Green's function formalism together with density functional theory, we show that, upon H-tautomerization, a simple derivative of quinone can act as a molecular switch with high ON/OFF ratio, up to 70 at low bias voltage. This switching behavior is explained by the quantum interference effect, where the positional change of hydrogen atoms causes the energies of the transmission channels to overlap. Our results suggest that this molecule could have potential applications as an effective switching device.

  6. Isotopic Abundances and Ratios in Arsenic Irradiated by High-Energy Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hall, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-06-07

    This document provides derivations of the 73As, 74As and 75As isotopic abundances and ratios in an arsenic sample irradiated by high-energy (14 MeV) neutrons for 0 ≤ t ≤ T, where T is short compared to the natural decay times of the reaction products (t1/2 (73As) ~ 80.3 d, t1/2 (74As) ~ 17.8 d). The document also outlines the historic approach used to analyze arsenic data from experiments.

  7. High voltage conversion ratio, switched C & L cells, step-down DC-DC converter

    DEFF Research Database (Denmark)

    Pelan, Ovidiu; Muntean, Nicolae; Cornea, Octavian;

    2013-01-01

    The paper presents a high voltage conversion ratio DC-DC step-down topology obtained from a classical buck converter associated with an input switched-capacitor cell and an output switched-inductor cell. Analytical descriptions, the voltage and current limits of the main components are synthesized...... in a comparative form, related to the classical buck structure, in order to emphasis the advantages of the proposed converter. Digital simulations and experimental results obtained with a built prototype are compared. From the first evaluation, the proposed converter is expected to be effectively used at input...

  8. Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.

    Science.gov (United States)

    Wang, Xiaolei; Jiang, Houqiang; Chen, Junxue; Wang, Pei; Lu, Yonghua; Ming, Hai

    2011-09-26

    In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.

  9. High sensitivity to mass-ratio variation in deep molecular potentials

    CERN Document Server

    Hanneke, D; Lane, D A

    2016-01-01

    Molecular vibrational transitions are prime candidates for model-independent searches for variation of the proton-to-electron mass ratio. Searches for present-day variation achieve highest sensitivity with deep molecular potentials. We identify several high-sensitivity transitions in the deeply bound ${\\rm O}_2^+$ molecular ion. These transitions are electric-dipole forbidden and thus have narrow linewidths. The most sensitive transitions take advantage of an accidental degeneracy between vibrational states in different electronic potentials. We suggest experimentally feasible routes to a measurement with uncertainty exceeding current limits on present-day variation in $m_p/m_e$.

  10. High sensitivity to variation in the proton-to-electron mass ratio in O2+

    Science.gov (United States)

    Hanneke, D.; Carollo, R. A.; Lane, D. A.

    2016-11-01

    Molecular vibrational transitions are prime candidates for model-independent searches for variation of the proton-to-electron mass ratio. Searches for present-day variation achieve the highest sensitivity with deep molecular potentials. We identify several high-sensitivity transitions in the deeply bound O2+ molecular ion. These transitions are electric-dipole forbidden and have narrow linewidths. The most sensitive transitions take advantage of an accidental degeneracy between vibrational states in different electronic potentials. We suggest experimentally feasible routes to a measurement with uncertainty below current limits on present-day variation in mp/me .

  11. MEMS microphone innovations towards high signal to noise ratios (Conference Presentation) (Plenary Presentation)

    Science.gov (United States)

    Dehé, Alfons

    2017-06-01

    After decades of research and more than ten years of successful production in very high volumes Silicon MEMS microphones are mature and unbeatable in form factor and robustness. Audio applications such as video, noise cancellation and speech recognition are key differentiators in smart phones. Microphones with low self-noise enable those functions. Backplate-free microphones enter the signal to noise ratios above 70dB(A). This talk will describe state of the art MEMS technology of Infineon Technologies. An outlook on future technologies such as the comb sensor microphone will be given.

  12. High speed forging of solid powder discs of large slenderness ratio

    Indian Academy of Sciences (India)

    R K Ranjan; S Kumar

    2004-10-01

    The paper reports an investigation into the forging of a solid powder circular disc with large slenderness ratio (L/D) between two flat dies at high speed. The deformation pattern during the operation is influenced by many factors, which interact with one another in a complex manner. The decisive factors are the interfacial conditions, initial relative density of the preform and the geometry of the preform. An attempt has been made to determine the die pressures developed during such forging, using an upper bound approach. The results so obtained are presented graphically and discussed critically to illustrate the interaction of various process parameters involved.

  13. Relationship between functional hamstring: quadriceps ratios and running economy in highly trained and recreational female runners.

    Science.gov (United States)

    Sundby, Oyvind H; Gorelick, Mark L S

    2014-08-01

    The purpose of this study was to investigate the relationship between running economy (RE), functional hamstring:quadriceps peak torque ratios (f-H:Q), and flexibility among female runners. Seven highly trained (HT) female runners (age: 25.7 ± 4.7 years, VO2peak of 62.0 ± 4.8 ml·kg-1·min-1) and 11 recreational female runners (age of 28.8 ± 5.6 years, VO2peak of 49.2 ± 4.6 ml·kg-1·min-1) were measured for maximal aerobic power (VO2peak), RE, heart rate, respiratory exchange ratio, f-H:Q (Hecc:Qcon and Hcon:Qecc), and sit-and-reach hamstring/trunk flexibility. On 2 separate days, RE was measured on a treadmill at 1% grade at 2 velocities (160.9 and 201.2 m·min-1) for 6 minutes each, and isokinetic knee strength was measured at 3 angular velocities (60, 120, and 180°·s-1) for both concentric and eccentric muscle actions. The unpaired t-tests showed a consistent trend toward higher f-H:Q ratios at all angular velocities among the HT runners. Highly trained runners had significantly higher Hecc:Qcon at 120°·s-1 (p ≤ 0.05) and 180°·s-1 (p ≤ 0.05). Whole group correlations demonstrated a significant correlation between Hcon:Qecc at 180°·s-1 and RE (ml·kg-1·km-1) at 201.2 m·min-1 (R = -0.48, p ≤ 0.05). No significant relationships were found between flexibility, or hamstring and quadriceps peak torque (N·m) and RE (p > 0.05). This cross-sectional analysis suggests that higher f-H:Q torque ratios, and not muscle strength per se, are associated with a lower metabolic cost of running. Therefore, runners should consider implementing hamstring exercises to improve their f-H:Q ratios.

  14. Effects of single moor baths on physiological stress response and psychological state: a pilot study

    Science.gov (United States)

    Stier-Jarmer, M.; Frisch, D.; Oberhauser, C.; Immich, G.; Kirschneck, M.; Schuh, A.

    2017-06-01

    Moor mud applications in the form of packs and baths are widely used therapeutically as part of balneotherapy. They are commonly given as therapy for musculoskeletal disorders, with their thermo-physical effects being furthest studied. Moor baths are one of the key therapeutic elements in our recently developed and evaluated 3-week prevention program for subjects with high stress level and increased risk of developing a burnout syndrome. An embedded pilot study add-on to this core project was carried out to assess the relaxing effect of a single moor bath. During the prevention program, 78 participants received a total of seven moor applications, each consisting of a moor bath (42 °C, 20 min, given between 02:30 and 05:20 p.m.) followed by resting period (20 min). Before and after the first moor application in week 1, and the penultimate moor application in week 3, salivary cortisol was collected, blood pressure and heart rate were measured, and mood state (Multidimensional Mood State Questionnaire) was assessed. A Friedman test of differences among repeated measures was conducted. Post hoc analyses were performed using the Wilcoxon signed-rank test. A significant decrease in salivary cortisol concentration was seen between pre- and post-moor bath in week 1 (Z = -3.355, p = 0.0008). A non-significant decrease was seen between pre- and post-moor bath in week 3. Mood state improved significantly after both moor baths. This pilot study has provided initial evidence on the stress-relieving effects of single moor baths, which can be a sensible and recommendable therapeutic element of multimodal stress-reducing prevention programs. The full potential of moor baths still needs to be validated. A randomized controlled trial should be conducted comparing this balneo-therapeutic approach against other types of stress reduction interventions.

  15. Chemistry in isolation: High CCH/HCO+ line ratio in the AMIGA galaxy CIG 638

    Science.gov (United States)

    Martín, S.; Verdes-Montenegro, L.; Aladro, R.; Espada, D.; Argudo-Fernández, M.; Kramer, C.; Scott, T. C.

    2014-03-01

    Context. Multi-molecule observations towards an increasing variety of galaxies have been showing that the relative molecular abundances are affected by the type of activity. However, these studies are biased towards bright active galaxies, which are typically in interaction. Aims: We study the molecular composition of one of the most isolated galaxies in the local Universe where the physical and chemical properties of their molecular clouds have been determined by intrinsic mechanisms. Methods: We present 3 mm broad band observations of the galaxy CIG 638, extracted from the AMIGA sample of isolated galaxies. The emission of the J = 1-0 transitions of CCH, HCN, HCO+, and HNC are detected. Integrated intensity ratios between these line are compared with similar observations from the literature towards active galaxies including starburst galaxies (SB), active galactic nuclei, luminous infrared galaxies (LIRG), and GMCs in M 33. Results: A significantly high ratio of CCH with respect to HCN, HCO+, and HNC is found towards CIG 638 when compared with all other galaxies where these species have been detected. This points to either an overabundance of CCH or to a relative lack of dense molecular gas as supported by the low HCN/CO ratio, or both. Conclusions: The data suggest that the CIG 638 is naturally a less perturbed galaxy where a lower fraction of dense molecular gas, as well as a more even distribution could explain the measured ratios. In this scenario the dense gas tracers would be naturally dimmer, while the UV enhanced CCH, would be overproduced in a less shielded medium. Reduced IRAM data (FITS file) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/L6

  16. Simulating Bosonic Baths with Error Bars

    Science.gov (United States)

    Woods, M. P.; Cramer, M.; Plenio, M. B.

    2015-09-01

    We derive rigorous truncation-error bounds for the spin-boson model and its generalizations to arbitrary quantum systems interacting with bosonic baths. For the numerical simulation of such baths, the truncation of both the number of modes and the local Hilbert-space dimensions is necessary. We derive superexponential Lieb-Robinson-type bounds on the error when restricting the bath to finitely many modes and show how the error introduced by truncating the local Hilbert spaces may be efficiently monitored numerically. In this way we give error bounds for approximating the infinite system by a finite-dimensional one. As a consequence, numerical simulations such as the time-evolving density with orthogonal polynomials algorithm (TEDOPA) now allow for the fully certified treatment of the system-environment interaction.

  17. Chlorhexidine: Patient Bathing and Infection Prevention.

    Science.gov (United States)

    Abbas, Salma; Sastry, Sangeeta

    2016-08-01

    Healthcare-associated infections (HAIs) are an important cause of morbidity and mortality in the USA. They are associated with a substantial increase in health care costs each year. Fortunately, many HAIs are preventable, and their eradication is a national priority. Chlorhexidine (CHG) bathing has been used as an infection prevention measure, either alone or bundled with other interventions, with mostly beneficial results. The recent surge in its use as an agent of choice for skin antisepsis has lead to concerns over emerging resistance among microorganisms. Moreover, compliance with CHG-bathing protocols is not routinely monitored. Policies developed to determine the best infection prevention practice must consider that a "one-size-fits-all" strategy may lead to the selection of CHG-tolerant microorganisms, thereby emphasizing the need for more robust guidelines and additional studies on the role of chlorhexidine bathing for the prevention of HAIs.

  18. Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics

    Science.gov (United States)

    Bernasconi, R.; Molazemhosseini, A.; Cervati, M.; Armini, S.; Magagnin, L.

    2016-10-01

    All-wet electroless metallization of through-silicon vias (TSVs) with a width of 5 μm and a 1:10 aspect ratio was carried out. Immersion in a n-(2-aminoethyl) 3-aminopropyl-trimethoxysilane (AEAPTMS) self-assembled monolayer (SAM) was used to enhance the adhesion between the metal film and substrate. Contact angle variation and atomic force microscopy were used to verify the formation of a SAM layer. A PdCl2 solution was later used to activate the silanized substrates, exploiting the affinity of the -NH3 functional group of AEAPTMS to palladium. A nickel-phosphorus-boron electroless bath was employed to deposit the first barrier layer onto silicon. The NiPB growth rate was evaluated on flat silicon wafers, while the structure of the coating obtained was investigated via glow discharge optical emission spectroscopy. Cross-sectional scanning electron microscope observations were carried out on metallized TSVs to characterize the NiPB seed, the Cu seed layer deposited with a second electroless step, and the Cu superfilling obtained with a commercial solution. Complete filling of TSV was achieved.

  19. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    CERN Document Server

    Bernhard, E; Daddi, E; Ciesla, L; Schreiber, C

    2016-01-01

    We investigate the star-forming properties of 1620 X-ray selected AGN host galaxies as a function of their specific X-ray luminosity (i.e., X-ray luminosity per unit host stellar mass) -- a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star-formation at high Eddington ratios, which may hint toward "AGN feedback" effects. Star-formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning $0.01 \\lesssim L_{\\rm X}/M_{\\ast} \\lesssim 100~L_{\\odot} ~M_{\\odot}^{-1}$). After normalising for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This sugges...

  20. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures.

    Science.gov (United States)

    Peng, Ping; Shi, Tielin; Liao, Guanglan; Tang, Zirong

    2010-11-01

    In this paper, a new combined method of sub-micron high aspect ratio structure fabrication is developed which can be used for production of nano imprint template. The process includes atomic force microscope (AFM) scratch nano-machining and reactive ion etching (RIE) fabrication. First, 40 nm aluminum film was deposited on the silicon substrate by magnetron sputtering, and then sub-micron grooves were fabricated on the aluminum film by nano scratch using AFM diamond tip. As aluminum film is a good mask for etching silicon, high aspect ratio structures were finally fabricated by RIE process. The fabricated structures were studied by SEM, which shows that the grooves are about 400 nm in width and 5 microm in depth. To obtain sub-micron scale groove structures on the aluminum film, experiments of nanomachining on aluminum films under various machining conditions were conducted. The depths of the grooves fabricated using different scratch loads were also studied by the AFM. The result shows that the material properties of the film/substrate are elastic-plastic following nearly a bilinear law with isotropic strain hardening. Combined AFM nanomachining and RIE process provides a relative lower cost nano fabrication technique than traditional e-beam lithography, and it has a good prospect in nano imprint template fabrication.

  1. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  2. Planarization of High Aspect Ratio P-I-N Diode Pillar Arrays for Blanket Electrical Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Voss, L F; Shao, Q; Reinhardt, C E; Graff, R T; Conway, A M; Nikolic, R J; Deo, N; Cheung, C L

    2009-03-05

    Two planarization techniques for high aspect ratio three dimensional pillar structured P-I-N diodes have been developed in order to enable a continuous coating of metal on the top of the structures. The first technique allows for coating of structures with topography through the use of a planarizing photoresist followed by RIE etch back to expose the tops of the pillar structure. The second technique also utilizes photoresist, but instead allows for planarization of a structure in which the pillars are filled and coated with a conformal coating by matching the etch rate of the photoresist to the underlying layers. These techniques enable deposition using either sputtering or electron beam evaporation of metal films to allow for electrical contact to the tops of the underlying pillar structure. These processes have potential applications for many devices comprised of 3-D high aspect ratio structures. Two separate processes have been developed in order to ensure a uniform surface for deposition of an electrode on the {sup 10}Boron filled P-I-N pillar structured diodes. Each uses S1518 photoresist in order to achieve a relatively uniform surface despite the non-uniformity of the underlying detector. Both processes allow for metallization of the final structure and provide good electrical continuity over a 3D pillar structure.

  3. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    Science.gov (United States)

    Guerra, Carlos

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes. PMID:28144565

  4. A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor.

    Science.gov (United States)

    De Clippeleir, Haydée; Vlaeminck, Siegfried E; Carballa, Marta; Verstraete, Willy

    2009-11-01

    Sequencing batch reactors (SBRs) have several advantages, such as a lower footprint and a higher flexibility, compared to biofilm based reactors, such as rotating biological contactors. However, the critical parameters for a fast start-up of the nitrogen removal by oxygen-limited autotrophic nitrification/denitrification (OLAND) in a SBR are not available. In this study, a low critical minimum settling velocity (0.7 m h(-1)) and a low volumetric exchange ratio (25%) were found to be essential to ensure a fast start-up, in contrast to a high critical minimum settling velocity (2 m h(-1)) and a high volumetric exchange ratio (40%) which yielded no successful start-up. To prevent nitrite accumulation, two effective actions were found to restore the microbial activity balance between aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB). A daily biomass washout at a critical minimum settling velocity of 5 m h(-1) removed small aggregates rich in AerAOB activity, and the inclusion of an anoxic phase enhanced the AnAOB to convert the excess nitrite. This study showed that stable physicochemical conditions were needed to obtain a competitive nitrogen removal rate of 1.1 g N L(-1) d(-1).

  5. High fat diet prevents over-crowding induced decrease of sex ratio in mice.

    Directory of Open Access Journals (Sweden)

    Madhukar Shivajirao Dama

    Full Text Available Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. In the present study, we tested the effect of housing mice under crowded condition on the sex ratio and whether the fat content of the diet has any influence on the outcome of pregnancies. Three-week-old mice were placed on the control diet (NFD for 3 weeks. Thereafter the mice were allotted randomly to two groups of 7 cages each with 4, 6, 8, 10, 12, 14, and 16 mice in every cage to create increasing crowding gradient and fed either NFD or high fat diet (HFD. After 4 weeks, dams were bred and outcomes of pregnancy were analyzed. The average dam body weight (DBW at conception, litter size (LS and SR were significantly higher in HFD fed dams. Further, male biased litters declined with increasing crowding in NFD group but not in HFD. The LS and SR in NFD declined significantly with increasing crowding, whereas only LS was reduced in HFD group. We conclude that female mice housed under overcrowding conditions shift offspring SR in favor of daughters in consistent with the TW hypothesis and high fat diet reduces this influence of overcrowding.

  6. The Psychoactive Designer Drug and Bath Salt Constituent MDPV Causes Widespread Disruption of Brain Functional Connectivity

    OpenAIRE

    Colon-Perez, Luis M.; Tran, Kelvin; Thompson, Khalil; Pace, Michael C.; Blum, Kenneth; Goldberger, Bruce A.; Gold, Mark S.; Bruijnzeel, Adriaan W.; Setlow, Barry; Febo, Marcelo

    2016-01-01

    The abuse of ‘bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on br...

  7. The Capabilities of Electrodischarge Microdrilling of High Aspect Ratio Holes in Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Skoczypiec Sebastian

    2015-09-01

    Full Text Available In the first part of the article the review of ceramic materials drilling possibilities was presented. Among the described methods special attention is paid to electrodischarge drilling. This process have especially been predicted for machining difficult-to-cut electrically conductive materials. The second part consist of the results analysis of electrodischarge microdrilling of siliconized silicon carbide. The experiment involves the impact of current amplitude, discharge voltage and pulse time on the hole depth, side gap, linear tool wear and mean drilling speed. The results shows that electrodischarge drilling is a good alternative when machining inhomogeneous ceramic materials and gives possibility to drill high aspect ratio holes with relatively high efficiency (the drilling speed >2 mm/min.

  8. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    Science.gov (United States)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 lesssim L_X/M_{ast } lesssim 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  9. Rayleigh wave inversion using heat-bath simulated annealing algorithm

    Science.gov (United States)

    Lu, Yongxu; Peng, Suping; Du, Wenfeng; Zhang, Xiaoyang; Ma, Zhenyuan; Lin, Peng

    2016-11-01

    The dispersion of Rayleigh waves can be used to obtain near-surface shear (S)-wave velocity profiles. This is performed mainly by inversion of the phase velocity dispersion curves, which has been proven to be a highly nonlinear and multimodal problem, and it is unsuitable to use local search methods (LSMs) as the inversion algorithm. In this study, a new strategy is proposed based on a variant of simulated annealing (SA) algorithm. SA, which simulates the annealing procedure of crystalline solids in nature, is one of the global search methods (GSMs). There are many variants of SA, most of which contain two steps: the perturbation of model and the Metropolis-criterion-based acceptance of the new model. In this paper we propose a one-step SA variant known as heat-bath SA. To test the performance of the heat-bath SA, two models are created. Both noise-free and noisy synthetic data are generated. Levenberg-Marquardt (LM) algorithm and a variant of SA, known as the fast simulated annealing (FSA) algorithm, are also adopted for comparison. The inverted results of the synthetic data show that the heat-bath SA algorithm is a reasonable choice for Rayleigh wave dispersion curve inversion. Finally, a real-world inversion example from a coal mine in northwestern China is shown, which proves that the scheme we propose is applicable.

  10. Etching high aspect ratio structures in silicon using sulfur hexafluoride/oxygen plasma

    Science.gov (United States)

    Belen, Rodolfo Jun

    Plasma etching of high aspect ratio structures in Si is an important step in manufacturing capacitors for memory devices and integrated components of microelectromechanical systems. In these applications, the goal is to etch deep features anisotropically with high etch rates and selectivities to the mask while maintaining good uniformity and reproducibility. This study investigates the etching of deep sub-half-micron diameter holes in Si using SF6/O 2 plasma. Etching experiments and plasma diagnostics are combined with modeling to gain a fundamental understanding of the etching and passivation kinetics and mechanism necessary in developing and scaling-up processes. Etching experiments are conducted in an inductively coupled plasma reactor with a planar coil. The substrate electrode is biased with a separate rf power supply to achieve independent control of the ion flux and energy. The effects of pressure, rf-bias and SF6-to-O2 ratio in the feed gas on the etch rate, selectivity and feature profile shape are studied using Si wafers patterned with 0.35 mum-diameter holes in a SiO2 mask. Visualization of profiles using scanning electron microscopy is complemented by plasma diagnostics such as mass spectrometry and actinometry. Simultaneous with experiments, reactor-scale and feature-scale models are developed to quantify the etching and passivation kinetics and identify the important kinetic parameters that affect feature profile evolution. Information from plasma diagnostics and previously published data are used to reduce the degrees of freedom in the model. Experiments are designed to directly measure kinetic parameters such as the chemical etch rate constant and the incidence angle dependence of the etching yield. Experimentally inaccessible parameters such as the sticking coefficients, etching yield and ion scattering parameters are determined through feature profile simulation. The key internal plasma parameters that affect profile evolution are the F-to-O and F

  11. Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases

    Science.gov (United States)

    Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla

    2016-04-01

    An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B., Henne, S. & Emmenegger, L. Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: Analytical improvements and representative re-sults. Atmospheric Measurement Techniques 6, 1659-1671 (2013). 2 Tuzson, B. et al. Continuous isotopic composition measurements of tropospheric CO2 at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events. Atmospheric Chemistry and Physics

  12. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Pu, E-mail: Vicky-sg1015@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Lim, Sze-Ter; Han, Gu-Chang, E-mail: HAN-Guchang@dsi.a-star.edu.sg [Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Teo, Kie-Leong, E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore (Singapore)

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  13. Deposition of a-C:H films on inner surface of high-aspect-ratio microchannel

    Science.gov (United States)

    Hirata, Yuki; Choi, Junho

    2016-08-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared on inner surface of 100-μm-width microchannel by using a bipolar-type plasma based ion implantation and deposition. The microchannel was fabricated using a silicon plate, and two kinds of microchannels were prepared, namely, with a bottom layer (open at one end) and without a bottom layer (open at both ends). The distribution of thickness and hardness of films was evaluated by SEM and nanoindentation measurements, respectively, and the microstructures of films were evaluated by Raman spectroscopy. Furthermore, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision and Direct Simulation Monte Carlo to investigate the coating mechanism for the microchannel. It was found that the film thickness decreased as the depth of the coating position increased in the microchannels where it is open at one end. The uniformity of the film thickness improved by increasing the negative pulse voltage because ions can arrive at the deeper part of the microchannel. In addition, the hardness increased as the depth of the coating position increased. This is because the radicals do not arrive at the deeper part of the microchannel, and the incident proportion of ions relative to that of radicals increases, resulting in a high hardness due to the amorphization of the film. The opening area of the microchannel where the aspect ratio is very small, radicals dominate the incident flux, whereas ions prevail over radicals above an aspect ratio of about 7.5. On the other hand, in the microchannels that are open at both ends, there were great improvements in uniformity of the film thickness, hardness, and the film structure. The a-C:H films were successfully deposited on the entire inner surface of a microchannel with an aspect ratio of 20.

  14. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.

    Science.gov (United States)

    Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2012-08-31

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  15. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    Science.gov (United States)

    Ulmer, S.; Smorra, C.; Mooser, A.; Franke, K.; Nagahama, H.; Schneider, G.; Higuchi, T.; van Gorp, S.; Blaum, K.; Matsuda, Y.; Quint, W.; Walz, J.; Yamazaki, Y.

    2015-08-01

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H-) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton to that for the proton and obtain . The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of <720 parts per trillion. By following the arguments of ref. 11, our result can be interpreted as a stringent test of the weak equivalence principle of general relativity using baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of < 8.7 × 10-7.

  16. Single-molecule diodes with high rectification ratios through environmental control.

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Adak, Olgun; Dell, Emma J; Liu, Zhen-Fei; Taylor, Jeffrey C; Neaton, Jeffrey B; Campos, Luis M; Venkataraman, Latha

    2015-06-01

    Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones, molecule-electrode linkers or electrode materials. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction's electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.

  17. High Neutrophil-to-Lymphocyte Ratio Predicts Cardiovascular Mortality in Chronic Hemodialysis Patients

    Science.gov (United States)

    Xiong, Ruifang

    2017-01-01

    The neutrophil-to-lymphocyte ratio (NLR) is a novel simple biomarker of inflammation. It has emerged as a predictor of poor prognosis in cancer and cardiovascular disease in general population. But little was known of its prognostic value in chronic hemodialysis (HD) patients. Here we investigated the association between NLR and cardiovascular risk markers, including increased pulse pressure (PP), left ventricular mass index (LVMI) and intima-media thickness (IMT), and mortality in HD patients. Two hundred and sixty-eight HD patients were enrolled in this study and were followed for 36 months. The primary end point was all-cause mortality and cardiovascular mortality. Multivariable Cox regression was used to calculate the adjusted hazard ratios for NLR on all-cause and cardiovascular survival. We pinpointed that higher NLR in HD patients was a predictor of increased PP, LVMI, and IMT; HD patients with higher NLR had a lower survival at the end of the study; furthermore, high NLR was an independent predictor of all-cause and cardiovascular mortality when adjusted for other risk factors. In conclusion, higher NLR in HD patients was associated with cardiovascular risk factors and mortality.

  18. Evaluation of emerging factors blocking filtration of high-adjunct-ratio wort.

    Science.gov (United States)

    Ma, Ting; Zhu, Linjiang; Zheng, Feiyun; Li, Yongxian; Li, Qi

    2014-08-20

    Corn starch has become a common adjunct for beer brewing in Chinese breweries. However, with increasing ratio of corn starch, problems like poor wort filtration performance arise, which will decrease production capacity of breweries. To solve this problem, factors affecting wort filtration were evaluated, such as the size of corn starch particle, special yellow floats formed during liquefaction of corn starch, and residual substance after liquefaction. The effects of different enzyme preparations including β-amylase and β-glucanase on filtration rate were also evaluated. The results indicate that the emerging yellow floats do not severely block filtration, while the fine and uniform-shape corn starch particle and its incompletely hydrolyzed residue after liquefaction are responsible for filtration blocking. Application of β-amylase preparation increased the filtration rate of liquefied corn starch. This study is useful for our insight into the filtration blocking problem arising in the process of high-adjunct-ratio beer brewing and also provides a feasible solution using enzyme preparations.

  19. Etching of Silicon in HBr Plasmas for High Aspect Ratio Features

    Science.gov (United States)

    Hwang, Helen H.; Meyyappan, M.; Mathad, G. S.; Ranade, R.

    2002-01-01

    Etching in semiconductor processing typically involves using halides because of the relatively fast rates. Bromine containing plasmas can generate high aspect ratio trenches, desirable for DRAM and MEMS applications, with relatively straight sidewalk We present scanning electron microscope images for silicon-etched trenches in a HBr plasma. Using a feature profile simulation, we show that the removal yield parameter, or number of neutrals removed per incident ion due to all processes (sputtering, spontaneous desorption, etc.), dictates the profile shape. We find that the profile becomes pinched off when the removal yield is a constant, with a maximum aspect ratio (AR) of about 5 to 1 (depth to height). When the removal yield decreases with increasing ion angle, the etch rate increases at the comers and the trench bottom broadens. The profiles have ARs of over 9:1 for yields that vary with ion angle. To match the experimentally observed etched time of 250 s for an AR of 9:1 with a trench width of 0.135 microns, we find that the neutral flux must be 3.336 x 10(exp 17)sq cm/s.

  20. Acropora interbranch skeleton Sr/Ca ratios: Evaluation of a potential new high-resolution paleothermometer

    Science.gov (United States)

    Sadler, James; Nguyen, Ai D.; Leonard, Nicole D.; Webb, Gregory E.; Nothdurft, Luke D.

    2016-04-01

    The majority of coral geochemistry-based paleoclimate reconstructions in the Indo-Pacific are conducted on selectively cored colonies of massive Porites. This restriction to a single genus may make it difficult to amass the required paleoclimate data for studies that require deep reef coring techniques. Acropora, however, is a highly abundant coral genus in both modern and fossil reef systems and displays potential as a novel climate archive. Here we present a calibration study for Sr/Ca ratios recovered from interbranch skeleton in corymbose Acropora colonies from Heron Reef, southern Great Barrier Reef. Significant intercolony differences in absolute Sr/Ca ratios were normalized by producing anomaly plots of both coral geochemistry and instrumental water temperature records. Weighted linear regression of these anomalies from the lagoon and fore-reef slope provide a sensitivity of -0.05 mmol/mol °C-1, with a correlation coefficient (r2 = 0.65) comparable to those of genera currently used in paleoclimate reconstructions. Reconstructions of lagoon and reef slope mean seasonality in water temperature accurately identify the greater seasonal amplitude observed in the lagoon of Heron Reef. A longer calibration period is, however, required for reliable reconstructions of annual mean water temperatures.

  1. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N. [Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.

  2. A lattice Boltzmann method for axisymmetric multicomponent flows with high viscosity ratio

    Science.gov (United States)

    Liu, Haihu; Wu, Lei; Ba, Yan; Xi, Guang; Zhang, Yonghao

    2016-12-01

    A color-gradient lattice Boltzmann method (LBM) is proposed to simulate axisymmetric multicomponent flows. This method uses a collision operator that is a combination of three separate parts, namely single-component collision operator, perturbation operator, and recoloring operator. A source term is added into the single-component collision operator such that in each single-component region the axisymmetric continuity and momentum equations can be exactly recovered. The interfacial tension effect is realized by the perturbation operator, in which an interfacial force of axisymmetric form is derived using the concept of continuum surface force. A recoloring operator proposed by Latva-Kokko and Rothman is extended to the axisymmetric case for phase segregation and maintenance of the interface. To enhance the method's numerical stability for handling binary fluids with high viscosity ratio, a multiple-relaxation-time model is used for the collision operator. Several numerical examples, including static droplet test, oscillation of a viscous droplet, and breakup of a liquid thread, are presented to test the capability and accuracy of the proposed color-gradient LBM. It is found that the present method is able to accurately capture the phase interface and produce low spurious velocities. Also, the LBM results are all in good agreement with the analytical solutions and/or available experimental data for a very broad range of viscosity ratios.

  3. Lanthanide and actinide chemistry at high C/O ratios in the solar nebula

    Science.gov (United States)

    Lodders, Katharina; Fegley, Bruce, Jr.

    1993-01-01

    Chemical equilibrium calculations were performed to study the condensation chemistry of the REE and actinides under the highly reducing conditions which are necessary for the formation of the enstatite chondrites. Our calculations confirm that the REE and actinides condensed into oldhamite (CaS), the major REE and actinide host phase in enstatite chondrites, at a carbon-oxygen (C/O) ratio not less than 1 in an otherwise solar gas. Five basic types of REE abundance patterns, several of which are analogous to REE abundance patterns observed in the Ca, Al-rich inclusions in carbonaceous chondrites, are predicted to occur in meteoritic oldhamites. All of the reported REE patterns in oldhamites in enstatite chondrites can be interpreted in terms of our condensation calculations. The observed patterns fall into three of the five predicted categories. The reported Th and U enrichments and ratios in meteoritic oldhamites are also consistent with predictions of the condensation calculations. Pure REE sulfides are predicted to condense in the 10 exp -6 to 10 exp -9 bar range and may be found in enstatite chondrites if they formed in this pressure range.

  4. Shrink film patterning by craft cutter: complete plastic chips with high resolution/high-aspect ratio channel.

    Science.gov (United States)

    Taylor, Douglas; Dyer, David; Lew, Valerie; Khine, Michelle

    2010-09-21

    This paper presents a rapid, ultra-low-cost approach to fabricate microfluidic devices using a polyolefin shrink film and a digital craft cutter. The shrinking process (with a 95% reduction in area) results in relatively uniform and consistent microfluidic channels with smooth surfaces, vertical sidewalls, and high aspect ratio channels with lateral resolutions well beyond the tool used to cut them. The thermal bonding of the layers results in strongly bonded devices. Complex microfluidic designs are easily designed on the fly and protein assays are also readily integrated into the device. Full device characterization including channel consistency, optical properties, and bonding strength are assessed in this technical note.

  5. Gust response analysis and wind tunnel test for a high-aspect ratio wing

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2016-02-01

    Full Text Available A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisciplinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter boundary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quantitative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flexible wings.

  6. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  7. Study of stress ratio effect on titanium alloy fatigue under high-frequency loading

    Energy Technology Data Exchange (ETDEWEB)

    Voznyj, T.S.; Gurvich, Yu.V.; Kirillov, V.I.; Troyan, I.A. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-02-01

    Endurance of two titanium alloys, OT4 type ..cap alpha..-alloy and VT6 martensite class, (..cap alpha..+..beta..)-alloy was studied under symmetric and asymmetric tension-compression at 10 kHz frequency and room temperature using a magnetostriction resonance device. The tests were carried out in the air without water cooling usual in high-frequency tests, since a very low hysteresis dissipation of energy was observed under cyclic loading near the fatigue limit of these titanium alloys. Fatigue curves are obtained on the basis of 10/sup 9/ cycles. The ratio is found for the endurance limit based on 10/sup 7/ and 10/sup 8/ cycles to the ultimate strength under symmetric loading. An equation is given which satisfactorily describes limiting amplitude diagrams, and its coefficients are analyzed.

  8. Measurement and simulation of jet mass caused by a high-aspect ratio pertubation

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Paul A [Los Alamos National Laboratory; Cooley, James [Los Alamos National Laboratory; Kyrala, George [Los Alamos National Laboratory; Wilson, Doug [Los Alamos National Laboratory; Blue, Brent [LLNL/GA; Elliott, Jim [LLNL; Edwards, John [LLNL; Robey, Harry [LLNL; Spears, Brian [LLNL

    2009-01-01

    Inertial confinement fusion (ICF) capsule performance can be negatively impacted by the presence of hydrodynamic instabilities. To perform a gas fill on an ICF capsule current plans involve drilling a small hole and inserting a fill tube to inject the gas mixture into the capsule. This introduces a perturbation on the capsule, which can seed hydrodynamic instabilities. The small hole can cause jetting of the shell material into the gas, which might adversely affect the capsule performance. We have performed simulations and experiments to study the hydrodynamic evolution of jets from high-aspect ratio holes, such as the fill tube hole. Although simulations using cold materials over predict the amount of mass in the jet, when a reasonable amount of preheat (< 1 eV) is introduced, the simulations are in better agreement with the experiment.

  9. Measurement and simulation of jet mass caused by a high-aspect ratio hole perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Paul A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Wilson, D C [Los Alamos National Laboratory; Kyrala, George A [Los Alamos National Laboratory; Blue, Brent E [LLNL; Edwards, J [LLNL; Elliott, James B [LLNL; Robey, H F [LLNL; Spears, B [Los Alamos National Laboratory

    2009-01-01

    Inertial confinement fusion (ICF) capsule performance can be negatively impacted by the presence of hydrodynamic instabilities. To perform a gas fill on an ICF capsule, current plans involve drilling a small hole and inserting a fill tube to inject the gas mixture into the capsule. This introduces a perturbation on the capsule, which can seed hydrodynamic instabilities. The small hole can cause jetting of the shell material into the gas, which might adversely affect the capsule performance. We have performed simulations and experiments to study the hydrodynamic evolution of jets from high-aspect ratio holes, such as the fill tube hole. Although simulations using cold materials overpredict the amount of mass in the jet, when a reasonable amount of preheat (<1 eV) is introduced, the simulations are in better agreement with the experiment.

  10. Fabrication of High Aspect Ratio Micro-Penning-Malmberg Gold Plated Silicon Trap Arrays

    CERN Document Server

    Narimannezhad, Alireza; Weber, Marc H; Lynn, Kelvin G

    2013-01-01

    Acquiring a portable high density charged particles trap might consist of an array of micro-Penning-Malmberg traps (microtraps) with substantially lower end barriers potential than conventional Penning-Malmberg traps [1]. We report on the progress of the fabrication of these microtraps designed for antimatter storage such as positrons. The fabrication of large length to radius aspect ratio (1000:1) microtrap arrays involved advanced techniques including photolithography, deep reactive ion etching (DRIE) of silicon wafers to achieve through-vias, gold sputtering of the wafers on the surfaces and inside the vias, and thermal compression bonding of the wafers. This paper describes the encountered issues during fabrication and addresses geometry errors and asymmetries. In order to minimize the patch effects on the lifetime of the trapped positrons, the bonded stacks were gold electroplated to achieve a uniform gold surface. We show by simulation and analytical calculation that how positrons confinement time depen...

  11. The management of esotropia with high AC/A ratio (convergence excess).

    Science.gov (United States)

    Pratt-Johnson, J A; Tillson, G

    1985-01-01

    This paper reviews the long-term follow-up of esotropia with a high AC/A ratio defined as an increase of 20 delta or more of the esotropia at near compared with distance with the full optical correction of any refractive error in place. Ninety-nine patients were studied for an average follow-up of eight years. Eighty-six achieved fusion but only five achieved central fusion. Forty-five were treated with bifocals. No significant difference in the sensory results were recorded in those patients wearing bifocals compared with those who did not wear bifocals. No patient had miotic therapy for more than a few months. The suppression characteristic of this condition is reviewed.

  12. Complexation of DNA with ruthenium organometallic compounds: the high complexation ratio limit.

    Science.gov (United States)

    Despax, Stéphane; Jia, Fuchao; Pfeffer, Michel; Hébraud, Pascal

    2014-06-14

    Interactions between DNA and ruthenium organometallic compounds are studied by using visible light absorption and circular dichroism measurements. A titration technique allowing for the absolute determination of the advancement degree of the complexation, without any assumption about the number of complexation modes is developed. When DNA is in excess, complexation involves intercalation of one of the organometallic compound ligands between DNA base pairs. But, in the high complexation ratio limit, where organometallic compounds are in excess relative to the DNA base pairs, a new mode of interaction is observed, in which the organometallic compound interacts weakly with DNA. The weak interaction mode, moreover, develops when all the DNA intercalation sites are occupied. A regime is reached in which one DNA base pair is linked to more than one organometallic compound.

  13. Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio.

    Science.gov (United States)

    Cabello-Aguilar, Simon; Chaaya, Adib Abou; Bechelany, Mikhael; Pochat-Bohatier, Céline; Balanzat, Emmanuel; Janot, Jean-Marc; Miele, Philippe; Balme, Sébastien

    2014-11-14

    The development of nanometric Coulter counters for nanoparticle detection is an attractive and promising field of research. In this work, we have studied the influence of the nanopore surface state on charged polymer nanoparticle translocations. To make this, the translocation of carboxylate modified polystyrene microspheres (diameter 40, 70 and 100 nm) has been investigated through two kinds of high aspect ratio nanopores (negative and uncharged). The latter were tailored by a single track-etched and atomic layer deposition technique. It was shown that the mobility and the energy barrier are strongly dependent on nanopore surface charge. Typically if the latter exhibits negative surface charge, the microsphere mobility increases and the global energy barrier of entrance inside the nanopore decreases with its diameter, converse to the uncharged nanopore.

  14. Surface-diffusion-driven decay of high-aspect-ratio gratings: existence of morphologically related classes.

    Science.gov (United States)

    Madrid, Marcos A; Salvarezza, Roberto C; Castez, Marcos F

    2013-06-01

    We present numerical and theoretical results concerning the technologically important process of evolution of high-aspect-ratio profiles due to surface diffusion under thermal treatment. We show how a broad class of initial gratings adopt, after a short transient stage, a typical shape that can be accurately described as a curve whose curvature has only two single Fourier modes as a function of the arc-length parameter. Moreover, we introduce a set of evolution equations for the relevant parameters that accounts very accurately for both morphological and kinetic aspects of the transformation processes for these curves in a wide region in parameter space. Regarding the decay of rectangular gratings, our numerical results show the existence of geometrically related classes that asymptotically approach to the same trajectory in parameter space. Gratings belonging to the same class pass through the same sequence of morphologies before reaching the final equilibrium state.

  15. Design and Simulation of BTT Missile with High-Aspect-Ratio Wing Robust H∞ Autopilot

    Institute of Scientific and Technical Information of China (English)

    CUI Sheng-wang; LIU Li; MA Chun-yan

    2007-01-01

    For the strong coupling among the channels of bank-to-turn (BTT) missile with high-aspect-ratio wing,an autopilot is designed with a two loop control structure robust autopilot design methods.By the inner loop design,the question of pole-zero cancellation is solved,and the stabilization of structured uncertainty is achieved.Through the outer loop of H∞ controller design,the flying performance and robustness can be guaranteed.The nonlinear simulation results show that the autopilot designed has perfect time domain response,and can suppress bad influence of the inertial and kinematics couplings.It can make the missile fly stably in the large flying areas.The control is very effective.

  16. The profile likelihood ratio and the look elsewhere effect in high energy physics

    CERN Document Server

    Ranucci, Gioacchino

    2012-01-01

    The experimental issue of the search for new particles of unknown mass poses the challenge of exploring a wide interval to look for the usual signatures represented by excess of events above the background. A side effect of such a broad range quest is that the significance calculations valid for signals of known location are no more applicable when such an information is missing. This circumstance is commonly termed in high energy physics applications as the look elsewhere effect. How it concretely manifests in a specific problem of signal search depends upon the particular strategy adopted to unravel the sought-after signal from the underlying background. In this respect an increasingly popular method is the profile likelihood ratio, especially because of its asymptotic behavior dictated by one of the most famous statistic result, the Wilks' theorem. This work is centered on the description of the look elsewhere effect in the framework of the profile likelihood methodology, in particular proposing a conjectu...

  17. Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition

    Science.gov (United States)

    Ruoho, Mikko; Juntunen, Taneli; Tittonen, Ilkka

    2016-09-01

    We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate. The electrical and thermal properties of the structures are studied both in-plane and out-of-plane. They exhibit very low out-of-plane thermal conductivity down to 0.15 W m-1 K-1 while the in-plane sheet resistance of the films was found to be half that of the same film on glass substrate, allowing material-independent doubling of output power of any planar thin-film thermoelectric generator. The wall thickness of the fabricated nanotubes was varied within a range of up to 100 nm. The samples show polycrystalline nature with (002) preferred crystal orientation.

  18. The gastric/pancreatic amylase ratio predicts postoperative pancreatic fistula with high sensitivity and specificity.

    Science.gov (United States)

    Jin, Shuo; Shi, Xiao-Ju; Sun, Xiao-Dong; Zhang, Ping; Lv, Guo-Yue; Du, Xiao-Hong; Wang, Si-Yuan; Wang, Guang-Yi

    2015-01-01

    This article aims to identify risk factors for postoperative pancreatic fistula (POPF) and evaluate the gastric/pancreatic amylase ratio (GPAR) on postoperative day (POD) 3 as a POPF predictor in patients who undergo pancreaticoduodenectomy (PD).POPF significantly contributes to mortality and morbidity in patients who undergo PD. Previously identified predictors for POPF often have low predictive accuracy. Therefore, accurate POPF predictors are needed.In this prospective cohort study, we measured the clinical and biochemical factors of 61 patients who underwent PD and diagnosed POPF according to the definition of the International Study Group of Pancreatic Fistula. We analyzed the association between POPF and various factors, identified POPF risk factors, and evaluated the predictive power of the GPAR on POD3 and the levels of serum and ascites amylase.Of the 61 patients, 21 developed POPF. The color of the pancreatic drain fluid, POD1 serum, POD1 median output of pancreatic drain fluid volume, and GPAR were significantly associated with POPF. The color of the pancreatic drain fluid and high GPAR were independent risk factors. Although serum and ascites amylase did not predict POPF accurately, the cutoff value was 1.24, and GPAR predicted POPF with high sensitivity and specificity.This is the first report demonstrating that high GPAR on POD3 is a risk factor for POPF and showing that GPAR is a more accurate predictor of POPF than the previously reported amylase markers.

  19. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    Science.gov (United States)

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  20. FeII/MgII, [Fe/Mg] Ratios and High-z Quasars

    CERN Document Server

    Korista, K; Corbin, M R; Freudling, W; Korista, Kirk; Kodituwakku, Nalaka; Corbin, Michael; Freudling, Wolfram

    2003-01-01

    It has been suggested in the literature that the (Fe/alpha) abundance ratio may be used as a chronometer, due to a delay in this ratio reaching its solar value as predicted by galactic chemical evolution models. Using grids of photoionization models along a sequence of the (Fe/Mg) abundance ratio vs.\\ metallicity with time in a giant elliptical starburst scenario, we investigate the relationship between the (Fe/Mg) abundance ratio and the FeII/MgII emission line flux ratio under the assumption that these lines originate in photoionized clouds within the broad emission line regions of quasars.

  1. High fidelity replication of surface texture and geometric form of a high aspect ratio aerodynamic test component

    Science.gov (United States)

    Walton, Karl; Fleming, Leigh; Goodhand, Martin; Racasan, Radu; Zeng, Wenhan

    2016-06-01

    This paper details, assesses and validates a technique for the replication of a titanium wind tunnel test aerofoil in polyurethane resin. Existing resin replication techniques are adapted to overcome the technical difficulties associated with casting a high aspect ratio component. The technique is shown to have high replication fidelity over all important length-scales. The blade chord was accurate to 0.02%, and the maximum blade thickness was accurate to 2.5%. Important spatial and amplitude areal surface texture parameter were accurate to within 2%. Compared to an existing similar system using correlation areal parameters the current technique is shown to have lower fidelity and this difference is discussed. The current technique was developed for the measurement of boundary layer flow ‘laminar to turbulent’ transition for gas turbine compressor blade profiles and this application is illustrated.

  2. High ratio of triglycerides to hdl-cholesterol predicts extensive coronary disease

    Directory of Open Access Journals (Sweden)

    Protasio Lemos da Luz

    2008-01-01

    Full Text Available An abnormal ratio of triglycerides to HDL-cholesterol (TG/HDL-c indicates an atherogenic lipid profile and a risk for the development of coronary disease. OBJECTIVE: To investigate the association between lipid levels, specifically TG/HDL-c, and the extent of coronary disease. METHODS: High-risk patients (n = 374 submitted for coronary angiography had their lipid variables measured and coronary disease extent scored by the Friesinger index. RESULTS: The subjects consisted of 220 males and 154 females, age 57.2 ± 11.1 years, with total cholesterol of 210± 50.3 mg/dL, triglycerides of 173.8 ± 169.8 mg/dL, HDL-cholesterol (HDL-c of 40.1 ± 12.8 mg/dL, LDL-cholesterol (LDL-c of 137.3 ± 46.2 mg/dL, TG/HDL-c of 5.1 ± 5.3, and a Friesinger index of 6.6 ± 4.7. The relationship between the extent of coronary disease (dichotomized by a Friesenger index of 5 and lipid levels (normal vs. abnormal was statistically significant for the following: triglycerides, odds ratio of 2.02 (1.31-3.1; p = 0.0018; HDL-c, odds ratio of 2.21 (1.42-3.43; p = 0.0005; and TG/HDL-c, odds ratio of 2.01(1.30-3.09; p = 0.0018. However, the relationship was not significant between extent of coronary disease and total cholesterol [1.25 (0.82-1.91; p = 0.33] or LDL-c [1.47 (0.96-2.25; p = 0.0842]. The chi-square for linear trends for Friesinger > 4 and lipid quartiles was statistically significant for triglycerides (p = 0.0017, HDL-c (p = 0.0001, and TG/HDL-c (p = 0.0018, but not for total cholesterol (p = 0.393 or LDL-c (p = 0.0568. The multivariate analysis by logistic regression OR gave 1.3 ± 0.79 (p = .0001 for TG/HDL-c, 0.779 ± 0.074 (p = .0001 for HDL-c, and 1.234 ± 0.097 (p = 0.03 for LDL. Analysis of receiver operating characteristic curves showed that only TG/HDL-c and HDL-c were useful for detecting extensive coronary disease, with the former more strongly associated with disease. CONCLUSIONS: Although some lipid variables were associated with the extent of

  3. Sharp-Tip Silver Nanowires Mounted on Cantilevers for High-Aspect-Ratio High-Resolution Imaging.

    Science.gov (United States)

    Ma, Xuezhi; Zhu, Yangzhi; Kim, Sanggon; Liu, Qiushi; Byrley, Peter; Wei, Yang; Zhang, Jin; Jiang, Kaili; Fan, Shoushan; Yan, Ruoxue; Liu, Ming

    2016-11-09

    Despite many efforts to fabricate high-aspect-ratio atomic force microscopy (HAR-AFM) probes for high-fidelity, high-resolution topographical imaging of three-dimensional (3D) nanostructured surfaces, current HAR probes still suffer from unsatisfactory performance, low wear-resistivity, and extravagant prices. The primary objective of this work is to demonstrate a novel design of a high-resolution (HR) HAR AFM probe, which is fabricated through a reliable, cost-efficient benchtop process to precisely implant a single ultrasharp metallic nanowire on a standard AFM cantilever probe. The force-displacement curve indicated that the HAR-HR probe is robust against buckling and bending up to 150 nN. The probes were tested on polymer trenches, showing a much better image fidelity when compared with standard silicon tips. The lateral resolution, when scanning a rough metal thin film and single-walled carbon nanotubes (SW-CNTs), was found to be better than 8 nm. Finally, stable imaging quality in tapping mode was demonstrated for at least 15 continuous scans indicating high resistance to wear. These results demonstrate a reliable benchtop fabrication technique toward metallic HAR-HR AFM probes with performance parallel or exceeding that of commercial HAR probes, yet at a fraction of their cost.

  4. SHADOW DETECTION FROM VERY HIGH RESOLUTON SATELLITE IMAGE USING GRABCUT SEGMENTATION AND RATIO-BAND ALGORITHMS

    Directory of Open Access Journals (Sweden)

    N. M. S. M. Kadhim

    2015-03-01

    Full Text Available Very-High-Resolution (VHR satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour, the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates

  5. A small perturbation based optimization approach for the frequency placement of high aspect ratio wings

    Science.gov (United States)

    Goltsch, Mandy

    Design denotes the transformation of an identified need to its physical embodiment in a traditionally iterative approach of trial and error. Conceptual design plays a prominent role but an almost infinite number of possible solutions at the outset of design necessitates fast evaluations. The corresponding practice of empirical equations and low fidelity analyses becomes obsolete in the light of novel concepts. Ever increasing system complexity and resource scarcity mandate new approaches to adequately capture system characteristics. Contemporary concerns in atmospheric science and homeland security created an operational need for unconventional configurations. Unmanned long endurance flight at high altitudes offers a unique showcase for the exploration of new design spaces and the incidental deficit of conceptual modeling and simulation capabilities. Structural and aerodynamic performance requirements necessitate light weight materials and high aspect ratio wings resulting in distinct structural and aeroelastic response characteristics that stand in close correlation with natural vibration modes. The present research effort evolves around the development of an efficient and accurate optimization algorithm for high aspect ratio wings subject to natural frequency constraints. Foundational corner stones are beam dimensional reduction and modal perturbation redesign. Local and global analyses inherent to the former suggest corresponding levels of local and global optimization. The present approach departs from this suggestion. It introduces local level surrogate models to capacitate a methodology that consists of multi level analyses feeding into a single level optimization. The innovative heart of the new algorithm originates in small perturbation theory. A sequence of small perturbation solutions allows the optimizer to make incremental movements within the design space. It enables a directed search that is free of costly gradients. System matrices are decomposed

  6. High-Aspect Ratio Bio-Metallic Nanocomposites for Cellular Interactions

    Science.gov (United States)

    Deodhar, Sneha; Huckaby, Justin; Delahoussaye, Miles; DeCoster, Mark A.

    2014-08-01

    We synthesized high aspect ratio composites with biological and metal components. Scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) revealed linear morphology and smooth surface texture. SEM, TEM and light microscopy showed that composites have scalable dimensions from nano- to micro-, with diameters as low as 60 nm, lengths exceeding 150 pm, and average aspect ratio of 100. The structures are stable, remaining intact for over one year in dried form and in liquid, and did not aggregate, in contrast to metal nanoparticles such as iron and copper. Many metal nanoparticles are toxic to cells, limiting their use for biological applications. The bio-metallic composites characterized here showed lower toxicity compared to their precursor metal nanoparticles in brain tumor cell cultures. Due to these more biocompatible properties, we tested the ability of the composites to interact with cells. Zeta potential analysis indicated that composites carry a net negative charge (-24.3 ± 2.2 mV), while the starting metal nanoparticles measured (43.3 ± 2.4 mV). We labeled the composites with poly-l-lysine fluorescein isothiocyanate (PLL-FITC), which shifted the potential to 3.5 ± 2.9 mV. It was observed by fluorescence microscopy that composites smaller than cells were internalized by some cells and larger composites remained outside. Cells became fluorescent over time due to leakage of PLL-FITC from the composites which lost fluorescence over time. Higher biocompatibility, low aggregation, and ability to control size distribution of the linear composites may make them ideal vehicles to deliver drugs or other materials to cells, and may be used as a scaffolding material for cells.

  7. Diagnostic Role of Captopril Challenge Test in Korean Subjects with High Aldosterone-to-Renin Ratios

    Directory of Open Access Journals (Sweden)

    Jung Hee Kim

    2016-06-01

    Full Text Available BackgroundDiagnosis of primary aldosteronism (PA begins with aldosterone-to-renin ratio (ARR measurement followed by confirmative tests. However, the ARR has high false positive rates which led to unnecessary confirmatory tests. Captopril challenge test (CCT has been used as one of confirmatory tests, but the accuracy of it in the diagnosis of PA is still controversial. We aimed to examine the clinical efficacy of CCT as a post-screening test in PA.MethodsIn a prospective study, we enrolled subjects with suspected PA who had hypertension and ARR >20 (ng/dL/(ng/mL/hr. Sixty-four patients who underwent both the saline infusion test and the CCT were included.ResultsThe diagnostic performance of plasma aldosterone concentration (PAC post-CCT was greater than that of ARR post-CCT and ARR pre-CCT in PA (area under the curve=0.956, 0.797, and 0.748, respectively; P=0.001. A cut-off value of 13 ng/dL showed the highest diagnostic odds ratio considering PAC post-CCT at 60 and 90 minutes. A PAC post-CCT of 19 ng/dL had a specificity of 100%, which can be used as a cut-off value for the confirmative test. Determining the diagnostic performance of PAC post-CCT at 90 minutes was sufficient for PA diagnosis. Subjects with PAC post-CCT at 90 minutes <13 ng/dL are less likely to have PA, and those with PAC post-CCT at 90 minutes ≥13 but <19 ng/dL should undergo secondary confirmatory tests.ConclusionThe CCT test may be a reliable post-screening test to avoid the hospitalization in the setting of falsely elevated ARR screening tests.

  8. Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process

    Science.gov (United States)

    Yang, Chii-Rong; Hsieh, Yu-Sheng; Hwang, Guang-Yeu; Lee, Yu-Der

    2004-04-01

    The photoablation properties of two soluble polyimides DMDB/6FDA and OT/6FDA with thicknesses of over 300 µm, synthesized by the polycondensation of a hexafluoropropyl group contained in a dianhydride with two kinds of diamines, are investigated using a 248 nm krypton fluoride (KrF) laser. The incorporation of the hexafluoropropyl group into the chemical structure gives these two polyimides higher etching rates than Kapton (a commercial polyimide film which is difficult to dissolve). The etching rates of synthesized polyimides are about 0.1-0.5 µm/pulse over a fluence range of 0.25-2.25 J cm-2. The photothermal mechanism for DMDB/6FDA contributes about 19% of etching depth at a laser fluence of 0.82 J cm-2. Moreover, the number of laser pulses seriously affects the taper angle of microstructures, especially at low fluence. Near-vertical side-wall structures can be built at high fluence (~2 J cm-2). Fresnel patterns with a thickness of 300 µm and a linewidth of 10 µm were fabricated, with an attainable aspect ratio of around 30. After photoablation, the complementary metallic microstructures were also fabricated by a sequential electroplating procedure. Then, those two new polyimides could be dissolved easily in most common solvents (such as THF, DMSO, NMP and DMF). These results indicate that these two soluble polyimides are highly suitable for use in the KrF laser LIGA process.

  9. Dimensional measurement of micro parts with high aspect ratio in HIT-UOI

    Science.gov (United States)

    Dang, Hong; Cui, Jiwen; Feng, Kunpeng; Li, Junying; Zhao, Shiyuan; Zhang, Haoran; Tan, Jiubin

    2016-11-01

    Micro parts with high aspect ratios have been widely used in different fields including aerospace and defense industries, while the dimensional measurement of these micro parts becomes a challenge in the field of precision measurement and instrument. To deal with this contradiction, several probes for the micro parts precision measurement have been proposed by researchers in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). In this paper, optical fiber probes with structures of spherical coupling(SC) with double optical fibers, micro focal-length collimation (MFL-collimation) and fiber Bragg grating (FBG) are described in detail. After introducing the sensing principles, both advantages and disadvantages of these probes are analyzed respectively. In order to improve the performances of these probes, several approaches are proposed. A two-dimensional orthogonal path arrangement is propounded to enhance the dimensional measurement ability of MFL-collimation probes, while a high resolution and response speed interrogation method based on differential method is used to improve the accuracy and dynamic characteristics of the FBG probes. The experiments for these special structural fiber probes are given with a focus on the characteristics of these probes, and engineering applications will also be presented to prove the availability of them. In order to improve the accuracy and the instantaneity of the engineering applications, several techniques are used in probe integration. The effectiveness of these fiber probes were therefore verified through both the analysis and experiments.

  10. Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration.

    Science.gov (United States)

    Mansourian, Ali; Paknejad, Seyed Amir; Wen, Qiannan; Vizcay-Barrena, Gema; Fleck, Roland A; Zayats, Anatoly V; Mannan, Samjid H

    2016-02-29

    The interplay between porosity and electromigration can be used to manipulate atoms resulting in mass fabrication of nanoscale structures. Electromigration usually results in the accumulation of atoms accompanied by protrusions at the anode and atomic depletion causing voids at the cathode. Here we show that in porous media the pattern of atomic deposition and depletion is altered such that atomic accumulation occurs over the whole surface and not just at the anode. The effect is explained by the interaction between atomic drift due to electric current and local temperature gradients resulting from intense Joule heating at constrictions between grains. Utilizing this effect, a porous silver substrate is used to mass produce free-standing silver nanorods with very high aspect ratios of more than 200 using current densities of the order of 10(8) A/m(2). This simple method results in reproducible formation of shaped nanorods, with independent control over their density and length. Consequently, complex patterns of high quality single crystal nanorods can be formed in-situ with significant advantages over competing methods of nanorod formation for plasmonics, energy storage and sensing applications.

  11. Free-jet investigation of mechanically suppressed, high radius ratio coannular plug model nozzles

    Science.gov (United States)

    Janardan, B. A.; Majjigi, R. K.; Brausch, J. F.; Knott, P. R.

    1985-01-01

    The experimental and analytical acoustic results of a scale-model investigation or unsuppressed and mechanically suppressed high-radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Nine coannular nozzle configurations along with a reference conical nozzle were evaluated in the Anechoic Free-Jet Facility for a total of 212 acoustic test points. Most of the tests were conducted at variable cycle engine conditions applicable to advanced high speed aircraft. The tested nozzles included coannular plug nozzles with both convergent and convergent-divergent (C-D) terminations in order to evaluate C-D effectiveness in the reduction of shock-cell noise and 20 and 40 shallow-chute mechanical suppressors in the outer stream in order to evaluate their effectiveness in the reduction of jet noise. In addition to the acoustic tests, mean and turbulent velocity measurements were made on selected plumes of the 20 shallow-chute configuration using a laser velocimeter. At a mixed jet velocity of 700 m/sec, the 20 shallow-chute suppressor configuration yielded peak aft quadrant suppression of 11.5 and 9 PNdB and forward quadrant suppression of 7 and 6 PNdB relative to a baseline conical nozzles during static and simulated flight, respectively. The C-D terminations were observed to reduce shock-cell noise. An engineering spectral prediction method was formulated for mechanically suppressed coannular plug nozzles.

  12. Voice low tone to high tone ratio--a new index for nasal airway assessment.

    Science.gov (United States)

    Lee, Guoshe; Yang, Cheryl C H; Kuo, Terry B J

    2003-09-30

    There are several methodology based on voice analysis to evaluate nasal airway. Here we introduce a new quantitative index based on voice spectrum analysis to evaluate nasal obstruction. Ten subjects of nasal blockage were instructed to produced the sustained consonant-vowel syllable /m partial partial differential/ at comfortable levels of speech for at least 5 seconds. After nasal decongestant treatment, the second voice sample was collected. Sound spectrum was obtained by the algorithm of fast Fourier transform and the fundamental frequency (F0) was calculated by the method of autocorrelation. Voice low tone to high tone ratio (VLHR) was defined as the division of low frequency power (LFP) into high frequency power (HFP) of the sound power spectrum and was finally expressed in decibels. The cut-off frequency was the product of F0 and square root of (4 x 5). The VLHR after nasal decongestant treatment increased significantly as compared with that before treatment (P < 0.01). VLHR is a new index derived from sound spectral analysis and that may detect the changes in frequency characteristics of voice during treatment for nasal obstruction. The index is quantitative, non-invasive, and potentially useful for basic researches and clinical applications.

  13. Seasonal changes in H/V spectral ratio at high-latitude seismic stations

    Science.gov (United States)

    Lee, R. F.; Abbott, R. E.; Knox, H. A.; Pancha, A.

    2014-12-01

    We present results demonstrating seasonal variations in the Horizontal-to-Vertical Spectral Ratio (HVSR) at high-latitude seismic stations. We analyze data from two sites at Poker Flat Research Range, near Fairbanks, Alaska. From the first site, we analyze 3 stations installed by Sandia National Labs (SNL) in a valley with marshy summer conditions. We also analyze the PASSCAL Instrument Center station PIC2, which is installed on rock approximately 3.2 km from the SNL stations. These stations continuously record data at 125 (SNL) and 200 (PIC2) samples per second. Seasonal changes in HVSR at high frequencies (> 20 Hz) appear to be caused by impedance contrasts between frozen and thawed ground. Thawed active layers are known to have slower shear-wave velocities than frozen layers or bedrock. An estimate of active layer thickness at each station is obtained from the quarter-wavelength approximation. We verify the accuracy of this technique by obtaining ground-truth measurements at the sites for both thickness and shear-wave velocity. We use physical probing for the thickness measurements and active-source Refraction-Microtremor (ReMi) surveys for the shear-wave velocities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  14. Monocyte/high-density lipoprotein ratio predicts the mortality in ischemic stroke patients.

    Science.gov (United States)

    Bolayir, Asli; Gokce, Seyda Figul; Cigdem, Burhanettin; Bolayir, Hasan Ata; Yildiz, Ozlem Kayim; Bolayir, Ertugrul; Topaktas, Suat Ahmet

    2017-08-24

    The inflammatory process is a very important stage in the development and prognosis of acute ischemic stroke (AIS). The monocyte to high-density lipoprotein (HDL) ratio (MHR) is accepted as a novel marker for demonstrating inflammation. However, the role of MHR as a predictor of mortality in patients with AIS remains unclear. We retrospectively enrolled 466 patients who were referred to our clinic within the first 24hours of symptom presentation and who were diagnosed with AIS between January 2008 and June 2016. Four hundred and eight controls of similar age and gender were also included. The patient group was classified into two groups according to 30-day mortality. The groups were compared in terms of monocyte counts, HDL, and MHR values. The patient group had significantly higher monocyte counts and lower HDL levels; therefore, this group had higher values of MHR compared to controls. Additionally, the monocyte count and MHR value were higher, and the HDL level was lower in non-surviving patients (pMHR value was also observed as a significant independent variable of 30-day mortality in patients with AIS (pMHR in predicting the 30-day mortality for patients with AIS was 17.52 (95% CI 0.95-0.98). Our study demonstrated that a high MHR value is an independent predictor of 30-day mortality in patients with AIS. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  16. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    Science.gov (United States)

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  17. 28 CFR 551.7 - Bathing and clothing.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Bathing and clothing. 551.7 Section 551.7... Grooming § 551.7 Bathing and clothing. Each inmate must observe the standards concerning bathing and clothing that exist in the institution as required by standards of § 551.1....

  18. Bath Parameter Dependence of Chemically-Deposited Copper Selenide Thin Film

    Science.gov (United States)

    Al-Mamun; Islam, A. B. M. O.

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on to glass substrate. Different thin films (0.2-0.6 μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that complexing the Cu2+ ions with TEA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu2-xSe.

  19. Novel medical bathing with traditional Chinese herb formula alleviates paraplegia spasticity.

    Science.gov (United States)

    Liu, Xin; Meng, Qingxi; Yu, Dapeng; Zhao, Xiwu; Zhao, Tingbao

    2014-06-01

    Paraplegia spasm is a kind of chronic disease which lacks effective treatment; the patients have to endure long-term pain, which is a tough problem for nursing practice. Lots of potential candidate medicines are under investigation, and a new Chinese herb formula is introduced in the current study. In the present study, we chose six different well-known Chinese herbs to form a formula, and boiled them into the water with an optimized ratio to make bath water; 80 paraplegic patients received this medicinal bath, and 80 patients received perfume water bath as placebo group. Compared with placebo control patients, the herb-treated patients have significant reduction in paraplegia spasm, visual analogue scale score, clinician global impression and sleep disorder. This novel six-combined formula traditional medicine could be beneficial for alleviating paraplegia spasm, but the underlying action mechanism deserves further study.

  20. High extinction ratio multiplexer/demultiplexer with a Mach-Zehnder interferometer and a fiber loop mirror

    Institute of Scientific and Technical Information of China (English)

    Yonglin Huang(黄勇林); Jie Li(李杰); Guiyun Kai(开桂云); Xiaoyi Dong(董孝义)

    2003-01-01

    A novel structure of high extinction ratio multiplexer/demultiplexer with a Mach-Zehnder interferometer (MZI) and a fiber loop mirror (FLM) is proposed. The experimental results show that the extinction ratio can be enhanced about two times in comparison with the conventional MZI.

  1. SYNTHESIS OF HIGH SILICA CHA ZEOLITES WITH CONTROLLED Si/Al RATIO

    OpenAIRE

    2008-01-01

    Zeolites with the CHA topology have been synthesized with Si/Al ratios ranging from 15 to 133. ICP-AES analysis shows that the Si/Al ratio in the material is close to linearly related to the Si/Al ratio in the reaction mixture, while powder XRD shows that the unit cell parameters decrease with increasing Si/Al ratio. The difference between the unit cell parameters for the as-synthesized and the calcined samples show that the structure directing agent sterically hinders the contraction in the ...

  2. Bath vaccination of rainbow trout against yersiniosis

    DEFF Research Database (Denmark)

    Raida, Martin Kristian; Buchmann, Kurt

    2007-01-01

    Studies have been conducted on the temperature-dependent effect of bath vaccination of rainbow trout against Yersinia ruckeri O1. Protection of rainbow trout fry against challenge, following bath vaccination with a bacterin of Yersinia ruckeri O1, the bacterial pathogen causing enteric red mouth...... disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout fry were kept at controlled temperatures for two month before they were immersed in a commercial Yersinia ruckeri O1 bacterin for 10 minutes. Control groups were sham vaccinated using pure water. Fish were challenged with Yersinia ruckeri O......1 one and two month post vaccination at the three temperatures. Protection of vaccinated fish was seen one and two month post vaccination in rainbow trout reared at 15° C. There was no effect of vaccination in rainbow trout reared at 5 and 25° C. Spleen tissue was sampled from 5 vaccinated and 5...

  3. Hot Particles Attract in a Cold Bath

    CERN Document Server

    Tanaka, Hidenori; Brenner, Michael P

    2016-01-01

    Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles, and demonstrate a novel mechanism for long ranged attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction even though all particles have the same size. Although the mechanism occurs outside the parameter range of typical biological organisms, the mechanism could be realized in ...

  4. Gust response analysis and wind tunnel test for a high-aspect ratio wing

    Institute of Scientific and Technical Information of China (English)

    Liu Yi; Xie Changchuan; Yang Chao; Cheng Jialin

    2016-01-01

    A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci-plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound-ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti-tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex-ible wings.

  5. Formation of compressed flat electron beams with high transverse-emittance ratios

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Fermilab; Institute of Fluid Physics, CAEP, China; Piot, P. [Northern Illinois University; Fermilab; Mihalcea, D. [Northern Illinois University; Prokop, C. R. [Northern Illinois University

    2014-08-01

    Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 μm (emittance ratio is ~400), 0.13 μm, 15 nm before compression, and 0.41 μm, 0.20 μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  6. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    Science.gov (United States)

    Liu, Jinzhen; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo; Li, Gang; Lin, Ling

    2014-05-01

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  7. Modeling high signal-to-noise ratio in a novel silicon MEMS microphone with comb readout

    Science.gov (United States)

    Manz, Johannes; Dehe, Alfons; Schrag, Gabriele

    2017-05-01

    Strong competition within the consumer market urges the companies to constantly improve the quality of their devices. For silicon microphones excellent sound quality is the key feature in this respect which means that improving the signal-to-noise ratio (SNR), being strongly correlated with the sound quality is a major task to fulfill the growing demands of the market. MEMS microphones with conventional capacitive readout suffer from noise caused by viscous damping losses arising from perforations in the backplate [1]. Therefore, we conceived a novel microphone design based on capacitive read-out via comb structures, which is supposed to show a reduction in fluidic damping compared to conventional MEMS microphones. In order to evaluate the potential of the proposed design, we developed a fully energy-coupled, modular system-level model taking into account the mechanical motion, the slide film damping between the comb fingers, the acoustic impact of the package and the capacitive read-out. All submodels are physically based scaling with all relevant design parameters. We carried out noise analyses and due to the modular and physics-based character of the model, were able to discriminate the noise contributions of different parts of the microphone. This enables us to identify design variants of this concept which exhibit a SNR of up to 73 dB (A). This is superior to conventional and at least comparable to high-performance variants of the current state-of-the art MEMS microphones [2].

  8. Why are Q-Ratios High in the Sulu UHP Metamorphic Rocks?

    Institute of Scientific and Technical Information of China (English)

    Liu Qingsheng

    2011-01-01

    I found high Q values (Q-ratio=Jn/Ji, Jn, Ji are remanent magnetization and induced magnetization) in the Sulu ultrahigh pressure (UHP) metamorphic rocks, eastern China which is the world's largest UHP metamorphic belt (Fig. 1 in Liu et al., 2009). Q values of 320 core samples with variable lithologies in the 100-2 000 m interval from the Chinese Continental Scientific Drilling (CCSD) main hole are as follows: values between 0.06 and 608.24, with an average of 15.56 for 171 eclogite samples; values between 0.11 and 23.83, with an average of 1.93 for 61 orthogneiss samples; values between 0.13 and 1 746.00, with an average of 63.63 for 74 paragneiss samples; and values from 8.07 to 28.23, with an average of 16.59 for 14 serpentinized peridotite (Liu et al., 2010, 2009). However, continental lower crustal rocks generally have low Q values. For example, several thousand samples from the Ukranian shield show a mean Q of about 1.0 (Krutikhovskaya and Pashkevich, 1977).

  9. High-Precision Isotope Ratio Measurements of Sub-Picogram Actinide Samples

    Science.gov (United States)

    Pollington, A. D.; Kinman, W.

    2016-12-01

    One of the most exciting trends in analytical geochemistry over the past decade is the push towards smaller and smaller sample sizes while simultaneously achieving high precision isotope ratio measurements. This trend has been driven by advances in clean chemistry protocols, and by significant breakthroughs in mass spectrometer ionization efficiency and detector quality (stability and noise for low signals). In this presentation I will focus on new techniques currently being developed at Los Alamos National Laboratory for the characterization of ultra-small samples (pg, fg, ag), with particular focus on actinide measurements by MC-ICP-MS. Analyses of U, Pu, Th and Am are routinely carried out in our facility using multi-ion counting techniques. I will describe some of the challenges associated with using exclusively ion counting methods (e.g., stability, detector cross calibration, etc.), and how we work to mitigate them. While the focus of much of the work currently being carried out is in the broad field of nuclear forensics and safeguards, the techniques that are being developed are directly applicable to many geologic questions that require analyses of small samples of U and Th, for example. In addition to the description of the technique development, I will present case studies demonstrating the precision and accuracy of the method as applied to real-world samples.

  10. On the radiative efficiencies, Eddington ratios, and duty cycles of luminous high-redshift quasars

    CERN Document Server

    Shankar, Francesco; Miralda-Escude', Jordi; Fosalba, Pablo; Weinberg, David H

    2008-01-01

    We investigate the characteristic radiative efficiency \\epsilon, Eddington ratio \\lambda, and duty cycle P_0 of high-redshift active galactic nuclei (AGN), drawing on measurements of the AGN luminosity function at z=3-6 and, especially, on recent measurements of quasar clustering at z=3-4.5 from the Sloan Digital Sky Survey. The free parameters of our models are \\epsilon, \\lambda, and the normalization, scatter, and redshift evolution of the relation between black hole mass \\mbh and halo virial velocity V_vir. We compute the luminosity function from the implied growth of the black hole mass function and the quasar correlation length from the bias of the host halos. We test our adopted formulae for the halo mass function and halo bias against measurements from the large N-body simulation developed by the MICE collaboration. The strong clustering of AGNs observed at z=3 and, especially, at z=4 implies that massive black holes reside in rare, massive dark matter halos. Reproducing the observed luminosity functio...

  11. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinzhen; Li, Gang; Lin, Ling, E-mail: linling@tju.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, People' s Republic of China, and Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin (China); Qiao, Xiaoyan [College of Physics and Electronic Engineering, Shanxi University, Shanxi (China); Wang, Mengjun [School of Information Engineering, Hebei University of Technology, Tianjin (China); Zhang, Weibo [Institute of Acupuncture and Moxibustion China Academy of Chinese Medical Sciences, Beijing (China)

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  12. Analysis of Interrupted Rectangular Microchannel Heat Sink with High Aspect Ratio

    Directory of Open Access Journals (Sweden)

    Harshin Kamal

    2017-01-01

    Full Text Available A computational modelling of microchannel heat sinks with high aspect ratio has been performed to compare the geometrical features in the plane parallel to the heating surface and to determine the optimum configuration for the best heat transfer characteristics. A periodic thermal development of flow can cause significant heat transfer enhancement. A consensus on a particular geometrical configuration that provides the best heat transfer characteristics has not been reached in the literature, although many novel ideas have been proposed recently. Firstly the validity and applicability of microchannel sink modelling is presented followed by an optimization of parameters of interrupted microchannel heat sink. Consequences of the multichannel effect due to the introduction of transverse microchamber are also presented. It has been shown that the average Nusselt number of the microchannel heat sink increases by the introduction of a transverse microchamber with the additional advantage of a lower pressure drop. There exists an optimum width for the transverse microchamber for which the interrupted microchannel heat sink shows optimum characteristics.

  13. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system.

    Science.gov (United States)

    Liu, Jinzhen; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo; Li, Gang; Lin, Ling

    2014-05-01

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  14. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  15. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-09-27

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit.

  16. Bosch-like method for creating high aspect ratio poly(methyl methacrylate) (PMMA) structures

    KAUST Repository

    Haiducu, Marius

    2012-02-02

    This paper presents a method for etching millimetre-deep trenches in commercial grade PMMA using deep-UV at 254 nm. The method is based on consecutive cycles of irradiation and development of the exposed areas, respectively. The exposure segment is performed using an inexpensive, in-house built irradiation box while the development part is accomplished using an isopropyl alcohol (IPA):H2O developer. The method was tested and characterized by etching various dimension square test structures in commercial grade, mirrored acrylic. The undercut of the sidewalls due to the uncollimated nature of the irradiation light was dramatically alleviated by using a honeycomb metallic grid in between the irradiation source and the acrylic substrate and by rotating the latter using a direct current (DC) motor-driven stage. By using an extremely affordable set-up and non-toxic, environmentally friendly materials and substances, this process represents an excellent alternative to microfabricating microfluidic devices in particular and high aspect ratio structures in general using PMMA as substrate. © 2012 SPIE.

  17. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.

    Science.gov (United States)

    Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert

    2014-07-01

    Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.

  18. High 3D:5D ratio: A possible correlate of externalizing and internalizing problems

    NARCIS (Netherlands)

    E.I. de Bruin; P.F.A. de Nijs; A.C. Huizink; F.C. Verhulst

    2011-01-01

    Background and Objectives: The second to fourth (2D:4D) digit ratio is a sexually dimorphic trait which has been studied to examine the association between fetal hormones and a variety of behaviors. Lower 2D:4D ratios, suggestive of exposure to higher levels of prenatal testosterone, have been assoc

  19. Geometrical Nonlinear Aeroelastic Stability Analysis of a Composite High-Aspect-Ratio Wing

    Directory of Open Access Journals (Sweden)

    Chang Chuan Xie

    2008-01-01

    Full Text Available A composite high-aspect-ratio wing of a high-altitude long-endurance (HALE aircraft was modeled with FEM by MSC/NASTRAN, and the nonlinear static equilibrium state is calculated under design load with follower force effect, but without load redistribution. Assuming the little vibration amplitude of the wing around the static equilibrium state, the system is linearized and the natural frequencies and mode shapes of the deformed structure are obtained. Planar doublet lattice method is used to calculate unsteady aerodynamics in frequency domain ignoring the bending effect of the deflected wing. And then, the aeroelastic stability analysis of the system under a given load condition is successively carried out. Comparing with the linear results, the nonlinear displacement of the wing tip is higher. The results indicate that the critical nonlinear flutter is of the flap/chordwise bending type because of the chordwise bending having quite a large torsion component, with low critical speed and slowly growing damping, which dose not appear in the linear analysis. Furthermore, it is shown that the variation of the nonlinear flutter speed depends on the scale of the load and on the chordwise bending frequency. The research work indicates that, for the very flexible HALE aircraft, the nonlinear aeroelastic stability is very important, and should be considered in the design progress. Using present FEM software as the structure solver (e.g. MSC/NASTRAN, and the unsteady aerodynamic code, the nonlinear aeroelastic stability margin of a complex system other than a simple beam model can be determined.

  20. Surveillance of the Sensitivity towards Antiparasitic Bath-Treatments in the Salmon Louse (Lepeophtheirus salmonis.

    Directory of Open Access Journals (Sweden)

    Peder A Jansen

    Full Text Available The evolution of drug resistant parasitic sea lice is of major concern to the salmon farming industry worldwide and challenges sustainable growth of this enterprise. To assess current status and development of L. salmonis sensitivity towards different pesticides used for parasite control in Norwegian salmon farming, a national surveillance programme was implemented in 2013. The programme aims to summarize data on the use of different pesticides applied to control L. salmonis and to test L. salmonis sensitivity to different pesticides in farms along the Norwegian coast. Here we analyse two years of test-data from biological assays designed to detect sensitivity-levels towards the pesticides azamethiphos and deltamethrin, both among the most common pesticides used in bath-treatments of farmed salmon in Norway in later years. The focus of the analysis is on how different variables predict the binomial outcome of the bioassay tests, being whether L. salmonis are immobilized/die or survive pesticide exposure. We found that local kernel densities of bath treatments, along with a spatial geographic index of test-farm locations, were significant predictors of the binomial outcome of the tests. Furthermore, the probability of L. salmonis being immobilized/dead after test-exposure was reduced by odds-ratios of 0.60 (95% CI: 0.42-0.86 for 2014 compared to 2013 and 0.39 (95% CI: 0.36-0.42 for low concentration compared to high concentration exposure. There were also significant but more marginal effects of parasite gender and developmental stage, and a relatively large random effect of test-farm. We conclude that the present data support an association between local intensities of bath treatments along the coast and the outcome of bioassay tests where salmon lice are exposed to azamethiphos or deltamethrin. Furthermore, there is a predictable structure of L. salmonis phenotypes along the coast in the data, characterized by high susceptibility to pesticides

  1. BisGMA/TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers

    Science.gov (United States)

    Chen, Liang; Yu, Qingsong; Wang, Yong; Li, Hao

    2011-01-01

    Objectives The objectives of this study are to investigate the properties of high aspect-ratio hydroxyapatite (HAP) nanofibers and the reinforcing effect of such fibers on bisphenol A glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) dental resins (without silica microparticle filler) and dental composites (with silica microparticle filler) with various mass fractions (loading rates). Methods HAP nanofibers were synthesized using a wet-chemical method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and thermal gravimetric analysis (TGA). Biaxial flexural strength (BFS) of the HAP nanofibers reinforced dental resins without any microsized filler and dental composites with silica microparticle filler was tested and analysis of variance (ANOVA) was used for the statistically analysis of acquired data. The morphology of fracture surface of tested dental composite samples was examined by SEM. Results The HAP nanofibers with aspect-ratios of 600 to 800 can be successfully fabricated with a simple wet-chemical method in aqueous solution. Impregnation of small mass fractions of the HAP nanofibers (5 wt% or 10 wt%) into the BisGMA/TEGDMA dental resins or impregnation of small mass fractions of the HAP nanofibers (2 wt% or 3 wt%) into the dental composites can substantially improve the biaxial flexural strength of the resulting dental resins and composites. A percolation threshold of HAP nanofibers, beyond which more nanofibers will no longer further increase the mechanical properties of dental composites containing HAP nanofibers, was observed for the dental composites with or without silica microparticle filler. Our mechanical testing and fractographic analysis indicated that the relatively good dispersion of HAP nanofibers at low mass fraction is the key reason for the significantly improved biaxial flexural strength, while higher mass fraction of HAP nanofibers tends to lead to bundles that cannot effectively

  2. Protecting coherence by reservoir engineering: intense bath disturbance

    Science.gov (United States)

    Zhou, Zixian; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We put forward a scheme based on reservoir engineering to protect quantum coherence from leaking to bath, in which we intensely disturb the Lorentzian bath by N harmonic oscillators. We show that the intense disturbance changes the spectrum of the bath and reduces the qubit-bath interaction. Furthermore, we give the exact time evolution with the Lorentzian spectrum by a master equation and calculate the concurrence and survival probability of the qubits to demonstrate the effect of the intense bath disturbance on the protection of coherence. Meanwhile, we reveal the dynamic effects of counter-rotating interaction on the qubits as compared to the results of the rotating-wave approximation.

  3. THE IMPORTANCE OF COAGULATION BATH IN ACRYLIC FIBER PRODUCTION

    Directory of Open Access Journals (Sweden)

    İsmail TİYEK

    2005-03-01

    Full Text Available In the production of acrylic fibers using wet-spinning method, fiber formation takes places in the coagulation bath. Therefore, physical properties of the fibers, produced by the wet-spinning method, is affected by coagulation bath conditions. For this reason, coagulation bath parameters have to be checked very well. In this paper, both the physical events such as diffusion and phase transition, occured in the coagulation bath, and some coagulation bath parameters that affect these physical events are studied. Furthermore, it is tried to express their affects on the physical characteristics of the fibers.

  4. General theory of many body localized systems coupled to baths

    OpenAIRE

    Nandkishore, Rahul; Gopalakrishnan, Sarang

    2016-01-01

    We consider what happens when a many body localized system is coupled to a heat bath. Unlike previous works, we do not restrict ourselves to the limit where the bath is large and effectively Markovian, nor to the limit where back action on the bath is negligible. We identify limits where the effect of the bath can be captured by classical noise, and limits where it cannot. We also identify limits in which the bath delocalizes the system, as well as limits in which the system localizes the bat...

  5. Waist-to-Height Ratio as an Indicator of High Blood Pressure in Urban Indian School Children.

    Science.gov (United States)

    Mishra, P E; Shastri, L; Thomas, T; Duggan, C; Bosch, R; McDonald, C M; Kurpad, A V; Kuriyan, R

    2015-09-01

    To examine the utility of waist-to-height ratio to identify risk of high blood pressure when compared to body mass index and waist circumference in South Indian urban school children. Secondary data analysis from a cross-sectional study. Urban schools around Bangalore, India. 1913 children (58.1% males) aged 6-16 years with no prior history of chronic illness (PEACH study). Height, weight, waist circumference and of blood pressure were measured. Children with blood pressure ?90th percentile of age-, sex-, and height-adjusted standards were labelled as having high blood pressure. 13.9% had a high waist-to-height ratio, 15.1% were overweight /obese and 21.7% had high waist circumference. High obesity indicators were associated with an increased risk of high blood pressure. The adjusted risk ratios (95% CI) of high systolic blood pressure with waist-to-height ratio, body mass index and waist circumference were 2.48 (1.76, 3.47), 2.59 (1.66, 4.04) and 2.38 (1.74, 3.26), respectively. Similar results were seen with high diastolic blood pressure. Obesity indicators, especially waist-to-height ratio due to its ease of measurement, can be useful initial screening tools for risk of high blood pressure in urban Indian school children.

  6. Numerical studies of the reversed-field pinch at high aspect ratio

    Science.gov (United States)

    Sätherblom, H.-E.; Drake, J. R.

    1998-10-01

    The reversed field pinch (RFP) configuration at an aspect ratio of 8.8 is studied numerically by means of the three-dimensional magnetohydrodynamic code DEBS [D. D. Schnack et al., J. Comput. Phys. 70, 330 (1987)]. This aspect ratio is equal to that of the Extrap T1 experiment [S. Mazur et al., Nucl. Fusion 34, 427 (1994)]. A numerical study of a RFP with this level of aspect ratio requires extensive computer achievements and has hitherto not been performed. The results are compared with previous studies [Y. L. Ho et al., Phys. Plasmas 2, 3407 (1995)] of lower aspect ratio RFP configurations. In particular, an evaluation of the extrapolation to the aspect ratio of 8.8 made in this previous study shows that the extrapolation of the spectral spread, as well as most of the other findings, are confirmed. An important exception, however, is the magnetic diffusion coefficient, which is found to decrease with aspect ratio. Furthermore, an aspect ratio dependence of the magnetic energy and of the helicity of the RFP is found.

  7. Effect of Coriolis and centrifugal forces on flow and heat transfer at high rotation number and high density ratio in non orthogonally internal cooling channel

    National Research Council Canada - National Science Library

    Brahim Berrabah Miloud Aminallah

    .... The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas...

  8. High-Precision Instrumentation for CO2 Isotope Ratio Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Knowing atmospheric 13CO2/12CO2 ratios precisely is important to understanding biogenic and anthroprogenic sources and sinks for carbon. Currently available field...

  9. Influence of Additives on Bath Analysis in Aluminum Electrolysis

    Science.gov (United States)

    Hou, Jianfeng; Shi, Dong; Wang, Zhaowen; Gao, Bingliang; Shi, Zhongning; Hu, Xianwei

    2017-10-01

    In this study, the phase compositions of a solid cryolitic electrolyte based on the Na3AlF6-AlF3-KF-LiF-CaF2-Al2O3 system have been investigated. Using x-ray diffraction (XRD) and fluoride ion selective electrode analysis (FISEA) techniques, the molar ratio of NaF-AlF3 of the cryolitic electrolyte has been determined. The influence of the acidity of the additive electrolytes on the phase compositions of the cryolitic electrolyte has been discussed to gain fundamental insights into understanding the role of additives in such systems. Moreover, an improved XRD-based industrial bath analysis method has been introduced to analyze the composition of the complex cryolitic electrolytes. Finally, based on these results, a new equation has been derived that can be used for FISEA to complement such composition analyses.

  10. GaN nanowire tip for high aspect ratio nano-scale AFM metrology (Conference Presentation)

    Science.gov (United States)

    Behzadirad, Mahmoud; Dawson, Noel; Nami, Mohsen; Rishinaramangalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito L.

    2016-09-01

    In this study we introduce Gallium Nitride (GaN) nanowire (NW) as high aspect ratio tip with excellent durability for nano-scale metrology. GaN NWs have superior mechanical property and young modulus compare to commercial Si and Carbon tips which results in having less bending issue during measurement. The GaN NWs are prepared via two different methods: i) Catalyst-free selected area growth, using Metal Organic Chemical Vapor Deposition (MOCVD), ii) top-down approach by employing Au nanoparticles as the mask material in dry-etch process. To achieve small diameter tips, the semipolar planes of the NWs grown by MOCVD are etched using AZ400k. The diameter of the NWs fabricated using the top down process is controlled by using different size of nanoparticles and by Inductively Coupled Plasma etching. NWs with various diameters were manipulated on Si cantilevers using Focus Ion Beam (FIB) to make tips for AFM measurement. A Si (110) substrate containing nano-scale grooves with vertical 900 walls were used as a sample for inspection. AFM measurements were carried out in tapping modes for both types of nanowires (top-down and bottom-up grown nanowires) and results are compared with conventional Si and carbon nanotube tips. It is shown our fabricated tips are robust and have improved edge resolution over conventional Si tips. GaN tips made with NW's fabricated using our top down method are also shown to retain the gold nanoparticle at tip, which showed enhanced field effects in Raman spectroscopy.

  11. Correlation of microstructure, tensile properties and hole expansion ratio in cold rolled advanced high strength steels

    Science.gov (United States)

    Terrazas, Oscar R.

    The demand for advanced high strength steels (AHSS) with higher strengths is increasing in the automotive industry. While there have been major improvements recently in the trade-off between ductility and strength, sheared-edge formability of AHSS remains a critical issue. AHSS sheets exhibit cracking during stamping and forming operations below the predictions of forming limits. It has become important to understand the correlation between microstructure and sheared edge formability. The present work investigates the effects of shearing conditions, microstructure, and tensile properties on sheared edge formability. Seven commercially produced steels with tensile strengths of 1000 +/- 100 MPa were evaluated: five dual-phase (DP) steels with different compositions and varying microstructural features, one trip aided bainitic ferrite (TBF) steel, and one press-hardened steel tempered to a tensile strength within the desired range. It was found that sheared edge formability is influenced by the martensite in DP steels. Quantitative stereology measurements provided results that showed martensite size and distribution affect hole expansion ratio (HER). The overall trend is that HER increases with more evenly dispersed martensite throughout the microstructure. This microstructure involves a combination of martensite size, contiguity, mean free distance, and number of colonies per unit area. Additionally, shear face characterization showed that the fracture and burr region affect HER. The HER decreases with increasing size of fracture and burr region. With a larger fracture and burr region more defects and/or micro-cracks will be present on the shear surface. This larger fracture region on the shear face facilitates cracking in sheared edge formability. Finally, the sheared edge formability is directly correlated to true fracture strain (TFS). The true fracture strain from tensile samples correlates to the HER values. HER increases with increasing true fracture strain.

  12. High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization.

    Science.gov (United States)

    Andolfi, Laura; Murello, Anna; Cassese, Damiano; Ban, Jelena; Dal Zilio, Simone; Lazzarino, Marco

    2017-04-18

    Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.

  13. Effect of Advance Ratio and Blade Planform on the Propeller Performance of a High Altitude Airship

    Directory of Open Access Journals (Sweden)

    Zhenchen Liu

    2016-01-01

    Full Text Available Experimental investigations on the influences of Reynolds number, blade planform and advance ratio on the aerodynamic performance are carried. Different from conventional aircraft propellers, the HAA propellers are characterized by low Reynolds number, large thrust requirement and low advance ratio. At the moment, the theoretical guidance and industrial experience in designing such propellers are still lacked. In the present study, the influence of Reynolds number is firstly studied via tests of a propeller at different rotational speeds. It is found that, for the propeller with airfoil S1223, the influence of Reynolds number is negligible as Re0.7 > 1.2 × 105 ( . The tests regarding the influences of blade planform and advance ratio on propeller performance are carried in the condition of Re0.7 ≥ 1.5 × 105. The results show that, when advance ratio is below 0.8, the blade with narrow tip is favorable to the propulsive efficiency. Hence, it is suggested that the blade with narrow tip should be adopted by the large thrust and small advance ratio HAA propellers. For HAA propellers with advance ratio greater than 0.8, the propulsive efficiency can be benefitted by increasing the blade tip width. Hence, the blade with wide tip is more suitable in this application.

  14. Copper selenide thin films by chemical bath deposition

    Science.gov (United States)

    García, V. M.; Nair, P. K.; Nair, M. T. S.

    1999-05-01

    We report the structural, optical, and electrical properties of thin films (0.05 to 0.25 μm) of copper selenide obtained from chemical baths using sodium selenosulfate or N,N-dimethylselenourea as a source of selenide ions. X-ray diffraction (XRD) studies on the films obtained from baths using sodium selenosulfate suggest a cubic structure as in berzelianite, Cu 2- xSe with x=0.15. Annealing the films at 400°C in nitrogen leads to a partial conversion of the film to Cu 2Se. In the case of films obtained from the baths containing dimethylselenourea, the XRD patterns match that of klockmannite, CuSe. Annealing these films in nitrogen at 400°C results in loss of selenium, and consequently a composition rich in copper, similar to Cu 2- xSe, is reached. Optical absorption in the films result from free carrier absorption in the near infrared region with absorption coefficient of ˜10 5 cm -1. Band-to-band transitions which gives rise to the optical absorption in the visible-ultraviolet region may be interpreted in terms of direct allowed transitions with band gap in the 2.1-2.3 eV range and indirect allowed transitions with band gap 1.2-1.4 eV. All the films, as prepared and annealed, show p-type conductivity, in the range of (1-5)×10 3 Ω -1 cm -1. This results in high near infrared reflectance, of 30-80%.

  15. Reinforcing effects of abused 'bath salts' constituents 3,4-methylenedioxypyrovalerone and α-pyrrolidinopentiophenone and their enantiomers.

    Science.gov (United States)

    Gannon, Brenda M; Rice, Kenner C; Collins, Gregory T

    2017-10-01

    Synthetic cathinones found in abused 'bath salts' preparations are chiral molecules. Racemic 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopentiophenone (α-PVP) are two common constituents of these preparations that have been reported to be highly effective reinforcers; however, the relative contribution of each enantiomer toward these effects has not been determined. Thus, male Sprague-Dawley rats were trained to respond for racemic MDPV or α-PVP (n=9/drug), with full dose-response curves for the racemate and the S and R enantiomers of MDPV and α-PVP generated under a progressive ratio schedule of reinforcement. Racemic mixtures of both MDPV and α-PVP as well as each enantiomer maintained responding in a dose-dependent manner, with racemic MDPV and α-PVP being equipotent. The rank order of potency within each drug was S enantiomer>racemate ≫ R enantiomer. Although both enantiomers of α-PVP were as effective as racemic α-PVP, R-MDPV was a slightly less effective reinforcer than both S and racemic MDPV. The results of these studies provide clear evidence that both enantiomers of MDPV and α-PVP function as highly effective reinforcers and likely contribute toward the abuse-related effects of 'bath salts' preparations containing racemic MDPV and/or α-PVP.

  16. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  17. Bath-PUVA therapy improves impaired resting regulatory T cells and increases activated regulatory T cells in psoriasis.

    Science.gov (United States)

    Kubo, Ryoji; Muramatsu, Shinnosuke; Sagawa, Yoko; Saito, Chiyo; Kasuya, Saori; Nishioka, Akiko; Nishida, Emi; Yamazaki, Sayuri; Morita, Akimichi

    2017-04-01

    Bath-psoralen plus ultraviolet light A (PUVA) therapy is an effective, safe, and inexpensive treatment for psoriasis. Psoriasis might be due to an unbalanced ratio of Th17 cells and regulatory T cells (Treg). The Treg functional ratio is significantly lower in patients with psoriasis compared with controls and is inversely correlated with the Psoriasis Area and Severity Index score. We previously reported that bath-PUVA therapy significantly increases the number of Treg and restores Treg function to almost normal in most patients with psoriasis. We examined the effects of bath-PUVA therapy on three distinct Foxp3(+) subsets: activated Treg (aTreg), resting Treg (rTreg), and cytokine-secreting non-suppressive T cells. We enrolled 15 patients with psoriasis and 11 healthy controls. We examined aTreg, rTreg, and cytokine-secreting non-suppressive T cells in peripheral blood obtained from the psoriasis patients before and after every fifth bath-PUVA therapy session. Levels of aTreg, which are considered to have the strongest suppressive activity in patients with psoriasis, were significantly increased in the early bath-PUVA therapy sessions, and then diminished. Levels of rTreg were lower in psoriasis patients than in healthy controls, and increased during bath-PUVA therapy. Bath-PUVA therapy induced aTreg and rTreg concomitantly with an improvement in the psoriatic lesions, suggesting a mechanism for the effectiveness of bath-PUVA therapy for psoriasis patients. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  18. Performance of High-pressure-ratio Axial-flow Compressor Using Highly Cambered NACA 65-series Blower Blades at High Mach Numbers

    Science.gov (United States)

    Voit, Charles H; Guentert, Donald C; Dugan, James F

    1950-01-01

    A complete stage of an axial-flow compressor was designed and built to investigate the possibility of obtaining a high pressure ratio with an acceptable efficiency through the use of the optimum combination of high blade loading and high relative inlet Mach number. Over-all stage performance was investigated over a range of flows at equivalent tip speeds of 418 to 836 feet per second. At design speed (836 ft/sec), a peak total-pressure ration of 1.445 was obtained with an adiabatic efficiency of 0.89. For design angle of attack at the mean radius, a total-pressure ratio of 1.392 was obtained.

  19. Impact of Serum Leptin to Adiponectin Ratio on Regression of Metabolic Syndrome in High-Risk Individuals: The ARIRANG Study

    Science.gov (United States)

    Kang, Dae Ryong; Yadav, Dhananjay; Koh, Sang-Baek; Kim, Jang-Young

    2017-01-01

    Purpose The ratio of serum leptin to adiponectin (L/A ratio) could be used as a marker for insulin resistance. However, few prospective studies have investigated the impact of L/A ratio on improvement of metabolic components in high-risk individuals with metabolic syndrome. We examined the association between L/A ratio and the regression of metabolic syndrome in a population-based longitudinal study. Materials and Methods A total of 1017 subjects (431 men and 586 women) with metabolic syndrome at baseline (2005–2008) were examined and followed (2008–2011). Baseline serum levels of leptin and adiponectin were analyzed by radioimmunoassay. Area under the receiver operating characteristics curve (AUROC) analyses were used to assess the predictive ability of L/A ratio for the regression of metabolic syndrome. Results During an average of 2.8 years of follow-up, metabolic syndrome disappeared in 142 men (32.9%) and 196 women (33.4%). After multivariable adjustment, the odds ratios (95% confidence interval) for regression of metabolic syndrome in comparisons of the lowest to the highest tertiles of L/A ratio were 1.84 (1.02–3.31) in men and 2.32 (1.37–3.91) in women. In AUROC analyses, L/A ratio had a greater predictive power than serum adiponectin for the regression of metabolic syndrome in both men (p=0.024) and women (p=0.019). Conclusion Low L/A ratio is a predictor for the regression of metabolic syndrome. The L/A ratio could be a useful clinical marker for management of high-risk individuals with metabolic syndrome. PMID:28120564

  20. [Collaboration between Physician Emerich Lindenmayer and Architect Jan Nevole in Restoring the Sokobanja Turkish Bath].

    Science.gov (United States)

    Mitrović, Gordana; Nešković, Marina

    2015-01-01

    The Sokobanja Turkish bath is an exceptional example of two-section baths and quite particular in its style, structure type and technology used. It is one of the two of the same type that remained in Serbia and the only one that has retained its original function. About its construction we learn from the Vidin sanjak defter from the second half of the 16th century. In the lavish built heritage inventory, Turkish baths are quite unique secular public structures, playing a prominent role in the development of health culture. Based upon their specific function, these baths possess a special architectural expression, are often monumental, decorative and imaginative in their forms and ornamentation. Prince Miloš initiated repair works of the Soko Banja baths and spa springs immediately after the settlement became a part of the Serbian Principality in 1834. When work on restoring the men's baths started, a separate room with a tub was built for Prince Miloš, while the women's bath remained in ruins. In 1847, the Ministry of Interior sent Dr Emerich Lindenmayer and architect Jan Nevole, as an expert team, to assess the state of the hammam so that it could be included in the undertakings funded from the state budget. After the assessment and review of the existing issues and upon a detailed report submitted to the Ministry of Interior, complex repairs were conducted in 1850, according to Nevole's architectural design and his constant supervision. The approach implemented in the architectural renovation process was based on highly regarded principles of the time, thus preserving both the hammam's original function and its valuable architecture.

  1. Collaboration between physician Emerich Lindenmayer and architect Jan Nevole in restoring the Sokobanja Turkish bath

    Directory of Open Access Journals (Sweden)

    Mitrović Gordana

    2015-01-01

    Full Text Available The Sokobanja Turkish bath is an exceptional example of twosection baths and quite particular in its style, structure type and technology used. It is one of the two of the same type that remained in Serbia and the only one that has retained its original function. About its construction we learn from the Vidin sanjak defter from the second half of the 16th century. In the lavish built heritage inventory, Turkish baths are quite unique secular public structures, playing a prominent role in the development of health culture. Based upon their specific function, these baths possess a special architectural expression, are often monumental, decorative and imaginative in their forms and ornamentation. Prince Miloš initiated repair works of the Soko Banja baths and spa springs immediately after the settlement became a part of the Serbian Principality in 1834. When work on restoring the men’s baths started, a separate room with a tub was built for Prince Miloš, while the women’s bath remained in ruins. In 1847, the Ministry of Interior sent Dr Emerich Lindenmayer and architect Jan Nevole, as an expert team, to assess the state of the hammam so that it could be included in the undertakings funded from the state budget. After the assessment and review of the existing issues and upon a detailed report submitted to the Ministry of Interior, complex repairs were conducted in 1850, according to Nevole’s architectural design and his constant supervision. The approach implemented in the architectural renovation process was based on highly regarded principles of the time, thus preserving both the hammam’s original function and its valuable architecture.

  2. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios.

    Science.gov (United States)

    Chislock, Michael F; Sharp, Katherine L; Wilson, Alan E

    2014-02-01

    In freshwater ecosystems, a variety of factors mediate phytoplankton community structure, including herbivore community structure, light availability, temperature, mixing, and absolute and relative nutrient concentrations (total nitrogen (TN), total phosphorus (TP)). Ecological stoichiometry examines how the nutrient content of organisms and their environment may mediate population-, community-, and ecosystem-level processes. The manipulation of N:P ratios is a widely regarded tool for managing phytoplankton species composition given that nitrogen-fixing cyanobacteria should dominate algal communities under relatively low N:P (nitrogen. However, due to the physiological expense of nitrogen fixation, diazotrophs should be outcompeted by non-nitrogen fixing phytoplankton under higher N:P when other environmental factors are similar. We tested this hypothesis in a field experiment using 2500-L limnocorrals installed in a eutrophic lake (ambient N:P ∼40:1 (by atoms); TN ∼1360 μgL(-1); TP ∼75 μgL(-1)). At the start of the experiment, we randomly assigned limnocorrals among the ambient (40:1) and low (7:1) or high (122:1) N:P treatments (n = 4 replicates/treatment), which were established by adding P or N at the start of the experiment, respectively. The phytoplankton community in the enclosures at the start of the experiment was diverse (i.e., 18 phytoplankton genera) and dominated by chlorophytes (including Coelastrum and Scenedesmus (30% and 13% of total biomass, respectively)) and cyanobacteria (including Anabaena and Cylindrospermopsis (23% and 17% of total biomass, respectively)). In contrast to predictions based on ecological stoichiometry, the phytoplankton community in all N:P treatments increased in abundance and was almost entirely composed of the nitrogen-fixing cyanobacterium, Cylindrospermopsis raciborskii, by the conclusion of the study. Moreover, concentrations of the cyanobacterial neurotoxin, saxitoxin, were enhanced under the two highest N

  3. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    Science.gov (United States)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  4. Orbiting droplets on a vibrated bath

    Science.gov (United States)

    Sampara, Naresh; Burger, Loic; Gilet, Tristan; Microfluidics, university of liege Team

    2015-11-01

    A millimeter-sized oil droplet can bounce on a vertically vibrated liquid bath for unlimited time. It may couple to the surface wave it emits; leading to horizontal self-propulsion called walking. When several walkers coexist close to one another, they either repel or attract each other, in response to the superposition of the waves they generate. Attraction leads to various bound states, including droplets that orbit around each other. We have experimentally investigated the variety of quantized orbital motions exhibited by two, three and more identical walkers, as a function of forcing acceleration. Each motion is quantified in terms of droplet and wave energy.

  5. High aspect ratio micro tool manufacturing for polymer replication using mu EDM of silicon, selective etching and electroforming

    DEFF Research Database (Denmark)

    Tosello, Guido; Bissacco, Giuliano; Tang, Peter Torben

    2008-01-01

    Mass fabrication of polymer micro components with high aspect ratio micro-structures requires high performance micro tools allowing the use of low cost replication processes such as micro injection moulding. In this regard an innovative process chain, based on a combination of micro electrical di...

  6. Unsteady rans simulation of the off-design operation of a high expansion ratio ORC radial turbine

    NARCIS (Netherlands)

    Rinaldi, E.; Pecnik, R.; Colonna di Paliano, P.

    2015-01-01

    The design of Organic Rankine cycle (ORC) turbines is a challenging task due to the complex thermodynamic behavior of the working fluid, the typical high expansion ratio which leads to a highly supersonic flow, the flow unsteadiness, and the continuous shift of operation between on- and off-design

  7. Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Won [School of Mechanical and Aerospace Engineering, Seoul National University, Gwanak 599 Gwanak-ro, Gwanak-Gu, Seoul, 151-744 (Korea, Republic of); Shin, Hong Shik, E-mail: shinhs05@ut.ac.kr [Department of Energy System Engineering, Korea National University of Transportation, Chungju, Chungbuk, 380-702 (Korea, Republic of); Chu, Chong Nam [School of Mechanical and Aerospace Engineering, Seoul National University, Gwanak 599 Gwanak-ro, Gwanak-Gu, Seoul, 151-744 (Korea, Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer A high aspect ratio micro-pin array was fabricated by laser beam machining using the piling of a recast layer. Black-Right-Pointing-Pointer The recast layer could be piled due to the chromium oxide with high surface tension and viscosity of chromium oxide. Black-Right-Pointing-Pointer The machining characteristics for a high aspect ratio micro-pin array were investigated according to laser beam parameters. Black-Right-Pointing-Pointer Experiments for attaching force relative to the surface roughness of the subject plane were carried out. Black-Right-Pointing-Pointer The developed micro-pin array was successfully attached to vertical wall. - Abstract: In this paper, a micro-pin array with a high aspect ratio was fabricated on AISI 304 using laser beam ablation for attachment to a vertical wall. In recent times, there has been research in various fields, including robotics and bio-MEMS, regarding attachment to vertical walls, and micro-pin arrays may offer the best solution. For vertical wall attachment, the micro-pin should have a high aspect ratio, long length, and sharp tip. The recast layer could be piled due to the chromium oxide with high surface tension and viscosity of chromium oxide, and it composed the micro-pins with high aspect ratio. X-ray photoelectron spectroscopy (XPS) was used to identify the characteristics of the piled recast layer. The machining characteristics for a high aspect ratio micro-pin array were investigated according to laser beam machining parameters. In addition, experiments for attaching force relative to the surface roughness of the subject plane were carried out.

  8. Comparison of Outcome of Normal and High-Risk Pregnancies Based Upon Cerebroplacental Ratio Assessed by Doppler Studies.

    Science.gov (United States)

    Kant, Anita; Seth, Namrata; Rastogi, Deepti

    2017-06-01

    To evaluate the cerebroplacental ratio which is the ratio of pulsatility index of fetal middle cerebral and umbilical arteries, in normal and high-risk pregnancies during 30-36 weeks of gestation. In this study, we included 70 patients, who were scanned for Doppler parameters of Middle cerebral artery and Umbilical artery pulsatility index ratio of fetus, between 30 and 36 weeks, and then were followed till delivery. Thirty-five patients with normal pregnancy and 35 patients with high-risk pregnancy were included. Perinatal outcome was evaluated in relation to indices ratio. There was cerebroplacental ratio of <1.00 in eight cases of the study group in comparison with the control group in which there is no case of <1.00 value. It was associated with poor perinatal outcome in terms of need for lower segment cesarean section for fetal distress, Apgar <8 at 5 min, and admission to nursery. Cerebroplacental ratio is highly sensitive in diagnosing hemodynamically compromised fetuses and very useful for the prediction of adverse perinatal outcome in these fetuses.

  9. Triglycerides to High-Density Lipoprotein Cholesterol Ratio Can Predict Impaired Glucose Tolerance in Young Women with Polycystic Ovary Syndrome.

    Science.gov (United States)

    Song, Do Kyeong; Lee, Hyejin; Sung, Yeon Ah; Oh, Jee Young

    2016-11-01

    The triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio could be related to insulin resistance (IR). We previously reported that Korean women with polycystic ovary syndrome (PCOS) had a high prevalence of impaired glucose tolerance (IGT). We aimed to determine the cutoff value of the TG/HDL-C ratio for predicting IR and to examine whether the TG/HDL-C ratio is useful for identifying individuals at risk of IGT in young Korean women with PCOS. We recruited 450 women with PCOS (24±5 yrs) and performed a 75-g oral glucose tolerance test (OGTT). IR was assessed by a homeostasis model assessment index over that of the 95th percentile of regular-cycling women who served as the controls (n=450, 24±4 yrs). The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in women with PCOS. Among the women with PCOS who had normal fasting glucose (NFG), the prevalence of IGT was significantly higher in the women with PCOS who had a high TG/HDL-C ratio compared with those with a low TG/HDL-C ratio (15.6% vs. 5.6%, p2.5 are recommended to be administered an OGTT to detect IGT even if they have NFG.

  10. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Institute of Scientific and Technical Information of China (English)

    Zhi-yang L; Ao-shuang Wan; Jun-jiang Xiong; Kuang Li; Jian-zhong Liu

    2016-01-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  11. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Science.gov (United States)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  12. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

    Science.gov (United States)

    Gogoi, Paragjyoti; Saikia, Rajib; Changmai, Sanjib

    2015-04-01

    ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 °C for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

  13. Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor

    Science.gov (United States)

    McKain, Ted F.; Holbrook, Greg J.

    1997-01-01

    The objective of this program was to define the aerodynamic design and manufacturing coordinates for an advanced 4:1 pressure ratio, single stage centrifugal compressor at a 10 lbm/sec flow size. The approach taken was to perform an exact scale of an existing DDA compressor originally designed at a flow size of 3.655 lbm/sec.

  14. Patterning of periodic high-aspect-ratio nanopores in anatase titanium dioxide from titanium fluoride hydrolysis.

    Science.gov (United States)

    Tevis, Ian D; Stupp, Samuel I

    2011-05-01

    We report straight pores in titanium dioxide produced by a pattern transfer method with titanium fluoride hydrolysis. The resulting films on fluorine-doped tin oxide had pores with diameters of 30 nm and depths of 500 nm, corresponding to aspect ratios of 1:17.

  15. Key Techniques on Preparing High Aspect Ratio Micro and Nano Structures

    DEFF Research Database (Denmark)

    Jian, Zhao; Lianhe, Dong; Xiaoli, Zhu

    2016-01-01

    effectively. The mechanism of action between NaCl and HSQ was analyzed. The collapse and adhesion of resist structure due to the effect of gas-liquid interfacial capillary surface tension were suppressed by the CO2 supercritical drying method. Large-area dense nano-structures with the aspect ratio of 12...

  16. A study of high-altitude manned research aircraft employing strut-braced wings of high-aspect-ratio

    Science.gov (United States)

    Smith, P. M.; Deyoung, J.; Lovell, W. A.; Price, J. E.; Washburn, G. F.

    1981-01-01

    The effect of increased wing aspect ratio of subsonic aircraft on configurations with and without strut bracing. Results indicate that an optimum cantilever configuration, with a wing aspect ratio of approximately 26, has a 19% improvement in cruise range when compared to a baseline concept with a wing aspect ratio of approximately 10. An optimum strut braced configuration, with a wing aspect ratio of approximately 28, has a 31% improvment in cruise range when compared to the same baseline concept. This improvement is mainly due to the estimated reduction in wing weight resulting from use of lifting struts. All configurations assume the same mission payload and fuel. The drag characteristics of the wings are enhanced with the use of laminar flow airfoils. A method for determining the extent of attainable natural laminar flow, and methods for preliminary structural design and for aerodynamic analysis of wings lifting struts are presented.

  17. Serum Free Light Chain Assay and κ/λ Ratio: Performance in Patients With Monoclonal Gammopathy-High False Negative Rate for κ/λ Ratio

    Science.gov (United States)

    Singh, Gurmukh

    2017-01-01

    Background Serum free light chain assay (SFLCA) and κ/λ ratio, and protein electrophoretic methods are used in the diagnosis and monitoring of monoclonal gammopathies. Methods Results for serum free light chains, serum and urine protein electrophoreses and immunofixation electrophoreses in 468 patients with a diagnosis of monoclonal gammopathy were compared. The results of the two methods were graded as concordant, non-concordant or discordant with the established diagnoses to assess the relative performance of the methods. Results of κ/λ ratio in samples with monoclonal protein detectable by electrophoretic methods were also analyzed. Results Protein electrophoreses results were concordant with the established diagnoses significantly more often than κ/λ ratio. The false negative rate for κ/λ ratio was higher than that for electrophoretic methods. κ/λ ratio was falsely negative in about 27% of the 1,860 samples with detectable monoclonal immunoglobulin. The false negative rate was higher in lesions with lambda chains (32%) than those with kappa chains (24%). The false negative rate for κ/λ ratio was over 55% in samples with monoclonal gammopathy of undetermined significance. Even at first encounter, the false negative rates for κ/λ ratios for monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma were 66.98%, 23.08%, and 30.15%, respectively, with false negative rate for lambda chain lesions being higher. Conclusions Electrophoretic studies of serum and urine are superior to SFLCA and κ/λ ratio. Abnormal κ/λ ratio, per se, is not diagnostic of monoclonal gammopathy. A normal κ/λ ratio does not exclude monoclonal gammopathy. False negative rates for lesions with lambda chain are higher than those for lesions with kappa chains. Electrophoretic studies of urine are underutilized. Clinical usefulness and medical necessity of SFLCA and κ/λ ratio is of questionable value in routine clinical testing. PMID:27924175

  18. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    Science.gov (United States)

    Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.

  19. Single-pulse femtosecond laser Bessel beams drilling of high-aspect-ratio microholes based on electron dynamics control

    Science.gov (United States)

    Zhao, Weiwei; Li, Xiaowei; Xia, Bo; Yan, Xueliang; Han, Weina; Lu, Yongfeng; Jiang, Lan

    2014-11-01

    Microholes drilling has attracted extensive research efforts for its broad applications in photonics, microfluidics, optical fibers and many other fields. A femtosecond (fs) laser is a promising tool for high-precision materials processing with reduced recast/microcracks and minimized heat affected zones. But there remain many challenges in hole drilling using conventional fs laser with Gaussian beams, such as low aspect ratio and taper effects. We report small-diameter and high-aspect-ratio microholes with taper free drilling in PMMA (polymethyl methacrylate) using single-pulse fs laser Bessel beams. Axicon is used to transform Gaussian beams into Bessel beams, which then irradiate in the sample by a telescope consisting of plano-convex lens and microscope objective. Using this technique, we enhance the aspect ratio of microholes by 55 times as compared with Gaussian beams. We attribute this high aspect ratio and high quality microholes formation to the unique spatial intensity distribution and propagation stability of Bessel beams, which can effectively adjust the transient localized electron density distribution leading to a long and uniform localized-interacted zone. By using the optimized pulse energy and focal depth position, the microholes diameter ranges between 1.4-2.1 μm and the aspect ratio can exceed 460. This efficient technique is of great potentials for fabrication of microphotonics devices and microfluidics.

  20. Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires

    Science.gov (United States)

    Ikegami, Miwako; Okada, Kikuo; Zaizen, Yuji; Makino, Yukio; Jensen, Jorgen B.; Gras, John L.; Harjanto, Hery

    The elemental composition of individual aerosol particles of 0.15-3 μm radius, collected over Kalimantan during the 1997 Indonesian forest fire event, was analyzed using a transmission electron microscope equipped with an energy-dispersive X-ray analyzer (EDX). Although 60-90% of the particles collected at altitudes of 1-5 km contained K, they exhibited high weight ratios of S/K with median values of 9-18 independent of particle size. These were much larger than those (median values of 2-4) obtained from the forest fires in northern Australia. The high weight ratios over Kalimantan are considered to be due to the heterogeneous growth of particles through the oxidation of SO 2. In addition to SO 2 from the combustion of forest biomass, SO 2 originating from the combustion of peat below the ground is believed to have been important in producing the high S/K ratios.

  1. Recovery process for electroless plating baths

    Science.gov (United States)

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  2. Infant's physiological response to short heat stress during sauna bath.

    Science.gov (United States)

    Rissmann, A; Al-Karawi, J; Jorch, G

    2002-01-01

    Thermoregulatory response to Finnish sauna bath was investigated in 47 infants (age 3 - 14 month). Before taking a short sauna bath lasting 3 min, the infants stayed in a swimming pool for 15 min. Under these conditions sauna bathing did not increase the rectal temperature. Unexpectedly rectal temperature even decreased by 0.2 degrees C (p sauna bathing. The blood pressure amplitude decreased significantly after the swimming period from 47 mm Hg to 38 mm Hg (p sauna bathing to 42 mm Hg. All infants tolerated short heat exposure in the sauna without side effects. The circulatory adjustment was efficient. Even young infants were able to cope with the acute circulatory changes imposed by heat stress. Adequate thermoregulatory and cardiovascular adaptive responses to sauna bathing could be shown for the first time in infants between 3 and 14 months of age.

  3. High S/N Ratio Slotted Step Piezoresistive Microcantilever Designs for Biosensors

    Directory of Open Access Journals (Sweden)

    Mohd Zahid Ansari

    2013-03-01

    Full Text Available This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts.

  4. L X-ray intensity ratios for high Z elements induced with X-ray tube

    Science.gov (United States)

    Wang, Xing; Xu, Zhongfeng; Zhang, Limin

    2015-07-01

    We have studied the intensity ratios I(Lα1,2)/I(Lβ1,2), I(Lα1,2)/I(Lγ) and I(Lβ1,2)/I(Lγ) for elements Ta, W, Au and Pb by 13.1 keV bremsstrahlung radiation. In this work, experimental values were compared with the theoretical results and other experimental results. Theoretical results of the intensity ratios were calculated with theoretical subshell photoionization cross sections, fractional X-ray emission rates, fluorescence yields, and Coster-Kronig transition probabilities. Good agreement can be observed between experimental values and theoretical results. Comparing with L1 and L2 subshells, the ionization cross section of L3 subshell shows a large increase for Ta and W with the variation of excitation energy from 59.5 keV to 13.1 keV.

  5. New, high statistics measurement of the K+ -> pi0 e+ nu (Ke3) branching ratio

    CERN Document Server

    Sher, A E; Atoyan, G S; Bassalleck, B; Bergman, D R; Cheung, N; Dhawan, S; Do, H; Egger, J; Eilerts, S W; Fischer, H; Herold, W D; Issakov, V V; Kaspar, H; Kraus, D E; Lazarus, D M; Lichard, P; Lowe, J; Lozano-Bahilo, J; Ma, H; Majid, W A; Pislak, S; Poblaguev, A A; Rehak, P; Sher, A E; Thompson, J A; Truöl, P; Zeller, M E; Sher, Aleksey

    2003-01-01

    E865 at the Brookhaven National Laboratory AGS collected about 70,000 K+(e3) events with the purpose of measuring the relative K+(e3) branching ratio. The pi0 in all the decays was detected using the e+e- pair from pi0 -> e+e-gamma decay and no photons were required. Using the Particle Data Group branching ratios for the normalization decays we obtain BR(K+(e3(gamma))=(5.13+/-0.02(stat)+/-0.09(sys)+/-0.04(norm))%, where $K+(e3(gamma)) includes the effect of virtual and real photons. This result is 2.3 sigma higher than the current Particle Data Group value. The implications of this result for the $V_{us}$ element of the CKM matrix, and the matrix's unitarity are discussed.

  6. Thermal baths as quantum resources: more friends than foes?

    Science.gov (United States)

    Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia

    2015-12-01

    In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.

  7. Bath and colonization of the preterm newborn skin.

    OpenAIRE

    Chollopetz da Cunha, Maria Luzia; Soibelmann Procianoy, Renato

    2008-01-01

    This article aims at determining the bathing role in skin colonization of preterm newborn by reviewing the literature from MEDLINE database. Clinical researches have demonstrated that bathing with soap triggers pH increase interfering with the skin physiological protection and provoking changes in the cutaneous microflora composition. Preterm neonates in NICU tend to acquire nosocomial skin flora from the action of bathing with cleansing products on the epidermal barrier function with direct ...

  8. DNC/HNC RATIO OF MASSIVE CLUMPS IN EARLY EVOLUTIONARY STAGES OF HIGH-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takeshi [Institute of Astronomy, University of Tokyo, Osawa, Mitaka, Tokyo 181-0015 (Japan); Sakai, Nami; Yamamoto, Satoshi [Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033 (Japan); Furuya, Kenji; Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-03-10

    We have observed the HN{sup 13}C J = 1-0 and DNC J = 1-0 lines toward 18 massive clumps, including infrared dark clouds (IRDCs) and high-mass protostellar objects (HMPOs), by using the Nobeyama Radio Observatory 45 m telescope. We have found that the HN{sup 13}C emission is stronger than the DNC emission toward all of the observed sources. The averaged DNC/HNC ratio is indeed lower toward the observed high-mass sources (0.009 {+-} 0.005) than toward the low-mass starless and star-forming cores (0.06). The kinetic temperature derived from the NH{sub 3} (J, K) = (1, 1) and (2, 2) line intensities is higher toward the observed high-mass sources than toward the low-mass cores. However, the DNC/HNC ratio of some IRDCs involving the Spitzer 24 {mu}m sources is found to be lower than that of HMPOs, although the kinetic temperature of the IRDCs is lower than that of the HMPOs. This implies that the DNC/HNC ratio does not depend only on the current kinetic temperature. With the aid of chemical model simulations, we discuss how the DNC/HNC ratio decreases after the birth of protostars. We suggest that the DNC/HNC ratio in star-forming cores depends on the physical conditions and history in their starless-core phase, such as its duration time and the gas kinetic temperature.

  9. DNC/HNC Ratio of Massive Clumps in Early Evolutionary Stages of High-mass Star Formation

    Science.gov (United States)

    Sakai, Takeshi; Sakai, Nami; Furuya, Kenji; Aikawa, Yuri; Hirota, Tomoya; Yamamoto, Satoshi

    2012-03-01

    We have observed the HN13C J = 1-0 and DNC J = 1-0 lines toward 18 massive clumps, including infrared dark clouds (IRDCs) and high-mass protostellar objects (HMPOs), by using the Nobeyama Radio Observatory 45 m telescope. We have found that the HN13C emission is stronger than the DNC emission toward all of the observed sources. The averaged DNC/HNC ratio is indeed lower toward the observed high-mass sources (0.009 ± 0.005) than toward the low-mass starless and star-forming cores (0.06). The kinetic temperature derived from the NH3 (J, K) = (1, 1) and (2, 2) line intensities is higher toward the observed high-mass sources than toward the low-mass cores. However, the DNC/HNC ratio of some IRDCs involving the Spitzer 24 μm sources is found to be lower than that of HMPOs, although the kinetic temperature of the IRDCs is lower than that of the HMPOs. This implies that the DNC/HNC ratio does not depend only on the current kinetic temperature. With the aid of chemical model simulations, we discuss how the DNC/HNC ratio decreases after the birth of protostars. We suggest that the DNC/HNC ratio in star-forming cores depends on the physical conditions and history in their starless-core phase, such as its duration time and the gas kinetic temperature.

  10. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath

    Indian Academy of Sciences (India)

    H P Sachin; Ganesha Achary; Y Arthoba Naik; T V Venkatesha

    2007-02-01

    Electro-polymerization of orthonitroaniline was carried out on graphite electrode in hydrochloric acid medium. Zinc–nickel alloy deposition was carried out in the presence of polynitroaniline in acid sulphate bath. The bath constituent and bath variables were optimized through Hull cell experiments. The current efficiency and throwing power were measured. High shift of potential towards more cathodic direction was observed in presence of addition agent. Corrosion resistance test revealed good protection of base metal by zinc–nickel coating obtained from the developed electrolyte. SEM photomicrograph shows fine-grained deposit in the presence of addition agent. The consumption of brightener in the lab-scale was 0.01 gL-1 for 1000 amp-h.

  11. Einstein’s enigma or black holes in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2006-01-01

    "The bubbles were swirling all around me massaging my body ... As I luxuriated in this fantastic bubble bath, my eyes grew heavy and I drifted into a supremely blissful slumber." So begins Alfie's encounter with a remarkable and revelatory bathtub purchased from a mysterious neighbour named Al. Einstein's Enigma or Black Holes in My Bubble Bath tells the story of gravitation theory from the early historic origins to the latest developments in astrophysics, focusing on Albert Einstein's theory of general relativity and black-hole physics. Through engaging conversations and napkin-scribbled diagrams come tumbling the rudiments of relativity, spacetime and much of modern physics, narrated with high didactic and literary talent, and each embedded in casual lessons given by a worldly astrophysicist to his friend Alfie, a freelance organiser of proposals. Join the intellectual fun and exalt in the frothy ideas while vicariously taking relaxing baths in this magical bathtub. Prof. C.V. Vishveshwara is a renowned the...

  12. A new method to measure bowen ratios using high resolution vertical dry and wet bulb temperature profiles

    Directory of Open Access Journals (Sweden)

    T. Euser

    2013-06-01

    Full Text Available The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. Despite its simplicity, the Bowen ratio method is generally considered to be unreliable due to the use of two-level sensors that are installed by default in operational Bowen ratio systems. In this paper we present the concept of a new measurement methodology to estimate the Bowen ratio from high resolution vertical dry and wet bulb temperature profiles. A short field experiment with Distributed Temperature Sensing (DTS in a fibre optic cable having 13 levels was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial near Pietermaritzburg (South Africa. Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and temperature at 0.20 m intervals was established. These data allows the computation of the Bowen ratio with a high precision. By linking the Bowen ratio to net radiation and soil heat flux, the daytime latent heat flux was estimated. The latent heat flux derived from DTS-based Bowen ratio (BR-DTS showed consistent agreement (correlation coefficients between 0.97 and 0.98 with results derived from eddy covariance, surface layer scintillometer and surface renewal techniques. The latent heat from BR-DTS overestimated the latent heat derived with the eddy covariance by 4% and the latent heat derived with the surface layer scintillometer by 8%. Through this research, a new window is opened to engage on simplified, inexpensive and easy to interpret in situ measurement techniques for measuring evaporation.

  13. Ultrasonic bath depth control and regulation in single cell recordings.

    Science.gov (United States)

    Duong Dinh, Thien An; Jüngling, Eberhard; Strotmann, Karl-Heinz; Westhofen, Martin; Lückhoff, Andreas

    2006-09-01

    Control of the bath depth is critical in many applications of the patch-clamp technique, particularly when the capacitance of cells is determined to assess secretion or transmitter release or in studies of ion currents sensitive to small changes in the hydrostatic pressure. We describe an inexpensive technique for tight control of the bath depth with the aid of a commercially available ultrasound sensor. The sensor continuously determines changes in the distance to the bath surface with a resolution of about 10 mum. The signal from the sensor is digitized in a microcontroller card and used to send on or off signals at 100 Hz to a peristaltic pump that removes volume from the bath. The inflow into the bath can be realized in a versatile way. The capacitance of Sylgard-coated patch-clamp glass electrodes, demonstrated to be extremely sensitive to small changes in the area moistened by bath solution, is constant within the noise level of +/-3 fF when immersed into a depth-controlled bath, even during exchange of the bath medium. Thus, when small changes in the cell capacitance are measured in patch-clamp experiments, errors due to alterations in the pipette capacitance caused by bath depth fluctuations are eliminated.

  14. Bath Salts: A Newly Recognized Cause of Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Jonathan McNeely

    2012-01-01

    Full Text Available Bath salts are substance of abuse that are becoming more common and are difficult to recognize due to negative toxicology screening. Acute kidney injury due to bath salt use has not previously been described. We present the case of a previously healthy male who developed acute kidney injury and dialysis dependence after bath salt ingestion and insufflation. This was self-reported with negative toxicology screening. Clinical course was marked by severe hyperthermia, hyperkalemia, rhabdomyolysis, disseminated intravascular coagulation, oliguria, and sepsis. We discuss signs and symptoms, differential diagnoses, potential mechanisms of injury, management, and review of the literature related to bath salt toxicity.

  15. Bath salts: a newly recognized cause of acute kidney injury.

    Science.gov (United States)

    McNeely, Jonathan; Parikh, Samir; Valentine, Christopher; Haddad, Nabil; Shidham, Ganesh; Rovin, Brad; Hebert, Lee; Agarwal, Anil

    2012-01-01

    Bath salts are substance of abuse that are becoming more common and are difficult to recognize due to negative toxicology screening. Acute kidney injury due to bath salt use has not previously been described. We present the case of a previously healthy male who developed acute kidney injury and dialysis dependence after bath salt ingestion and insufflation. This was self-reported with negative toxicology screening. Clinical course was marked by severe hyperthermia, hyperkalemia, rhabdomyolysis, disseminated intravascular coagulation, oliguria, and sepsis. We discuss signs and symptoms, differential diagnoses, potential mechanisms of injury, management, and review of the literature related to bath salt toxicity.

  16. High aspect ratio microstructuring of transparent dielectrics using femtosecond laser pulses: method for optimization of the machining throughput

    Science.gov (United States)

    Hendricks, F.; der Au, J. Aus; Matylitsky, V. V.

    2014-10-01

    High average power, high repetition rate femtosecond lasers with μJ pulse energies are increasingly used for material processing applications. The unique advantage of material processing with sub-picosecond lasers is efficient, fast and localized energy deposition, which leads to high ablation efficiency and accuracy in nearly all kinds of solid materials. This work focuses on the machining of high aspect ratio structures in transparent dielectrics, in particular chemically strengthened Xensation™ glass from Schott using multi-pass ablative material removal. For machining of high aspect ratio structures, among others needed for cutting applications, a novel method to determine the best relation between kerf width and number of overscans is presented. The importance of this relation for optimization of the machining throughput will be demonstrated.

  17. Einstein's Enigma of black holes in my bubble bath

    Energy Technology Data Exchange (ETDEWEB)

    Vishveshwara, C.

    2006-07-01

    Einstein's Enigma or Black Holes in My Bubble Bath is a humorous and informal rendition of the story of gravitation theory from the early historic origins to the latest developments in astrophysics, focusing on Albert Einstein's theory of general relativity and black-hole physics. Through engaging conversations and napkin-scribbled diagrams come tumbling the rudiments of relativity, spacetime and much of modern physics, narrated with high didactic and literary talent, and each embedded in casual lessons given by a worldly astrophysicist to his friend. Join the intellectual fun and exalt in the frothy ideas while vicariously taking relaxing baths in this magical bathtub. (orig.)

  18. Dispersion and Polarization of Surface Waves Trapped in High Aspect Ratio Electrode Arrays

    DEFF Research Database (Denmark)

    Laude, Vincent; Dühring, Maria Bayard; Moubchir, Hanane

    2007-01-01

    .Phys., 90(5):2492, 2001; Appl. Phys. Lett., 89:083515, 2006.) an experimental and theoretical analysis of the transduction of SAW under a metallic array of electrodes with a large aspect ratio on a piezoelectric substrate, whereby allowing the electrode height to become larger than one wavelength....... The multimode character of SAW propagation was observed and the explicit dependence of the SAW velocities as a function of the electrode height was obtained experimentally. Up to a 10-fold slowing of surface waves was observed, with the phase velocity dropping from 4000 m/s down to 450 m/s. We present...

  19. Hot embossing of photonic crystal polymer structures with a high aspect ratio

    DEFF Research Database (Denmark)

    Schelb, Mauno; Vannahme, Christoph; Kolew, Alexander;

    2011-01-01

    Hot embossing is a promising approach for mass production of photonic crystal structures. This paper describes the fabrication of a replication tool for two-dimensional photonic crystal patterns and its replication in substrates of poly(methylmethacrylate) (PMMA) and cyclic olefin copolymer (COC......). A nickel tool for the replication of structures with lateral dimensions of 110 nm and heights of approximately 370 nm is fabricated via electroplating of a nanostructured sample resulting in an aspect ratio of approximately 3.5. The structures are subsequently hot embossed into PMMA and COC substrates....

  20. High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    CERN Document Server

    Mumm, H P; Bauder, W; Abrams, N; Deibel, C M; Huffer, C R; Huffman, P R; Schelhammer, K W; Swank, C M; Janssens, R; Jiang, C L; Scott, R H; Pardo, R C; Rehm, K E; Vondrasek, R; O'Shaughnessy, C M; Paul, M; Yang, L

    2016-01-01

    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.

  1. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak.

    Science.gov (United States)

    Thome, K E; Bongard, M W; Barr, J L; Bodner, G M; Burke, M G; Fonck, R J; Kriete, D M; Perry, J M; Schlossberg, D J

    2016-04-29

    Tokamak experiments at near-unity aspect ratio A≲1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A∼3 plasmas, the L-H power threshold P_{LH} is ∼15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible J_{edge}(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  2. Room temperature nanostructured graphene transistor with high on/off ratio

    Science.gov (United States)

    Dragoman, Mircea; Dinescu, Adrian; Dragoman, Daniela

    2017-01-01

    We report the batch fabrication of graphene field-effect-transistors (GFETs) with nanoperforated graphene as channel. The transistors were cut and encapsulated. The encapsulated GFETs display saturation regions that can be tuned by modifying the top gate voltage, and have on/off ratios of at least 2 × 103 at room temperature and at small drain and gate voltages. In addition, the nanoperforated GFETs display orders of magnitude higher photoresponses than any room-temperature graphene detector configurations that do not involve heterostructures with bandgap materials.

  3. Designs and processes toward high-aspect-ratio nanostructures at the deep nanoscale: unconventional nanolithography and its applications

    Science.gov (United States)

    Lee, Sori; Park, Byeonghak; Kim, Jun Sik; Kim, Tae-il

    2016-11-01

    The patterning of high-resolution-featured deep-nanoscale structures with a high aspect ratio (AR) has received increasing attention in recent years as a promising technique for a wide range of applications, including electrical, optical, mechanical and biological systems. Despite extensive efforts to develop viable nanostructure fabrication processes, a superior technique enabling defect-free, high-resolution control over a large area is still required. In this review, we focus on recent important advances in the designs and processes of high-resolution nanostructures possessing a high AR, including hierarchical and 3D patterns. The unique applications of these materials are also discussed.

  4. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  5. Comparison of Cooling Different Parts in a High Pressure Ratio Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    S. Mostafa Moosania

    2016-12-01

    Full Text Available Cooling in a centrifugal compressor can improve the performance and reduce the impeller temperature. In a centrifugal compressor, external walls can be cool down, which is known as the shell cooling. This method avoids undesirable effects induced by other cooling methods. Cooling can be applied on different external walls, such as the shroud, diffuser or the back plate. This paper focuses on seeking the most effective cooling place to increase the performance and reduce the impeller temperature. It is found that shroud cooling improves the compressor performance the most. Shroud cooling with 2400 W of cooling power increases the pressure ratio by 4.6% and efficiency by 1.49%. Each 500 W increase in the shroud cooling power, increases the efficiency by 0.3%. Diffuser cooling and back plate cooling have an identical effect on the polytropic efficiency. However, back plate cooling increases the pressure ratio more than diffuser cooling. Furthermore, only back plate cooling reduces the impeller temperature, and with 2400 W of cooling power, the impeller temperature reduces by 45 K.

  6. Fabrication of Ni stamp with high aspect ratio, two-leveled, cylindrical microstructures using dry etching and electroplating

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Hansen, Ole;

    2015-01-01

    We describe a process for the fabrication of a Ni stamp that is applied to the microstructuring of polymers by hot embossing. The target devices are microcontainers that have a potential application in oral drug delivery. Each container is a 3D, cylindrical, high aspect ratio microstructure...

  7. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips

    NARCIS (Netherlands)

    Vermeer, Rolf; Berenschot, Erwin; Sarajlic, Edin; Tas, Niels; Jansen, Henri

    2014-01-01

    In this paper we present the wafer-scale fabrication of molded AFM probes with high aspect ratio ultra-sharp three-plane silicon nitride tips. Using (111) silicon wafers a dedicated process is developed to fabricate molds in the silicon wafer that have a flat triangular bottom surface enclosed by th

  8. A modified time-of-flight method for precise determination of high speed ratios in molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Salvador Palau, A.; Eder, S. D., E-mail: sabrina.eder@uib.no; Kaltenbacher, T.; Samelin, B.; Holst, B. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); Bracco, G. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); CNR-IMEM, Department of Physics, University of Genova, V. Dodecaneso 33, 16146 Genova (Italy)

    2016-02-15

    Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.

  9. The field emission properties of high aspect ratio diamond nanocone arrays fabricated by focused ion beam milling

    Directory of Open Access Journals (Sweden)

    Z.L. Wang, Q. Wang, H.J. Li, J.J. Li, P. Xu, Q. Luo, A.Z. Jin, H.F. Yang and C.Z. Gu

    2005-01-01

    Full Text Available High aspect ratio diamond nanocone arrays are formed on freestanding diamond film by means of focused ion beam (FIB milling technology and hot-filament chemical vapor deposition (HFCVD method. The structure and phase purity of an individual diamond nanocone are characterized by scanning electron microscopy (SEM and micro-Raman spectroscopy. The result indicates that the diamond cones with high aspect ratio and small tip apex radius can be obtained by optimizing the parameters of FIB milling and diamond growth. The diamond nanocone arrays were also used to study the electron field emission properties and electric field shielding effect, finding high emission current density, low threshold and weak shielding effect, all attributable to the high field enhancement factor and suitable cone density of the diamond nanocone emitter

  10. MIMO Radar Transceiver Design for High Signal-to-Interference-Plus-Noise Ratio

    KAUST Repository

    Lipor, John

    2013-05-12

    Multiple-input multiple-output (MIMO) radar employs orthogonal or partially correlated transmit signals to achieve performance benefits over its phased-array counterpart. It has been shown that MIMO radar can achieve greater spatial resolution, improved signal-to-noise ratio (SNR) and target localization, and greater clutter resolution using space-time adaptive processing (STAP). This thesis explores various methods to improve the signal-to-interference-plus-noise ratio (SINR) via transmit and receive beamforming. In MIMO radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Current methods involve a two- step process of designing the transmit covariance matrix R via iterative solutions and then using R to generate waveforms that fulfill practical constraints such as having a constant-envelope or drawing from a finite alphabet. In this document, a closed- form method to design R is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive semidefiniteness and the uniform elemental power constraint and provides performance similar to that of iterative methods, which require a much greater computation time. Next, a transmit architecture is presented 
that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than current methods at a much lower computational cost, and a simulated detection scenario demonstrates the performance advantages achieved. It is also desirable to receive signal power only from a given set of directions defined by a beampattern. In a later chapter of this document, the problem of receive beampattern matching is formulated and three solutions to this problem are demonstrated. We show that partitioning the received data vector

  11. Influence of heat treatment and KIc/HRc ratio on the dynamic wear properties of coated high speed steel

    Directory of Open Access Journals (Sweden)

    M. Sedlaček

    2017-01-01

    Full Text Available The aim of this work was to determine the impact of various heat treatments on the KIc/HRc ratio and subsequently on the wear properties of coated high-speed steel under dynamic impact loading. The results showed that hardness and improvement in the fracture toughness have significant influence on the adhesion and impact wear properties of the coated high-speed steel.

  12. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  13. Lattice Boltzmann Simulations for High Density Ratio Flows of Multiphase Fluids

    Science.gov (United States)

    Wei, Yikun; Qian, Yuehong

    2010-11-01

    In the present communication, we will show that the compression effect of the Redlich-Kwong equation of state(EOS) is lower than that of the van der Waals (vdW) EOS. The Redlich-Kwong equation of state has a better agreement with experimental data for the coexistence curve than the van derWaals (vdW) EOS. We implement the Redlich-Kwong EOS in the lattice Boltzmann simulations via a pseudo-potential. As a result, multi-phase flows with large density ratios may be simulated, thus many real applications in engineering problems can be applied. Acknowledgement: This research is supported in part by Ministry of Education in China via project IRT0844 and NSFC project 10625210 and Shanghai Sci and Tech. Com. Project 08ZZ43

  14. Use of the plasma triglyceride/high-density lipoprotein cholesterol ratio to identify cardiovascular disease in hypertensive subjects.

    Science.gov (United States)

    Salazar, Martin R; Carbajal, Horacio A; Espeche, Walter G; Aizpurúa, Marcelo; Leiva Sisnieguez, Carlos E; Leiva Sisnieguez, Betty C; March, Carlos E; Stavile, Rodolfo N; Balbín, Eduardo; Reaven, Gerald M

    2014-10-01

    This analysis evaluated the hypothesis that the plasma triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C) concentration ratio can help identify patients with essential hypertension who are insulin-resistant, with the cardiovascular disease (CVD) risk profile associated with that defect. Data from a community-based study developed between 2003 and 2012 were used to compare CVD risk factors and outcome. Plasma TG/HDL-C cut-points of 2.5 (women) and 3.5 (men) subdivided normotensive (n = 574) and hypertensive (n = 373) subjects into "high" and "low" risk groups. Metabolic syndrome criteria (MetS) were also used to identify "high" and "low" risk groups. The baseline cardio-metabolic profile was significantly more adverse in 2003 in "high" risk subgroups, irrespective of BP classification or definition of risk (TG/HDL-C ratio vs. MetS criteria). Crude incidence of combined CVD events increased across risk groups, ranging from 1.9 in normotensive-low TG/HDL-C subjects to 19.9 in hypertensive-high TG/HDL-C ratio individuals (P for trends <.001). Adjusted hazard ratios for CVD events also increased with both hypertension and TG/HDL-C. Comparable findings were seen when CVD outcome was predicted by MetS criteria. The TG/HDL-C concentration ratio and the MetS criteria identify to a comparable degree hypertensive subjects who are at greatest cardio-metabolic risk and develop significantly more CVD.

  15. High-precision half-life and branching-ratio measurements for superallowed Fermi β+ emitters at TRIUMF – ISAC

    Directory of Open Access Journals (Sweden)

    Laffoley A. T.

    2014-03-01

    Full Text Available A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF’s Isotope Separator and Accelerator (ISAC radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB corrections in superallowed Fermi β decays.

  16. Gyrokinetic study of the impact of the electron to ion heating ratio on the turbulent diffusion of highly charged impurities

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-10-15

    A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.

  17. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    Science.gov (United States)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  18. Nanoimprinting ultrasmall and high-aspect-ratio structures by using rubber-toughened UV cured epoxy resist

    Science.gov (United States)

    Shin, Young Jae; Wu, Yi-Kuei; Guo, L. Jay

    2013-06-01

    A simple and robust scheme is proposed for the fabrication of nanoscale (20 nm line width) and high-aspect-ratio (9:1) structures by using modulus-tunable UV curable epoxy resists. Additionally, the ability to control the Young’s modulus of the imprinted material from hard to rigiflex using these epoxy resists is demonstrated. The physical properties of the new epoxy resists were controlled by adjusting the ratio of bisphenol F-type epoxy resin and acrylonitrile-butadiene rubber-based epoxy resin in the formulation of the resist. The mechanical properties of the resist were tuned to obtain various aspect ratios as well as mold flexibility for conformal contact over non-planar surfaces and large areas. In order to reduce the line width of the imprinted patterns, a process to conformally coat the mold structure by atomic layer deposition of alumina was also developed. Narrow lines with high-aspect-ratio features and with very low defect density were achieved via the new approach and the high mechanical strength of the new resist formulation.

  19. DNC/HNC Ratio of Massive Clumps in Early Evolutionary Stages of High-Mass Star Formation

    CERN Document Server

    Sakai, Takeshi; Furuya, Kenji; Aikawa, Yuri; Hirota, Tomoya; Yamamoto, Satoshi

    2012-01-01

    We have observed the HN13C J=1-0 and DNC J=1-0 lines toward 18 massive clumps, including infrared dark clouds (IRDCs) and high-mass protostellar objects (HMPOs), by using the Nobeyama Radio Observatory 45 m telescope. We have found that the HN13C emission is stronger than the DNC emission toward all the observed sources. The averaged DNC/HNC ratio is indeed lower toward the observed high-mass sources (0.009\\pm0.005) than toward the low-mass starless and star-forming cores (0.06). The kinetic temperature derived from the NH3 (J, K) = (1, 1) and (2, 2) line intensities is higher toward the observed high-mass sources than toward the low-mass cores. However the DNC/HNC ratio of some IRDCs involving the Spitzer 24 {\\mu}m sources is found to be lower than that of HMPOs, although the kinetic temperature of the IRDCs is lower than that of the HMPOs. This implies that the DNC/HNC ratio does not depend only on the current kinetic temperature. With the aid of chemical model simulations, we discuss how the DNC/HNC ratio ...

  20. Distribution of Legionella pneumophila bacteria and Naegleria and Hartmannella amoebae in thermal saline baths used in balneotherapy.

    Science.gov (United States)

    Zbikowska, Elżbieta; Walczak, Maciej; Krawiec, Arkadiusz

    2013-01-01

    The present study was aimed at investigating the coexistence and interactions between free living amoebae of Naegleria and Hartmannella genera and pathogenic Legionella pneumophila bacteria in thermal saline baths used in balneotherapy in central Poland. Water samples were collected from November 2010 to May 2011 at intervals longer than 1 month. The microorganisms were detected with the use of a very sensitive fluorescence in situ hybridisation method. In addition, the morphology of the amoebae was studied. Despite relatively high salinity level, ranging from 1.5 to 5.0 %, L. pneumophila were found in all investigated baths, although their number never exceeded 10(6) cells dm(-3). Hartmannella were not detected, while Naegleria fowleri were found in one bath. The observation that N. fowleri and L. pneumophila may coexist in thermal saline baths is the first observation emphasising potential threat from these microorganisms in balneotherapy.

  1. Quasiclassical trajectory study of collisional energy transfer in toluene systems. I. Argon bath gas: Energy dependence and isotope effects

    Science.gov (United States)

    Lim, Kieran F.

    1994-05-01

    Experimental studies of collisional energy transfer from highly vibrationally excited toluene to various bath gases have recently been reported [Toselli and Barker, J. Chem. Phys. 97, 1809 (1992), and references therein]. A quasiclassical trajectory investigation for toluene in argon bath gas at 300 K for initial internal energies E'=41 000, 30 000, and 15 000 cm-1 is reported here. Collisional energy transfer is almost linearly dependent on E'. Predictions of energy transfer quantities are very sensitive to the average well depth of the assumed individual pairwise potentials, but is less sensitive to the detailed shape. Qualitative and quantitative agreement with experiment is obtained where the overall well depth is physically realistic. Isotope studies using 40Ar and pseudohelium (4Ar) bath gases indicate that energy transfer is independent of the mass of the bath-gas collider, but perdeuteration increases 1/2 by 13% over the undeuterated values.

  2. 30 CFR 75.1712 - Bath houses and toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bath houses and toilet facilities. 75.1712 Section 75.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712 Bath...

  3. 21 CFR 740.17 - Foaming detergent bath products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Foaming detergent bath products. 740.17 Section 740.17 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.17 Foaming detergent bath products. (a) For the purpose of this section,...

  4. 20 CFR 654.412 - Bathing, laundry, and handwashing.

    Science.gov (United States)

    2010-04-01

    ... Bathing, laundry, and handwashing. (a) Bathing and handwashing facilities, supplied with hot and cold.... Shower floors shall be constructed of nonabsorbent nonskid materials and sloped to properly constructed floor drains. Except in individual family units, separate shower facilities shall be provided each sex...

  5. SHAPE: Shape Memory for a High Turn-Down Ratio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge: they are required to reject a high heat load to warm...

  6. High salivary testosterone-to-androstenedione ratio and adverse metabolic phenotypes in women with polycystic ovary syndrome.

    Science.gov (United States)

    Münzker, J; Lindheim, L; Adaway, J; Trummer, C; Lerchbaum, E; Pieber, T R; Keevil, B; Obermayer-Pietsch, B

    2017-04-01

    Polycystic ovary syndrome (PCOS) is characterized by a combination of hormonal and metabolic disturbances, such as insulin resistance, glucose intolerance, anovulation and hyperandrogenism. Clinical phenotypes of PCOS show different patterns of steroid hormones that have been investigated to some extent. This study aimed to establish a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of salivary testosterone and androstenedione and to describe the salivary testosterone-to-androstenedione (T/A4) ratio as a new tool for the assessment of hyperandrogenism and metabolic health. Saliva and serum samples of 274 patients with PCOS and 51 healthy women were used for the quantification of steroid hormones. A comprehensive clinical and metabolic assessment was performed. Salivary testosterone and androstenedione were measured via LC-MS/MS. The salivary T/A4 ratio was calculated and correlated with hormones and metabolic parameters. Salivary testosterone (P < 0·001), androstenedione (P < 0·001) and the salivary T/A4 ratio (P < 0·001) were significantly higher in patients with patients compared to healthy women. In patients with PCOS, a high salivary T/A4 ratio was associated with an adverse metabolic phenotype, that is glucose intolerance (P = 0·019), insulin resistance (P < 0·001), metabolic syndrome (P < 0·001), obesity (P < 0·001) and oligo-/anovulation (P = 0·001). Significant correlations of the salivary T/A4 ratio with adverse metabolic parameters were found. Quantification of salivary androgens provides an attractive alternative to serum analysis and helps in characterizing metabolic health in women with PCOS. Our data show a strong link between a high salivary T/A4 ratio and an adverse metabolic phenotype in patients with PCOS. © 2017 John Wiley & Sons Ltd.

  7. Influence of bath temperature and bath composition on Co-Ag electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Torres, Jose; Valles, Elisa [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN' ' 2UB) de la Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Gomez, Elvira, E-mail: e.gomez@ub.ed [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN' ' 2UB) de la Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2010-08-01

    A study of the best conditions to prepare smooth heterogeneous Co-Ag films with low amounts of S from a thiourea-based electrolytic bath has been performed. Using a 0.01 M AgClO{sub 4} + 0.1 M Co(ClO{sub 4}){sub 2} + 0.1 M thiourea + 0.1 M sodium gluconate + 0.3 M H{sub 3}BO{sub 3} + 0.1 M NaClO{sub 4} bath, low temperature (10 {sup o}C) allowed obtaining compact and smooth deposits containing 2 wt.% sulphur. Decreasing thiourea content 0.06 M and increasing gluconate concentration up to 0.3 M, better deposits (more compact with lower sulphur content (1.2 wt.%)) were obtained. A clear influence of the species present in the bath on the film quality was observed: while gluconate favoured film cohesion, boric acid hindered hydrogen adsorption. For all films, fcc-Ag, hcp-Co and hcp-CoAg{sub 3} phases were always detected by XRD, TEM and electron diffraction, their proportions varying with the electrodeposition conditions. Magnetic measurements revealed that the increase in the CoAg{sub 3} led to an increase in the film coercivity. GMR values were only measured at cryogenic temperatures, they being higher for the deposits with the lowest sulphur content revealing that sulphur exerts a negative effect on magnetoresistance.

  8. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation.

    Science.gov (United States)

    Guo, Cunlan; Wang, Kun; Zerah-Harush, Elinor; Hamill, Joseph; Wang, Bin; Dubi, Yonatan; Xu, Bingqian

    2016-05-01

    The predictability, diversity and programmability of DNA make it a leading candidate for the design of functional electronic devices that use single molecules, yet its electron transport properties have not been fully elucidated. This is primarily because of a poor understanding of how the structure of DNA determines its electron transport. Here, we demonstrate a DNA-based molecular rectifier constructed by site-specific intercalation of small molecules (coralyne) into a custom-designed 11-base-pair DNA duplex. Measured current-voltage curves of the DNA-coralyne molecular junction show unexpectedly large rectification with a rectification ratio of about 15 at 1.1 V, a counter-intuitive finding considering the seemingly symmetrical molecular structure of the junction. A non-equilibrium Green's function-based model-parameterized by density functional theory calculations-revealed that the coralyne-induced spatial asymmetry in the electron state distribution caused the observed rectification. This inherent asymmetry leads to changes in the coupling of the molecular HOMO-1 level to the electrodes when an external voltage is applied, resulting in an asymmetric change in transmission.

  9. High aspect ratio iridescent three-dimensional metal–insulator–metal capacitors using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Micheal, E-mail: micheal.burke@tyndall.ie; Blake, Alan; Djara, Vladimir; O' Connell, Dan; Povey, Ian M.; Cherkaoui, Karim; Monaghan, Scott; Scully, Jim; Murphy, Richard; Hurley, Paul K.; Pemble, Martyn E.; Quinn, Aidan J., E-mail: aidan.quinn@tyndall.ie [Tyndall National Institute, University College Cork, Cork (Ireland)

    2015-01-01

    The authors report on the structural and electrical properties of TiN/Al{sub 2}O{sub 3}/TiN metal–insulator–metal (MIM) capacitor structures in submicron three-dimensional (3D) trench geometries with an aspect ratio of ∼30. A simplified process route was employed where the three layers for the MIM stack were deposited using atomic layer deposition (ALD) in a single run at a process temperature of 250 °C. The TiN top and bottom electrodes were deposited via plasma-enhanced ALD using a tetrakis(dimethylamino)titanium precursor. 3D trench devices yielded capacitance densities of 36 fF/μm{sup 2} and quality factors >65 at low frequency (200 Hz), with low leakage current densities (<3 nA/cm{sup 2} at 1 V). These devices also show strong optical iridescence which, when combined with the covert embedded capacitance, show potential for system in package (SiP) anticounterfeiting applications.

  10. Geostationary secular dynamics revisited: application to high area-to-mass ratio objects

    CERN Document Server

    Gachet, Fabien; Pucacco, Giuseppe; Efthymiopoulos, Christos

    2016-01-01

    The long-term dynamics of the geostationary Earth orbits (GEO) is revisited through the application of canonical perturbation theory. We consider a Hamiltonian model accounting for all major perturbations: geopotential at order and degree two, lunisolar perturbations with a realistic model for the Sun and Moon orbits, and solar radiation pressure. The long-term dynamics of the GEO region has been studied both numerically and analytically, in view of the relevance of such studies to the issue of space debris or to the disposal of GEO satellites. Past studies focused on the orbital evolution of objects around a nominal solution, hereafter called the forced equilibrium solution, which shows a particularly strong dependence on the area-to-mass ratio. Here, we i) give theoretical estimates for the long-term behavior of such orbits, and ii) we examine the nature of the forced equilibrium itself. In the lowest approximation, the forced equilibrium implies motion with a constant non-zero average `forced eccentricity'...

  11. Performance of high area ratio nozzles for a small rocket thruster

    Science.gov (United States)

    Kushida, R. O.; Hermel, J.; Apfel, S.; Zydowicz, M.

    1986-01-01

    Theoretical estimates of supersonic nozzle performance have been compared to experimental test data for nozzles with an area ratio of 100:1 conical and 300:1 optimum contour, and 300:1 nozzles cut off at 200:1 and 100:1. These tests were done on a Hughes Aircraft Company 5 lbf monopropellant hydrazine thruster with chamber pressures ranging from 25 to 135 psia. The analytic method used is the conventional inviscid method of characteristic with correction for laminar boundary layer displacement and drag. Replacing the 100:1 conical nozzle with the 300:1 contoured nozzle resulted in an improvement in thrust performance of 0.74 percent at chamber pressure of 25 psia to 2.14 percent at chamber pressure of 135 psia. The data is significant because it is experimental verification that conventional nozzle design techniques are applicable even where the boundary layer is laminar and displaces as much as 35 percent of the flow at the nozzle exit plane.

  12. Jet-Surface Interaction Noise from High-Aspect Ratio Nozzles: Test Summary

    Science.gov (United States)

    Brown, Clifford; Podboy, Gary

    2017-01-01

    Noise and flow data have been acquired for a 16:1 aspect ratio rectangular nozzle exhausting near a simple surface at the NASA Glenn Research Center as part of an ongoing effort to understand, model, and predict the noise produced by current and future concept aircraft employing a tightly integrated engine airframe designs. The particular concept under consideration in this experiment is a blended-wing-body airframe powered by a series of electric fans exhausting through slot nozzle over an aft deck. The exhaust Mach number and surface length were parametrically varied during the test. Far-field noise data were acquired for all nozzle surface geometries and exhaust flow conditions. Phased-array noise source localization data and in-flow pressure data were also acquired for a subset of the isolated (no surface) and surface configurations; these measurements provide data that have proven useful for modeling the jet-surface interaction noise source and the surface effect on the jet-mixing noise in round jets. A summary of the nozzle surface geometry, flow conditions tested, and data collected are presented.

  13. Low cost, high concentration ratio solar cell array for space applications

    Science.gov (United States)

    Patterson, R. E.; Rauschenbach, H. S.; Cannady, M. D.; Whang, U. S.; Crabtree, W. L.

    1981-01-01

    A miniaturized Cassegrainian-type concentrator solar array concept for space applications is described. In-orbit cell operating temperatures near 80 C are achieved with purely passive cell cooling and a net concentration ratio of 100. A multiplicity of miniaturized, rigid solar cell concentrator subassemblies are electrically interconnected in conventional fashion and mounted into rigid frames to form concentrator solar panel assemblies approximately 14-mm thick. A plurality of such interconnected panels forms a stowable and deployable solar cell blanket. It is projected that for 20% efficient silicon cells an array of 500 kW beginning-of-life output capability, including orbiter cradle structures, can be transported by a single shuttle orbiter flight into low earth orbit. In-orbit array specific performance is calculated to be approximately 100 W/sq m and 20 W/kg, including all stowage, deployment and array figure control equipment designed for a 30-year orbital life. Higher efficiency gallium arsenide and multiple band gap solar cells will improve these performance factors correspondingly.

  14. Copper Plating from Non-Cyanide Alkaline Baths

    Science.gov (United States)

    Li, Minggang; Wei, Guoying; Wang, Jianfang; Li, Meng; Zhao, Xixi; Bai, Yuze

    2014-12-01

    Non-cyanide alkaline bath was used to prepare copper thin films. Influences of various temperatures on deposition rates, surface morphologies and microstructures of films were investigated. Copper thin films prepared from non-cyanide alkaline bath show typical nodular structures. Copper films fabricated at higher temperature possess rough surface due to hydrolysis of complexing agents. According to the XRD patterns, all deposited films were crystalline and showed Cu (111), Cu (200) and Cu (220) peaks. The intensity of peak (200) increases gradually with the rise on bath temperatures. Films with maximum thickness (7.5 μm) could be obtained at the temperature of 40°C. From the cyclic voltammetry curve, it was found that the cathodic polarization decreased slightly with increase of bath temperatures. In addition, when the bath temperature was equal to 50°C, current efficiency could reach to 96.95%.

  15. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling...

  16. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Zhu, Xiaolong; Xiao, Sanshui

    2015-01-01

    comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene-silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On-off electro-optical switching......Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical...... modulation, optical-optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene-silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we...

  17. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles. Comprehensive data report, volume 1

    Science.gov (United States)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Shutiani, P. K.; Vogt, P. G.

    1981-01-01

    Six coannular plug nozzle configurations having inverted velocity and temperature profiles, and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Anechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent outer stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass structs will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further beneficial research efforts.

  18. Slot Machine Structural Characteristics: Creating near Misses Using High Award Symbol Ratios

    Science.gov (United States)

    Harrigan, Kevin A.

    2008-01-01

    A near miss is a failure that was close to a win. In this paper we analyze the primary documents associated with a case that was brought before the Nevada Gaming Commission in 1988. This case resulted in the 1989 ruling that the proprietary computer algorithms used by one slot machine manufacturer to create a high number of near misses on the…

  19. High-Aspect-Ratio CMOS add-on modules for RF passive components

    NARCIS (Netherlands)

    Sagkol, H.

    2011-01-01

    Commercial wireless communication technologies stemmed mostly from the research done through and after the Second World War as outlined in Chapter 1. Earlier systems were intended for military applications, hence had very high performance and were very expensive and bulky. Later, with the dawn of co

  20. Completeness of assisted bathing in nursing homes related to dementia and bathing method: results from a secondary analysis of cluster-randomised trial data

    NARCIS (Netherlands)

    Achterberg, T. van; Gaal, B. van; Geense, W.W.; Verbeke, G.; Vleuten, C.J.M. van der; Schoonhoven, L.

    2016-01-01

    BACKGROUND: Bathing assistance is a core element of essential care in nursing homes, yet little is known for quality of assisted bathing or its determinants. AIM: To explore differences in completeness of assisted bathing in relation to bathing method and resident characteristics. METHODS: Secondary

  1. Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment

    Science.gov (United States)

    Wang, Wenjiao B.; Abelson, John R.

    2014-11-01

    Complete filling of a deep recessed structure with a second material is a challenge in many areas of nanotechnology fabrication. A newly discovered superconformal coating method, applicable in chemical vapor deposition systems that utilize a precursor in combination with a co-reactant, can solve this problem. However, filling is a dynamic process in which the trench progressively narrows and the aspect ratio (AR) increases. This reduces species diffusion within the trench and may drive the component partial pressures out of the regime for superconformal coating. We therefore derive two theoretical models that can predict the possibility for filling. First, we recast the diffusion-reaction equation for the case of a sidewall with variable taper angle. This affords a definition of effective AR, which is larger than the nominal AR due to the reduced species transport. We then derive the coating profile, both for superconformal and for conformal coating. The critical (most difficult) step in the filling process occurs when the sidewalls merge at the bottom of the trench to form the V shape. Experimentally, for the Mg(DMADB)2/H2O system and a starting AR = 9, this model predicts that complete filling will not be possible, whereas experimentally we do obtain complete filling. We then hypothesize that glancing-angle, long-range transport of species may be responsible for the better than predicted filling. To account for the variable range of species transport, we construct a ballistic transport model. This incorporates the incident flux from outside the structure, cosine law re-emission from surfaces, and line-of-sight transport between internal surfaces. We cast the transport probability between all positions within the trench into a matrix that represents the redistribution of flux after one cycle of collisions. Matrix manipulation then affords a computationally efficient means to determine the steady-state flux distribution and growth rate for a given taper angle. The

  2. NASA Environmentally Responsible Aviation High Overall Pressure Ratio Compressor Research Pre-Test CFD

    Science.gov (United States)

    Celestina, Mark L.; Fabian, John C.; Kulkarni, Sameer

    2012-01-01

    This paper describes a collaborative and cost-shared approach to reducing fuel burn under the NASA Environmentally Responsible Aviation project. NASA and General Electric (GE) Aviation are working together aa an integrated team to obtain compressor aerodynamic data that is mutually beneficial to both NASA and GE Aviation. The objective of the High OPR Compressor Task is to test a single stage then two stages of an advanced GE core compressor using state-of-the-art research instrumentation to investigate the loss mechanisms and interaction effects of embedded transonic highly-loaded compressor stages. This paper presents preliminary results from NASA's in-house multistage computational code, APNASA, in preparation for this advanced transonic compressor rig test.

  3. High signal-to-noise ratio observations and the ultimate limits of precision pulsar timing

    CERN Document Server

    Oslowski, Stefan; Hobbs, George; Bailes, Matthew; Demorest, Paul

    2011-01-01

    We demonstrate that the sensitivity of high-precision pulsar timing experiments will be ultimately limited by the broadband intensity modulation that is intrinsic to the pulsar's stochastic radio signal. That is, as the peak flux of the pulsar approaches that of the system equivalent flux density, neither greater antenna gain nor increased instrumental bandwidth will improve timing precision. These conclusions proceed from an analysis of the covariance matrix used to characterise residual pulse profile fluctuations following the template matching procedure for arrival time estimation. We perform such an analysis on 25 hours of high-precision timing observations of the closest and brightest millisecond pulsar, PSR J0437-4715. In these data, the standard deviation of the post-fit arrival time residuals is approximately four times greater than that predicted by considering the system equivalent flux density, mean pulsar flux and the effective width of the pulsed emission. We develop a technique based on principa...

  4. Ablative implosion of high-aspect-ratio gas-filled targets

    Energy Technology Data Exchange (ETDEWEB)

    Tomasel, F.G.; Cortazar, O.D. (Universidad Nacional de Mar del Plata (Argentina). Dept. de Fisica); Piriz, A.R. (Buenos Aires Univ. (Argentina). Dept. de Fisica)

    1991-11-01

    A simple analytical mode for the implosion of very thin spherical shell targets filled with fuel gas is developed. The shock trajectory in the fuel is described consistently with the shell acceleration, and two dimensionless parameters which govern the complete dynamics are found. The model applies to recent experiments focused on high neutron yield and provides a simple description of the main physical phenomena, which is in agreement with simulation and experiments. (author).

  5. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    Science.gov (United States)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  6. A method for improving the signal-to-noise ratio in IUE high-dispersion spectra

    Science.gov (United States)

    Welty, Daniel E.

    1988-01-01

    The flat-fielding technique was used to reduce fixed pattern noise in high dispersion IUE spectra, producing improvements in S/N of typically 40 percent compared with un-flat-fielded summed spectra. Weak spectral features may be more reliably identified. Such improvements are noted for specially obtained multiply-exposed images and for singly-exposed images taken from the IUE archives. However it is unclear if the technique is usable or as effective for all spectra.

  7. High-ratio voltage conversion in CMOS for efficient mains-connected standby

    CERN Document Server

    Meyvaert, Hans

    2016-01-01

    This book describes synergetic innovation opportunities offered by combining the field of power conversion with the field of integrated circuit (IC) design. The authors demonstrate how integrating circuits enables increased operation frequency, which can be exploited in power converters to reduce drastically the size of the discrete passive components. The authors introduce multiple power converter circuits, which are very compact as result of their high level of integration. First, the limits of high-power-density low-voltage monolithic switched-capacitor DC-DC conversion are investigated to enable on-chip power granularization. AC-DC conversion from the mains to a low voltage DC is discussed, enabling an efficient and compact, lower-power auxiliary power supply to take over the power delivery during the standby mode of mains-connected appliances, allowing the main power converter of these devices to be shut down fully. Discusses high-power-density monolithic switched-capacitor DC-DC conversion in bulk CMOS,...

  8. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    CERN Document Server

    Ulmer, S; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-01-01

    Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available$^{4, 5, 6, 7, 8}$. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H$^−$) carried out in a Penning trap system. From 13,000 frequency measurements we compare th...

  9. Microscopic theory of heat transfer between two fermionic thermal baths mediated by a spin system.

    Science.gov (United States)

    Ray, Somrita; Bag, Bidhan Chandra

    2015-11-01

    In this paper we have presented the heat exchange between the two fermionic thermal reservoirs which are connected by a fermionic system. We have calculated the heat flux using solution of the c-number Langevin equation for the system. Assuming small temperature difference between the baths we have defined the thermal conductivity for the process. It first increases as a nonlinear function of average temperature of the baths to a critical value then decreases to a very low value such that the heat flux almost becomes zero. There is a critical temperature for the fermionic case at which the thermal conductivity is maximum for the given coupling strength and the width of the frequency distribution of bath modes. The critical temperature grows if these quantities become larger. It is a sharp contrast to the Bosonic case where the thermal conductivity monotonically increases to the limiting value. The change of the conductivity with increase in width of the frequency distribution of the bath modes is significant at the low temperature regime for the fermionic case. It is highly contrasting to the Bosonic case where the signature of the enhancement is very prominent at high temperature limit. We have also observed that thermal conductivity monotonically increases as a function of damping strength to the limiting value at the asymptotic limit. There is a crossover between the high and the low temperature results in the variation of the thermal conductivity as a function of the damping strength for the fermionic case. Thus it is apparent here that even at relatively high temperature, the fermionic bath may be an effective one for the strong coupling between system and reservoir. Another interesting observation is that at the low temperature limit, the temperature dependence of the heat flux is the same as the Stefan-Boltzmann law. This is similar to the bosonic case.

  10. Electroplated Fe-Co-Ni films prepared from deep-eutectic-solvent-based plating baths

    Directory of Open Access Journals (Sweden)

    Takeshi Yanai

    2016-05-01

    Full Text Available We fabricated soft magnetic films from DES-based plating baths, and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2 ⋅ 4H2O, NiCl2 ⋅ 6H2O and CoCl2 ⋅ 6H2O. The composition of the electroplated film depended on the amount of the reagent in the plating bath, and we consequently obtained the films with various composition. The current efficiency of the plating process shows high values (> 88 % in the wide composition range. The soft magnetic films with low coercivity were obtained at the Fe compositions of ≈ 30 at.% and > 80 at.%, and we found that low coercivity could be realized by the control of the film composition. We also found that the Fe-rich films prepared from DES-based plating bath have some advantages as a soft magnetic phase for a nanocomposite magnet due to their high saturation magnetization and very fine crystal structure.

  11. Inlet Acoustic Data from a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    Science.gov (United States)

    Bozak, Richard F.

    2017-01-01

    In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.

  12. Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metal

    DEFF Research Database (Denmark)

    Roberts, Alexander; Søndergaard, Thomas; Chirumamilla, Manohar

    2016-01-01

    for a two-dimensional scatterer. We construct a simple resonator model which predicts the wavelength-dependent extinction, scattering, and absorption cross section of the trench and compare the model findings with full numerical simulations. Both extinction and scattering cross sections are mainly...... determined by the wavelength and can reach highly supergeometric values. At wavelengths where the metal exhibits near perfect electrical conductor behavior, such trenches lend themselves to be used as self-normalizing scatterers, as their scattering cross section is independent of their geometry and depend...... and two-photon luminescence that the resonant behavior of the vertical trenches is preserved....

  13. ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY

    Directory of Open Access Journals (Sweden)

    M A Islam

    2010-03-01

    Full Text Available Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require unique mechanical, chemical and physical properties [1]. There has been a great research interest in the development and characterization of iron-nickel (Fe-Ni thin films due to their operational capacity, economic interest, magnetic and other properties [2]. Due to their unique low coefficient of thermal expansion (CTE and soft magnetic properties, Fe-Ni alloys have been used in industrial applications for over 100 years [3]. Typical examples of applications that are based on the low CTE of Fe-Ni alloys include: thermostatic bimetals, glass sealing, integrated circuit packaging, cathode ray tube, shadow masks, membranes for liquid natural gas tankers; applications based on the soft magnetic properties include: read-write heads for magnetic storage, magnetic actuators, magnetic shielding, high performance transformer cores. comprise the simple baths whereas complex baths were prepared by adding ascorbic acid, saccharin and citric acid in simple baths. The effect of bath composition, pH and applied current density on coating appearance, composition, morphology and magnetic property were studied. Wet chemical analysis technique was used to analyze the coating composition whereas SEM and VSM were used to study the deposit morphology and magnetic property respectively. Addition of complexing agents in plating baths suppressed the anomalous nature of Fe-Ni alloy electrodeposition. Coatings obtained from simple baths were characterized by coarse grained non

  14. Fabrication of high-aspect-ratio polymer microstructures and hierarchical textures using carbon nanotube composite master molds.

    Science.gov (United States)

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael F L; Hart, A John

    2011-05-21

    Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing.

  15. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications.

    Science.gov (United States)

    Delachat, F; Le Drogoff, B; Constancias, C; Delprat, S; Gautier, E; Chaker, M; Margot, J

    2016-01-15

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  16. Ultra-high aspect ratio poly-Si FinFET using an improved spacer formation technique

    Science.gov (United States)

    Liu, Libin; Liang, Renrong; Wang, Jing; Xu, Jun

    2017-04-01

    An improved spacer formation technique was proposed and developed to fabricate poly-Si fin field-effect transistors (FinFETs) with an ultra-high aspect ratio. The as-demonstrated FinFETs have a fin channel with a width and height of 22 nm and 230 nm, respectively, corresponding to an aspect ratio of 10.5. The electrical and temperature properties of the FinFETs are described in detail in this paper. The poly-Si FinFETs exhibit a steep subthreshold swing (196 mV/dec), a low leakage current (∼10-14 A), a high on/off current ratio (2.2 × 107 at VDS = 0.1 V), and a low drain-induced barrier lowering effect (0.28 V). The excellent switching characteristics are attributed to the ultrathin channel body and the multi-gate structure combined with high-k Al2O3 dielectric. Furthermore, the electron field-effective mobility increases as the temperature increases. An analytical fitting model was derived and was utilized to account for this phenomenon. The fitting results indicate that the positive temperature coefficient originates from the grain boundary-controlled mechanism in the low gate voltage regime.

  17. Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine

    Directory of Open Access Journals (Sweden)

    Paolo Gaetani

    2017-03-01

    Full Text Available The need of a continuous improvement in gas turbine efficiency for propulsion and power generation, as well as the more demanding operating conditions and power control required to these machines, still ask for great efforts in the design and analysis of the high pressure section of the turbo-expander. To get detailed insights and improve the comprehension of the flow physics, a wide experimental campaign has been performed in the last ten years at Politecnico di Milano on the unsteady aerodynamics of a high-pressure turbine stage considering several operating conditions. This paper presents and discusses the experimental results obtained for the stage operating with different expansion ratios and rotor loading. The turbine stage under study is representative of a modern high-pressure turbine and can be operated in both subsonic and transonic conditions. The experimental tools applied for the current research represents the state of the art when unsteady investigations are foreseen. The detailed flow field, the blade–rows interaction and the overall performance are described and discussed; efforts have been devoted to the discussion of the various contribution to the overall stage efficiency. The direct effects of the expansion ratio, affecting the Reynolds and the Mach numbers, have been highlighted and quantified; similarly, the indirect effects, accounting for a change in the rotor loading, have been commented and quantified as well, thanks to a dedicated set of experiments where different rotor loadings at the same expansion ratio have been prescribed.

  18. High-energy neutrino fluxes and flavor ratio in the Earth atmosphere

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2014-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic-ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy range where a contribution of the prompt neutrinos and/or astrophysical ones should be uncovered. The calculation of muon and electron neutrino fluxes in the energy range 100 GeV - 10 PeV is performed for three hadronic models, QGSJET II, SIBYll 2.1 and Kimel & Mokhov, taking into consideration the "knee" of the cosmic-ray spectrum. All calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube and ANTARES. The prompt neutrino flux predictions obtained with the quark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the measurements and upper limits on the astrophysical muon neutrino flux obtained ...

  19. Investigation of chemical bath deposition of CdO thin films using three different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Khallaf, Hani [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Chen, Chia-Ta; Chang, Liann-Be [Graduate Institute of Electro-Optical Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Green Technology Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Lupan, Oleg [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Boulevard, MD-2004 Chisinau, Republic of Moldova (Moldova, Republic of); Dutta, Aniruddha; Heinrich, Helge [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Shenouda, A. [Central Metallurgical R and D Institute (CMRDI), Tebbin, P.O. Box 87, Helwan (Egypt); Chow, Lee, E-mail: Lee.Chow@ucf.edu [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2011-09-01

    Chemical bath deposition of CdO thin films using three different complexing agents, namely ammonia, ethanolamine, and methylamine is investigated. CdSO{sub 4} is used as Cd precursor, while H{sub 2}O{sub 2} is used as an oxidation agent. As-grown films are mainly cubic CdO{sub 2}, with some Cd(OH){sub 2} as well as CdO phases being detected. Annealing at 400 deg. C in air for 1 h transforms films into cubic CdO. The calculated optical band gap of as-grown films is in the range of 3.37-4.64 eV. Annealed films have a band gap of about 2.53 eV. Rutherford backscattering spectroscopy of as-grown films reveals cadmium to oxygen ratio of 1.00:1.74 {+-} 0.01 while much better stoichiometry is obtained after annealing, in accordance with the X-ray diffraction results. A carrier density as high as 1.89 x 10{sup 20} cm{sup -3} and a resistivity as low as 1.04 x 10{sup -2} {Omega}-cm are obtained.

  20. Visualization of cavitating and flashing flows within a high aspect ratio injector

    Science.gov (United States)

    Thompson, Andrew S.

    Thermal management issues necessitate the use of fuel as a heat sink for gas turbine and liquid rocket engines. There are certain benefits to using heated fuels, namely, increased sensible enthalpy, increased combustion efficiency, a decrease in certain emissions, and enhanced vaporization characteristics. However, the thermal and pressure enviornment inside an injector can result in the fuel flashing to vapor. Depending on the injector design, this can have deleterious effects on engine performance. As interest in heated fuels inreases, it is important to understand what occurs in the flow path of an injector under flashing conditions. At the High Pressure Laboratory at Purdue University's Maurice J. Zucrow Laboritories, a test rig was designed and built to give visual access into the flow path of a 2-D slot injector. The rig is capable of pressurizing and heating a liquid to superheated conditions and utilizes a pneumatically actuated piston to pusth the liquid through the slot injector. Methanol was chosen as a surrogate fuel to allow for high levels of superheat at relatively low temperatures. Testing was completed with acrylic and quartz injectors of varying L/DH. Flashing conditions inside the injector flow path were induced via a combination of heating and back pressure adjustments. Volume flow rate, pressure measurements, and temperature measurements were made which allowed the discharge characteristics, the level of superheat, and other parameters to be calculated and compared. To give a basis for comparison the flashing results are compared to the flow through the injector under cavitating conditions. Cavitation and flashing appear to be related phenomena and this relationship is shown. Bubble formation under cavitating or flashing conditions is observed to attenuate the injector's discharge characteristics. High speed videos of the flow field were also collected. Several flow regimes and flow structures, unique to these regimes, were observed. A

  1. High ΔNp73/TAp73 ratio is associated with poor prognosis in acute promyelocytic leukemia.

    Science.gov (United States)

    Lucena-Araujo, Antonio R; Kim, Haesook T; Thomé, Carolina; Jacomo, Rafael H; Melo, Raul A; Bittencourt, Rosane; Pasquini, Ricardo; Pagnano, Katia; Glória, Ana Beatriz F; Chauffaille, Maria de Lourdes; Athayde, Melina; Chiattone, Carlos S; Mito, Ingrid; Bendlin, Rodrigo; Souza, Carmino; Bortolheiro, Cristina; Coelho-Silva, Juan L; Schrier, Stanley L; Tallman, Martin S; Grimwade, David; Ganser, Arnold; Berliner, Nancy; Ribeiro, Raul C; Lo-Coco, Francesco; Löwenberg, Bob; Sanz, Miguel A; Rego, Eduardo M

    2015-11-12

    The TP73 gene transcript is alternatively spliced and translated into the transcriptionally active (TAp73) or inactive (ΔNp73) isoforms, with opposite effects on the expression of p53 target genes and on apoptosis induction. The imbalance between ΔNp73 and TAp73 may contribute to tumorigenesis and resistance to chemotherapy in human cancers, including hematologic malignancies. In acute promyelocytic leukemia (APL), both isoforms are expressed, but their relevance in determining response to therapy and contribution to leukemogenesis remains unknown. Here, we provide the first evidence that a higher ΔNp73/TAp73 RNA expression ratio is associated with lower survival, lower disease-free survival, and higher risk of relapse in patients with APL homogeneously treated with all-trans retinoic acid and anthracycline-based chemotherapy, according to the International Consortium on Acute Promyelocytic Leukemia (IC-APL) study. Cox proportional hazards modeling showed that a high ΔNp73/TAp73 ratio was independently associated with shorter overall survival (hazard ratio, 4.47; 95% confidence interval, 1.64-12.2; P = .0035). Our data support the hypothesis that the ΔNp73/TAp73 ratio is an important determinant of clinical response in APL and may offer a therapeutic target for enhancing chemosensitivity in blast cells.

  2. Determination of fluoride in electroplating baths; Determinacion potenciometrica de fluoruro en banos electroliticos de cromado

    Energy Technology Data Exchange (ETDEWEB)

    Perez Olmos, R.; Etxebarria, M.B. [Dpto. Quimica Analitica E.U.I.T.I. Bilbao (Spain); Echevarria, J. [Dpto. Ingenieria Quimica y Medio Ambiente, E.U.I.T.I. Bilbao (Spain); Lima, J.L.F.C.; Montenegro, M.C.B.S.M. [CEQUP, Dpto. Quimica-Fisica, Facultad de Farmacia de Oporto, Oporto (P)

    1997-12-31

    In this work, a simple, rapid and unexpensive analytical method, based on the use of a fluoride selective electrode, for the determination of fluoride in electroplating baths has been developed. Several studies about the composition of the TISAB solutions, the dilution ratios of the samples with those solutions and the use of different potentiometric techniques of measurement, have been carried out. The precision and accuracy of the developed potentiometric method obtained when applied on eight samples of electroplating baths prepared in the laboratory and two actual samples, were better than those suministred by application of the EDTA titration method adopted as reference technique. These results expressed in terms of average variation coefficient and average percentage of spike recovery were 1,10% and 99,6% respectively. (Author) 8 refs.

  3. Secondary ageing in an Al-Cu-Mg alloy with high Cu/Mg ratio

    Energy Technology Data Exchange (ETDEWEB)

    Dupasquier, A.; Folegati, P. [Politecnico di Milano (Italy). Ist. di Fisica della Materia; Ferragut, R. [Politecnico di Milano (Italy). Ist. di Fisica della Materia; IFIMAT, Univ. Nacional del Centro de la Provincia de Buenos Aires and CICPBA, Tandil (Argentina); Massazza, M.; Riontino, G. [Ist. Nazionale di Fisica della Materia, Dipt. di Chimica I.F.M., Univ. di Torino (Italy); Somoza, A. [IFIMAT, Univ. Nacional del Centro de la Provincia de Buenos Aires and CICPBA, Tandil (Argentina)

    2002-07-01

    The mechanisms governing secondary ageing (structural transformations occurring at low temperature after a heat treatment at higher temperature) were investigated by combined measurements of positron lifetimes, Vickers microhardness measurements and differential scanning calorimetry (DSC) on a laboratory alloy (Al-4.5 wt.% Cu-0.56 wt.% Mg). The results show that hardening occurs at a much slower rate than in case of primary ageing at RT. The positron lifetime data suggest that the hardening rate is controlled by slow release of vacancies from Cu-rich clusters formed during the initial high temperature treatment. The hardening stage is concomitant with an increase of the positron lifetime, and has probably the same origin, which is the formation of solute clusters containing vacancies and Mg as essential components. The formation at low temperature of new structures is also demonstrated by DSC. (orig.)

  4. An atmospheric-pressure, high-aspect-ratio, cold micro-plasma.

    Science.gov (United States)

    Lu, X; Wu, S; Gou, J; Pan, Y

    2014-01-01

    An atmospheric pressure nonequilibrium Ar micro-plasma generated inside a micro-tube with plasma radius of 3 μm and length of 2.7 cm is reported. The electron density of the plasma plume estimated from the broadening of the Ar emission line reaches as high as 3 × 10(16) cm(-3). The electron temperature obtained from CR model is 1.5 ev while the gas temperature of the plasma estimated from the N2 rotational spectrum is close to room temperature. The sheath thickness of the plasma could be close to the radius of the plasma. The ignition voltages of the plasma increase one order when the radius of the dielectric tube is decreased from 1 mm to 3 μm.

  5. Mephedrone ("bath salt") pharmacology: insights from invertebrates.

    Science.gov (United States)

    Ramoz, L; Lodi, S; Bhatt, P; Reitz, A B; Tallarida, C; Tallarida, R J; Raffa, R B; Rawls, S M

    2012-04-19

    Psychoactive bath salts (also called meph, drone, meow meow, m-CAT, bounce, bubbles, mad cow, etc.) contain a substance called mephedrone (4-methylcathinone) that may share psychostimulant properties with amphetamine and cocaine. However, there are only limited studies of the neuropharmacological profile of mephedrone. The present study used an established invertebrate (planarian) assay to test the hypothesis that acute and repeated mephedrone exposure produces psychostimulant-like behavioral effects. Acute mephedrone administration (50-1000 μM) produced stereotyped movements that were attenuated by a dopamine receptor antagonist (SCH 23390) (0.3 μM). Spontaneous discontinuation of mephedrone exposure (1, 10 μM) (60 min) resulted in an abstinence-induced withdrawal response (i.e. reduced motility). In place conditioning experiments, planarians in which mephedrone (100, 500 μM) was paired with the non-preferred environment during conditioning displayed a shift in preference upon subsequent testing. These results suggest that mephedrone produces three behavioral effects associated with psychostimulant drugs, namely dopamine-sensitive stereotyped movements, abstinence-induced withdrawal, and environmental place conditioning.

  6. Influence of Aluminum on the Formation Behavior of Zn-Al-Fe Intermetallic Particles in a Zinc Bath

    Science.gov (United States)

    Park, Joo Hyun; Park, Geun-Ho; Paik, Doo-Jin; Huh, Yoon; Hong, Moon-Hi

    2012-01-01

    The shape, size, and composition of dross particles as a function of aluminum content at a fixed temperature were investigated for aluminum added to the premelted Zn-Fe melt simulating the hot-dip galvanizing bath by a sampling methodology. In the early stage, less than 30 minutes after Al addition, local supersaturation and depletion of the aluminum concentration occurred simultaneously in the bath, resulting in the nucleation and growth of both Fe2Al5Zn x and FeZn13. However, the aluminum was homogenized continuously as the reaction proceeded, and fine and stable FeZn10Al x formed after 30 minutes. An Al-depleted zone (ADZ) mechanism was newly proposed for the "η→η+ζ→δ" phase transformations. The ζ phase bottom dross partly survived for a relatively long period, i.e., 2 hours in this work, whereas the η phase disappeared after 30 minutes. In the early stage of dross formation, both Al-free large particles as well as high-Al tiny particles were formed. The dross particle size decreased slightly with increased reaction time before reaching a plateau. The opposite tendency was observed when the Al content was 0.130 mass pct; with a relatively high Al content, the nucleation of tiny η phase dross was significantly enhanced because of the high degree of supersaturation. This unstable η phase dissolved continuously and underwent simple transformation to the stable δ phase. The relationship between nucleation potential and supersaturation ratio of species is discussed based on the thermodynamics of classical nucleation theory.

  7. The role of plasma triglyceride/high-density lipoprotein cholesterol ratio to predict cardiovascular outcomes in chronic kidney disease.

    Science.gov (United States)

    Sonmez, Alper; Yilmaz, Mahmut Ilker; Saglam, Mutlu; Unal, Hilmi Umut; Gok, Mahmut; Cetinkaya, Hakki; Karaman, Murat; Haymana, Cem; Eyileten, Tayfun; Oguz, Yusuf; Vural, Abdulgaffar; Rizzo, Manfredi; Toth, Peter P

    2015-04-16

    Cardiovascular disease (CVD) risk is substantially increased in subjects with chronic kidney disease (CKD). The Triglycerides (TG) to High-Density Lipoprotein Cholesterol (HDL-C) ratio is an indirect measure of insulin resistance and an independent predictor of cardiovascular risk. No study to date has been performed to evaluate whether the TG/HDL-C ratio predicts CVD risk in patients with CKD. A total of 197 patients (age 53±12 years) with CKD Stages 1 to 5, were enrolled in this longitudinal, observational, retrospective study. TG/HDL-C ratio, HOMA-IR indexes, serum asymmetric dimethyl arginine (ADMA), high sensitivity C-reactive protein (CRP), parathyroid hormone (PTH), calcium, phosphorous, estimated glomerular filtration rate (eGFR), and albumin levels were measured. Flow mediated vasodilatation (FMD) of the brachial artery was assessed by using high-resolution ultrasonography. A total of 11 cardiovascular (CV) deaths and 43 nonfatal CV events were registered in a mean follow-up period of 30 (range 9 to 35) months. Subjects with TG/HDL-C ratios above the median values (>3.29) had significantly higher plasma ADMA, PTH, and phosphorous levels (p=0.04, p=0.02, p=0.01 respectively) and lower eGFR and FMD values (p=0.03, pcardiovascular outcomes [HR: 1.36 (1.11-1.67) (p=0.003)] along with plasma ADMA levels [HR: 1.31 (1.13-1.52) (p<0.001)] and a history of diabetes mellitus [HR: 4.82 (2.80-8.37) (p<0.001)]. This study demonstrates that the elevated TG/HDL-C ratio predicts poor CVD outcome in subjects with CKD. Being a simple, inexpensive, and reproducible marker of CVD risk, the TG/HDL-C ratio may emerge as a novel and reliable indicator among the many well-established markers of CVD risk in CKD. Clinical trial registration number and date: NCT02113462 / 10-04-2014.

  8. Vortex oscillations around a hemisphere-cylinder body with a high fineness ratio

    CERN Document Server

    Ma, Bao-Feng

    2016-01-01

    The vortex unsteadiness around a hemisphere-cylinder body at AOAs of 10 to 80 deg was studied using Large Eddy Simulation (LES) and Dynamic Mode Decomposition (DMD). The Reynolds number (Re) based on the cylinder diameter of the body is 22000. The results show that vortex oscillations exist over the forebody at the whole range of AOAs. The oscillation is characterized by alternate oscillations of a forebody leeward vortex pair up and down and in-phase swings from side to side. The vortex shedding can be found at the afterbody as AOAs more than 20o, and the shedding region moves forwards gradually with AOAs increasing, and accordingly the region of vortex oscillations contracts and eventually only exists near the nose as AOAs sufficiently high. The vortex oscillation and shedding all induce fluctuating side forces along the body, but the ones from vortex oscillations are larger. The frequencies of vortex oscillations are similar to the ones of vortex shedding at the AOAs of 10o-40o with St=0.085-0.12, in which...

  9. Improving Success Ratio of Object Search in Highly-Dynamic Mobile P2P Networks

    Science.gov (United States)

    Takeshita, Kei; Sasabe, Masahiro; Nakano, Hirotaka

    Mobile Ad Hoc Networks (MANETs) are temporal and infrastructure-independent wireless networks that consist of mobile nodes. For instance, a MANET can be used as an emergent network for communication among people when a disaster occurred. Since there is no central server in the network, each node has to find out its desired information (objects) by itself. Constructing a mobile Peer-to-Peer (P2P) network over the MANET can support the object search. Some researchers proposed construction schemes of mobile P2P networks, such as Ekta and MADPastry. They integrated DHT-based application-layer routing and network-layer routing to increase search efficiency. Furthermore, MADPastry proposed a clustering method which groups the overlay nodes according to their physical distance. However, it has also been pointed out that the search efficiency deteriorates in highly dynamic environments where nodes quickly move around. In this paper, we focus on route disappearances in the network layer which cause the deterioration of search efficiency. We describe the detail of this problem and evaluate quantitatively it through simulation experiments. We extend MADPastry by introducing a method sharing objects among nodes in a cluster. Through simulation experiments, we show that the proposed method can achieve up to 2.5 times larger success rate of object search than MADPastry.

  10. Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion

    Science.gov (United States)

    Murthy, S. N. B.

    1996-01-01

    The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.

  11. Functionalized Nano-Film Microchannel Plate: A Single High Aspect Ratio Device for High Resolution, Low Noise Astronomical Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atomic layer deposited functional nano-film technology is used to manufacture Microchannel plate (MCP) devices capable of high gain / low ion feedback operation, on...

  12. Distribution of the Largest Aftershocks in Branching Models of Triggered Seismicity: Theory of the Universal Bath's law

    CERN Document Server

    Saichev, A

    2005-01-01

    Using the ETAS branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Bath's law. Our theory shows that Bath's law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars +- 0.1 for Bath's constant value around 1.2, our exact analytical treatment of Bath's law provides new constraints on the productivity exponent alpha and the branching ratio n: $0.9 <= alpha <= 1$ and 0.8 <= n <= 1. We propose a novel method for measuring alpha based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the ``second Bath's law for foreshocks: the pro...

  13. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  14. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    Science.gov (United States)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.

  15. Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Cardiovascular Events in Diabetics With Coronary Artery Disease.

    Science.gov (United States)

    Yang, Sheng-Hua; Du, Ying; Li, Xiao-Lin; Zhang, Yan; Li, Sha; Xu, Rui-Xia; Zhu, Cheng-Gang; Guo, Yuan-Lin; Wu, Na-Qiong; Qing, Ping; Gao, Ying; Cui, Chuan-Jue; Dong, Qian; Sun, Jing; Li, Jian-Jun

    2017-08-01

    It has been demonstrated that an elevated ratio of triglycerides (TG) to high-density lipoprotein cholesterol (HDL-C) is a risk factor of coronary artery disease (CAD) in patients with type 2 diabetes mellitus (T2DM) and is also found to be associated with cardiovascular events (CVEs) in the general population. However, its prognostic value in patients with T2DM along with CAD remains to be determined. A total of 1,447 consecutive patients with T2DM with angiographic-proven stable CAD were enrolled in the present study and followed-up for an average of 20.3 months. The characteristics of all patients including fasting lipid profile were obtained at baseline and multivariate Cox proportional hazards models were constructed using log TG/HDL-C as a predictor variable. The relationships between CVEs and total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-HDL-C, TC/HDL-C, LDL-C/HDL-C and apolipoprotein B/ apolipoprotein AI (apoB/apoAI) were also explored. Compared with patients without CVEs, the ones who experienced CVEs had a higher TG/HDL-C ratio. Univariable regression revealed a significant association of log TG/HDL-C with CVEs (hazard ratio = 2.5, P = 0.015). After adjusting for multiple traditional risk factors of cardiovascular disease, the association was still found (hazard ratio = 2.47, P = 0.047). Moreover, results suggested that the ratios of non-HDL-C, TC/HDL-C, LDL-C/HDL-C and apoB/apoAI were not predictors for CVEs in T2DM. In our primary study, data suggested that elevated TG/HDL-C value might be a useful predictor for future CVEs in Chinese patients with T2DM with stable CAD. Further study is needed to confirm our findings. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  16. Direct electroless Ni-P deposition on AM50 magnesium alloy from sulfate bath

    Institute of Scientific and Technical Information of China (English)

    LI Guang-yu; NIU Li-yuan; JIANG Zhong-hao; GU Chang-dong; LIAN Jian-she

    2006-01-01

    A bright electroless Ni-P deposition on AM50 magnesium alloy in a sulfate plating bath was proposed by using direct plating process with non-chromate pretreatment. The electroless Ni-P plating on AM50 magnesium alloy has an admirable appearance and good adhesion. The results indicate that the electroless Ni-P deposition with non-chromate pretreatment has better adhesion than that of zinc immersion coating. Anodic polarization curves indicate that the electroless Ni-P deposition obtained from the sulfate bath has similar corrosion-resistance to that obtained from basic nickel carbonate bath. The deposition process generates less pollutant by a non-chromate plating bath and is suitable for the magnesium alloys manufacture because of its low cost. The hardness of the electroless Ni-P plated AM50 is about HV 720.6 and HV 969.7 after heat treatments at 180 ℃ for 2 h. The wear resistance of Ni-P plated magnesium alloy specimens is about 5 to 9 times as high as that of bare magnesium alloys.

  17. Comprehensive optical studies on SnS layers synthesized by chemical bath deposition

    Science.gov (United States)

    Gedi, Sreedevi; Minnam Reddy, Vasudeva Reddy; Park, Chinho; Chan-Wook, Jeon; Ramakrishna Reddy, K. T.

    2015-04-01

    A simple non-vacuum and cost effective wet chemical technique, chemical bath deposition was used to prepare tin sulphide (SnS) layers on glass substrates. The layers were formed by varying bath temperature in the range, 40-80 °C, keeping other deposition parameters as constant. An exhaustive investigation on their optical properties with bath temperature was made using the transmittance and reflectance measurements. The absorption coefficient was evaluated from the optical transmittance data utilizing Lambert's principle and is >104 cm-1 for all the as-prepared layers. The energy band gap of the layers was determined from the differential reflectance spectra that varied from 1.41 eV to 1.30 eV. Consequently, refractive index and extinction coefficient were obtained from Pankov relations and dispersion constants were calculated using Wemple-Didomenico method. In addition, other optical parameters such as the optical conductivity, dielectric constants, dissipation factor, high frequency dielectric constant and relaxation time were also calculated. Finally electrical parameters such as resistivity, carrier mobility and carrier density of as-prepared layers were estimated using optical data. A detailed analysis of the dependence of all above mentioned parameters on bath temperature is reported and discussed for a clean understanding of electronic characteristics of SnS layers.

  18. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    Directory of Open Access Journals (Sweden)

    Florian Waltz

    2015-03-01

    Full Text Available In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps, a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step. In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity.

  19. Efficacies of inactivated vaccines against betanodavirus in grouper larvae (Epinephelus coioides) by bath immunization.

    Science.gov (United States)

    Kai, Yu-Hsuan; Chi, Shau-Chi

    2008-03-10

    Betanodavirus is the pathogen of viral nervous necrosis (VNN) disease that has caused mass mortality among many species of marine fish at larval stage. In this study, the efficacy of inactivated betanodavirus was evaluated by bath-immunization and bath-challenge of orange-spotted grouper (Epinephelus coioides) at early larval stage. Two kinds of chemicals were used for inactivation of the virus, and the relative percent survival (RPS) values of 0.4mM binary ethylenimine (BEI)-inactivated vaccine was revealed to be 79-95, higher than that of 0.1-0.2% formalin-inactivated vaccines (39-43). Three lengths of bath immunization time were tested, and 20 min immersion of BEI-inactivated betanodavirus at a concentration of 10(6)TICD(50)/ml was sufficient to induce high protection (RPS > 75). Protection of the BEI-inactivated vaccine was evaluated at different time post immunization, and the peak of protection was observed 30 days post vaccination, and retained for at least 3 months. The efficacies of formalin-inactivated vaccines with or without encapsulation were compared, and the result revealed that the efficacy of formalin-inactivated vaccine could be significantly improved by nano-encapsulation (RPS = 85). All these data strongly suggested that bath immunization with nano-encapsulated formalin-inactivated or BEI-inactivated betanodavirus vaccines is an effective strategy to protect grouper larvae against VNN.

  20. Bath additives for the treatment of childhood eczema (BATHE): protocol for multicentre parallel group randomised trial

    Science.gov (United States)

    Santer, Miriam; Rumsby, Kate; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Chorozoglou, Maria; Wood, Wendy; Roberts, Amanda; Thomas, Kim S; Williams, Hywel C; Little, Paul

    2015-01-01

    Introduction Bath emollients are widely prescribed for childhood eczema, yet evidence of their benefits over direct application of emollients is lacking. Objectives To determine the clinical and cost-effectiveness of adding bath emollient to the standard management of eczema in children Methods and analysis Design: Pragmatic open 2-armed parallel group randomised controlled trial. Setting: General practitioner (GP) practices in England and Wales. Participants: Children aged over 12 months and less than 12 years with eczema, excluding inactive or very mild eczema (5 or less on Nottingham Eczema Severity Scale). Interventions: Children will be randomised to either bath emollients plus standard eczema care or standard eczema care only. Outcome measures: Primary outcome is long-term eczema severity, measured by the Patient-Oriented Eczema Measure (POEM) repeated weekly for 16 weeks. Secondary outcomes include: number of eczema exacerbations resulting in healthcare consultations over 1 year; eczema severity over 1 year; disease-specific and generic quality of life; medication use and healthcare resource use; cost-effectiveness. Aiming to detect a mean difference between groups of 2.0 (SD 7.0) in weekly POEM scores over 16 weeks (significance 0.05, power 0.9), allowing for 20% loss to follow-up, gives a total sample size of 423 children. We will use repeated measures analysis of covariance, or a mixed model, to analyse weekly POEM scores. We will control for possible confounders, including baseline eczema severity and child's age. Cost-effectiveness analysis will be carried out from a National Health Service (NHS) perspective. Ethics and dissemination This protocol was approved by Newcastle and North Tyneside 1 NRES committee 14/NE/0098. Follow-up will be completed in 2017. Findings will be disseminated to participants and carers, the public, dermatology and primary care journals, guideline developers and decision-makers. Trial registration number ISRCTN

  1. Activated and non-activated dephasing in a spin bath

    Science.gov (United States)

    Torrontegui, E.; Kosloff, R.

    2016-09-01

    We analyze different decoherence processes in a system coupled to a bath. Apart from the well known standard dephasing mechanism which is temperature dependent an alternative mechanism is presented, the spin-swap dephasing which does not need initial bath activation and is temperature independent. We show that for dipole interaction in the weak coupling regime the separation of time scales between system and bath can not produce pure dephasing, the process being accompanied by dissipation. Activated and non-activated dephasing processes are analyzed in a diamond nitrogen-vacancy center.

  2. High preoperative monocyte count/high-density lipoprotein ratio is associated with postoperative atrial fibrillation and mortality in coronary artery bypass grafting.

    Science.gov (United States)

    Saskin, Hüseyin; Serhan Ozcan, Kazim; Yilmaz, Seyhan

    2017-03-01

    The monocyte to high-density lipoprotein ratio has recently emerged as an indicator of inflammation and oxidative stress. The aim of this study was to evaluate the association of the monocyte to high-density lipoprotein ratio with postoperative atrial fibrillation and mortality in coronary artery bypass grafting. Six hundred and sixty-two patients who were in sinus rhythm preoperatively and who had isolated coronary artery bypass grafting were retrospectively included in the study. Patients who had atrial fibrillation in the early postoperative period were enrolled in group 1 ( n  = 153); patients who remained in sinus rhythm in the early postoperative period were included in group 2 ( n  = 509). The clinical and demographic data of the patients, biochemical and complete blood count parameters, preoperative monocyte count/high-density lipoprotein cholesterol ratio, and operative and postoperative data were recorded. Preoperative monocyte counts ( P  = 0.0001), monocyte count/high-density lipoprotein cholesterol ratio ( P = 0.0001) and C-reactive protein levels ( P  = 0.0001) were significantly increased in group 1. In the first month, 8 patients in group 1 (5.2%) and 5 patients in group 2 (1.0%) died, which was statistically significant ( P  = 0.003). In univariate and multivariate logistic regression analyses, an elevated preoperative monocyte count/high-density lipoprotein cholesterol ratio ( P  = 0.03) and C-reactive protein levels ( P  = 0.0001) were predictors of postoperative atrial fibrillation. Preoperative monocyte counts ( P  = 0.001), monocyte count/high-density lipoprotein cholesterol ratio ( P  = 0.0001) and the use of inotropic support ( P  = 0.0001) were also predictors of mortality in the early postoperative period. We have observed that high preoperative monocyte count/ high-density lipoprotein ratio was associated with postoperative atrial fibrillation and mortality after coronary artery bypass grafting

  3. Single phase flow characteristics of FC-72 and ethanol in high aspect ratio rectangular mini- and micro-channels

    Science.gov (United States)

    Wang, Yuan; Wang, Zhen-guo

    2016-11-01

    Single phase flow friction factor of FC-72 and ethanol in mini-and micro-channels are experimentally investigated in the present study. High aspect ratio3 rectangular channels are selected, the hydraulic diameters of which are 571 µm, 762 µm and 1454 µm, and the aspect ratios are 20, 20 and 10 respectively. Degassed ethanol and FC-72 are used as working fluids. All the friction factors acquired in the 571 µm and 762 µm channels agree with the conventional friction theory within  ±20%-±25%. In the 1454 µm channel, however, deviations from the conventional theory occur and a modified empirical correlation of friction factor as a function of Reynolds number is proposed. Early transition from laminar to transitional flow is captured. Besides, effects of liquid physical properties are discussed. Lower viscosity and higher liquid density are responsible for the higher friction factor of FC-72. The influence of liquid properties weakens as the Reynolds number increases.

  4. The fluid mechanics of a high aspect ratio slot with an impressed pressure gradient and secondary injection

    Science.gov (United States)

    Sobanik, John Bertram

    1993-01-01

    A high aspect ratio slot flow (which emulates the gas leakage path in a gas turbine engine outer turbine air seal) is studied by use of a high aspect ratio slot using water as the working fluid. The cross section of the geometry is similar to a 'T', the slot being the vertical stroke and the main flow being the cross bar. A pressure gradient in the axial direction is created by blocking the main flow at a discreet location with an orifice plate (or blade tip simulator), located above the slot. Seven individually metered secondary flow injectors are located periodically along the bottom of the wall of the slot. Two slot widths, 1/8 and 1/4 inch, were investigated for length to width aspect ratios of 384 and 192 and height to width aspect ratios 33.2 and 16.6 respectively. Orifice plate pressure drops sufficient to give Reynolds numbers based upon half width of the slot, without secondary injection turned on, of 2350 and 4700 in the 1/8 inch slot and 4700 and 9400 in the 1/4 inch slot were run. Various secondary injection scenarios were added to the flow, the cases most studied being the no-injection and the all injectors flowing equal mass rates. Total injection rates for all seven injectors of 3.78 and 7.56 slot volumes per second were run. Laser velocimetry data and flow visualization pictures using fluorescein dye in the secondary flow are compared with computational results form the TEACH 3-D computer code. Major features and trends of the flow are captured by the computational model. Recommendations for further improvement of the numerical accuracy involves modification of the TEACH 3-D code to allow the 'slip condition' on all confining boundaries of the flow, or using a code which permits the 'slip condition' on all boundaries as a built-in option.

  5. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  6. A sub-atmospheric chemical vapor deposition process for deposition of oxide liner in high aspect ratio through silicon vias.

    Science.gov (United States)

    Lisker, Marco; Marschmeyer, Steffen; Kaynak, Mehmet; Tekin, Ibrahim

    2011-09-01

    The formation of a Through Silicon Via (TSV) includes a deep Si trench etching and the formation of an insulating layer along the high-aspect-ratio trench and the filling of a conductive material into the via hole. The isolation of the filling conductor from the silicon substrate becomes more important for higher frequencies due to the high coupling of the signal to the silicon. The importance of the oxide thickness on the via wall isolation can be verified using electromagnetic field simulators. To satisfy the needs on the Silicon dioxide deposition, a sub-atmospheric chemical vapor deposition (SA-CVD) process has been developed to deposit an isolation oxide to the walls of deep silicon trenches. The technique provides excellent step coverage of the 100 microm depth silicon trenches with the high aspect ratio of 20 and more. The developed technique allows covering the deep silicon trenches by oxide and makes the high isolation of TSVs from silicon substrate feasible which is the key factor for the performance of TSVs for mm-wave 3D packaging.

  7. Global dynamics of high area-to-mass ratios GEO space debris by means of the MEGNO indicator

    Science.gov (United States)

    Valk, S.; Delsate, N.; Lemaître, A.; Carletti, T.

    2009-05-01

    In this paper we provide an extensive analysis of the global dynamics of high-area-to-mass ratios geosynchronous (GEO) space debris, applying a recent technique developed by Cincotta and Simó [Cincotta, P.M., Simó, C.Simple tools to study global dynamics in non-axisymmetric galactic potentials-I. Astron. Astrophys. (147), 205-228, 2000.], Mean Exponential Growth factor of Nearby Orbits ( MEGNO), which provides an efficient tool to investigate both regular and chaotic components of the phase space. We compute a stability atlas, for a large set of near-geosynchronous space debris, by numerically computing the MEGNO indicator, to provide an accurate understanding of the location of stable and unstable orbits as well as the timescale of their exponential divergence in case of chaotic motion. The results improve the analysis presented in Breiter et al. [Breiter, S., Wytrzyszczak, I., Melendo, B. Long-term predictability of orbits around the geosynchronous altitude. Advances in Space Research 35, 1313-1317, 2005] notably by considering the particular case of high-area-to-mass ratios space debris. The results indicate that chaotic orbits regions can be highly relevant, especially for very high area-to-mass ratios. We then provide some numerical investigations and an analytical theory that lead to a detailed understanding of the resonance structures appearing in the phase space. These analyses bring to the fore a relevant class of secondary resonances on both sides of the well-known pendulum-like pattern of geostationary objects, leading to a complex dynamics.

  8. High Mid-Flow to Vital Capacity Ratio and the Response to Exercise in Children With Congenital Heart Disease.

    Science.gov (United States)

    Vilozni, Daphna; Alcaneses-Ofek, Maria Rosario; Reuveny, Ronen; Rosenblum, Omer; Inbar, Omri; Katz, Uriel; Ziv-Baran, Tomer; Dubnov-Raz, Gal

    2016-12-01

    Pulmonary mechanics may play a role in exercise intolerance in patients with congenital heart disease (CHD). A reduced FVC volume could increase the ratio between mid-flow (FEF25-75%) and FVC, which is termed high dysanapsis. The relationship between high dysanapsis and the response to maximum-intensity exercise in children with CHD had not yet been studied. The aim of this work was to examine whether high dysanapsis is related to the cardiopulmonary response to maximum-intensity exercise in pediatric subjects with CHD. We retrospectively collected data from 42 children and adolescents with CHD who had either high dysanapsis (ratio >1.2; n = 21) or normal dysanapsis (control) (n = 21) as measured by spirometry. Data extracted from cardiopulmonary exercise test reports included peak values of heart rate, work load, V̇O2 , V̇CO2 , and ventilation parameters and submaximum values, including ventilatory threshold and ventilatory equivalents. There were no significant differences in demographic and clinical parameters between the groups. Participants with high dysanapsis differed from controls in lower median peak oxygen consumption (65.8% vs 83.0% of predicted, P = .02), peak oxygen pulse (78.6% vs 87.8% of predicted, P = .02), ventilatory threshold (73.8% vs 85.3% of predicted, P = .03), and maximum breathing frequency (106% vs 121% of predicted, P = .035). In the high dysanapsis group only, median peak ventilation and tidal volume were significantly lower than 80% of predicted values. In children and adolescents with corrected CHD, high dysanapsis was associated with a lower ventilatory capacity and reduced aerobic fitness, which may indicate respiratory muscle impairments. Copyright © 2016 by Daedalus Enterprises.

  9. Cycle length and COD/N ratio determine properties of aerobic granules treating high-nitrogen wastewater.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Bernat, Katarzyna; Zielińska, Magdalena; Wojnowska-Baryła, Irena

    2014-07-01

    Aerobic granule characteristic in sequencing batch reactors treating high-nitrogen digester supernatant was investigated at cycle lengths (t) of 6, 8 and 12 h with the COD/N ratios in the influent of 4.5 and 2.3. The biomass production (Y obs) correlated with the extracellular polymeric substances (EPS) in grams per COD removed. Denitrification efficiency significantly decreased as the amount of EPS in biomass increased, suggesting that organic assimilation in EPS hampers nitrogen removal. Granule hydrophobicity was highest at t of 8 h; the t has to be long enough to remove pollutants, but not so long that excessive biomass starvation causes extracellular protein consumption that decreases hydrophobicity. At a given t, reducing the COD/N ratio improved hydrophobicity that stimulates cell aggregation. At t of 6 h and the COD/N ratio of 2.3, the dominance of 0.5-1.0 mm granules favored simultaneous nitrification and denitrification and resulted in the highest nitrogen removal.

  10. Universe unveiled the cosmos in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2015-01-01

    The bubbles were swirling all around me, massaging my body. As I luxuriated in this fantastic bath, I gasped realizing that those bubbles carried with them miniature galaxies bringing the entire Cosmos into my bathtub... Alfie is back. And so are George and other characters from the author’s previous book Einstein’s Enigma or Black Holes in My Bubble Bath. While the present book, Universe Unveiled - The Cosmos in My Bubble Bath, is completely independent, its storyline can be considered a sequel to the previous one. The scientific content spanning ancient world models to the most recent mysteries of cosmology is presented in an entirely nontechnical and descriptive style through the discussions between Alfie, the enlightened learner, and George, professor of astrophysics. Fantasies, based on these discussions that cover the scientific facts, are created by the magical bubble baths taken by Alfie. Universe Unveiled blends accurate science with philosophy, drama, humour, and fantasy to create an exciting co...

  11. Production rate of the system-bath mutual information

    Science.gov (United States)

    Li, Sheng-Wen

    2017-07-01

    When an open system comes into contact with several thermal baths, the entropy produced by the irreversible processes (d Si=d S -∑α đQα/Tα ) keeps increasing, and this entropy production rate is always non-negative. However, when the system comes into contact with nonthermal baths containing quantum coherence or squeezing, this entropy production formula does not apply. In this paper, we study the increasing rate of mutual information between an open system and its environment. In the case of canonical thermal baths, we prove that this mutual information production rate could return exactly to the previous entropy production rate. Furthermore, we study an example of a single boson mode that comes into contact with multiple squeezed thermal baths, where the conventional entropy production rate does not apply, and we find that this mutual information production rate remains non-negative, which indicates a monotonic increase in the correlation between the system and its environment.

  12. Heat-bath Configuration Interaction: An efficient selected CI algorithm inspired by heat-bath sampling

    CERN Document Server

    Holmes, Adam; Umrigar, Cyrus

    2016-01-01

    We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the tradeoff between speed and accuracy, one which controls the selection of determinants to add to a variational wavefunction, and one which controls the the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly-correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few min...

  13. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    Science.gov (United States)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  14. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum

    Science.gov (United States)

    Rips, Ilya

    2017-01-01

    Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωbrate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.

  15. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  16. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Panah, Mohammad Esmail Aryaee

    2017-01-01

    High aspect ratio free-standing Al-doped ZnO (AZO) nanopillars and nanotubes were fabricated using a combination of advanced reactive ion etching and atomic layer deposition (ALD) techniques. Prior to the pillar and tube fabrication, AZO layers were grown on flat silicon and glass substrates...... plasma frequency. During pillar fabrication, AZO conformally passivates the silicon template, which is characteristic of typical ALD growth conditions. The last step of fabrication is heavily dependent on the selective chemistry of the SF6 plasma. It was shown that silicon between AZO structures can...

  17. Luminescent Paints Used for Rotating Temperature and Pressure Measurements on Scale-Model High-Bypass-Ratio Fans

    Science.gov (United States)

    Bencic, Timothy J.

    1998-01-01

    NASA Lewis Research Center is a leader in the application of temperature- and pressuresensitive paints (TSP and PSP) in rotating environments. Tests were recently completed on several scale model, high-bypass-ratio turbofans in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel. Two of the test objectives were to determine the aerodynamic and acoustic performance of the fan designs. Using TSP and PSP, researchers successfully achieved fullfield aerodynamic loading profiles. The visualized loading profiles may help researchers identify factors contributing to the fans' performance and to the acoustic characteristics associated with the flow physics on the surface of the blades.

  18. Real time ablation rate measurement during high aspect-ratio hole drilling with a 120-ps fiber laser.

    Science.gov (United States)

    Mezzapesa, Francesco P; Sibillano, Teresa; Di Niso, Francesca; Ancona, Antonio; Lugarà, Pietro M; Dabbicco, Maurizio; Scamarcio, Gaetano

    2012-01-02

    We report on the instantaneous detection of the ablation rate as a function of depth during ultrafast microdrilling of metal targets. The displacement of the ablation front has been measured with a sub-wavelength resolution using an all-optical sensor based on the laser diode self-mixing interferometry. The time dependence of the laser ablation process within the depth of aluminum and stainless steel targets has been investigated to study the evolution of the material removal rate in high aspect-ratio micromachined holes.

  19. EOF cold model-study of bath behavior

    Directory of Open Access Journals (Sweden)

    Breno Totti Maia

    2016-01-01

    Full Text Available The EOF reactor was developed in Brazil in the eighties with unique features. The preheating of scrap and distribution of injection points oxidizing gases and fuels make up these features. This paper aims to reproduce the behavior of the metal bath an EOF of 45 tons comparing their top three gas injection equipment: supersonic lances, atmospheric injectors and tuyeres. The lances and tuyeres promoted greater agitation of the bath with atmospheric injectors a great opportunity for improvement.

  20. Study and Practice of Forest-bathing Field in Japan

    Institute of Scientific and Technical Information of China (English)

    Qunming; ZHENG; Xiaoya; YANG

    2013-01-01

    Japan has made remarkable achievements in the study and development of forest tourism for health care reason. Through the comprehensive investigation into the development of forest-bathing field in Japan, this paper studied the forest tourism for health care factor in Japan and concluded the evaluation standard and construction of forest-bathing field, as well as personnel training. In the end, some suggestions were proposed for the study and development of forest tourism for health care factor in Asia.

  1. Effect of stone Spa bathing and hot-spring bathing on pulse wave velocity in healthy, late middle-aged females.

    Science.gov (United States)

    Morioka, Ikuharu; Izumi, Yurina; Inoue, Miyabi; Okada, Kanako; Sakaguchi, Kaho; Miyai, Natsuki

    2014-01-01

    The purpose of this study was to clarify the effect of stone spa bathing (Ganban-yoku) and hot-spring bathing on brachial-ankle pulse wave velocity (baPWV) in healthy, late middle-aged females. The subjects were 13 females (mean age, 47.3 years). The skin and tympanic temperatures, blood pressure, and baPWV were measured before and after stone spa bathing and hot-spring bathing. For the stone spa bathing, the subjects lay down three times for approximately 10 min each time over warm stone beds. Although body weight showed no change after the hot-spring bathing, it significantly increased after the stone spa bathing. The increase was significantly related to the amount of water intake. The skin and tympanic temperatures increased to a smaller degree after the stone spa bathing than after the hot-spring bathing. The diastolic blood pressure decreased to a smaller degree after the stone spa bathing. BaPWV showed no significant change after bathing both in the stone spa and in the hot-spring. The results of multiple regression analysis showed that the factors significantly related to the change in baPWV after the stone spa bathing were the changes in skin and tympanic temperatures and habit of smoking, and that after the hot-spring bathing was the change in skin temperature. The results suggest that, compared with the hot-spring bathing, stone spa bathing causes less strain on the body. The stone spa bathing and hot-spring bathing showed no marked effect on baPWV. However, there is a possibility that the stone spa bathing may be used as a load for investigating arterial stiffness.

  2. Effect of hyperthermic water bath on parameters of cellular immunity.

    Science.gov (United States)

    Blazícková, S; Rovenský, J; Koska, J; Vigas, M

    2000-01-01

    Effects of hyperthermic water bath on selected immune parameters (lymphocyte subpopulations, natural killer (NK) cell counts and their activity) were studied in a group of 10 volunteers. Application of hyperthermic water bath (both topical and whole-body) was followed by a significant reduction of relative B lymphocyte counts. Whole-body hyperthermic water bath reduced relative total T lymphocyte counts, increased relative CD8+ T lymphocyte and NK cell counts and increased NK activity. Whole-body hyperthermic bath increased somatotropic hormone (STH) activity in eight out of 10 volunteers; higher relative counts of CD8+ lymphocytes and NK cells were observed compared with the group of volunteers not responding to hyperthermic water bath by STH secretion. In five volunteers STH was released in response to local hyperthermic water bath and the NK activity of lymphocytes also increased but their relative counts did not. The results suggest that these increases in CD8+ lymphocyte and NK cell counts are probably dependent on increased STH production.

  3. Triglycerides and triglycerides to high-density lipoprotein cholesterol ratio are strong predictors of incident hypertension in Middle Eastern women.

    Science.gov (United States)

    Tohidi, M; Hatami, M; Hadaegh, F; Azizi, F

    2012-09-01

    Dyslipidemia has been reported as a risk factor for incident hypertension in a few prospective studies, however, no study has specifically assessed different lipid measures including the lipid ratios, that is, total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs)/HDL-C as predictors of hypertension among Middle Eastern women with high prevalences of dyslipidemia and hypertension. The study population consisted of 2831 non-hypertensive women, aged ≥ 20 years. We measured lipoproteins, and calculated non-HDL-C and the lipid ratios. The risk-factor-adjusted odds ratios for incident hypertension were calculated for every 1 standard deviation (s.d.) change in TC, log-transformed TG, HDL-C, non-HDL-C, TC/HDL-C and log-transformed TG/HDL-C using multivariate logistic regression analysis. Over a mean follow-up of 6.4 years, 397 women developed hypertension. An increase of 1 s.d. in TG, TC/HDL-C and TG/HDL-C increased the risk of incident hypertension by 16, 19 and 18%, respectively, and 1 s.d. increase in HDL-C decreased the risk of hypertension by 14% in the multivariable model (all P ≤ 0.05). In models excluding women with diabetes and central or general obesity, TG, TG/HDL-C and TC/HDL-C remained as independent predictors of incident hypertension. In conclusion, dyslipidemia, using serum TG and TG/HDL-C, in particular, may be useful in identification of women at risk of hypertension, even in those without diabetes and central or general obesity.

  4. Accelerated decline in renal function after acute myocardial infarction in patients with high low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol ratio.

    Science.gov (United States)

    Okumura, Satoshi; Sakakibara, Masaki; Hayashida, Ryo; Jinno, Yasushi; Tanaka, Akihito; Okada, Koji; Hayashi, Mutsuharu; Ishii, Hideki; Murohara, Toyoaki

    2014-01-01

    High low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol (L/H) ratio is associated with progressions of coronary arteriosclerosis and chronic kidney disease. On the other hand, renal function markedly declined after acute myocardial infarction (AMI). The aims of the present study were (1) to identify what type of patients with AMI would have high L/H ratio at follow-up and (2) to evaluate whether decline in renal function after AMI had accelerated or not in patients with high L/H ratio. The 190 eligible AMI patients who underwent primary percutaneous coronary intervention (PCI) and received atorvastatin (10 mg) were divided into one of two groups according to the L/H ratio at 6-month follow-up: L/H >2 group (n = 81) or L/H ≤2 group (n = 109). The characteristics on admission in the two groups were examined. Furthermore, changes in serum creatinine (sCr) and estimated glomerular filtration rate (eGFR) during 1- and 6-month follow-up were compared between the two groups. L/H >2 group were significantly younger and had greater body mass index (BMI) and worse lipid profile on admission compared with L/H ≤2 group. Percentage increase in sCr and percentage decrease in eGFR during 1-month follow-up in L/H >2 group tended to be greater than in L/H ≤2 group, and those during 6-month follow-up were significantly greater (16.5 ± 2.77 vs. 9.79 ± 2.23 %, p = 0.03 and 11.8 ± 1.93 vs. 2.75 ± 3.85 %, p = 0.04, respectively). In AMI patients undergoing primary PCI, those who were young and had large BMI and poor lipid profile on admission were likely to have a high L/H ratio at follow-up despite statin therapy. In addition, the decline in renal function after AMI had significantly accelerated in patients with high L/H ratio.

  5. Triglyceride-to-high-density-lipoprotein-cholesterol ratio is an index of heart disease mortality and of incidence of type 2 diabetes mellitus in men.

    Science.gov (United States)

    Vega, Gloria Lena; Barlow, Carolyn E; Grundy, Scott M; Leonard, David; DeFina, Laura F

    2014-02-01

    High triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) impart risk for heart disease. This study examines the relationships of TG/HDL-C ratio to mortality from all causes, coronary heart disease (CHD), or cardiovascular disease (CVD). Survival analysis was done in 39,447 men grouped by TG/HDL-C ratio cut point of 3.5 and for metabolic syndrome. National Death Index International Classification of Diseases (ICD-9 and ICD-10) codes were used for CVD and CHD deaths occurring from 1970 to 2008. Incidence of type 2 diabetes mellitus (DM) according to ratio was estimated in 22,215 men. Triglyceride/HDL-C ratio and cross-product of TG and fasting blood glucose (TyG index) were used in analysis. Men were followed up for 581,194 person-years. Triglyceride/HDL-C ratio predicted CHD, CVD, and all-cause mortality after adjustment for established risk factors and non-HDL-C. Mortality rates were higher in individuals with a high ratio than in those with a low ratio. Fifty-five percent of men had metabolic syndrome that was also predictive of CHD, CVD, and all-cause mortality. Annual incidence of DM was 2 times higher in men with high TG/HDL-C ratio than in those with a low ratio. Individuals with high TG/HDL-C ratio had a higher incidence of DM than those with a low ratio. The TyG index was not equally predictive of causes of mortality to TG/HDL-C, but both were equally predictive of diabetes incidence. Triglyceride/HDL-C ratio predicts CHD and CVD mortality as well as or better than do metabolic syndrome in men. Also, a high ratio predisposes to DM. The TyG index does not predict CHD, CVD, or all-cause mortality equally well, but like TG/HDL-C ratio, it predicts DM incidence.

  6. ELECTRODIALYSIS AS A TECHNIQUE FOR EXTENDING ELECTROLESS NICKEL BATH LIFE-IMPROVING SELECTIVITY AND REDUCING LOSSES OF VALUABLE BATH COMPONENTS

    Science.gov (United States)

    Over the last decade electrodialysis has emerged as an effective technique for removing accumulated reactant counterions (sodium and sulfate) and reaction products (orthophosphite) that interfere with the electroless nickel plating process, thus extending bath life by up to 50 me...

  7. High peak-to-valley current ratio In0.53Ga0.47As/AlAs resonant tunneling diode with a high doping emitter

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Sun Hao; Teng Teng; Sun Xiaowei

    2012-01-01

    An In0.53Ga0.47As/AlAs resonant tunneling diode (RTD) with a high doping emitter is designed and fabricated using air bridge technology.The RTD exhibits a high peak-to-valley current ratio (PVCR) of more than 40 at room temperature,with a peak current density of 24 kA/cm2.The extraction of device parameters from DC and microwave measurements is presented together with an RTD equivalent circuit.The high PVCR RTD with small intrinsic capacitance is favorable for microwave/THz applications.

  8. The Space-Time CESE Method Applied to Viscous Flow Computations with High-Aspect Ratio Triangular or Tetrahedral Meshes

    Science.gov (United States)

    Chang, Chau-Lyan; Venkatachari, Balaji

    2016-11-01

    Flow physics near the viscous wall is intrinsically anisotropic in nature, namely, the gradient along the wall normal direction is much larger than that along the other two orthogonal directions parallel to the surface. Accordingly, high aspect ratio meshes are employed near the viscous wall to capture the physics and maintain low grid count. While such arrangement works fine for structured-grid based methods with dimensional splitting that handles derivatives in each direction separately, similar treatments often lead to numerical instability for unstructured-mesh based methods when triangular or tetrahedral meshes are used. The non-splitting treatment of near-wall gradients for high-aspect ratio triangular or tetrahedral elements results in an ill-conditioned linear system of equations that is closely related to the numerical instability. Altering the side lengths of the near wall tetrahedrons in the gradient calculations would make the system less unstable but more dissipative. This research presents recent progress in applying numerical dissipation control in the space-time conservation element solution element (CESE) method to reduce or alleviate the above-mentioned instability while maintaining reasonable solution accuracy.

  9. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    Science.gov (United States)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  10. Possible Association of High Urinary Magnesium and Taurine to Creatinine Ratios with Metabolic Syndrome Risk Reduction in Australian Aboriginals

    Directory of Open Access Journals (Sweden)

    Atsumi Hamada

    2011-01-01

    Full Text Available Background. Because of the epidemic of metabolic syndrome (MS in Australian Aboriginals known for their higher cardiovascular mortality and shorter life expectancy, we analyzed the possible relationship of their MS risks with the current dietary custom. Methods. The subjects were 84 people aged 16–79 years. The health examination was conducted according to the basic protocol of WHO-CARDIAC (Cardiovascular Diseases and Alimentary Comparison Study. Results. The highest prevalence among MS risks was abdominal obesity (over 60%. After controlling for age and sex, the odds of obesity decreased significantly with high level of urinary magnesium/creatinine ratio (Mg/cre (OR, 0.11; 95% CI, 0.02–0.57; P<.05. The significant inverse associations of fat intake with Mg/cre and of fast food intake with urinary taurine/creatinine ratio were revealed. Conclusions. The high prevalence of obesity in the Aboriginal people of this area may partly be due to the reduction of beneficial nutrients intake including Mg and taurine.

  11. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    Science.gov (United States)

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-05-01

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has removal with no elemental sulfur transformation. Under micro-aerobic condition to remove removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Scale dependence of the CMB power spectrum in small field models of inflation with a high tensor to scalar ratio

    CERN Document Server

    Wolfson, Ira

    2016-01-01

    We study scale dependence of the cosmic microwave background (CMB) power spectrum in a class of small, single-field models of inflation which lead to a high value of the tensor to scalar ratio. The inflaton potentials that we consider are degree 5 polynomials, for which we calculate the power spectrum numerically and extract the cosmological parameters: the scalar index $n_s$, the running of the scalar index $n_{run}$ and the tensor to scalar ratio $r$. We first demonstrate the precision of the numerical analysis by comparing results to a case with an exact analytic solution - power law inflation. We then scan the possible values of potential parameters for which the cosmological parameters are within the allowed range by observations. The 5 parameter class is able to reproduce all the allowed values of the $n_s$ and $n_{run}$ for values of $r$ that are as high as 0.001. We find that for non-vanishing $n_{run}$, the numerically extracted values of $n_s$ and $n_{run}$ deviate significantly from analytic projec...

  13. Association of High Density Lipoprotein with Platelet to Lymphocyte and Neutrophil to Lymphocyte Ratios in Coronary Artery Disease Patients

    Directory of Open Access Journals (Sweden)

    Jayesh H. Prajapati

    2014-01-01

    Full Text Available Background. We aimed to evaluate a relationship between platelet-lymphocyte ratio (PLR and neutrophil-lymphocyte ratio (NLR with high density lipoprotein (HDL cholesterol levels in coronary artery disease (CAD patients. Methods. A total of 354 patients with angiographically confirmed coronary blockages were enrolled in the study. Hematological indices and lipid profiling data of all the patients were collected. Results. We have observed significant association between HDL and PLR (P=0.008 and NLR (P=0.009; however no significant relationship was obtained with HDL and isolated platelet (P=0.488, neutrophil (P=0.407, and lymphocyte (P=0.952 counts in CAD patients. The association was subjected to gender specific variation as in males PLR (P=0.024 and NLR (P=0.03 were highly elevated in low HDL patients, whereas in females the elevation could not reach the statistically significant level. The PLR (217.47 versus 190.3; P=0.01 and NLR (6.33 versus 5.10; P=0.01 were significantly higher among the patients with acute coronary syndrome. In young patients the PLR (P=0.007 and NLR (P=0.001 were inversely associated with HDL, whereas in older population only NLR (P=0.05 had showed a significant association. Conclusion. We conclude that PLR and NLR are significantly elevated in CAD patients having low HDL levels.

  14. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B. [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of); Pyun, Jae-Chul [Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul (Korea, Republic of); Hwang, Seong-Ju, E-mail: hwangsju@ewha.ac.kr [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of)

    2016-08-15

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize the loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.

  15. Numerical Study on the Effect of Swept Blade on the Aerodynamic Performance of Wind Turbine at High Tip Speed Ratio

    Science.gov (United States)

    Zuo, H. M.; Liu, C.; Yang, H.; Wang, F.

    2016-09-01

    The current situation is that the development of high speed wind energy saturates gradually, therefore, it is highly necessary to develop low speed wind energy. This paper, based on a specific straight blade and by using Isight, a kind of multidiscipline optimization software, which integrates ICEM (Integrated Computer Engineering and Manufacturing) and CFD (Computational Fluid Dynamics) software, optimizes the blade stacking line (the centers of airfoil from blade root to tip) and acquires the optimization swept blade shape. It is found that power coefficient Cp of swept blade is 3.2% higher than that of straight blade at the tip speed ratio of 9.82, that the thrust of swept blade receives is obviously less than that of straight blade. Inflow angle of attack and steam line on the suction of the swept and straight blade are also made a comparison.

  16. Centimeter-deep tissue fluorescence microscopic imaging with high signal-to-noise ratio and picomole sensitivity

    CERN Document Server

    Cheng, Bingbing; Wei, Ming-Yuan; Pei, Yanbo; DSouza, Francis; Nguyen, Kytai T; Hong, Yi; Tang, Liping; Yuan, Baohong

    2015-01-01

    Fluorescence microscopic imaging in centimeter-deep tissue has been highly sought-after for many years because much interesting in vivo micro-information, such as microcirculation, tumor angiogenesis, and metastasis, may deeply locate in tissue. In this study, for the first time this goal has been achieved in 3-centimeter deep tissue with high signal-to-noise ratio (SNR) and picomole sensitivity under radiation safety thresholds. These results are demonstrated not only in tissue-mimic phantoms but also in actual tissues, such as porcine muscle, ex vivo mouse liver, ex vivo spleen, and in vivo mouse tissue. These results are achieved based on three unique technologies: excellent near infrared ultrasound-switchable fluorescence (USF) contrast agents, a sensitive USF imaging system, and an effective correlation method. Multiplex USF fluorescence imaging is also achieved. It is useful to simultaneously image multiple targets and observe their interactions. This work opens the door for future studies of centimeter...

  17. A Novel Marker of Impaired Aortic Elasticity in Never Treated Hypertensive Patients: Monocyte/High-Density Lipoprotein Cholesterol Ratio.

    Science.gov (United States)

    Yayla, Kadriye Gayretli; Canpolat, Uğur; Yayla, Çagri; Akboğa, Mehmet Kadri; Akyel, Ahmet; Akdi, Ahmet; Çiçek, Gökhan; Ozcan, Firat; Turak, Osman; Aydoğdu, Sinan

    2017-01-01

    Monocyte to high density lipoprotein cholesterol ratio (MHR) is generally understood to be a candidate marker of inflammation and oxidative stress. Therefore, we aimed to assess the association between MHR and aortic elastic properties in hypertensive patients. A total of 114 newly-diagnosed untreated patients with hypertension and 71 healthy subjects were enrolled. Aortic stiffness index, aortic strain and aortic distensibility were measured by using echocardiography. Patients with hypertension had a significantly higher MHR compared to the control group (p MHR with aortic stiffness index (r = 0.294, p MHR and high sensitivity C-reactive protein have a positive correlation (r = 0.30, p MHR was found to be an independent predictor of aortic distensibility and aortic stiffness index. In patients with newly-diagnosed untreated essential hypertension, higher MHR was significantly associated with impaired aortic elastic properties.

  18. Usefulness of the monocyte-to-high-density lipoprotein cholesterol ratio to predict bare metal stent restenosis.

    Science.gov (United States)

    Yilmaz, Samet; Akboga, Mehmet K; Sen, Fatih; Balcı, Kevser G; Aras, Dursun; Temizhan, Ahmet; Aydogdu, Sinan

    2016-09-01

    The aim of the present study was to investigate the predictive value of preprocedural monocyte count-to-high-density lipoprotein cholesterol ratio (MHR) on development of in-stent restenosis in patients undergoing coronary bare-metal stent (BMS) implantation. Data from 705 patients who had undergone BMS implantation and additional control coronary angiography were analyzed. Patients were divided into three tertiles based on preprocedural MHR. Restenosis occurred in 59 patients (25%) in the lowest tertile, 84 (35%) in the middle tertile and 117 (50%) in the highest MHR tertile (p MHR and C-reactive protein levels emerged as independent predictors of in-stent restenosis. High preprocedural MHR is related to BMS restenosis.

  19. Bath additives for the treatment of childhood eczema (BATHE): protocol for multicentre parallel group randomised trial.

    Science.gov (United States)

    Santer, Miriam; Rumsby, Kate; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Chorozoglou, Maria; Wood, Wendy; Roberts, Amanda; Thomas, Kim S; Williams, Hywel C; Little, Paul

    2015-11-01

    Bath emollients are widely prescribed for childhood eczema, yet evidence of their benefits over direct application of emollients is lacking. Objectives To determine the clinical and cost-effectiveness of adding bath emollient to the standard management of eczema in children Pragmatic open 2-armed parallel group randomised controlled trial. General practitioner (GP) practices in England and Wales. Children aged over 12 months and less than 12 years with eczema, excluding inactive or very mild eczema (5 or less on Nottingham Eczema Severity Scale). Children will be randomised to either bath emollients plus standard eczema care or standard eczema care only. Primary outcome is long-term eczema severity, measured by the Patient-Oriented Eczema Measure (POEM) repeated weekly for 16 weeks. Secondary outcomes include: number of eczema exacerbations resulting in healthcare consultations over 1 year; eczema severity over 1 year; disease-specific and generic quality of life; medication use and healthcare resource use; cost-effectiveness. Aiming to detect a mean difference between groups of 2.0 (SD 7.0) in weekly POEM scores over 16 weeks (significance 0.05, power 0.9), allowing for 20% loss to follow-up, gives a total sample size of 423 children. We will use repeated measures analysis of covariance, or a mixed model, to analyse weekly POEM scores. We will control for possible confounders, including baseline eczema severity and child's age. Cost-effectiveness analysis will be carried out from a National Health Service (NHS) perspective. This protocol was approved by Newcastle and North Tyneside 1 NRES committee 14/NE/0098. Follow-up will be completed in 2017. Findings will be disseminated to participants and carers, the public, dermatology and primary care journals, guideline developers and decision-makers. ISRCTN84102309. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Flatbed scanners as a source of imaging. Brightness assessment and additives determination in a nickel electroplating bath.

    Science.gov (United States)

    Vidal, M; Amigo, J M; Bro, R; Ostra, M; Ubide, C; Zuriarrain, J

    2011-05-23

    Desktop flatbed scanners are very well-known devices that can provide digitized information of flat surfaces. They are practically present in most laboratories as a part of the computer support. Several quality levels can be found in the market, but all of them can be considered as tools with a high performance and low cost. The present paper shows how the information obtained with a scanner, from a flat surface, can be used with fine results for exploratory and quantitative purposes through image analysis. It provides cheap analytical measurements for assessment of quality parameters of coated metallic surfaces and monitoring of electrochemical coating bath lives. The samples used were steel sheets nickel-plated in an electrodeposition bath. The quality of the final deposit depends on the bath conditions and, especially, on the concentration of the additives in the bath. Some additives become degraded with the bath life and so is the quality of the plate finish. Analysis of the scanner images can be used to follow the evolution of the metal deposit and the concentration of additives in the bath. Principal component analysis (PCA) is applied to find significant differences in the coating of sheets, to find directions of maximum variability and to identify odd samples. The results found are favorably compared with those obtained by means of specular reflectance (SR), which is here used as a reference technique. Also the concentration of additives SPB and SA-1 along a nickel bath life can be followed using image data handled with algorithms such as partial least squares (PLS) regression and support vector regression (SVR). The quantitative results obtained with these and other algorithms are compared. All this opens new qualitative and quantitative possibilities to flatbed scanners.