WorldWideScience

Sample records for high barrier separating

  1. Efficient free energy calculations for compounds with multiple stable conformations separated by high energy barriers

    NARCIS (Netherlands)

    Hritz, J.; Oostenbrink, C.

    2009-01-01

    Compounds with high intramolecular energy barriers represent challenging targets for free energy calculations because of the difficulty to obtain sufficient conformational sampling. Existing approaches are therefore computationally very demanding, thus preventing practical applications for such

  2. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  3. High gradient magnetic separation

    International Nuclear Information System (INIS)

    Prothero, D.H.

    1982-01-01

    In a process in which magnetic material is trapped in a filter disposed in a magnetic field, and is unloaded by passing a fluid through the filter in the absence of the initial magnetic field, the magnetic field is first reduced to an intermediate value to allow unloading of the more weakly magnetic particles, the more strongly magnetic particles being retained and subsequently unloaded by further reduction of the magnetic field. Stage by stage reduction of the magnetic field during unloading allows separation of different species from the mixture. As an example the method can be applied to the separation of uranium compounds from mine ores. The uranium compounds are magnetic, while most of the other constituents of the ore are non-magnetic. The starting material is a suspension of the ore. Water is used for unloading. The filter material in this case is stainless steel balls. (author)

  4. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1980-01-01

    This invention relates to the isotope separation art and, more particularly, to a selectively photon-induced energy level transition of an isotopic molecule containing the isotope to be separated and a chemical reaction with a chemically reactive agent to provide a chemical compound containing atoms of the isotope desired. In particular a description is given of a method of laser isotope separation applied to the separation of 235 UF 6 from 238 UF 6 . (U.K.)

  5. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1976-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically-identical but isotopically-different molecules by either photon-induced pure revibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically-reactive agent to form a chemical compound containing primarily the atoms of the isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically-identical but isotopically-different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope. The laser configuration used to generate the photon beam is fully described

  6. High atomic weight isotope separator

    International Nuclear Information System (INIS)

    Book, D.L.

    1978-01-01

    A continuously operating device is described which separates one isotopic species of a given element from a mixture. The given element is vaporized and formed into a neutral beam containing the isotopes desired to be separated. The plasma is accelerated through a laser beam which is formed by two separate lasers which operate in the continuous wave mode in which the beams are as nearly as possible in the same beam path. The two laser output beams excite and ionize the isotope of interest while leaving the remaining atoms unaffected. The ionized isotopes are then separated from the beam by an electrostatic deflection technique and the unaffected atoms continue on in their path and are directed to a recovery device

  7. Carrier Transfer between InGaAs/GaAs Quantum Wells Separated by Thick Barriers

    DEFF Research Database (Denmark)

    Borri, Paola; Gurioli, M.; Colocci, M.

    1997-01-01

    We have studied the carrier transfer between two adjacent wells of different width separated by a 100 nm thick barrier. At low temperatures (T 30 K: the transfer strongly increases, denoting that the thermal escape out of the QW...

  8. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  9. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  10. Tunable Injection Barrier in Organic Resistive Switches Based on Phase-Separated Ferroelectric-Semiconductor Blends

    NARCIS (Netherlands)

    Asadi, Kamal; de Boer, Tom G.; Blom, Paul W. M.; de Leeuw, Dago M.

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  11. Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends

    NARCIS (Netherlands)

    Asadi, K.; Boer, T.G. de; Blom, P.W.M.; Leeuw, D.M. de

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  12. Pseudo-stationary separation materials for highly parallel separations.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Palmer, Christopher (University of Montana, Missoula, MT)

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  13. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  16. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  17. High throughput salt separation from uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; Park, K.M.; Kim, J.G.; Kim, I.T.; Park, S.B., E-mail: swkwon@kaeri.re.kr [Korea Atomic Energy Research Inst. (Korea, Republic of)

    2014-07-01

    It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites in pyroprocessing. Multilayer porous crucible system was proposed to increase a throughput of the salt distiller in this study. An integrated sieve-crucible assembly was also investigated for the practical use of the porous crucible system. The salt evaporation behaviors were compared between the conventional nonporous crucible and the porous crucible. Two step weight reductions took place in the porous crucible, whereas the salt weight reduced only at high temperature by distillation in a nonporous crucible. The first weight reduction in the porous crucible was caused by the liquid salt penetrated out through the perforated crucible during the temperature elevation until the distillation temperature. Multilayer porous crucibles have a benefit to expand the evaporation surface area. (author)

  18. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-28

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  19. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-01

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  20. High tension generator for corona barrier discharge

    International Nuclear Information System (INIS)

    Baltag, O.; Costandache, D.; Gheorghiu, M.; Paraschivescu, A.; Popa, G.

    2001-01-01

    Different types of high-voltage generators are in use for the study of low pressure (or atmospheric) discharges. Mostly used are the Tesla coils generators or the power generators working in linear or switching regime. The Tesla coils generators have the advantage of a simple bloc diagram. In exchange, they have a number of short-comings, such as: the difficulty in modifying the frequency of the high voltage pulses, generation of a high voltage and frequency pulse train, the amplitude is not constant.This paper presents a high-voltage generator meant to be used in the study of the dielectric barrier discharges (DBD). The bloc diagram is presented. Performances obtained are as follows: - Generated frequency: 10 Hz - 100 Hz, 100 Hz - 1 KHz, 1 KHz - 10 KHz; - High voltage pulses control: a single pulse from an internal or external generator; - Synchronization with the oscilloscope, variable delay: 5 μs - 0.1 s; - Output voltage: variable both smoothly and in steps: 1 kV -15 kV; - High voltage polarity: mono and bipolar; - Output power during the continuous duty: 300 VA (maximum 600 VA for a short time); - Pulse energy: 0.23 J; - Pulse duration: 4 μs - 50 μs

  1. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  2. High Performance Multi Barrier Thermionic Devices

    National Research Council Canada - National Science Library

    Vashaee, Daryoosh; Shakouri, Ali

    2003-01-01

    Thermoelectric transport perpendicular to layers in multiple barrier superlattice structures is investigated theoretically in two limiting cases of no lateral momentum scattering and strong scattering...

  3. High mass isotope separation process and arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1978-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically identical but isotopically different molecules by either photon-induced pure rovibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically reactive agent to form a chemical compound containing primarily the atoms of isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically identical but isotopically different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope

  4. Low-impact, high toughness transportation barriers.

    Science.gov (United States)

    2012-10-01

    Alternatives to existing transportation truck escape ramps and crash barriers are examined using arrays of : wood, bamboo, and fiberglass structural elements that act as energy absorbers as they deform. The : behaviors of each material type are analy...

  5. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  6. Wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Levin, J.; Shanks, R.I.

    1980-01-01

    Miscellaneous laboratory tests (most of them on cyanide residues) were undertaken to supplement on-site pilot-plant work on wet high intensity magnetic separation (WHIMS). Initially, the main concern was with blockage of the matrix, and consideration was given to the use of a reverse-flushing system. The laboratory tests on this system were encouraging, but they were not of sufficiently long duration to be conclusive. The velocity of the pulp through the matrix is important, because it determines the capacity of the separator and the recovery obtainable. Of almost equal importance is the magnetic load, which affects the velocity of the pulp and the recovery. Typically, a recovery of 51 per cent of the uranium was reduced to one of 40 per cent as the magnetic load was increased from 25 to 100 g/l, while the pulp velocity decreased from 62 to 36 mm/s. There was some indication that, for the same pulp velocity, lower recoveries are obtained when free-fall feeding is used. Some benefit was observed in the application of WHIMS to coarsely ground ore; from a Blyvooruitzicht rod-mill product, 25 per cent of the total uranium was recovered when only 29 per cent of the rod-mill product (the finest portion) was treated. A similar recovery was made from 43 per cent of the rod-mill product from Stilfontein; a second stage of treatment after regrinding raised the overall recovery of uranium to 76,4 per cent. Recoveries of 55 and 42 per cent of the uranium were obtained in tests on two flotation tailings from Free State Geduld. In a determination of the mass magnetic susceptibilities of the constituents in a typical concentrate obtained by WHIMS, it was found that some 20 per cent of the magnetic product had a susceptibility of less than 5,4 X 10 -6 e.m.u. but contained 38 per cent of the uranium recovered by WHIMS. A few tests were conducted on different types of matrix. A matrix of spaced horizontal rods is recommended for possible future consideration [af

  7. Microfluidic high gradient magnetic cell separation

    Science.gov (United States)

    Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.

    2006-04-01

    Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.

  8. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes

    Science.gov (United States)

    Maxson, Michelle E; Naj, Xenia; O'Meara, Teresa R; Plumb, Jonathan D; Cowen, Leah E

    2018-01-01

    Candida albicans hyphae can reach enormous lengths, precluding their internalization by phagocytes. Nevertheless, macrophages engulf a portion of the hypha, generating incompletely sealed tubular phagosomes. These frustrated phagosomes are stabilized by a thick cuff of F-actin that polymerizes in response to non-canonical activation of integrins by fungal glycan. Despite their continuity, the surface and invaginating phagosomal membranes retain a strikingly distinct lipid composition. PtdIns(4,5)P2 is present at the plasmalemma but is not detectable in the phagosomal membrane, while PtdIns(3)P and PtdIns(3,4,5)P3 co-exist in the phagosomes yet are absent from the surface membrane. Moreover, endo-lysosomal proteins are present only in the phagosomal membrane. Fluorescence recovery after photobleaching revealed the presence of a diffusion barrier that maintains the identity of the open tubular phagosome separate from the plasmalemma. Formation of this barrier depends on Syk, Pyk2/Fak and formin-dependent actin assembly. Antimicrobial mechanisms can thereby be deployed, limiting the growth of the hyphae. PMID:29553370

  9. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  10. Energy transfer of excitons between quantum wells separated by a wide barrier

    International Nuclear Information System (INIS)

    Lyo, S. K.

    2000-01-01

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy-transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch (Δ) at low temperatures (T). Several important intrinsic energy-transfer mechanisms have been examined, including dipolar coupling, real and virtual photon-exchange coupling, and over-barrier ionization of the excitons via exciton-exciton Auger processes. The transfer rate is calculated as a function of T and the center-to-center distance d between the wells. The rates depend sensitively on T for plane-wave excitons. For localized excitons, the rates depend on T only through the T dependence of the exciton localization radius. For Stokes energy transfer, the dominant energy transfer occurs through a photon-exchange interaction, which enables the excitons from the higher-energy wells to decay into free electrons and holes in the lower-energy wells. The rate has a slow dependence on d, yielding reasonable agreement with recent data from GaAs/Al x Ga 1-x As quantum wells. The dipolar rate is about an order of magnitude smaller for large d (e.g., d=175Aa) with a stronger range dependence proportional to d -4 . However, the latter can be comparable to the radiative rate for small d (e.g., d≤80Aa). For anti-Stokes transfer through exchange-type (e.g., dipolar and photon-exchange) interactions, we show that thermal activation proportional to exp(-Δ/k B T) is essential for the transfer, contradicting a recent nonactivated result based on the Fo''rster-Dexter's spectral-overlap theory. Phonon-assisted transfer yields a negligibly small rate. On the other hand, energy transfer through over-barrier ionization of excitons via Auger processes yields a significantly larger nonactivated rate which is independent of d. The result is compared with recent data

  11. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  12. Americium separations from high salt solutions

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Schulte, Louis D.; Stark, Peter C.; Chamberlin, Rebecca M.; Abney, Kent D.; Ricketts, Thomas E.; Valdez, Yvette E.; Bartsch, Richard A.

    2000-01-01

    Americium (III) exhibits an unexpectedly high affinity for anion-exchange material from the high-salt evaporator bottoms solutions--an effect which has not been duplicated using simple salt solutions. Similar behavior is observed for its lanthanide homologue, Nd(III), in complex evaporator bottoms surrogate solutions. There appears to be no single controlling factor--acid concentration, total nitrate concentration or solution ionic strength--which accounts for the approximately 2-fold increase in retention of the trivalent ions from complex solutions relative to simple solutions. Calculation of species activities (i.e., water, proton and nitrate) in such concentrated mixed salt solutions is difficult and of questionable accuracy, but it is likely that the answer to forcing formation of anionic nitrate complexes of americium lies in the relative activities of water and nitrate. From a practical viewpoint, the modest americium removal needs (ca. 50--75%) from nitric acid evaporator bottoms allow sufficient latitude for the use of non-optimized conditions such as running existing columns filled with older, well-used Reillex HPQ. Newer materials, such as HPQ-100 and the experimental bifunctional resins, which exhibit higher distribution coefficients, would allow for either increased Am removal or the use of smaller columns. It is also of interest that one of the experimental neutral-donor solid-support extractants, DHDECMP, exhibits a similarly high level of americium (total alpha) removal from EV bottoms and is much less sensitive to total acid content than commercially-available material

  13. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-01-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation

  14. High gradient magnetic separation applied to environmental remediation

    International Nuclear Information System (INIS)

    Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Avens, L.R.; Worl, L.A.; Schake, A.; de Aguero, K.J.; Padilla, D.D.; Tolt, T.L.

    1993-01-01

    High Gradient Magnetic Separation (HGMS) is an application of superconducting magnet technology to the separation of magnetic solids from other solids, liquids, or gases. The production of both high magnetic fields (>4 T) and large field gradients using superconducting magnet technology has made it possible to separate a previously unreachable but large family of paramagnetic materials. This is a powerful technique that can be used to separate widely dispersed contaminants from a host material and may be the only technique available for separating material in the colloidal state. Because it is a physical separation process, no additional waste is generated. We are applying this technology to the treatment of radioactive wastes for environmental remediation. We have conducted tests examining slurries containing nonradioactive, magnetic surrogates. Results from these studies were used to verify our analytical model of the separation process. The model describes the rate process for magnetic separation and is based on a force balance on the paramagnetic species. This model was used to support bench scale experiments and prototype separator design

  15. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Kernel and divergence techniques in high energy physics separations

    Science.gov (United States)

    Bouř, Petr; Kůs, Václav; Franc, Jiří

    2017-10-01

    Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.

  17. Application of diffusion barriers to high modulus fibers

    Science.gov (United States)

    Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.

    1977-01-01

    Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.

  18. Characteristics of membranes which are suitable for isotopic separation by gaseous diffusion; Caracteristiques des barrieres utilisables pour la separation isotopique par diffusion gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Massignon, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In this article we shall briefly describe how results obtained from the experimental analysis of the structure of membranes can be used on the one hand for determining this structure and on the other hand as a result for example of the detection of too many large pores or micro fissures and the existence of leaks at the joints, for eliminating membranes which can not be used industrially. Here we shall only consider the utilisation of information given by measurement of the specific permeability G{sub 0}, the pore radius for the molecular (diffusion) regime r{sub mol.}, the pore radius for the viscous diffusion regime the pore radius for the intermediate stage of diffusion, r{sub wicke}, the pore radius r{sub sep.} which is used for determining the actual separation, the distribution of the pore radius defined by mercury symmetry, the B.E.T. and central X ray diffusion. First of all we shall give the definition which is adopted in practice for these empirical values, which can be adapted for a rapid analysis of the quality of membranes by comparing them with the same measurements carried out on standard porous samples. In a second section we show in a few cases which have occurred in routine measurement how by comparison it is possible to eliminate membranes which do not have a suitable structure. (author) [French] Dans cet expose, nous allons montrer sommairement comment les resultats donnes par les methodes experimentales de controle de la structure des barrieres peuvent, d'une part, conduire a une certaine representation de cette structure et, d'autre part, permettre d'eliminer les barrieres non utilisables industriellement en detectant par exemple les trop nombreux gros pores ou microfissures et l'existence de fuites aux joints. Nous nous limiterons ici a l'exploitation des renseignements donnes par la permeabilite specifique G{sub 0}, le rayon de pore r{sub mol.} effectif en regime moleculaire, le rayon de pore r{sub visq.} effectif en regime visqueux, le

  19. Use of high gradient magnetic separation for actinide application

    International Nuclear Information System (INIS)

    Avens, L.R.; Worl, L.A.; Padilla, D.D.

    1996-01-01

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ∼0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  20. Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness.

    Directory of Open Access Journals (Sweden)

    William J Joiner

    Full Text Available A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.

  1. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  2. High-temperature vacuum distillation separation of plutonium waste salts

    International Nuclear Information System (INIS)

    Garcia, E.

    1996-01-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen

  3. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  4. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    DEFF Research Database (Denmark)

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration...... of soft magnetic elements in the chip leads to a slightly higher capturing efficiency and a more uniform distribution of captured beads over the separation chamber than the system without soft magnetic elements....

  5. Macroscopic phase separation in high-temperature superconductors

    Science.gov (United States)

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  6. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step.

    Science.gov (United States)

    Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E

    2005-04-01

    A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.

  7. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

    Science.gov (United States)

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-03-30

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R 2 = 0.5301, P <0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R 2 = 0.4608, P <0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  9. Physical activity barriers and motivators among high-risk employees.

    Science.gov (United States)

    Paguntalan, John C; Gregoski, Mathew

    2016-11-22

    Worksite wellness programs offer an ideal setting to target high-risk sedentary workers to improve health status. Lack of physical activity is associated with increased risk for coronary heart disease and mortality. Despite the risks, the number of sedentary workers is increasing. This study examined the perceived barriers and motivators for physical activity among employees at high-risk for coronary heart disease. A purposive sample of 24 high-risk workers participating in a wellness program in rural South Carolina were enrolled in the study. Qualitative data was obtained through semi-structured face-to-face interviews. Grounded theory was used to analyze qualitative data, and identify overarching themes. Physical limitations due to pain and weakness, lack of motivation, and lack of time emerged as the main barriers to physical activity. Family relationships were reported as the strongest motivator along with social support and potential health benefits. Findings highlight the unique experience of high-risk workers with physical activity. The findingsunderscore the need to design and implement effective interventions specifically designed to meet the needs of high-risk employees.

  10. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

    Energy Technology Data Exchange (ETDEWEB)

    Taherzadeh, M.

    1987-11-13

    The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.

  11. Accelerator Production and Separations for High Specific Activity Rhenium-186

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  12. Highly efficient separation materials created by computational approach. For the separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Goto, Masahiro; Uezu, Kazuya; Aoshima, Atsushi; Koma, Yoshikazu

    2002-05-01

    In this study, efficient separation materials have been created by the computational approach. Based on the computational calculation, novel organophosphorus extractants, which have two functional moieties in the molecular structure, were developed for the recycle system of transuranium elements using liquid-liquid extraction. Furthermore, molecularly imprinted resins were prepared by the surface-imprint polymerization technique. Thorough this research project, we obtained two principal results: 1) design of novel extractants by computational approach, and 2) preparation of highly selective resins by the molecular imprinting technique. The synthesized extractants showed extremely high extractability to rare earth metals compared to those of commercially available extractants. The results of extraction equilibrium suggested that the structural effect of extractants is one of the key factors to enhance the selectivity and extractability in rare earth extractions. Furthermore, a computational analysis was carried out to evaluate the extraction properties for the extraction of rare earth metals by the synthesized extractants. The computer simulation was shown to be very useful for designing new extractants. The new concept to connect some functional moieties with a spacer is very useful and is a promising method to develop novel extractants for the treatment of nuclear fuel. In the second part, we proposed a novel molecular imprinting technique (surface template polymerization) for the separation of lanthanides and actinides. A surface-templated resin is prepared by an emulsion polymerization using an ion-binding (host) monomer, a resin matrix-forming monomer and the target Nd(III) metal ion. A host monomer which has amphiphilic nature forms a complex with a metal ion at the interface, and the complex remains as it is. After the matrix is polymerized, the coordination structure is 'imprinted' at the resin interface. Adsorption of Nd(III) and La(III) ions onto the

  13. Separation of anionic oligosaccharides by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1986-01-01

    The authors have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the anionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since the latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study they demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (α2,3 vs α2,6) and/or location of α2,3- and α2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties

  14. Separation and estimation of lanthanides using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Vasudeva Rao, P.R.

    2012-01-01

    The separation efficiency of individual lanthanides depends on the stability constant of the metal-ligand complex. Therefore, stability constant data of lanthanide complexes is important in the development of high performance separation procedures. The dynamic ion exchange HPLC technique was employed at our laboratory to estimate the stability constant of lanthanides with various complexing agents. In these studies, the retention times as well as capacity factors of lanthanides and some actinides were measured as a function of CSA, complexing agent concentrations and mobile phase pH. From these studies, a correlation has been established between capacity factor of a metal ion, concentrations of ion-pairing reagent and complexing agent with the stability constant of lanthanide complex

  15. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  16. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  17. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  18. Barriers to Effective Learning of High School Students in Turkey

    Directory of Open Access Journals (Sweden)

    Eda Gürlen

    2016-06-01

    Full Text Available This study aims to present the development and validation process of a scale to explore the learning barriers of high school students in Turkey. For this purpose, a scale was developed and administered to 316 high school students studying in the different counties of Ankara in the spring term of 2014-2015 academic year. Gathering the data, an exploratory factor analysis was run through SPSS Package program to see the structure of the interrelationships among the variables under six tests. Furthermore, a reliability analysis was conducted to the items under each test in the scale. As a result, one factor appeared under each test when the eigenvalues and variance percentages were examined, making six factors in total. The Cronbach’s Alpha Reliability Coefficient was calculated as to be significant for each test, which showed that the tests were reliable. Finally, some items were excluded from the scale.

  19. High-Voltage Power Supply System for Laser Isotope Separation

    Energy Technology Data Exchange (ETDEWEB)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-06-26

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

  20. High-Voltage Power Supply System for Laser Isotope Separation

    International Nuclear Information System (INIS)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-01-01

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  1. Separation of actinides by high-gradient magnetic filtration

    International Nuclear Information System (INIS)

    Bruns, L.E.; Schliebe, M.J.

    1986-01-01

    High-gradient magnetic filtration has been identified as a candidate solid/liquid separation technique for removing actinide particulate from waste streams. Although HGMS is not intended to reduce the activity in the waste stream to below 100 nCi/g, it does offer two significant advantages: (a) selective removal of TRU solids for subsequent secondary processing and (b) reduced operating complications during solvent extraction due to solids accumulation in the interfacial region. Removal of > 95 wt% of the plutonium and americium solids is expected regardless of the solids present and their properties. Verification tests will be performed to validate this assumption

  2. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  3. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  4. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  5. High-resolution reconstruction of a coastal barrier system

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Nielsen, Lars Henrik

    2015-01-01

    This study presents a detailed reconstruction of the sedimentary effects of Holocene sea-level rise on a modern coastal barrier system (CBS). Increasing concern over the evolution of CBSs due to future accelerated rates of sea-level rise calls for a better understanding of coastal barriers response...... from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the CBS before the barrier shoreline stabilised between 5.0 and 4...

  6. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High temperature corrosion of separator materials for MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    The Molten Carbonate Fuel Cell (MCFC) is one of promising high efficiency power generation devices with low emission. Molten carbonate used for its electrolyte plays an important role in MCFC. It separates between anode and cathode gas environment and provides ionic conductivity on MCFC operation. Stainless steel is conventionally used as separator/current collector materials in MCFC cathode environment. As corrosion of the components of MCFC caused by the electrolyte proceeds with the electrolyte consumption, the corrosion in the MCFC is related to its performance and life. To understand and inhibit the corrosion in the MCFC is important to realize MCFC power generation system. We have studied the effect of alkaline earth carbonate addition into carbonate on corrosion of type 316L stainless steel. In this paper, we describe the effect of the temperature on corrosion behavior of type 316L stainless steel with carbonate mixture, (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, under the cathode environment in out-of-cell test.

  8. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs.

    Science.gov (United States)

    Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A

    2015-01-01

    A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.

  9. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    -section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  10. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  11. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean; Fu, Yao-Tsung; Risko, Chad; Bredas, Jean-Luc

    2016-01-01

    more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations

  12. A high-sensitive and quantitative in-line monitoring method for transplutonium elements separation processes

    International Nuclear Information System (INIS)

    Zhu Rongbao; Wang Shiju; Xu Yingpu; Zhang Zengrui

    1986-04-01

    A high-sensitive monitoring device and a quantitative analys technigue for transplutonium elements separation processes are described. X-ray and low energy γ-ray are measured by means of a scintillation monitor with two NaI(Tl) thin crystals. The α spectra of the fluents of ion-exchange column is measured by means of Si(Au) surface barrier in-line monitor. The construction of the monitors, auxiliary electronics, investigation result for the α spectra character of thick source and the calibration method were described. The determination results for extracting process of 243 Am and 244 Cm by ion-exchange chromatography were given. The sensitivity of total adding amount for 243 Am using the 4π scintillation monitor is better than 0.1 μCi. The precision of 243 Am and 244 Cm concentration determination using Si(Au) monitor is +- 5%. The precision of the two metals contents in containers is about +- 10%

  13. Highly Hydrothermally Stable Microporous Membranes for Hydroge Separation

    NARCIS (Netherlands)

    Wei, Qi; Wang, Fei; Wang, F.; Nie, Zuo-Ren; Song, C.; Wang, Yan-Li; Li, Qun-Yan

    2008-01-01

    Fluorocarbon-modified silica membranes were deposited on γ-Al2O3/α-Al2O3 supports by the sol−gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is

  14. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  15. Procedure and device for separating isotopes of high mass

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1977-01-01

    The invention refers to isotope separation and to selectively photon-induced energy transfer from an isotope molecule containing the isotope to be separated as well as to a chemical reaction with a reactive agent in order to produce a chemical compound containing atoms of the desired isotope. For example, in the most preferable form of the invention, gaseous UF 6 is contained in a mixture of U 235 F 6 and U 238 F 6 molecules in a reaction chamber. A chemically reactive substance, which for U 235 separation may be gaseous HCl according to the invention, is also introduced into the reaction chamber. (HK) [de

  16. High density internal transport barriers for burning plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Ridolfini, V Pericoli [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Barbato, E [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy); Buratti, P [Associazione EURATOM-ENEA sulla Fusione, CR Frascati, Rome (Italy)] (and others)

    2005-12-15

    A tokamak plasma with internal transport barriers (ITBs) is the best candidate for a steady ITER operation, since the high energy confinement allows working at plasma currents (I{sub p}) lower than the reference scenario. To build and sustain an ITB at the ITER high density ({>=}10{sup 20} m{sup -3}) and largely dominant electron (e{sup -}) heating is not trivial in most existing tokamaks. FTU can instead meet both requests, thanks to its radiofrequency heating systems, lower hybrid (LH, up to 1.9 MW) and electron cyclotron (EC up to 1.2 MW). By the combined use of them, ITBs are obtained up to peak densities n{sub e0} > 1.3 x 10{sup 20} m{sup -3}, with central e{sup -} temperatures T{sub e0} {approx} 5.5 keV, and are sustained for as long as the heating pulse is applied (>35 confinement times, {tau}{sub E}). At n{sub e0} {approx} 0.8 x 10{sup 20} m{sup -3} T{sub e0} can be larger than 11 keV. Almost full current drive (CD) and an overall good steadiness is attained within about one {tau}{sub E}, 20 times faster than the ohmic current relaxation time. The ITB extends over a central region with an almost flat or slightly reversed q profile and q{sub min} {approx} 1.3 that is fully sustained by off-axis lower hybrid current drive. Consequent to this is the beneficial good alignment of the bootstrap current, generated by the ITB large pressure gradients, with the LH driven current. Reflectometry shows a clear change in the turbulence close to the ITB radius, consistent with the reduced e{sup -} transport. Ions (i{sup +}) are significantly heated via collisions, but thermal equilibrium with electrons cannot be attained since the e{sup -}-i{sup +} equipartition time is always 4-5 times longer than {tau}{sub E}. No degradation of the overall ion transport, rather a reduction of the i{sup +} heat diffusivity, is observed inside the ITB. The global confinement has been improved up to 1.6 times over the scaling predictions. The ITB radius can be controlled by adjusting the

  17. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha; Koros, William J.

    2011-01-01

    and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air

  18. High density internal transport barriers for burning plasma operation

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.

    2005-01-01

    One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more stringent requests are: the ITB must be sustained with electron heating only with no or very small external momentum source, the strong collisional coupling at the envisaged density (line average >1.0 1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large induced gradients must have a radial profile consistent with that requested by the barrier creation and sustainment. To all these items the studies carried out in FTU in the same density range (ne0 ?1.5 1020 m-3) provide encouraging prospects. With pure electron heating and current drive (LH+ECH) steady electron barrier are generated and maintained with central e- temperature >5.0 keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total and well aligned with that driven by the LH waves and responsible for the barrier building. The clear change in the density fluctuations close to the ITB radius, observed by reflectometry, indicates stabilization of turbulence that is consistent with the drop of the thermal electron diffusivity inside the ITB to very low values, ?e<0.5 m2/s estimated by the transport analysis. The 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually ?Ti0/Ti0 does not exceed 40%, because the e--i + equipartition time, always 4-5 times longer than the energy confinement time, does not allow thermal equilibrium with electrons to be attained. The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be controlled by varying the LH power deposition profile that is

  19. Graphene Oxide Bionanocomposite Coatings with High Oxygen Barrier Properties

    Directory of Open Access Journals (Sweden)

    Ilke Uysal Unalan

    2016-12-01

    Full Text Available In this work, we present the development of bionanocomposite coatings on poly(ethylene terephthalate (PET with outstanding oxygen barrier properties. Pullulan and graphene oxide (GO were used as main polymer phase and nanobuilding block (NBB, respectively. The oxygen barrier performance was investigated at different filler volume fractions (ϕ and as a function of different relative humidity (RH values. Noticeably, the impermeable nature of GO was reflected under dry conditions, in which an oxygen transmission rate (OTR, mL·m−2·24 h−1 value below the detection limit of the instrument (0.01 mL·m−2·24 h−1 was recorded, even for ϕ as low as 0.0004. A dramatic increase of the OTR values occurred in humid conditions, such that the barrier performance was totally lost at 90% RH (the OTR of coated PET films was equal to the OTR of bare PET films. Modelling of the experimental OTR data by Cussler’s model suggested that the spatial ordering of GO sheets within the main pullulan phase was perturbed because of RH fluctuations. In spite of the presence of the filler, all the formulations allowed the obtainment of final materials with haze values below 3%, the only exception being the formulation with the highest loading of GO (ϕ ≈ 0.03. The mechanisms underlying the experimental observations are discussed.

  20. ANALYSIS OF BARRIERS IN LISTENING COMPREHENSION AMONG JUNIOR HIGH SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Setia Muljanto

    2012-12-01

    Full Text Available This research paper identifies barriers and difficulties in listening comprehension faced by junior high school students. The research questions were what barriers did students encounter and how did they used strategies to overcome those barriers. This study used a qualitative method and was a case study involving 40 students and one English teacher. The data were obtained by ways of conducting a test of listening taken from TOEIC test. The tests indicated that the results scores were not quite satisfactory. This is primarily caused by speech delivery of the native speaker which was too fast. This means that students faced listening barriers especially in processing information. The data also indicated that students were also nervous when doing the test as habitual barrier. Strategies used to overcome these barriers are by making students get used to listen and use English and making them familiar with certain contexts in real life.

  1. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E*. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence B f (I), which gives information on the shell energy E(shell)(I). Theoretical calculations predict different fission barrier heights from B f (I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of B f provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γ(fission)/Γ(total), using transfer reactions. However, for heavy elements such as 254 No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γ γ /Γ(fission) and its spin dependence, deduced from the entry distribution (I, E*).Measurements of the gamma-ray multiplicity and total energy for 254 No have been performed with beam energies of 219 and 223 MeV in the reaction 208 Pb( 48 Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254 No gamma rays were detected using the Gammasphere array as a calorimeter - as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254 No gamma rays from those from fission fragments, which are ≥ 10 6 more intense. From this measurement, the entry distribution - i.e. the initial distribution of I and E* - is constructed. Each point (I,E*) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier. The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 Me

  2. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-05-31

    We probe the energetic landscape at a model pentacene/fullerene-C60 interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e. the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  3. Electron microscopy of GaAs-based structures with InAs and As quantum dots separated by an AlAs barrier

    International Nuclear Information System (INIS)

    Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhenskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2013-01-01

    Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures

  4. Highly hydrothermally stable microporous silica membranes for hydrogen separation.

    Science.gov (United States)

    Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan

    2008-08-07

    Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.

  5. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  6. High efficiency combined heat and power facilities - benefits and barriers

    International Nuclear Information System (INIS)

    Klein, M.

    2001-01-01

    There are important linkages between the economy, energy production, the environment and our health. Where thermal energy is needed, distributed Combined Heat and Power facilities, using gas turbines, reciprocating engines and future fuel cells can provide significant improvements to our long term mix of energy production. Local generation can also have benefits in security of energy supply and economic savings. This paper is intended to discuss the relevant air pollution and greenhouse gas emissions from modem CHP plants, the emission prevention and reduction methods available, and their operating experience and cost-effectiveness. Mention is made of recently constructed industrial and commercial plants, and institutional barriers to further development. Solutions described for these barriers include the need for more awareness of opportunities, improved access to the electricity grid, the proper design balance between thermal and electric for CHP systems rather than large combined cycles, improved corporate taxation incentives, and the assessment of all environmental and economic benefits when considering such cleaner sources in a restructured energy market. (author)

  7. High-resolution seismic data regularization and wavefield separation

    Science.gov (United States)

    Cao, Aimin; Stump, Brian; DeShon, Heather

    2018-04-01

    We present a new algorithm, non-equispaced fast antileakage Fourier transform (NFALFT), for irregularly sampled seismic data regularization. Synthetic tests from 1-D to 5-D show that the algorithm may efficiently remove leaked energy in the frequency wavenumber domain, and its corresponding regularization process is accurate and fast. Taking advantage of the NFALFT algorithm, we suggest a new method (wavefield separation) for the detection of the Earth's inner core shear wave with irregularly distributed seismic arrays or networks. All interfering seismic phases that propagate along the minor arc are removed from the time window around the PKJKP arrival. The NFALFT algorithm is developed for seismic data, but may also be used for other irregularly sampled temporal or spatial data processing.

  8. High-gradient electromagnetic separator with continuous slurry extraction

    International Nuclear Information System (INIS)

    Dolle, L.

    1986-04-01

    This kind of separator is operating without matrix in a cascade arrangement of conventional electromagnets. It is most suitable for continuous extraction of paramagnetic particulate solids in liquid suspensions. The water-cooled coils are supported by an iron-yoke with an adjustable air-gap. A one-stage device of laboratory size has been worked out in order to achieve measurements of the magnetic field intensities distributions. Then efficiency measurements were first carried out with a reference magnetite particles suspension in water, without sludge bleeding. As representatives of paramagnetic solids, manganese dioxide, copper oxide and a ruthenium oxide colloid in water are chosen, at concentrations ranging from 100 to 2000 ppm. Efficiencies were measured with continuous and periodical sludge bleedings. Results of such measurements are discussed

  9. One Component Encapsulating Material Matrix as High Barrier Coating, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for new flexible food packaging materials with effective high barrier against oxygen and moisture to protect food, minimize weight and...

  10. Novel reprocessing methods with nuclide separation for volume reduction of high level radioactive waste

    International Nuclear Information System (INIS)

    Suzuki, Tatsuya

    2015-01-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposing system consists of the dissolution process, the reprocessing process, the MA separation process, and nuclide separation processes. In our proposing processes, the pyridine resin is used as a main separation media. We expect that our proposing will contribute to that volume reduction of high level radioactive waste by combining the transmutation techniques, usage of valuable elements, and so on. (author)

  11. 90Y production of high purity by electrochemical separation

    International Nuclear Information System (INIS)

    Alberti Ramírez, Alejandro; Serra Águila, Rolando; Morín Zorrilla, José Antonio; Pino Peraza, Madián; Soler Iglesias, Joel; Cruz Morales, Amed

    2016-01-01

    In this paper 90 Y is obtained without added carrier, by electrolytic separation from a solution in secular equilibrium Sr-Y and further purification in three cycles electrolytic automated, at constant current. The process productivity was 60-80 mCi (2220-2960 MBq). The long half-life of 90 Sr to be used by virtually indefinitely ensuring the stability of the raw material for generator operation, which helps sustainability and production stability. In 18 productions to date could be found to both content of 90 Sr equal to 0.110 ± 0.004 (k = 2) kBq / g by various methods, for their ability combination with DTPA, bifunctional chelate appropriate range of concentrations and even in the presence of trace metals, resulting in excellent characteristics for use as precursor in the preparation of therapeutic radiopharmaceuticals including radioimmunotherapy. The latter being a pure beta emitter with physical half-life, comparable to the time of capture and residence of many antibodies in tumors. The influence of Fe (III) was studied by the method of addition and concluded that only affects the performance of DTPA 90 Y marking if their presence is above a concentration of 0.018 mol / L. We show that the presence of other metals such as Pb (II), Zn (II) and Cu (II) also affects performance complexation

  12. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  13. The Barriers to High-Quality Inpatient Pain Management: A Qualitative Study.

    Science.gov (United States)

    Lin, Richard J; Reid, M Carrington; Liu, Lydia L; Chused, Amy E; Evans, Arthur T

    2015-09-01

    The current literature suggests deficiencies in the quality of acute pain management among general medical inpatients. The aim of this qualitative study is to identify potential barriers to high-quality acute pain management among general medical inpatients at an urban academic medical center during a 2-year period. Data are collected using retrospective chart reviews, survey questionnaires, and semistructured, open-ended interviews of 40 general medical inpatients who have experienced pain during their hospitalization. Our results confirm high prevalence and disabling impacts of pain and significant patient- and provider-related barriers to high-quality acute pain management. We also identify unique system-related barriers such as time delay and pain management culture. Efforts to improve the pain management experience of general medical inpatients will need to address all these barriers. © The Author(s) 2014.

  14. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang; Wei, Bin; Luo, Yong; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32

  15. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  16. Tensile toughness test and high temperature fracture analysis of thermal barrier coatings

    International Nuclear Information System (INIS)

    Qian, G.; Nakamura, T.; Berndt, C.C.; Leigh, S.H.

    1997-01-01

    In this paper, an effective fracture toughness test which uses interface fracture mechanics theory is introduced. This method is ideally suited for determining fracture resistance of multilayered thermal barrier coatings (TBCs) consisting of ceramic and bond layers and, unlike other fracture experiments, requires minimal set-up over a simple tensile adhesion test. Furthermore, while other test methods usually use edge cracked specimens, the present test models a crack embedded within the coatings, which is more consistent with actual TBCs where failure initiates from internal voids or defects. The results of combined computational and experimental analysis show that any defects located within the ceramic coating can significantly weaken a TBC, whereas the debonding resistances of the bond coating and its interfaces are found to be much higher. In a separate analysis, the authors have studied fracture behavior of TBCs subjected to thermal loading in a high temperature environment. The computed fracture parameters reveal that when the embedded crack size is on order of the coating thickness, the fracture driving force is comparable to the fracture resistance of the coating found in the toughness test. In addition, the major driving force for fracture derives from the thermal insulating effect across the crack faces rather than the mismatch in the coefficients of thermal expansion. The authors have also investigated the effects of functionally graded material (FGM) within TBCs and found its influences on the fracture parameters to be small. This result implies that the FGM may not contribute toward enhancing the fracture toughness of the TBCs considered here

  17. Analysis of administrative barriers in the industry of the high-rise construction in Russian Federation

    Science.gov (United States)

    Zaychenko, Irina; Borremans, Alexandra; Gutman, Svetlana

    2018-03-01

    The article describes the concept and types of administrative barriers encountered in various areas of the enterprise. The particularities of the Russian high-rise construction industry are described and a comparative analysis of administrative barriers in this sector is performed. The main stages and administrative procedures when the developers implement investment and construction projects in the field of high-rise construction are determined. The regulatory and legal framework for the implementation of investment and project activities in the high-rise construction industry has been studied and conclusions have been drawn on its low level of precision in the issue of the formation of competitive and efficient high-rise construction markets. The average number of administrative procedures for the implementation of the investment and construction project in the field of high-rise construction is determined. The factors preventing the reduction of administrative barriers in the high-rise construction industry are revealed.

  18. A high rotational barrier for physisorbed hydrogen in an fcu-metal-organic framework

    KAUST Repository

    Pham, Tony T.; Forrest, Katherine A.; Georgiev, Peter A L; Lohstroh, Wiebke; Xue, Dongxu; Hogan, Adam; Eddaoudi, Mohamed; Space, Brian; Eckert, Juergen

    2014-01-01

    A combined inelastic neutron scattering (INS) and theoretical study of H2 sorption in Y-FTZB, a recently reported metal-organic framework (MOF) with fcu topology, reveals that the strongest binding site in the MOF causes a high barrier to rotation on the sorbed H2. This rotational barrier for H2 is the highest yet of reported MOF materials based on physisorption. This journal is

  19. High rates of hybridisation reveal fragile reproductive barriers between endangered Australian sea snakes

    DEFF Research Database (Denmark)

    Sanders, Kate L; Redsted Rasmussen, Arne; Guinea, Michael L.

    2014-01-01

    designations, but revealed high frequencies of hybrids on all four reefs and individuals of pure A. fuscus ancestry only at Scott and (historically) Ashmore. Most unexpectedly, 95% of snakes sampled at Hibernia were hybrids that resembled A. laevis in phenotype, revealing a collapse of reproductive barriers...... (‘reverse speciation’) at this reef. These results have dire implications for the conservation status of A. fuscus, and highlight the fragility of reproductive barriers in a recent marine radiation....

  20. Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells.

    Science.gov (United States)

    Ou, Yang; Lv, Chang-Jiang; Yu, Wei; Mao, Zheng-Wei; Wan, Ling-Shu; Xu, Zhi-Kang

    2014-12-24

    Thin perforated membranes with ordered pores are ideal barriers for high-resolution and high-efficiency selective transport and separation of biological species. However, for self-assembled thin membranes with a thickness less than several micrometers, an additional step of transferring the membranes onto porous supports is generally required. In this article, we present a facile transfer-free strategy for fabrication of robust perforated composite membranes via the breath figure process, and for the first time, demonstrate the application of the membranes in high-resolution cell separation of yeasts and lactobacilli without external pressure, achieving almost 100% rejection of yeasts and more than 70% recovery of lactobacilli with excellent viability. The avoidance of the transfer step simplifies the fabrication procedure of composite membranes and greatly improves the membrane homogeneity. Moreover, the introduction of an elastic triblock copolymer increases the interfacial strength between the membrane and the support, and allows the preservation of composite membranes in a dry state. Such perforated ordered membranes can also be applied in other size-based separation systems, enabling new opportunities in bioseparation and biosensors.

  1. AMS detection of actinides at high mass separation

    Energy Technology Data Exchange (ETDEWEB)

    Steier, Peter; Lachner, Johannes; Priller, Alfred; Winkler, Stephan; Golser, Robin [University of Vienna, Faculty of Physics, Vienna (Austria); Eigl, Rosmarie [Hiroshima University, Earth and Planetary Systems Science, Hiroshima (Japan); Quinto, Francesca [Institut fuer Nukleare Entsorgung, KIT, Eggenstein-Leopoldshafen (Germany); Sakaguchi, Aya [University of Tsukuba, Center for Research in Isotopes and Environmental Dynamics, Tsukuba (Japan)

    2015-07-01

    AMS is the mass spectrometric method with the highest abundance sensitivity, which is a prerequisite for measurement of the long-lived radioisotope {sup 236}U (t{sub 1/2}=23.4 million years). The most successful application so far is oceanography, since anthropogenic {sup 236}U is present in the world oceans at {sup 236}U:{sup 238}U from 10{sup -11} to 10{sup -8}. We have explored methods to increase the sensitivity and thus to reduce the water volume required to 1 L or less, which significantly reduces the sampling effort. High sensitivity is also necessary to address the expected typical natural isotopic ratios on the order {sup 236}U:{sup 238}U = 10{sup -13}, with potential applications in geology. With a second 90 analyzer magnet and a new Time-of-Flight beam line, VERA is robust against chemical impurities in the background, which e.g. allows measuring Pu isotopes directly in a uranium matrix. This simplifies chemical sample preparation for actinide detection, and may illustrate why AMS reaches lower detection limits than other mass spectrometric methods with nominally higher detection efficiency.

  2. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    KAUST Repository

    Eisenträ ger, Almut; Vella, Dominic; Griffiths, Ian M.

    2014-01-01

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires

  3. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    Science.gov (United States)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  4. High-gradient magnetic separation for the treatment of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Ebner, A.D.; Ritter, J.A.; Nunez, L.

    1999-01-01

    Argonne National Laboratory is developing an open-gradient magnetic separation (OGMS) system to fractionate and remove nonglass-forming species from high-level radioactive wastes (HLW); however, to avoid clogging, OGMS may require high-gradient magnetic separation (HGMS) as a pretreatment to remove the most magnetic species from the HLW. In this study, the feasibility of using HGMS in the pretreatment of HLW was demonstrated. A HLW simulant of hanford's C-103 tank waste, which contained precipitate hydroxides and oxides of Fe, Al, Si, and Ca, was used. Preliminary fractionation results from a 0.3-T bench-scale HGMS unit showed that a significant amount of Fe could be removed from the HLW simulant. Between 1 and 2% of the total Fe in the sludge was removed during each stage, with over 18.5% removed in the 13 stages that were carried out. Also, in each stage, the magnetically retained fraction contained about 20% more Fe than the untreated HLW; however, it also contained a significant amount of SiO 2 in relatively large particles. This indicated that SiO 2 was acting possibly as a nucleation agent for Fe (i.e., an Fe adsorbent) and that the fractionation was based more on size than on magnetic susceptibility

  5. High pressure inertial focusing for separating and concentrating bacteria at high throughput

    Science.gov (United States)

    Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.

    2017-08-01

    Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.

  6. Barriers to health education in adolescents: health care providers' perspectives compared to high school adolescents.

    Science.gov (United States)

    Abedian, Kobra; Shahhosseini, Zohreh

    2015-11-01

    Although adolescence is marked by profound and dynamic changes, it is virtually neglected by health care providers, by society, and even by most parents, teachers, and health professionals. The aim of this study was to investigate barriers to health education in adolescents from health care providers' views compared to teens. The study population consisted of 72 health care providers and 402 high school female students in Northern Iran in 2012. They completed a self-administered questionnaire about their views on barriers to adolescents' health education. It is revealed that the major barrier to adolescents' health education from a health care providers' perspective is "Lack of private room for adolescents' health education", while "Lack of adolescents' interest to content of educational programs" is a significantly greater barrier to health education among adolescents. The results suggest that for adolescent health education, specific strategies should be used in adolescent health promotion programs.

  7. Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zainab, Ghazala [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Xianfeng, E-mail: wxf@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Yu, Jianyong [Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Zhai, Yunyun; Ahmed Babar, Aijaz; Xiao, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Ding, Bin, E-mail: binding@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China)

    2016-10-01

    Lithium ion batteries (LIBs) for high performance require separators with auspicious reliability and safety. Keeping LIBs reliability and safety in view, microporous polyacrylonitrile (PAN)/polyurethane (PU) nonwoven composite separator have been developed by electrospinning technique. The physical, electrochemical and thermal properties of the PAN/PU separator were characterized. Improved ionic conductivity up to 2.07 S cm{sup −1}, high mechanical strength (10.38 MPa) and good anodic stability up to 5.10 V are key outcomes of resultant membranes. Additionally, high thermal stability displaying only 4% dimensional change after 0.5 h long exposure to 170 °C in an oven, which could be valuable addition towards the safety of LIBs. Comparing to commercialized polypropylene based separators, resulting membranes offered improved internal short-circuit protection function, offering better rate capability and enhanced capacity retention under same observation conditions. These fascinating characteristics endow these renewable composite nonwovens as promising separators for high power LIBs battery. - Highlights: • The PAN/PU based separators were prepared by multi-needle electrospinning technique. • The electrospun separators displays good mechanical properties and thermal stability. • These separators exhibit good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection. • Nanofibrous composite nonwoven possesses stable cyclic performance which give rise to acceptable battery performances.

  8. Pressure Amplification Off High Impedance Barriers in DDT

    Energy Technology Data Exchange (ETDEWEB)

    Heatwole, Eric Mann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broilo, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kistle, Trevin Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Gary Robert Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-04-23

    The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of the burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.

  9. Saudi high school students' attitudes and barriers toward the use of computer technologies in learning English.

    Science.gov (United States)

    Sabti, Ahmed Abdulateef; Chaichan, Rasha Sami

    2014-01-01

    This study examines the attitudes of Saudi Arabian high school students toward the use of computer technologies in learning English. The study also discusses the possible barriers that affect and limit the actual usage of computers. Quantitative approach is applied in this research, which involved 30 Saudi Arabia students of a high school in Kuala Lumpur, Malaysia. The respondents comprised 15 males and 15 females with ages between 16 years and 18 years. Two instruments, namely, Scale of Attitude toward Computer Technologies (SACT) and Barriers affecting Students' Attitudes and Use (BSAU) were used to collect data. The Technology Acceptance Model (TAM) of Davis (1989) was utilized. The analysis of the study revealed gender differences in attitudes toward the use of computer technologies in learning English. Female students showed high and positive attitudes towards the use of computer technologies in learning English than males. Both male and female participants demonstrated high and positive perception of Usefulness and perceived Ease of Use of computer technologies in learning English. Three barriers that affected and limited the use of computer technologies in learning English were identified by the participants. These barriers are skill, equipment, and motivation. Among these barriers, skill had the highest effect, whereas motivation showed the least effect.

  10. Quantitative performance allocation of multi-barrier system for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahn, Joon-Hong; Ikeda, Takao; Ohe, Toshiaki

    1995-01-01

    Performance assessment of each barrier consisting of geologic disposal system for high-level radioactive wastes is carried out quantitatively, and key radionuclides and parameters are pointed out. Chemical compositions and solubilities of radionuclides under repository conditions are determined by PHREEQE code staring from compositions of granitic groundwater observed in Japan. Glass dissolution analysis based on mass transfer theory and precipitation analysis have been done in order to determine the inner boundary condition for radionuclide diffusion through a bentonite-filled buffer region, where multi-member decay chain and isotopic sharing of solubility at the inner boundary are considered. Natural barrier is treated as homogeneous porous rock, or porous rock with infinite planar fractures. Performance of each barrier is evaluated in terms of non-dimensionalized hazard defined as the ratio of annual radioactivity release from each barrier to the annual limit on intake. At the outer edge of the engineered barriers, 239 Pu is the key unclide to the performance, whereas at the exit of the natural barrier, weakly-sorbing fission product nuclides such as 135 Cs, 129 I and 99 Tc dominate the hazard. (author) 50 refs

  11. Recent developments in the extraction separation method for treatment of high-level liquid waste

    International Nuclear Information System (INIS)

    Jiao Rongzhou; Song Chongli; Zhu Yongjun

    2000-01-01

    A description and review of the recent developments in the extraction separation method for partitioning transuranium elements from high-level liquid waste (HLLW) is presented. The extraction separation processes such as TRUEX process, DIAMEX process, DIDPA process, CTH process, TRPO process are briefly discussed

  12. High-functionalization of fiber-forming materials. Polymer membrane as separation media

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Kenji; Iijima, Hideki (Asahi Chemical Industry Co. Ltd., Osaka, (Japan))

    1989-07-05

    For obtaining higher functions by donating specific functions to the fiber, it is effective to change its structure. Various separating films which is known as an example of the high-functionalization of the fiber materials is an example of the fiber structure conversion from the view-point of substance-permeating function. This report firstly describes the features and types of the film separation method and the production of films, and then on the correlation between the structure and functions of the fibers, the correlation of the structure and the separating characteristics of the films, and the mechanism of the emergence of the film structure. Finally, applied examples of the film separating method in the medical field are described. In the medical liquid film separation, blood or plasma are the object of the separation. Blood has various components whose concentration and particle size are multiplicated, and yet requires a tremendous separating accuracy when compared with the industrial separation. Examples are a blood dialyzer film and an ultrafiltration film (film for plasma separation and virus separation), etc.. 28 refs., 6 figs., 2 tabs.

  13. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  14. Using fractional extraction method to separate Mo from U in high concentration solution

    International Nuclear Information System (INIS)

    Zhao Pinzhi; Cheng Guangrong; Ma Xiuhua

    1996-01-01

    The author presents investigation on separating Mo from U in acid high concentration lixivium with fractional extraction of secondary amine (7203) and D2EHPA and preparing qualified products of ammonium molybdate and sodium diuranate

  15. Hot exciton relaxation in multiple layers CdSe/ZnSe self-assembled quantum dots separated by thick ZnSe barriers

    International Nuclear Information System (INIS)

    Eremenko, M; Budkin, G; Reznitsky, A

    2015-01-01

    We have studied PL and PLE spectra of two samples (A and B) of MBE grown CdSe/ZnSe asymmetric double quantum wells with different amount of deposited CdSe layers separated by 14 nm ZnSe barrier. It has been found that PLE spectra of the states forming short wavelength side of the PL spectra of both deep and shallow QWs of the sample A as well as that of deep QW of the sample B demonstrate oscillating structure in the spectral ranges corresponding to exciton states of self-assembled quantum dots only. Meanwhile PLE spectra of the short wavelength states of shallow QW the sample B revealed pronounced oscillating structure with energy period of ZnSe LO phonon under excitation with photons in a wide energy range both in the regions of quantum-dot states and in that of free states in the ZnSe barrier. In these spectra creating of excitons with kinetic energies more than 0.3 eV was observed which considerably exceed the exciton binding energy as well as LO phonon energy (both appr. 0.03 eV). It has been concluded that oscillating structure of the PLE spectra arises due to cascade relaxation of hot excitons. We discuss the model which explains these experimental findings. (paper)

  16. Hot exciton relaxation in multiple layers CdSe/ZnSe self-assembled quantum dots separated by thick ZnSe barriers

    Science.gov (United States)

    Eremenko, M.; Budkin, G.; Reznitsky, A.

    2015-11-01

    We have studied PL and PLE spectra of two samples (A and B) of MBE grown CdSe/ZnSe asymmetric double quantum wells with different amount of deposited CdSe layers separated by 14 nm ZnSe barrier. It has been found that PLE spectra of the states forming short wavelength side of the PL spectra of both deep and shallow QWs of the sample A as well as that of deep QW of the sample B demonstrate oscillating structure in the spectral ranges corresponding to exciton states of self-assembled quantum dots only. Meanwhile PLE spectra of the short wavelength states of shallow QW the sample B revealed pronounced oscillating structure with energy period of ZnSe LO phonon under excitation with photons in a wide energy range both in the regions of quantum-dot states and in that of free states in the ZnSe barrier. In these spectra creating of excitons with kinetic energies more than 0.3 eV was observed which considerably exceed the exciton binding energy as well as LO phonon energy (both appr. 0.03 eV). It has been concluded that oscillating structure of the PLE spectra arises due to cascade relaxation of hot excitons. We discuss the model which explains these experimental findings.

  17. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang

    2012-12-26

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  18. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  19. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    Science.gov (United States)

    2015-10-13

    412TW-PA-15560 Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...TITLE AND SUBTITLE Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...density storage of gases remains a major technological hurdle for many fields. The U.S. Department of Energy (DOE), for example, reduced their hydrogen

  20. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation

    KAUST Repository

    Ghanem, Bader

    2014-03-11

    A highly permeable and highly selective polyimide of intrinsic microporosity is prepared using a 9,10-diisopropyl-triptycene contortion center. The three-dimensionality and shape-persistence of triptycene afford exceptional sieving-based gas separation performance transcending the latest permeability/selectivity trade-offs for industrial gas separations involving oxygen and hydrogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation

    KAUST Repository

    Ghanem, Bader; Swaidan, Raja; Litwiller, Eric; Pinnau, Ingo

    2014-01-01

    A highly permeable and highly selective polyimide of intrinsic microporosity is prepared using a 9,10-diisopropyl-triptycene contortion center. The three-dimensionality and shape-persistence of triptycene afford exceptional sieving-based gas separation performance transcending the latest permeability/selectivity trade-offs for industrial gas separations involving oxygen and hydrogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of high performance Schottky barrier diode and its application to plasma diagnostics

    International Nuclear Information System (INIS)

    Fujita, Junji; Kawahata, Kazuo; Okajima, Shigeki

    1993-10-01

    At the conclusion of the Supporting Collaboration Research on 'Development of High Performance Detectors in the Far Infrared Range' carried out from FY1990 to FY1992, the results of developing Schottky barrier diode and its application to plasma diagnostics are summarized. Some remarks as well as technical know-how for the correct use of diodes are also described. (author)

  3. Ugandan Immigrant Students' Perceptions of Barriers to Academic Achievement in American High Schools

    Science.gov (United States)

    Ssekannyo, Denis

    2010-01-01

    In a world that is now a global village, enterprising individuals, especially from Third World countries, who make it to greener pastures do not leave their children behind. But with a long list of barriers to academic achievement associated with immigrant and minority students in American high schools, an understanding of the experiences and…

  4. High-Risk Smoking Behaviors and Barriers to Smoking Cessation Among Homeless Individuals.

    Science.gov (United States)

    Chen, Joseph S; Nguyen, Austin Huy; Malesker, Mark A; Morrow, Lee E

    2016-05-01

    Although tobacco practices and the effects of tobacco use among the general American population are well described, minimal data exist regarding tobacco use and barriers to smoking cessation among homeless individuals. Anonymous, voluntary surveys based on a previously implemented instrument were completed by 100 smoking individuals residing at a homeless shelter. These surveys assessed high-risk smoking behaviors and respondents' perceived barriers to long-term smoking cessation. Ninety percent of study participants reported engaging in at least one of the high-risk tobacco practices. Nicotine replacement therapy was perceived by respondents to be the most desired form of smoking cessation aid. Excessive stress with use of tobacco smoking to alleviate stress and anxiety was the most significant self-perceived barrier to smoking cessation. High-risk tobacco practices are remarkably common among smoking homeless individuals. Despite literature consistently showing that non-nicotine tobacco cessation pharmacotherapies (varenicline, buproprion) have higher smoking cessation rates, nicotine replacement monotherapy was perceived as more valuable by survey respondents. Although lack of financial resources was expected to be the biggest barrier to successful cessation, social stressors and the use of smoking to cope with homelessness were perceived as a greater obstacle in this cohort. Given the paucity of data on the long-term effects of the high-risk tobacco behaviors reported by these homeless smokers, this study highlights the need for further investigations regarding tobacco use and tobacco cessation in this vulnerable population. Copyright © 2016 by Daedalus Enterprises.

  5. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G.

    2013-01-01

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles

  6. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles.

  7. Photochemical approach to high-barrier films for the encapsulation of flexible laminary electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Prager, L., E-mail: lutz.prager@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Helmstedt, U. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Herrnberger, H. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Kahle, O. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany); Kita, F. [AZ Electronic Materials Germany GmbH, Rheingaustraße 190-196, 65203 Wiesbaden (Germany); Münch, M. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Pender, A.; Prager, A.; Gerlach, J.W. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Stasiak, M. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany)

    2014-11-03

    Based on results of preceding research and development, thin gas barriers were made by wet application of perhydropolysilazane solution onto polymer films and its subsequent photo-initiated conversion to dense silica layers applying vacuum ultraviolet irradiation. Compared to the state of the art, these layers were sufficiently improved and characterized by spectroscopic methods, by scanning electron microscopy and by gas permeation measurements. Water vapor transmission rates (WVTR) below 10{sup −2} g m{sup −2} d{sup −1} were achieved. In this way, single barrier films were developed and produced on a pilot plant from roll to roll, 250 mm wide, at speeds up to 10 m min{sup −1}. Two films were laminated using adhesives curable with ultraviolet (UV) light and evaluated by peel tests, gas permeation measurement and climate testing. It could be shown that the described high-barrier laminates which exhibit WVTR ≈ 5 × 10{sup −4} g m{sup −2} d{sup −1}, determined by the calcium mirror method, are suitable for encapsulation of flexible thin-film photovoltaic modules. Durability of the encapsulated modules could be verified in several climate tests including damp-heat, thermo-cycle (heating, freezing, wetting) and UV exposures which are equivalent to more than 20 years of endurance at outdoor conditions in temperate climate. In the frame of further research and technical development it seems to be possible to design a cost efficient industrial scale process for the production of encapsulation films for photovoltaic applications. - Highlights: • Dense silica barrier layers were developed by a photochemical approach. • Polymer based barrier films were laminated yielding flexible high-barrier films. • Using these laminates photovoltaic test modules were encapsulated and tested. • A durability of more than 20 years at outdoor conditions could be proved.

  8. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    Science.gov (United States)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  9. Magnetic matrices used in high gradient magnetic separation (HGMS: A review

    Directory of Open Access Journals (Sweden)

    Wei Ge

    Full Text Available HGMS is effective in separating or filtering fine and weakly magnetic particles and widely applied in mineral processing, water treatment, cell and protein purification. The magnetic matrix is a crucial device used in magnetic separator to generate high magnetic field gradient and provide surface sites for capturing magnetic particles. The material, geometry, size and arrangement of the matrix elements can significantly affect the gradient and distribution of the magnetic field, and the separating or filtrating performance. In this paper, the researches and developments of magnetic matrices used in HGMS are reviewed. Keywords: Magnetic matrix, HGMS, Review

  10. The separation of ore from cooke into high- and low-grade fractions

    International Nuclear Information System (INIS)

    Guest, R.N.

    1984-01-01

    The separation of the ore by sizing alone was not very successful, and the recovery of uranium to the high-grade fraction did not exceed 73 per cent. The use of a combination of size and gravity separation was attempted, and the tailing from the gravity circuit contained 33,9 per cent of the uranium at a grade of 60g/t. The circuit recommended includes autogenous grinding to liberate part of the ore matrix containing the values into the fine fraction. This should be followed by heavy-medium separation for the recovery of the high-grade portion of the coarse fraction. The size at which this heavy-medium separation is carried out should be determined

  11. High-temperature method of rapid separation of In-111 from irradiated silver targets

    International Nuclear Information System (INIS)

    Mazgaj, Z.; Kolaczkowski, A.; Mikulski, J.; Novgorodov, A.F.; Zielinski, A.; Joint Inst. for Nuclear Research, Dubna

    1990-01-01

    A high-temperature method of separation of In-111 from α-particle activated silver targets was developed. The separation is carried out under reduced pressure, in the atmosphere of HCl and H 2 O vapours. Indium-111, adsorbed on a quartz collector, is washed out quantitatively with 0.1 N HCl. The contaminant, Cd-109 (product of decay of In-109), is removed from the preparation by means of ion-exchange chromatography. 4 tabs., 6 refs. (author)

  12. Phase-Separated Polyaniline/Graphene Composite Electrodes for High-Rate Electrochemical Supercapacitors.

    Science.gov (United States)

    Wu, Jifeng; Zhang, Qin'e; Zhou, An'an; Huang, Zhifeng; Bai, Hua; Li, Lei

    2016-12-01

    Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Separation of palladium from high-level waste using metal ferro cyanide loaded resins

    International Nuclear Information System (INIS)

    Valsala, T.P.; Joseph, Annie; Yeotikar, R.G.

    2005-01-01

    High-level waste (HLW) is generated during reprocessing of spent fuel. HLW contains corrosion products, unextracted actinides, process chemicals and fission products. A recent trend is there to consider waste as a source of wealth. Among the fission products separation and recovery of platinum group metals have gained great attention. HLW is a good source of palladium of the platinum group metal. The present study shows the feasibility of ion exchange separation of Pd from HLW. (author)

  14. Separation of transuranium elements from high-level waste by extraction with diisodecyl phosphoric acid

    International Nuclear Information System (INIS)

    Morita, Y.; Kubota, M.; Tani, S.

    1991-01-01

    Separation of transuranic elements (TRU) by extraction with diisodecyl phosphoric acid (DIDPA) has been studied to develop a partitioning process for high-level waste (HLW). In the present study, experiments of counter-current continuous extraction and back-extraction using a miniature mixer-settler were carried out to find the optimum process condition for the separation of Np initially in the pentavalent state and to examine the extraction behaviors of fission and corrosion products. (J.P.N.)

  15. High mobility two-dimensional electron gases in nitride heterostructures with high Al composition AlGaN alloy barriers

    International Nuclear Information System (INIS)

    Li Guowang; Cao Yu; Xing Huili Grace; Jena, Debdeep

    2010-01-01

    We report high-electron mobility nitride heterostructures with >70% Al composition AlGaN alloy barriers grown by molecular beam epitaxy. Direct growth of such AlGaN layers on GaN resulted in hexagonal trenches and a low mobility polarization-induced charge. By applying growth interruption at the heterojunction, the surface morphology improved dramatically and the room temperature two-dimensional electron gas (2DEG) mobility increased by an order of magnitude, exceeding 1300 cm 2 /V s. The 2DEG density was tunable at 0.4-3.7x10 13 /cm 2 by varying the total barrier thickness (t). Surface barrier heights of the heterostructures were extracted and exhibited dependence on t.

  16. Study on the separation effect of high-speed ultrasonic vibration cutting.

    Science.gov (United States)

    Zhang, Xiangyu; Sui, He; Zhang, Deyuan; Jiang, Xinggang

    2018-07-01

    High-speed ultrasonic vibration cutting (HUVC) has been proven to be significantly effective when turning Ti-6Al-4V alloy in recent researches. Despite of breaking through the cutting speed restriction of the ultrasonic vibration cutting (UVC) method, HUVC can also achieve the reduction of cutting force and the improvements in surface quality and cutting efficiency in the high-speed machining field. These benefits all result from the separation effect that occurs during the HUVC process. Despite the fact that the influences of vibration and cutting parameters have been discussed in previous researches, the separation analysis of HUVC should be conducted in detail in real cutting situations, and the tool geometry parameters should also be considered. In this paper, three situations are investigated in details: (1) cutting without negative transient clearance angle and without tool wear, (2) cutting with negative transient clearance angle and without tool wear, and (3) cutting with tool wear. And then, complete separation state, partial separation state and continuous cutting state are deduced according to real cutting processes. All the analysis about the above situations demonstrate that the tool-workpiece separation will take place only if appropriate cutting parameters, vibration parameters, and tool geometry parameters are set up. The best separation effect was obtained with a low feedrate and a phase shift approaching 180 degrees. Moreover, flank face interference resulted from the negative transient clearance angle and tool wear contributes to an improved separation effect that makes the workpiece and tool separate even at zero phase shift. Finally, axial and radial transient cutting force are firstly obtained to verify the separation effect of HUVC, and the cutting chips are collected to weigh the influence of flank face interference. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony.

    Science.gov (United States)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Li, Yiran; Liu, Huijuan; Qu, Jiuhui

    2018-02-05

    Manganese iron oxide (MnFe 2 O 4 ), an excellent arsenic(As)/antimony(Sb) removal adsorbent, is greatly restricted for the solid-liquid separation. Through the application of superconducting high gradient magnetic separation (HGMS) technique, we herein constructed a facility for the in situ solid-liquid separation of micro-sized MnFe 2 O 4 adsorbent in As/Sb removal process. To the relative low initial concentration 50.0μgL -1 , MnFe 2 O 4 material sorbent can still decrease As or Sb below US EPA's drinking water standard limit. The separation of MnFe 2 O 4 was mainly relied on the flow rate and the amount of steel wools in the HGMS system. At a flow rate 1Lmin -1 and 5% steel wools filling rate, the removal efficacies of As and Sb in natural water with the system were achieved to be 94.6% and 76.8%, respectively. At the meantime, nearly 100% micro-sized MnFe 2 O 4 solid in the continuous field was readily to be separated via HGMS system. In a combination with the experiment results and finite element simulation, the separation was seemed to be independent on the magnetic field intensity, and the maximum separation capacities in various conditions were well predicted using the Thomas model (R 2 =0.87-0.99). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    Science.gov (United States)

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  19. Provider perceptions of barriers and facilitators of HPV vaccination in a high-risk community.

    Science.gov (United States)

    Javanbakht, Marjan; Stahlman, Shauna; Walker, Susan; Gottlieb, Sami; Markowitz, Lauri; Liddon, Nicole; Plant, Aaron; Guerry, Sarah

    2012-06-22

    Maximizing HPV vaccine uptake among those at highest risk for cervical cancer is critical. We explored healthcare provider perspectives on factors influencing HPV vaccination among adolescent girls in a community with high cervical cancer rates. From March to May 2009, we conducted in-depth interviews with 21 medical staff providing care to adolescent girls at two clinics in Los Angeles, CA, serving a predominantly Hispanic population with high cervical cancer rates. Interviews were recorded and transcribed data were reviewed for coding and thematic content related to potential barriers and facilitators of HPV vaccination. Providers and medical staff overwhelmingly focused on parental beliefs as barriers to HPV vaccination. Perceived parental misconceptions acting as barriers included the belief that adolescents do not need vaccinations and that no-cost vaccine programs like Vaccines for Children are only available for younger children. Perceived parental concerns that the vaccine will promote sexual activity were prevalent, which prompted providers to frame HPV vaccine as a "routine" vaccine. However, the medical staff felt mothers with a friend or relative supportive of HPV vaccination were more likely to request the vaccine. The staff also noted that for Hispanic parents the "preferred" source of information is peers; if the "right people" in the community were supportive of HPV vaccine, parents were more willing to vaccinate. Other barriers included lack of immunization records among immigrant parents and a difficult-to-reach, mobile clientele. Providers noted a number of barriers to HPV vaccination, including some perceived parental misconceptions that could be addressed with education about the need for adolescent vaccines and available free vaccine programs. Because community support appears particularly important to Hispanic parents, the use of promotoras - peer liaisons between health organizations and the community - may increase HPV vaccine uptake in

  20. Measurement of leakage and design for the protective barrier of the high energy radiation therapy room

    International Nuclear Information System (INIS)

    Chu, S.S.; Park, C.Y.

    1981-01-01

    The logical development of an optimum structural shielding design and the computation of protective barriers for high energy radiation therapy room, Toshiba 13 MeV are presented. We obtained following results by comparison in between the precalculating values and actual survey after complete installation of radiogenerating units. 1) The calculating formula for the protective barrier written in NCRP report no. 34(1970) was the most ideal and economic calculating methods for the construction of barrier and to determine thickness for the meeting requirements of the number of patients of 80-100 in daily treatment. 2) The precalculating values of protective barrier are 5 times more protective than that of actual measurement. It is depending on radiation workload and utilization the data most securely. 3) The dose rate during exposure are 2-10 mR/hr at out of the door and the control room. 4) The foul smelling and ozone gas production from long exposure of cancer patients cannot be estimated when the room is ill ventilated. (author)

  1. Deep disposal of high activity radioactive wastes: the study of engineered and geological barriers behaviour

    International Nuclear Information System (INIS)

    Yu Jun; Cui; Delage, P.; Laure, E. de; Behrouz, Gatmiri; Sulem, J.; Anh Minh, Tang

    2008-09-01

    One option for the isolation of high activity and long lived radioactive wastes is the disposal of the vitrified waste containers in galleries dug inside impermeable rocks of the deep underground (granite, argillite, salt). The multi-barrier isolation concept is based on the use of successive barriers to avoid the migration of radionuclides towards the biosphere (container envelope, engineered barrier made of compacted swelling clay, and host rock). In parallel to the works carried out in underground laboratories, experiments and simulation works are performed in order to understand the behaviour of storage facilities and barriers under the effects of constraints, water fluxes and temperature changes. In this context, the UR Navier geotechnical team (CERMES), a joint research unit of Ecole des Ponts ParisTech and LCPC, has been working for more than 15 years on this topic for various contractors. These works are based on original experimental devices allowing to identify the thermo-hydro-mechanical phenomena and thereafter to model them. This dossier presents a summary of these works. (J.S.)

  2. Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.

    Science.gov (United States)

    Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann

    2016-05-15

    A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  4. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbine s * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  5. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    around 2 ms and 12 ms in this figure, and during the discharge period, the current was continuous without any pulse . Once a discharge generated in...electron avalanches [10]. Fig. 1. High pressure ozone generator. (a) Top view (b) Side view Fig. 2. Barrier discharge device. Table 1... discharge N. Osawa P1 P, UY. Yoshioka UP2 P, R. Hanaoka P1 P 1 Center for Electric, Optic and Energy applications, Department of Electric and

  6. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  7. Barriers to Pelvic Floor Physical Therapy Regarding Treatment of High-Tone Pelvic Floor Dysfunction.

    Science.gov (United States)

    Zoorob, Dani; Higgins, Margaret; Swan, Kimberly; Cummings, Jennifer; Dominguez, Sarah; Carey, Erin

    Chronic pelvic pain is a prevalent and debilitating condition with a wide range of etiologies. An estimated 30% to 70% of chronic pelvic cases involve musculoskeletal component pain including high-tone pelvic floor dysfunction (HTPFD). Pelvic floor physical therapy has been shown to be a beneficial treatment for HTPFD, yet many patients do not have access to this treatment. The objective of this study was to identify the barriers preventing patients from following through with the first-line management, physical therapy. Participants with a diagnosis of HTPFD (n = 154) were identified from the list of referrals sent from the obstetrics and gynecology department to an affiliated PFPT center. Participants were contacted and asked to complete a phone survey addressing demographics and perceived barriers to care. Responses were collected in REDCap. Univariate and bivariate analyses were performed using a statistical analysis software. Seventy surveys were completed. The top barriers identified by participants were financial constraints (51.4%), perceived lack of utility (37.1%), time constraints (30.0%), and travel issues (18.6%); 84.4% of participants had 1 or more comorbid pain condition. Whereas 51.4% expressed some level of anxiety regarding the PFPT option, only 9.6% of participants did not start treatment because of fear of treatment. The majority of treatment barriers identified were concrete restraints, with insurance noncoverage and time constraints being the top issues. A fair number of participants expressed anxiety about the treatment or felt they received unclear explanations of the treatment. These are areas in which providers can potentially alleviate some barriers to care.

  8. SEPARATION OF THE MINOR FLAVONOLS FROM FLOS GOSSYPII BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY

    Science.gov (United States)

    Yang, Yi; Zhao, Yongxin; Gu, Dongyu; Ayupbek, Amatjan; Huang, Yun; Dou, Jun; Ito, Yoichiro; Zhang, Tianyou; Aisa, Haji Akber

    2010-01-01

    An effective high-speed countercurrent chromatography (HSCCC) method was established for further separation and purification of four minor flavonols in addition to five major flavonols which were reported by our previous study from extracts of Flos Gossypii. HSCCC was performed with three two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (7.5:15:6:7, v/v), (2.5:15:2:7, v/v) and (0:1:0:1, v/v). The separation was repeated 3 times, and 3.8 mg of 8-methoxyl-kaempferol-7-O-β-D-rhamnoside (HPLC purity 98.27%), 6.7 mg of astragalin (HPLC purity 94.18%), 3.3 mg of 4′-methoxyl-quercetin-7-O-β-D-glucoside (HPLC purity 94.30%) and 8.2 mg of hyperoside (HPLC purity 93.48%) were separated from 150 mg of the crude sample. The chemical structures of the flavonols were confirmed by MS, 1H NMR and 13C NMR. Meanwhile, the results indicated that the target compound with smaller K value (<0.5) can be separated by increasing column length of HSCCC. And four separation rules of flavonols according to the present study and references were summarized, which can be used as a useful guide for separation of flavonols by HSCCC. PMID:21494318

  9. Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation

    Directory of Open Access Journals (Sweden)

    Ni Ketut Caturwati

    2017-01-01

    Full Text Available Cyclone separator is an equipment that separates particles contained in the fluid without using filters. The dust particles in the flue gases can be separated by utilizing centrifugal forces and different densities of particles, so that the exhaust gases to be cleaner before discharged into the environment. In this paper carried out a simulation by Computational of Fluids Dynamics to determine the number of particles that can be separated in several cyclone separator which has a ratio body diameter against vortex finder high varied as : 1:0.5 ; 1:0.75 ; 1:1 ; 1:1.25 and 1:1.5. Fluid inlet are air with antrachite impurity particles that are commonly found in the exhaust gases from tire manufacturers with inlet velocities varied as: 15 m/s and 30 m/s. The results of simulation show the fluids with 15 m/s of inlet velocity is generate particle separation value is higher than the fluids with 30 m/s inlet velocity for ratio of body diameter and height vortex finder a: 1:0.5 and 1:1.5. For both of inlet velocities the best ratio of body diameter and height vortex finder is 1:1.25, where it has the highest values of percentage trapped particles about 86% for 30 m/s input velocity and also for 15 m/s input velocity.

  10. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    International Nuclear Information System (INIS)

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M; Yamaguchi, M; Yokoyama, K; Noto, K

    2009-01-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  11. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  12. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    Science.gov (United States)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  13. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector

    International Nuclear Information System (INIS)

    Kaanta, Bradley C; Zhang, Xin; Chen, Hua

    2010-01-01

    The monolithic integration of a high sensitivity detector with a gas chromatography (GC) separation column creates many potential advantages over the discrete components of a traditional chromatography system. In miniaturized high-speed GC systems, component interconnections can cause crucial errors and loss of fidelity during detection and analysis. A monolithically integrated device would eliminate the need to create helium-tight interconnections, which are bulky and labor intensive. Additionally, batch fabrication of integrated devices that no longer require expensive and fragile detectors can decrease the cost of micro GC systems through economies of scale. We present the design, fabrication and operation of a monolithic GC separation column and detector. Our device is able to separate nitrogen, methane and carbon dioxide within 30 s. This method of device integration could be applied to the existing wealth of column geometries and chemistries designed for specialized applications.

  14. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    International Nuclear Information System (INIS)

    Le, Van-Hoang; Nguyen, Ngoc-Ty; Jin, C; Le, Anh-Thu; Lin, C D

    2008-01-01

    We illustrate an iterative method for retrieving the internuclear separations of N 2 , O 2 and CO 2 molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible

  15. Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Ngoc-Ty [Department of Physics, University of Pedagogy, 280 An Duong Vuong, Ward 5, Ho Chi Minh City (Viet Nam); Jin, C; Le, Anh-Thu; Lin, C D [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2008-04-28

    We illustrate an iterative method for retrieving the internuclear separations of N{sub 2}, O{sub 2} and CO{sub 2} molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.

  16. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation.

    Science.gov (United States)

    Helness, H; Melin, E; Ulgenes, Y; Järvinen, P; Rasmussen, V; Odegaard, H

    2005-01-01

    Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be treatment) and sufficient P-removal.

  17. Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km

    KAUST Repository

    Berumen, Michael L.

    2011-11-16

    Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes (Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon melannotus, and Chaetodon trifascialis) between two locations on Australia\\'s Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1,200 km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance/competition to disentangle the effects of these environmental variables. © 2011 Springer-Verlag.

  18. Radiation Simulations and Development of Concepts for High Power Beam Dumps, Catchers and Pre-separator Area Layouts for the Fragment Separators for RIA

    CERN Document Server

    Ronningen, Reginald; Beene, James R; Blideanu, Valetin; Boles, Jason; Bollen, Georg; Burgess, Thomas; Carter, Ken; Conner, David L; Gabriel, Tony A; Geissel, Hans; Gomes, Itacil C; Heilbronn, Lawrence; Iwase, Hiroshi; Lawton, Don; Levand, Anthony; Mansur, Louis; Momozaki, Yoichi; Morrissey, David; Nolen, Jerry; Reed, Claude; Remec, Igor; Rennich, Mark; Reyes, Susana; Sherrill, Bradley; Stein, Werner; Stoyer, Mark; Stracener, Dan; Wendel, Mark; Zeller, Al

    2005-01-01

    The development of high-power beam dumps and catchers, and pre-separator layouts for proposed fragment separators of the Rare-Isotope Accelerator (RIA) facility are important in realizing how to handle the 400 kW in the primary beam. We will present examples of pre-conceptual designs of beam dumps, fragment catchers, and the pre-separator layout. We will also present examples of ongoing work on radiation simulations using the heavy-ion-transport code PHITS, characterizing the secondary radiation produced by the high-power ion beams interacting with these devices. Results on radiation heating of targets, magnet coils, associated hardware and shielding, component activation, and levels of radiation dose will be presented. These initial studies will yield insight into the impact of the high-power dissipation on fragment separator design, remote handling concepts, nuclear safety and potential facility hazard classification, shielding design, civil construction design, component design, and material choices. Furth...

  19. Synthesis and separation properties of an α-alumina-supported high-silica MEL membrane

    NARCIS (Netherlands)

    Kosinov, N.; Hensen, E.J.M.

    2013-01-01

    A thin high-silica MEL membrane was synthesized on a porous a-alumina hollow fiber support by a secondary growth approach. The membrane quality was evaluated by permporometry, single-gas permeation and butane isomer separation. Comparison of the pervaporation performance of MEL membranes with a MFI

  20. Nonmetallic engineered barriers, their properties and role in a geologic repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Lisy, F.

    1994-01-01

    The efficiency of engineered barrier systems depends to a great extent on the properties of the materials used. Backfill and sealing materials must fulfill certain requirements and criteria. They must feature low hydraulic conductivity, high retardation capacity, extremely good sorption properties for a wide range of radionuclides potentially leachable from the deposited waste, low permeability, good compatibility with engineered and natural barriers, good workability, and availability in the necessary quantity and at a reasonable price. Some basic properties are presented of materials which fulfill, to a considerable degree, these requirements and which are thus suggested as suitable backfills, sealings of buffers, namely clay- and cement-based materials (concretes, mortars, etc.). A brief information is also given on some other materials like bitumen, asphalt, etc. (Z.S.) 4 refs

  1. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model

    Science.gov (United States)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie

    2016-05-01

    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  2. Nonproliferation analysis of the reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  3. Test plan: Effects of phase separation on waste loading for high level waste glasses

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    As part of the Tanks Focus Area's (TFA) effort to increase waste loading for high-level waste (HLW) vitrification at various facilities in the Department of Energy (DOE) complex, the occurrence of phase separation in waste glasses spanning the Savannah River Site (SRS) and Idaho National Engineering and Environmental Laboratory (INEEL) composition ranges were studied during FY99. The type, extent, and impact of phase separation on glass durability for a series of HLW glasses, e.g., SRS-type and INEEL-type, were examined

  4. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    OpenAIRE

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-01-01

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH...

  5. Analysis of civilian processing programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials

  6. High Resolution Separations and Improved Ion Production and Transmission in Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Page, Jason S.; Baker, Erin Shammel; Tang, Keqi; Ding, Jie; Shen, Yufeng; Smith, Richard D.

    2008-03-31

    The goal of metabolomics experiments is the detection and quantitation of as many sample components as reasonably possible in order to identify “features” that can be used to characterize the samples under study. When utilizing electrospray ionization to produce ions for analysis by mass spectrometry (MS), it is imperative that metabolome sample constituents be efficiently separated prior to ion production, in order to minimize the phenomenon of ionization suppression. Similarly, optimization of the MS inlet can lead to increased measurement sensitivity. This review will focus on the role of high resolution liquid chromatography (LC) separations in conjunction with improved ion production and transmission for LC-MS-based metabolomics.

  7. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    Science.gov (United States)

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  8. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  9. Ion chromatographic separation for analysis of radiostrontium in nuclear reprocessing solutions of high ionic strength

    International Nuclear Information System (INIS)

    Lamb, J.D.; Nordmeyer, F.R.; Drake, P.A.; Elder, M.P.; Miles, R.W.

    1989-01-01

    An ion chromatography (IC)-based method was developed for Sr 2+ concentration and separation showing high recoveries of strontium. This procedure permits complete automation. One of the potential weaknesses of the IC approach to sample preconcentration, i.e. sensitivity to solutions of high acid content, common in nuclear reprocessing solution, has been overcome by a novel application of acid suppression technology. (author) 12 refs.; 8 figs.; 3 tabs

  10. Electrical and optical characteristics of dielectric-barrier discharge driven by high voltage nanosecond generator

    International Nuclear Information System (INIS)

    Ahmadeev, V.V.; Kost'yuchenko, S.V.; Kudryavtsev, N.N.; Kurkin, G.A.; Vasilyak, L.M.

    1998-01-01

    Electrical and optical characteristics of the dielectric-barrier discharge in the pressure range of 10-400 Torr were investigated experimentally, particular attention being paid to the discharge homogeneity and to the energy dissipation in the discharge volume. The discharge was driven by a high-voltage pulse generator producing nanosecond high-voltage pulses with an amplitude of 20-30 kV. Air, nitrogen, and helium were used as working gases. The discharge was found to be homogeneous within a wide range of gas pressure. A power density of up to 250 mW/cm 3 has been achieved. (J.U.)

  11. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    Science.gov (United States)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  12. Separation of enantiomers of new psychoactive substances by high-performance liquid chromatography.

    Science.gov (United States)

    Kadkhodaei, Kian; Forcher, Lisa; Schmid, Martin G

    2018-03-01

    New psychoactive substances are defined as compounds with consciousness-changing effects and have been developed simultaneously with classical drugs. They arise through structural modifications of illegal substances and are mainly produced to circumvent laws. Availability is simple, since new psychoactive substances can be purchased from the Internet. Among them many chemical drug compound classes are chiral and thus the two resulting enantiomers can differ in their effects. The aim of this study is to develop a suitable chiral high-performance liquid chromatography separation method for a broad spectrum of new psychoactive substances using cellulose tris(3,5-dichlorophenylcarbamate) as a chiral selector. Experiments were performed by high-performance liquid chromatography in normal-phase mode under isocratic conditions using ultraviolet detection. Direct separation was carried out on a high-performance liquid chromatography column (Lux® i-Cellulose-5, 3.5 μm, Phenomenex®), available since 2016. Excellent separation results were obtained for cathinones. After further optimization, even 47 instead of 39 out of 52 cathinones showed baseline separation. For amphetamine derivatives, satisfactory results were not achieved. Further, new psychoactive substances from other compound classes such as benzofuranes, thiophenes, phenidines, phenidates, morpholines, and ketamines were partially resolved, depending on the polarity and degree of substitution. All analytes, which were mainly purchased from the Internet, were proven to be traded as racemates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-Throughput Molecular Simulations of Metal Organic Frameworks for CO2 Separation: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Ilknur Erucar

    2018-02-01

    Full Text Available Metal organic frameworks (MOFs have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure–performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  14. High-throughput Molecular Simulations of MOFs for CO2 Separation: Opportunities and Challenges

    Science.gov (United States)

    Erucar, Ilknur; Keskin, Seda

    2018-02-01

    Metal organic frameworks (MOFs) have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure-performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  15. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    Science.gov (United States)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  16. A narrow open tubular column for high efficiency liquid chromatographic separation.

    Science.gov (United States)

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; Xiang, Piliang; Ren, Jiangtao; Meng, Yunzhu; Zhang, Kaiqi; Juan Lu, Joann; Liu, Shaorong

    2018-04-30

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.

  17. Reducing Barriers To The Use of High-Efficiency Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Peter Morante

    2005-12-31

    With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and

  18. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.

    Science.gov (United States)

    Zhou, Wenting; Li, Song; Liu, Yan; Xu, Zhengzheng; Wei, Sufeng; Wang, Guoyong; Lian, Jianshe; Jiang, Qing

    2018-03-21

    Traditional oil-water separation materials have to own ultrahigh or ultralow surface energy. Thus, they can only be wetted by one of the two, oil or water. Our experiment here demonstrates that the wettability in oil-water mixtures can be tuned by oil and water initially. Hierarchical voids are built on commercial copper foams with the help of hydrothermally synthesized titanium dioxide nanorods. The foams can be easily wetted by both oil and water. The water prewetted foams are superhydrophilic and superoleophobic under oil-water mixtures, meanwhile the oil prewetted foams are superoleophilic and superhydrophobic. In this paper, many kinds of water-oil mixtures were separated by two foams, prewetted by corresponding oil or water, respectively, combining a straight tee in a high flux, high efficiency, and continuous mode. This research indicates that oil-water mixtures can be separated more eco-friendly and at lower cost.

  19. A lab-on-CD prototype for high-speed blood separation

    International Nuclear Information System (INIS)

    Zhang Jinlong; Liu Mei; Yang Jun; Guo Qiuquan

    2008-01-01

    Blood separation is the first step for subsequent blood tests in clinical diagnosis. Lab-on-a-chip technology provides an automatic, cost-effective and fast solution for a wide variety of blood analyses. The objective of this work is to design a new lab-on-CD microstructure capable of separating blood cells from the whole blood into different reservoirs directly. A CD platform including a microchannel network consisting of a straight main microchannel, a curved microchannel and a branching microchannel has been proposed. The merits of this design are its simple structure, less operating time and high separation efficiency because it utilizes multiple separation mechanisms, for instance, two centrifugal forces and Coriolis force. One centrifugal force is due to the system rotation; the other centrifugal force is due to the curvature of the specifically designed curved channel. In this work, systematical evaluation on the functionality and performance of such a design has been done. Ninety-nine per cent separation efficiency is achieved for diluted blood of 6% hematocrit

  20. A lab-on-CD prototype for high-speed blood separation

    Science.gov (United States)

    Zhang, Jinlong; Guo, Qiuquan; Liu, Mei; Yang, Jun

    2008-12-01

    Blood separation is the first step for subsequent blood tests in clinical diagnosis. Lab-on-a-chip technology provides an automatic, cost-effective and fast solution for a wide variety of blood analyses. The objective of this work is to design a new lab-on-CD microstructure capable of separating blood cells from the whole blood into different reservoirs directly. A CD platform including a microchannel network consisting of a straight main microchannel, a curved microchannel and a branching microchannel has been proposed. The merits of this design are its simple structure, less operating time and high separation efficiency because it utilizes multiple separation mechanisms, for instance, two centrifugal forces and Coriolis force. One centrifugal force is due to the system rotation; the other centrifugal force is due to the curvature of the specifically designed curved channel. In this work, systematical evaluation on the functionality and performance of such a design has been done. Ninety-nine per cent separation efficiency is achieved for diluted blood of 6% hematocrit.

  1. Solute removal capacity of high cut-off membrane plasma separators.

    Science.gov (United States)

    Ohkubo, Atsushi; Kurashima, Naoki; Nakamura, Ayako; Miyamoto, Satoko; Iimori, Soichiro; Rai, Tatemitsu

    2013-10-01

    In vitro blood filtration was performed by a closed circuit using high cut-off membrane plasma separators, EVACURE EC-2A10 (EC-2A) and EVACURE EC-4A10 (EC-4A). Samples were obtained from sampling sites before the plasma separator, after each plasma separator, and from the ultrafiltrate of each separator. The sieving coefficient (S.C.) of total protein (TP), albumin (Alb), IgG, interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), fibrinogen (Fib), antithrombin III (AT-III), and coagulation factor XIII (FXIII) were calculated. The S.C. of each solute using EC-2A and EC-A4 were as follows; TP: 0.25 and 0.56, Alb: 0.32 and 0.73, IgG: 0.16 and 0.50, IL-6:0.73 and 0.95, IL-8:0.85 and 0.82, TNF-α: 1.07 and 0.99, Fib: 0 and 0, FXIII: 0.07 and 0.17, respectively. When compared with the conventional type of membrane plasma separators, EVACURE could efficiently remove cytokines while retaining coagulation factors such as fibrinogen. Moreover, EC-2A prevented protein loss, whereas EC-4A could remove approximately 50% of IgG. © 2013 The Authors. Therapeutic Apheresis and Dialysis © 2013 International Society for Apheresis.

  2. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wenwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  3. Development of a high speed extrusion concept using a floating screw sleeve for solid-melt-separation

    Science.gov (United States)

    Karrenberg, Gregor; Wortberg, Johannes

    2015-05-01

    The High-Speed-S-Truder with floating screw sleeve is an alternative extrusion concept with solid-melt-separation. A fairly conventional 35 mm screw with a length of 21 D, which is accelerated by a 75 kW gearless, water cooled synchronous drive, conveys the resin into a 60 mm screw sleeve with a length of 10 D. Inside the sleeve the material is plasticizied and discharged into the outer screw channel of the sleeve through radial bores. Only the solid bed remains inside. The development of a melt pool - and thus a decrease of the plasticizing capacity - is avoided. The sleeve is rotated by drag forces only (approximately 10 - 15 % of the screw speed). Due to the low speed of the screw sleeve molten material is conveyed to a 4 D Dynamic Mixing Ring in a gentle manner. The DMRs floating ring and the screw sleeve are directly coupled. The granules in the screw channel are stopped by a barrier on the screw in front of the mixing device. So nearly no unmelted material can pass the system. For temperature management in the plastification and mixing zone a 3-zone heating/air-cooling system is used. Various kinds of experiments with the High-Speed S-Truder were conducted. Reachable throughputs with different types of material (LDPE, LLDPE, PP, PS) have been tested. Also three screw geometries, which are mainly varying in the channel depth, were compared. Experimental results and theoretical background will be described in this paper.

  4. High-power CO laser with RF discharge for isotope separation employing condensation repression

    Science.gov (United States)

    Baranov, I. Ya.; Koptev, A. V.

    2008-10-01

    High-power CO laser can be the effective tool in such applications as isotope separation using the free-jet CRISLA method. The way of transfer from CO small-scale experimental installation to industrial high-power CO lasers is proposed through the use of a low-current radio-frequency (RF) electric discharge in a supersonic stream without an electron gun. The calculation model of scaling CO laser with RF discharge in supersonic stream was developed. The developed model allows to calculate parameters of laser installation and optimize them with the purpose of reception of high efficiency and low cost of installation as a whole. The technical decision of industrial CO laser for isotope separation employing condensation repression is considered. The estimated cost of laser is some hundred thousand dollars USA and small sizes of laser head give possibility to install it in any place.

  5. Highly accurate and fast optical penetration-based silkworm gender separation system

    Science.gov (United States)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  6. Minimized thermal conductivity in highly stable thermal barrier W/ZrO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich [University of Goettingen, Institut fuer Materialphysik, Goettingen (Germany)

    2016-10-15

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO{sub 2} in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO{sub 2}, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO{sub 2}. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO{sub 2} multilayers as desired thermally stable, low-conductivity materials. (orig.)

  7. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    Zhu Yu

    2010-08-01

    Full Text Available Three phenolic compounds, p-hydroxybenzoic acid (1, isorhamnetin-3-O-β-D-rutinoside (2, and 3,3'-di-O-methylquercetin (5, along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3 and 3-O-methylquercetin (4. Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC. The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3 and 3-O-methylquercetin (4 (26.43% and 71.89%, respectively in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5 at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1 at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2 at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  8. Preparative separation of phenolic compounds from Halimodendron halodendron by high-speed counter-current chromatography.

    Science.gov (United States)

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-08-31

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  9. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    Science.gov (United States)

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  10. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  11. Production of high-purity isotopes by electromagnetic separation; Production electromagnetique d'isotope tres purs

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Improvement in isotopic purity of nuclides prepared by electromagnetic separation is searched into the principle of cascades of monochromators. The principal drawback of which is to allow the separation of only one isotope at a time. The electromagnetic separator of Saclay is equipped with an electrostatic post-analyzer, which is described. Significant results are obtained, concerning isotopic enhancements of uranium-235 and mercury-204. A schema of isotopic contagion is then proposed, the basis of it is the scattering of the primary ions in the residual atmosphere of the separator chamber. The most frequent type of collisions being accompanied by neutralisation of the ions, the schema explains the efficiency of the second stage. As a matter of conclusion, some particularities concerning the routine work at a high enhancement, small output machine, are given. (author) [French] L'accroissement de la purete isotopique des especes nucleaires preparees par separation electromagnetique est recherche dans l'emploi du principe des cascades de monochromateurs, moyennant la servitude de ne collecter qu'un isotope a la fois. Le separateur electromagnetique de Saclay est equipe dans ce but d'un post-analyseur electrostatique, qui est decrit. Des resultats significatifs sont donnes, portant sur les enrichissements obtenus dans les separations d'uranium-235 et de mercure-204. Un schema de contagion isotopique est propose. Il est fonde sur la diffusion a petit angle accompagnant la neutralisation des faisceaux primaires par collision avec le gaz residuel. Ce schema permet d'expliquer l'efficacite de l'etage electrostatique. En matiere de conclusion, la methode d'exploitation d'une machine a faible debit et a haut enrichissement est donnee. (auteur)

  12. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    Science.gov (United States)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  13. Characterization of high level waste for minor actinides by chemical separation and alpha spectrometry

    International Nuclear Information System (INIS)

    Murali, M.S.; Bhattacharayya, A.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2010-01-01

    Quantification of minor actinides present in of High Level Waste (HLW) solutions originating from the power reactors is important in view of management of radioactive wastes and actinide partitioning. Several methods such as ICP-MS, X-ray fluorescence methods, ICP-AES, alpha spectrometry are used in characterizing such types of wastes. As alpha spectrometry is simple and reliable, this technique has been used for the estimation of minor actinides after devising steps of separation for estimating Np and Pu present in HLW solutions of PHWR origin. Using a wealth of knowledge appropriate to the solution chemistry of actinides, the task of separation, though appears easy, it is challenging job for a radiochemist handling high-dose HLW samples, for obtaining clean alpha peaks for Np and Pu. This paper reports on the successful attempt made to quantify 241 Am, 244 Cm, Pu (239 mainly) and 237 Np present in HLW-PHWR obtained from PREFRE, Tarapur

  14. Separation of the lanthanides on high-efficiency bonded phases and conventional ion-exchange resins

    International Nuclear Information System (INIS)

    Elchuk, S.; Cassidy, R.M.

    1979-01-01

    High-performance liquid chromatographic separations (< 20 min) of the lanthanides are illustrated for both 5- and 10-μm bonded-phase strong-acid ion exchangers. The performance of these bonded phase packings is compared with that obtained with a 13-μm styrene-divinylbenzene resin. The eluted metal ions are detected with a variable-wavelength detector after a post-column complexation reaction. The requirements and characteristics of post-column reaction for sensitive metal ion detection after separation on high-performance columns are discussed and the linearity, reproducibility, and sensitivity of the system used in the work are illustrated. The potential of on-column preconcentration for the ultratrace (pg/mL) determination of metal ions is also discussed and illustrated. 7 figures, 2 tables

  15. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza; Validi, AbdoulAhad; Iaccarino, Gianluca

    2013-01-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  16. Non-intrusive low-rank separated approximation of high-dimensional stochastic models

    KAUST Repository

    Doostan, Alireza

    2013-08-01

    This work proposes a sampling-based (non-intrusive) approach within the context of low-. rank separated representations to tackle the issue of curse-of-dimensionality associated with the solution of models, e.g., PDEs/ODEs, with high-dimensional random inputs. Under some conditions discussed in details, the number of random realizations of the solution, required for a successful approximation, grows linearly with respect to the number of random inputs. The construction of the separated representation is achieved via a regularized alternating least-squares regression, together with an error indicator to estimate model parameters. The computational complexity of such a construction is quadratic in the number of random inputs. The performance of the method is investigated through its application to three numerical examples including two ODE problems with high-dimensional random inputs. © 2013 Elsevier B.V.

  17. Apparatus for isotopic separation using a high-frequency wave and coherent radiation

    International Nuclear Information System (INIS)

    Mourier, G.

    1983-11-01

    The purpose of the present invention is an apparatus for industrial separation of isotopes, using a high-frequency electromagnetic field and coherent radiation such as that from a laser. Separation of isotopes by isotopically selective ionization, followed by entrainment of the ions by means of a magnetic field, is known. The selective ionization operation can be carried out in two consecutive stages: excitation of the chosen isotope, from the ground energy state to a specified excited level, near ionization; the energy required for this first stage can be supplied by means of a laser, the laser radiation being characterized for high power and well-defined frequency; this stage offers the advantage of being easily made isotopically selective; then ionization of the excited atoms by means of supplying relatively weak energy which should be insufficient to ionize the nonexcited ions; this second stage can also be carried out by means of a laser

  18. Development of the high temperature ion-source for the Grenoble electromagnetic isotope separator

    International Nuclear Information System (INIS)

    Bouriant, M.

    1968-01-01

    The production of high purity stable or radioactive isotopes (≥ 99.99 per cent) using electromagnetic separation require for equipment having a high resolving power. Besides, and in order to collect rare or short half-life isotopes, the efficiency of the ion-source must be high (η > 5 to 10 per cent). With this in view, the source built operates at high temperatures (2500-3000 C) and makes use of ionisation by electronic bombardment or of thermo-ionisation. A summary is given in the first part of this work on the essential characteristics of the isotope separator ion Sources; a diagram of the principle of the source built is then given together with its characteristics. In the second part are given the values of the resolving power and of the efficiency of the Grenoble isotope separator fitted with such a source. The resolving power measured at 10 per cent of the peak height is of the order of 200. At the first magnetic stage the efficiency is between 1 and 26 per cent for a range of elements evaporating between 200 and 3000 C. Thus equipped, the separator has for example given, at the first stage, 10 mg of 180 Hf at (99.69 ± 0.1) per cent corresponding to an enrichment coefficient of 580; recently 2 mg of 150 Nd at (99.996 ± 0.002) per cent corresponding to an enrichment coefficient of 4.2 x 10 5 has been obtained at the second stage. (author) [fr

  19. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  20. Reduced Graphene Oxide-Gold Nanoparticle Nanoframework as a Highly Selective Separation Material for Aflatoxins.

    Science.gov (United States)

    Guo, Wenbo; Wu, Lidong; Fan, Kai; Nie, Dongxia; He, Weijing; Yang, Junhua; Zhao, Zhihui; Han, Zheng

    2017-11-03

    Graphene-based materials have been studied in many applications, owing to the excellent electrical, mechanical, and thermal properties of graphene. In the current study, an environmentally friendly approach to the preparation of a reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was developed by using L-cysteine and vitamin C as reductants under mild reaction conditions. The rGO-AuNP material showed a highly selective separation ability for 6 naturally occurring aflatoxins, which are easily adsorbed onto traditional graphene materials but are difficult to be desorbed. The specificity of the nanocomposite was evaluated in the separation of 6 aflatoxin congeners (aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, aflatoxin M1 and aflatoxin M2) from 23 other biotoxins (including, ochratoxin A, citrinin, and deoxynivalenol). The results indicated that this material was specific for separating aflatoxin congeners. The synthesized material was further validated by determining the recovery (77.6-105.0%), sensitivity (limit of detection in the range of 0.05-0.21 μg kg -1 ), and precision (1.5-11.8%), and was then successfully applied to the separation of aflatoxins from real-world maize, wheat and rice samples.

  1. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  2. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy.

    Science.gov (United States)

    Sierra, C; Martínez, J; Menéndez-Aguado, J M; Afif, E; Gallego, J R

    2013-03-15

    The industrial history in the district of Linares (Spain) has had a severe impact on soil quality. Here we examined soil contaminated by lead and other heavy metals in "La Cruz" site, a brownfield affected by metallurgical residues. Initially, the presence of contaminants mainly associated with the presence of lead slag fragments mixed with the soil was evaluated. The subsequent analysis showed a quasi-uniform distribution of the pollution irrespective of the grain-size fractions. This study was accompanied by a characterization of the lead slag behavior under the presence of a magnetic field. Two main magnetic components were detected: first a ferromagnetic and/or ferrimagnetic contribution, second a paramagnetic and/or antiferromagnetic one. It was also established that the slag was composed mainly of lead spherules and iron oxides embedded in a silicate matrix. Under these conditions, the capacity of magnetic separation to remove pollutants was examined. Therefore, two high intensity magnetic separators (dry and wet devices, respectively) were used. Dry separation proved to be successful at decontaminating soil in the first stages of a soil washing plant. In contrast, wet separation was found effective as a post-process for the finer fractions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Computer programmes for high current ion trajectories in a magnetic sector-type mass separator

    International Nuclear Information System (INIS)

    Nakai, Akira

    1988-01-01

    According to theoretical calculations previously proposed by the author, a new programme 'MALT' for electronic computers has been developed for numerical calculations of ion trajectories of a high current ion beam traversing a magnetic sector-type mass separator. In the programme, both effects of the fringing field and the space charge are taken into account in an analytical way, so that numerical calculations can be done straightforwardly. Furthermore, it becomes also possible to analyze and cotrol the trajectories of the high current ion beam. The programme MALT contains several subroutine programmes which are separated individually for the convenience of various calculations with respect to the high current ion beam. To demonstrate the calculations by the use of these subroutine programmes, a main programme for the calculation of the trajectories in the whole region of the separator is shown, which also makes it possible to draw the traces of the trajectories. The trajectories calculated by the proposed programme have been compared with the images of the ion beams recorded on novel dry plates developed by the author: the comparison enables us to evaluate the effective space charge and the effective space charge potential, and to analyze the behaviour of the beam of neutral particles accompanying the ion beam. (author)

  4. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  5. Testing the efficiency of nested barriers to dispersal in the Mediterranean high mountain plant Edraianthus graminifolius (Campanulaceae).

    Science.gov (United States)

    Surina, Boštjan; Schneeweiss, Gerald M; Glasnović, Peter; Schönswetter, Peter

    2014-06-01

    Due to strong spatial heterogeneity and limited Pleistocene glaciation, the Balkan Peninsula is a major European biodiversity hot spot. Surprisingly little, however, is known about patterns and processes of intraspecific diversification of its biota in general and of high-altitude species in particular. A well-suited system to test hypotheses with respect to various isolating factors acting at different geographic scales and to explore full-range phylogeographic patterns on the Balkan Peninsula is Edraianthus graminifolius (Campanulaceae), distributed in the western Balkan mountain systems, the southwestern Carpathians and the Apennine Peninsula. To this end, we used a dense population sampling and employed amplified fragment length polymorphism (AFLP) markers and plastid DNA sequences supplemented by ecological niche modelling. The strongest splits were inferred to separate southern and northern Balkan populations from the central ones, from where range extension occurred to the Carpathians and, in more recent times, once or twice to the Apennine Peninsula. The three genetic groups in the western Balkan Peninsula were remarkably congruent among molecular markers, suggesting that the barriers to gene flow acted over long time periods facilitating allopatric differentiation. Each main group of Balkan populations contained genetically and geographically distinct subgroups, which likely are the result of local refugia during warmer periods. Evidently, the topographically highly complex and during the Last Glacial Maximum only locally glaciated Balkan Peninsula is a hot spot of species richness and endemism as well as a sanctuary of intraspecific genetic diversity, even if the underlying causes remain insufficiently understood. © 2014 John Wiley & Sons Ltd.

  6. The influence of chemicals on water quality in a high pressure separation rig

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Einar E.; Hemmingsen, Paal V.; Mediaas, Heidi; Svarstad, May Britt E.; Westvik, Arild

    2006-03-15

    In the research laboratory of Statoil at Rotvoll, Trondheim, a high pressure experimental rig used for separation and foaming studies has been developed. There have been several studies to ensure that the high pressure separation rig produces reliable and consistent results with regard to the water-in-oil and oil-in-water contents. The results are consistent with available field data and, just as important, consistent when changing variables like temperature, pressure drop and water cut. The results are also consistent when changing hydrodynamic variables like flow velocity and mixing point (using different choke valves) and when using oil with and without gas saturation. At equal experimental conditions, the high pressure separation rig is able to differentiate between separation characteristics of oil and water from different fields and from different wells at the same field. The high pressure separation and foam rig can be used from -10 deg C to 175 deg C and at pressures up to 200 bar. Crude oil and water are studied under relevant process conditions with respect to temperature, pressure, shear, water cut and separation time. In the present work the influence of chemicals on the oil and water quality has been studied. Chemicals have been mixed into the oil and/or water beforehand or added in situ (on-stream; simulated well stream). The amount of oil in the water after a given residence time in the separation cell has been measured. The results from the high pressure rig show that some demulsifiers, with their primary purpose of giving less water in oil, also have influence on the water quality. Improvement of water quality has been observed as well as no effect or aggravation. The experimental results have been compared to results from bottle tests at the field. The results from the bottle tests and from the laboratory are not corresponding, and only a full-scale field test can tell which of them are the correct results, if any. (Experience from corresponding

  7. Concomitant glenohumeral pathologies in high-grade acromioclavicular separation (type III - V).

    Science.gov (United States)

    Markel, Jochen; Schwarting, Tim; Malcherczyk, Dominik; Peterlein, Christian-Dominik; Ruchholtz, Steffen; El-Zayat, Bilal Farouk

    2017-11-10

    Acromioclavicular joint (ACJ) dislocations are common injuries of the shoulder associated with physical activity. The diagnosis of concomitant injuries proves complicated due to the prominent clinical symptoms of acute ACJ dislocation. Because of increasing use of minimally invasive surgery techniques concomitant pathologies are diagnosed more often than with previous procedures. The aim of this study was to identify the incidence of concomitant intraarticular injuries in patients with high-grade acromioclavicular separation (Rockwood type III - V) as well as to reveal potential risk constellations. The concomitant pathologies were compiled during routine arthroscopically assisted treatment in altogether 163 patients (147 male; 16 female; mean age 36.8 years) with high-grade acromioclavicular separation (Rockwood type III: n = 60; Rockwood type IV: n = 6; Rockwood type V: n = 97). Acromioclavicular separation occurred less often in women than men (1:9). In patients under 35, the most common cause for ACJ dislocation was sporting activity (37.4%). Rockwood type V was observed significantly more often than the other types with 57.5% (Rockwood type III = 36.8%, Rockwood type IV 3.7%). Concomitant pathologies were diagnosed in 39.3% of the patients with that number rising to as much as 57.3% in patients above 35 years. Most common associated injuries were rotator cuff injuries (32.3%), chondral defects (30.6%) and SLAP-lesions (22.6%). Of all patients, 8.6% needed additional reconstructive surgery. Glenohumeral injuries are a much more common epiphenomenon during acromioclavicular separation than previously ascertained. High risk group for accompanying injuries are patients above 35 years with preexisting degenerative disease. The increasing use of minimally invasive techniques allows for an easier diagnosis and simultaneous treatment of the additional pathologies.

  8. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Almadhoun, Mahmoud N.; Odeh, Ihab N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pressure tuning of anisotropy barrier in Fe8 SMMs probed using high frequency EPR

    Science.gov (United States)

    Thirunavukkuarasu, Komalavalli; Beedle, Christopher; Tozer, Stanley; Hill, Stephen

    2014-03-01

    Single-molecule magnets (SMMs) are spin systems with large spin ground state where quantum phenomena such as tunneling of magnetization via a considerable anisotropy barrier manifest. One such SMM that has been extensively studied is [Fe8O2(OH)12(tacn)6]Br8.9H2O, also known as Fe8, with a giant spin ground state of S=10. The eight Fe atoms bridged by the ligands form a butterfly structure where six Fe atoms have spins up and two spins down in the simplest model. This structure in fact gives rise to geometrical spin frustration effects within the cluster. By varying the interaction between the spins, manipulation of quantum tunneling in SMMs may be achieved. Typically, the manipulation of spin interactions is realized using chemical methods. As an alternative approach, we employ high pressure to induce changes in the ligand-field environment of the Fe atoms. In this presentation, the pressure-dependent changes in the anisotropy barrier in single crystal Fe8 SMMs investigated by high frequency electron paramagnetic resonance measurements will be discussed.

  11. Simultaneous realization of high density edge transport barrier and improved L-mode on CHS

    International Nuclear Information System (INIS)

    Minami, Takashi; Okamura, Shoichi; Suzuki, Chihiro

    2008-10-01

    An edge transport barrier (ETB) formation and an improved L-mode (IL mode) have been simultaneously realized in high density region (n-bar e - 1.2x10 20 m -3 ) on Compact Helical System (CHS). When the ETB is formed during the IL mode, the density reduction in the edge region is suppressed by the barrier formation. As a result of the continuous increasing of the temperature by the IL mode, the stored energy during the combined mode increased up to the maximum stored energy (W p - 9.4 kJ) recorded in CHS experiments. The plasma pressure in the peripheral region increases up to three times larger than that of the L-mode, and the large edge plasma pressure gradient is formed accompanying the pedestal structure. That is caused by the anomalous transport reduction that is confirmed from the sharp drop of the density fluctuation in the edge region. The neutral particle reduction in the peripheral region and the metallic impurity accumulation in the core plasma are simultaneously observed during the high density ETB formation. (author)

  12. Highly dispersive ion exchangers in the analytical chemistry of uranium, particularly regarding separation methods

    International Nuclear Information System (INIS)

    Schoening, R.

    1975-01-01

    The reaction of water-insoluble polyvinyl pyrrolidon with uranium VI was investigated and a determination method for uranium was worked out in which the polyvinyl pyrrolidon was used as specific exchanger. Good separations of uranium from numerous transition metal ions were achieved here. The application of this exchanger for a fast and simple elution and determination method was of particular importance. A possible sorption mechanism was suggested based on the capacity curve of uranium with polyvinyl pyrrolidon and nitrogen and chloride content at maximum load. The sorption occurs by coordination of the carbonyl oxygen of single pyrrolidon rings with the protons of the complex acides and uranium. This assumption is supported by IR investigations. The sorbability of other inorganic acids was also investigated and possible structures were formulated for the sorption mechanism. In addition to this, ion exchangers were prepared based on cellulose by converting cellulose powder with aziridine and tris-1-aziridinyl-phosphine oxide. A polyethylene imine cellulose of high capacity was obtained in the conversion of cellulose powder with aziridine. This exchanger absorbs cobalt III very strongly. The exchanger loaded with cobalt III was used to separate the uranium as cyanato complex. The exchanger obtained in converting chlorated cellulose with tris-1-aziridinyl phosphine oxide also absorbs uranium VI very strongly. Thus a separation method of high specifity and selectivity was developed. (orig.) [de

  13. Separation of lanthanum from nuclear fuel solutions by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Lazar, G. C.; Petre, M.; Androne, G.; Benga, A.

    2016-01-01

    This paper presents the separation of uranium, praseodymium and lanthanum from nuclear fuel solutions by high performance liquid chromatography (HPLC). The aim of this study is to establish a minimum concentration of lanthanum which can be analyzed by high performance liquid chromatography, and also to study the effect of uranium concentration on the separation of praseodymium and lanthanum. Optimum gradient mode was established for mixture standard stoc solutions with uranium in a concentration of 1 mg/ml, praseodymium and lanthanum in a concentration range of 1-5 μg/ml from each element. These conditions were applied for the separation of lanthanum from a nuclear fuel solution in which praseodymium and lanthanum were added in a concentration of 3 μg/ml from each element. The elution behavior of lanthanum as a function of the pH and the concentration of the mobile phase, using a mixture of 1-octanesulfonic acid sodium salt with a-hidroxyisobutiric acid is presented. (authors)

  14. Cation exchange separation of 16 rare earth metals by microscale high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Ishii, D.; Hirose, A.; Iwasaki, Y.

    1978-01-01

    The separation of rare earth metals has been studied with a microcolumn of 0.5 mm i.d. and 75 mm length, packed with TSK LS-212 high-performance cation exchange resin. A micro-feeder (Model MF-2, from Azumadenki Kogyo) was used to drive carrier and sample solutions through the ion exchange column and detection cell. By combining a 250 μl syringe and a 0.5 mm i.d. sampling tube the micro-feeder, 0.1-1.0 μl rare earth metals were separated within 38 min, using only 304 μl of 0.4M α-hydroxy-isobutyric acid solution adjusted to pH 3.1-6.0 with ammonia solution as gradient carrier solution. The gradient elution was successfully performed by applying a new technique developed for microscale liquid chromatography. (author)

  15. Separable and Error-Free Reversible Data Hiding in Encrypted Image with High Payload

    Directory of Open Access Journals (Sweden)

    Zhaoxia Yin

    2014-01-01

    Full Text Available This paper proposes a separable reversible data-hiding scheme in encrypted image which offers high payload and error-free data extraction. The cover image is partitioned into nonoverlapping blocks and multigranularity encryption is applied to obtain the encrypted image. The data hider preprocesses the encrypted image and randomly selects two basic pixels in each block to estimate the block smoothness and indicate peak points. Additional data are embedded into blocks in the sorted order of block smoothness by using local histogram shifting under the guidance of the peak points. At the receiver side, image decryption and data extraction are separable and can be free to choose. Compared to previous approaches, the proposed method is simpler in calculation while offering better performance: larger payload, better embedding quality, and error-free data extraction, as well as image recovery.

  16. High resolution gamma spectrometry of size-separated soils from high background areas of Kerala

    International Nuclear Information System (INIS)

    Menon, M.R.; Sadasivan, S.; Nambi, K.S.V.

    1992-01-01

    Soil samples from a high background area of Kerala were analysed for their natural radionuclide content and distribution with particle size. The samples exhibited inhomogeneity in activity distribution. The smaller size particles had higher activity. The open air dose estimates are also presented. (author). 5 refs., 2 tabs

  17. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  18. Feasibility of using a high-level waste canister as an engineered barrier in disposal

    International Nuclear Information System (INIS)

    Slate, S.C.; Pitman, S.G.; Nesbitt, J.F.; Partain, W.L.

    1982-08-01

    The objective of this report is to evaluate the feasibility of designing a process canister that could also serve as a barrier canister. To do this a general set of performance criteria is assumed and several metal alloys having a high probability of demonstrating high corrosion resistance under repository conditions are evaluated in a qualitative design assessment. This assessment encompasses canister manufacture, the glass-filling process, interim storage, transportation, and to a limited extent, disposal in a repository. A series of scoping tests were carried out on two titanium alloys and Inconel 625 to determine if the high temperature inherent in the glass-fill processing would seriously affect either the strength or corrosion resistance of these metals. This is a process-related concern unique to the barrier canister concept. The material properties were affected by the heat treatments which simulated both the joule-heated glass melter process (titanium alloys and Inconel 625) and the in-can melter (ICM) process (Inconel 625). However, changes in the material properties were generally within 20% of the original specimens. Accelerated corrosion testing of the heat treated coupons in a highly oxygenated brine showed basic corrosion resistance of titanium grade 12 and Inconel 625 to compare favorably with that of the untreated coupons. The titanium grade 2 coupons experienced severe corrosion pitting. These corrosion tests were of a scoping nature and suitable primarily for the detection of gross sensitivity to the heat treatment inherent in the glass-fill process. They are only suggstive of repository performance since the tests do not adequately model the wide range of repository conditions that could conceivably occur

  19. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures.

    Science.gov (United States)

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10(-5) m s(-1) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm(-2)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. Published by Oxford University Press on behalf of the

  20. Execution techniques for high level radioactive waste disposal. 4. Design and manufacturing procedure of engineered barriers

    International Nuclear Information System (INIS)

    Ogata, Nobuhide; Kosaki, Akio; Ueda, Hiroyoshi; Asano, Hidekazu; Takao, Hajime

    1999-01-01

    Ensuring the physical integrity of engineered barriers for an extremely long time period is necessary for geological disposal of high-level radioactive wastes. This report describes the design process and the designed configurations of both overpack and buffer as engineered barriers. Manufacturing procedure, quality control and inspection methods are also summarized. Carbon steel was selected as a structural material of the overpack and the specification of the overpack was determined assuming disposal in the depths of 1000 m below surface of crystalline rock site. The mixture of bentonite and sand (80% sodium bentonite and 20% silica sand by mass) was selected as material for a buffer from mainly its permeability and characteristics of self-sealing of a gap occurred in construction work. Welding method of a lid onto the main body of the overpack, uniting method of a corrosion-resistance layer and the structural component in the case of a composite overpack and manufacturing procedures of both blocks-type and monolithic-type buffers are also investigated. (author)

  1. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

    Science.gov (United States)

    Rodríguez, Martín A.

    2014-03-01

    Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.

  2. Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA

    Science.gov (United States)

    Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng

    2011-12-01

    The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.

  3. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    International Nuclear Information System (INIS)

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m 3 of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of 137 Cs and 90 Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details

  4. Lithium Thiophosphate Compounds as Stable High Rate Li-Ion Separators

    Energy Technology Data Exchange (ETDEWEB)

    Apblett, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Battery separators based upon lithium thiophosphate (LiPS4) have previously been demonstrated at UC Boulder, but the thickness of the separators was too high to be of practical use in a lithium ion battery. The separators are solid phase, which makes them intrinsically less prone to thermal runaway and thereby improves safety. Results of attempting to develop sputtered thin film layers of this material by starting with targets of pure Li, Li2S, and P2S5 are reported. Sputtering rates and film quality and composition are discussed, along with efforts to use Raman spectroscopy to determine quantitative film composition. The latter is a rate limiting step in the investigation of these films, as they are typically thin and require long times to get to sufficient thickness to be analyzed using traditional methods, whereas Raman is particularly well suited to this analysis, if it can be made quantitative. The final results of the film deposition methods are reported, and a path towards new films is discussed. Finally, it should be noted that this program originally began with one graduate student working on the program, but this student ultimately chose to not continue with a PhD. A second student took over in the middle of the effort, and a new program has been proposed with a significantly altered chemistry to take the program in a new direction.

  5. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    Science.gov (United States)

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  6. Non-equilibrium Inertial Separation Array for High-throughput, Large-volume Blood Fractionation.

    Science.gov (United States)

    Mutlu, Baris R; Smith, Kyle C; Edd, Jon F; Nadar, Priyanka; Dlamini, Mcolisi; Kapur, Ravi; Toner, Mehmet

    2017-08-30

    Microfluidic blood processing is used in a range of applications from cancer therapeutics to infectious disease diagnostics. As these applications are being translated to clinical use, processing larger volumes of blood in shorter timescales with high-reliability and robustness is becoming a pressing need. In this work, we report a scaled, label-free cell separation mechanism called non-equilibrium inertial separation array (NISA). The NISA mechanism consists of an array of islands that exert a passive inertial lift force on proximate cells, thus enabling gentler manipulation of the cells without the need of physical contact. As the cells follow their size-based, deterministic path to their equilibrium positions, a preset fraction of the flow is siphoned to separate the smaller cells from the main flow. The NISA device was used to fractionate 400 mL of whole blood in less than 3 hours, and produce an ultrapure buffy coat (96.6% white blood cell yield, 0.0059% red blood cell carryover) by processing whole blood at 3 mL/min, or ∼300 million cells/second. This device presents a feasible alternative for fractionating blood for transfusion, cellular therapy and blood-based diagnostics, and could significantly improve the sensitivity of rare cell isolation devices by increasing the processed whole blood volume.

  7. Dynamic simulation of collisions of heavy high-speed trucks with concrete barriers

    International Nuclear Information System (INIS)

    Itoh, Yoshito; Liu, Chunlu; Kusama, Ryuichi

    2007-01-01

    Real vehicle collision experiments on full-scale road safety barriers are important to determine the outcome of a vehicle versus barrier impact accident. However, such experiments require large investment of time and money. Numerical simulation has therefore been imperative as an alternative method for testing concrete barriers. In this research, spring subgrade models were first developed to simulate the ground boundary of concrete barriers. Both heavy trucks and concrete barriers were modeled using finite element methods (FEM) to simulate dynamic collision performances. Comparison of the results generated from computer simulations and on-site full-scale experiments demonstrated that the developed models could be applied to simulate the collision of heavy trucks with concrete barriers to provide the data to design new road safety barriers and analyze existing ones

  8. High-gradient magnetic affinity separation of trypsin from porcine pancreatin

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Thomas, Owen R. T.

    2002-01-01

    We introduce a robust and scale-flexible approach to macromolecule purification employing tailor-made magnetic adsorbents and high-gradient magnetic separation technology adapted from the mineral processing industries. Detailed procedures for the synthesis of large quantities of low-cost defined......-scale studies approximate to95% of the endogenous trypsin present in a crude porcine pancreatin feedstock was recovered with a purification factor of approximate to4.1 at the expense of only a 4% loss in a-amylase activity. Efficient recovery of trypsin from the same feedstock was demonstrated at a vastly...

  9. Separation of hemagglutination-inhibiting immunoglobulin M antibody to rubella virus in human serum by high-performance liquid chromatography.

    OpenAIRE

    Kobayashi, N; Suzuki, M; Nakagawa, T; Matumoto, M

    1986-01-01

    High-performance liquid chromatography was successfully used to separate hemagglutination-inhibiting immunoglobulin M (IgM) rubella virus antibody from IgG rubella virus antibody in human serum. The fractionation by high-performance liquid chromatography was as effective as sucrose density gradient centrifugation in separating IgM antibody from IgG antibody.

  10. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  11. Highly ordered self-assembling polymer/clay nanocomposite barrier film.

    Science.gov (United States)

    Cook, Ray; Chen, Yihong; Beall, Gary W

    2015-05-27

    Efforts to mimic complex-structured biologically based materials such as abalone shell have occupied substantial research time and effort in science and engineering. The majority of the efforts involve tedious and expensive techniques and processes. Layer-by-layer (LBL) is one such technique that can produce materials with quite unique physical properties, approaching, and in some cases surpassing, those seen in nature. The LBL technique, however, is quite tedious and difficult to implement commercially. We report here the discovery of an organic/inorganic spontaneous self-assembling system that forms a highly structured nanocomposite. The driving force behind this self-assembly appears to be entropy. This discovery should open up completely new avenues to designing hierarchical composites and structures. The films have been studied by X-ray diffraction and the barrier properties for oxygen diffusion measured.

  12. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  13. High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Agod, A; Maros, I; Juhasz, R; Nemeth, Zs; Jakab, L; Richter, P

    2006-01-01

    A dielectric barrier Xe discharge lamp producing vacuum-ultraviolet radiation with high efficiency was investigated theoretically and experimentally. The cylindrical glass body of the lamp is equipped with thin strips of metal electrodes applied to diametrically opposite sides of the outer surface. We performed a simulation of discharge plasma properties based on one-dimensional fluid dynamics and also assessed the lamp characteristics experimentally. Simulation and experimental results are analysed and compared in terms of voltage and current characteristics, power input and discharge efficiency. Using the proposed lamp geometry and fast rise-time short square pulses of the driving voltage, an intrinsic discharge efficiency around 56% was predicted by simulation, and more than 60 lm W -1 lamp efficacy (for radiation converted into visible green light by phosphor coating) was demonstrated experimentally

  14. Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)

    2016-06-15

    A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

  15. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    Science.gov (United States)

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  16. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    KAUST Repository

    Eisenträger, Almut

    2014-07-21

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle\\'s entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separation cycles may increase efficiency. © 2014 AIP Publishing LLC.

  17. ¿Y ahora qué? Anticipated immigration status barriers and Latina/o high school students' future expectations.

    Science.gov (United States)

    McWhirter, Ellen Hawley; Ramos, Karina; Medina, Cynthia

    2013-07-01

    Latina/o high school students without documentation face a challenging situation when they graduate from high school, with pathways to work and postsecondary education stymied by their immigration status. We examined the effects of anticipated barriers associated with immigration status, age, and sex on the dependent variables of vocational outcome expectations, anticipated external and internal barriers, and postsecondary schooling plans in a sample of 475 Latina/o high school students. Findings include that students anticipating immigration status problems had lower vocational outcome expectations and anticipated more external barriers to pursuing their postsecondary plans. Latina girls and older high school students anticipating immigration status problems were more likely to plan to attend 2-year rather than 4-year colleges, and less likely to plan on postsecondary education, respectively. Implications for practice, policy, and research are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  18. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R P [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  19. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  20. Separation of cadmium from solutions containing high concentration of zinc ions

    International Nuclear Information System (INIS)

    Sharma, K.D.; Bhutani, A.K.; Parvathisem, P.

    1984-01-01

    In hydrometallurgical process of extracting cadmium as a byproduct, zinc dust is added for separation of cadmium as cadimum sponge. High amounts of zinc are quite often noticed in the cadmium electrolyte subjected for electrowinning of the metal. This leads to poor quality of cadmium deposit and lower current efficiencies. Study of cadmium sponge cementation process revealed that zinc dust may be added to an acidic cadmium solution for precipitation of cadmium sponge without neutralization of the free acidity present in the system. This fact is utilized for obtaining a high cadmium sponge with 75-80 per cent cadmium and 5-10 per cent zinc with 98 per cent recovery of cadmium from the solution as sponge. The suggested process is confirmed in a cadmium production plant producing 11.0 MT of cadmium per month. (author)

  1. Inactive experiments for advanced separation processes prior to high activity trials in ATALANTE

    International Nuclear Information System (INIS)

    Duhamet, Jean; Lanoe, Jean-Yves; Rivalier, Patrick; Borda, Gilles

    2008-01-01

    Many trials have been performed in ATALANTE's shielded cells to demonstrate the technical feasibility of processes involving minor actinide separation. They required developments of new extractors as well as a step by step procedure have been used to lower the risks of malfunction during high active operation. The design of the extractors developed by Cea has included shielded cells restrictions, miniaturization to lower the quantity of high active material and wastes and the care for being representative of industrial equipment. After individual shake down inactive tests, with actual phases, each process experiment scheduled in ATALANTE has been tested at G1 Facility in Marcoule. The objective was to reproduce as much as possible all the equipment chosen for active tests. This procedure has demonstrated its efficiency to detect many problems that would have heavy impact if they have been discovered during active trials. It was also used for operators'training. (authors)

  2. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation

    Science.gov (United States)

    Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie

    2016-01-01

    Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery. PMID:27272562

  3. Using electrochemical separation to reduce the volume of high-level nuclear waste

    International Nuclear Information System (INIS)

    Slater, S.A.; Gay, E.C.

    1998-01-01

    Argonne National Laboratory (ANL) has developed an electrochemical separation technique called electrorefining that will treat a variety of metallic spent nuclear fuel and reduce the volume of high-level nuclear waste that requires disposal. As part of that effort, ANL has developed a high throughput electrorefiner (HTER) that has a transport rate approximately three times faster than electrorefiners previously developed at ANL. This higher rate is due to the higher electrode surface area, a shorter transport path, and more efficient mixing, which leads to smaller boundary layers about the electrodes. This higher throughput makes electrorefining an attractive option in treating Department of Energy spent nuclear fuels. Experiments have been done to characterize the HTER, and a simulant metallic fuel has been successfully treated. The HTER design and experimental results is discussed

  4. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min

    2018-01-17

    Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.

  5. Development of internal transport barrier scenarios at ITER-relevant high triangularity in JET

    International Nuclear Information System (INIS)

    Rimini, F.G.; Becoulet, M.; Giovannozzi, E.; Lomas, P.J.; Tudisco, O.; Alper, B.; Crisanti, F.; Baar, M. de; Luna, E. de La; Vries, P. de; Ekedahl, A.; Hawkes, N.; Huysmans, G.; Litaudon, X.; Parail, V.; Saibene, G.; Tuccillo, A.A.; Zastrow, K.D.

    2005-01-01

    The development of scenarios characterized by H-mode confinement and internal transport barriers (ITBs) in high triangularity, δ ∼ 0.4-0.5, discharges is of particular interest for ITER advanced tokamak operation. Previous JET experiments have shown that high triangularity favours H-modes which are ELM-free or develop type I edge localized mode (ELM) activity, which inhibits long lasting ITBs. The recent experiments reported here concentrate on integrated optimization of edge and core conditions. The stability of the edge pedestal was controlled using gas injection, deuterium or light impurities, and plasma current ramps. Both methods yield more ITB-friendly edge pedestal conditions, varying from small type I to type III ELMs and, in extreme cases, resulting in L-mode. In parallel, the conditions for triggering and sustaining ITBs encompassing a large proportion of the plasma volume (outer ITBs) were optimized, as opposed to less performing ITBs located closer to the plasma centre (inner ITB). These plasmas have deeply reversed target current profiles with q min ∼ 3 and a narrow inner ITB, located typically at a small normalized radius ρ E , at q 95 = 7.5, H 89 β N ∼ 3.5-4 and ∼60% of the Greenwald density limit. In summary, a high triangularity scenario has been developed, which combines the desirable characteristics of controlled edge, long lasting wide ITBs and high performance at density higher than the low triangularity JET scenarios

  6. Barriers and opportunities for labels for highly energy-efficient houses

    International Nuclear Information System (INIS)

    Mlecnik, Erwin; Visscher, Henk; Van Hal, Anke

    2010-01-01

    Promoting energy efficiency in the building sector is essential if the agreements of the Kyoto Protocol are to be honoured. Different initiatives for energy labelling of highly energy-efficient residential buildings have emerged throughout Europe as an essential method to stimulate market demand, to control grants or to ensure the quality of demonstration projects with excellent energy performance. The paper identifies the barriers and opportunities for the further diffusion of labels for highly energy-efficient houses. A model based on the theory of the diffusion of innovation is developed to analyse perceived attributes of existing European labels. The paper investigates the innovation characteristics of existing labels in Europe, with a focus on advanced countries. The question of compatibility with the development of the European Energy Performance of Buildings Directive (EPBD) is examined in detail. We found that the diffusion of emerging and already existing voluntary European labels for highly energy-efficient houses is needed. Their complexity can be lowered and relative advantage, trialability, observability, and compatibility can be increased. EPBD calculation procedures should be able to receive highly energy-efficient houses. In the framework of the recast of the EPBD, official recognition of existing voluntary labels is recommended. (author)

  7. Separation and purification of polyphenols from red wine extracts using high speed counter current chromatography.

    Science.gov (United States)

    Li, Yuanyuan; Li, Lingxi; Cui, Yan; Zhang, Shuting; Sun, Baoshan

    2017-06-01

    Polyphenols are important compounds of red wine owing to their contribution to sensory properties and antioxidant activities. In this study, high-speed counter-current chromatography (HSCCC) coupled with semi-preparative HPLC was used for large-scale separation and purification of polyphenols from red wine extracts. With the solvent system of hexane-ethyl acetate-water (1-50-50), various oligomeric procyanidins including monomer catechin, epicatechin, dimers B1, B2; phenolic acids including coutaric acid, caftaric acid and other type of polyphenols were largely separated within 370min and most of these compounds presented high yields (0.97mg to 13.79mg) with high purity (90.34% to 98.91%) after the semi-preparative HPLC isolation. Using the solvent system of Methyl tert-Butyl Ether (MTBE) - n-butyl alcohol- acetonitrile-water (1-40-1-50, acidified with 0.01% trifluoroacetic acid (TFA)) by one-step HSCCC of 100mg of the red wine extracts, the major anthocyanins, i.e., malvidin-3-O-glucoside, delphinidin-3-O-glucoside and peonidin-3-O-glucoside, as well as two polymeric proanthocyanidin fractions were successfully separated one another within 320min. The yields of malvidin-3-O-glucoside, delphinidin-3-O-glucoside and peonidin-3-O-glucoside were 12.12mg, 1.78mg and 11.57mg with the purity of 92.74%, 91.03% and 91.21%, respectively. Thiolysis-UPLC analysis indicated that the two polymeric proanthocyanidin fractions presented high purity, with mean degree of polymerization of 7.66±0.12 and 6.20±0.09, respectively. The further experiments on the antioxidant activities by DPPH radical test, FRAP assay and ABTS method showed that all of the isolated procyandins and anthocyanins and the two polymeric proanthocyanidin fractions, with exception of phenolic acids possessed much greater antioxidant activities compared to standard Trolox andl-ascorbic acid (2-14 times). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Return-to-activity after anatomical reconstruction of acute high-grade acromioclavicular separation.

    Science.gov (United States)

    Saier, T; Plath, J E; Beitzel, K; Minzlaff, P; Feucht, J M; Reuter, S; Martetschläger, F; Imhoff, Andreas B; Aboalata, M; Braun, S

    2016-04-02

    To evaluate return-to-activity (RtA) after anatomical reconstruction of acute high-grade acromioclavicular joint (ACJ) separation. A total of 42 patients with anatomical reconstruction of acute high-grade ACJ-separation (Rockwood Type V) were surveyed to determine RtA at a mean 31 months follow-up (f-u). Sports disciplines, intensity, level of competition, participation in overhead and/or contact sports, as well as activity scales (DASH-Sport-Module, Tegner Activity Scale) were evaluated. Functional outcome evaluation included Constant score and QuickDASH. All patients (42/42) participated in sporting activities at f-u. Neither participation in overhead/contact sports, nor level of activity declined significantly (n.s.). 62 % (n = 26) of patients reported subjective sports specific ACJ integrity to be at least the same as prior to the trauma. Sporting intensity (hours/week: 7.3 h to 5.4 h, p = .004) and level of competition (p = .02) were reduced. If activity changed, in 50 % other reasons but clinical symptoms/impairment were named for modified behavior. QuickDASH (mean 6, range 0-54, SD 11) and DASH-Sport-Module (mean 6, range 0-56, SD 13) revealed only minor disabilities at f-u. Over time Constant score improved significant to an excellent score (mean 94, range 86-100, SD 4; p < .001). Functional outcome was not correlated with RtA (n.s.). All patients participated in sporting activities after anatomical reconstruction of high-grade (Rockwood Type V) ACJ-separation. With a high functional outcome there was no significant change in activity level (Tegner) and participation in overhead and/or contact sports observed. There was no correlation between functional outcome and RtA. Limiting, there were alterations in time spent for sporting activities and level of competition observed. But in 50 % those were not related to ACJ symptoms/impairment. Unrelated to successful re-established integrity and function of the ACJ it should be considered that

  9. Improved separation of conjugated fatty acid methyl esters by silver ion-high-performance liquid chromatography.

    Science.gov (United States)

    Sehat, N; Rickert, R; Mossoba, M M; Kramer, J K; Yurawecz, M P; Roach, J A; Adlof, R O; Morehouse, K M; Fritsche, J; Eulitz, K D; Steinhart, H; Ku, Y

    1999-04-01

    Operating from one to six silver ion-high-performance liquid chromatography (Ag+-HPLC) columns in series progressively improved the resolution of the methyl esters of conjugated linoleic acid (CLA) isomeric mixtures from natural and commercial products. In natural products, the 8 trans, 10 cis-octadecadienoic (18:2) acid was resolved from the more abundant 7 trans, 9 cis-18:2, and the 10 trans, 12 cis-18:2 was separated from the major 9 cis, 11 trans-18:2 peak. In addition, both 11 trans, 13 cis-18:2 and 11 cis, 13 trans-18:2 isomers were found in natural products and were separated; the presence of the latter, 11 cis, 13 trans-18:2, was established in commercial CLA preparations. Three Ag+-HPLC columns in series appeared to be the best compromise to obtain satisfactory resolution of most CLA isomers found in natural products. A single Ag+-HPLC column in series with one of several normal-phase columns did not improve the resolution of CLA isomers as compared to that of the former alone. The 20:2 conjugated fatty acid isomers 11 cis, 13 trans-20:2 and 12 trans, 14 cis-20:2, which were synthesized by alkali isomerization from 11 cis, 14 cis-20:2, eluted in the same region of the Ag+-HPLC chromatogram just before the corresponding geometric CLA isomers. Therefore, CLA isomers will require isolation based on chain length prior to Ag+-HPLC separation. The positions of conjugated double bonds in 20:2 and 18:2 isomers were established by gas chromatography-electron ionization mass spectrometry as their 4,4-dimethyloxazoline derivatives. The double-bond geometry was determined by gas chromatography-direct deposition-Fourier transform infrared spectroscopy and by the Ag+-HPLC relative elution order.

  10. New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour

    Science.gov (United States)

    Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.

    2018-01-01

    The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.

  11. Infrared gas phase study on plasma-polymer interactions in high-current diffuse dielectric barrier discharge

    NARCIS (Netherlands)

    Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.

    2017-01-01

    A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750?cm-1 to unravel the

  12. On barrier performance of high compaction bentonite in facilities of disposing high level radioactive wastes in formation

    International Nuclear Information System (INIS)

    Ikeda, Hidefumi; Komada, Hiroya

    1989-01-01

    As for the method of disposing high level radioactive wastes generated in the reprocessing of spent fuel, at present formation disposal is regarded as most promising. The most important point in this formation disposal is to prevent the leak of radioactive nuclides within the disposal facilities into bedrocks and their move to the zone of human life. As the method of formation disposal, the canisters containing high level radioactive wastes are placed in the horizontal or vertical holes for disposal dug from horizontal tunnels which are several hundreds m underground, and the tunnels and disposal holes are filled again. For this filling material, the barrier performance to prevent and retard the leak of radioactive nuclides out of the disposal facilities is expected, and the characteristics of low water permeability, the adsorption of nuclides and long term stability are required. However, due to the decay heat of wastes just after the disposal, high temperature and drying condition arises, and this must be taken in consideration. The characteristics required for filling materials and the selection of the materials, the features and classification of bentonite, the properties of high compaction bentonite, and the move of water, heat and nuclides in high compaction bentonite are reported.(Kako, I.)

  13. EB-PVD process management for highly productive zirconia thermal barrier coating of turbine blades

    International Nuclear Information System (INIS)

    Reinhold, E.; Botzler, P.; Deus, C.

    1999-01-01

    Zirconia thermal barrier coatings are well used in the turbine manufacturing industry because they ensure extended lifetimes of turbine blades. Compared with other techniques, EB-PVD processes are best suited for the deposition on turbine blades with regard to the layer properties. Therefore EB-PVD coaters for turbine blades are becoming increasingly interesting. The coating costs per component are mainly dependent on a highly productive solution for the deposition task. Thus the EB-PVD process management has to be optimized in order to meet the productivity requirements of the manufacturers. This includes the requirement of high deposition rates, large deposition areas, long time stable production cycles as well as a matched duration of preheating, deposition and cooling down per charge. Modern EB-PVD solutions to be introduced allow deposition rates on blades up to 7 μm/min. The consequences for the technological process management and plant design concerning long time stable coating cycles with high productivity will be discussed. (orig.)

  14. A high pressure liquid chromatography method for separation of prolactin forms.

    Science.gov (United States)

    Bell, Damon A; Hoad, Kirsten; Leong, Lillian; Bakar, Juwaini Abu; Sheehan, Paul; Vasikaran, Samuel D

    2012-05-01

    Prolactin has multiple forms and macroprolactin, which is thought not to be bioavailable, can cause a raised serum prolactin concentration. Gel filtration chromatography (GFC) is currently the gold standard method for separating macroprolactin, but is labour-intensive. Polyethylene glycol (PEG) precipitation is suitable for routine use but may not always be accurate. We developed a high pressure liquid chromatography (HPLC) assay for macroprolactin measurement. Chromatography was carried out using an Agilent Zorbax GF-250 (9.4 × 250 mm, 4 μm) size exclusion column and 50 mmol/L Tris buffer with 0.15 mmol/L NaCl at pH 7.2 as mobile phase, with a flow rate of 1 mL/min. Serum or plasma was diluted 1:1 with mobile phase and filtered and 100 μL injected. Fractions of 155 μL were collected for prolactin measurement and elution profile plotted. The area under the curve of each prolactin peak was calculated to quantify each prolactin form, and compared with GFC. Clear separation of monomeric-, big- and macroprolactin forms was achieved. Quantification was comparable to GFC and precision was acceptable. Total time from injection to collection of the final fraction was 16 min. We have developed an HPLC method for quantification of macroprolactin, which is rapid and easy to perform and therefore can be used for routine measurement.

  15. Preparative separation of cacao bean procyanidins by high-speed counter-current chromatography.

    Science.gov (United States)

    Li, Lingxi; Zhang, Shuting; Cui, Yan; Li, Yuanyuan; Luo, Lanxin; Zhou, Peiyu; Sun, Baoshan

    2016-11-15

    In this work, an efficient method for preparative separation of procyanidins from raw cacao bean extract by high-speed counter-current chromatography (HSCCC) was developed. Under the optimized solvent system of n-hexane-ethyl acetate-water (1:50:50, v/v/v) with a combination of head-tail and tail-head elution modes, various procyanidins fractions with different polymerization degrees were successfully separated. UPLC, QTOF-MS and 1 H NMR analysis verified that these fractions contained monomer up to pentamer respectively. Dimeric procyanidin B2 (purity>86%) could be isolated by HSCCC in a single run. Other individual procyanidins in these fractions could be further isolated and purified by preparative HPLC. The developed HSCCC together with preparative HPLC techniques appeared to be a useful tool for large preparation of different procyanidins from cacao beans. Furthermore, by antioxidant activity assays, it was proved that both fractions and individual procyanidins possessed greater antioxidant activities compared to standard trolox. The antioxidant activities of procyanidins increase as the increase of their polymerization degree. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Corner Separation Control by Boundary Layer Suction Applied to a Highly Loaded Axial Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Yangwei Liu

    2014-11-01

    Full Text Available Control of corner separation has attracted much interest due to its improvement of performance and energy utilization in turbomachinery. Numerical studies have been performed under both design and off-design flow conditions to investigate the effects of boundary layer suction (BLS on corner separation in a highly loaded compressor cascade. Two new BLS slot configurations are proposed and a total of five suction slot configurations were studied and compared. Averaged static pressure rise, exit loss coefficient, passage blockage and flow turning angle have been given and compared systematically over a range of operation incidence angles. Distributions of significant loss removal, blade loading, exit deviation and total pressure loss at 3 degree and 7 degree incidence have also been studied. Under the same suction mass flows of 0.7% of the inlet mass flows, the pitchwise suction slot on the endwall shows a better optimal performance over the whole operation incidence among single suction slots. By using of the new proposed compound slot configuration with one spanwise slot on the blade suction side and one pitchwise slot on the endwall, the maximum reduction of total pressure loss at 7 degree incidence can be 39.4%.

  17. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  18. Stakeholder Perceptions of Barriers and Solutions to Significant Expansion of Postsecondary Enrollment Options for High School Students

    Directory of Open Access Journals (Sweden)

    Carl Wozniak

    2013-02-01

    Full Text Available Post-secondary experiences for students still in high school have been promoted as a means to increase academic rigor and create a better-trained workforce. Yet little is known regarding supports needed to significantly increase such options. This study obtained input from 411 stakeholders in one Midwestern state, including 201 district superintendents, 181 high school principals, and 23 college dual enrollment officers regarding their use of these options, their perceptions of barriers to program expansion, and their ranking of possible solutions to overcome the barriers. Findings demonstrate that all parties find postsecondary options of value, with traditional dual enrollment the most used option. Although all groups identified funding as a primary barrier, other systemic barriers were of great concern. Participants suggest that expansion of Advanced Placement and early and middle college programs, financial assistance for dually enrolled students, and increased program availability for career and technical options would be beneficial.Wozniak, Carl, (2012. Stakeholder Perceptions of Barriers and Solutions to Significant Expansion of Postsecondary Enrollment Options for High School Students. 8(2. Retrieved from www.ijepl.org .

  19. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    Science.gov (United States)

    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki

    2015-08-01

    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-flux membrane separation using fluid skimming dominated convective fluid flow

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    We here report on the separation of yeast cells, with micro-engineered membranes having pores that are typically five times larger than the cells. The separation is due to neither shear-induced diffusion, nor initial lift, but to an effect similar to fluid skimming. The separation performance is

  1. Development of composite ion exchanger for separation of cesium from high level liquid waste

    International Nuclear Information System (INIS)

    Kumar, A.; Varshney, L.

    2010-01-01

    137 Cs (t 1/2 = 30 years) is one of the major radioisotope present in high level liquid waste (HLLW) generated during the reprocessing of nuclear fuel. Separation of 137 Cs from HLLW results in reduction of personal radiation exposure during the conditioning, transportation, storage and disposal. In addition, 137 Cs has enormous application as a radiation source in food preservation, sterilization of medical products, brachytherapy, blood irradiation, hygienization of sewage sludge etc. Ammonium molybdophosphate (AMP), an inorganic ion exchanger, has high selectivity and high exchange capacity for Cs. It exits as microcrystalline powder which is not amenable for column operation. ALIX is a composite material in which AMP is physically blended with inert polymeric substrate to improve its column property, exchange kinetics and increase its mechanical strength. The observed excellent properties of the composite are attributed to its engineered structure which is formed during its production. SEM analysis of ALIX shows that AMP crystals embedded in the cavities are not covered by the polymer which greatly enhances its availability for cesium exchange. The highly porous structure of the composite having 49% void volume facilitates faster kinetics of exchange of Cs from the aqueous phase and increased rate of reaction with alkali required during its dissolution

  2. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  3. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Seo, Jung-Woo T.; Hersam, Mark C. [Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Gui, Hui [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2016-06-06

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailored diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.

  4. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    Science.gov (United States)

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  5. Solid-phase extraction and high-performance liquid chromatographic separation of pigments of red wines.

    Science.gov (United States)

    Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Candeias, M; Vilas-Boas, L; Bronze, R; Spranger, I

    2000-08-11

    The adsorption and desorption capacities of 11 different solid-phase extraction sorbents were tested for the preconcenration of pigments of various Hungarian red wines. The concentrates were evaluated by multiwavelengh spectrophotometry combined with a spectral mapping technique (SPM) and by reversed-phase high-performance liquid chromatography. The highest (10-fold) concentration of pigments was achieved on octadecylsilica sorbent. It can be used five times without losing adsorption and desorption characteristics. SPM indicated that multiwavelength spectrophotometry can be employed for the differentiation of red wines. Comparison of the chromatograms of pigments with and without preconcentration showed that preconcentration makes possible the separation and detection of pigments present in low concentration in red wines.

  6. Recent development of high gradient superconducting magnetic separator for kaolin in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zian; Wang, Meifen; Ning, Fei Peng; Yang, Huan; Zhang, Guoqing; Hou, Zhi Long; Liu, Zhaong Xiu; Dai, Zhong [Institute of High Energy Physics and University of Chinese Academy of Sciences, Beijing (China); Li, Pei Yong; Zhang, Yiting; Wang, Zhaolian [Weifang Xinli Superconducting Technology Co.,Ltd., Weifang (China)

    2017-03-15

    A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation.

  7. Recent development of high gradient superconducting magnetic separator for kaolin in China

    International Nuclear Information System (INIS)

    Zhu, Zian; Wang, Meifen; Ning, Fei Peng; Yang, Huan; Zhang, Guoqing; Hou, Zhi Long; Liu, Zhaong Xiu; Dai, Zhong; Li, Pei Yong; Zhang, Yiting; Wang, Zhaolian

    2017-01-01

    A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation

  8. Development of internal transport barrier scenarios at ITER-relevant high triangularity in Jet

    Energy Technology Data Exchange (ETDEWEB)

    Rimini, F.G.; Becoulet, M.; Ekedahl, A.; Huysmans, G.; Joffrin, E.; Litaudon, X. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Giovannozzi, E.; Tudisco, O.; Crisanti, F. [Association Euratol/ENEA/CNR sulla Fusione, Frascali, Rome (Italy); Lomas, P.J.; Alper, B.; Hawkes, N.; Parail, V.; Zastrow, K.D. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Baar, M. de; Vries, P. de [Association Euratom-Fom, TEC Cluster, Nieuwegein (Netherlands); La Luna, E. de [Association Euratom-Ciemat, Madrid (Spain); Saibene, G. [EFDA CSU, Garching (Germany)

    2004-07-01

    The development of ITB s(Internal Transport Barrier) scenarios in high triangularity discharges is of particular interest for ITER advanced tokamak operation. Previous JET experiments have shown that high triangularity favours ELM (Edge Localized Mode)-Free or type I ELMs, which inhibit long lasting ITBs. The recent experiments reported here concentrate on integrated optimisation of edge and core conditions. Edge pedestal was controlled using gas injection, Deuterium or light impurities, and plasma current ramps. Both methods yield more ITB-friendly edge pedestal conditions, varying from small type I to type III ELMs and, in extreme cases, to L-mode edge. In parallel, the conditions for triggering and sustaining a wide ITB were optimised. This plasmas have deeply reversed target current profiles with g{sub min} 3. A narrow inner ITB, located in the reversed shear region, is routinely observed. Large radius ITBs are only triggered when the input power exceeds 20-22 MW, but they do not usually survive the transition into H-mode. The best results, in terms of sustained high performance, have been obtained with Neon injection: a wide ITB is triggered during the phase with L-mode edge and survives into H-mode for about 2 s at H{sub 89}{beta}{sub N} {approx} 3.5 and {approx} 60% of the Greenwald density limit. In summary, a high triangularity scenario has been developed, which combines the desirable I characteristics of controlled edge, long lasting wide ITBs and high performance at density higher than the low triangularity JET scenarios. (authors)

  9. Separation of sulfated urinary glycosaminoglycans by high-resolution electrophoresis for isotyping of mucopolysaccharidoses in Malaysia.

    Science.gov (United States)

    Nor, Azimah; Zabedah, Md Yunus; Norsiah, Md Desa; Ngu, Lock Hock; Suhaila, Abd Rahman

    2010-06-01

    Mucopolysaccharidoses (MPS) are a group of inherited disorders caused by the deficiency of specific lysosomal enzymes involved in glycosaminoglycans (GAGs) degradation. Currently, there are 11 enzyme deficiencies resulting in seven distinct MPS clinical syndromes and their subtypes. Different MPS syndromes cannot be clearly distinguished clinically due to overlapping signs and symptoms. Measurement of GAGs content in urine and separation of GAGs using high-resolution electrophoresis (HRE) are very useful initial screening tests for isotyping of MPS before specific enzyme diagnostics. In this study, we measured total urinary GAGs by a method using dimethylmethylene blue (DMB), and followed by isolation and separation of GAGs using high resolution electrophoresis (HRE) technique. Of 760 urine samples analyzed, 40 have abnormal GAGs HRE patterns. Thirty-five of these 40 cases have elevated urinary GAGs levels as well. These abnormal HRE patterns could be classified into 4 patterns: Pattern A (elevated DS and HS; suggestive of MPS I, II or VII; 16 cases), Pattern B (elevated HS and CS; suggestive of MPS III; 17 cases), and Pattern C (elevated KS and CS; suggestive of MPS IV, 5 cases), and Pattern D (elevated DS; suggestive of MPS VI; 2 cases). Based on the GAGs HRE pattern and a few discriminating clinical signs, we performed selective enzymatic investigation in 16 cases. In all except one case with MPS VII, the enzymatic diagnosis correlated well with the provisional MPS type as suggested by the abnormal HRE pattern. Our results showed that GAGs HRE is a useful, inexpensive and practical first-line screening test when MPS is suspected clinically, and it provides an important guide to further enzymatic studies on a selective basis.

  10. Ion-optical design of the high-resolution mass separator for the Japanese Hadron Project

    International Nuclear Information System (INIS)

    Sunaoshi, Hitoshi; Fujioka, Manabu; Shinozuka, Tsutomu; Wollnik, Hermann; Meuser, Stefan; Nomura, Toru; Kubono, Shigeru.

    1991-12-01

    An ion-optical design of the JHP-ISOL is presented. This separator consists of a beam guidance system, a main magnetic separator stage and an electrostatic energy focusing stage. This separator is to be coupled with a heavy-ion linac for post-acceleration of mass separated ions up to 6.5 MeV/u. The design goal of the separator is to realize a mass resolving power of R M = 20,000 (basal) at a transmission approaching 100 % with the initial phase space of ± 0.2 mm x ± 20 mrad. (author)

  11. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  12. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Science.gov (United States)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  13. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James M [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Trump, Darryl D [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Bletzinger, Peter [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Ganguly, Biswa N [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919 (United States)

    2006-10-21

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s{sup -1}. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of {approx}3 x 10{sup 15} cm{sup -3} at 25 W. The maximum ozone production achieved by short-pulse excitation was {approx}8.5 x 10{sup 15} cm{sup -3} at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  14. Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance

    Science.gov (United States)

    Chen, Ge-Gu; Fu, Gen-Que; Wang, Xiao-Jun; Gong, Xiao-Dong; Niu, Ya-Shuai; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2017-01-01

    Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.

  15. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  16. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    Williamson, James M; Trump, Darryl D; Bletzinger, Peter; Ganguly, Biswa N

    2006-01-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s -1 . The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ∼3 x 10 15 cm -3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ∼8.5 x 10 15 cm -3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level

  17. Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

    Directory of Open Access Journals (Sweden)

    P. Safaei

    2016-01-01

    Full Text Available The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact polystyrene matrix. The effect of TiO2 nanoparticles loading on membrane performance was investigated. The separation performance of synthesized membranes was investigated in separation of CO2 from CO2/N2 mixture. Effect of feed pressure and TiO2 content on separation of CO2 was studied. The results revealed that increase of feed pressure decreases flux of gases through the mixed matrix membrane. The results also confirmed that the best separation performance can be obtained at TiO2 nanoparticles loading of 7 wt.%.

  18. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification

    Science.gov (United States)

    Wang, Jun

    Global warming resulted from greenhouse gases emission has received a widespread attention. Among the greenhouse gases, CO2 contributes more than 60% to global warming due to its huge emission amount. The flue gas contains about 15% CO2 with N2 as the balance. If CO2 can be separated from flue gas, the benefit is not only reducing the global warming effect, but also producing pure CO2 as a very useful industry raw material. Substantial progress is urgent to be achieved in an industrial process. Moreover, energy crisis is one of the biggest challenges for all countries due to the short life of fossil fuels, such as, petroleum will run out in 50 years and coal will run out in 150 years according to today's speed. Moreover, the severe pollution to the environment caused by burning fossil fuels requires us to explore sustainable, environment-friendly, and facile energy sources. Among several alternative energy sources, natural gas is one of the most promising alternative energy sources due to its huge productivity, abundant feed stock, and ease of generation. In order to realize a substantial adsorption process in industry, synthesis of new adsorbents or modification of existing adsorbent with improved properties has become the most critical issue. This dissertation reports systemic characterization and development of five serials of novel adsorbents with advanced adsorption properties. In chapter 2, nitrogen-doped Hypercross-linking Polymers (HCPs) have been synthesized successfully with non-carcinogenic chloromethyl methyl ether (CME) as the cross-linking agent within a single step. Texture properties, surface morphology, CO2/N2 selectivity, and adsorption heat have been presented and demonstrated properly. A comprehensive discussion on factors that affect the CO2 adsorption and CO2/N 2 separation has also been presented. It was found that high micropore proportion and N-content could effectively enhance CO2 uptake and CO2/N2 separation selectivity. In chapter 3, a

  19. Advances in the hydrometallurgical separation techniques of high purity rare earth elements

    International Nuclear Information System (INIS)

    Vijayalakshmi, R.; Kain, V.

    2017-01-01

    Rare Earths are a series of 15 chemically similar elements that occur together in monazite mineral found in the beach sands of Kerala, Tamil Nadu and Orissa. The rare earth elements (REE) are becoming increasingly strategically important considering their essential role in permanent magnets such as, SmCo_5, Sm_2Co_1_7 and Nd_2Fe_1_4B, phosphors for LED screens and lamps, rechargeable nickel metal hydride batteries and catalysts and other green applications. The increasing popularity of hybrid and electric cars, wind turbines and compact fluorescent lamps is causing an increase in the demand and price of REE. The European Commission considers the REE as the most critical raw materials group, with the highest supply risk. According to the medium-term criticality matrix of the U.S. Department of Energy (DOE), the five most critical REE are neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy) and yttrium (Y). China is presently producing more than 90% of all rare earths, although they possess less than 405 of the proven reserves. Due to large and increasing domestic demands, China tightened its REE export quota from 2012 onwards. These export quotas caused serious problems for REE users outside of China. Fortunately India is blessed with large resources of rare earths in the form of monazite found in the beach sands of Kerala, Tamil Nadu and Orissa. Indian Rare Earths Limited at Aluva near Kochi produces mainly mixed rare earths chloride and till recent past exporting to USA, UK, France, Japan, etc. They have revived their rare earth separation plant to meet the in-house demands of the strategic, defense and nuclear industry. This paper discusses the recent advances made in hydrometallurgical separation techniques based on solvent extraction technique, ion-exchange resins, hollow fibre membrane extractor, solvent encapsulated polymeric beads, etc for the production of high purity rare earth elements from both primary (Monazite, xenotime) and secondary sources

  20. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  1. Actinide separation of high-level waste using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Buchholz, B.A.; Kaminski, M.; Aase, S.B.; Brown, N.R.; Vandegrift, G.F.

    1994-01-01

    Polymeric-coated ferromagnetic particles with an absorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted by tributyl phosphate (TBP) are being evaluated for application in the separation and the recovery of low concentrations of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can be recovered from the waste solution using a magnet. The effectiveness of the extractant-absorbed particles at removing transuranics (TRU) from simulated solutions and various nitric acid solutions was measured by gamma and liquid scintillation counting of plutonium and americium. The HNO 3 concentration range was 0.01 M to 6M. The partition coefficients (K d ) for various actinides at 2M HNO 3 were determined to be between 3,000 and 30,000. These values are larger than those projected for TRU recovery by traditional liquid/liquid extraction. Results from transmission electron microscopy indicated a large dependence of K d on relative magnetite location within the polymer and the polymer surface area. Energy disperse spectroscopy demonstrated homogeneous metal complexation on the polymer surface with no metal clustering. The radiolytic stability of the particles was determined by using 60 Co gamma irradiation under various conditions. The results showed that K d more strongly depends on the nitric acid dissolution rate of the magnetite than the gamma irradiation dose. Results of actinide separation from simulated high-level waste representative of that at various DOE sites are also discussed

  2. High resolution neutron total and capture cross-sections in separated isotopes of copper (6365Cu)

    International Nuclear Information System (INIS)

    Pandey, M.S.

    1975-01-01

    High resolution neutron total and capture cross section measurements have been performed on separated isotopes of copper ( 63 65 Cu). Measurements for capture cross section were made from about 1 keV to a few hundreds of keV. The total cross section measurements were made in the energy interval of approximately 10 keV to 150 keV. The resulting capture data have been analyzed by a generalized least square peak fitting computer code in the energy interval of 2.5 keV to 50 keV. Photon strengths are determined using the data up to approximately 250 keV. The resulting total cross section data have been analyzed by area-analysis on the transmission values and by R-matrix multilevel code on cross section values. Average s- and p-wave level spacing and s- and p-wave strength function values are determined. From the resonance parameters thus obtained, by the analysis, statistical distribution is studied for s- and p-wave level spacings and reduced neutron widths. A comparison has been made for adjacent level spacings with the theoretical predictions of level repulsion (of same J/sup π/) by Wigner considering levels with various spin states separately for s-wave resonances where confident spin assignment has been possible. Reduced neutron widths are compared with the Porter-Thomas distribution. Optical model formulated by Feshbach, Porter and Weiskopf describes the neutron-nucleus interaction. A comparison has been made between experimentally determined values of the s- and p-wave strength functions and that obtainable from optical model calculations, thereby determining the appropriate optical model parameters. The experimental arrangement, pertinent theoretical discussion, and the processes of data reduction and the analyses along with the comparison of the previously reported results with the present work are presented in detail

  3. Accelerated high fidelity prion amplification within and across prion species barriers.

    Directory of Open Access Journals (Sweden)

    Kristi M Green

    2008-08-01

    Full Text Available Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP, as a substrate for in vitro generation of chronic wasting disease (CWD prions by protein misfolding cyclic amplification (PMCA. Characterization of this infectivity in Tg(CerPrP mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.

  4. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  5. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  6. Containment barrier metals for high-level waste packages in a Tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.W.; McCright, R.D.; O`Neal, W.C.

    1983-10-12

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy`s Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory`s (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables.

  7. Containment barrier metals for high-level waste packages in a Tuff repository

    International Nuclear Information System (INIS)

    Russell, E.W.; McCright, R.D.; O'Neal, W.C.

    1983-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package project is part of the US Department of Energy's Civilian Radioactive Waste Management (CRWM) Program. The NNWSI project is working towards the development of multibarriered packages for the disposal of spent fuel and high-level waste in tuff in the unsaturated zone at Yucca Mountain at the Nevada Test Site (NTS). The final engineered barrier system design may be composed of a waste form, canister, overpack, borehole liner, packing, and the near field host rock, or some combination thereof. Lawrence Livermore National Laboratory's (LLNL) role is to design, model, and test the waste package subsystem for the tuff repository. At the present stage of development of the nuclear waste management program at LLNL, the detailed requirements for the waste package design are not yet firmly established. In spite of these uncertainties as to the detailed package requirements, we have begun the conceptual design stage. By conceptual design, we mean design based on our best assessment of present and future regulatory requirements. We anticipate that changes will occur as the detailed requirements for waste package design are finalized. 17 references, 4 figures, 10 tables

  8. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  9. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    temperature drop was found to increase with the coating thickness of YSZ. The coatings ... thermal barrier coating system on niobium alloys for supersonic vehicles. .... Voltage (V). 75 ..... However, distribution of the other elements; such as Ni,.

  10. Blind Source Separation Algorithms Using Hyperbolic and Givens Rotations for High-Order QAM Constellations

    KAUST Repository

    Shah, Syed Awais Wahab

    2017-11-24

    This paper addresses the problem of blind demixing of instantaneous mixtures in a multiple-input multiple-output communication system. The main objective is to present efficient blind source separation (BSS) algorithms dedicated to moderate or high-order QAM constellations. Four new iterative batch BSS algorithms are presented dealing with the multimodulus (MM) and alphabet matched (AM) criteria. For the optimization of these cost functions, iterative methods of Givens and hyperbolic rotations are used. A pre-whitening operation is also utilized to reduce the complexity of design problem. It is noticed that the designed algorithms using Givens rotations gives satisfactory performance only for large number of samples. However, for small number of samples, the algorithms designed by combining both Givens and hyperbolic rotations compensate for the ill-whitening that occurs in this case and thus improves the performance. Two algorithms dealing with the MM criterion are presented for moderate order QAM signals such as 16-QAM. The other two dealing with the AM criterion are presented for high-order QAM signals. These methods are finally compared with the state of art batch BSS algorithms in terms of signal-to-interference and noise ratio, symbol error rate and convergence rate. Simulation results show that the proposed methods outperform the contemporary batch BSS algorithms.

  11. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    Science.gov (United States)

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  12. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Arppe, Riikka, E-mail: riikka.arppe@utu.fi; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamaeki, Terhi; Soukka, Tero [University of Turku, Department of Biotechnology (Finland)

    2013-09-15

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF{sub 4}: Yb{sup 3+}, Er{sup 3+}-nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them.

  13. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A distillation tray with high efficiency and excellent operating flexibility for viscous mixture separation

    Directory of Open Access Journals (Sweden)

    Li Qunsheng

    2014-01-01

    Full Text Available The flow-guided sieve-valve tray(FGS-VTwith high efficiency was designed to overcome the shortcoming of low operating flexibility of the flow-guided sieve tray. Its dimensions and geometry, as well as structure characteristics, were presented. The hydrodynamics and mass transfer performance, including dry-plate pressure drop, wet plate-pressure drop, weeping, entrainment and tray efficiency, of two types of FGS-VTs (FGS-VTs with 14 and 8 valves, respectively and one flow-guided sieve tray were tested in an air-water-oxygen cold model experiment with a 0.6 m diameter plexiglass column. The results demonstrate that FGS-VT with 14 valves works better than FGS-VT with 8 valves, and in comparison with the flow-guided sieve tray, the flow-guided sieve-valve tray with 14 valves has higher tray efficiency, bigger operating flexibility, and lower wet-plate pressure drop (when all the valves are opened fully.Additionally, two typical applications to separate the mixture with high viscosity, solid, powder, easy-to-foam or easy self-polymerization components proved the unique advantages of FGS-VT.

  15. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    International Nuclear Information System (INIS)

    Arppe, Riikka; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamäki, Terhi; Soukka, Tero

    2013-01-01

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF 4 : Yb 3+ , Er 3+ -nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them

  16. Blind Source Separation Algorithms Using Hyperbolic and Givens Rotations for High-Order QAM Constellations

    KAUST Repository

    Shah, Syed Awais Wahab; Abed-Meraim, Karim; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper addresses the problem of blind demixing of instantaneous mixtures in a multiple-input multiple-output communication system. The main objective is to present efficient blind source separation (BSS) algorithms dedicated to moderate or high-order QAM constellations. Four new iterative batch BSS algorithms are presented dealing with the multimodulus (MM) and alphabet matched (AM) criteria. For the optimization of these cost functions, iterative methods of Givens and hyperbolic rotations are used. A pre-whitening operation is also utilized to reduce the complexity of design problem. It is noticed that the designed algorithms using Givens rotations gives satisfactory performance only for large number of samples. However, for small number of samples, the algorithms designed by combining both Givens and hyperbolic rotations compensate for the ill-whitening that occurs in this case and thus improves the performance. Two algorithms dealing with the MM criterion are presented for moderate order QAM signals such as 16-QAM. The other two dealing with the AM criterion are presented for high-order QAM signals. These methods are finally compared with the state of art batch BSS algorithms in terms of signal-to-interference and noise ratio, symbol error rate and convergence rate. Simulation results show that the proposed methods outperform the contemporary batch BSS algorithms.

  17. Self-Efficacy, Perceptions of Barriers, Vocational Identity, and the Career Exploration Behavior of Latino/a High School Students

    Science.gov (United States)

    Gushue, George V.; Clarke, Christine P.; Pantzer, Karen M.; Scanlan, Kolone R. L.

    2006-01-01

    This study explored the potential relationship between the social cognitive variables of career decision making self-efficacy and perceptions of barriers and the outcome variables of vocational identity and career exploration behaviors in a sample of 128 urban Latino/a high school students. The results indicated that higher levels of career…

  18. Motivators of and Barriers to Health-Promoting Behaviors among Culturally Diverse Middle and High School Students

    Science.gov (United States)

    Wippold, Guillermo M.; Tucker, Carolyn M; Smith, Tasia M.; Rodriguez, Victoria A.; Hayes, Lynda F.; Folger, Austin C.

    2018-01-01

    Background: Youth obesity in the United States is a major health concern. Obesity can be reduced by increasing health-promoting behaviors. Purpose: The goals of the present study were to (1) identify the strongest motivators of and barriers to health-promoting behaviors among a culturally diverse group of middle and high school students and (2)…

  19. High School Teachers' Perspectives on Supporting Students with Visual Impairments toward Higher Education: Access, Barriers, and Success

    Science.gov (United States)

    Reed, Maureen; Curtis, Kathryn

    2011-01-01

    The objective of the study presented here was to understand the experiences of teachers in assisting students with visual impairments in making the transition to higher education. The teachers reported barriers in high school that affect students' access to and success in higher education. Furthermore, institutions of higher education provided…

  20. Do Barriers to Crime Prevention Moderate the Effects of Situational Crime Prevention Policies on Violent Crime in High Schools?

    Science.gov (United States)

    Sevigny, Eric L.; Zhang, Gary

    2018-01-01

    This study investigates how barriers to school-based crime prevention programming moderate the effects of situational crime prevention (SCP) policies on levels of violent crime in U.S. public high schools. Using data from the 2008 School Survey on Crime and Safety, we estimate a series of negative binomial regression models with interactions to…

  1. Unexpected absence of genetic separation of a highly diverse population of hookworms from geographically isolated hosts.

    Science.gov (United States)

    Haynes, Benjamin T; Marcus, Alan D; Higgins, Damien P; Gongora, Jaime; Gray, Rachael; Šlapeta, Jan

    2014-12-01

    The high natal site fidelity of endangered Australian sea lions (Neophoca cinerea) along the southern Australian coast suggests that their maternally transmitted parasitic species, such as hookworms, will have restricted potential for dispersal. If this is the case, we would expect to find a hookworm haplotype structure corresponding to that of the host mtDNA haplotype structure; that is, restricted among geographically separated colonies. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to investigate the diversity of hookworms (Uncinaria sanguinis) in N. cinerea to assess the importance of host distribution and ecology on the evolutionary history of the parasite. High haplotype (h=0.986) and nucleotide diversity (π=0.013) were seen, with 45 unique hookworm mtDNA haplotypes across N. cinerea colonies; with most of the variation (78%) arising from variability within hookworms from individual colonies. This is supported by the low genetic differentiation co-efficient (GST=0.007) and a high gene flow (Nm=35.25) indicating a high migration rate between the populations of hookworms. The haplotype network demonstrated no clear distribution and delineation of haplotypes according to geographical location. Our data rejects the vicariance hypothesis; that female host natal site fidelity and the transmammary route of infection restrict hookworm gene flow between N. cinerea populations and highlights the value of studies of parasite diversity and dispersal to challenge our understanding of parasite and host ecology. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Analytical separation of americium and curium, using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Billon, A.

    1978-01-01

    Americium and curium are separated on a column of cation exchange resin (Aminex) using hydroxyisobutyric acid (α HIBA) as eluent, at a temperature of 80 0 C. Americium and curium were detected in line using their α emission: the separation was performed in a shielded glove box whose setting-up is given. Finally, the time necessary for a separation is comprised between 30 min and 1 hr. The purity of separated fractions was assayed by mass-spectrometry. An application in the determination of isotopic composition of americium and curium in fuels is described

  3. Barriers to Condom Use among High Risk Men Who Have Sex with Men in Uganda: A Qualitative Study.

    Directory of Open Access Journals (Sweden)

    Geofrey Musinguzi

    Full Text Available Unprotected sexual intercourse is a major risk factor for HIV transmission. Men who have sex with men (MSM face challenges in accessing HIV prevention services, including condoms. However, there is limited in-depth assessment and documentation of the barriers to condom use among MSM in sub-Saharan Africa. In this paper, we examine the barriers to condom use among MSM in Uganda.The data for this study were extracted from a larger qualitative study conducted among 85 self-identified adult (>18 years MSM in 11 districts in Uganda between July and December 2013. Data on sexual behaviours and access and barriers to condom use were collected using semi-structured interviews. All interviews were audio-recorded and transcribed verbatim. This paper presents an analysis of data for 33 MSM who did not use condoms at last sex, with a focus on barriers to condom use. Analysis was conducted using the content analysis approach.Six major barriers to condom use were identified: Difficulties with using condoms, access challenges, lack of knowledge and misinformation about condom use, partner and relationship related issues, financial incentives and socio-economic vulnerability, and alcohol consumption.The findings suggest that several reasons account for lack of condom use among high-risk MSM. The findings are valuable to inform interventions needed to increase condom use among MSM.

  4. Barrier inhomogeneities and electronic transport of Pt contacts to relatively highly doped n-type 4H-SiC

    International Nuclear Information System (INIS)

    Huang, Lingqin; Wang, Dejun

    2015-01-01

    The barrier characteristics of Pt contacts to relatively highly doped (∼1 × 10 18  cm −3 ) 4H-SiC were investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements in the temperature range of 160–573 K. The barrier height and ideally factor estimated from the I-V characteristics based on the thermionic emission model are abnormally temperature-dependent, which can be explained by assuming the presence of a double Gaussian distribution (GD) of inhomogeneous barrier heights. However, in the low temperature region (160–323 K), the obtained mean barrier height according to GD is lower than the actual mean value from C-V measurement. The values of barrier height determined from the thermionic field emission model are well consistent with those from the C-V measurements, which suggest that the current transport process could be modified by electron tunneling at low temperatures

  5. Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics

    International Nuclear Information System (INIS)

    Kim, Namsu; Graham, Samuel

    2013-01-01

    A flexible thin-film encapsulation architecture for organic electronics was built and consisted of a silicon oxide/alumina and parylene layer deposited over Ca sensors on a barrier-coated polyethylene terephthalate substrate. The film's effective water vapor transmission rate was 2.4 ± 1.5 × 10 −5 g/m 2 /day at 20 °C and 50% relative humidity. Flexural tests revealed that for films deposited on the polyethylene terephthalate substrate, the barrier layer failed due to cracking at a curvature radius of 6.4 mm, corresponding to a strain of 0.8%. Adding an epoxy top coat of suitable thickness shifted the neutral axis toward the encapsulation layer, reducing the induced strain. Barrier performance was maintained under the 6.4 mm radius of curvature in this encapsulation structure. Thus, shifting the neutral axis via device structural design is an effective method of extending the flexibility of thin-film encapsulation structure without compromising the performance loss as a barrier layer. - Highlights: • High performance barrier is fabricated on flexible substrate. • The water vapor transmission rate is 2.4 ± 1.5 × 10 −5 g/m 2 /day. • The structure maintains its performance under a small radius of bending curvature

  6. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    Science.gov (United States)

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  7. Barriers and enablers to the use of high-fidelity patient simulation manikins in nurse education: an integrative review.

    Science.gov (United States)

    Al-Ghareeb, Amal Z; Cooper, Simon J

    2016-01-01

    This integrative review identified, critically appraised and synthesised the existing evidence on the barriers and enablers to using high-fidelity human patient simulator manikins (HPSMs) in undergraduate nursing education. In nursing education, specifically at the undergraduate level, a range of low to high-fidelity simulations have been used as teaching aids. However, nursing educators encounter challenges when introducing new teaching methods or technology, despite the prevalence of high-fidelity HPSMs in nursing education. An integrative review adapted a systematic approach. Medline, CINAHL plus, ERIC, PsychINFO, EMBASE, SCOPUS, Science Direct, Cochrane database, Joanna Brigge Institute, ProQuest, California Simulation Alliance, Simulation Innovative Recourses Center and the search engine Google Scholar were searched. Keywords were selected and specific inclusion/exclusion criteria were applied. The review included all research designs for papers published between 2000 and 2015 that identified the barriers and enablers to using high-fidelity HPSMs in undergraduate nursing education. Studies were appraised using the Critical Appraisal Skills Programme criteria. Thematic analysis was undertaken and emergent themes were extracted. Twenty-one studies were included in the review. These studies adopted quasi-experimental, prospective non-experimental and descriptive designs. Ten barriers were identified, including "lack of time," "fear of technology" and "workload issues." Seven enablers were identified, including "faculty training," "administrative support" and a "dedicated simulation coordinator." Barriers to simulation relate specifically to the complex technologies inherent in high-fidelity HPSMs approaches. Strategic approaches that support up-skilling and provide dedicated technological support may overcome these barriers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  9. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau.

    Science.gov (United States)

    Bing, Haijian; Zhou, Jun; Wu, Yanhong; Luo, Xiaosan; Xiang, Zhongxiang; Sun, Hongyang; Wang, Jipeng; Zhu, He

    2018-07-01

    Anthropogenic metals adsorbed on suspended fine particles can be deposited on remote and inaccessible high mountains by long-range atmospheric transport. In this study, we investigated the cadmium (Cd) and lead (Pb) in the soils, mosses and rainfall of three transects on the Gongga Mountain, eastern Tibetan Plateau, to understand the mountain interception effects on their atmospheric transport. The concentrations of Cd and Pb in the soils and mosses displayed a pattern of eastern transect>northern transect>western transect. The distribution of Cd and Pb on the eastern transect increased from 2000 to 2900m a.s.l. (above sea level), decreased toward the timberline, and increased again with altitude; on the northern transect, it generally decreased with altitude whereas a distribution trend was not clearly observed on the western transect. The Cd and Pb concentrations in the rainfall of the eastern transect generally decreased with altitude, and they were higher inside forests than outside forests and temporally higher in the winter than the summer. The Pb isotopic ratios coupled with moss bio-monitoring distinguished anthropogenic sources of Cd and Pb on the eastern and northern transects, whereas bedrock weathering was the main source of Cd and Pb on the western transect. We proposed a conceptual model to delineate the effects of terrain, local climate and vegetation on the transport of atmospheric metals. Our results highlighted the high mountains in the eastern Tibetan Plateau as an effective natural barrier limiting atmospheric metal transport. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Conception of PIPERADE: A high-capacity Penning-trap mass separator for high isobaric contamination at DESIR

    Energy Technology Data Exchange (ETDEWEB)

    Minaya Ramirez, E., E-mail: minaya@ipno.in2p3.fr [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Alfaurt, P.; Aouadi, M.; Ascher, P.; Blank, B. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Blaum, K. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Cam, J.-F. [Laboratoire de Physique Corpusculaire, Caen (France); Chauveau, P. [Grand Accélérateur National d’Ions Lourds CEA/DSM-CNRS-IN2P3, Caen (France); Daudin, L. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Delahaye, P. [Grand Accélérateur National d’Ions Lourds CEA/DSM-CNRS-IN2P3, Caen (France); Delalee, F. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Dupré, P. [Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay (France); El Abbeir, S.; Gerbaux, M.; Grévy, S.; Guérin, H. [Centre d’Etudes Nucléaires de Bordeaux-Gradignan (France); Lunney, D. [Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay (France); Metz, F. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Naimi, S. [Riken, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Perrot, L. [Institut de Physique Nucléaire, Orsay (France); and others

    2016-06-01

    The DESIR (decay, excitation and storage of radioactive ions) facility at GANIL-SPIRAL2 will receive a large variety of exotic nuclei at low energy (up to 60 keV) with high intensities. However, the production methods of radioactive beams are non selective, limiting the purity of the beams of interest. Moreover, the high precision needed for nuclear structure and astrophysics studies using beta decay spectroscopy, laser spectroscopy and trap-based experiments at DESIR requires highly pure samples of exotic nuclei. The aim of the double-Pennig-trap mass separator PIPERADE is to deliver large and very pure samples of exotic nuclei to the different experiments in DESIR. New excitation schemes and a large inner diameter of the first trap will mitigate space charge effects to attempt trapping of up to 10{sup 5} ions per pulse. The purification cycle will be performed in a few milliseconds so that short-lived nuclei can be purified. To extract the nuclides of interest from the large amount of isobaric contaminants, a resolving power of 10{sup 5} is mandatory. Afterwards the ions of interest will be accumulated in the second trap until they constitute a sufficiently pure sample for the measurements. The status of the project is presented.

  11. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device

    NARCIS (Netherlands)

    Kraai, G. N.; Schuur, B.; van Zwol, F.; van de Bovenkamp, H. H.; Heeres, H. J.

    2009-01-01

    The base catalyzed production of biodiesel (FAME) from sunflower oil and methanol in a continuous centrifugal contactor separator (CCS) with integrated reaction and phase separation was studied. The effect of catalyst loading (sodium methoxide), temperature, rotational frequency and flow rates of

  12. A Comparison of Perceptions of Barriers to Academic Success among High-Ability Students from High- and Low-Income Groups: Exposing Poverty of a Different Kind

    Science.gov (United States)

    Cross, Jennifer Riedl; Frazier, Andrea Dawn; Kim, Mihyeon; Cross, Tracy L.

    2018-01-01

    In 14 focus group interviews, sixth- to eighth-grade high-ability students from high- (n = 36) and low-income (n = 45) families were asked to describe the barriers they perceived to their academic success. Three themes were identified through the qualitative analysis: "Constraining Environments, Integration versus Isolation," and…

  13. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, Sanjay [Stony Brook Univ., NY (United States)

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness

  14. [Separation of purines, pyrimidines, pterins and flavonoids on magnolol-bonded silica gel stationary phase by high performance liquid chromatography].

    Science.gov (United States)

    Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan

    2012-10-01

    A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.

  15. Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments.

    Science.gov (United States)

    Harvey, David J; Seabright, Gemma E; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B

    2018-05-01

    Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man 8 GlcNAc 2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. Graphical Abstract ᅟ.

  16. Separation of Molybdenum from Acidic High-Phosphorus Tungsten Solution by Solvent Extraction

    Science.gov (United States)

    Li, Yongli; Zhao, Zhongwei

    2017-10-01

    A solvent-extraction process for deep separation of molybdenum from an acidic high-phosphate tungsten solution was developed using tributyl phosphate (TBP) as the extractant and hydrogen peroxide (H2O2) as a complexing agent. The common aqueous complexes of tungsten and molybdenum (PMoxW12-xO40 3-, x = 0-12) are depolymerized to {PO4[Mo(O)2(O-O)]4}3- and {PO4[W(O)2(O-O)]4}3- by H2O2. The former can be preferentially extracted by TBP. The extractant concentration, phase contact time, H2O2 dosage, and H2SO4 concentration were optimized. By employing 80% by volume TBP, O:A = 1:1, 1.0 mol/L H2SO4, 1.0 mol/L H3PO4, a contact time of 2 min, and a molar ratio of H2O2/(W + Mo) equal to 1.5, 60.2% molybdenum was extracted in a single stage, while limiting tungsten co-extraction to 3.2%. An extraction isotherm indicated that the raffinate could be reduced to <0.1 g/L Mo in six stages of continuous counter-current extraction.

  17. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  18. High-energy ion-beam-induced phase separation in SiOx films

    International Nuclear Information System (INIS)

    Arnoldbik, W.M.; Tomozeiu, N.; Hattum, E.D. van; Lof, R.W.; Vredenberg, A.M.; Habraken, F.H.P.M.

    2005-01-01

    The modification of the nanostructure of silicon suboxide (SiO x ) films as a result of high-energy heavy-ion irradiation has been studied for the entire range 0.1≤x x films have been obtained by radio-frequency magnetron sputter deposition. For 50 MeV 63 Cu 8+ ions and an angle of incidence of 20 deg. with the plane of the surface, and for x≥0.5, it takes a fluence of about 10 14 /cm 2 to reach a Si-O-Si infrared absorption spectrum, which is supposed to be characteristic for a Si-SiO 2 composite film structure. For smaller x values, it takes a much larger fluence. The interpretation of the IR spectra is corroborated for the surface region by results from x-ray photoelectron spectroscopy. The results present evidence for a mechanism, in which the phase separation takes place in the thermal spike, initiated by the energy deposited in many overlapping independent ion tracks. Such a process is possible since the suboxides fulfill the conditions for spinodal decomposition

  19. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  20. High Efficiency Robust Open Tubular Capillary Electrochromatography Column for the Separation of Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Faiz; Cheong, Won Jo [Inha University, Incheon (Korea, Republic of)

    2016-08-15

    In this study, the carefully designed tri-component copolymer layer was fabricated onto the inner surface of a pretreated silica capillary (52 cm effective length, 50 μm id). The initiator moieties were incorporated onto the capillary inner surface by reaction with 4-chloromehtylphenyl isocyanate followed by sodium diethyl dithiocarbamate. Next, RAFT copolymerization was held upon the initiator moieties and a thin polymer film was made. The observed peak capacity was, of course, lower than those of the state-of-the art gradient HPLC systems. The UPLC system operated in the long gradient elution mode with a long narrow column of sub-3 μm packed particles could achieve the impressive high peak capacity of ca. 1000. On the other hand, a system with a 20 cm column of 0.8 μm particles could achieve a peak capacity of 220 (comparable to our result) under a pressure of 20 000 psi in a gradient time of 20 min. It should be noted that the operational conditions of this study has been optimized to obtain the best column separation efficiency. It was also operated in the isocratic elution mode. A better peak capacity is expected if the operational conditions are tuned to the optimum peak capacity.

  1. Method of separate determination of high-ohmic sample resistance and contact resistance

    Directory of Open Access Journals (Sweden)

    Vadim A. Golubiatnikov

    2015-09-01

    Full Text Available A method of separate determination of two-pole sample volume resistance and contact resistance is suggested. The method is applicable to high-ohmic semiconductor samples: semi-insulating gallium arsenide, detector cadmium-zinc telluride (CZT, etc. The method is based on near-contact region illumination by monochromatic radiation of variable intensity from light emitting diodes with quantum energies exceeding the band gap of the material. It is necessary to obtain sample photo-current dependence upon light emitting diode current and to find the linear portion of this dependence. Extrapolation of this linear portion to the Y-axis gives the cut-off current. As the bias voltage is known, it is easy to calculate sample volume resistance. Then, using dark current value, one can determine the total contact resistance. The method was tested for n-type semi-insulating GaAs. The contact resistance value was shown to be approximately equal to the sample volume resistance. Thus, the influence of contacts must be taken into account when electrophysical data are analyzed.

  2. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  3. High-performance ion chromatography method for separation and quantification of inositol phosphates in diets and digesta

    DEFF Research Database (Denmark)

    Blaabjerg, Karoline; Hansen-Møller, Jens; Poulsen, Hanne Damgaard

    2010-01-01

    A gradient high-performance ion chromatographic method for separation and quantification of inositol phosphates (InsP2-InsP6) in feedstuffs, diets, gastric and ileal digesta from pigs was developed and validated. The InsP2-InsP6 were separated on a Dionex CarboPacTM PA1 column using a gradient...... with 1.5 mol L-1 methanesulfonic acid and water. The exchange of the commonly used HCl with methanesulfonic acid has two advantages: (i) the obtained baseline during the separation is almost horizontal and (ii) it is not necessary to use an inert HPIC equipment as the methanesulfonic acid...

  4. Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries

    International Nuclear Information System (INIS)

    Wang, Qingfu

    2015-01-01

    The composite separator of melamine formaldehyde resin coated glass microfiber membrane was prepared for high performance lithium ion battery. It was demonstrated that this composite membranes possessed a significantly enhanced tensile strength and a modified porous structure, compared with that of pristine glass microfiber membrane. Impressive improvements in thermo-stability, with no shrinkage at an elevated temperature of 150 °C. Meanwhile, such composite membrane presented a favorable wettability and remarkable electrochemical stability in commercial liquid electrolyte. In addition, the battery test results of LiCoO 2 /graphite cells proved the composite membrane was a promising separator with an improved cycling performance and rate capability. The cycle performance of LiFePO 4 /Li cells at the elevated temperature of 120 °C demonstrated their excellent safety characteristic as separator in LIB, indicating the composite membrane was a potential separator candidate for high power battery.

  5. Determinants of High Blood Pressure and Barriers to Diagnosis and Treatment in Dar es Salaam, Tanzania

    Science.gov (United States)

    ZACK, Rachel M.; IREMA, Kahema; KAZONDA, Patrick; LEYNA, Germana H.; LIU, Enju; SPIEGELMAN, Donna; FAWZI, Wafaie; NJELEKELA, Marina; KILLEWO, Japhet; DANAEI, Goodarz

    2017-01-01

    Objectives We assessed prevalence and determinants of high blood pressure, and barriers to diagnosis and treatment, in Dar es Salaam, Tanzania. Methods We surveyed and screened 2,174 community-dwelling adults aged ≥40 years in 2014 and conducted a follow-up after one year. Results Median blood pressure was 131/81 mmHg and hypertension prevalence was 37%. Mean adjusted difference in SBP was 4.0 mmHg for overweight, 6.3 mmHg for obese class I, and 10.5 mmHg for obese class II/III compared with normal weight participants. Those who were physically inactive had 4.8 mmHg higher SBP compared to those with more than 24 hours of moderate or vigorous activity per week. Drinkers of at least 10 grams of alcohol per day had 4.5 mmHg higher SBP than did non-drinkers. Among hypertensives, 48% were diagnosed, 22% were treated, and 10% were controlled. Hypertensives without health insurance were 12% less likely to be diagnosed than insured hypertensives. Of referred participants, 68% sought care, but only 27% were on treatment and 8% had controlled blood pressure at follow-up. Reasons for not seeking care included lack of symptoms, cost of visit, and lack of time. Reasons for not being on treatment included lack of symptoms, not being prescribed treatment, and having finished one course of treatment. Conclusions Major risk factors for hypertension in Dar es Salaam are overweight, obesity, inadequate physical activity, and limited access to quality medical care. Increased insurance coverage and community-based screening, along with quality medical care and patient education, may help control this burgeoning epidemic. PMID:27648720

  6. Corrosion of high purity copper as engineering barrier in deep geological repositories

    International Nuclear Information System (INIS)

    Ochoa, Maité; Rodríguez Martín, A.; Farina Silvia, B.

    2013-01-01

    Pure copper with oxygen content below 5 ppm (to minimize segregation at grain boundaries) and doped with phosphorus (to increase creep resistance) is the chosen material for the corrosion-resistant barrier of the High Level Radioactive 2 Wastecontainers in the Swedish and Finnish repository models. These models include the construction of the repository below the water table, which is a reducing environment in which copper has excellent resistance to general and localized corrosion in aqueous electrolytes. The aim of this work is contribute to determine the durability of the material, given that deep geological repositories of HLW are designed to ensure the protection of the environment for periods of hundreds of thousands years. As a first step in a more general analysis the effects of chloride, one of the main aggressive species of corrosion, are evaluated. To this purpose corrosion potential was determined and anodic polarization curves were performed in deaerated solutions varying the chloride concentration between 0.01 and 1M and the temperature between 30 and 90°C. Several electrochemical techniques were used: the evolution of corrosion potential was measured, anodic polarization curves were obtained and electrochemical impedance tests were performed. The analysis was complemented with microscopic observations of the type of corrosive attack, as well as determinations of the eventual corrosion products formed using Energy-Dispersive X-ray Analysis (EDS). Results show that the corrosion potential decreases with the increase of temperature and with the increase of chloride concentration. A correlation of the corrosion potential as a function of temperature and chloride concentration was obtained, with the purpose of making predictions in variable conditions.The current density increases both with temperature and with chloride concentration. A pitting potential is observed in certain conditions. (author)

  7. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation

    International Nuclear Information System (INIS)

    2005-11-01

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  8. Separation of pigment formulations by high-performance thin-layer chromatography with automated multiple development.

    Science.gov (United States)

    Stiefel, Constanze; Dietzel, Sylvia; Endress, Marc; Morlock, Gertrud E

    2016-09-02

    Food packaging is designed to provide sufficient protection for the respective filling, legally binding information for the consumers like nutritional facts or filling information, and an attractive appearance to promote the sale. For quality and safety of the package, a regular quality control of the used printing materials is necessary to get consistently good print results, to avoid migration of undesired ink components into the food and to identify potentially faulty ink batches. Analytical approaches, however, have hardly been considered for quality assurance so far due to the lack of robust, suitable methods for the analysis of rarely soluble pigment formulations. Thus, a simple and generic high-performance thin-layer chromatography (HPTLC) method for the separation of different colored pigment formulations was developed on HPTLC plates silica gel 60 by automated multiple development. The gradient system provided a sharp resolution for differently soluble pigment constituents like additives and coating materials. The results of multi-detection allowed a first assignment of the differently detectable bands to particular chemical substance classes (e.g., lipophilic components), enabled the comparison of different commercially available pigment batches and revealed substantial variations in the composition of the batches. Hyphenation of HPTLC with high resolution mass spectrometry and infrared spectroscopy allowed the characterization of single unknown pigment constituents, which may partly be responsible for known quality problems during printing. The newly developed, precise and selective HPTLC method can be used as part of routine quality control for both, incoming pigment batches and monitoring of internal pigment production processes, to secure a consistent pigment composition resulting in consistent ink quality, a faultless print image and safe products. Hyphenation of HPTLC with the A. fischeri bioassay gave first information on the bioactivity or rather

  9. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika.

    Science.gov (United States)

    Koblmüller, Stephan; Salzburger, Walter; Obermüller, Beate; Eigner, Eva; Sturmbauer, Christian; Sefc, Kristina M

    2011-06-01

    The conditions of phenotypic and genetic population differentiation allow inferences about the evolution, preservation and loss of biological diversity. In Lake Tanganyika, water level fluctuations are assumed to have had a major impact on the evolution of stenotopic littoral species, though this hypothesis has not been specifically examined so far. The present study investigates whether subtly differentiated colour patterns of adjacent Tropheus moorii populations are maintained in isolation or in the face of continuous gene flow, and whether the presumed influence of water level fluctuations on lacustrine cichlids can be demonstrated in the small-scale population structure of the strictly stenotopic, littoral Tropheus. Distinct population differentiation was found even across short geographic distances and minor habitat barriers. Population splitting chronology and demographic histories comply with our expectation of old and rather stable populations on steeper sloping shore, and more recently established populations in a shallower region. Moreover, population expansions seem to coincide with lake level rises in the wake of Late Pleistocene megadroughts ~100 KYA. The imprint of hydrologic events on current population structure in the absence of ongoing gene flow suggests that phenotypic differentiation among proximate Tropheus populations evolves and persists in genetic isolation. Sporadic gene flow is effected by lake level fluctuations following climate changes and controlled by the persistence of habitat barriers during lake level changes. Since similar demographic patterns were previously reported for Lake Malawi cichlids, our data furthermore strengthen the hypothesis that major climatic events synchronized facets of cichlid evolution across the East African Great Lakes. © 2011 Blackwell Publishing Ltd.

  10. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Matthiesen, D.B.; Hobley, Timothy John

    2001-01-01

    A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non...

  11. Back-trajectory modeling of high time-resolution air measurement data to separate nearby sources

    Science.gov (United States)

    Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...

  12. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  13. The selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Svoboda, J.

    1985-01-01

    The proper choice of a suitable matrix for high-intensity magnetic separation is of the utmost importance, since the geometry and size of the matrix play decisive roles in the achievement of optimum separation conditions. In relatively simple filtration applications, the matrix must offer a high efficiency of collision with suspended particles, a high probability of retention of intercepted particles, and high loading capacity. Also, it must be easily cleaned. The results obtained by the use of theoretical models of magnetic separation fail to agree with the experimental results for basic parameters like the ratio of particle size to matrix size, the length of the matrix, and the magnetic properties of the matrix material. Preconceived ideas about the matrix often lead to the erroneous choice of a matrix, and hence to its unsatisfactory performance during magnetic separation. The potential value of high-intensity magnetic separation as applied to the recovery of uranium and gold from leach residues and in association with the development of a large-scale magnetic separator to be used for the same purpose led to the present investigation in which a wide spectrum of matrix shapes and sizes were tested. It was found that the optimum recovery and selectivity of separation are obtained at a ratio of particle size to matrix-element size ranging from 200 to 300. The use of these matrices also results in a low degree of mechanical entrapment, particularly of coarser particles, for which straining plays a significant role for fine matrices. It was also found that the magnetization of a matrix plays a minor role, contrary to the theoretical predictions. Furthermore, the effects of matrix height, matrix loading, and scalping of the pulp by paramagnetic matrices were evaluated for various types of matrices

  14. Chiral separation of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography with biphasic recognition

    Science.gov (United States)

    Tong, Shengqiang

    2010-01-01

    This work concentrates on a novel chiral separation technology named biphasic recognition applied to resolution of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography (HSCCC). The biphasic chiral recognition HSCCC was performed by adding lipophilic (−)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic hydroxypropyl-β-cyclodextrin in the aqueous mobile phase, which preferentially recognized the (−)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether-water (9:1:10, v/v/v) with the above chiral selectors was selected according to the partition coefficient and separation factor of the target enantiomers. Various parameters involved in the chiral separation were investigated, namely the types of the chiral selector (CS); the concentration of each chiral selector; pH of the mobile phase; and the separation temperature. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Langmuirian isotherm was employed to estimate the loading limits for each chiral selector. The overall experimental results show that the HSCCC separation of enantiomer based on biphasic recognition is much more efficient than the traditional monophasic recognition chiral separation, since it utilizes the cooperation of both lipophilic and hydrophilic chiral selectors. PMID:20303497

  15. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  16. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  17. Study on characteristics of high frequency dielectric barrier discharge for the removal of organic pollutant adsorbed on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, G.Z.; Li, G.F. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Li, J.; Lu, N.; Wu, Y.; Li, D. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Key Lab of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian (China)

    2010-07-01

    Advanced oxidation technologies such as photocatalysis, electrochemical degradation, Fenton oxidation, hydrogen peroxide oxidation, and plasma oxidation are increasingly being used to degrade refractory biodegradable organic contaminants. The plasma oxidation method has the advantage of direct in situ production of multiple types of high-reactive chemical species, including molecules and radicals that facilitate the degradation reaction. In addition, plasma oxidation does not produce any secondary pollution. Compared to other plasma technologies, the dielectric barrier discharge (DBD) plasma has been considered as a promising technology for removing toxic compounds because of its stability and its treatability property of biologically recalcitrant compounds in wastewater. However, the energy efficiency of DBD requires improvement for economic reasons. This paper reported on an experimental study that investigated the electrical characteristics of a parallel plate DBD reactor using a high frequency power supply for the removal of pentachlorophenol (PCP) adsorbed on activated carbon (AC). This study examined the effects of AC with different mass on discharge characteristics and compared the voltage and current waveforms, and discharge images of DBD reactors with different dielectric configurations. When the DBD reactor filled with AC, the applied voltage of discharge decreased regardless of the DBD reactor configuration in terms of having a single barrier or two barriers. The discharge characteristics had no significant change with AC mass increasing. The discharge images and current waveforms showed that DBD reactor configuration consisting of two dielectrics is more homogeneous and stable than the one consisting of a single dielectric. Under the same electric field condition, the degradation efficiency of PCP in two barriers reactor is higher than that in single barrier reactor. It was concluded that the findings from this study may be instrumental in treating

  18. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols.

    Science.gov (United States)

    Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2015-05-01

    Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  1. Investigation of the separation of americium(III) and europium(III) by high-speed countercurrent chromatography

    International Nuclear Information System (INIS)

    Wu, J.F.; Jin, Y.R.; Xu, Q.C.; Wang, S.L.; Zhang, L.X.

    2005-01-01

    The long-lived actinides are the important elements in the radioactive waste ;disposal. Because the ions semi diameter and chemical properties of trivalent actinides(III) and trivalent lanthanides(III) are very similar, the separation between them is very difficult. Yang Yu-Sheng put forward the actinides(III) are softer acid than the lanthanides(III), so the actinides(III) are more easily extracted by the soft extractant contain sulfur or nitrogen than the lanthanides(III). Some research have been done on the separation between actinides(III) and lanthanides(III) using the extractants contain sulfur or nitrogen. The results show that satisfactory separation efficiency was gained. Countercurrent Chromatography (CCC) have many specific advantages, such as free from solid support, permit large sample volume and high flow rate, which is useful in the preconcentration of inorganic solute and inorganic preparation. Some studies were done on the separation of lanthanides or-other inorganic elements by HSCCC, the high-purity reagents prepared by HSCCC or CPC turned out to be successful. In present paper, the investigation of separation between Americium (III) and Euricium (III) by High-Speed Countercurrent Chromatography (HSCCC) were made. The extractant used in the work was prepared by ourselves, which is of the soft extractant contrain sulfur. The effects of separation condition on the separation efficiency of Am and Eu by HSCCC were investigated using dichlorophenyl dithiophosphinic acid in xylene as the stationary phase and 0.1 mol/L NaClO4 as mobile phase, respectively. The results show that mutual separation between Am and Eu can be accomplished. The separation factor increases with the increasing of the concentration of extractant and the pH value of the mobile phase, further more, minishing the flow rate of the mobile phase can also improves the separation efficiency between Am and Eu. The nearly base separation was gained when the flow rate is 0.35 ml/min, the

  2. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    Science.gov (United States)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  3. Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation.

    Science.gov (United States)

    Ao, Chenghong; Yuan, Wei; Zhao, Jiangqi; He, Xu; Zhang, Xiaofang; Li, Qingye; Xia, Tian; Zhang, Wei; Lu, Canhui

    2017-11-01

    Inspired from fishscales, membranes with special surface wettability have been applied widely for the treatment of oily waste water. Herein, a novel superhydrophilic graphene oxide (GO)@electrospun cellulose nanofiber (CNF) membrane was successfully fabricated. This membrane exhibited a high separation efficiency, excellent antifouling properties, as well as a high flux for the gravity-driven oil/water separation. Moreover, the GO@CNF membrane was capable to effectively separate oil/water mixtures in a broad pH range or with a high concentration of salt, suggesting that this membrane was quite promising for future real-world practice in oil spill cleanup and oily wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    Science.gov (United States)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  5. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    Science.gov (United States)

    Purwins, H.-G.; Stollenwerk, L.

    2014-12-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  6. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    International Nuclear Information System (INIS)

    Purwins, H-G; Stollenwerk, L

    2014-01-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  7. Separation method for rare-earths using high-voltage electrophoresis on paper strip

    International Nuclear Information System (INIS)

    Clarence, J.

    1966-01-01

    The equipment includes an electrophoresis set running at 3 000 V and 20 mA. Two cooling plates are used as heat exchanger, and a pneumatic pressure device to insure an uniform pressure on the paper strip laid flat. The mobilities and the separations of the rare earths in lactic, and, α hydroxy-isobutyric acid solutions are investigated on cellulose acetate strip. Better results are obtained with α hydroxy-isobutyric acid. The method is rapid and allows a fine fractionation of rare earth elements within less than an hour. A complete separation of a Ce - Pr - Nd - Pm - Eu mixture, and a Y - Tb mixture is obtained. (author) [fr

  8. Barriers impeding serologic screening for celiac disease in clinically high-prevalence populations

    Science.gov (United States)

    2014-01-01

    Background Celiac disease is present in ~1% of the general population in the United States and Europe. Despite the availability of inexpensive serologic screening tests, ~85% of individuals with celiac disease remain undiagnosed and there is an average delay in diagnosis of symptomatic individuals with celiac disease that ranges from ~5.8-11 years. This delay is often attributed to the use of a case-based approach for detection rather than general population screening for celiac disease, and deficiencies at the level of health care professionals. This study aimed to assess if patient-centered barriers have a role in impeding serologic screening for celiac disease in individuals from populations that are clinically at an increased risk for celiac disease. Methods 119 adults meeting study inclusion criteria for being at a higher risk for celiac disease were recruited from the general population. Participants completed a survey/questionnaire at the William K. Warren Medical Research Center for Celiac Disease that addressed demographic information, celiac disease related symptoms (gastrointestinal and extraintestinal), family history, co-morbid diseases and conditions associated with celiac disease, and patient-centered barriers to screening for celiac disease. All participants underwent serologic screening for celiac disease using the IgA tissue transglutaminase antibody (IgA tTG) and, if positive, testing for IgA anti-endomysial antibody (IgA EMA) as a confirmatory test. Results Two barriers to serologic testing were significant across the participant pool. These were participants not knowing they were at risk for celiac disease before learning of the study, and participants not knowing where to get tested for celiac disease. Among participants with incomes less than $25,000/year and those less than the median age, not having a doctor to order the test was a significant barrier, and this strongly correlated with not having health insurance. Symptoms and co

  9. Barriers to adherence to highly active antiretroviral therapy as expressed by people living with HIV/AIDS.

    Science.gov (United States)

    Proctor, V E; Tesfa, A; Tompkins, D C

    1999-09-01

    The primary objective of this study was to gain a clearer understanding of the barriers to adherence to highly active antiretroviral therapy (HAART) faced by people living with HIV/AIDS (PLWHIV/AIDS) on Long Island, New York. Focus group, a qualitative research method, was used to study these barriers. The study was conducted in 1998 on Long Island, NY, at five institutions that provide services to 1700 PLWHIV/AIDS. Five focus groups were conducted with 6 to 13 PLWHIV/AIDS in each group, a total of 39 subjects. PLWHIV/AIDS identified eight common barriers to adherence to HAART. In descending order, the barriers include: (1) frequency and severity of side effects, (2) conflicts with daily routines, (3) dietary requirements, (4) frequency of taking medications, (5) number and dosage of medications, (6) psychosocial factors (i.e., stress, feeling good, and bad news), (7) pharmacy refills, and (8) physiological needs (i.e., sleep, hunger, or thirst). Many factors play a role in the success or failure of HAART, including preexisting drug resistance, drug-drug interactions, and the ability of PLWHIV/AIDS to adhere to a rigid and frequently changing medication regimen. The information gleaned from focus groups is limited in that it may not be generalized to a larger population with any known reliability. However, clinicians sensitive to barriers to adherence to HAART, including those identified by PLWHIV/AIDS in this study, may play a more proactive role in supporting adherence to the medication regimen, increasing the durability of effective viral suppression, decreasing morbidity and mortality, and decreasing the selection and transmission of resistant strains of HIV.

  10. High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations.

    Science.gov (United States)

    Altintas, Cigdem; Erucar, Ilknur; Keskin, Seda

    2018-01-31

    Metal organic frameworks (MOFs) have been considered as one of the most exciting porous materials discovered in the last decade. Large surface areas, high pore volumes, and tailorable pore sizes make MOFs highly promising in a variety of applications, mainly in gas separations. The number of MOFs has been increasing very rapidly, and experimental identification of materials exhibiting high gas separation potential is simply impractical. High-throughput computational screening studies in which thousands of MOFs are evaluated to identify the best candidates for target gas separation is crucial in directing experimental efforts to the most useful materials. In this work, we used molecular simulations to screen the most complete and recent collection of MOFs from the Cambridge Structural Database to unlock their CH 4 /H 2 separation performances. This is the first study in the literature, which examines the potential of all existing MOFs for adsorption-based CH 4 /H 2 separation. MOFs (4350) were ranked based on several adsorbent evaluation metrics including selectivity, working capacity, adsorbent performance score, sorbent selection parameter, and regenerability. A large number of MOFs were identified to have extraordinarily large CH 4 /H 2 selectivities compared to traditional adsorbents such as zeolites and activated carbons. We examined the relations between structural properties of MOFs such as pore sizes, porosities, and surface areas and their selectivities. Correlations between the heat of adsorption, adsorbility, metal type of MOFs, and selectivities were also studied. On the basis of these relations, a simple mathematical model that can predict the CH 4 /H 2 selectivity of MOFs was suggested, which will be very useful in guiding the design and development of new MOFs with extraordinarily high CH 4 /H 2 separation performances.

  11. High performance liquid chromatographic separation of beryllium from some transition metals produced in high energy proton irradiations of medium mass elements: measurement of (p,7Be) cross sections

    International Nuclear Information System (INIS)

    Fassbender, M.; Spellerberg, S.; Qaim, S.M.

    1996-01-01

    A high performance liquid chromatographic (HPLC) method was developed for the separation of 7 Be formed in high energy proton irradiation of medium mass elements like Fe, Cu etc. The bulk of the target material was removed in a preseparation step. Thereafter beryllium was obtained in a high purity within a few minutes elution time using a mixture of 5 mM citric acid and 1.0 mM pyridinedicarboxylic acid as eluent and a SYKAM KO2 analytical cation-exchange column. The effect of Be-carrier on the quality of separation was investigated. The quality of separation deteriorated with the increasing Be-carrier column loading. A certain amount of Be-carrier was, however, necessary in order to quantitate the results. By using low Be-carrier amounts (∝100 μg) and determining the elution yield via a conductometric method, it was possible to obtain quantitative separation results. Besides the analytical column, a semi-preparative column was also used, and the Be separation yield determined gravimetrically. The cross sections for the (p, 7 Be) process on Cu obtained using the two separation columns (analytical and semipreparative) and the two separation yield determination methods agreed within 15%. (orig.)

  12. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B. [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States); Grim, Gary P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-07-15

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  13. Spatially and temporally resolved detection of arsenic in a capillary dielectric barrier discharge by hydride generation high-resolved optical emission spectrometry

    Czech Academy of Sciences Publication Activity Database

    Burhenn, S.; Kratzer, Jan; Svoboda, Milan; Klute, F. D.; Michels, A.; Veža, D.; Franzke, J.

    2018-01-01

    Roč. 90, MAR (2018), s. 3424-3429 ISSN 0003-2700 R&D Projects: GA ČR GA17-04329S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * optical emission spectroscopy * arsenic hydride Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  14. Spatially and temporally resolved detection of arsenic in a capillary dielectric barrier discharge by hydride generation high-resolved optical emission spectrometry

    Czech Academy of Sciences Publication Activity Database

    Burhenn, S.; Kratzer, Jan; Svoboda, Milan; Klute, F. D.; Michels, A.; Veža, D.; Franzke, J.

    2018-01-01

    Roč. 90, MAR (2018), s. 3424-3429 ISSN 0003-2700 R&D Projects: GA ČR GA17-04329S Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * optical emission spectroscopy * arsenic hydride Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  15. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    Science.gov (United States)

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  16. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading

    DEFF Research Database (Denmark)

    Wu, Zhigang; Hjort, Klas; Wicher, Grzegorz

    2008-01-01

    polymer solution of alginic sodium, the spreading behavior was investigated at different polymer concentrations and flow rates. Particle separation was studied in the same detail for 9.9 microm and 1.9 microm latex beads. Using buffered aqueous solutions and further surface treatments to protect from cell...

  17. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali

    2016-05-24

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  18. Advanced separators based on aromatic polymer for high energy density lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Woo, Jung-Je; Amine, Khalil

    2017-03-21

    A process includes casting a solution including poly(phenylene oxide), inorganic nanoparticles, a solvent, and a non-solvent on a substrate; and removing the solvent to form a porous film; wherein: the porous film is configured for use as a porous separator for a lithium ion battery.

  19. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali; Ibrahem, Mohammed Aziz; Hu, Lung-hao; Lin, Chia-Nan; Fang, Jason; Boopathi, Karunakara Moorthy; Wang, Pen-Cheng; Li, Lain-Jong; Chu, Chih Wei

    2016-01-01

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  20. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Kapantaidakis, G.; Koops, G.H.

    2002-01-01

    In this work, the preparation of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends, for three different compositions (i.e. PES/PI: 80/20, 50/50 and 20/80 wt.%), is reported. The dry/wet spinning process has been applied to prepare

  1. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  2. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  3. A high performance ceria based interdiffusion barrier layer prepared by spin-coating

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Joost, Mario; Hjelm, Johan

    2011-01-01

    A multiple spin-coating deposition procedure of Ce0.9Gd0.1O1.95 (CGO) for application in solid oxide fuel cells (SOFCs) was developed. The thin and dense CGO layer can be employed as a barrier layer between yttria stabilised zirconia (YSZ) electrolyte and a (La, Sr)(Co, Fe)O3 based cathode....... The decomposition of the polymer precursor used in the spin-coating process was studied. The depositions were performed on anode supported half cells. By controlling the sintering temperature between each spin-coating process, dense and crack-free CGO films with a thickness of approximately 1 μm were obtained....... The successive steps of dense layer production was investigated by scanning electron microscopy. X-ray diffraction was employed to monitor the crystal structure of the CGO layer sintered at different temperatures. The described spin coated barrier layer was evaluated using an anode supported cell...

  4. A Model of High-Frequency Self-Mixing in Double-Barrier Rectifier

    Science.gov (United States)

    Palma, Fabrizio; Rao, R.

    2018-03-01

    In this paper, a new model of the frequency dependence of the double-barrier THz rectifier is presented. The new structure is of interest because it can be realized by CMOS image sensor technology. Its application in a complex field such as that of THz receivers requires the availability of an analytical model, which is reliable and able to highlight the dependence on the parameters of the physical structure. The model is based on the hydrodynamic semiconductor equations, solved in the small signal approximation. The model depicts the mechanisms of the THz modulation of the charge in the depleted regions of the double-barrier device and explains the self-mixing process, the frequency dependence, and the detection capability of the structure. The model thus substantially improves the analytical models of the THz rectification available in literature, mainly based on lamped equivalent circuits.

  5. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  6. Simulation of crash tests for high impact levels of a new bridge safety barrier

    Science.gov (United States)

    Drozda, Jiří; Rotter, Tomáš

    2017-09-01

    The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.

  7. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    Science.gov (United States)

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators

    International Nuclear Information System (INIS)

    Li, Xiaofei; He, Jinlin; Wu, Dazhao; Zhang, Mingzu; Meng, Juwen; Ni, Peihong

    2015-01-01

    (290 wt%) and ionic conductivity (1.76 mS cm −1 ). More importantly, the LiFePO 4 /Li half-cell assembled with PHS-10 composite separator displays a good C-rate performance, which shows an enhancement in the chemical stability and discharge capacity. The capacity keeps above 150 mA h g −1 after 100 charge–discharge cycles. These performances endow this composite membrane as a promising candidate for high-performance lithium-ion battery separators

  9. Separation of actinides and long-lived fission products from high-level radioactive wastes (a review)

    International Nuclear Information System (INIS)

    Kolarik, Z.

    1991-11-01

    The management of high-level radioactive wastes is facilitated, if long-lived and radiotoxic actinides and fission products are separated before the final disposal. Especially important is the separation of americium, curium, plutonium, neptunium, strontium, cesium and technetium. The separated nuclides can be deposited separately from the bulk of the high-level waste, but their transmutation to short-lived nuclides is a muchmore favourable option. This report reviews the chemistry of the separation of actinides and fission products from radioactive wastes. The composition, nature and conditioning of the wastes are described. The main attention is paid to the solvent extraction chemistry of the elements and to the application of solvent extraction in unit operations of potential partitioning processes. Also reviewed is the behaviour of the elements in the ion exchange chromatography, precipitation, electrolysis from aqueous solutions and melts, and the distribution between molten salts and metals. Flowsheets of selected partitioning processes are shown and general aspects of the waste partitioning are shortly discussed. (orig.) [de

  10. AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    S. KWON

    2013-02-01

    Full Text Available Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  11. Fish movement ecology in high gradient headwater streams: Its relevance to fish passage restoration through stream culvert barriers

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.

    2007-01-01

    Restoration of fish passage through culvert barriers has emerged as a major issue in the Pacific Northwest and nationwide, in part, because of their potential influence on fish movement. Movement is an essential mechanism by which mobile animals acquire the resources necessary for the successful completion of their life-cycles. In this report, we provide a brief review of some essential characteristics of animal movement and examples from a focal group of fishes in Washington State: salmon, trout, and char. We begin by outlining some basic characteristics of animal movement and then apply that foundation to the case of salmonid fishes. Next we consider the consequences of disrupting fish movement with human-constructed barriers, such as culverts. Finally, this body of evidence is summarized, and we propose a short list of what we view as high priority information needs to support more effective restoration of fish passage through culverts.

  12. An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.; Lee, J. O.

    2013-01-01

    Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  13. High-Pressure Liquid Chromatography of Irradiated Nuclear Fue - Separation of Neodymium for Burn-up Determination

    DEFF Research Database (Denmark)

    Larsen, N. R.

    1979-01-01

    Neodymium is separated from solutions of spent nuclear fuel by high-pressure liquid chromatography in methanol-nitric acid-water media using an anion-exchange column. Chromatograms obtained by monitoring at 280 nm, illustrate the difficulties especially with the fission product ruthenium in nuclear...

  14. Separation and Quantitation of Polyamines in Plant Tissue by High Performance Liquid Chromatography of Their Dansyl Derivatives

    Science.gov (United States)

    Smith, Mary A.; Davies, Peter J.

    1985-01-01

    High performance liquid chromatography in combination with fluorescence spectrophotometry can be used to separate and quantitate polyamines (putrescine, cadaverine, spermidine, spermine), prepared as their dansyl derivatives, from plant tissue. The procedure gives sensitive and consistent results for polyamine determinations in plant tissue. In a standard mixture, the minimal detection level was less than 1 picomole of polyamines. PMID:16664216

  15. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation

    NARCIS (Netherlands)

    Shahid, S.; Nijmeijer, K.

    2017-01-01

    Plasticization is of important concern in high pressure natural gas separation. Majority of the pure polymers and MOF-MMM systems suffer from plasticization at low pressures. Combination of polymer blending and MMM approach could lead to plasticization resistant membranes with improved membrane

  16. tRNA separation by high-performance liquid chromatography using an aggregate of ODS-Hypersil and trioctylmethylammonium chloride

    NARCIS (Netherlands)

    Bischoff, Rainer; Graeser, E.; Mclaughlin, L.W.

    1983-01-01

    High-performance liquid chromatography on a reversed-phase support treated with a tetraalkylammonium salt was used to separate tRNAs from baker's yeast. While resolution by this column appears to result from both anion-exchange and reversed-phase chromatography, it is the hydrophobic interactions

  17. Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information.

    Energy Technology Data Exchange (ETDEWEB)

    Aimone, James Bradley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Betty, Rita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis, thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities.

  18. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange.

    Science.gov (United States)

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon

    2018-01-02

    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  20. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    Science.gov (United States)

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  1. Motion-based, high-yielding, and fast separation of different charged organics in water.

    Science.gov (United States)

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High performance liquid chromatographic separation of polycyclic aromatic hydrocarbons on microparticulate pyrrolidone and application to the analysis of shale oil

    International Nuclear Information System (INIS)

    Mourey, T.H.; Siggia, S.; Uden, P.C.; Crowley, R.J.

    1980-01-01

    A chemically bonded pyrrolidone substrate is used for the high performance liquid chromatographic separation of polycyclic aromatic hydrocarbons. The cyclic amide phase interacts electronically with the polycyclic aromatic hydrocarbons in both the normal and reversed phase modes. Separation is effected according to the number of aromatic rings and the type of ring condensation. Information obtained is very different from that observed on hydrocarbon substrates, and thus these phases can be used in a complementary fashion to give a profile of polycyclic aromatics in shale oil samples. 7 figures, 1 table

  3. Separation of deuteriated isotopomers of dopamine by ion-pair reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Masters, C.F.; Markey, S.P.; Mefford, I.N.; Duncan, M.W.

    1988-01-01

    The ion-pair reversed-phase separation of dopamine and deuterium-substituted dopamine isotopomers is described. Chromatographic parameters and deuterium isotope effects governing the resolution are examined and compared to the factors regulating the resolution are examined and compared to the factors regulating the resolution of the chemically distinct entities dopamine, norepinephrine, and epinephrine. The potential utility of the [ 2 H 7 ]dopamine, isotopomer as an internal standard for the high-performance liquid chromatography analysis of dopamine is demonstrated by using aluminum oxide extraction prior to chromatographic separation

  4. High-speed counter-current chromatography in separation of betacyanins from flowers of red Gomphrena globosa L. cultivars.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Hołda, Ewelina; Wybraniec, Sławomir

    2016-10-15

    Antioxidant and possible chemopreventive properties of betacyanins, natural plant pigments, contribute to a growing interest in their chemistry and separation. Mixtures of betacyanins from fresh red Gomphrena globosa L. cultivar flowers were separated in three highly polar solvent systems by high-speed counter-current chromatography (HSCCC) for a direct comparison of their separation effectiveness. Three samples of crude extract (600mg) were run on semi-preparative scale in solvent system (NH4)2SO4soln - EtOH (2.0:1.0, v/v) (system I) and the modified systems: EtOH - ACN - 1-PrOH - (NH4)2SO4satd.soln - H2O (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (system II) and EtOH - ACN - (NH4)2SO4satd.soln - H2O (1.0:0.5:1.2:1.0, v/v/v/v) (system III). The systems were used in the head-to-tail (system I) or tail-to-head (systems II and III) mode. The flow rate of the mobile phase was 2.0ml/min and the column rotation speed was 860rpm. The retention of the stationary phase was 52.0% (system I), 80.2% (systems II) and 82.0% (system III). The betacyanins in the crude extract as well as HSCCC fractions were analyzed by LC-MS/MS. System I was applied for the first time in HSCCC for the separation of betacyanins and was quite effective in separation of amaranthine and 17-decarboxy-amaranthine (αI=1.19) and very effective for 17-decarboxy-amaranthine and betanin (αI=2.20). Modification of system I with acetonitrile (system III) as well as acetonitrile and propanol (system II) increased their separation effectiveness. Systems II-III enable complete separation of 17-decarboxy-amaranthine (KD(II)=2.94,KD(III)=2.42) and betanin (KD(II)=2.46,KD(III)=1.10) as well as betanin and gomphrenin I (KD(II)=1.62, KD(III)=0.74). In addition, separation of amaranthine and 17-decarboxy-amaranthine is the most effective in system II, therefore, this system proved to be the most suitable for the separation of all polar betacyanins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rehabilitation of a house with high radon level, using a ground ventilation system with double barrier

    International Nuclear Information System (INIS)

    Bonnefous, Y.C.; Richon, P.; Arnautou, J.C.; Sabroux, J.C.

    1995-01-01

    A ground ventilation system has been designed and implemented in a town hall in Brittany. Radon concentration in the heating unit room of this building has been reduced from 10000 Bq/m 3 to less than 200 Bq/m 3 by the means of a depressurization system using a 32 W fan, which blows air into a permeable gravel layer intercalated between two radon barrier mylar films. Results show that passive systems should be applicable; for new buildings, very low energy consumption systems with 10 W fans, are easily implemented if designed before construction

  7. Analytical and semipreparative chiral separation of cis-itraconazole on cellulose stationary phases by high-performance liquid chromatography.

    Science.gov (United States)

    Kurka, Ondřej; Kučera, Lukáš; Bednář, Petr

    2016-07-01

    cis-Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis-itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis-itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two-step high-performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris-(4-methylbenzoate) and cellulose tris-(3,5-dimehylphenylcarbamate) columns with complementary selectivity for cis-itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simple, rapid, and environmentally friendly method for the separation of isoflavones using ultra-high performance supercritical fluid chromatography.

    Science.gov (United States)

    Wu, Wenjie; Zhang, Yuan; Wu, Hanqiu; Zhou, Weie; Cheng, Yan; Li, Hongna; Zhang, Chuanbin; Li, Lulu; Huang, Ying; Zhang, Feng

    2017-07-01

    Isoflavones are natural substances that exhibit hormone-like pharmacological activities. The separation of isoflavones remains an analytical challenge because of their similar structures. We show that ultra-high performance supercritical fluid chromatography can be an appropriate tool to achieve the fast separation of 12 common dietary isoflavones. Among the five tested columns the Torus DEA column was found to be the most effective column for the separation of these isoflavones. The impact of individual parameters on the retention time and separation factor was evaluated. These parameters were optimized to develop a simple, rapid, and green method for the separation of the 12 target analytes. It only took 12.91 min using gradient elution with methanol as an organic modifier and formic acid as an additive. These isoflavones were determined with limit of quantitation ranging from 0.10 to 0.50 μg/mL, which was sufficient for reliable determination of various matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation

    Science.gov (United States)

    Wang, Hongyu; Li, Jun; Jin, Di; Tang, Mengxiao; Wu, Yun; Xiao, Lianghua

    2018-01-01

    We come up with a control strategy for suppression of supersonic flow separation based on high-frequency Counter-flow Plasma Synthetic Jet Actuator (CPSJA). The main purpose of this investigation is to verify if its control authority can be enhanced by the jet/shock interaction. We use a blunt nose to generate a bow shock, a step on a flat plate to introduce a massive separation in a Mach 2 wind tunnel, and the CPSJA to generate Plasma Synthetic Jet (PSJ). In this study, pulsed capacitive discharge is provided for an array of CPSJAs, which makes the actuation (discharge) frequency f1 = 1 kHz, f2 = 2 kHz and f3 = 3 kHz. We use the high-speed schlieren imaging and fast response pressure transducers as well as a numerical simulation to investigate the quiescent PSJ properties, the interaction between the jet and bow shock, and its disturbance effect on the downstream separated region. The schlieren images show that PSJ is characterized by a succession of vortex rings; the jet strength weakens with the increase of frequency. A 4.5 mN jet thrust is found for all the frequencies. The simulation results show that jet/shock interaction produces vorticity in the vortex ring of the jet, enhancing turbulent mixing in PSJ so that a great deal of momentum is produced into the flow. We found the downstream flow is significantly disturbed by the enhanced actuation. Actuation with frequency of f2, f3 which is close to the natural frequency fn of the separation bubble suppresses the separation with the upstream laminar boundary layer being periodically attenuated, which has a better control effect than f1. The control effect is sensitive to the position where PSJ interacts with the shear layer, but the amount of energy deposited in one pulse is not crucial in a separation reduction in the experiment.

  10. Structural-morphological variations in pseudo-barrier films of anode aluminium oxide under irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    Comparative study of structural-morphological variations under electron beam effect in pseudo-barrier films of anode aluminium oxide, obtained in seven different solutions and proton or X-rays pre-irradiated to determine structure peculiarities of anode aluminium oxides, is presented. Such study is a matter of interest from the solid-phase transformation theory point of view and for anode aluminium films application under radiation. Stability increase of pseudo-barrier films of anode aluminium oxide to the effect of UEhMV-100 K microscope electron beam at standard modes of operation (75 kV) due to proton or X-rays irradiation is found. Difference in structural-monorphological variations obtained in different solutions of anode aluminium films under high-energy particles irradiation is determined. Strucural-phase microinhomogeneity of amorphous pseudo-barrier films of anode aluminium oxide and its influence on solid-phase transformations character under electron bean of maximal intensity are detected

  11. Separation and determination of high-carbon alcohols using method of column chromatographic and gas-chromatographic analysis

    International Nuclear Information System (INIS)

    Kang Zhongrong; Li Biping; Zeng Yongchang

    1988-01-01

    This paper describes the separation and determination of high-carbon alcohols from amine extractant by using the method of column chromatography of aluminium oxide and gas-chromatographic analysis. The total conent of high-carbon alcohols is determined by the method of column chromatography, while the components of the high-carbon alcohols and their relative contents are determined by the method of gas-chromatography. A simple reliable and practical method is provided for the analysis of high-carbon alcohol from the amine extractant in this paper

  12. Advantages of retrofitting high velocity separators to LWR turbines; experience in VVR NPP Loviisa

    International Nuclear Information System (INIS)

    Dueymes, E.; Peyrelongue, J.P.

    1992-01-01

    Erosion-corrosion by wet steam is a concern for VVER operators and also, in numerous LWR power plants of western technology. The backfitting of moisture separators at the HP Turbine outlets is a way to avoid maintenance costs, repairs, replacement of pipes or equipments. Installation of HVS at LOVIISA confirms that this device, whose installation work is reduced to a minimum, is able to remove quite all the water from the steam just a few meters downstream the HP cylinder. A long term operation can be expected for carbon steel equipments, even those previously damaged by erosion-corrosion. (authors). 6 figs., 2 tabs

  13. Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karger, Barry L.; Kotler, Lev; Foret, Frantisek; Minarik, Marek; Kleparnik, Karel

    2003-12-09

    A modular multiple lane or capillary electrophoresis (chromatography) system that permits automated parallel separation and comprehensive collection of all fractions from samples in all lanes or columns, with the option of further on-line automated sample fraction analysis, is disclosed. Preferably, fractions are collected in a multi-well fraction collection unit, or plate (40). The multi-well collection plate (40) is preferably made of a solvent permeable gel, most preferably a hydrophilic, polymeric gel such as agarose or cross-linked polyacrylamide.

  14. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  15. Phase separation and magnetic ordering studied by high resolution neutron diffraction

    International Nuclear Information System (INIS)

    Caspi, E.N.; Melamud, M.; Pinto, H.; Shaked, H.; Chmaissem, O.; Jorgensen, J.D.; Short, S.

    1999-01-01

    Complete text of publication follows. In a previous work on the (U 1-x Nd x )Co 2 Ge 2 system, two magnetic transitions were observed in the temperature dependencies of the magnetic susceptibility and in the intensity of the magnetic reflections in neutron diffraction [1]. Because of insufficient resolution, it was not clear whether this is due to clustering or phase separation. In both cases the U-rich regions are expected to order magnetically at higher temperature than the U-poor ones, resulting in two magnetic transitions. In order to resolve this question a temperature dependent TOF neutron diffraction of the x = 0.25 compound has been performed on the SEPD at Argonne's IPNS [2]. The temperature dependent diffractograms were refined by the Rietveld method. It was found that the compound separates into two phases: x = 0.4 (55 wt%) and x = 0.1 (45 wt%). The temperature dependence of the magnetic moment was obtained for each phase, with the transition temperatures: T N (x=0.4) = 130 K, and T N (x=0.1) = 165 K. (author) [1] E. Caspi et al., Phys. Rev. B, 57 (198) 449.; [2] J.D. Jorgensen et al., J. Appl. Cryst. 22 (1989) 321

  16. Aluminum Oxide Nanoparticles for Highly Efficient Asphaltene Separation from Crude Oil Using Ceramic Membrane Technology

    Directory of Open Access Journals (Sweden)

    Rezakazemi Mashallah

    2017-11-01

    Full Text Available The effects of aluminum oxide nanoparticles on the removal of asphaltenes from an Iranian crude oil (Soroush using a ceramic membrane with pore size of 0.2 µm were investigated. In order to achieve superior asphaltene separation by ultrafiltration, it is essential to make some changes for destabilizing asphaltene in crude oil. The asphaltene destabilization was done using crude oil contact with an acid containing dissolved metal ions. Metal oxide nanoparticles adsorbed asphaltene molecules and increased their molecular size. The nanoparticle of aluminum oxide was applied to alter precipitation and peptization properties of asphaltenes. Dynamic Light Scattering (DLS was used to measurement of the asphaltene molecular size dissolved in toluene. Raman spectroscopy and the Tuinstra equation were used to determine the aromatic sheet diameter (La via the integrated intensities of the G and D1 modes. This revealed that the asphaltene particles react with nano aluminum oxide and the average molecular size of asphaltene was raised from 512.754 to 2949.557 nm and La from 5.482 to 13.787. The obtained results showed that using nano aluminum oxides, asphaltene separation increased from 60–85 wt% to 90–97 wt% based on the asphaltene content of crude oil.

  17. Fabrication and Characterization of Polyimide-CNTs hybrid membrane to enhance high performance CO2 separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2015-03-01

    Full Text Available This study investigates the CO2 separation performance of a hybrid membranes flat sheet based on polyimide incorporated with carbon nanotubes (CNTs particles. CNTs was selected and its loading were a 1 wt% in total solid. The hybrid composite membranes were fabricated in order to increase their separation performance for the gaseous mixture of CO2 and CH4. Hybrid Composite  membrane incorporated carbon nanotubes were mannufactured  by the dry-wet phase inversion technique using flat sheet membrane casting machine system,  in which the CNTs were embedded into the polyimide membrane and the resulting membranes were characterized. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The results revealed that the good multi-wall carbon nanotubes dispersion leads to enhanced gas permeation properties. It is also concluded that addition of carbon nanotubes particles into the matrix of Polyimide polymer has significant effect on the membrane structure and properties.

  18. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  19. The effect of high concentration additive on chiral separations in supercritical fluid chromatography.

    Science.gov (United States)

    Speybrouck, David; Doublet, Charline; Cardinael, Pascal; Fiol-Petit, Catherine; Corens, David

    2017-08-11

    Supercritical Fluid Chromatography is frequently used to efficiently handle separations of enantiomers. The separation of basic analytes usually requires the addition of a basic additive in the mobile phase to improve the peak shape or even to elute the compounds. The effect of increasing the concentration of 2-propylamine as additive on the elution of a series of basic compounds on a Chiralpak-AD stationary phase was studied. In this study, unusual additive concentrations ranging from 0.3% to 10% of 2-propylamine 2-propylaminein the modifier were explored and the effect on retention, peak shape, selectivity and resolution was evaluated. The addition of a large quantity of additive allowed to drastically improve the selectivity and the resolution, and even enantiomers elution order reversal was observed by changing the concentration of basic additive. The role of the ratio additive/modifier appeared a key to tune the enantioselectivity. Finally, the impact of these drastic conditions on the column material was evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao; Dong, Xinglong; Lin, Junzhong; Teat, Simon J.; Jensen, Stephanie; Cure, Jeremy; Alexandrov, Eugeny V.; Xia, Qibin; Tan, Kui; Wang, Qining; Olson, David H.; Proserpio, Davide M.; Chabal, Yves J.; Thonhauser, Timo; Sun, Junliang; Han, Yu; Li, Jing

    2018-01-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  1. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Dong, Xinglong [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Lin, Junzhong [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Teat, Simon J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Jensen, Stephanie [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Cure, Jeremy [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Alexandrov, Eugeny V. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Xia, Qibin [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; South China University of Technology, Guangzhou (China). School of Chemistry and Chemical Engineering; Tan, Kui [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Wang, Qining [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Olson, David H. [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Proserpio, Davide M. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Università degli Studi di Milano, Milano (Italy). Dipartimento di Chimica; Chabal, Yves J. [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Thonhauser, Timo [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Department of Chemistry; Sun, Junliang [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Han, Yu [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Li, Jing [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology

    2018-05-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  2. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    Science.gov (United States)

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  3. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao

    2018-04-25

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  4. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    Science.gov (United States)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Joana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    Processes driving methane (CH4) emissions in wetland ecosystems are highly complex. Especially, the separation of CH4 emissions into ebullition and diffusion derived flux components, a perquisite for the mechanistic process understanding and identification of potential environmental driver is rather challenging. We present a simple calculation algorithm, based on an adaptive R-script, which separates open-water, closed chamber CH4 flux measurements into diffusion- and ebullition-derived components. Hence, flux component specific dynamics are revealed and potential environmental driver identified. Flux separation is based on a statistical approach, using ebullition related sudden concentration changes obtained during high resolution CH4 concentration measurements. By applying the lower and upper quartile ± the interquartile range (IQR) as a variable threshold, diffusion dominated periods of the flux measurement are filtered. Subsequently, flux calculation and separation is performed. The algorithm was verified in a laboratory experiment and tested under field conditions, using flux measurement data (July to September 2013) from a flooded, former fen grassland site. Erratic ebullition events contributed 46% to total CH4 emissions, which is comparable to values reported by literature. Additionally, a shift in the diurnal trend of diffusive fluxes throughout the measurement period, driven by the water temperature gradient, was revealed.

  5. Low-voltage high-speed programming gate-all-around floating gate memory cell with tunnel barrier engineering

    Science.gov (United States)

    Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali

    2018-06-01

    The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.

  6. Separation of 90Sr from Purex high level waste and development of a 90Sr-90Y generator

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Chitnis, R.R.; Achuthan, P.V.; Kannan, R.; Gopalakrishnan, V.; Balu, K.

    2000-04-01

    90 Y (T 1/2 =64.2 h) finds several applications in nuclear medicine. It is formed from the decay of 90 Sr which has a long half-life of 28.8 years. 90 Sr can be used as a long-lasting source for the production of carrier-free 90 Y. 90 Sr itself is abundantly available in high level waste (HLW) of PUREX origin. The present studies deal with the separation of pure 90 Sr from HLW and the subsequent separation of 90 Y from 90 Sr. Actinides and some of the fission products like lanthanides, zirconium, molybdenum and cesium were first removed from the HLW using methods based on solvent extraction and ion-exchange studied earlier in our laboratory. The resulting waste solution was used as a feed for the present process. The separation of 90 Sr from HLW was based on radiochemical method which involved a repeated scavenging with ferric hydroxide followed by strontium carbonate precipitation. The separation of 90 Y from 90 Sr was achieved by membrane separation technique. A compact generator is developed for this separation using a commercially available polytetrafluoroethylene (PTFE) membrane, impregnated with indigenously synthesised 2-ethylhexyl 2-ethylhexyl phosphonic acid (KSM-17). Generator system overcomes the drawbacks associated with conventional solvent extraction and ion-exchange based generators. The product is in chloride form and is suitable for complexation studies. After gaining an operating experience of ∼3 years in generating carrier-free 90 Y at 2 mCi level for initial studies in radiotherapeutic applications, the process was scaled up for the production of about 12 mCi of 90 Y to be used for animal studies before its application to patients. Radiochemical and chemical purity of the product was critically assayed by radiometry, ICP-AES, etc. The process is amenable for further scaling up. (author)

  7. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hong; Zhang, Yin; Yao, Zhikan; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-01-01

    Highlights: • For the first time, a cross-linked gel polymer electrolyte with additional lithium ions, was introduced into a nonwoven separator. • The PI nonwoven is employed to ensure enhanced thermal stability and mechanical strength of the IACS. • With the introduction of PAMPS(Li"+), the migration and mobility rate of anions could be hindered by the -SO_3"− group, giving rise to a high lithium ion transference number. • This IACS is recommended as a promising candidate for the high-power and high-safety lithium ion batteries. - Abstract: A novel composite nonwoven separator exhibiting high heat resistance, high ionic conductivity and high lithium ion transference number is fabricated by a simple dip-coating and heat treatment method. The thermal stable polyimide (PI) nonwoven matrix is chosen as a mechanical support and contributes to improving the thermal shrinkage of the composite nonwoven separator (abbreviated as IACS). The cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) PAMPS(Li"+) gel polymer electrolyte (GPE), lithium ion sources of a single ion conductor, is introduced into the PI nonwoven matrix and acts as a functional filler. This PAMPS (Li"+) GPE is proved to be able to provide internal short circuit protection, to alleviate liquid electrolyte leakage effectively, to supply more lithium ions dissociating from PAMPS (Li"+) by liquid electrolyte solvent, to contribute a more stable interfacial resistance, and thus resulting in an excellent cyclability. More notably, the migration and mobility rate of anions could be hindered by the −SO_3"− group in the PAMPS (Li"+) polymer based on electrostatic interaction, giving rise to a very high lithium ion transference number. These fascinating characteristics endow the IACS a great promise for the application in the high power and high safety lithium ion batteries.

  8. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    Science.gov (United States)

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structure-property relationships in flavour-barrier membranes with reduced high-temperature diffusivity

    International Nuclear Information System (INIS)

    Heitfeld, Kevin A.; Schaefer, Dale W.

    2009-01-01

    Encapsulation is used to decrease the premature release of volatile flavour ingredients while offering protection against environmental damage such as oxidation, light-induced reactions, etc. Hydroxypropyl cellulose (HPC) is investigated here as a 'smart,' temperature responsive membrane for flavour encapsulation and delivery. Gel films were synthesized and characterized by diffusion and small-angle neutron and X-ray scattering techniques. Increasing temperature typically increases the diffusion rate across a membrane; HPC, however, can be tailored to give substantially improved elevated temperature properties. Scattering results indicate processing conditions have a significant impact on membrane morphology (micro phase separation). Under certain synthetic conditions, micro phase separation is mitigated and the membranes show temperature-independent diffusivity between 25 C and 60 C.

  10. Direct qualitative and quantitative determination of rare earths after separation by high pressure liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Weuster, W.; Specker, H.

    1980-01-01

    The rare earths from lanthanum to erbium can be separated by means of HPLC in an eluent system containing di-isopropylether/tetrahydrofuran/nitric acid (100:30:3), and they are determined qualitatively and quantitatively after calibration. Fluorescence quenching of THF at break-through of the single elements serves as indication method. This quenching is proportional to the concentration. The calibration curve is linear within 0.2 to 0.02 moles input. Standards, ores (monazites, cerite earths, yttriae) and technical products were analysed qualitatively and quantitatively. The results obtained are in good agreement with analytical values from different methods. The relative standard deviation is 1.8-3% (N = 10). The procedure takes 50 min from dissolution of the analytical sample. (orig.) [de

  11. High-performance separation and supercritical extraction of lanthanides and actinides

    International Nuclear Information System (INIS)

    Datta, Arpita; Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Extensive studies were carried out at Chemistry Group, IGCAR for the rapid separation of individual lanthanides and actinides using dynamic ion-exchange chromatographic technique. The atom percent fission was determined from the concentrations of the lanthanide fission products, uranium and plutonium contents of dissolver solution. These advantages were exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator. Supercritical fluid extraction (SFE) of actinides from waste matrices was studied in detail at our laboratory using modified supercritical carbon dioxide (Sc-CO 2 ). Complete extraction and recovery of uranium, plutonium and americium from various matrices was achieved using Sc-CO 2 modified with suitable ligands. The technique was demonstrated for the recovery of plutonium from actual waste received from different laboratories. (author)

  12. The development of membrane based high purity oily water separators for use in Arctic waters

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Tremblay, A.Y. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering, Industrial Membrane Centre; Veinot, D.E. [Defence Research and Development Canada, Halifax, NS (Canada)

    2005-07-01

    With increased exploration and industrial activity in the Canadian Arctic, interest in the Northwest Passage as a shipping route has also increased. The oily wastewater produced by ships must be treated prior to discharge, particularly in the sensitive Arctic environment where biodegradation of organics is very slow due to cold climatic conditions and low sunlight. As such, safe techniques are needed for the treatment of oily wastewater released from ships. However, bilge water is difficult to treat because it contains seawater, particulates, used oils and detergents. Membrane based oily water separators (OWS) are considered to be a key technology for the treatment of bilge water onboard ships. The issues that must be taken into account in the ship-born use of membrane based OWS include the proper treatment of the oily brine before discharge; the substantial reduction in volume that is required; the complexity of the technology; labour associated with the operation of the system due to filter changes and cleaning; and, system automation to simplify its operation. In this study, a membrane-based process for treating bilge water was developed to meet stringent discharge regulations for discharge in Arctic waters. Currently, this discharge limit is set at 0 ppm. A pilot scale membrane cascade system was designed and evaluated. Multilumen ceramic membranes were used in the first stage and Sepa{sup R} test cells were used in the second stage. Optimal membrane pore size was determined. The study investigated the separation of oil and grease using different molecular weight cut-off (MWCO) membranes. The study revealed that through proper membrane design, it is possible to remove oil and grease from bilge water to a level permitting its discharge to Arctic waters. However, it was recommended that low level aromatic diesel fuels be used in ships operating in Arctic waters since the presence of soluble aromatics in diesel fuel increases the technical difficulty of reaching

  13. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Hendriks, Koen H; Robinson, Sophia G; Braten, Miles N; Sevov, Christo S; Helms, Brett A; Sigman, Matthew S; Minteer, Shelley D; Sanford, Melanie S

    2018-02-28

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.

  14. Separation method for rare-earths using high-voltage electrophoresis on paper strip; Methode de separation des terres rares par electrophorese a haute tension sur papier - support

    Energy Technology Data Exchange (ETDEWEB)

    Clarence, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    The equipment includes an electrophoresis set running at 3 000 V and 20 mA. Two cooling plates are used as heat exchanger, and a pneumatic pressure device to insure an uniform pressure on the paper strip laid flat. The mobilities and the separations of the rare earths in lactic, and, {alpha} hydroxy-isobutyric acid solutions are investigated on cellulose acetate strip. Better results are obtained with {alpha} hydroxy-isobutyric acid. The method is rapid and allows a fine fractionation of rare earth elements within less than an hour. A complete separation of a Ce - Pr - Nd - Pm - Eu mixture, and a Y - Tb mixture is obtained. (author) [French] L'equipement comporte un appareil d'electrophorese fonctionnant sous 3000 V a 20 mA. Deux plaques refrigerantes absorbent la chaleur dissipee, et un coussin pneumatique assure une pression uniforme sur le papier support. Les mobilites et les separations des terres rares sont etudiees en milieux lactiques et {alpha} hydroxyisobutyriques sur papier d'acetate de cellulose. De meilleurs resultats sont obtenus avec l'acide {alpha} hydroxyisobutyrique. La methode est tres rapide et permet de separer un melange de terres rares radioactives en moins d'une heure. Des separations fines d'un melange Ce, Pr, Nd, Pm, Eu, et d'un melange Y, Tb sont egalement obtenues. (auteur)

  15. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-Ping, E-mail: hyp041@163.com [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Nan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Hunan GuangYi Experimental Middle School, Changsha, Hunan 410014 (China); Tan, Yan-Xi; Wang, Fei; Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  16. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    2000-01-01

    Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic-pulsed a......Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic......-pulsed amperometric detection (HPAEC-PAD) method that determines all the polyols used as food additives in food products and the most commonly found mono- and disaccharides on a routine basis. The linearity, repeatability, internal reproducibility and accuracy are described. The applicability of the method has been...

  17. Design of an RF Antenna for a Large-Bore, High Power, Steady State Plasma Processing Chamber for Material Separation

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Freeman, R.L.

    2001-01-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure

  18. Achievement report for fiscal 1990 on research and development of high-efficiency molecule separating membrane materials; 1990 nendo kokoritsu kobunshi bunrimaku zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    In order to achieve high efficiency and energy conservation in the separation processes in the chemical industry, activities were performed to seek high-efficiency liquid separation films, gas separation films, and the related technologies that make possible separation, condensation, and refinement of substances that have consumed large amount of energy in the conventional separation processes (for example, water-alcohol, and rare gases), and substances difficult of separation and refinement because of resemblance in physical and chemical properties (for example, isomer mixed substances). For the gas separation films, research and development has been made on (1) high-order molecule recognizing films, (2) high-density metal complex fixing thin films, (3) high-functional complex films, and (4) re-activating oxygen condensation films. In (1), attempt was made on oxygen condensation by impregnating the carrier film with aqueous cobalt complex solution with regard to oxygen, for example. Research has been made on alcohol condensation film in the liquid selecting and separating films. Research and development has been made on fluororesin films for water/polar organics separation, (3) high-order structure control of water selective and permeating films, (4) water/acetic acid separating films, and (5) particle separation process utilizing liquid films. (NEDO)

  19. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  20. Determination of La and Nd by thermal ionization mass spectrometry (TIMS) pre-separated by high performance liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Jaison, P.G.; Raut, N.M.; Parab, A.R.; Khodade, P.S.; Govindan, R.; Aggarwal, S.K.

    2003-01-01

    Determination of La and Nd by TIMS is required for accurate determination of burn-up of nuclear fuels. During their thermal ionization mass spectrometric (TIMS) analysis, 138 Ce and 142 Ce show spectroscopic isobaric interferences at 138 La and 142 Nd, respectively. Hence, it is essential to remove Ce from La and Nd for their accurate isotopic composition determination. Reversed phase high performance liquid chromatography (HPLC) is a promising technique for rapid and effective separation

  1. LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil

    Science.gov (United States)

    Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-01-01

    This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

  2. Separation of mouse testis cells on a Celsep (TM) apparatus and their usefulness as a source of high molecular weight DNA or RNA

    Science.gov (United States)

    Wolgemuth, D. J.; Gizang-Ginsberg, E.; Engelmyer, E.; Gavin, B. J.; Ponzetto, C.

    1985-01-01

    The use of a self-contained unit-gravity cell separation apparatus for separation of populations of mouse testicular cells is described. The apparatus, a Celsep (TM), maximizes the unit area over which sedimentation occurs, reduces the amount of separation medium employed, and is quite reproducible. Cells thus isolated have been good sources for isolation of DNA, and notably, high molecular weight RNA.

  3. Separation of three anthraquinone glycosides including two isomers by preparative high-performance liquid chromatography and high-speed countercurrent chromatography from Rheum tanguticum Maxim. ex Balf.

    Science.gov (United States)

    Chen, Tao; Li, Hongmei; Zou, Denglang; Liu, Yongling; Chen, Chen; Zhou, Guoying; Li, Yulin

    2016-08-01

    Anthraquinone glycosides, such as chrysophanol 1-O-β-d-glucoside, chrysophanol 8-O-β-d-glucoside, and physion 8-O-β-d-glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above-mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1-O-β-d-glucoside and chrysophanol 8-O-β-d-glucoside. This study demonstrated an efficient strategy based on preparative high-performance liquid chromatography and high-speed countercurrent chromatography for the separation of the above-mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions.

    Science.gov (United States)

    Wang, Chih-Feng; Yang, Sheng-Yi; Kuo, Shiao-Wei

    2017-02-20

    Because the treatment of oily wastewater, generated from many industrial processes, has become an increasing environmental concern, the search continues for simple, inexpensive, eco-friendly, and readily scalable processes for fabricating novel materials capable of effective oil/water separation. In this study we prepared an eco-friendly superhydrophilic and underwater superoleophobic polyvinylpyrrolidone (PVP)-modified cotton that mediated extremely efficient separations of mixtures of oil/water and oil/corrosive solutions. This PVP-modified cotton exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 20 h. Moreover, the compressed PVP-modified cotton could separate both surfactant-free and -stabilized oil-in-water emulsions with fluxes of up to 23,500 L m -2 h -1 bar -1 -a level one to two orders of magnitude higher than that possible when using traditional ultrafiltration membranes having similar rejection properties. The high performance of our PVP-modified cotton and its green, low-energy, cost-effective preparation suggest its great potential for practical applications.

  5. Utility of reversed phase high performance liquid chromatography for on-line yield determination of radiochemical separations: Studies with cobalt

    International Nuclear Information System (INIS)

    Subramanian, S.; Woittiez, J.R.W.

    1993-01-01

    This article indicates the potentials of high performance liquid chromatography (HPLC) as a radiochemical technique for multielement separation of neutron irradiated samples. The focus lies on the convenience to use the detector signal of the eluted components to indicate the chemical yield of the analyte, which has often proved to be a crucial step in radiochemical separations. Two signals have been utilized. The UV signal of the metal-ligand complexes separated by reversed phase HPLC and the radioactive response as a result of sample irradiation of carrier-tracer addition. Change in ratio is discussed between the two signals, if any, for a specific sample. Losses of metal as much as 65% were simulated and corrected using the individual UV response. The method promises improved accuracy for elemental analysis despite losses suffered during the various chemical steps. The procedure omits the necessity of additional analytical steps for yield determination. The present article aims at the chromatographic part of the study. Cobalt as cobalt diethyldithiocarbamate has been used to demonstrate the viability of the concept. The separation was developed on c C18 reverse phase analytical column and optimized on a semi preparative one

  6. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    International Nuclear Information System (INIS)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-01-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length

  7. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    Science.gov (United States)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  8. Wet high-intensity magnetic separation for the concentration of Witwatersrand gold-uranium ores and residues

    International Nuclear Information System (INIS)

    Corrans, I.J.; Levin, J.

    1979-01-01

    Wet high-intensity magnetic separation (WHIMS) for the concentration of gold and uranium was tested on many Witwatersrand cyanidation residues, and on some ores and flotation tailings. The results varied, but many indicated recoveries of over 60 per cent of the gold and uranium. The main source of loss is the inefficiency of WHIMS for material of smaller particle size than 20μm. The recoveries in the continuous tests were lower than those in the batch tests. The continuous tests indicated an operational difficulty that could be experienced in practice, namely the tendency for wood chips and ferromagnetic particles to block the matrix of the separator. It was decided that a solution to the problem lies in the modification of the separator to allow continuous removal of the matrix for cleaning. A system has been developed for this purpose and is being demonstrated on a pilot-plant scale. Promising results were obtained in tests on a process that combines a coarse grind, gravity concentration, and WHIMS. In the gravity-concentration step, considerable recoveries, generally over 50 per cent, of high-grade pyrite were obtained, together with high recoveries of gold and moderate, but possibly important, recoveries of uranium. A simple model describing the operation of the WHIMS machine in terms of the operating parameters is described. This should reduce the amount of empirical testwork required for the optimization of operating conditions and should provide a basis for scale-up calculations. The economics of the WHIMS process is discussed [af

  9. Studies on the separation and purification of strontium from the highly radioactive waste flow of fuel element reprocessing

    International Nuclear Information System (INIS)

    Tuerker, A.

    1989-10-01

    The quantity of spent fuel elements is increasing due to the extended peaceful uses of nuclear energy. Of the numerous fission products, strontium has an interesting application potential as a radiation or energy source for utilization in various industrial fields. A necessary condition for its use is its isolation in high radiochemical purity from the highly radioactive waste flow of the Purex process. In the present study, precipitation and coprecipitation reactions, and in particular ion exchange reactions, were chosen from among the various possible chemical and physical separation methods and examined with respect to their suitability for a selective separation of strontium from the other fission products. In selecting separation materials, particularly with respect to radiation resistance, thermal stability and selectivity, polyantimonic acid proved to be the best absorbent (even in a very acid medium) for strontium. Furthermore, the behaviour of the most important radionuclides was studied with respect to the denitration reaction from a 5 molar nitric acid solution. On the basis of the high demands made on the purity of the product, a method was developed by combining lead sulphate carrier precipitation with an ion exchange reaction on polyantimonic acid and is shown in a flow chart. (orig.) [de

  10. Quiescent double barrier regime in the DIII-D tokamak.

    Science.gov (United States)

    Greenfield, C M; Burrell, K H; DeBoo, J C; Doyle, E J; Stallard, B W; Synakowski, E J; Fenzi, C; Gohil, P; Groebner, R J; Lao, L L; Makowski, M A; McKee, G R; Moyer, R A; Rettig, C L; Rhodes, T L; Pinsker, R I; Staebler, G M; West, W P

    2001-05-14

    A new sustained high-performance regime, combining discrete edge and core transport barriers, has been discovered in the DIII-D tokamak. Edge localized modes (ELMs) are replaced by a steady oscillation that increases edge particle transport, thereby allowing particle control with no ELM-induced pulsed divertor heat load. The core barrier resembles those usually seen with a low (L) mode edge, without the degradation often associated with ELMs. The barriers are separated by a narrow region of high transport associated with a zero crossing in the E x B shearing rate.

  11. Separation and preparation of xanthochymol and guttiferone E by high performance liquid chromatography and high speed counter-current chromatography combined with silver nitrate coordination reaction.

    Science.gov (United States)

    Li, Jun; Gao, Ruixi; Zhao, Dan; Huang, Xianju; Chen, Yu; Gan, Fei; Liu, Hui; Yang, Guangzhong

    2017-08-18

    Xanthochymol (XCM) and guttiferone E (GFE), a pair of π bond benzophenone isomers from Garcinia xanthochymus, were once reported to be difficult or impossible to separate. The present study reports the successful separation of these two isomers through high performance liquid chromatography (HPLC), as well as their effective isolation using high speed counter-current chromatography (HSCCC) based on the silver nitrate (AgNO 3 ) coordination reaction. First, an effective HPLC separation system was developed, achieving a successful baseline separation with resolution of 2.0. Based on the partition coefficient (K) resolved by HPLC, the two-phase solvent system was determined as n-hexane, methanol and water with the uncommon volume ratio of 4:6:1. A crude extract of Garcinia xanthochymus (0.2g) was purified by normal HSCCC and refined with AgNO 3 -HSCCC. Monomers of XCM and GFE were identified by HPLC, mass spectrometry (MS) and nuclear magnetic resonance (NMR). The results demonstrate the separation and isolation of π bond benzophenone isomers using ordinary octadecyl silane (C 18 ) columns and HSCCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High-capacity, selective solid sequestrants for innovative chemical separation: Inorganic ion exchange approach

    International Nuclear Information System (INIS)

    Bray, L.

    1995-01-01

    The approach of this task is to develop high-capacity, selective solid inorganic ion exchangers for the recovery of cesium and strontium from nuclear alkaline and acid wastes. To achieve this goal, Pacific Northwest Laboratories (PNL) is collaborating with industry and university participants to develop high capacity, selective, solid ion exchangers for the removal of specific contaminants from nuclear waste streams

  13. Information barriers

    International Nuclear Information System (INIS)

    Fuller, J.L.; Wolford, J.

    2001-01-01

    measurement equipment, that the system is functioning properly and does not incorporate any hidden features (or 'switches') that allows the host to pass out-of-spec items. Authentication of information barrier systems is an extremely important concept to consider in designing and assembling these types of inspection systems. There are a limited set of straightforward approaches to authenticate such systems, when applied in conjunction with open and cooperative system design and fabrication, that will provide a high degree of confidence to both host and inspector that the system will prevent the release of classified information and yet still inspect items in a manner consistent with the objectives of an inspection agreement. These principles have been outlined in this paper, along with areas where additional studies would be helpful. (author)

  14. 30 CFR 75.819 - Motor-starter enclosures; barriers and interlocks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motor-starter enclosures; barriers and...-Voltage Distribution High-Voltage Longwalls § 75.819 Motor-starter enclosures; barriers and interlocks. Compartment separation and cover interlock switches for motor-starter enclosures must be maintained in...

  15. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance

    Directory of Open Access Journals (Sweden)

    Richard J. Bingham

    2017-11-01

    Full Text Available The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  16. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance.

    Science.gov (United States)

    Bingham, Richard J; Dykeman, Eric C; Twarock, Reidun

    2017-11-17

    The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  17. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    International Nuclear Information System (INIS)

    Zheng Liu; Zhang Feng; Liu Sheng-Bei; Dong Lin; Liu Xing-Fang; Liu Bin; Yan Guo-Guo; Wang Lei; Zhao Wan-Shun; Sun Guo-Sheng; He Zhi; Fan Zhong-Chao; Yang Fu-Hua

    2013-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm 2 with a total active area of 2.46 × 10 −3 cm 2 . Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10 −5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. A low-frequency high-voltage rf-barrier-bunching system for high-intensity neutron source compressor rings

    International Nuclear Information System (INIS)

    Hardek, T.W.; Ziomek, C.; Rees, D.

    1995-01-01

    A Los Alamos design for a 1-MW pulsed neutron source incorporates a ring utilizing an rf-barrier bunching system. This bunching concept allows uniform longitudinal beam distributions with low momentum spread. Bunching cavities are operated at the revolution frequency (1.5 MHz in this case) and each of the 2nd, 3rd, 4th, and 5th revolution frequency harmonics. Their effects combine to maintain a beam free gap in the longitudinal distribution of the accumulated beam. The cavities are driven by low-plate-resistance common-cathode configured retrode amplifiers incorporating local rf feedback. Additional adaptive feed-forward hardware is included to reduce the beam-induced bunching-gap voltages well below that achievable solely with rf feedback. Details of this system are presented along with a discussion of the various feed-back and feed-forward techniques incorporated

  19. Testing and analyses of a high temperature thermal barrier for gas-cooled reactors

    International Nuclear Information System (INIS)

    Black, W.E.; Betts, W.S.; Felten, P.

    1979-01-01

    A full size, multi-panel section of a thermal barrier system was fabricated from a nickel-base superalloy and a combination of fibrous blanket insulation materials for specific application in a steam cycle gas-cooled nuclear reactor. The 2.4 m square array was representative of the sidewall of the lower core outlet plenum and included coverplates, attachments, seals, and a simulated water-cooled liner. Testing was conducted in a reactor grade, helium-filled chamber at 816 0 C for 100 hours, which established a normal (baseline) condition; 982 0 C for 10 hours, which satisfied an emergency condition; 1093 0 C for 1 hour, which simulated a faulted condition; and 1260 0 C, which was a non-design condition test to demonstrate the temperature overshoot capability of the system. Post-test examination indicated: (1) an acceptable performance by the anti-friction chromium carbide (Cr 3 C 2 ) coating; (2) no significant galling between non-coated surfaces; (3) no distortion of attachment fixtures; (4) predictable coverplate deflection during the design conditions testing (normal, emergency, and faulted); and (5) considerable plastic deformation resulting from the near-incipient melting temperature. (orig.)

  20. High performance lithium sulfur battery with novel separator membrane for space applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's human and robotic mission, the battery with extremely high specific energy (>500 Wh/kg) and long cycle life are urgently sought after in order to...

  1. Hydrogen separation from high temperature CO-containing syn-gas flow using molecular ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soudarev, A.; Konakov, G.; Souryaninov, A.; Molchanov, A. [Boyko Research Engineering Ceramic Heat Engines Center Ltd., St. Petersburg (Russian Federation); Lelait, L.; Stevens, P.H. [European Inst. for Power Studies, Karlsruhe (Germany)

    2006-07-01

    Poisoning of the platinum (Pt) metals used as catalysts for proton exchange membrane fuel cells (PEMFCs) can negatively impact on PEMFC operation efficiency. In order to address this issue, a supply of hydrogen with a carbon monoxide (CO) admixtures is required. This paper provided details of a new type of molecular ceramic membrane (MCM) that allows the separation of hydrogen (H{sub 2}) from the hydrocarbon fuel reforming products that contain CO and has higher temperature and pressure capacity than other membranes. After various tests, alumo-magnesium spinel (AMS) was selected as the most promising porous material for the ceramic multi-layer membrane. The crystalline structure of the AMS showed good thermo-dynamic stability during tests that ranged between 20 and 1400 degrees C, as well as a chemical resistance relative to the effects of the aggressive fuel cell environment, and no exposure to the oxidation-recovery processes in the CO and H{sub 2} flow. The macroporous substrate of the AMS and the membrane selection layers have the same composition. The formation of the carrier was conducted by a semi-dry molding on a hydraulic press. Formation of the nano-porous structure in the carrier macro-pores by the polysilicon acid sol solution treatment allowed the synthesis of the amorphous silica and crystobalite crystals with a developed surface and nano-dimension subporosity. Test results have shown that the MCM has optimum penetrability and selectivity values as well as admissible thermo-mechanical properties. H{sub 2} flow through the membrane was 1.5-1.7 times greater than the CO flow. It was concluded that the AMS-based membrane devices will increase the efficiency of the PEMFC power plants and reduce their degradation capacity. 2 refs., 1 tab., 1 fig.

  2. Effects of a Program to Promote High Quality Parenting by Divorced and Separated Fathers.

    Science.gov (United States)

    Sandler, Irwin; Gunn, Heather; Mazza, Gina; Tein, Jenn-Yun; Wolchik, Sharlene; Berkel, Cady; Jones, Sarah; Porter, Michele

    2018-05-01

    This paper reports on the effects on parenting and on children's mental health problems and competencies from a randomized trial of a parenting program for divorced and separated fathers. The program, New Beginnings Program-Dads (NBP-Dads), includes ten group sessions (plus two phone sessions) which promote parenting skills to increase positive interactions with children, improve father-child communication, use of effective discipline strategies, and skills to protect children from exposure to interparental conflict. The program was adapted from the New Beginnings Program, which has been tested in two randomized trials with divorced mothers and shown to strengthen mothers' parenting and improve long-term outcomes for children (Wolchik et al. 2007). Fathers were randomly assigned to receive either NBP-Dads or a 2-session active comparison program. The sample consisted of 384 fathers (201 NBP-Dads, 183 comparisons) and their children. Assessments using father, youth, and teacher reports were conducted at pretest, posttest, and 10-month follow-up. Results indicated positive effects of NBP-Dads to strengthen parenting as reported by fathers and youth at posttest and 10-month follow-up. Program effects to reduce child internalizing problems and increase social competence were found at 10 months. Many of the program effects were moderated by baseline level of the variable, child age, gender, and father ethnicity. This is the first randomized trial to find significant effects to strengthen father parenting following divorce. In view of recent changes in family courts to allot fathers increasing amounts of parenting time following divorce, the results have significant implications for improving outcomes for children from divorced families.

  3. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    Science.gov (United States)

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste

    International Nuclear Information System (INIS)

    Hill, M.D.; White, I.F.; Fleishman, A.B.

    1980-01-01

    It has often been suggested that the potential hazard to man from the disposal of high-level radioactive waste could be reduced by removing a substantial fraction of the actinide elements. In this report the effects of actinide separation on the radiological consequences of one of the disposal options currently under consideration, that of burial in deep geologic formations, are examined. The results show that the potential radiological impact of geologic disposal of high-level waste arises from both long-lived fission products and actinides (and their daughter radionuclides). Neither class of radionuclides is of overriding importance and actinide separation would therefore reduce the radiological impact to only a limited extent and over limited periods. There might be a case for attempting to reduce doses from 237 Np. To achieve this it appears to be necessary to separate both neptunium and its precursor element americium. However, there are major uncertainties in the data needed to predict doses from 237 Np; further research is required to resolve these uncertainties. In addition, consideration should be given to alternative methods of reducing the radiological impact of geologic disposal. The conclusions of this assessment differ considerably from those of similar studies based on the concept of toxicity indices. Use of these indices can lead to incorrect allocation of research and development effort. (author)

  5. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.

    Science.gov (United States)

    Wouters, Sam; De Vos, Jelle; Dores-Sousa, José Luís; Wouters, Bert; Desmet, Gert; Eeltink, Sebastiaan

    2017-11-10

    The present paper discusses practical aspects of prototyping of microfluidic chips using cyclic olefin copolymer as substrate and the application in high-performance liquid chromatography. The developed chips feature a 60mm long straight separation channel with circular cross section (500μm i.d.) that was created using a micromilling robot. To irreversibly seal the top and bottom chip substrates, a solvent-vapor-assisted bonding approach was optimized, allowing to approximate the ideal circular channel geometry. Four different approaches to establish the micro-to-macro interface were pursued. The average burst pressure of the microfluidic chips in combination with an encasing holder was established at 38MPa and the maximum burst pressure was 47MPa, which is believed to be the highest ever report for these polymer-based microfluidic chips. Porous polymer monolithic frits were synthesized in-situ via UV-initiated polymerization and their locations were spatially controlled by the application of a photomask. Next, high-pressure slurry packing was performed to introduce 3μm silica reversed-phase particles as the stationary phase in the separation channel. Finally, the application of the chip technology is demonstrated for the separation of alkyl phenones in gradient mode yielding baseline peak widths of 6s by applying a steep gradient of 1.8min at a flow rate of 10μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparative separation of polyphenols from artichoke by polyamide column chromatography and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Shu, Xikai; Wang, Mei; Liu, Daicheng; Wang, Daijie; Lin, Xiaojing; Liu, Jianhua; Wang, Xiao; Huang, Luqi

    2013-01-01

    An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-β-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-β-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). (author)

  7. Preparative separation of polyphenols from artichoke by polyamide column chromatography and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xikai; Wang, Mei; Liu, Daicheng [College of Life Science, Shandong Normal University, Jinan, Shandong (China); Wang, Daijie; Lin, Xiaojing; Liu, Jianhua; Wang, Xiao; Huang, Luqi, E-mail: wxjn1998@126.com [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China)

    2013-09-01

    An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-{beta}-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-{beta}-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). (author)

  8. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    Science.gov (United States)

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  9. Design of thermoelectrically highly efficient Heusler compounds using phase separations and nano-composites under an economic point of view

    Science.gov (United States)

    Balke, Benjamin

    Half-Heusler (HH) compounds are one of the most promising candidates for thermoelectric materials for automotive and industrial waste heat recovery applications. In this talk, I will give an overview about our recent investigations of phase separations in HH thermoelectrics, focusing on the ternary system TiNiSn-ZrNiSn-HfNiSn. I will show how we adapted this knowledge to design a p-type HH compound which exhibits a ZT that is increased by 130% compared to the best published bulk p-type Heusler. I will also present how we used the phase separation to design thermoelectric highly efficient nano-composites of different single-phase materials. Since the price for Hafnium doubled within the last year, our research focused on the design of HH compounds without Hafnium. I will present a very recent calculation on ZT per Euro and efficiency per Euro for various materials followed by our latest very promising results for n-type Heusler compunds without Hafnium resulting in 20 times higher ZT/Euro values. These results strongly underline the importance of phase separations as a powerful tool for designing highly efficient materials for thermoelectric applications that fulfill the industrial demands for a thermoelectric converter. The author gratefully acknowledges financial support by the thermoHEUSLER2 Project (Project No. 19U15006F) of the German Federal Ministry of Economics and Technology (BMWi).

  10. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  11. Application of silver ion in the separation of macrolide antibiotic components by high-speed counter-current chromatography.

    Science.gov (United States)

    Wen, Yaoming; Wang, Jiaoyan; Chen, Xiuming; Le, Zhanxian; Chen, Yuxiang; Zheng, Wei

    2009-05-29

    Three macrolide antibiotic components - ascomycin, tacrolimus and dihydrotacrolimus - were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane-tert-butyl methyl ether-methanol-water (1:3:6:5, v/v) and silver nitrate (0.10mol/l). The silver ion acted as a pi-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.

  12. Digitally grown AlInAsSb for high gain separate absorption, grading, charge, and multiplication avalanche photodiodes

    Science.gov (United States)

    Lyu, Yuexi; Han, Xi; Sun, Yaoyao; Jiang, Zhi; Guo, Chunyan; Xiang, Wei; Dong, Yinan; Cui, Jie; Yao, Yuan; Jiang, Dongwei; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan

    2018-01-01

    We report on the growth of high quality GaSb-based AlInAsSb quaternary alloy by molecular beam epitaxy (MBE) to fabricate avalanche photodiodes (APDs). By means of high resolution X-ray diffraction (HRXRD) and scanning transmission electron microscope (STEM), phase separation phenomenon of AlInAsSb random alloy with naturally occurring vertical superlattice configuration was demonstrated. To overcome the tendency for phase segregation while maintaining a highly crystalline film, a digital alloy technique with migration-enhanced epitaxy growth method was employed, using a shutter sequence of AlSb, AlAs, AlSb, Sb, In, InAs, In, Sb. AlInAsSb digital alloy has proved to be reproducible and consistent with single phase, showing sharp satellite peaks on HRXRD rocking curve and smooth surface morphology under atomic force microscopy (AFM). Using optimized digital alloy, AlInAsSb separate absorption, grading, charge, and multiplication (SAGCM) APD was grown and fabricated. At room temperature, the device showed high performance with low dark current density of ∼14.1 mA/cm2 at 95% breakdown and maximum stable gain before breakdown as high as ∼200, showing the potential for further applications in optoelectronic devices.

  13. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  14. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    Science.gov (United States)

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil

    International Nuclear Information System (INIS)

    Bocksrocker, Tobias; Hülsmann, Neele; Eschenbaum, Carsten; Pargner, Andreas; Höfle, Stefan; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    We present a simple method for the fabrication of highly conductive and fully flexible metal/polymer hybrid anodes for efficient organic light emitting diodes (OLEDs). By incorporating ultra-thin metal grids into a conductive polymer, we fabricated anodes with very low sheet resistances and high transparency. After optimizing the metallic grid, OLEDs with these hybrid anodes are superior to OLEDs with standard indium tin oxide (ITO) anodes in luminous efficacy by a factor of ∼ 2. Furthermore, the sheet resistance can be reduced by up to an order of magnitude compared to ITO on polyethylene terephthalate (PET). The devices show a very low turn-on voltage and the hybrid anodes do not change the emissive spectra of the OLEDs. In addition, we fabricated the anodes directly on a barrier foil, making the double sided encapsulation of a typically used PET-substrate unnecessary

  16. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE)

  17. Double barrier system for an in situ conversion process

    Science.gov (United States)

    McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  18. [Prevalence of barriers for physical activity in adolescents].

    Science.gov (United States)

    Santos, Mariana Silva; Hino, Adriano Akira Ferreira; Reis, Rodrigo Siqueira; Rodriguez-Añez, Ciro Romélio

    2010-03-01

    The aim of this study was to analyze the prevalence and association of barriers to physical activity among adolescents. This cross-sectional study evaluated a representative sample of public high school students in Curitiba-PR, Brazil. A total of 1,609 school adolescents (59.7% male) between 14 and 18 years of age answered a questionnaire on physical activity status and barriers to physical activity. Logistic regressions were conducted for each barrier investigated to verify the association between the prevalence of barriers and physical activity, adjusting for confounding variables (age and socioeconomic status). Analyses were done separately for boys and girls. Only 22% of boys and 9% of girls achieved the current physical activity recommendation. Among the 12 barriers investigated, only "there is nobody to take" did not differ between boys and girls. The perception of barriers was higher for girls than boys (p barriers. "Lack of friends company" and "feel lazy" were the barriers most often reported by boys (30.4%) and girls (51.8%) respectively; however, the barrier most strongly associated with prevalence of physical inactivity was "prefer to do other things" for both boys (OR = 5.02 (2.69 - 9.37); p barriers for the practice of physical activity were more prevalent in girls and differed as to the extent of importance between genders.

  19. Highly efficient high-performance liquid chromatographic separation of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column.

    Science.gov (United States)

    Chen, Sha; Li, Xiao-Xin; Feng, Fan; Li, Sumei; Han, Jia-Hui; Jia, Zi-Yi; Shu, Lun; Somsundaran, P; Li, Jian-Rong

    2018-04-16

    In this study, the baseline separations of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column were achieved, respectively. The high selectivity for xylene isomers and phthalate acid esters was obtained with the increase of temperature and decrease of the retention time. The hydrophobicity of xylene isomers and phthalate acid esters caused the different separation time on the DUT-67(Zr) packed column. The relative standard deviation values of retention time, peak area, peak height and half peak width for five repeat separation of the xylene isomers were 0.26-0.35, 2.11-2.26, 1.51-2.03, and 0.29-0.77%, and the values of the phthalate acid esters on DUT-67(Zr) column were 0.1-0.4, 4.4-5.2, 3.9-6.3, and 0.6-2.1%, respectively. The thermodynamic properties indicated that the separation of xylene isomers was controlled by ΔH and ΔS, but the separation of phthalate acid esters was mainly controlled by ΔS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Low- and high-mode separation of short wavelength turbulence in dithering Wendelstein 7-AS plasmas

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Saffman, M.

    2002-01-01

    In this article measurements of small scale electron density fluctuations in dithering high confinement (H)-mode plasmas obtained by collective scattering of infrared light are presented. A scan of the fluctuation wavenumber was made in a series of similar discharges in the Wendelstein 7-AS (W7-A...

  1. Deep eutectic solvents for highly efficient separations in oil and gas industries

    NARCIS (Netherlands)

    Warrag, S.E.E.; Peters, C.J.; Kroon, M.C.

    2017-01-01

    Deep eutectic solvents (DESs) have captured a great scientific attention as a new, ‘green’ and sustainable class of tailor-made solvents. DESs share many properties with ionic liquids (ILs) including low vapor pressure, wide liquid range, thermal stability, low flammability, and high solvation

  2. Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Imperiali, Luna; Stepanyan, Roman

    2018-01-01

    Abstract We investigate the influence of controlled uniaxial extension on various flow induced phenomena in semidilute solutions of ultra high molecular weight polyethylene (UHMwPE). Concentrations range from 9 w% to 29 w% and the choice of solvent is paraffin oil (PO). The start-up extensional b...

  3. Model-based high-throughout process development for chromatographic whey proteins separation

    NARCIS (Netherlands)

    Nfor, B.; Ripic, J.; Padt, van der A.; Jacobs, M.; Ottens, M.

    2012-01-01

    In this study, an integrated approach involving the combined use of high-throughput screening (HTS) and column modeling during process development was applied to an industrial case involving the evaluation of four anion-exchange chromatography (AEX) resins and four hydrophobic interaction

  4. High performance separation of xylose and glucose by enzyme assisted nanofiltration

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Luo, Jianquan; Meyer, Anne S.

    2015-01-01

    of the integrated system. Full conversion of glucose to gluconic acid assisted by glucose oxidase (GOD) could be achieved by coupling a parallel reaction catalyzed by catalase (CAT), where H2O2 (GOD-inhibitor formed in the first reaction) was decomposed to water and oxygen. GOD has a high oxygen...

  5. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn

    2014-04-01

    Highlights: • Manual dismantling is superior in spent high-power LiBs recycling. • Heated ionic liquid can effectively separate Al and cathode materials. • Fourier’s law was adopted to determine the heat transfer mechanism. • The process of spent LiBs recycling with heated ionic liquid dismantling was proposed. - Abstract: Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier’s law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180 °C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling.

  6. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  7. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    Science.gov (United States)

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  8. Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic ınterlayer

    International Nuclear Information System (INIS)

    Güllü, Ö.; Aydoğan, S.; Türüt, A.

    2012-01-01

    In this work, we present that Rhodamine-101 (Rh-101) organic molecules can control the electrical characteristics of conventional Au/n-InP metal–semiconductor contacts. An Au/n-InP Schottky junction with Rh-101 interlayer has been formed by using a simple cast process. A potential barrier height as high as 0.88 eV has been achieved for Au/Rh-101/n-InP Schottky diodes, which have good current–voltage (I–V) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Au and n-InP. By using capacitance-voltage measurement of the Au/Rh-101/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.78 V and 0.88 eV, respectively. From the I–V measurement of the diode under illumination, short circuit current and open circuit voltage have been extracted as 1.70 μA and 240 mV, respectively.

  9. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. Isaac [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhang, Jun; Che, Xing; Yang, Lijiang; Gao, Yi Qin, E-mail: gaoyq@pku.edu.cn [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Biodynamic Optical Imaging Center, Peking University, Beijing 100871 (China)

    2016-03-07

    In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence of the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ − ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C—H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.

  10. Poly(butylene 2,5-thiophenedicarboxylate: An Added Value to the Class of High Gas Barrier Biopolyesters

    Directory of Open Access Journals (Sweden)

    Giulia Guidotti

    2018-02-01

    Full Text Available Many efforts are currently devoted to the design and development of high performance bioplastics to replace traditional fossil-based polymers. In response, this contribution presents a new biobased aromatic polyester, i.e., poly(butylene 2,5-thiophenedicarboxylate (PBTF. Here, PBTF is characterized from the molecular, thermo-mechanical and structural point of view. Gas permeability is evaluated at different temperatures, in the range below and above glass transition, providing a full insight into the performances of this material under different operating conditions, and demonstrating the superior gas barrier behavior of PBTF with respect to other polyesters, such as PEF and PET. The combination of calorimetric and diffractometric studies allows for a deep understanding of the structure of PBTF, revealing the presence of a not-induced 2D-ordered phase (meso-phase, responsible for its outstanding gas permeability behavior. The simple synthetic strategy adopted, the exceptional barrier properties, combined with the interesting mechanical characteristics of PBTF open up new scenarios in the world of green and sustainable packaging materials.

  11. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration

    International Nuclear Information System (INIS)

    Postnov, V N; Rodinkov, O V; Moskvin, L N; Novikov, A G; Bugaichenko, A S; Krokhina, O A

    2016-01-01

    Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references

  12. Precursors-Derived Ceramic Membranes for High-Temperature Separation of Hydrogen

    OpenAIRE

    Yuji, Iwamoto

    2007-01-01

    This review describes recent progress in the development of hydrogen-permselective ceramic membranes derived from organometallic precursors. Microstructure and gas transport property of microporous amorphous silica-based membranes are briefly described. Then, high-temperature hydrogen permselectivity, hydrothermal stability as well as hydrogen/steam selectivity of the amorphous silica-based membranes are discussed from a viewpoint of application to membrane reactors for conversion enhancement...

  13. Evidence for Separate Contributions of High and Low Spatial Frequencies during Visual Word Recognition.

    Science.gov (United States)

    Winsler, Kurt; Holcomb, Phillip J; Midgley, Katherine J; Grainger, Jonathan

    2017-01-01

    Previous studies have shown that different spatial frequency information processing streams interact during the recognition of visual stimuli. However, it is a matter of debate as to the contributions of high and low spatial frequency (HSF and LSF) information for visual word recognition. This study examined the role of different spatial frequencies in visual word recognition using event-related potential (ERP) masked priming. EEG was recorded from 32 scalp sites in 30 English-speaking adults in a go/no-go semantic categorization task. Stimuli were white characters on a neutral gray background. Targets were uppercase five letter words preceded by a forward-mask (#######) and a 50 ms lowercase prime. Primes were either the same word (repeated) or a different word (un-repeated) than the subsequent target and either contained only high, only low, or full spatial frequency information. Additionally within each condition, half of the prime-target pairs were high lexical frequency, and half were low. In the full spatial frequency condition, typical ERP masked priming effects were found with an attenuated N250 (sub-lexical) and N400 (lexical-semantic) for repeated compared to un-repeated primes. For HSF primes there was a weaker N250 effect which interacted with lexical frequency, a significant reversal of the effect around 300 ms, and an N400-like effect for only high lexical frequency word pairs. LSF primes did not produce any of the classic ERP repetition priming effects, however they did elicit a distinct early effect around 200 ms in the opposite direction of typical repetition effects. HSF information accounted for many of the masked repetition priming ERP effects and therefore suggests that HSFs are more crucial for word recognition. However, LSFs did produce their own pattern of priming effects indicating that larger scale information may still play a role in word recognition.

  14. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    Science.gov (United States)

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  15. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    Science.gov (United States)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  16. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO 2 separation

    KAUST Repository

    Wu, Yingzhen

    2018-06-01

    Water-swollen hydrogel membranes are good candidates for CO2 separations due to the favorable solubility of CO2 in water. However, the excessive amount of water often causes the poor mechanical property and low selectivity. Herein, we propose a bioadhesion-inspired method to construct robust and high-performance CO2 separation membranes via in situ generation of polydopamine (PDA) nanoaggregates within poly (vinyl alcohol) (PVA) matrix. PDA nanoaggregates entangled with PVA chains and formed hydrogen bonding with hydroxyl groups from PVA chains. Physical cross-linking occurred between PVA chains and PDA nanoaggregates. Compared with the PVA membrane, the PVA-PDA hybrid membrane with the dopamine content of 0.5mol% exhibited a 1.7-fold increase in tensile strength and a 2.2-fold increase in the tensile modulus. The membranes were used for CO2/CH4 separation. The physical cross-linking resulted in a PVA chain rigidification region around PDA nanoaggregates, which hindered the penetration of larger-size gas molecules and thus enhancing the CO2/CH4 selectivity. Moreover, the abundant amine groups from PDA nanoaggregates could facilitate CO2 transport. The optimized hybrid hydrogel membrane exhibited CO2/CH4 selectivity of 43.2, which was 43.85% higher than that of the PVA membrane. The bioadhesion-inspired method opens up new opportunities to exploit the potential application of hydrogel membranes.

  17. Two-Step Separation of Nostotrebin 6 from Cultivated Soil Cyanobacterium (Nostoc sp. by High Performance Countercurrent Chromatography

    Directory of Open Access Journals (Sweden)

    José Cheel

    2014-06-01

    Full Text Available High performance countercurrent chromatography (HPCCC was successfully applied for the separation of nostotrebin 6 from cultivated soil cyanobacteria in a two-step operation. A two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (4:5:4:5, v/v/v/v was employed for the HPCCC separation. In the first-step operation, its neutral upper phase was used as stationary phase and its basic lower phase (1% NH3 in lower phase was employed as mobile phase at a flow rate of 1 mL/min. In the second operation step, its neutral upper phase was used as stationary phase, whereas both its neutral lower phase and basic lower phase were employed as mobile phase with a linear gradient elution at a flow rate of 0.8 mL/min. The revolution speed and temperature of the separation column were 1,000 rpm and 30 °C, respectively. Using HPCCC followed by clean-up on Sephadex LH-20 gel, 4 mg of nostotrebin 6 with a purity of 99% as determined by HPLC/DAD-ESI-HRMS was obtained from 100 mg of crude extract. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, ESI-HRMS, ESI-HRMS2 with those of an authentic standard and data available in the literature.

  18. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  19. Electron transmission through a periodically driven graphene magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, R., E-mail: rbiswas.pkc@gmail.com [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Maiti, S. [Ajodhya Hills G.S.A.T High School, Ajodhya, Purulia, West Bengal – 723152 (India); Mukhopadhyay, S. [Purulia Zilla School, Dulmi Nadiha, Purulia, West Bengal – 723102 (India); Sinha, C. [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur – 700032 (India)

    2017-05-10

    Electronic transport through graphene magnetic barriers is studied theoretically in presence of an external time harmonic scalar potential in the framework of non-perturbative Landau–Floquet Formalism. The oscillating field mostly suppresses the transmission for rectangular magnetic barrier structure and exhibits the Fano resonance for multiphoton processes due to the presence of bound state inside the barrier. While, for a pair of delta function barriers of larger separation, the oscillating potential suppresses the usual Fabry–Perot oscillations in the transmission and a new type of asymmetric Fano resonance is noted for smaller separation, occurring due to extended states between the barriers. - Highlights: • Tunnelling of the Dirac Fermions through oscillating pure magnetic barriers is reported for the first time. • The high energy transmission through a graphene magnetic barrier is suppressed by the application of time periodic modulation. • Suppression of the Fabry Perot transmission is noted due to the application of an external time harmonic potential. • Two kinds of the Fano resonances are noted in transmission through a pair of modulated δ-function magnetic barriers.

  20. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation; Recherches sur la gestion des dechets radioactifs a haute activite et a vie longue. Axe 1 - separation-transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  1. Hb A1c Separation by High Performance Liquid Chromatography in Hemoglobinopathies

    OpenAIRE

    Chandrashekar, Vani

    2016-01-01

    Hb A1c measurement is subject to interference by hemoglobin traits and this is dependent on the method used for determination. In this paper we studied the difference between Hb A1c measured by HPLC in hemoglobin traits and normal chromatograms. We also studied the correlation of Hb A1c with age. Hemoglobin analysis was carried out by high performance liquid chromatography. Spearman's rank correlation was used to study correlation between A1c levels and age. Mann-Whitney U test was used to st...

  2. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    Science.gov (United States)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  3. Supplementary Reading Instruction in Alternative High Schools: A Statewide Survey of Educator Reported Practices and Barriers

    Science.gov (United States)

    Wilkerson, Kimber L.; Yan, Min-Chi; Perzigian, Aaron B.; Cakiroglu, Orhan

    2016-01-01

    Recent data suggest that a majority of secondary students read below the level considered proficient on state standardized tests of reading. Alternative high schools, in particular, serve a high proportion of struggling readers. This survey study investigated reading instruction provided to struggling readers in alternative schools in one state by…

  4. High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yang, E-mail: lei.y@outlook.com; Liu, Xiaopeng; Li, Shuo; Jiang, Lijun; Zhang, Chao; Li, Shuai; He, Di; Wang, Shumao

    2016-12-15

    Highlights: • Pd/K composites with as high as 57 wt.% of Pd have been successfully prepared. • Palladium particles can be effectively packed into the pores of kieselguhr substrates. • Variation of heat-treatment temperatures hardly affect hydrogen absorption capacity and hydrogen saturation time of the Pd/K. • Anti-pulverization property of Pd/K can be improved by packing palladium into the kieselguhr internal pores and heating at 1300 °C. - Abstract: Palladium/kieselguhr (Pd/K) composites with 57 wt.% of Pd were prepared by an improved dipping and thermal decomposition method and heated at elevated temperature to reduce breakdown during hydrogenation-dehydrogenation cycles. The hydrogen absorption kinetic properties of the samples heated at different temperatures were tested under the condition of 20 °C with 100 kPa hydrogen pressure. The 1300 °C heated Pd/K composites were repeated up to 4010 absorption and desorption cycles at temperature ranges between −40 °C and 200 °C. The results show that the phase structure, hydrogen absorption capacity and hydrogen saturation time of the Pd/K were not affected by the change of heat-treated temperatures. And after heat treatment at 1300 °C, the Pd/K particles were strengthened and fraction of larger than 80 mesh were as high as 93.4%.

  5. Hb A1c Separation by High Performance Liquid Chromatography in Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Vani Chandrashekar

    2016-01-01

    Full Text Available Hb A1c measurement is subject to interference by hemoglobin traits and this is dependent on the method used for determination. In this paper we studied the difference between Hb A1c measured by HPLC in hemoglobin traits and normal chromatograms. We also studied the correlation of Hb A1c with age. Hemoglobin analysis was carried out by high performance liquid chromatography. Spearman’s rank correlation was used to study correlation between A1c levels and age. Mann-Whitney U test was used to study the difference in Hb A1c between patients with normal hemoglobin and hemoglobin traits. A total of 431 patients were studied. There was positive correlation with age in patients with normal chromatograms only. No correlation was seen in Hb E trait or beta thalassemia trait. No significant difference in Hb A1c of patients with normal chromatograms and patients with hemoglobin traits was seen. There is no interference by abnormal hemoglobin in the detection of A1c by high performance liquid chromatography. This method cannot be used for detection of A1c in compound heterozygous and homozygous disorders.

  6. Combined arthroscopically assisted coraco- and acromioclavicular stabilization of acute high-grade acromioclavicular joint separations.

    Science.gov (United States)

    Hann, Carmen; Kraus, Natascha; Minkus, Marvin; Maziak, Nina; Scheibel, Markus

    2018-01-01

    Due to high rate of persisting dynamic posterior translation (DPT) following isolated coracoclavicular double-button technique for reconstruction of the acromioclavicular (AC) joint reported in the literature, an additional acromioclavicular cerclage was added to the procedure. The aim of this study was to evaluate the clinical and radiological results of patients with high-grade AC-joint instability treated with a double TightRope technique with an additional percutaneous acromioclavicular cerclage. Fifty-nine patients (6 f/53 m; median age 38.3 (range 21.5-63.4 years) who sustained an acute high-grade AC-joint dislocation (Rockwood type V) were treated using the above-mentioned technique. At the final follow-up, the constant score (CS), the subjective shoulder value (SSV), the Taft score (TF) and the acromioclavicular joint instability score (ACJI) as well as bilateral anteroposterior stress views with 10 kg of axial load and bilateral modified Alexander views were obtained. At a median follow-up of 26.4 (range 20.3-61.0) months, 34 patients scored a median of 90 (33-100) points in the CS, 90 (25-100) % in the SSV, 11 (4-12) points in the TF and 87 (43-100) points in the ACJI. The coracoclavicular (CC) distance was 12.1 (6.5-19.8) mm and the CC difference 2.0 (0.0-11.0) mm. Two patients (5.8%) showed a complete DPT of the AC joint, and fourteen patients (41.1%) displayed a partial DPT. The overall revision rate was 11.7%. Two patients presented implant irritation, one patient a recurrent instability, and one patient suffered from a local infection. The arthroscopically assisted and image-intensifier-controlled double TightRope technique with an additional percutaneous acromioclavicular cerclage leads to good and excellent clinical results after a follow-up of 2 years. The incidence of persisting dynamic horizontal translation is lower compared to isolated coracoclavicular stabilization. Thus, we recommend using the double TightRope implant with an additional

  7. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.

    Science.gov (United States)

    Barden, J A

    1983-11-01

    A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.

  8. Preparative separation of flavonoids from the medicinal plant Davilla elliptica St. Hill. by high-speed counter-current chromatography

    OpenAIRE

    Rinaldo Daniel; Silva Marcelo Aparecido; Rodrigues Clenilson Martins; Calvo Tamara Regina; Sannomiya Miriam; Santos Lourdes Campaner dos; Vilegas Wagner; Kushima Hélio; Hiruma-Lima Clélia Akiko; Brito Alba Regina Monteiro de Souza

    2006-01-01

    High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful...

  9. Neutron activation determination of impurities in high-purity bismuth with separation of matrix in form of hydroxide

    International Nuclear Information System (INIS)

    Artyukhin, P.I.; Shavinskij, B.M.; Mityakin, Yu.L.

    1979-01-01

    The technique of neutron activation determination of 15 impurity elements (Au, Ag, Ba, Cd, Co, Cs, Cu, Hg, K, Na, Ni, Se, Sr, Te, Zn) in high-purity bismuth (impurity content is approximately 10 -6 -10 -10 %) is presented. Bismuth hydroxide precipitation by ammonia from nitric acid solutions was used to separate bismuth from alkali, alkaline earth metals and elements forming stable ammines. Gold, selenium and tellurium are isolated in the form of metals at reduction by muriatic hydrazine. Results of analyzing two samples of special purity bismuth are presented. Neutron flux comprised 0.8-1x10 13 n/cm 2 xs. Radiation time was equal to 90 hours

  10. Recycling isoelectric focusing with computer controlled data acquisition system. [for high resolution electrophoretic separation and purification of biomolecules

    Science.gov (United States)

    Egen, N. B.; Twitty, G. E.; Bier, M.

    1979-01-01

    Isoelectric focusing is a high-resolution technique for separating and purifying large peptides, proteins, and other biomolecules. The apparatus described in the present paper constitutes a new approach to fluid stabilization and increased throughput. Stabilization is achieved by flowing the process fluid uniformly through an array of closely spaced filter elements oriented parallel both to the electrodes and the direction of the flow. This seems to overcome the major difficulties of parabolic flow and electroosmosis at the walls, while limiting the convection to chamber compartments defined by adjacent spacers. Increased throughput is achieved by recirculating the process fluid through external heat exchange reservoirs, where the Joule heat is dissipated.

  11. Spectrographic determination of lanthanides in high-purity uranium compounds, after chromatographic separation by alumina-hydrofluoric acid

    International Nuclear Information System (INIS)

    Lordello, A.R.; Abrao, A.

    1979-01-01

    A method is presented for the determination of fourteen rare earth elements in high-purity uranium compounds by emission spectrography. The rare earths are chromatographically separated from uranium by using alumina-hydrofluoric acid. Lanthanum is used both as collector and internal standard. The technique of excitation involves a total consumption of the sample in a 17 ampere direct current arc. The range of determination is about 0.005 to 0.5 μg/g uranium. The coefficient of variation for Pr, Ho, Dy, Er, Tm, Lu, Gd and Tb amounts to 10%. (Author) [pt

  12. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic.

    Science.gov (United States)

    Zhang, Huibin; Liu, Xinli; Jiang, Yao; Gao, Lin; Yu, Linping; Lin, Nan; He, Yuehui; Liu, C T

    2017-09-15

    A temperature-controlled selective filtration technology for synchronous removal of arsenic and recovery of antimony from the fume produced from reduction smelting process of lead anode slimes was proposed. The chromium (Cr) alloyed FeAl intermetallic with an asymmetric pore structure was developed as the high-temperature filter material after evaluating its corrosive resistance, structural stability and mechanical properties. The results showed that porous FeAl alloyed with 20wt.% Cr had a long term stability in a high-temperature sulfide-bearing environment. The separation of arsenic and antimony trioxides was realized principally based on their disparate saturated vapor pressures at specific temperature ranges and the asymmetric membrane of FeAl filter elements with a mean pore size of 1.8μm. Pilot-scale filtration tests showed that the direct separation of arsenic and antimony can be achieved by a one-step or two-step filtration process. A higher removal percentage of arsenic can reach 92.24% at the expense of 6∼7% loss of antimony in the two-step filtration process at 500∼550°C and 300∼400°C. The FeAl filters had still good permeable and mechanical properties with 1041h of uninterrupted service, which indicates the feasibility of this high-temperature filtration technology. Copyright © 2017. Published by Elsevier B.V.

  13. Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Hu, Wen; Hirota, Yuichiro; Zhu, Yexin; Yoshida, Nao; Miyamoto, Manabu; Zheng, Tao; Nishiyama, Norikazu

    2017-09-22

    A macro-/mesoporous Co-N-C-decorated separator is proposed to confine and reutilize migrating polysulfides. Endowed with a desirable structure and synchronous lithio- and sulfiphilic chemistry, the macro-/mesoporous Co-N-C interface manipulates large polysulfide adsorption uptake, enabling good polysulfide adsorption kinetics, reversible electrocatalysis toward redox of anchored polysulfides, and facile charge transport. It significantly boosts the performance of a simple 70 wt % S/MWCNTs (MWCNTs=multi-walled carbon nanotubes) cathode, achieving high initial capacities (e.g., 1406 mAh g -1 at 0.2C, 1203 mAh g -1 at 1C), nearly 100 % Coulombic efficiencies, and high reversible capacities after cycle tests (e.g., 828.4 mAh g -1 at 1C after 100 cycles) at both low and high current rates. These results demonstrate that decorating separator with macro-/mesoporous Co-N-C paves a feasible way for developing advanced Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui

    2014-04-30

    Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Molecular design of highly efficient extractants for separation of lanthanides and actinides by computational chemistry

    International Nuclear Information System (INIS)

    Uezu, Kazuya; Yamagawa, Jun-ichiro; Goto, Masahiro

    2006-01-01

    Novel organophosphorus extractants, which have two functional moieties in the molecular structure, were developed for the recycle system of transuranium elements using liquid-liquid extraction. The synthesized extractants showed extremely high extractability to lanthanides elements compared to those of commercially available extractants. The results of extraction equilibrium suggested that the structural effect of extractants is one of the key factors to enhance the selectivity and extractability in lanthanides extractions. Furthermore, molecular modeling was carried out to evaluate the extraction properties for extraction of lanthanides by the synthesized extractants. Molecular modeling was shown to be very useful for designing new extractants. The new concept to connect some functional moieties with a spacer is very useful and is a promising method to develop novel extractants for treatment of nuclear fuel. (author)

  16. High temperature H2/CO2 separation using cobalt oxide silica membranes

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Diniz da Costa, J.C. [The University of Queensland, FIMLab - Films and Inorganic Membrane Laboratory, School of Chemical Engineering, Brisbane, Qld 4072 (Australia); Vente, J.F. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2012-09-15

    In this work high quality cobalt oxide silica membranes were synthesized on alumina supports using a sol-gel, dip coating method. The membranes were subsequently connected into a steel module using a graphite based proprietary sealing method. The sealed membranes were tested for single gas permeance of He, H2, N2 and CO2 at temperatures up to 600C and feed pressures up to 600 kPa. Pressure tests confirmed that the sealing system was effective as no gas leaks were observed during testing. A H2 permeance of 1.9 x 10{sup -7} mol m{sup -2} s{sup -1} Pa-1 was measured in conjunction with a H2/CO2 permselectivity of more than 1500, suggesting that the membranes had a very narrow pore size distribution and an average pore diameter of approximately 3 Angstrom. The high temperature testing demonstrated that the incorporation of cobalt oxide into the silica matrix produced a structure with a higher thermal stability, able to resist thermally induced densification up to at least 600C. Furthermore, the membranes were tested for H2/CO2 binary feed mixtures between 400 and 600C. At these conditions, the reverse of the water gas shift reaction occurred, inadvertently generating CO and water which increased as a function of CO2 feed concentration. The purity of H2 in the permeate stream significantly decreased for CO2 feed concentrations in excess of 50 vol%. However, the gas mixtures (H2, CO2, CO and water) had a more profound effect on the H2 permeate flow rates which significantly decreased, almost exponentially as the CO2 feed concentration increased.

  17. Highly stable and magnetically separable alginate/Fe3O4 composite for the removal of strontium (Sr) from seawater.

    Science.gov (United States)

    Hong, Hye-Jin; Jeong, Hyeon Su; Kim, Byoung-Gyu; Hong, Jeongsik; Park, In-Su; Ryu, Taegong; Chung, Kang-Sup; Kim, Hyuncheol; Ryu, Jungho

    2016-12-01

    In this study, a highly stable alginate/Fe 3 O 4 composite was synthesized, and systematically investigated for the practical application of strontium (Sr) removal in complex media, such as seawater and radioactive wastewater. To overcome the drawbacks of the use of alginate microspheres, high contents of alginic acid and Fe 3 O 4 were used to provide a more rigid structure with little swelling and facile separation, respectively. The synthesized composite was optimized for particle sizes of seawater spiked with 50 mg/L of Sr, the alginate/Fe 3 O 4 composite showed 12.5 mg/g of Sr uptake, despite the highly concentrated ions in seawater. The adsorption experiment for radio-active 90 Sr revealed a removal efficiency of 67% in real seawater, demonstrating the reliability of the alginate/Fe 3 O 4 composite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation

    KAUST Repository

    Alaslai, Nasser Y.; Ghanem, Bader; Alghunaimi, Fahd; Pinnau, Ingo

    2016-01-01

    A novel polyimide of intrinsic microporosity (PIM-PI) was synthesized from a 9,10-diisopropyl-triptycene-based dianhydride (TPDA) and dihydroxyl-functionalized 4,6-diaminoresorcinol (DAR). The unfunctionalized TPDA-m-phenylenediamine (mPDA) polyimide derivative was made as a reference material to evaluate the effect of the OH group in TPDA-DAR on its gas transport properties. Pure-gas permeability coefficients of He, H2, N2, O2, CH4, and CO2 were measured at 35 °C and 2 atm. The BET surface area based on nitrogen adsorption of dihydroxyl-functionalized TPDA-DAR (308 m2g-1) was 45% lower than that of TPDA-mPDA (565 m2g-1). TPDA-mPDA had a pure-gas CO2 permeability of 349 Barrer and CO2/CH4 selectivity of 32. The dihydroxyl-functionalized TPDA-DAR polyimide exhibited enhanced pure-gas CO2/CH4 selectivity of 46 with a moderate decrease in CO2 permeability to 215 Barrer. The CO2 permeability of TPDA-DAR was ∼30-fold higher than that of a commercial cellulose triacetate membrane coupled with 39% higher pure-gas CO2/CH4 selectivity. The TPDA-based dihydroxyl-containing polyimide showed good plasticization resistance and maintained high mixed-gas selectivity of 38 when tested at a typical CO2 natural gas wellhead CO2 partial pressure of 10 atm.

  19. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation

    KAUST Repository

    Alaslai, Nasser Y.

    2016-03-22

    A novel polyimide of intrinsic microporosity (PIM-PI) was synthesized from a 9,10-diisopropyl-triptycene-based dianhydride (TPDA) and dihydroxyl-functionalized 4,6-diaminoresorcinol (DAR). The unfunctionalized TPDA-m-phenylenediamine (mPDA) polyimide derivative was made as a reference material to evaluate the effect of the OH group in TPDA-DAR on its gas transport properties. Pure-gas permeability coefficients of He, H2, N2, O2, CH4, and CO2 were measured at 35 °C and 2 atm. The BET surface area based on nitrogen adsorption of dihydroxyl-functionalized TPDA-DAR (308 m2g-1) was 45% lower than that of TPDA-mPDA (565 m2g-1). TPDA-mPDA had a pure-gas CO2 permeability of 349 Barrer and CO2/CH4 selectivity of 32. The dihydroxyl-functionalized TPDA-DAR polyimide exhibited enhanced pure-gas CO2/CH4 selectivity of 46 with a moderate decrease in CO2 permeability to 215 Barrer. The CO2 permeability of TPDA-DAR was ∼30-fold higher than that of a commercial cellulose triacetate membrane coupled with 39% higher pure-gas CO2/CH4 selectivity. The TPDA-based dihydroxyl-containing polyimide showed good plasticization resistance and maintained high mixed-gas selectivity of 38 when tested at a typical CO2 natural gas wellhead CO2 partial pressure of 10 atm.

  20. Photonic circuit for high order USB and LSB separation for remote heterodyning: analysis and simulation.

    Science.gov (United States)

    Hasan, Mehedi; Hall, Trevor J

    2015-09-21

    A novel photonic integrated circuit is proposed that, using an RF source, generates at its output ports the same magnitude but opposite sign high order single optical side bands of a suppressed optical carrier. A single stage parallel Mach-Zehnder Modulator (MZM) and a two-stage series parallel MZM architecture are described and their relative merits discussed. A transfer matrix method is used to describe the operation of the circuits. The theoretical analysis is validated by computer simulation. As an illustration of a prospective application, it is shown how the circuit may be used as a key element of an optical transmission system to transport radio signals over fibre for wireless access; generating remotely a mm-wave carrier modulated by digital IQ data. A detailed calculation of symbol error rate is presented to characterise the system performance. The circuit may be fabricated in any integration platform offering a suitable phase modulator circuit element such as LiNbO(3), Silicon, and III-V or hybrid technology.