WorldWideScience

Sample records for high barrier packaging

  1. Flexible High-Barrier Polymers for Food Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a polymer laminate with water and oxygen barrier properties suitable for food packaging and preservation on 3-5 year manned space exploration...

  2. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    Science.gov (United States)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  3. Non-Foil High Barrier Food Packaging Materials for Human Centered Spacecrafts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to develop food packaging technologies for extending shelf-live toward maintaining healthy diet and psychological well being of the space crew. The...

  4. Research Progress of High-Barrier Packaging Materials%高阻隔包装材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘丹

    2014-01-01

    The preparation technology, barrier properties and research progress of high-barrier packaging materials have been concluded covering inorganic strengthened high barrier materials such as vapor deposited barrier materials and inorganic filler blend materials, biodegradable materials such as MFC composite materials, multilayer composite materials and smart barrier materials. The development of high-barrier packaging material researches should be conducted towards the direction of optimal properties, non-toxic, non-pollution, green for environment, market orientation and intelligence.%综述了蒸镀阻隔材料及无机物充填共混阻隔材料等无机物增强高阻隔材料、MFC 涂布材料及MFC 复合材料等可生物降解阻隔材料、多层复合材料以及智能阻隔材料的制备工艺、阻隔性能及其在国内外的研究进展,并指出今后高阻隔材料的研究应朝着性能最优化、无毒无污染、绿色环保、适应市场需求、智能化等方向发展。

  5. Light Barrier for Non-Foil Packaging

    Science.gov (United States)

    2010-12-16

    nutritional quality of various food systems. 2. Best Available, Non-foil, Light Barrier Packaging Materials: The Printpack research team reviewed product...reduce shelf-life, nutritive value and prod- uct safety (deMan 1990). Oxidation reactions occur in two ways. When triplet oxygen (the most abundant and...methylpropanal (dark chocolate odor), pentanal (sour cut grass odor), hexanal (green cut grass odor), dimethyl disulfide (cooked cabbage odor) and l-octene-3

  6. Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties.

    Science.gov (United States)

    De Silva, R T; Mantilaka, M M M G P G; Ratnayake, S P; Amaratunga, G A J; de Silva, K M Nalin

    2017-02-10

    Chitosan nanocomposite thin films were fabricated by incorporating MgO nanoparticles to significantly improve its physical properties for potential packaging applications. A novel in-situ method was developed to synthesise spherical shaped MgO nanoparticles by heat-treating magnesium carbonate/poly(methyl methacrylate) (PMMA) composite precursor. Optimum mechanical properties of chitosan composites were yielded at 5 (w/w%) of MgO concentration, where tensile stress and elastic modulus significantly improved by 86% and 38%, respectively, compared to those of pure chitosan films. These improvements are due to the interaction of hydroxyl and amine groups of chitosan with MgO as confirmed by FTIR spectroscopy. Fracture surface morphology indicated the interplay between MgO dispersion and aggregation on the mechanical properties at different MgO concentrations. Furthermore, the chitosan/MgO nanocomposites displayed remarkable thermal stability, flame retardant properties (satisfied V0 rating according to the UL-94 standards), UV shielding and moisture barrier properties, which could certainly add value to the packaging material.

  7. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  8. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  9. Oxynitride Thin Film Barriers for PV Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  10. Typical diffusion behaviour in packaging polymers - Application to functional barriers

    NARCIS (Netherlands)

    Dole, P.; Feigenbaum, A.E.; Cruz, C. de la; Pastorelli, S.; Paseiro, P.; Hankemeier, T.; Voulzatis, Y.; Aucejo, S.; Saillard, P.; Papaspyrides, C.

    2006-01-01

    When plastics are collected for recycling, possibly contaminated articles might be recycled into food packaging, and thus the contaminants might subsequently migrate into the food. Multilayer functional barriers may be used to delay and to reduce such migration. The contribution of the work reported

  11. Waste Package Outer Barrier Stress Due to Thermal Expansion with Various Barrier Gap Sizes

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Lewis

    2001-11-27

    The objective of this activity is to determine the tangential stresses of the outer shell, due to uneven thermal expansion of the inner and outer shells of the current waste package (WP) designs. Based on the results of the calculation ''Waste Package Barrier Stresses Due to Thermal Expansion'', CAL-EBS-ME-000008 (ref. 10), only tangential stresses are considered for this calculation. The tangential stresses are significantly larger than the radial stresses associated with thermal expansion, and at the WP outer surface the radial stresses are equal to zero. The scope of this activity is limited to determining the tangential stresses the waste package outer shell is subject to due to the interference fit, produced by having two different shell coefficients of thermal expansions. The inner shell has a greater coefficient of thermal expansion than the outer shell, producing a pressure between the two shells. This calculation is associated with Waste Package Project. The calculations are performed for the 21-PWR (pressurized water reactor), 44-BWR (boiling water reactor), 24-BWR, 12-PWR Long, 5 DHLW/DOE SNF - Short (defense high-level waste/Department of Energy spent nuclear fuel), 2-MCO/2-DHLW (multi-canister overpack), and Naval SNF Long WP designs. The information provided by the sketches attached to this calculation is that of the potential design for the types of WPs considered in this calculation. This calculation is performed in accordance with the ''Technical Work Plan for: Waste Package Design Description for SR (Ref.7). The calculation is documented, reviewed, and approved in accordance with AP-3.12Q, Calculations (Ref.1).

  12. Aging and Phase Stability of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    F. Wong

    2004-09-28

    This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP

  13. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  14. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors.

    Science.gov (United States)

    Duncan, Timothy V

    2011-11-01

    In this article, several applications of nanomaterials in food packaging and food safety are reviewed, including: polymer/clay nanocomposites as high barrier packaging materials, silver nanoparticles as potent antimicrobial agents, and nanosensors and nanomaterial-based assays for the detection of food-relevant analytes (gasses, small organic molecules and food-borne pathogens). In addition to covering the technical aspects of these topics, the current commercial status and understanding of health implications of these technologies are also discussed. These applications were chosen because they do not involve direct addition of nanoparticles to consumed foods, and thus are more likely to be marketed to the public in the short term.

  15. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  16. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, Tommi O., E-mail: tommi.kaariainen@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Cameron, David C., E-mail: david.cameron@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Lahtinen, Kimmo, E-mail: kimmo.lahtinen@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Johansson, Petri, E-mail: petri.johansson@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland)

    2011-03-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O{sub 2}TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O{sub 2}TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  17. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui

    2014-01-01

    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  18. One Component Encapsulating Material Matrix as High Barrier Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for new flexible food packaging materials with effective high barrier against oxygen and moisture to protect food, minimize weight and...

  19. Analysis on partial thermal resistances of packaged SiC schottky barrier diodes at elevated temperatures

    Science.gov (United States)

    Kim, Taehwa; Funaki, Tsuyoshi

    2016-04-01

    This paper investigates the temperature dependence of partial thermal resistances of a packaged SiC schottky barrier diode (SBD) for high temperature applications. Transient thermal resistances of the packaged SiC SBD were measured and characterized in temperature range from 27 to 275 °C. The partial thermal resistances were extracted and analyzed using the cumulative and differential thermal structure functions. The extracted partial thermal resistances were compared to the results from the finite difference thermal model, and both results were in good agreement. The temperature dependence of the partial thermal resistance of the SiC device and the Si3N4 substrate contributes to the overall thermal characteristics variation of the packaged SiC SBD.

  20. How to manage barriers to formation and implementation of policy packages in transport

    DEFF Research Database (Denmark)

    Åkerman, Jonas; Gudmundsson, Henrik; Sørensen, Claus Hedegaard

    2011-01-01

    The aim of this study has been to explore success factors and barriers to the formation and implementation of single policy measures and policy packages in transport, and to identify strategies to manage such barriers. As a first step, we developed a typology of barriers and success factors...... for policy formation and implementation. Secondly, we carried out an empirical analysis of barriers and success factors in four cases of policy packaging: Urban Congestion Charging; National Heavy Vehicle Fees; Aviation in the European Emissions Trading System and The EU’s First Railway Package. The third...

  1. High performance microsystem packaging: A perspective

    Energy Technology Data Exchange (ETDEWEB)

    Romig, A.D. Jr.; Dressendorfer, P.V.; Palmer, D.W.

    1997-10-01

    The second silicon revolution will be based on intelligent, integrated microsystems where multiple technologies (such as analog, digital, memory, sensor, micro-electro-mechanical, and communication devices) are integrated onto a single chip or within a multichip module. A necessary element for such systems is cost-effective, high-performance packaging. This paper examines many of the issues associated with the packaging of integrated microsystems, with an emphasis on the areas of packaging design, manufacturability, and reliability.

  2. DESIGNING OF POLYMERIC PACKAGING FILM MATERIALS WITH THE BARRIER PROPERTIES

    OpenAIRE

    Колосов, Олександр Євгенович; Сідоров, Дмитро Едуардович; Малецький, Сергій Віталійович

    2016-01-01

    The basic types of interactions for packaged food product and packaging that may occur between the polymer film packaging material and the produc are analyzed. It is noted that the most simple to implement isolation of the internal space of the polymer film packaging from the environment. In this package of the insulated space can be removed by air, in particular, evacuation, or replaced with an inert gas or inert gas mixture. It is noted that the permeability of gases and gas mixtures by non...

  3. Nanomaterials-Based Water and Moisture Impermeable Barrier for Food Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop flexible food packaging materials with an effective barrier against oxygen and moisture. This technology will build on sol-gel...

  4. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives.

  5. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

  6. Taking plastics packaging to the future through improving barrier properties

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2011-11-01

    Full Text Available the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology Permeability Thermodynamic component of gas transport = solubility coefficient, S (in mol m-3 Pa-1) Kinetic component of gas transport... the Manufacturing and Materials Industry in its quest for global competitiveness orting the Manufacturing and Materials Industry in it quest for global competitiveness CSIR Manufacturing and Materials Technology Taking Plastics Packaging to the Future Through...

  7. White LED with High Package Extraction Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  8. High-activity liquid packaging design criteria

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    In recent studies, it has been acknowledged that there is an emerging need for packaging to transport high-activity liquid off the Hanford Site to support characterization and process development activities of liquid waste stored in underground tanks. These studies have dealt with specimen testing needs primarily at the Hanford Site; however, similar needs appear to be developing at other US Department of Energy (DOE) sites. The need to ship single and multiple specimens to offsite laboratories is anticipated because it is predicted that onsite laboratories will be overwhelmed by an increasing number and size (volume) of samples. Potentially, the specimen size could range from 250 mL to greater than 50 L. Presently, no certified Type-B packagings are available for transport of high-activity liquid radioactive specimens in sizes to support Site missions.

  9. Theory Packaging Material of Food Safety Barrier Property of Importance%论包材阻隔性对食品安全的重要性

    Institute of Scientific and Technical Information of China (English)

    黄玉琦; 沈君璐

    2012-01-01

      通过分析影响食品保质期的主要原因,介绍了食品包装阻隔性与食品保质期的关系,并介绍了现在市场上常用的一些高阻隔性包装材料。%  Through the analysis on the main reason for the shelf life of food, and introduces the food packaging barrier property and food shelf life relations, and introduced the commonly used in the market now some of the high barrier property packaging materials.

  10. High-power LED package requirements

    Science.gov (United States)

    Wall, Frank; Martin, Paul S.; Harbers, Gerard

    2004-01-01

    Power LEDs have evolved from simple indicators into illumination devices. For general lighting applications, where the objective is to light up an area, white LED arrays have been utilized to serve that function. Cost constraints will soon drive the industry to provide a discrete lighting solution. Early on, that will mean increasing the power densities while quantum efficiencies are addressed. For applications such as automotive headlamps & projection, where light needs to be tightly collimated, or controlled, arrays of die or LEDs will not be able to satisfy the requirements & limitations defined by etendue. Ultimately, whether a luminaire requires a small source with high luminance, or light spread over a general area, economics will force the evolution of the illumination LED into a compact discrete high power package. How the customer interfaces with this new package should be an important element considered early on in the design cycle. If an LED footprint of adequate size is not provided, it may prove impossible for the customer, or end user, to get rid of the heat in a manner sufficient to prevent premature LED light output degradation. Therefore it is critical, for maintaining expected LED lifetime & light output, that thermal performance parameters be defined, by design, at the system level, which includes heat sinking methods & interface materials or methdology.

  11. Ultra High Barrier Nanocomposites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the length of manned space missions increase, requirements to sustain those missions increase proportionately. Daily food supplies require food packaged and sent...

  12. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  13. Geotechnical, Hydrogeologic and Vegetation Data Package for 200-UW-1 Waste Site Engineered Surface Barrier Design

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.

    2007-11-26

    Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.

  14. Technical Barriers and Development of Cu Wirebonding in Nanoelectronics Device Packaging

    Directory of Open Access Journals (Sweden)

    C. L. Gan

    2012-01-01

    Full Text Available Bondpad cratering, Cu ball bond interface corrosion, IMD (intermetal dielectric cracking, and uncontrolled post-wirebond staging are the key technical barriers in Cu wire development. This paper discusses the UHAST (unbiased HAST reliability performance of Cu wire used in fine-pitch BGA package. In-depth failure analysis has been carried out to identify the failure mechanism under various assembly conditions. Obviously green mold compound, low-halogen substrate, optimized Cu bonding parameters, assembly staging time after wirebonding, and anneal baking after wirebonding are key success factors for Cu wire development in nanoelectronic packaging. Failure mechanisms of Cu ball bonds after UHAST test and CuAl IMC failure characteristics have been proposed and discussed in this paper.

  15. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  16. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez Aldana

    2014-09-01

    Full Text Available Polylactic acid (PLA and montmorillonite (CB as filler were studied as coatings for cellulose based packages. Amorphous (AM and semi crystalline (SC PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA, water vapor (WVP and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Grease Proof Papers 1 and 2 produced commercially. Significant differences were found and the main factors were the type and concentration of PLA. The best values were: for grease penetration, +1800 s; WVP from 161.36 to 237.8 g·µm·kPa−1·m−2·d−1 and CA from 69° to 73° for PLA–AM 0.5% and CB variable. These parameters are comparable to commercial packages used in the food industry. DSC revealed three different thermal events for PLA–SC and just Tg for PLA–AM. Crystallinity was also verified, obtaining a ΔHcrys of 3.7 J·g−1 for PLA–SC and 14 J·g−1 for PLA–SC–BC, evidencing clay interaction as a crystal nucleating agent. Differences found were explained on terms of the properties measured, where structural and chemical arrays of the coatings play a fundamental role for the barrier properties.

  17. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  18. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  19. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  20. Heat transfer in high density electronics packaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to get an insight into the thermal characteristic and to evaluate the thermal reliability of the "System in Packaging"(SIP), a new solution of electronics packaging, a heat transfer model of SIP was developed to predict the heat dissipation capacity and to investigate the effect of different factors on the temperature distribution in the electronics. The affecting parameters under consideration include the thermophysical properties of the substrates, the coefficient of convection heat transfer, the thickness of the chip, and the density of power dissipation. ALGOR, a kind of finite element analysis software,was used to do the model simulation. Based on the sinulation and analysis of the heat conduction and convection resistance, criteria for the thermal design were established and possible measurement for enhancing power dissipation was provided, The results show that the heat transfer model provides a new and effective way to the thermal design and thermal analysis of SIP and to the mechanical analysis for the further investigation of SIP.

  1. Processing and Validation of Whey-Protein-Coated Films and Laminates at Semi-Industrial Scale as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    E. Bugnicourt

    2013-01-01

    Full Text Available A biopolymer coating for plastic films was formulated based on whey protein, and its potential to replace current synthetic oxygen barrier layers used in food packaging such as ethylene vinyl alcohol copolymers (EVOH was tested. The whey-coating application was performed at semi-industrial scale. High barrier to oxygen with transmission rate down to ranges of 1 cm3 (STP m−2 d−1 bar−1 at and 50% relative humidity (r.h. but interesting humidity barrier down to ranges of 3 g m−2 d−1 (both normalized to 100 μm thickness were reached, outperforming most existing biopolymers. Coated films were validated for storing various food products showing that the shelf life and sensory attributes were maintained similar to reference packaging films while complying with food safety regulations. The developed whey coating could be enzymatically removed within 2 hours and is therefore compatible with plastic recycling operations to allow multilayer films to become recyclable by separating the other combined layers. A life cycle assessment was performed showing a significant reduction in the environmental impact of the packaging thanks in particular to the possibility of recycling materials as opposed to incinerating those containing EVOH or polyamide (PA, but due to the use of biosourced raw materials.

  2. Barrier Properties of Polymeric Packaging Materials to Major Aroma Volatiles in Herbs

    Directory of Open Access Journals (Sweden)

    Leelaphiwat Pattarin

    2016-01-01

    Full Text Available This study determined the main transport coefficients (diffusion, solubility and permeability of key aroma compounds present in tropical herbs (eucalyptol and estragol through low‒density polyethylene (LDPE, polypropylene (PP, nylon (Nylon, polyethylene terephthalate (PET, metalized‒polyethylene terephthalate (MPET and poly(lactic acid (PLA films at 15 and 25 °C. The concentration of aroma compounds permeating through the films were evaluated at various time intervals using a gas chromatograph flame ionization detector (GC–FID. Results showed that the diffusion coefficients of aroma compounds were highest in LDPE whereas the solubility coefficients were highest in PLA at both temperatures. PLA had the highest permeability coefficients for estragol at both temperatures. PP and LDPE had the highest permeability coefficients for eucalyptol at 15 and 25 °C, respectively. MPET had the lowest permeability for both aroma compounds studied. Aroma barrier properties can be used when selecting polymeric packaging materials to prevent aroma loss in various food and consumer products.

  3. Mineral oil barrier sequential polymer treatment for recycled paper products in food packaging

    Science.gov (United States)

    Paul, Uttam C.; Fragouli, Despina; Bayer, Ilker S.; Mele, Elisa; Conchione, Chiara; Cingolani, Roberto; Moret, Sabrina; Athanassiou, Athanassia

    2017-01-01

    Recycled cellulosic paperboards may include mineral oils after the recycle process, which together with their poor water resistance limit their use as food packaging materials. In this work, we demonstrate that a proper functionalization of the recycled paper with two successive polymer treatments, imposes a mineral oil migration barrier and simultaneously renders it waterproof and grease resistant, making it an ideal material for food contact. The first poly (methyl methacrylate) treatment penetrates the paper network and creates a protective layer around every fiber, permitting thus the transformation of the paperboard to a hydrophobic material throughout its thickness, reducing at the same time the mineral oil migration. Subsequently, the second layer with a cyclic olefin copolymer fills the open pores of the surface, and reduces the mineral oil hydrocarbons migration at levels below those proposed by the BMEL. Online liquid chromatography-gas chromatography coupled with flame ionization detection quantitatively demonstrate that this dual functional treatment prevents the migration of both saturated (mineral oil saturated hydrocarbons) and aromatic hydrocarbon (mineral oil aromatic hydrocarbons) mineral oils from the recycled paperboard to a dry food simulant.

  4. W1045 environment surf drip shield and waste package outer barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G

    1999-07-14

    The environments on the drip shield and waste package outer barrier are controlled by the compositions of the waters that contact these components. the temperature (T) of these components, and the effective relative humidity (RH) at these components. Because the composition of the waters that are expected to enter the emplacement drifts (either by seepage flow or by episodic flow) have not been specified: well J13 water was chosen as the reference water (Harrar 1990). Section 6.2 discusses the accessible RH for the temperatures of interest at the repository horizon. Section 6.3 discusses the adsorption of water on metal alloys in the absence of hygroscopic salts. Because the temperatures of the DSs and the WPOBs are higher than those of the surrounding near-field environment, the relative humidity at the DSs and the WPOBs will be lower than that of the surrounding near-field environment. This difference is a result of the water partial pressure in the drift being constant and no higher than the equilibrium water vapor pressure at the temperature of the drift wall.

  5. Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging.

    Science.gov (United States)

    Lu, Peng; Xiao, Huining; Zhang, Weiwei; Gong, Glen

    2014-10-13

    Nanofibrillated cellulose (NFC) easily forms a high strength film but is unable to withstand the influence of water vapor when used in high moisture situations. The water vapor transmission rate (WVTR) of a NFC film was as high as 5088 g/m(2)24h (38 °C, 90% RH). The addition of beeswax latex in a NFC casting film (NFX) lowered the WVTR to 3918 g/m(2)24h. To further reduce the WVTR, a coating agent comprised of acrylated epoxidized soybean oil (AESO) and 3-aminopropyltriethoxysilane (APTS) was applied onto the NFX film using a rod coater. A combination of the suitable AESO/APTS ratio, initiator dosing, curing time and temperature could reduce the WVTR to 188 g/m(2) 24h when the coat weight was 5 g/m(2). Moreover, the coated NFX film was highly hydrophobic along with the improved transparency and thermal stability. This biodegradable polymer-coated NFC film can be used as potential packaging barrier in certain areas.

  6. High power electronics package: from modeling to implementation

    NARCIS (Netherlands)

    Yuan, C.A.; Kregting, R.; Ye, H.; Driel, W. van; Gielen, A.W.J.; Zhang, G.Q.

    2011-01-01

    Power electronics, such as high power RF components and high power LEDs, requires the combination of robust and reliable package structures, materials, and processes to guarantee their functional performance and lifetime. We started with the thermal and thermal-mechanical modeling of such component

  7. High resolution X-ray CT for advanced electronics packaging

    Science.gov (United States)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  8. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be

  9. Packaged chalcogenide microsphere resonator with high Q-factor

    Science.gov (United States)

    Wang, Pengfei; Ding, Ming; Lee, Timothy; Senthil Murugan, Ganapathy; Bo, Lin; Semenova, Yuliya; Wu, Qiang; Hewak, Dan; Brambilla, Gilberto; Farrell, Gerald

    2013-04-01

    The fabrication and characterization of a packaged As2S3 microsphere resonator coupled to a tapered fiber using a low refractive index UV-curable polymer are reported. Embedding provides an efficient means to remove the highest order whispering gallery modes in the microsphere resonator, thus cleaning the resonator spectrum. At wavelengths near 1549.5 nm, high-Q modes up to 1.8 × 105 can be efficiently excited in a 110 μm diameter chalcogenide microsphere via evanescent coupling from a 2 μm diameter tapered silica fiber. The device photosensitivity, useful for tuning, is still present and useable after the packaging process.

  10. Stress Corrosion Cracking of the Drip Shield, The Waste Package Outer Barrier and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    C. Stephen

    2000-04-17

    One of the potential failure modes of the drip shield (DS), the waste package (WP) outer barrier, and the stainless structural material is the initiation and propagation of stress corrosion cracking (SCC) induced by the WP environment and various types of stresses that can develop in the DSs or the WPs. For the current design of the DS and WP, however, the DS will be excluded from the SCC evaluation because stresses that are relevant to SCC are insignificant in the DS. The major sources of stresses in the DS are loadings due to backfill and earthquakes. These stresses will not induce SCC because the stress caused by backfill is generally compressive stress and the stress caused by earthquakes is temporary in nature. The 316NG stainless steel inner barrier of the WP will also be excluded from the SCC evaluation because the SCC performance assessment will not take credit from the inner barrier. Therefore, the purpose of this document is to provide a detailed description of the process-level models that can be applied to assess the performance of the material (i.e., Alloy 22) used for the WP outer barrier subjected to the effects of SCC. As already mentioned in the development plan for the WP PMR (CRWMS M and O 1999e), this Analyses and Models Report (AMR) is to serve as a feed to the Waste Package Degradation (WPD) Total System Performance Assessment (TSPA) and Process Model Report (PMR).

  11. High reliability plastic packaging for microelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.; Tuck, M.

    1997-07-01

    Goal was Assembly Test Chips (ATCs) which could be used for evaluating plastic encapsulation technologies. Circuits were demonstrated for measuring Au-Al wirebond and Al metal corrosion failure rates during accelerated temperature and humidity testing. The test circuits on the ATC02.5 chip were very sensitive to extrinsic or processing induced failure rates. Accelerated aging experiments were conducted with unpassivated triple track Al structures on the ATC02.6 chip; the unpassivated tracks were found to be very sensitive to particulate contamination. Some modifications to existing circuitry were suggested. The piezoresistive stress sensing circuitry designed for the ATC04 test chip was found suitable for determining the change in the state of mechanical stress at the die when both initial and final measurements were made near room temperature (RT). Attempt to measure thermal stress between RT and a typical polymer glass transition temperature failed because of excessive die resistor- substrate leakage currents at the high temperature end; suitable circuitry changes were developed to overcome this problem. One temperature and humidity experiment was conducted with Sandia developed static radom access memory parts to examine non-corrosion CMOS failures; this objective was not achieved, but corrosion failure at the metal to Si contacts on the die surface could be detected. This 2-year effort resulted in new designs for test circuits which could be used on an advanced ATC for reliability assessment in Defense Programs electronics development projects.

  12. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Science.gov (United States)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  13. Strategies to manage barriers in policy formation and implementation of road pricing packages

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Isaksson, Karolina; Macmillen, James

    2014-01-01

    for the formulation and implementation of politically-contentious road pricing packages-addressing issues of measure combination, flexibility, legitimacy, communication, timing and organisational dynamics. While acknowledging the primacy of broader external and contextual issues, the conclusion is that taking...... inspiration from the strategies identified in this paper may increase the likelihood of successful policy package processes....

  14. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... times higher in the Ar/CO2 plasma compared with an Ar plasma. The efficiency of the produced plasma for the inactivation of bacteria on food inside the closed package was investigated....

  15. Required barrier efficiency of internal bags against the migration from recycled paperboard packaging into food: a benchmark.

    Science.gov (United States)

    Biedermann-Brem, Sandra; Biedermann, Maurus; Grob, Koni

    2016-01-01

    The use of recycled paperboard and corrugated board for food packaging is in the interest of the sustainability of resources, but in most applications the food must be protected against contamination from these materials, such as by an internal bag with a functional barrier. Producers of packaging need a specification to find the most suitable and economical barrier for a given application, and the customer needs the confidence that a solution offered to him is adequate. An accurate determination of the barrier efficiency is not possible due to the large number of migrants, most of which have not been evaluated or not even identified. Hence the specification must be based on assumptions and verifiable by a simple test. The proposed benchmark presumes that the migration of all non-evaluated or even unknown substances in recycled paperboard will remain below 0.01 mg kg(-1) food, the conventional detection limit, if their transfer does not exceed 1% of the content in the paperboard. Some substances, such as mineral oil or fatty acids, will exceed the 0.01 mg kg(-1) limit, but they are known, evaluated and of no concern at the reduced migration. Since the critical substances must be assumed to be unknown, the criterion of the 1% migration is tested with three surrogate substances of similar volatility and covering a broad range of polarity. The cornerstones of the method are specified.

  16. Transparent gas barrier coatings on polymeric substrates, as substitute of pollutant metallic aluminum, in the packaging industry; Recubrimientos barrera transparentes sobre polimeros, como sustitutos del aluminio metalico contaminante, en la industria del embalaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G.; Sanchez, O. [Universidad Autonoma de Madrid (Spain); Vazquez, L.; Martinez, J.M. [Instituto de Ciencia de Materiales de Madrid CSIC (Spain)

    1997-12-31

    Transparent gas barrier coatings based on silicon and aluminium oxides and deposited on flexible polymers have been studied. These coatings have high interest in the packaging industry for replacing the actual aluminium films that are opaque and pollutant. in this paper we show an study of the coating morphology and its influence in the barrier properties, that is, in the coating permeability. In addition, it has been shown how scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) can be used for studying transparent barrier coatings on polymeric substrates. (Author) 26 refs.

  17. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  18. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  19. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  20. Survivability of MEMS Packages at High-G Loads

    Science.gov (United States)

    Pryputniewicz, Ryszard J.

    2014-10-01

    Advances in emerging technology of microelectromechanical systems (MEMS) are one of the most challenging tasks in today's experimental mechanics. More specifically, development of these miniature devices requires sophisticated design, analysis, fabrication, testing, and characterization tools that have multiphysics and multiscale capabilities, especially as MEMS are being developed for use at harsh conditions. In harsh-environment and high-performance (e.g., military) guidance applications inertial sensors must be sensitive to low rates of rotation yet survive the high blast loads associated with the initial launch. In this multi-year study, a set of tuning fork gyroscopes were subjected to a series of increasing g-loads (culminating at approximately 60,000 g's) with measurements of shape made after each test. A custom set of test sample packages (aka articles) were hermetically sealed with glass lids to allow optical inspection of components while preserving the operating environment (i.e., vacuum). Initial test measurements were made upon fabrication of the articles. Optical and interferometric measurements have been made prior to and after each shock g-loading. The shape of the tuning fork gyroscope (TFG) test articles was measured using a phase shifting Michelson interferometer with compensation for package cover glass. Full field shape was determined and traces of pertinent structures were extracted for comparison. Failure of the die was observed in the form of fractures below the chip surface as well as fractures in the glass lid sealing the package. Potential causes of the failure are discussed as well as a recommendation for modified packaging techniques to mitigate future component failures.

  1. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  2. Impact of Chlorine dioxide Gas on the Barrier Properties of Polymeric Packaging Materials

    Science.gov (United States)

    One important criterion of polymeric material selection and packaging design for fresh produce is choosing the material with suitable ratio of carbon dioxide and oxygen permabilities (PCO2/P O2), to the respiratory proportion of the targeted produce. The ratio of [O2] and [CO2] in the head space var...

  3. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant

  4. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant

  5. Chemical Modification of NFC: Development of Renewable Barriers for Packaging Applications

    OpenAIRE

    Pettersson, Jesper

    2012-01-01

    Globalization and centralization have resulted in prolonged transportation time between producer and consumer, and thus put more demand on the perseveration of a product for longer duration and protect it from oxidation. The presence of oxygen in packages severely foreshortens the storage life as it yield losses of nutrients and allow microbial growth, which can cause changes in smell, taste as well as discoloration. Earlier food and beverage containers were made in inorganic materials e.g. m...

  6. Next High Performance and Low Power Flash Memory Package Structure

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Lee

    2007-01-01

    In general, SAND flash memory has advantages in low power consumption, storage capacity, and fast erase/write performance in contrast to NOR flash. But, main drawback of the SAND flash memory is the slow access time for random read operations. Therefore, we proposed the new SAND flash memory package for overcoming this major drawback. We present a high performance and low power SAND flash memory system with a dual cache memory. The proposed SAND flash package consists of two parts, i.e., an SAND flash memory module, and a dual cache module. The new SAND flash memory system can achieve dramatically higher performance and lower power consumption compared with any conventional NAND-type flash memory module. Our results show that the proposed system can reduce about 78% of write operations into the flash memory cell and about 70% of read operations from the flash memory cell by using only additional 3KB cache space. This value represents high potential to achieve low power consumption and high performance gain.

  7. Functional barrier in two-layer recycled PP films for food packaging applications

    Science.gov (United States)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  8. Novel organic SMD package for high-power millimeter wave MMICs

    NARCIS (Netherlands)

    Heijningen, M. van; Friday, J.

    2004-01-01

    In this paper a novel low-cost SMD package for high-power MMICs is presented. Due to the special design this package has a very low thermal resistance and low parasitic ground inductance. 3D EM simulations of a packaged through-line correspond well with measurements. Measurement results of a 1 Watt

  9. Novel organic SMD package for high-power millimeter wave MMICs

    NARCIS (Netherlands)

    Heijningen, M. van; Friday, J.

    2004-01-01

    In this paper a novel low-cost SMD package for high-power MMICs is presented. Due to the special design this package has a very low thermal resistance and low parasitic ground inductance. 3D EM simulations of a packaged through-line correspond well with measurements. Measurement results of a 1 Watt

  10. Novel Organic SMD Package for High-Power Millimeter Wave MMICs

    NARCIS (Netherlands)

    Heijningen, M. van; Priday, J.

    2004-01-01

    In this paper a novel low-cost SMD package for high-power MMICs is presented. Due to the special design this package has a very low thermal resistance and low parasitic ground inductance. 3D EM simulations of a packaged through-line correspond well with measurements. Measurement results of a 1 Watt

  11. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  12. High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2015-01-01

    Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.

  13. Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S C; Gordon, G M; Andresen, P L; Herrera, M L

    2003-06-20

    A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking due to three factors, which must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is Alloy 22, a highly corrosion resistant alloy, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. A crack, however, may reach the ''arrest'' state before it enters the ''propagation'' phase. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre

  14. Synthesis of hybrid paper sheets with enhanced air barrier and antimicrobial properties for food packaging.

    Science.gov (United States)

    El-Samahy, Magda A; Mohamed, Salah A A; Abdel Rehim, Mona H; Mohram, Maysa E

    2017-07-15

    Paper sheets made from bagasse pulp have been modified using nanocellulose (NC) obtained from the same raw material. Modification of paper sheets have been carried out either through loading of paper with different concentrations of NC and antibacterial agent, Chitosan (Ch) during making sheets, or by surface coating of the paper. Crystals of NC extracted using concentrated sulfuric acid from bagasse pulp were found to have crystallinity index (CrI) 90%. Morphology of obtained NC has been confirmed by TEM and images revealed formation of NC crystals with large size distribution ranges from 4 to 60nm. Mechanical properties and air permeability of paper sheets loaded with different ratios of NC and Ch have been investigated. The results showed that presence of NC did not negatively affect the obtained modified paper sheets, while air permeability decreased with adding 8% NC to paper matrix. On the other hand, surface coverage of paper sheets with NC greatly reduced air permeability. Antimicrobial investigations carried out by optical density method indicated that presence of Ch in the paper sheets as an additive or in a coating formulation enhanced paper resistance to different microorganisms especially those causing food poisoning. The current study confirms that the modified paper can have potential application in food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Advanced packaging technology for high frequency photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Armendariz, M.G.; Hadley, G.R.; Warren, M.E.

    1996-03-01

    An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

  16. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-03-21

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  17. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-05-06

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  18. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2002-12-18

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  19. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2002-10-17

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  20. CH Packaging Operations for High Wattage Waste at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2003-08-28

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  1. Propagation of Strong Wave Package Center and Latitudinal Movement of Western Pacific Subtropical High

    Institute of Scientific and Technical Information of China (English)

    SONG Yan; MIAO Jinhai; JU Jianhua

    2007-01-01

    On the basis of studying wave package propagation, this paper investigated the relationship between high frequency wave package propagation and transient waves' evolvement or the subtropical high's latitudinal movement. The results showed that during winter the lifetime of wave package was longer and usually persisted for 7-10 days with a propagating speed of 2-10 m s-1. Usually they propagated southeastward at the beginning, then turned to northeast. During summer the lifetime and intensity of wave package became shorter and weaker. It availed development (attenuation) of troughs when the strong wave package center was intensified (weakened) which overlapped with trough. If strong wave package center kept overlapping with ridge, the ridge would abate later in a few days. Obvious jumping northward (retreating southward) processes of Western Pacific subtropical high (WPSH) were (not) usually related to strong wave package centers located at South China Sea area (South Asia area and Temperate Zone) for 5 days or longer. After two seasonal jumping processes, there were persisting strong wave package centers for 5 days or longer.WPSH retreating processes were also related to activities of strong wave package centers over South Asia narea and temperate area as well as the strong wave package centers of typhoon, and all these centers persisted for 5 days or longer.

  2. Reliability test and failure analysis of high power LED packages*

    Institute of Scientific and Technical Information of China (English)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 ℃/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing.

  3. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-10-14

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  4. Polyelectrolyte Coacervates Deposited as High Gas Barrier Thin Films.

    Science.gov (United States)

    Haile, Merid; Sarwar, Owais; Henderson, Robert; Smith, Ryan; Grunlan, Jaime C

    2017-01-01

    Multilayer coatings consisting of oppositely charged polyelectrolytes have proven to be extraordinarily effective oxygen barriers but require many processing steps to fabricate. In an effort to prepare high oxygen barrier thin films more quickly, a polyelectrolyte complex coacervate composed of polyethylenimine and polyacrylic acid is prepared. The coacervate fluid is applied as a thin film using a rod coating process. With humidity and thermal post-treatment, a 2 µm thin film reduces the oxygen transmission rate of 0.127 mm poly(ethylene terephthalate) by two orders of magnitude, rivalling conventional oxygen barrier technologies. These films are fabricated in ambient conditions using low-cost, water-based solutions, providing a tremendous opportunity for single-step deposition of polymeric high barrier thin films.

  5. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties

    DEFF Research Database (Denmark)

    Bolumar Garcia, Jose Tomas; Lapena Gomez, David; Skibsted, Leif Horsfelt;

    2016-01-01

    Three different packaging systems: vacuum packaging, rosemary active packaging, and oxygen scavenger packaging were compared for their ability to counteract lipid oxidation in pork patties upon storage at 5 °C for 60 days following high pressure processing (HPP) (700 MPa, 10 min, 5 °C). Lipid...

  6. The huge Package for High-dimensional Undirected Graph Estimation in R

    Science.gov (United States)

    Zhao, Tuo; Liu, Han; Roeder, Kathryn; Lafferty, John; Wasserman, Larry

    2015-01-01

    We describe an R package named huge which provides easy-to-use functions for estimating high dimensional undirected graphs from data. This package implements recent results in the literature, including Friedman et al. (2007), Liu et al. (2009, 2012) and Liu et al. (2010). Compared with the existing graph estimation package glasso, the huge package provides extra features: (1) instead of using Fortan, it is written in C, which makes the code more portable and easier to modify; (2) besides fitting Gaussian graphical models, it also provides functions for fitting high dimensional semiparametric Gaussian copula models; (3) more functions like data-dependent model selection, data generation and graph visualization; (4) a minor convergence problem of the graphical lasso algorithm is corrected; (5) the package allows the user to apply both lossless and lossy screening rules to scale up large-scale problems, making a tradeoff between computational and statistical efficiency. PMID:26834510

  7. Heat Transfer Characteristics in High Power LED Packaging

    OpenAIRE

    Chi-Hung Chung; Kai-Shing Yang; Kuo-Hsiang Chien; Ming-Shan Jeng; Ming-Tsang Lee

    2014-01-01

    This study uses the T3Ster transient thermal resistance measuring device to investigate the effects to heat transfer performances from different LED crystal grains, packaging methods and heat-sink substrates through the experimental method. The experimental parameters are six different types of LED modules that are made alternatively with the crystal grain structure, the die attach method and the carrying substrate. The crystal grain structure includes the lateral type, flip chip type and ver...

  8. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films

    Science.gov (United States)

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G.; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-01

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites.Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical

  9. Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    A high temperature co-fired ceramic (HTCC) alumina material was previously electrically tested at temperatures up to 550 C, and demonstrated improved dielectric performance at high temperatures compared with the 96% alumina substrate that we used before, suggesting its potential use for high temperature packaging applications. This paper introduces a prototype 32-I/O (input/output) HTCC alumina package with platinum conductor for 500 C low-power silicon carbide (SiC) integrated circuits. The design and electrical performance of this package including parasitic capacitance and parallel conductance of neighboring I/Os from 100 Hz to 1 MHz in a temperature range from room temperature to 550 C are discussed in detail. The parasitic capacitance and parallel conductance of this package in the entire frequency and temperature ranges measured does not exceed 1.5 pF and 0.05 microsiemens, respectively. SiC integrated circuits using this package and compatible printed circuit board have been successfully tested at 500 C for over 3736 hours continuously, and at 700 C for over 140 hours. Some test examples of SiC integrated circuits with this packaging system are presented. This package is the key to prolonged T greater than or equal to 500 C operational testing of the new generation of SiC high temperature integrated circuits and other devices currently under development at NASA Glenn Research Center.

  10. High-Level waste glass dissolution in simulated internal waste package environments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V.; Pan, Y.M. [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio (United States)

    2000-07-01

    The rate of radionuclide release as a result of leaching of high-level radioactive waste (HLW) glass is important to the performance of engineered barriers. The modified product consistency test (PCT), with regular leachant exchanges, was used to determine the leaching rate of simulated HLW glasses (West Valley Demonstration Project Reference 6 and Defense Waste Processing Facility Blend 1) in aqueous solutions of FeCl{sub 2} and FeCl{sub 3} at 90 EC. These conditions were selected to simulate an internal waste package (WP) environment containing steel corrosion products and oxidized by radiolysis. Substantially higher initial B and alkali release rates, approximately a factor of 50 to 70 times greater than those in deionized water, were measured in 0.25 M FeCl{sub 3} solutions. The initial leaching rate for B and alkali was found to be pH-dependent and decreased as the leachate pH was increased. While the leach rate for Si did not show any significant change in the pH range studied, the leach rate for Al showed a minimum. The minimum in the leach rate of Al occurred at different pH values. The study indicates that elements in the glass matrix are released incongruently. (authors)

  11. Materials for high-density electronic packaging and interconnection

    Science.gov (United States)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  12. Technical Evaluation Report 52: Audio/ Videoconferencing Packages: High cost

    Directory of Open Access Journals (Sweden)

    Urel Sawyers

    2005-11-01

    Full Text Available This report compares two integrated course delivery packages: Centra 6 and WebEx. Both applications feature asynchronous and synchronous audio communications for online education and training. They are relatively costly products, and provide useful comparisons with the two less expensive products to be evaluated in the following report #53. The criteria used in the current evaluation include capacity, interactivity features, integration with learning management systems, technical specifications, and cost. The report ends with a short analysis of the currently emerging audio-conferencing software, Google Talk.

  13. Net-shape forming of composite packages with high thermal conductivity

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The continuing miniaturization of electronic devices in microelectronics and semiconductors drives the development of new packaging materials with enhanced thermal conductivity to dissipate the heat generated in electronic packages. In recent years, several promising composite materials with high thermal conductivity have been developed successfully for high performance electronic equipment to replace the traditional Kovar and Cu/W or Cu/Mo alloys, such as SiCp/Al, SICp/Cu, diamond/Al and diamond/Cu. However, these materials with high content of reinforcements have not been widely used in packaging field because they are hard to be machined into complex-shaped parts due to their greater hardness and brittleness. So, it is necessary to explore a near-net shape forming technology for these composites. In this paper, a novel technology of powder injection molding-infiltration is introduced to realize the near-net shaped preparation of the composite packages with high thermal conductivity.

  14. Net-shape forming of composite packages with high thermal conductivity

    Institute of Scientific and Technical Information of China (English)

    HE XinBo; QU XuanHui; REN ShuBin; JIA ChengGhang

    2009-01-01

    The continuing miniaturization of electronic devices in microelectronics and semiconductors drives the development of new packaging materials with enhanced thermal conductivity to dissipate the heat generated in electronic packages. In recent years, several promising composite materials with high thermal conductivity have been developed successfully for high performance electronic equipment to replace the traditional Kovar and Cu/W or Cu/Mo alloys, such as SiCp/AI, SICp/Cu, diamond/Al and diamond/Cu. However, these materials with high content of reinforcements have not been widely used in packaging field because they are hard to be machined into complex-shaped parts due to their greater hardness and brittleness. So, it is necessary to explore a near-net shape forming technology for these composites. In this paper, a novel technology of powder injection molding-infiltration is introduced to realize the near-net shaped preparation of the composite packages with high thermal conductivity.

  15. The Countermeasures of China against Foreign Green Packaging Barrier%中国应对国外绿色包装壁垒的对策

    Institute of Scientific and Technical Information of China (English)

    孙湛

    2012-01-01

    The green packaging barrier established by the developed countries causes an obstacle to exploring the international market for China's packaging industry. However, it inculcates an idea of the green and environmental protection upon the government, enterprises and the social public in China. To respond to the challenge of foreign green packaging barrier, the countermeasures can be adopted: the administrative policy regulation and guidance, the green social value established by the public, developing green design and production by enterprises.%发达国家设立的绿色包装壁垒对中国包装产业开拓国际市场形成了障碍,但也强制性地给中国的政府、企业和社会民众灌输了绿色与环保的理念。为了应对国外绿色包装壁垒的挑战,可采取以下对策:政府政策规范与引导,大众建立绿色社会价值观,企业努力发展绿色设计与生产。

  16. Current barriers to confine high frequency common mode currents

    NARCIS (Netherlands)

    Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2016-01-01

    A commercially produced three phase power line filter is submitted to a Current Barrier (CB) Electro-Magnetic Compatibility (EMC) zoning strategy as an attempt to confine high frequency common mode currents. The intent of the paper is not to show how to build a ’perfect’ filter, since this is known.

  17. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    Science.gov (United States)

    Harney, Kieran P.

    2005-01-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  18. An assessment of the barriers to accessing the Basic Package of Health Services (BPHS) in Afghanistan: was the BPHS a success?

    Science.gov (United States)

    Frost, Alexandra; Wilkinson, Matthew; Boyle, Peter; Patel, Preeti; Sullivan, Richard

    2016-11-15

    Afghanistan is one of the most fragile and conflict-affected countries in the world. It has experienced almost uninterrupted conflict for the last thirty years, with the present conflict now lasting over a decade. With no history of a functioning healthcare system, the creation of the Basic Package of Health Services (BPHS) in 2003 was a response to Afghanistan's dire health needs following decades of war. Its objective was to provide a bare minimum of essential health services, which could be scaled up rapidly through contracting mechanisms with Non-Governmental Organisations (NGOs). The central thesis of this article is that, despite the good intentions of the BPHS, not enough has been done to overcome the barriers to accessing its services. This analysis, enabled through a review of the existing literature, identifies and categorises these barriers into the three access dimensions of: acceptability, affordability and availability. As each of these is explored individually, analysis will show the extent to which these barriers to access are a critical issue, consider the underlying reasons for their existence and evaluate the efforts to overcome these barriers. Understanding these barriers and the policies that have been implemented to address them is critical to the future of health system strengthening in Afghanistan.

  19. Heat Transfer Characteristics in High Power LED Packaging

    Directory of Open Access Journals (Sweden)

    Chi-Hung Chung

    2014-03-01

    Full Text Available This study uses the T3Ster transient thermal resistance measuring device to investigate the effects to heat transfer performances from different LED crystal grains, packaging methods and heat-sink substrates through the experimental method. The experimental parameters are six different types of LED modules that are made alternatively with the crystal grain structure, the die attach method and the carrying substrate. The crystal grain structure includes the lateral type, flip chip type and vertical type. The die attach method includes silver paste and the eutectic structure. The carrying substrates are aluminum oxide (Alumina and aluminum nitride (AIN ceramic substrates and metal core PCB (MCPCB. The experimental results show that, under the conditions of the same crystal grain and die attach method, the thermal resistance values for the AIN substrate and the Alumina substrate are 2.1K/W and 5.1K/W, respectively and the total thermal resistance values are 7.3K/W and 10.8K/W. Compared to the Alumina substrate, the AIN substrate can effectively lower the total thermal resistance value by 32.4%. This is because the heat transfer coefficient of the AIN substrate is higher than that of the Alumina substrate, thus effectively increasing its thermal conductivity. In addition, under the conditions of the same crystal grain and the same substrate, the packaging methods are using silver paste and the eutectic structure for die attach. Their thermal resistance values are 5.7K/W and 2.7K/W, respectively, with a variance of 3K/W. Comparisons of the crystal grain structure show that the thermal resistance for the flip chip type is lower than that of the traditional lateral type by 0.9K/W. This is because the light emitting layer of the flip chip crystal grain is closer to the heat-sink substrate, shortening the heat dissipation route, and thus lowering the thermal resistance value. For the total thermal resistance, the crystal grain structure has a lesser

  20. High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust

    Directory of Open Access Journals (Sweden)

    Vahid Partovi Nia

    2012-04-01

    Full Text Available The R package bclust is useful for clustering high-dimensional continuous data. The package uses a parametric spike-and-slab Bayesian model to downweight the effect of noise variables and to quantify the importance of each variable in agglomerative clustering. We take advantage of the existence of closed-form marginal distributions to estimate the model hyper-parameters using empirical Bayes, thereby yielding a fully automatic method. We discuss computational problems arising in implementation of the procedure and illustrate the usefulness of the package through examples.

  1. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    Science.gov (United States)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  2. Bacteriophage lambda terminase: alterations of the high-affinity ATPase affect viral DNA packaging.

    Science.gov (United States)

    Dhar, Alok; Feiss, Michael

    2005-03-18

    DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.

  3. Research of new packaging and cooling technique for high power fiber laser used pump coupler

    Science.gov (United States)

    Mu, Wei; Si, Xu; Lin, Ya-jun; Xu, Cheng-lin; Ma, Yun-liang; Xiao, Chun

    2015-10-01

    This article analyzes the advantages and disadvantages of a packaging structure for pump coupler, where common heat conduction material is used. In this study, the possibility of using new technology of thermal conductivity is discussed. We also proposes a solution that make the function and effect of package more uniform. A serial of experiments are done for research the cooling effect and the working reliability of the fiber combiners and couplers. Experiment proves that after improved method of package, the cooling speed increases significantly comparing the sample with old type of package technique. The technique discussed in this paper will make the high power fiber laser working long time with steady power output and high efficiency.

  4. Environmental impact assessment of three packages for high-quality extra-virgin olive oil

    Directory of Open Access Journals (Sweden)

    Antonio Guiso

    2016-12-01

    Full Text Available Life cycle assessments of food packaging technologies have shown that they contribute considerably to the environmental impact of products. This study analyses the life cycle impact of three packaging solutions for high-quality extra-virgin olive oil. Two of them are widely used solutions, namely tin plated cans and dimmed glass bottles. The third one is a stainless steel bottle, which has been proposed recently. The analysis was performed with a cradle to grave approach and it takes into account raw materials extraction and processing, packaging production processes and several end-of-life scenarios. Impacts due to distribution were considered separately to assess uncertainties due to distribution distances. The results show that, for same sizes, dimmed glass bottles have the lowest overall impact value for all the six indicators selected except for ozone layer depletion, whereas stainless steel bottles have the highest impact values for all the other indicators. A sensitivity analysis was performed to determine how impact varies in function of distance and packaging weight. It shows that it is possible to set a breakeven point over which the impact of glass overcomes the one of the other packaging systems. Packaging shows a significant contribution to impact of bottled oil. For small packaging, such as a 0.100 L stainless steel bottle, this contribution can be as relevant as 60% of the overall global warming potential.

  5. Packaged triboelectric nanogenerator with high endurability for severe environments

    Science.gov (United States)

    Gu, Long; Cui, Nuanyang; Liu, Jinmei; Zheng, Youbin; Bai, Suo; Qin, Yong

    2015-10-01

    Many factors in the environment (such as dust, moisture and rain) severely influence the output performance of a triboelectric nanogenerator (TNG), which greatly limits its application. In this work, we designed and fabricated a kind of packaged TNG (PTNG) that can work normally in dust and humidity for harvesting noise energy. Under a sound wave of 110 dB and 200 Hz, the PTNG can generate a maximum output voltage of 72 V and a maximum output current of 0.66 mA. In the structure of the PTNG, the frictional layers are fully isolated from the ambient environment, which makes it work steadily in dusty and humid conditions without any damping of the output performance. Moreover, it can be used as a stable power source to directly light up 24 red commercial light emitting diodes (LEDs) driven by sound even in a severely rainy environment. This PTNG has great potential to be applied in real environments, which is critically important to the application of TNGs.Many factors in the environment (such as dust, moisture and rain) severely influence the output performance of a triboelectric nanogenerator (TNG), which greatly limits its application. In this work, we designed and fabricated a kind of packaged TNG (PTNG) that can work normally in dust and humidity for harvesting noise energy. Under a sound wave of 110 dB and 200 Hz, the PTNG can generate a maximum output voltage of 72 V and a maximum output current of 0.66 mA. In the structure of the PTNG, the frictional layers are fully isolated from the ambient environment, which makes it work steadily in dusty and humid conditions without any damping of the output performance. Moreover, it can be used as a stable power source to directly light up 24 red commercial light emitting diodes (LEDs) driven by sound even in a severely rainy environment. This PTNG has great potential to be applied in real environments, which is critically important to the application of TNGs. Electronic supplementary information (ESI) available. See

  6. Heat dissipation performance of a high-brightness LED package assembly using high-thermal conductivity filler.

    Science.gov (United States)

    Yung, K C; Liem, H; Choy, H S

    2013-12-10

    This paper presents a thermal analysis and experimental validation of natural convective heat transfer of a high-brightness light-emitting diode (LED) package assembly. The substrate materials used in the LED package assembly were filled and doped using boron nitride (BN) filler. The thermal conductivity of the BN-filled substrate was measured. The temperature distribution and heat flow of the LED package were assessed by thermal profile measurement using an infrared (IR) camera and thermocouples. In addition, the heat transfer process of the LED package assembly in natural convection was also simulated using the computational fluid dynamics method. The optical performance of the LED package was monitored and investigated with various filler contents. The heat conduction mechanism in the substrate was analyzed. IR thermogram showed that the BN-doped substrate could effectively lower the surface temperature of the LED package by 21.5°C compared with the traditional FR4 substrate. According to the IESNA LM 80 lifetime testing method, reduction in LED temperature can prolong the LED's lifetime by 19,000 h. The optical performance of the LED package assembly was also found to be improved significantly in lighting power by 10%. As a result, the overall heat dissipation capability of the LED package to the surrounding is enhanced, which improves the LED's efficacy.

  7. Spectroscopic analysis of packaging concepts for high-power diode laser bars

    Science.gov (United States)

    Hempel, Martin; Ziegler, Mathias; Schwirzke-Schaaf, Sandy; Tomm, Jens W.; Jankowski, Denny; Schröder, Dominic

    2012-05-01

    Double-side cooled high-power diode laser bars packaged by different techniques on different types of passive heat sinks are analyzed in terms of packaging-induced strain. Reference data from standard devices being single-side cooled only and packaged by conventional soft and hard soldering are also presented. Thermal profiling across the devices complements the results. The most suitable packaging architecture and technique for double-side cooled bars is identified. Measurements of the laser emission near field and electroluminescence pattern provide direct reference to the functionality of the devices. Furthermore, a type of cross calibration of the methods used for strain analysis is made, since all techniques are applied to the same set of bars. This involves micro photoluminescence, micro Raman, and degree-of-polarization electroluminescence spectroscopy.

  8. StatPatternRecognition: A C++ Package for Statistical Analysis of High Energy Physics Data

    CERN Document Server

    Narsky, I

    2005-01-01

    Modern analysis of high energy physics (HEP) data needs advanced statistical tools to separate signal from background. A C++ package has been implemented to provide such tools for the HEP community. The package includes linear and quadratic discriminant analysis, decision trees, bump hunting (PRIM), boosting (AdaBoost), bagging and random forest algorithms, and interfaces to the standard backpropagation neural net and radial basis function neural net implemented in the Stuttgart Neural Network Simulator. Supplemental tools such as bootstrap, estimation of data moments, and a test of zero correlation between two variables with a joint elliptical distribution are also provided. The package offers a convenient set of tools for imposing requirements on input data and displaying output. Integrated in the BaBar computing environment, the package maintains a minimal set of external dependencies and therefore can be easily adapted to any other environment. It has been tested on many idealistic and realistic examples.

  9. Adapting wood hydrolysate barriers to high humidity conditions.

    Science.gov (United States)

    Yaich, Anas Ibn; Edlund, Ulrica; Albertsson, Ann-Christine

    2014-01-16

    The incorporation of layered silicates in bio-based barrier films resulted in lower water vapor permeability, and significantly lowered oxygen permeability at a relative humidity (RH) as high as 80%, with reduced moisture sensitivity of the wood hydrolysate (WH) based films. The applicability of WH based films was accordingly extended over a wider relative humidity condition range. Crude aqueous process liquor, the WH, was extracted from hardwood and utilized as a feed-stock for films without any upgrading pretreatment, yet producing superior oxygen barrier performance compared to partially upgraded WH and highly purified hemicelluloses. Films composed of crude WH and either one of two types of naturally occurring layered silicates, montmorillonite (MMT) or talc, as mineral additives, were evaluated with respect to oxygen and water vapor permeability, morphological, tensile and dynamic thermo-mechanical properties. Films with an oxygen permeability as low as 1.5 (cm(3)μm)/(m(2)daykPa) at 80% RH was achieved.

  10. A highly miniaturized vacuum package for a trapped ion atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kellogg, James R.; Prestage, John D. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.

  11. Synthesizing High-Quality Graphene Membranes for Engineering Diffusion Barriers

    Science.gov (United States)

    Singha Roy, Susmit

    We demonstrate significant advances in the fundamental understanding and engineering of scalable graphene diffusion barriers. Experimental studies have established that defect-free non-scalable graphene is an excellent barrier material, however its scalable counterparts are still well behind in terms of performance. The latter's ability to perform as a barrier membrane is compromised primarily by the presence of three major problems - high density of defects, self-degradation in ambient environment and induced electrochemical oxidation of the underlying material. First, we develop an in-depth understanding of how diffusion occurs through monolayer graphene grown via chemical vapor deposition. It is shown that the atomic membrane is impenetrable in the pristine regions, however it is easily penetrated by oxygen and water at grain boundaries and intrinsic pinholes. Second, we study in detail the self-deterioration of graphene in ambient and quantify the evolution, kinetics, and energetics of the degradation process both in the pristine and intrinsically defective regions of graphene. It is also found that the degradation process is accelerated in the presence of water vapor. Third, we find that the overall defect density of a graphene membrane is primarily determined by the density of its intrinsic pinholes and grain boundaries. We demonstrate that the density on intrinsic pinholes can be significantly reduced by reducing the surface roughness of the growth substrate which is achieved by regulating the pre-growth annealing time and temperature. The density of the grain boundaries can be altered by varying the internucleation distance during the growth of the membrane. Fourth, when graphene is used as a corrosion barrier for metals, we establish that the electrochemical corrosion of the metal can be drastically reduced by adding an ultra-thin electrically insulating layer between the graphene and the metal. In addition, the barrier performance is enhanced greatly by

  12. Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance

    Science.gov (United States)

    Chen, Ge-Gu; Fu, Gen-Que; Wang, Xiao-Jun; Gong, Xiao-Dong; Niu, Ya-Shuai; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2017-01-01

    Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.

  13. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High peak power, high efficiency, high reliability lightweight, low cost QCW laser diode pump modules with up to 1000W of QCW output become possible with nLight's...

  14. Barriers to the upgrade cycle in a commodity process industry:evidence from the UK packaging industry

    OpenAIRE

    Simms, Christopher Don; Trott, Paul

    2014-01-01

    Attempting to move away from commodity based products into higher value added ones remains one of the key challenges for R&D Managers. This paper explores these challenges with evidence from a case study with a UK packaging manufacturer. The paper contributes to Lager (2000) and Lager & Blanco’s (2010) model of the product degradation-upgrade cycle. The paper presents the findings of a longitudinal three-year research project with one of the largest packaging manufacturers in Europe. Five bar...

  15. Optimal Thermo-Structural Analysis for High Density Package Mounting on Build-up Board

    Science.gov (United States)

    Nakanishi, Tohru; Hase, Tomohiro

    The importance of the high density packaging technology and mounting technology on the printed wiring build-up board has been increased for the consumer electric products. On the other hand, the chance to use the build-up boards for mounting the high density packages has been increased. However, the understanding that the reliability of the solder connection depends on the structure of the package, the motherboard, and the material properties, is not very high. In this paper, the reliability for high density packaging, mounted on the build-up board, is assessed. The compact numerical analysis model for the reliability assessment is suggested and the most reliable packaging design with optimizing each of the parameters is reported. For introduction to the reliability assessment of the FCA attachment, ceramic and silicon are compared as the inter-poser with the parameter of the solder height. The verification of the numerical analysis results using tests on the actual hardware is also shown. And the established numerical analysis model is applied to the study of influence of the copper balance between the front side and the back side copper layers.

  16. Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of p[olymeric packaging materials

    Science.gov (United States)

    In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...

  17. Selection of High Strength Encapsulant for MEMS Devices Undergoing High Pressure Packaging

    CERN Document Server

    Hamzah, A A; Husaini, Y; Majlis, B Y; Ahmad, I

    2008-01-01

    Deflection behavior of several encapsulant materials under uniform pressure was studied to determine the best encapsulant for MEMS device. Encapsulation is needed to protect movable parts of MEMS devices during high pressure transfer molded packaging process. The selected encapsulant material has to have surface deflection of less than 5 ?m under 100 atm vertical loading. Deflection was simulated using CoventorWare ver.2005 software and verified with calculation results obtained using shell bending theory. Screening design was used to construct a systematic approach for selecting the best encapsulant material and thickness under uniform pressure up to 100 atm. Materials considered for this study were polyimide, parylene C and carbon based epoxy resin. It was observed that carbon based epoxy resin has deflection of less than 5 ?m for all thickness and pressure variations. Parylene C is acceptable and polyimide is unsuitable as high strength encapsulant. Carbon based epoxy resin is considered the best encapsula...

  18. Engineering and characterization of a packaged high-T c superconducting terahertz source module

    Science.gov (United States)

    Tsujimoto, Manabu; Doi, Takuji; Kuwano, Genki; Elarabi, Asem; Kakeya, Itsuhiro

    2017-06-01

    We present an effective engineering technique for compactly packaging high-T c superconducting continuous-wave terahertz source modules. A terahertz-emitting device, which consists of stacks of intrinsic Josephson junctions in single crystalline Bi2Sr2CaCu2O{}8+δ , bias electrodes, a collimating lens, and other components, is packaged into a single finger-sized assembly. The rigid and stable structure used for the packaging guarantees physical and chemical stability with good thermal contact, and provides reproducible characteristics with a high yield rate. The coherent terahertz waves can be emitted from the back side of the base crystal without significant screening. The intuitive results obtained from the numerical simulation are consistent with the observed thermal properties. The modules are easy to use, and thus intended for all users unfamiliar with superconducting electronic devices.

  19. Packaging design for Lawrence Berkeley National Laboratory high-resistivity CCDs

    Science.gov (United States)

    Stover, Richard J.; Brown, William E.; Robinson, Lloyd B.; Gilmore, D. K.; Wei, Mingzhi; Lockwood, Christopher

    2004-09-01

    The Lawrence Berkeley National Laboratory has been developing fully-depleted high resistivity CCDs. These CCDs exhibit very high red quantum efficiency, no red fringing, and very low lateral charge diffusion, making them good candidates for astronomical applications that require better red response or better point spread function than can typically be achieved with standard thinned CCDs. For the LBNL 2Kx4K CCD we have developed a four-side mosaic package fabricated from aluminum nitride. Our objectives have been to achieve a flatness of less than 10 micrometers peak-to-valley and a consistent final package thickness variation of 10 micrometers or less in a light-weight package. We have achieved the flatness objective, and we are working toward the thickness variation objective.

  20. Thermal analysis in the near field for geological disposal of high-level radioactive waste. Establishment of the disposal tunnel spacing and waste package pitch on the 2nd progress report for the geological disposal of HLW in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Wataru [Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Iwasa, Kengo [Japan Nuclear Cycle Development Inst., Tokyo Office, Tokyo (Japan)

    1999-11-01

    For the underground facility of the geological disposal of high-level radioactive waste (HLW), the space is needed to set the engineered barrier, and the set engineered barrier and rock-mass of near field are needed to satisfy some conditions or constraints for their performance. One of the conditions above mentioned is thermal condition arising from heat outputs of vitrified waste and initial temperature at the disposal depth. Hence, it is needed that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. Therefore, the design of engineered barrier and underground facility is conducted so that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. One of these design is establishment of the disposal tunnel spacing and waste package pitch. In this report, thermal analysis is conducted to establish the disposal tunnel spacing and waste package pitch to satisfy the constraint temperature in the near field. Also, other conditions or constraints for establishment of the disposal tunnel spacing and waste package pitch are investigated. Then, design of the disposal tunnel spacing and waste package pitch, considering these conditions or constraints, is conducted. For the near field configuration using the results of the design above mentioned, the temperature with time dependency is studied by analysis, and then the temperature variation due to the gaps, that will occur within the engineered barrier and between the engineered barrier and rock mass in setting engineered barrier in the disposal tunnel or pit, is studied. At last, the disposal depth variation is studied to satisfy the temperature constraint in the near field. (author)

  1. Automated packaging platform for low-cost high-performance optical components manufacturing

    Science.gov (United States)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  2. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    Science.gov (United States)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    High altitude ballooning is typically used for scientific missions including stratospheric observations, aerological observations, and near space environment technology demonstration. The usage of stratospheric balloons is a cost effective method to pursue several scientific and technological avenues against using satellites in the void of space. Based on the Indian Institute of Astrophysics (IIA) ballooning program for studying Comet ISON using high altitude ballooning, a cost effective flight tracking and recovery package for ballooning missions has been developed using open source hardware. The flight tracking and recovery package is based on using Automatic Packet Reporting System (APRS) and has a redundant Global System for Mobile Communications (GSM) based Global Positioning System (GPS) tracker. The APRS based tracker uses AX.25 protocol for transmission of the GPS coordinates (latitude, longitude, altitude, time) alongside the heading and health parameters of the board (voltage, temperature). APRS uses amateur radio frequencies where data is transmitted in packet messaging format, modulated by radio signals. The receiver uses Very High Frequency (VHF) transceiver to demodulate the APRS signals. The data received will be decoded using MixW (open source software). A bridge will be established between the decoding software and the APRS software. The flight path will be predicted before the launch and the real time position co-ordinates will be used to obtain the real time flight path that will be uploaded online using the bridge connection. We also use open source APRS software to decode and Google Earth to display the real time flight path. Several ballooning campaigns do not employ payload data transmission in real time, which makes the flight tracking and package recovery vital for data collection and recovery of flight instruments. The flight tracking and recovery package implemented in our missions allow independent development of the payload package

  3. The Application of High Density Electronic Packaging for Spacecraft Cost and Mass Reduction

    Science.gov (United States)

    Lowry, Lynn E.; Prokop, Jon S.; Sandborn, Peter; Evans, Kristan

    1995-01-01

    It has become clear over the past few years that packaging of spacecraft electronic systems must be improved. Not only have the weight and volume taken up by conventional packaging and interconnect systems become excessive, but active devices have advanced to the point where system performance is often limited by the packaging. Since electronic systems account for up to 30% of the size and weight budgets of a spacecraft, the utilization of high density electronic packaging will be a very important path to overall spacecraft miniaturization. In the late 1970's high density interconnection technologies were being introduced into mainframe computer applications. Subsequently, these technologies have been applied to avionics, telecommunication, biomedical and automotive systems. In each application the driving forces behind the adoption of these technologies were; improved electrical performance, miniaturization, reduced power consumption, increased reliability and reduced manufacturing costs. The application of these technologies to planetary missions could provide significant benefits by way of reduced cost and design time if commercial technology and best commercial manufacturing practices are accepted. A mixed signal telecommunication function has been used as an example to illustrate the potential mass, volume and power reduction achievable with the implementation of high density packaging technologies. The tradeoff analysis which was performed demonstrated that packaging technology selection is application specific, and system level impact must be considered early on in the design process. The results of this study which compare size, performance, cost, risk and system level impact are given. Finally, the technical and cultural obstacles which have inhibited the implementation of these technologies is discussed. Specifically, the issues of space qualified hardware and technology availability is addressed. Space qualification is perceived by industry as being the

  4. Development of high performance scientific components for interoperability of computing packages

    Energy Technology Data Exchange (ETDEWEB)

    Gulabani, Teena Pratap [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achieved by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.

  5. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, Douglas

    2016-06-08

    This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.

  6. Application of modern software packages to calculating the solidification of high-speed steels

    Science.gov (United States)

    Morozov, S. I.

    2015-12-01

    The solidification of high-speed steels is calculated with the Pandat and JMatPro software packages. The results of calculating equilibrium and nonequilibrium solidification are presented and discussed. The nonequilibrium solidification is simulated using the Shelley-Gulliver model. The fraction of carbides changes as a function of the carbon content in the steels.

  7. STAMP: Extensions to the STADEN sequence analysis package for high throughput interactive microsatellite marker design.

    Science.gov (United States)

    Kraemer, Lars; Beszteri, Bánk; Gäbler-Schwarz, Steffi; Held, Christoph; Leese, Florian; Mayer, Christoph; Pöhlmann, Kevin; Frickenhaus, Stephan

    2009-01-30

    Microsatellites (MSs) are DNA markers with high analytical power, which are widely used in population genetics, genetic mapping, and forensic studies. Currently available software solutions for high-throughput MS design (i) have shortcomings in detecting and distinguishing imperfect and perfect MSs, (ii) lack often necessary interactive design steps, and (iii) do not allow for the development of primers for multiplex amplifications. We present a set of new tools implemented as extensions to the STADEN package, which provides the backbone functionality for flexible sequence analysis workflows. The possibility to assemble overlapping reads into unique contigs (provided by the base functionality of the STADEN package) is important to avoid developing redundant markers, a feature missing from most other similar tools. Our extensions to the STADEN package provide the following functionality to facilitate microsatellite (and also minisatellite) marker design: The new modules (i) integrate the state-of-the-art tandem repeat detection and analysis software PHOBOS into workflows, (ii) provide two separate repeat detection steps - with different search criteria - one for masking repetitive regions during assembly of sequencing reads and the other for designing repeat-flanking primers for MS candidate loci, (iii) incorporate the widely used primer design program PRIMER3 into STADEN workflows, enabling the interactive design and visualization of flanking primers for microsatellites, and (iv) provide the functionality to find optimal locus- and primer pair combinations for multiplex primer design. Furthermore, our extensions include a module for storing analysis results in an SQLite database, providing a transparent solution for data access from within as well as from outside of the STADEN Package. The STADEN package is enhanced by our modules into a highly flexible, high-throughput, interactive tool for conventional and multiplex microsatellite marker design. It gives the user

  8. A high-powered view of the filtration barrier.

    Science.gov (United States)

    Peti-Peterdi, János; Sipos, Arnold

    2010-11-01

    Multiphoton excitation fluorescence microscopy is a powerful noninvasive imaging technique for the deep optical sectioning of living tissues. Its application in several intact tissues is a significant advance in our understanding of organ function, including renal pathophysiological mechanisms. The glomerulus, the filtering unit in the kidney, is one good example of a relatively inaccessible and complex structure, with cell types that are otherwise difficult to study at high resolution in their native environment. In this article, we address the application, advantages, and limitations of this imaging technology for the study of the glomerular filtration barrier and the controversy it recently generated regarding the glomerular filtration of macromolecules. More advanced and accurate multiphoton determinations of the glomerular sieving coefficient that are presented here dismiss previous claims on the filtration of nephrotic levels of albumin. The sieving coefficient of 70-kD dextran was found to be around 0.001. Using a model of focal segmental glomerulosclerosis, increased filtration barrier permeability is restricted only to areas of podocyte damage, consistent with the generally accepted role of podocytes and the glomerular origin of albuminuria. Time-lapse imaging provides new details and important in vivo confirmation of the dynamics of podocyte movement, shedding, replacement, and the role of the parietal epithelial cells and Bowman's capsule in the pathology of glomerulosclerosis.

  9. Optical Diagnostics for High-Temperature Thermal Barrier Coatings

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2009-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescent sublayers is discussed, including co-doping strategies to produce more penetrating near-infrared luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.

  10. Development in the Active Packaging of Foods

    African Journals Online (AJOL)

    Active packaging is one of the innovative food packaging concepts that has been introduced as a response to the ... mildly preserved convenience foods that ... antimicrobial packaging concepts, .... material needs to have an 02-barrier of.

  11. The importance of written information packages in support of case-finding within families at risk for inherited high cholesterol.

    NARCIS (Netherlands)

    Nieuwenhoff, H.W. van den; Mesters, I.; Nellissen, J.J.; Stalenhoef, A.F.H.; Vries, N.K. de

    2006-01-01

    Inherited High Cholesterol is treatable, but highly underdiagnosed. To detect undiagnosed blood relatives at a presymptomatic stage, in the Netherlands written information packages are available to facilitate family communication. To investigate the role of those packages in the detection of carrier

  12. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    Energy Technology Data Exchange (ETDEWEB)

    Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

  13. Detection of high-energy delayed gammas for nuclear waste packages characterization

    Energy Technology Data Exchange (ETDEWEB)

    Carrel, F., E-mail: frederick.carrel@cea.fr [CEA, LIST, Gif-sur-Yvette F-91191 (France); Agelou, M.; Gmar, M.; Laine, F. [CEA, LIST, Gif-sur-Yvette F-91191 (France)

    2011-10-01

    Methods based on photon activation analysis (PAA) have been developed by CEA LIST for several years, in order to assay actinides inside nuclear waste packages. These techniques were primarily based on the detection of delayed neutrons emitted by fission products. To overcome some limitations related to neutrons, CEA LIST has worked on the detection of high-energy delayed gammas (E>3 MeV), which are simultaneously emitted by fission products along with delayed neutrons. Since the emission yield is more important for high-energy delayed gammas than delayed neutrons and because they are less sensitive to hydrogenous material, high-energy delayed gammas are a solution of interest in order to improve the accuracy of these techniques. In this article, we present new experimental results demonstrating the feasibility of high-energy delayed gamma detection for nuclear waste packages characterization. Experiments have been carried out in the PAA facility called SAPHIR, which is located in CEA Saclay. The most important part of our work has been carried out on an 870 l mock-up package. Some experimental techniques, initially based on delayed neutron detection (altitude scan, photofission tomography), have been successfully applied for the first time using high-energy delayed gamma detection.

  14. Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fillot L.-A.

    2015-02-01

    Full Text Available In this paper, a comparison of the biofuels barrier properties of PolyAmide 6 (PA6 and High Density PolyEthylene (HDPE is presented. Model fuels were prepared as mixtures of toluene, isooctane and ethanol, the ethanol volume fraction varying between 0% and 100%. Barrier properties were determined at 40°C by gravimetric techniques or gas chromatography measurements, and it was shown that polyamide 6 permeability is lower than that of polyethylene on a wide range of ethanol contents up to 85% of ethanol (E85 in the biofuel, permeability of PA6 being 100 times lower than that of HDPE for low ethanol content fuels (E5, E0. The time-lags were also compared, and on the whole range of ethanol contents, HDPE permeation kinetics appears to be much faster than that of PA6, the time lag for a 1 mm thick specimens in presence of E10 being 50 days for PA6 and 0.5 days for HDPE. The compositions of the solvent fluxes were analyzed by FID gas chromatography, and it turned out that the solvent flux was mainly made up of ethanol (minimum 95% in the case of PA6, whereas in the case of HDPE, solvent flux was mainly made up of hydrocarbons. The implication of this difference in the solvent flux composition is discussed in the present article, and a side effect called the “fuel exhaustion process” is presented. The influence of the sample thickness was then studied, and for the different biofuels compositions, the pervaporation kinetics of polyamide 6 appeared to evolve with the square of the thickness, a long transitory regime being highlighted in the case of PA6. This result implies that the time needed to characterize the steady state permeability of thick PA6 parts such as fuel tanks can be very long (one year or more, this duration being far superior to the Euros 5 or Euro 6 standard emission measurements time scale. The influence of temperature on the permeability was finally assessed, and the activation energy that is the signature of the temperature

  15. HEPMath: A Mathematica Package for Semi-Automatic Computations in High Energy Physics

    CERN Document Server

    Wiebusch, Martin

    2014-01-01

    This article introduces the Mathematica package HEPMath which provides a number of utilities and algorithms for High Energy Physics computations in Mathematica. Its functionality is similar to packages like FormCalc or FeynCalc, but it takes a more complete and extensible approach to implementing common High Energy Physics notations in the Mathematica language, in particular those related to tensors and index contractions. It also provides a more flexible method for the generation of numerical code which is based on new features for C code generation in Mathematica. In particular it can automatically generate Python extension modules which make the compiled functions callable from Python, thus eliminating the need to write any code in a low-level language like C or Fortran. It also contains seamless interfaces to LHAPDF, FeynArts, and LoopTools.

  16. Isolated Solid-State Packaging Technology of High-Temperature Pressure Sensor

    Institute of Scientific and Technical Information of China (English)

    张生才; 金鹏; 姚素英; 赵毅强; 曲宏伟

    2003-01-01

    The principle of miniature isolated solid-state encapsulation technology of high-temperature pressure sensor and the structure of packaging are discussed, including static electricity bonding, stainless steel diaphragm selection and rippled design, laser welding, silicon oil infilling, isolation and other techniques used in sensor packaging, which can affect the performance of the sensor. By adopting stainless steel diaphragm and high-temperature silicon oil as isolation materials, not only the encapsulation of the sensor is as small as 15 mm in diameter and under 1 mA drive, its full range output is 72 mV and zero stability is 0.48% F.S/mon, but also the reliability of the sensor is improved and its application is widely broadened.

  17. HEPMath 1.4: A mathematica package for semi-automatic computations in high energy physics

    Science.gov (United States)

    Wiebusch, Martin

    2015-10-01

    This article introduces the Mathematica package HEPMath which provides a number of utilities and algorithms for High Energy Physics computations in Mathematica. Its functionality is similar to packages like FormCalc or FeynCalc, but it takes a more complete and extensible approach to implementing common High Energy Physics notations in the Mathematica language, in particular those related to tensors and index contractions. It also provides a more flexible method for the generation of numerical code which is based on new features for C code generation in Mathematica. In particular it can automatically generate Python extension modules which make the compiled functions callable from Python, thus eliminating the need to write any code in a low-level language like C or Fortran. It also contains seamless interfaces to LHAPDF, FeynArts, and LoopTools.

  18. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, Douglas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    Current generation automotive power electronics packages utilize silicon devices and lead-free solder alloys. To meet stringent technical targets for 2020 and beyond (for cost, power density, specific power, efficiency and reliability), wide-bandgap devices are being considered since they offer advantages such as operation at higher frequencies, voltages, and temperatures. Traditional power electronics packages must be redesigned to utilize the full potential of wide-bandgap devices, and the die- and substrate-attach layers are key areas where new material development and validation is required. Present solder alloys do not meet the performance requirements for these new package designs while also meeting cost and hazardous substance restrictions. Sintered silver (Ag) promises to meet the needs for die- and substrate-attach interfaces but synthesis optimization and reliability evaluation must be completed. Sintered Ag material was proposed as an alternative solution in power electronics packages almost 20 years back. However, synthesis pressure requirements up 40 MPa caused a higher complexity in the production process and more stringent flatness specifications for the substrates. Recently, several manufacturers have developed sintered Ag materials that require lower (3-5 MPa) or even no bonding pressures. Degradation mechanisms for these sintered Ag materials are not well known and need to be addressed. We are addressing these aspects to some extent in this project. We are developing generalized (i.e., independent of geometry) stress intensity factor versus cycles-to-failure relations for sintered Ag. Because sintered Ag is a relatively new material for automotive power electronics, the industry currently does not have a good understanding of recommended synthesis parameters or expected reliability under prescribed conditions. It is an important deliverable of this project to transfer findings to industry to eliminate barriers to using sintered Ag as a viable and

  19. High variation in manufacturer-declared serving size of packaged discretionary foods in Australia.

    Science.gov (United States)

    Haskelberg, Hila; Neal, Bruce; Dunford, Elizabeth; Flood, Victoria; Rangan, Anna; Thomas, Beth; Cleanthous, Xenia; Trevena, Helen; Zheng, Jazzmin Miaobing; Louie, Jimmy Chun Yu; Gill, Timothy; Wu, Jason H Y

    2016-05-28

    Despite the potential of declared serving size to encourage appropriate portion size consumption, most countries including Australia have not developed clear reference guidelines for serving size. The present study evaluated variability in manufacturer-declared serving size of discretionary food and beverage products in Australia, and how declared serving size compared with the 2013 Australian Dietary Guideline (ADG) standard serve (600 kJ). Serving sizes were obtained from the Nutrition Information Panel for 4466 packaged, discretionary products in 2013 at four large supermarkets in Sydney, Australia, and categorised into fifteen categories in line with the 2013 ADG. For unique products that were sold in multiple package sizes, the percentage difference between the minimum and the maximum serving size across different package sizes was calculated. A high variation in serving size was found within the majority of food and beverage categories - for example, among 347 non-alcoholic beverages (e.g. soft drinks), the median for serving size was 250 (interquartile range (IQR) 250, 355) ml (range 100-750 ml). Declared serving size for unique products that are available in multiple package sizes also showed high variation, particularly for chocolate-based confectionery, with median percentage difference between minimum and maximum serving size of 183 (IQR 150) %. Categories with a high proportion of products that exceeded the 600 kJ ADG standard serve included cakes and muffins, pastries and desserts (≥74 % for each). High variability in declared serving size may confound interpretation and understanding of consumers interested in standardising and controlling their portion selection. Future research is needed to assess if and how standardising declared serving size might affect consumer behaviour.

  20. Research and Application of WCF Technology in Data Acquisition of Ultra-high Speed Packaging Machine

    Directory of Open Access Journals (Sweden)

    Qian Jie

    2016-01-01

    Full Text Available By introducing WCF technology on data acquisition of ultra-high speed packaging machine, data acquisition system reads dates of machine in polling mode through the WCF client, which can achieve accurate data collection, and effectively isolate the data acquisition system and the machine control system. It enhances the security of data interaction between systems, but also reduces the coupling degree between systems.

  1. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    -section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  2. High-resolution reconstruction of a coastal barrier system

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Nielsen, Lars Henrik

    2015-01-01

    from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the CBS before the barrier shoreline stabilised between 5.0 and 4.......5 ka ago. Back-barrier shoreline erosion due to sediment starvation in the back-barrier basin, was pronounced from 4.5 to 2.5 ka ago but the last 2.5 kyr barrier sedimentation has kept up with and outpaced sea-level. The last 0.4 kyr the CBS has been episodically prograding. Sediment accumulation shows...

  3. Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra

    Science.gov (United States)

    Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.

    2017-06-01

    The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.

  4. A Survey of High Level Frameworks in Block-Structured Adaptive Mesh Refinement Packages

    CERN Document Server

    Dubey, Anshu; Bell, John; Berzins, Martin; Brandt, Steve; Bryan, Greg; Colella, Phillip; Graves, Daniel; Lijewski, Michael; Löffler, Frank; O'Shea, Brian; Schnetter, Erik; Van Straalen, Brian; Weide, Klaus

    2016-01-01

    Over the last decade block-structured adaptive mesh refinement (SAMR) has found increasing use in large, publicly available codes and frameworks. SAMR frameworks have evolved along different paths. Some have stayed focused on specific domain areas, others have pursued a more general functionality, providing the building blocks for a larger variety of applications. In this survey paper we examine a representative set of SAMR packages and SAMR-based codes that have been in existence for half a decade or more, have a reasonably sized and active user base outside of their home institutions, and are publicly available. The set consists of a mix of SAMR packages and application codes that cover a broad range of scientific domains. We look at their high-level frameworks, and their approach to dealing with the advent of radical changes in hardware architecture. The codes included in this survey are BoxLib, Cactus, Chombo, Enzo, FLASH, and Uintah.

  5. Blood-Brain Barrier Changes in High Altitude.

    Science.gov (United States)

    Lafuente, José V; Bermudez, Garazi; Camargo-Arce, Lorena; Bulnes, Susana

    2016-01-01

    Cerebral syndromes related to high-altitude exposure are becoming more frequent as the number of trips to high altitudes has increased in the last decade. The commonest symptom is headache, followed by acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), which can be fatal. The pathophysiology of these syndromes is not fully understood. The classical "tight-fit hypothesis" posits that there are some anatomical variations that would obstruct the sinovenous outflow and worsen vasogenic edema and intracranial hypertension reactive to hypoxia. This could explain microhemorrhages seen in autopsies. However, recent magnetic resonance imaging studies have demonstrated some components of cytotoxic edema in HACE absent in AMS, suggesting a dysfunction in water balance at the cellular level. Currently, the "red-ox theory" supports trigemino-vascular system activation by free radicals formed after hypoxia and the consequent oxidative stress cascades. Apart from trigemino-vascular system activation, free radicals can also provoke membrane destabilisation mediated by lipid peroxidation, inflammation, and local hypoxia inducible factor-1α and vascular endothelial growth factor activation, resulting in gross blood-brain barrier (BBB) dysfunction. Besides alterations in endothelial cells such as increased pinocytotic vesicles and disassembly of interendothelial tight junction proteins, capillary permeability may also increase with subsequent swelling of astrocyte end-feet. In conclusion, although the pathophysiology of AMS and HACE is not completely understood, recent evidence proposes a multifactorial entity, with brain swelling and compromise of the BBB considered to play an important role. A fuller comprehension of these processes is crucial to reduce and prevent BBB alterations during high-altitude exposure.

  6. Thermal barrier coating on high temperature industrial gas turbine engines

    Science.gov (United States)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  7. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Moreta, Cristina; Tena, María-Teresa

    2015-10-02

    A simple and sensitive analytical method for the determination of several plastic additives in multilayer packaging based on solid-liquid extraction (SLE) and ultra-high performance liquid chromatography (UHPLC) coupled to variable wavelength (VWD) and time of flight mass spectrometry (TOF-MS) detectors is presented. The proposed method allows the simultaneous determination of fourteen additives belonging to different families such as antioxidants, slip agents and light stabilizers, as well as two oxidation products in only 9min. The developed method was validated in terms of linearity, matrix effect error, detection and quantification limits, repeatability and intermediate precision. The instrumental method showed satisfactory repeatability and intermediate precision at concentrations closed to LOQ with RSDs less than 7 and 20%, respectively, and LODs until 5000 times more sensitive than other GC-FID and HPLC-VWD methods previously reported. Also, focused ultrasound solid-liquid extraction (FUSLE) was optimized and evaluated to extract plastic additives from packaging. Extraction results obtained by FUSLE and SLE were compared to those obtained by pressurized liquid extraction (PLE). All extraction methods showed excellent extraction efficiency for slip agents, however quantitative recovery of all analytes was achieved only by SLE with just 5ml of hexane for 10h. Finally, the selected method was applied to the analysis of packaging samples where erucamide, Irgafos 168, oxidized Irgafos 168, Irganox 1076 and Irganox 1010 were detected and quantified. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics.

    Science.gov (United States)

    Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi

    2004-04-01

    Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.

  9. Edible packaging materials.

    Science.gov (United States)

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  10. Design of noise barrier inspection system for high-speed railway

    Science.gov (United States)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  11. High-performance and high-reliability SOT-6 packaged diplexer based on advanced IPD fabrication techniques

    Science.gov (United States)

    Qiang, Tian; Wang, Cong; Kim, Nam-Young

    2017-08-01

    A diplexer offering the advantages of compact size, high performance, and high reliability is proposed on the basis of advanced integrated passive device (IPD) fabrication techniques. The proposed diplexer is developed by combining a third-order low-pass filter (LPF) and a third-order high-pass filter (HPF), which are designed on the basis of the elliptic function prototype low-pass filter. Primary components, such as inductors and capacitors, are designed and fabricated with high Q-factor and appropriate values, and they are subsequently used to construct a compact diplexer having a chip area of 900 μm × 1100 μm (0.009 λ0 × 0.011 λ0, where λ0 is the guided wavelength). In addition, a small-outline transistor (SOT-6) packaging method is adopted, and reliability tests (including temperature, humidity, vibration, and pressure) are conducted to guarantee long-term stability and commercial success. The packaged measurement results indicate excellent RF performance with insertion losses of 1.39 dB and 0.75 dB at operation bands of 0.9 GHz and 1.8 GHz, respectively. The return loss is lower than 10 dB from 0.5 GHz to 4.0 GHz, while the isolation is higher than 15 dB from 0.5 GHz to 3.0 GHz. Thus, it can be concluded that the proposed SOT-6 packaged diplexer is a promising candidate for GSM/CDMA applications. Synthetic solution of diplexer design, RF performance optimization, fabrication process, packaging, RF response measurement, and reliability test is particularly explained and analyzed in this work.

  12. Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space

    Science.gov (United States)

    Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer

    2012-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.

  13. Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space

    Science.gov (United States)

    Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer

    2012-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.

  14. Packaging Effects on RadFET Sensors for High Energy Physics Experiments

    CERN Document Server

    Mekki, J; Glaser, M; Guatelli, S; Moll, M; Pia, M G; Ravotti, F

    2009-01-01

    RadFETs in customized chip carrier packages are installed in the LHC Experiments as radiation monitors. The package influence on the dose measurement in the complex LHC radiation environment is evaluated using Geant4 simulations and experimental data.

  15. Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method

    CERN Document Server

    Lee, Roman N

    2015-01-01

    We introduce the Mathematica package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method. So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators. The package can be used for high-precision numerical computation of the expansion coefficients of the integrals from the above families around arbitrary space-time dimension. In addition, this package can also be used for calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.

  16. 基于老年人行为特征的OTC药品包装障碍性设计%OTC Drug Packaging Barrier Design Based on Behavior Characteristics of the Elderly

    Institute of Scientific and Technical Information of China (English)

    刘金萍

    2015-01-01

    Improve the elderly patients with usability for the security of the OTC medicines packaging. Based on the OTC medicines packaging and analysis of the characteristics of the elderly group behavior and the combination of u-sing inverse thinking-barrier design is put forward, to improve the safety and convenience of OTC drug packaging mainly from visual sense, other senses and man-machine design three aspects, .%为提高老年患者对OTC药品包装的安全使用性,本文通过对OTC药品包装和老年群体行为特点的分析,提出运用逆思维——障碍设计的方法进行设计,主要分别从视觉感官、其他感官及人机设计三方面,来提高OTC药品包装的安全便捷性.

  17. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

    2006-11-01

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond

  18. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    Energy Technology Data Exchange (ETDEWEB)

    Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

    2006-11-01

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond

  19. High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham.

    Science.gov (United States)

    Marcos, Begonya; Aymerich, Teresa; Monfort, Josep M; Garriga, Margarita

    2008-02-01

    The efficiency of combining high-pressure processing (HPP) and active packaging technologies to control Listeria monocytogenes growth during the shelf life of artificially inoculated cooked ham was assessed. Three lots of cooked ham were prepared: control, packaging with alginate films, and packaging with antimicrobial alginate films containing enterocins. After packaging, half of the samples were pressurized. Sliced cooked ham stored at 6 degrees C experienced a quick growth of L. monocytogenes. Both antimicrobial packaging and pressurization delayed the growth of the pathogen. However, at 6 degrees C the combination of antimicrobial packaging and HPP was necessary to achieve a reduction of inoculated levels without recovery during 60 days of storage. Further storage at 6 degrees C of pressurized antimicrobial packed cooked ham resulted in L. monocytogenes levels below the detection limit (day 90). On the other hand, storage at 1 degrees C controlled the growth of the pathogen until day 39 in non-pressurized ham, while antimicrobial packaging and storage at 1 degrees C exerted a bacteriostatic effect for 60 days. All HPP lots stored at 1 degrees C led to counts <100CFU/g at day 60. Similar results were observed when combining both technologies. After a cold chain break no growth of L. monocytogenes was observed in pressurized ham packed with antimicrobial films, showing the efficiency of combining both technologies.

  20. HAMP – the microwave package on the High Altitude and LOng range research aircraft (HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-12-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir-looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential, synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud-resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a root-mean-square error reduced by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km, which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining a better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  1. HAMP – the microwave package on the High Altitude and LOng range research aircraft HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-05-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  2. ANALYSIS OF BARRIERS IN LISTENING COMPREHENSION AMONG JUNIOR HIGH SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Setia Muljanto

    2012-12-01

    Full Text Available This research paper identifies barriers and difficulties in listening comprehension faced by junior high school students. The research questions were what barriers did students encounter and how did they used strategies to overcome those barriers. This study used a qualitative method and was a case study involving 40 students and one English teacher. The data were obtained by ways of conducting a test of listening taken from TOEIC test. The tests indicated that the results scores were not quite satisfactory. This is primarily caused by speech delivery of the native speaker which was too fast. This means that students faced listening barriers especially in processing information. The data also indicated that students were also nervous when doing the test as habitual barrier. Strategies used to overcome these barriers are by making students get used to listen and use English and making them familiar with certain contexts in real life.

  3. Method of recognizing the high-speed railway noise barriers based on the distance image

    Science.gov (United States)

    Ma, Le; Shao, Shuangyun; Feng, Qibo; Liu, Bingqian; Kim, Chol Ryong

    2016-10-01

    The damage or lack of the noise barriers is one of the important hidden troubles endangering the safety of high-speed railway. In order to obtain the vibration information of the noise barriers, the online detection systems based on laser vision were proposed. The systems capture images of the laser stripe on the noise barriers and export data files containing distance information between the detection systems on the train and the noise barriers. The vibration status or damage of the noise barriers can be estimated depending on the distance information. In this paper, we focused on the method of separating the area of noise barrier from the background automatically. The test results showed that the proposed method is in good efficiency and accuracy.

  4. Graphene Oxide Bionanocomposite Coatings with High Oxygen Barrier Properties

    Directory of Open Access Journals (Sweden)

    Ilke Uysal Unalan

    2016-12-01

    Full Text Available In this work, we present the development of bionanocomposite coatings on poly(ethylene terephthalate (PET with outstanding oxygen barrier properties. Pullulan and graphene oxide (GO were used as main polymer phase and nanobuilding block (NBB, respectively. The oxygen barrier performance was investigated at different filler volume fractions (ϕ and as a function of different relative humidity (RH values. Noticeably, the impermeable nature of GO was reflected under dry conditions, in which an oxygen transmission rate (OTR, mL·m−2·24 h−1 value below the detection limit of the instrument (0.01 mL·m−2·24 h−1 was recorded, even for ϕ as low as 0.0004. A dramatic increase of the OTR values occurred in humid conditions, such that the barrier performance was totally lost at 90% RH (the OTR of coated PET films was equal to the OTR of bare PET films. Modelling of the experimental OTR data by Cussler’s model suggested that the spatial ordering of GO sheets within the main pullulan phase was perturbed because of RH fluctuations. In spite of the presence of the filler, all the formulations allowed the obtainment of final materials with haze values below 3%, the only exception being the formulation with the highest loading of GO (ϕ ≈ 0.03. The mechanisms underlying the experimental observations are discussed.

  5. The Role of Career Barriers in High School Students' Career Choice Behavior in Taiwan

    Science.gov (United States)

    Tien, Hsiu-Lan Shelley; Wang, Ying-Fen; Liu, Ling-Chun

    2009-01-01

    The purpose of this study was to examine the role of career barriers in social cognitive career theory (R. W. Lent, S. D. Brown, & G. Hackett, 1994). The participants were 584 high school students in Taiwan, Republic of China. The gender differences in perceived career barriers and career self-efficacy were significant. Results of hierarchical…

  6. ASYMPTOTIC THEORY FOR A RISK PROCESS WITH A HIGH DIVIDEND BARRIER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A modified classical model with a dividend barrier is considered. It is shown that there is a simple approximation formula for the time of ruin when the level of dividend barrier is high and the claim sizes have a distribution that belongs to S(γ) with γ> 0.

  7. Computer controlled cryo-electron microscopy--TOM² a software package for high-throughput applications.

    Science.gov (United States)

    Korinek, Andreas; Beck, Florian; Baumeister, Wolfgang; Nickell, Stephan; Plitzko, Jürgen M

    2011-09-01

    Automated data acquisition expedites structural studies by electron microscopy and it allows to collect data sets of unprecedented size and consistent quality. In electron tomography it greatly facilitates the systematic exploration of large cellular landscapes and in single particle analysis it allows to generate data sets for an exhaustive classification of coexisting molecular states. Here we describe a novel software philosophy and architecture that can be used for a great variety of automated data acquisition scenarios. Based on our original software package TOM, the new TOM(2) package has been designed in an object-oriented way. The whole program can be seen as a collection of self-sufficient modules with defined relationships acting in a concerted manner. It subdivides data acquisition into a set of hierarchical tasks, bonding data structure and the operations to be performed tightly together. To demonstrate its capacity for high-throughput data acquisition it has been used in conjunction with instrumentation combining the latest technological achievements in electron optics, cryogenics and robotics. Its performance is demonstrated with a single particle analysis case study and with a batch tomography application.

  8. Dual Use Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks down-weighted packaging compatible with microwave preparation and perhaps high hydrostatic pressure processing. New packaging must satisfy NASA's 3-year...

  9. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  10. Overall and specific migration from multilayer high barrier food contact materials - kinetic study of cyclic polyester oligomers migration.

    Science.gov (United States)

    Úbeda, Sara; Aznar, Margarita; Vera, Paula; Nerín, Cristina; Henríquez, Luis; Taborda, Laura; Restrepo, Claudia

    2017-10-01

    Most multilayer high barrier materials used in food packaging have a polyurethane adhesive layer in their structures. In order to assess the safety of these materials, it is important to determine the compounds intentionally added to the adhesives (IAS) as well as those non-intentionally added substances (NIAS). During the manufacture of polyurethane adhesives, some by-products can be formed, such as cyclic polyester oligomers coming from the reaction between dicarboxylic acids and glycols. Since these compounds are not listed in the Regulation 10/2011/EU, they should not be found in migration above 0.01 mg/kg of simulant. In this study two flexible multilayer packaging materials were used and migration was evaluated in simulant A (ethanol 10% v/v), simulant B (acetic acid 3% w/v) and simulant ethanol 95% v/v during 10 days at 60ºC. Identification and quantification of non-volatile compounds was carried out by UPLC-MS-QTOF. Most of migrants were oligomers such as cyclic polyesters and caprolactam oligomers. Overall migration and specific migration of adipic acid-diethylene glycol and phthalic acid-diethylene glycol were monitored over time and analysed by UPLC-MS-TQ. In most cases, ethanol 95% v/v was the simulant with the highest concentration values. Overall migration kinetics followed a similar pattern than specific migration kinetics.

  11. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    Science.gov (United States)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  12. High-performance epoxy casting resins for SMD-LED packaging

    Science.gov (United States)

    Bogner, Georg; Debray, Alexandra; Hoehn, Klaus

    2000-04-01

    In order to come up with high volume SMD-LED production encompassing 1.9 billion devices for current fiscal year we did basic exploratory work to establish structure-processing- property relations for robust epoxy casting resin packages with identical ppm level of one. Bisphenol A-based epoxy casting resins (DGEBA) with acidic ester modified Hexahydrophthalic anhydride (HHPA) hardeners using strictly controlled high-grade raw materials were formulated and thermally transferred to highly transparent polyester networks. For 1 mm thick samples transparency in the 400 to 800 nm region is above 90%. Thermal aging tests for 6 weeks at 120 degrees Celsius reveal only slight discoloration with a color distance of 2. To avoid significant light losses within the LED operating life of 100,000 hrs stress on mechanically sensitive light-emitting chips was reduced by matching glass transition temperature Tg and E-modulus to 115 degrees Celsius and 2,800 MPa, respectively. Total chloride content below 1,000 ppm imply low corrosion potential. Further, resin composition, epoxy-hardener mixing ratio as well as curing profile were adapted to materialize fast curing for demand quantities while introducing effective low stress moieties in the final structure. Low internal stress, superior thermal shock and crack resistance were derived from supreme fracture toughness: KIC and GIC values were 1.350 MPam1/2 and 560 J/m2. With favorable water absorption behavior LED-packages withstand all soldering processes including TTW (through the wave) soldering. Thus, SMD-LEDs fulfill electronic industry standard JEDEC LEVEL 2.

  13. HTTK R Package v1.4 - JSS Article on HTTK: R Package for High-Throughput Toxicokinetics

    Data.gov (United States)

    U.S. Environmental Protection Agency — httk: High-Throughput Toxicokinetics Functions and data tables for simulation and statistical analysis of chemical toxicokinetics ("TK") using data obtained from...

  14. Impact of high oxygen and vacuum retail ready packaging formats on lamb loin and topside eating quality.

    Science.gov (United States)

    Frank, Damian Conrad; Geesink, Geert; Alvarenga, Tharcilla I R C; Polkinghorne, Rod; Stark, Janet; Lee, Michael; Warner, Robyn

    2017-01-01

    Lamb steaks from semimembranosus (SM) and longissimus thoracis et lumborum (LTL) muscles were allocated to three different packaging treatments - Darfresh® vacuum skin packaging (VSP), Darfresh® Bloom packaging (80% O2:20% CO2; Hi-Ox-DB) or high oxygen modified atmosphere packaging (80% O2:20% CO2; Hi-Ox-MAP) - and stored in simulated retail display for 5 or 10days and then subjected to consumer sensory and chemical analyses. Hi-Ox-MAP and Hi-Ox-DB samples had lower tenderness, flavor, juiciness and overall liking scores and higher TBARS values, compared to VSP. Hi-Ox-MAP samples deteriorated in juiciness and flavor between 5 and 10days. Hi-Ox-MAP LTL samples had a lower myofibrillar fragmentation index, consistent with reduced proteolysis, although desmin proteolysis and desmin and troponin-T cross-linking were not influenced by packaging. The LTL exhibited greater desmin degradation and reduced desmin cross-linking relative to the SM, supporting the higher tenderness scores in this muscle. Direct packaging of lamb into retail ready VSP may provide the sheepmeat industry with greater flexibility while increasing consumer satisfaction.

  15. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data.

    Science.gov (United States)

    McMurdie, Paul J; Holmes, Susan

    2012-01-01

    We present a detailed description of a new Bioconductor package, phyloseq, for integrated data and analysis of taxonomically-clustered phylogenetic sequencing data in conjunction with related data types. The phyloseq package integrates abundance data, phylogenetic information and covariates so that exploratory transformations, plots, and confirmatory testing and diagnostic plots can be carried out seamlessly. The package is built following the S4 object-oriented framework of the R language so that once the data have been input the user can easily transform, plot and analyze the data. We present some examples that highlight the methods and the ease with which we can leverage existing packages.

  16. APPLICATION OF NANOTECHNOLOGY IN FOOD PACKAGING

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2014-04-01

    Full Text Available Nanotechnology involves the design, production and use of structures through control of the size and shape of the materials at the nanometre scale. Also, nanomaterials have been already applied in many fields of human life. Nanocomposites have already led to several innovations with potential applications in the food packaging sector. The use of nanocomposite formulations is expected to considerably enhance the shelf-life of many types of food. This improvement can lead to lower weight packages because less material is needed to obtain the same or even better barrier properties. This, in turn, can lead to reduced package cost with less packaging waste. Antimicrobial packaging is another area with high potential for applying nanocomposite technology. Nanostructured antimicrobials have a higher surface area-to-volume ratio when compared with their higher scale counterparts. Therefore, antimicrobial nanocomposite packaging systems are supposed to be particularly efficient in their activities against microbial cells. In this review, definition of nanomaterials is presented. Besides, the paper shows examples of nanocomposities and antimicrobial nanopackaging mainly with the use of nanosilver. Moreover, nanoparticles such ZnO, TiO2, MgO and nanosensors in packaging were presented.

  17. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  18. Application of "Barrier-free" Design in Packaging of Personal Care Products%“无障碍”设计在洗护品容器包装上的应用

    Institute of Scientific and Technical Information of China (English)

    刘春媛; 李国涛

    2011-01-01

    Through analyzing the idea of barrier-free design, combined with the container design of personal care, it discussed the embodiment of barrier-free design: just as convenient performance, appropriate psychological and emotional needs. It is an important part that packaging materials, structures, shape and color, texture and single or combinations of visual effects about personal care products. On this basis, it analyzed the development prospects of barrier-free design in the product packaging design and its application and development.%通过分析无障碍设计这一设计理念,并结合洗护品的容器设计论述了无障碍设计体现在便利的使用性能、适宜的心理和情感需求,论述了包装材料、结构、造型及其色彩、肌理及洗护品单体及其组合后的视觉效果是无障碍设计中的重要组成部分。在此基础上,进而分析了无障碍设计在洗护品包装中的发展前景,探讨无障碍设计在产品包装设计中的应用和发展。

  19. Packaging fluency

    DEFF Research Database (Denmark)

    Mocanu, Ana; Chrysochou, Polymeros; Bogomolova, Svetlana

    2011-01-01

    Research on packaging stresses the need for packaging design to read easily, presuming fast and accurate processing of product-related information. In this paper we define this property of packaging as “packaging fluency”. Based on the existing marketing and cognitive psychology literature...... on packaging design and processing fluency, our aim is to define and conceptualise packaging fluency. We stress the important role of packaging fluency since it is anticipated that a fluent package would influence the evaluative judgments for a product. We conclude this paper by setting the research agenda...

  20. 几种灭菌包装材料对微生物的阻隔效果研究%Study on the effect of different sterilization packaging materials on the microbial barrier

    Institute of Scientific and Technical Information of China (English)

    李涛; 朱亭亭; 张流波

    2016-01-01

    目的 研究灭菌包装材料阻菌效果,建立"透气包装材料微生物屏障分等试验"评价标准.方法 采用YY/T 0681.10-2011医药行业标准中的透气包装材料微生物屏障分等试验方法,对棉布,无纺布,皱纹纸和纸塑包装袋等4种包装材料阻菌性能进行实验室研究.结果 透气包装材料微生物屏障分等试验中,一层至三层的棉布包装后阻菌率的平均值为37.66%~61.11%,皱纹纸包装后阻菌率的平均值为90.42%~94.39%,无纺布包装后阻菌率的平均值为92.19%~98.89%,压力蒸汽用特卫强包装后阻菌率的平均值为80.74%.只有皱纹纸和无纺布微生物阻菌率均>90%.结论 无纺布和皱纹纸阻菌率每次试验均达到90%以上,棉布和纸塑袋阻菌率低于前2种包装材料.%Objective To study the bacteria resistance effect of sterilization packaging material, so as to establish the "breathable microbial barrier packaging materials classification experiment" evaluation standard. Methods The breathable microbial barrier packaging materials classification experiment in YY/T 0681. 10 -2011, the pharmaceutical industry standard was used to study the four kinds of packaging materials such as the cotton cloth, non-woven, non-woven fabrics and paper-plastic bag for their bacteria resistance performance. Results For the breathable microbial barrier packaging materials classification experiment, one to three layers of cotton cloth after packaging for bacterial blocking rates were 37. 66% ~61. 11%, the average bacteria blocking rates after the wrinkle paper packaging were 90. 42% to 94. 39%, the average bacteria blocking rates after non-woven packaging after were 92. 19% ~ 98. 89%, the average bacteria blocking rate of pressure steam after packing in tyvek was 80. 74% . Only the blocking rate of crepe paper and non-woven was>90%. Conclusion The bacteria blocking rate of non-woven and crepe paper for each test can achieve 90%. The bacteria blocking rates of cotton and

  1. Plutonium stabilization and packaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  2. High-Power Warm-White Hybrid LED Package for Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter

    2013-09-19

    In this project, an integrated warm-white hybrid light engine was developed. The hybrid approach involves combining phosphor-converted off-white InGaN LEDs and direct-emitting red AlInGaP LEDs in a single light engine to achieve high efficacy together with high color rendering index. We developed and integrated technology improvements in InGaN and AlInGaP die technology, phosphor technology, package architecture and encapsulation, to realize a hybrid warm-white LED package with an efficacy of 140 lm/W at a correlated color temperature of 3000K and a color rendering index of 90, measured under representative operating conditions. This efficacy is 26% higher than the best warm-white LEDs of similar specification that are commercially available at the end of the project. Since the InGaN- and AlInGaP-based LEDs used in the hybrid engine show different behavior as a function of current and temperature, a control system needs to be in place to ensure a stable color point over all operating conditions. In this project, we developed an electronic control circuit that is fully integrated into the light engine in such a way that the module can simply be driven by a conventional single-channel driver. The integrated control circuit uses a switch-mode boost converter topology to control the LED drive currents based on the temperature and the input current of the light engine. A color control performance of 5 SDCM was demonstrated, and improvement to 3 SDCM is considered well within reach. The combination of high efficacy and ease of integration with existing single-channel drivers is expected to facilitate the adoption of the hybrid technology and accelerate the energy savings associated with solid-state lighting. In the product commercialization plan, downlights and indirect-lit troffers have been selected as the first target applications for this product concept. Fully functional integrated prototypes have been developed for both applications, and the business case

  3. A high rotational barrier for physisorbed hydrogen in an fcu-metal-organic framework

    KAUST Repository

    Pham, Tony T.

    2014-01-01

    A combined inelastic neutron scattering (INS) and theoretical study of H2 sorption in Y-FTZB, a recently reported metal-organic framework (MOF) with fcu topology, reveals that the strongest binding site in the MOF causes a high barrier to rotation on the sorbed H2. This rotational barrier for H2 is the highest yet of reported MOF materials based on physisorption. This journal is

  4. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure.

    Science.gov (United States)

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia

    2010-07-01

    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed.

  5. Food packaging history and innovations.

    Science.gov (United States)

    Risch, Sara J

    2009-09-23

    Food packaging has evolved from simply a container to hold food to something today that can play an active role in food quality. Many packages are still simply containers, but they have properties that have been developed to protect the food. These include barriers to oxygen, moisture, and flavors. Active packaging, or that which plays an active role in food quality, includes some microwave packaging as well as packaging that has absorbers built in to remove oxygen from the atmosphere surrounding the product or to provide antimicrobials to the surface of the food. Packaging has allowed access to many foods year-round that otherwise could not be preserved. It is interesting to note that some packages have actually allowed the creation of new categories in the supermarket. Examples include microwave popcorn and fresh-cut produce, which owe their existence to the unique packaging that has been developed.

  6. Packaging - Materials review

    Science.gov (United States)

    Herrmann, Matthias

    2014-06-01

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  7. Packaging - Materials review

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Matthias [Hoppecke Advanced Battery Technology GmbH, 08056 Zwickau (Germany)

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  8. Introducing SummerTime: A package for high-precision computation of sums appearing in DRA1 method

    Science.gov (United States)

    Lee, Roman N.; Mingulov, Kirill T.

    2016-06-01

    We present the Mathematica package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method (Lee, 2010). So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators (Lee et al., 2010; Lee and Smirnov, 2011; Lee et al., 2011, 2012). The package can be used for high-precision numerical computation of the expansion of the integrals from the above families around arbitrary space-time dimension. In addition, this package contains convenient tools for the calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.

  9. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    Science.gov (United States)

    Zhou, Yongcun; Liu, Feng

    2016-08-01

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PI composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO2/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.

  10. The Training Effectiveness of Prevention Disability Package in High School Girls; a Community Intervention Trial

    Directory of Open Access Journals (Sweden)

    Abolfazl Mohammadbeigi

    2016-11-01

    Full Text Available Background: Training programs and providing essential information such as preborn educational programs for women, unmarried girls are essential as the most important prevention methods for control and prevention of health outcomes and disability. The current study conducted to assess the training effectiveness of Prevention Disability Package in high school girls in a community trail.Materials and Methods: A community trial executed among 1,339 high school girls in Qom, Iran. Subjects were the students that training in 10th and 11th years of education. All of students in each class from all majors were included in the study. According to sampling framework, 55 classes selected randomly assigned to lecture (1264 girls [94.4%], 4 (3% girls to CD-based group and 35 (2.6% girls to control group. Data collection was conducted by a standard and valid questionnaire. Analysis of variance test was used to compare the mean of knowledge score among three groups. Analysis of covariance (ANCOVA used to control the confounding variables.Results: There were significant differences among three groups according to the total score of awareness of disability. Therefore, the mean score of in handicap, musculoskeletal diseases, pregnancy dimensions, and total knowledge about disability causes was higher than in lecture group than CD-based and control groups (P

  11. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yongcun; Liu, Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China)

    2016-08-22

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PI composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO{sub 2}/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.

  12. Extension of the shelf life of prawns (Penaeus japonicus) by vacuum packaging and high-pressure treatment.

    Science.gov (United States)

    López-Caballero, M E; Pérez-Mateos, M; Borderías, J A; Montero, P

    2000-10-01

    The present study has investigated the application of high pressures (200 and 400 MPa) in chilled prawn tails, both conventionally stored (air) and vacuum packaged. Vacuum packaging and high-pressure treatment did extend the shelf life of the prawn samples, although it did affect muscle color very slightly, giving it a whiter appearance. The viable shelf life of 1 week for the air-stored samples was extended to 21 days in the vacuum-packed samples, 28 days in the samples treated at 200 MPa, and 35 days in the samples pressurized at 400 MPa. Vacuum packaging checked the onset of blackening, whereas high-pressure treatment aggravated the problem. From a microbiological point of view, batches conventionally stored reached about 6 log CFU/g or even higher at 14 days. Similar figures were reached in total number of bacteria in vacuum-packed samples and in pressurized at 200-MPa samples at 21 days. When samples were pressurized at 400 MPa, total numbers of bacteria were below 5.5 log CFU/g at 35 days of storage. Consequently, a combination of vacuum packaging and high-pressure treatment would appear to be beneficial in prolonging freshness and preventing spotting.

  13. Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package.

    Science.gov (United States)

    Tuncbag, Nurcan; Gosline, Sara J C; Kedaigle, Amanda; Soltis, Anthony R; Gitter, Anthony; Fraenkel, Ernest

    2016-04-01

    High-throughput, 'omic' methods provide sensitive measures of biological responses to perturbations. However, inherent biases in high-throughput assays make it difficult to interpret experiments in which more than one type of data is collected. In this work, we introduce Omics Integrator, a software package that takes a variety of 'omic' data as input and identifies putative underlying molecular pathways. The approach applies advanced network optimization algorithms to a network of thousands of molecular interactions to find high-confidence, interpretable subnetworks that best explain the data. These subnetworks connect changes observed in gene expression, protein abundance or other global assays to proteins that may not have been measured in the screens due to inherent bias or noise in measurement. This approach reveals unannotated molecular pathways that would not be detectable by searching pathway databases. Omics Integrator also provides an elegant framework to incorporate not only positive data, but also negative evidence. Incorporating negative evidence allows Omics Integrator to avoid unexpressed genes and avoid being biased toward highly-studied hub proteins, except when they are strongly implicated by the data. The software is comprised of two individual tools, Garnet and Forest, that can be run together or independently to allow a user to perform advanced integration of multiple types of high-throughput data as well as create condition-specific subnetworks of protein interactions that best connect the observed changes in various datasets. It is available at http://fraenkel.mit.edu/omicsintegrator and on GitHub at https://github.com/fraenkel-lab/OmicsIntegrator.

  14. Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package.

    Directory of Open Access Journals (Sweden)

    Nurcan Tuncbag

    2016-04-01

    Full Text Available High-throughput, 'omic' methods provide sensitive measures of biological responses to perturbations. However, inherent biases in high-throughput assays make it difficult to interpret experiments in which more than one type of data is collected. In this work, we introduce Omics Integrator, a software package that takes a variety of 'omic' data as input and identifies putative underlying molecular pathways. The approach applies advanced network optimization algorithms to a network of thousands of molecular interactions to find high-confidence, interpretable subnetworks that best explain the data. These subnetworks connect changes observed in gene expression, protein abundance or other global assays to proteins that may not have been measured in the screens due to inherent bias or noise in measurement. This approach reveals unannotated molecular pathways that would not be detectable by searching pathway databases. Omics Integrator also provides an elegant framework to incorporate not only positive data, but also negative evidence. Incorporating negative evidence allows Omics Integrator to avoid unexpressed genes and avoid being biased toward highly-studied hub proteins, except when they are strongly implicated by the data. The software is comprised of two individual tools, Garnet and Forest, that can be run together or independently to allow a user to perform advanced integration of multiple types of high-throughput data as well as create condition-specific subnetworks of protein interactions that best connect the observed changes in various datasets. It is available at http://fraenkel.mit.edu/omicsintegrator and on GitHub at https://github.com/fraenkel-lab/OmicsIntegrator.

  15. High Thermal Conductivity Functionally Graded Heat Sinks for High Power Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase I program proposes the development of a high thermal conductivity (400 W/mK), low coefficient of thermal expansion (7-10 ppm/?K), and light...

  16. Packaging fluency

    DEFF Research Database (Denmark)

    Mocanu, Ana; Chrysochou, Polymeros; Bogomolova, Svetlana

    2011-01-01

    Research on packaging stresses the need for packaging design to read easily, presuming fast and accurate processing of product-related information. In this paper we define this property of packaging as “packaging fluency”. Based on the existing marketing and cognitive psychology literature on pac...

  17. Internet Integration in High Schools: Patterns, Opportunities, and Barriers.

    Science.gov (United States)

    Thomas, Ruth; Adams, Marilyn; Meghani, Naheed; Smith, Maria

    Internet integration in high schools on a schoolwide scale was examined through case studies of five high schools in inner city, urban, suburban, and rural communities across the United States. A total of 322 teachers, 19 administrators, 19 counselors, 7 technology coordinators, and 3,822 students were surveyed, and 219 staff and students were…

  18. HAMP - the microwave package on the upcoming High Altitude and LOng range aircraft HALO

    Science.gov (United States)

    Mech, M.; Crewell, S.; Peters, G.; Hirsch, L.

    2009-04-01

    New cloud observation techniques are needed to improve our understanding of the impact of clouds on the earth's water cycle and radiation budget, which represents still one of the largest uncertainties in global and regional climate modeling. An airborne platform for such observation techniques will be provided by the new German research aircraft HALO (High Altitude Long Range) that will be commissioned in 2009. HALO will open a new dimension for climate and atmospheric research. By HALO it will be possible to survey the atmosphere on continental scales but with much finer resolution and with more powerful instrumentation than feasible on space borne platforms. An advanced set of microwave remote cloud sensing instruments (HAMP - HALO Microwave Package) will be operated on board of HALO. It consists of a cloud radar and a suite of passive radiometers in different frequency bands. The radar MIRA-36 operates at 36.5 GHz. Although this is an unusual low frequency, it benefits from the wider range of applications due to less signal attenuation in deep clouds and rain, compared to the 94 GHz radar operated on CloudSat. The frequencies for the passive microwave radiometers were selected in allusion to the AMSU-A and -B sounder. Thereby the 150 GHz channel of AMSU-B has been replaced by frequencies in the 118 GHz oxygen band. In combination with the 60 GHz oxygen complex channels, this frequencies can be used for precipitation retrieval after Bauer and Mugnai (2003). Furthermore by including channels in the water vapor lines at 22.235 GHz and 183.31 GHz and higher microwave channels sensitive to scattering in the ice phase, various precipitation retrieval algorithms can be compared by measurements with HAMP. This presentation introduces the microwave package on HALO. It further shows the potential of the observations by presenting results of a simulation study for the selected microwave frequencies and the cloud radar. The potential of the selected frequencies for

  19. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  20. Microelectronic packaging

    CERN Document Server

    Datta, M; Schultze, J Walter

    2004-01-01

    Microelectronic Packaging analyzes the massive impact of electrochemical technologies on various levels of microelectronic packaging. Traditionally, interconnections within a chip were considered outside the realm of packaging technologies, but this book emphasizes the importance of chip wiring as a key aspect of microelectronic packaging, and focuses on electrochemical processing as an enabler of advanced chip metallization.Divided into five parts, the book begins by outlining the basics of electrochemical processing, defining the microelectronic packaging hierarchy, and emphasizing the impac

  1. Saudi high school students' attitudes and barriers toward the use of computer technologies in learning English.

    Science.gov (United States)

    Sabti, Ahmed Abdulateef; Chaichan, Rasha Sami

    2014-01-01

    This study examines the attitudes of Saudi Arabian high school students toward the use of computer technologies in learning English. The study also discusses the possible barriers that affect and limit the actual usage of computers. Quantitative approach is applied in this research, which involved 30 Saudi Arabia students of a high school in Kuala Lumpur, Malaysia. The respondents comprised 15 males and 15 females with ages between 16 years and 18 years. Two instruments, namely, Scale of Attitude toward Computer Technologies (SACT) and Barriers affecting Students' Attitudes and Use (BSAU) were used to collect data. The Technology Acceptance Model (TAM) of Davis (1989) was utilized. The analysis of the study revealed gender differences in attitudes toward the use of computer technologies in learning English. Female students showed high and positive attitudes towards the use of computer technologies in learning English than males. Both male and female participants demonstrated high and positive perception of Usefulness and perceived Ease of Use of computer technologies in learning English. Three barriers that affected and limited the use of computer technologies in learning English were identified by the participants. These barriers are skill, equipment, and motivation. Among these barriers, skill had the highest effect, whereas motivation showed the least effect.

  2. Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost

    Science.gov (United States)

    Eldada, Louay

    2011-01-01

    In recent years, thin-film photovoltaic companies started realizing their low manufacturing cost potential, and have been grabbing an increasingly larger market share. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, and a fast high-quality CIGS reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable cover plates in the first stage, while in the second stage the CIGS layer is formed by rapid heating with Se confinement. HelioVolt also developed best-in-class packaging technologies that provide unparalleled environmental stability. High quality CIGS films with large grains were fabricated on the production line, and high-performance highreliability monolithic modules with a form factor of 120 cm × 60 cm are being produced at high yield and low cost. With conversion efficiency levels around 14% for cells and 12% for modules, HelioVolt is commercializing the process on its first production line with 20 MW capacity, and is planning its next GW-scale factory.

  3. A High-Powered View of the Filtration Barrier

    OpenAIRE

    Peti-Peterdi, János; Sipos, Arnold

    2010-01-01

    Multiphoton excitation fluorescence microscopy is a powerful noninvasive imaging technique for the deep optical sectioning of living tissues. Its application in several intact tissues is a significant advance in our understanding of organ function, including renal pathophysiological mechanisms. The glomerulus, the filtering unit in the kidney, is one good example of a relatively inaccessible and complex structure, with cell types that are otherwise difficult to study at high resolution in the...

  4. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  5. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R. [Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016 (India); Nagarajan, S.; Sopanen, M. [Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076, Aalto (Finland)

    2016-01-15

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  6. EFFECTS OF HIGH-INTENSITY ENDURANCE EXERCISE ON EPIDERMAL BARRIERS AGAINST MICROBIAL INVASION

    Directory of Open Access Journals (Sweden)

    Nobuhiko Eda

    2013-03-01

    Full Text Available For athletes, preventing infectious disease on skin is important. Examination measurement of epidermal barriers could provide valuable information on the risk of skin infections. The aim of this study was to determine the effects of high-intensity endurance exercise on epidermal barriers. Six healthy adult males (age; 22.3 ± 1.6 years performed bicycle exercise at 75%HRmax for 60 min from 18:30 to 19:30. Skin surface samples were measured 18:30 (pre, 19:30 (post, 20:30 (60 min, and 21:30 (120 min. Secretory immunoglobulin A (SIgA and human β-defensin 2 (HBD-2 concentrations were measured using an enzyme-linked immunosorbent assay (ELISA. SIgA concentration at pre was significantly higher than at post, 60 min and 120 min (p < 0.05. HBD-2 concentration at post and 120 min was significantly higher than at pre (p < 0. 05. Moisture content of the stratum corneum was significantly higher at post than at pre, 60 min, and 120 min (p < 0.05. On the chest, moisture content of the stratum corneum was significantly lower at 120 min than at pre (p < 0.05. The number of staphylococci was significantly higher at post than at pre (p < 0.05, and tended to be higher at 60 min than at pre on the chest (p = 0. 08. High-intensity endurance exercise might depress the immune barrier and physical barrier and enhance the risk of skin infection. On the other hand, the biochemical barrier increases after exercise, and our findings suggest that this barrier might supplement the compromised function of other skin barriers.

  7. Inability of non-proteolytic Clostridium botulinum to grow in mussels inoculated via immersion and packaged in high oxygen atmospheres.

    Science.gov (United States)

    Newell, Carter R; Doyle, Michael; Ma, Li

    2015-04-01

    A series of botulism challenge studies were conducted to determine if botulinum toxin would be produced in mussels (Mytilus edulis) inoculated with non-proteolytic Clostridium botulinum spores and held under modified atmosphere (MA) packaging conditions at normal (4 °C) and abusive (12 °C) temperatures. Spore mixtures of six strains of non-proteolytic C. botulinum were introduced into live mussels through immersion in a seawater solution with cultured algae. Mussels were packed in a commercial high-oxygen (60-65% O2) MA-package with a buffer, and also packed under a vacuum. Feeding live mussels cultured algae (10(4) cells/ml) with a C. botulinum spore suspension (10(3) spores/ml) in seawater at 4 °C for 6 h resulted in the uptake of spores into mussel tissue (500/g) and the mussel GI tract (100/g). Under all of the experimental conditions evaluated, none of the fresh mussels became toxic, even after spoilage and in the absence of oxygen. However, control samples using tuna or cooked mussel meats became toxic in the absence of oxygen. Botulinum toxin was not produced in fresh mussels packaged under the MA-packaging conditions evaluated, even at an abusive storage temperature (12 °C) for at least 12 days or at normal storage temperate (4 °C) for at least 21 days, which is beyond their shelf life.

  8. TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice

    Science.gov (United States)

    Tueros, Matías; Sciutto, Sergio

    2010-02-01

    In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of

  9. Collisions of electrons with hydrogen atoms I. Package outline and high energy code

    Science.gov (United States)

    Benda, Jakub; Houfek, Karel

    2014-11-01

    Being motivated by the applied researchers’ persisting need for accurate scattering data for the collisions of electrons with hydrogen atoms, we developed a computer package-Hex-that is designed to provide trustworthy results for all basic discrete and continuous processes within non-relativistic framework. The package consists of several computational modules that implement different methods, valid for specific energy regimes. Results of the modules are kept in a common database in the unified form of low-level scattering data (partial-wave T-matrices) and accessed by an interface program which is able to produce various derived quantities like e.g. differential and integral cross sections. This article is the first one of a series of articles that are concerned with the implementation and testing of the modules. Here we give an overview of their structure and present (a) the command-line interface program hex-db that can be also easily compiled into a derived code or used as a backend for a web-page form and (b) simple illustrative module specialized for high energies, hex-dwba, that implements distorted and plane wave Born approximation. Catalogue identifier: AETH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETH_v1_0.html Program obtainable from: CPC Program library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data etc.: 30367 No. of bytes in distributed program, including test data etc.: 232032 Distribution format: tar.gz Programming language: C++11 Operating system: Any system with a C++11 compiler (e.g. GCC 4.8.1; tested on OpenSUSE 13.1 and Windows 8). RAM: Test run 3 MiB. CPC Library Classification: 2.4 Electron scattering External libraries:GSL [49], FFTW3[52], SQLite3 [46]. All of the libraries are open-source and maintained. Nature of problem: Extraction of derived (observable) quantities from partial

  10. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor

    National Research Council Canada - National Science Library

    Liying Wang; Xiaohui Du; Lingyun Wang; Zhanhao Xu; Chenying Zhang; Dandan Gu

    2017-01-01

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS...

  11. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package. Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This appendix provides the data for Alternate HTM Flowsheet 2 (Glycolic Acid) melter feed preparation activities in both the laboratory- and small-scale testing. The first section provides an outline of this appendix. The melter feed preparation data are presented in the next two main sections, laboratory melter feed preparation data and small-scale melter feed preparation data. Section 3.0 provides the laboratory data which is discussed in the main body of the Small-Scale High Temperature-1 (SSHTM-1) Data Package, milestone C95-02.02Y. Section 3.1 gives the flowsheet in outline form as used in the laboratory-scale tests. This section also includes the ``Laboratory Melter Feed Preparation Activity Log`` which gives A chronological account of the test in terms of time, temperature, slurry pH, and specific observations about slurry appearance, acid addition rates, and samples taken. The ``Laboratory Melter Feed Preparation Activity Log`` provides a road map to the reader by which all the activity and data from the laboratory can be easily accessed. A summary of analytical data is presented next, section 3.2, which covers starting materials and progresses to the analysis of the melter feed. The next section, 3.3, characterizes the off-gas generation that occurs during the slurry processing. The following section, 3.4, provides the rheology data gathered including gram waste oxide loading information for the various slurries tested. The final section, 3.5, includes data from standard crucible redox testing. Section 4.0 provides the small-scale data in parallel form to section 3.0. Section 5.0 concludes with the references for this appendix.

  12. Salvus: A flexible high-performance and open-source package for waveform modelling and inversion from laboratory to global scales

    Science.gov (United States)

    Afanasiev, Michael; Boehm, Christian; van Driel, Martin; Krischer, Lion; May, Dave; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Recent years have been witness to the application of waveform inversion to new and exciting domains, ranging from non-destructive testing to global seismology. Often, each new application brings with it novel wave propagation physics, spatial and temporal discretizations, and models of variable complexity. Adapting existing software to these novel applications often requires a significant investment of time, and acts as a barrier to progress. To combat these problems we introduce Salvus, a software package designed to solve large-scale full-waveform inverse problems, with a focus on both flexibility and performance. Currently based on an abstract implementation of high order finite (spectral) elements, we have built Salvus to work on unstructured quad/hex meshes in both 2 or 3 dimensions, with support for P1-P3 bases on triangles and tetrahedra. A diverse (and expanding) collection of wave propagation physics are supported (i.e. viscoelastic, coupled solid-fluid). With a focus on the inverse problem, functionality is provided to ease integration with internal and external optimization libraries. Additionally, a python-based meshing package is included to simplify the generation and manipulation of regional to global scale Earth models (quad/hex), with interfaces available to external mesh generators for complex engineering-scale applications (quad/hex/tri/tet). Finally, to ensure that the code remains accurate and maintainable, we build upon software libraries such as PETSc and Eigen, and follow modern software design and testing protocols. Salvus bridges the gap between research and production codes with a design based on C++ template mixins and Python wrappers that separates the physical equations from the numerical core. This allows domain scientists to add new equations using a high-level interface, without having to worry about optimized implementation details. Our goal in this presentation is to introduce the code, show several examples across the scales, and

  13. The ASTROID Simulator Software Package: Realistic Modelling of High-Precision High-Cadence Space-Based Imaging

    CERN Document Server

    Marcos-Arenal, P; De Ridder, J; Huygen, R; Aerts, C

    2014-01-01

    The preparation of a space-mission that carries out any kind of imaging to detect high-precision low-amplitude variability of its targets requires a robust model for the expected performance of its instruments. This model cannot be derived from simple addition of noise properties due to the complex interaction between the various noise sources. While it is not feasible to build and test a prototype of the imaging device on-ground, realistic numerical simulations in the form of an end-to-end simulator can be used to model the noise propagation in the observations. These simulations not only allow studying the performance of the instrument, its noise source response and its data quality, but also the instrument design verification for different types of configurations, the observing strategy and the scientific feasibility of an observing proposal. In this way, a complete description and assessment of the objectives to expect from the mission can be derived. We present a high-precision simulation software packag...

  14. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  15. A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environments

    Science.gov (United States)

    Azhari, Amir; Liang, Richard; Toyserkani, Ehsan

    2014-07-01

    The aim of this article is to introduce a novel packaging of conventional Corning SMF-28™ single-mode fibre Bragg grating sensors for ultra-high temperature sensing. The package is in a cylindrical shape made of yttria-stabilized zirconia tubes. The fibre optic sensor is epoxied to one end inside the tube to be protected from high external temperatures and also harsh environments. Highly-oriented pyrolytic graphite tube with an exceptional anisotropic thermal conductivity with higher conductivity in transverse than radial direction is positioned around the fibre to protect it from high temperatures. Air cooling system is also provided from the other end to dissipate the transferred heat from inside the tube. The shift in the Bragg wavelength is influenced by the thermal expansion of the package and internal temperature variations, which translates into thermal expansion of the fibre. The modelling and experimental results revealed that the Bragg wavelength shift increases to 1.4 pm °C-1 at higher temperatures with linear behaviour at temperatures above 600 °C. The finite element modelling and the experimental results are also in good proximity indicating the similar trend for the shift in the Bragg wavelength.

  16. Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin

    Science.gov (United States)

    Scherzer, Tom

    1997-08-01

    The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.

  17. MEMS packaging

    CERN Document Server

    Hsu , Tai-Ran

    2004-01-01

    MEMS Packaging discusses the prevalent practices and enabling techniques in assembly, packaging and testing of microelectromechanical systems (MEMS). The entire spectrum of assembly, packaging and testing of MEMS and microsystems, from essential enabling technologies to applications in key industries of life sciences, telecommunications and aerospace engineering is covered. Other topics included are bonding and sealing of microcomponents, process flow of MEMS and microsystems packaging, automated microassembly, and testing and design for testing.The Institution of Engineering and Technology is

  18. An assessment of the barriers to accessing the Basic Package of Health Services (BPHS) in Afghanistan:was the BPHS a success?

    OpenAIRE

    Frost, Alexandra; Wilkinson, Matthew; Boyle, Peter; Patel, Preeti; Sullivan, Richard

    2016-01-01

    Afghanistan is one of the most fragile and conflict-affected countries in the world. It has experienced almost uninterrupted conflict for the last thirty years, with the present conflict now lasting over a decade. With no history of a functioning healthcare system, the creation of the Basic Package of Health Services (BPHS) in 2003 was a response to Afghanistan's dire health needs following decades of war. Its objective was to provide a bare minimum of essential health services, which could b...

  19. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications.

    Science.gov (United States)

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J M D; Li, Mo; Wang, Jian-Ping

    2017-02-02

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices' robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.

  20. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications

    Science.gov (United States)

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping

    2017-02-01

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.

  1. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications

    Science.gov (United States)

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping

    2017-01-01

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications. PMID:28150807

  2. Predictors of high score patient-reported barriers to controlling cancer pain: a preliminary report.

    Science.gov (United States)

    Kwon, Jung Hye; Oh, Sung Yong; Chisholm, Gary; Lee, Jung-Ae; Lee, Jae Jin; Park, Keon Woo; Nam, Seung-Hyun; Song, Hun Ho; Lee, Keehyun; Zang, Dae Young; Kim, Ho Young; Choi, Dae Ro; Kim, Hyo Jung; Kim, Jung Han; Jung, Joo Young; Jang, Geundoo; Kim, Hyeong Su; Won, Ji Yun; Bruera, Eduardo

    2013-04-01

    Pain is one of the most common and devastating symptoms in cancer patients, and misunderstandings on the patient's part can cause major obstacles in pain management. We evaluated factors associated with patient's high barrier score to managing cancer-associated pain by having 201 patients complete the Korean Barriers Questionnaire II, the Brief Pain Inventory--Korean, the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30, and the Korean Beck Depression Inventory. The Pain Management Index (PMI) was also assessed. The patients were from nine oncology clinics in university hospitals and a veterans' hospital in South Korea. The median pain score (0-10 scale) was 4, with a median percentage of pain improvement during the last 24 h of 70 %. A total of 150 patients (75 %) received strong opioids, and 177 (88 %) achieved adequate analgesia (positive PMI). Mean scores ± SD for the Barriers Questionnaire II ranged from 1.5 ± 1 to 2.8 ± 1.1, with the harmful effects subscale the highest. In the multiple regression model, depression was significantly associated with total barrier score to pain management (p Management of cancer pain should include screening for depression, and management of depression could reduce patient-reported barriers to pain management.

  3. High glucose induces dysfunction of airway epithelial barrier through down-regulation of connexin 43.

    Science.gov (United States)

    Yu, Hongmei; Yang, Juan; Zhou, Xiangdong; Xiao, Qian; Lü, Yang; Xia, Li

    2016-03-01

    The airway epithelium is a barrier to the inhaled antigens and pathogens. Connexin 43 (Cx43) has been found to play critical role in maintaining the function of airway epithelial barrier and be involved in the pathogenesis of the diabetic retinal vasculature, diabetes nephropathy and diabetes skin. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that the down-regulation of Cx43 induced by HG alters the expression of tight junctions (zonula occludens-1 (ZO-1) and occludin) and contributes to dysfunction of airway epithelial barrier, and Cx43 plays a critical role in the process in human airway epithelial cells (16 HBE). We show that high glucose (HG) decreased the expression of ZO-1 and occludin, disassociated interaction between Cx43 and tight junctions, and then increased airway epithelial transepithelial electrical resistance (TER) and permeability by down-regulation of Cx43 in human airway epithelial cells. These observations demonstrate an important role for Cx43 in regulating HG-induced dysfunction of airway epithelial barrier. These findings may bring new insights into the molecular pathogenesis of pulmonary infection related to diabetes mellitus and lead to novel therapeutic intervention for the dysfunction of airway epithelial barrier in chronic inflammatory airway diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  5. Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays.

    Science.gov (United States)

    Chen, Cheng-Huan; Huang, Yi-Pai; Chuang, Shang-Chih; Wu, Chi-Lin; Shieh, Han-Ping D; Mphepö, Wallen; Hsieh, Chiu-Ting; Hsu, Shih-Chia

    2009-06-20

    An autostereoscopic display with parallax barrier attached onto a liquid crystal panel suffers from the trade-off between brightness and crosstalk. One approach for making improvement by modifying the layout of light blocking components, such as thin film transistor, storage capacitor, and protrusion, in the liquid crystal pixel has been proposed. Ray tracing simulation shows that the aperture of the slanted barrier can be significantly increased, hence increasing efficiency, while keeping the same crosstalk level if those light blocking components can be shifted to the corner of the pixel. A six-view 2.83 in. (7.19 cm) prototype has shown improvement on both brightness and crosstalk compared to its counterpart using a traditional liquid crystal panel, which demonstrates an effective approach for a high-efficiency barrier-type autostereoscopic 3D display with a liquid crystal panel.

  6. Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Peirong Hu

    2015-01-01

    Full Text Available The risk of insertional mutagenesis inherent to all integrating exogenous expression cassettes was the impetus for the development of various integration-defective lentiviral vector (IDLV systems. These systems were successfully employed in a plethora of preclinical applications, underscoring their clinical potential. However, current production of IDLVs by transient plasmid transfection is not optimal for large-scale production of clinical grade vectors. Here, we describe the development of the first tetracycline-inducible stable IDLV packaging cell line comprising the D64E integrase mutant and the VSV-G envelope protein. A conditional self-inactivating (cSIN vector and a novel polypurine tract (PPT-deleted vector were incorporated into the newly developed stable packaging cell line by transduction and stable transfection, respectively. High-titer (∼107 infectious units (IU/ml cSIN vectors were routinely generated. Furthermore, screening of single-cell clones stably transfected with PPT-deleted vector DNA resulted in the identification of highly efficient producer cell lines generating IDLV titers higher than 108 IU/mL, which upon concentration increased to 1010 IU/ml. IDLVs generated by stable producer lines efficiently transduce CNS tissues of rodents. Overall, the availability of high-titer IDLV lentivirus packaging cell line described here will significantly facilitate IDLV-based basic science research, as well as preclinical and clinical applications.

  7. Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors.

    Science.gov (United States)

    Hu, Peirong; Li, Yedda; Sands, Mark S; McCown, Thomas; Kafri, Tal

    2015-01-01

    The risk of insertional mutagenesis inherent to all integrating exogenous expression cassettes was the impetus for the development of various integration-defective lentiviral vector (IDLV) systems. These systems were successfully employed in a plethora of preclinical applications, underscoring their clinical potential. However, current production of IDLVs by transient plasmid transfection is not optimal for large-scale production of clinical grade vectors. Here, we describe the development of the first tetracycline-inducible stable IDLV packaging cell line comprising the D64E integrase mutant and the VSV-G envelope protein. A conditional self-inactivating (cSIN) vector and a novel polypurine tract (PPT)-deleted vector were incorporated into the newly developed stable packaging cell line by transduction and stable transfection, respectively. High-titer (~10(7) infectious units (IU)/ml) cSIN vectors were routinely generated. Furthermore, screening of single-cell clones stably transfected with PPT-deleted vector DNA resulted in the identification of highly efficient producer cell lines generating IDLV titers higher than 10(8) IU/mL, which upon concentration increased to 10(10) IU/ml. IDLVs generated by stable producer lines efficiently transduce CNS tissues of rodents. Overall, the availability of high-titer IDLV lentivirus packaging cell line described here will significantly facilitate IDLV-based basic science research, as well as preclinical and clinical applications.

  8. Design of a high-speed vertical transition in LTCC for interposers suitable for packaging photonic integrated circuits

    Science.gov (United States)

    Jezzini, M. A.; Marraccini, P. J.; Peters, F. H.

    2016-05-01

    The packaging of high speed Photonic Integrated Circuits (PICs) should maintain the electrical signal integrity. The standard packaging of high speed PICs relies on wire bonds. This is not desirable because wire bonds degrade the quality of the electrical signal. The research presented in this paper proposes to replace wire bonds with an interposer with multilevel transmission lines. By attaching the PIC by flip chip onto the interposer, the use of wire bonds is avoided. The main concern for designing an interposer with multilevel transmission lines is the vertical transition, which must be designed to avoid return and radiation losses. In this paper, a novel design of a high speed vertical transition for Low Temperature Co-fired Ceramic (LTCC) is presented. The proposed vertical transition is simpler than others recently published in the literature, due to eliminating the need for additional ceramic layers or air cavities. A LTCC board was fabricated with several variations of the presented transition to find the optimal dimensions of the structure. The structures were fabricated then characterized and have a 3 dB bandwidth of 37 GHz and an open eye diagram at 44 Gbps. A full wave electromagnetic simulation is described and compared with good agreement to the measurements. The results suggest that an LTCC board with this design can be used for 40 Gbps per channel applications. Keywords: Photonics packaging, Low Temperature Co-Fired Ceramics.

  9. Photochemical approach to high-barrier films for the encapsulation of flexible laminary electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Prager, L., E-mail: lutz.prager@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Helmstedt, U. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Herrnberger, H. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Kahle, O. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany); Kita, F. [AZ Electronic Materials Germany GmbH, Rheingaustraße 190-196, 65203 Wiesbaden (Germany); Münch, M. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Pender, A.; Prager, A.; Gerlach, J.W. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Stasiak, M. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany)

    2014-11-03

    Based on results of preceding research and development, thin gas barriers were made by wet application of perhydropolysilazane solution onto polymer films and its subsequent photo-initiated conversion to dense silica layers applying vacuum ultraviolet irradiation. Compared to the state of the art, these layers were sufficiently improved and characterized by spectroscopic methods, by scanning electron microscopy and by gas permeation measurements. Water vapor transmission rates (WVTR) below 10{sup −2} g m{sup −2} d{sup −1} were achieved. In this way, single barrier films were developed and produced on a pilot plant from roll to roll, 250 mm wide, at speeds up to 10 m min{sup −1}. Two films were laminated using adhesives curable with ultraviolet (UV) light and evaluated by peel tests, gas permeation measurement and climate testing. It could be shown that the described high-barrier laminates which exhibit WVTR ≈ 5 × 10{sup −4} g m{sup −2} d{sup −1}, determined by the calcium mirror method, are suitable for encapsulation of flexible thin-film photovoltaic modules. Durability of the encapsulated modules could be verified in several climate tests including damp-heat, thermo-cycle (heating, freezing, wetting) and UV exposures which are equivalent to more than 20 years of endurance at outdoor conditions in temperate climate. In the frame of further research and technical development it seems to be possible to design a cost efficient industrial scale process for the production of encapsulation films for photovoltaic applications. - Highlights: • Dense silica barrier layers were developed by a photochemical approach. • Polymer based barrier films were laminated yielding flexible high-barrier films. • Using these laminates photovoltaic test modules were encapsulated and tested. • A durability of more than 20 years at outdoor conditions could be proved.

  10. High performance computing software package for multitemporal Remote-Sensing computations

    Directory of Open Access Journals (Sweden)

    Asaad Chahboun

    2010-10-01

    Full Text Available With the huge satellite data actually stored, remote sensing multitemporal study is nowadays one of the most challenging fields of computer science. The multicore hardware support and Multithreading can play an important role in speeding up algorithm computations. In the present paper, a software package (called Multitemporal Software Package for Satellite Remote sensing data (MSPSRS has been developed for the multitemporal treatment of satellite remote sensing images in a standard format. Due to portability intend, the interface was developed using the QT application framework and the core wasdeveloped integrating C++ classes. MSP.SRS can run under different operating systems (i.e., Linux, Mac OS X, Windows, Embedded Linux, Windows CE, etc.. Final benchmark results, using multiple remote sensing biophysical indices, show a gain up to 6X on a quad core i7 personal computer.

  11. Design and fabrication of high performance wafer-level vacuum packaging based on glass-silicon-glass bonding techniques

    Science.gov (United States)

    Zhang, Jinwen; Jiang, Wei; Wang, Xin; Zhou, Jilong; Yang, Huabing

    2012-12-01

    In this paper, a high performance wafer-level vacuum packaging technology based on GSG triple-layer sealing structure for encapsulating large mass inertial MEMS devices fabricated by silicon-on-glass bulk micromachining technology is presented. Roughness controlling strategy of bonding surfaces was proposed and described in detail. Silicon substrate was thinned and polished by CMP after the first bonding with the glass substrate and was then bonded with the glass micro-cap. Zr thin film was embedded into the concave of the micro-cap by a shadow-mask technique. The glass substrate was thinned to about 100 µm, wet etched through and metalized for realizing vertical feedthrough. During the fabrication, all patterning processes were operated carefully so as to reduce extrusive fragments to as little as possible. In addition, a high-performance micro-Pirani vacuum gauge was integrated into the package for monitoring the pressure and the leak rate further. The result shows that the pressure in the package is about 120 Pa and has no obvious change for more than one year indicating 10-13 stdcc s-1 leak rate.

  12. Effects of gold plating on the resistance to high temperature discoloration of the cavity for ceramic packages

    Institute of Scientific and Technical Information of China (English)

    Zhanhua Wang; Zhuoshen Shen; Daobin Mu

    2004-01-01

    The effects of thickness and types of gold plating on the resistance to high temperature discoloration of gold plating on cavity surface of ceramic package were investigated. It was found that the thicker gold plating, the less discoloration degree for ceramic packages. Non-cyanide gold plating performed better resistance to high-temperature aging than cyanide gold plating. The relationship between the gold plating thickness and the amount of diffused Ni to the gold plating of ceramic packages with Au/Ni and Au/Ni-Co platings after heating at 420℃ for 15 min was also studied. When the gold plating thickness reach 2.0 μm and 1.6 μm for Au/Ni and Au/Ni-Co plating systems, respectively, no discoloration was observed on the gold plating surface of cavity, and the corresponding diffused Ni amounts (mass fraction) are 1.0% and 0.4%, while the diffused Co to the gold plating is 0.04%.

  13. Controlled formation of polymer nanocapsules with high diffusion-barrier properties and prediction of encapsulation efficiency.

    Science.gov (United States)

    Hofmeister, Ines; Landfester, Katharina; Taden, Andreas

    2015-01-02

    Polymer nanocapsules with high diffusion-barrier performance were designed following simple thermodynamic considerations. Hindered diffusion of the enclosed material leads to high encapsulation efficiencies (EEs), which was demonstrated based on the encapsulation of highly volatile compounds of different chemical natures. Low interactions between core and shell materials are key factors to achieve phase separation and a high diffusion barrier of the resulting polymeric shell. These interactions can be characterized and quantified using the Hansen solubility parameters. A systematic study of our copolymer system revealed a linear relationship between the Hansen parameter for hydrogen bonding (δh ) and encapsulation efficiencies which enables the prediction of encapsulated amounts for any material. Furthermore EEs of poorly encapsulated materials can be increased by mixing them with a mediator compound to give lower overall δh values.

  14. Saudi high school students’ attitudes and barriers toward the use of computer technologies in learning English

    OpenAIRE

    Sabti, Ahmed Abdulateef; Chaichan, Rasha Sami

    2014-01-01

    This study examines the attitudes of Saudi Arabian high school students toward the use of computer technologies in learning English. The study also discusses the possible barriers that affect and limit the actual usage of computers. Quantitative approach is applied in this research, which involved 30 Saudi Arabia students of a high school in Kuala Lumpur, Malaysia. The respondents comprised 15 males and 15 females with ages between 16 years and 18 years. Two instruments, namely, Scale of Atti...

  15. Garrafas de PET para óleo comestível: avaliação da barreira à luz PET bottles for edible oil packaging: evaluation of the light barrier

    Directory of Open Access Journals (Sweden)

    Leda Coltro

    2004-09-01

    added to the package material, that absorb the incident UV radiation or deactivate the excited chromophores. The aim of this study was to evaluate the light barrier of PET bottles available in the Brazilian market used for edible oil packaging, by measuring the specular light transmission spectra obtained in the UV-Visible regions. The packages that showed light barrier were analyzed by HPLC in order to identify and quantify the additive. The UV absorbers identified in the plastic packages were considered with regard to the restriction and composition limits established by the Resolução 105 from Agência Nacional de Vigilância Sanitária - ANVISA. It was then possible to make a diagnosis about the use of UV absorbers in PET bottles for edible oil packaging available in the Brazilian market.

  16. Food packaging and radiation sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoko [Division of Food Additives, National Institute of Health Sciences, Tokyo (Japan)

    1998-12-31

    Radiation sterilization has several merits that it is a positively effective sterilization method, it can be used to sterilize low heat-resistant containers and high gas barrier films, and there is no possibility of residual chemicals being left in the packages. It has been commercially used in `Bag in a Box` and some food containers. The {gamma} ray and an electron beam are commonly used in radiation sterilization. The {gamma} ray can sterilize large size containers and containers with complex shapes or sealed containers due to its strong transmission capability. However, since the equipment tends to be large and expensive, it is generally used in off production lines. On the other hand, it is possible to install and electron beam system on food production lines since the food can be processed in a short time due to its high beam coefficient and its ease of maintenance, even though an electron beam has limited usage such as sterilizing relatively thin materials and surface sterilization due to the weak transmission. A typical sterilization dose is approximately 10-30 kGy. Direct effects impacting packaging materials, particularly plastics, include scission of polymer links, cross-linkage between polymers, and generating radiolysis products such as hydrogen, methane, aliphatic hydrocarbons, etc. Furthermore, under the existence of oxygen, the oxygen radicals generated by the radiation will oxidize and peroxidize polymer chains and will generate alcohol and carbonyl groups, which shear polymer links, and generate oxygen containing low molecular compounds. As a result, degradation of physical strength such as elongation and seal strength, generating foreign odor, and an increase in global migration values shown in an elution test are sometimes evident. The food packages have different shapes, materials, additives, number of microorganisms and purpose. Therefor the effects of radiation, the optimum dose and so on must be investigated on the individual package. (J.P.N.)

  17. In Situ Measurement of Wind-Induced Pulse Response of Sound Barrier Based on High-Speed Imaging Technology

    OpenAIRE

    Chunli Zhu; Jie Guo; Dashan Zhang; Yuan Shen; Dongcai Liu

    2016-01-01

    The lifetime of the sound barrier is threatened by high-speed train-induced impulsive wind pressure as it passes by. The vibration response of the sound barrier during the process of train passing is difficult to be measured using conventional measurement methods because of the inconvenience of the installation of markers on the sound barrier. In this paper, the high-speed camera is used to record the whole process of the train passing by the sound barrier. Then, a displacement extraction alg...

  18. Packaging issues: avoiding delamination.

    Science.gov (United States)

    Hall, R

    2005-10-01

    Manufacturers can minimise delamination occurrence by applying the appropriate packaging design and process features. The end user can minimise the impact of fibre tear and reduce subsequent delamination by careful package opening. The occasional inconvenient delamination is a small price to pay for the high level of sterility assurance that comes with the use of Tyvek.

  19. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  20. Determination of phthalates released from paper packaging materials by solid-phase extraction-high-performance liquid chromatography.

    Science.gov (United States)

    Gao, Xin; Yang, Bofeng; Tang, Zhixu; Luo, Xin; Wang, Fengmei; Xu, Hui; Cai, Xue

    2014-01-01

    A solid phase extraction (SPE) high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of 10 phthalic acid esters (dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzylbutyl phthalate, diisobutyl phthalate, dicyclohexyl phthalate, diamyl phthalate, di-n-hexyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate) released from food paper packaging materials. The use of distilled water, 3% acetic acid (w/v), 10% ethanol (v/v) and 95% ethanol (v/v) instead of the different types of food simulated the migration of 10 phthalic acid esters from food paper packaging materials; the phthalic acid esters in four food simulants were enriched and purified by a C18 SPE column and nitrogen blowing, and quantified by HPLC with a diode array detector. The chromatographic conditions and extraction conditions were optimized and all 10 of the phthalate acid esters had a maximum absorbance at 224 nm. The method showed limitations of detection in the range of 6.0-23.8 ng/mL the correlation coefficients were greater than 0.9999 in all cases, recovery values ranged between 71.27 and 106.97% at spiking levels of 30, 60 and 90 ng/mL and relative standard deviation values ranged from 0.86 to 8.00%. The method was considered to be simple, fast and reliable for a study on the migration of these 10 phthalic acid esters from food paper packaging materials into food.

  1. Application of modified atmosphere packaging (gas flushing and active packaging) for extending the shelf life of Beauveria bassiana conidia at high temperatures

    Science.gov (United States)

    Limited shelf life has long been a major constraint to the development of fungus-based bioinsecticides (mycoinsecticides). Fungal spores comprising the active ingredients of most products typically lose viability within a few months when stored in conventional packaging at temperatures >30 deg C. Me...

  2. Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method

    Institute of Scientific and Technical Information of China (English)

    Zhang Guang-Chen; Feng Shi-Wei; Zhou Zhou; Li Jing-Wan; Guo Chun-Sheng

    2011-01-01

    The evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the AlGaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger AlGaN/GaN HEMT with 400-μn SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged AlGaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip-level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.

  3. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  4. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  5. High-flux Thin-film Nanofibrous Composite Ultrafiltration Membranes Containing Cellulose Barrier Layer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H.; Yoon, K; Rong, L; Mao, Y; Mo, Z; Fang, D; Hollander, Z; Gaiteri, J; Hsiao , B; Chu, B

    2010-01-01

    A novel class of thin-film nanofibrous composite (TFNC) membrane consisting of a cellulose barrier layer, a nanofibrous mid-layer scaffold, and a melt-blown non-woven substrate was successfully fabricated and tested as an ultrafiltration (UF) filter to separate an emulsified oil and water mixture, a model bilge water for on-board ship bilge water purification. Two ionic liquids: 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate, were chosen as the solvent to dissolve cellulose under mild conditions. The regenerated cellulose barrier layer exhibited less crystallinity (determined by wide-angle X-ray diffraction, WAXD) than the original cotton linter pulps, but good thermal stability (determined by thermal gravimetric analysis, TGA). The morphology, water permeation, and mechanical stability of the chosen TFNCmembranes were thoroughly investigated. The results indicated that the polyacrylonitrile (PAN) nanofibrous scaffold was partially imbedded in the cellulose barrier layer, which enhanced the mechanical strength of the top barrier layer. The permeation flux of the cellulose-based TFNCmembrane was significantly higher (e.g. 10x) than comparable commercial UFmembranes (PAN10 and PAN400, Sepro) with similar rejection ratios for separation of oil/water emulsions. The molecular weight cut-off (MWCO) of TFNC membranes with cellulose barrier layer was evaluated using dextran feed solutions. The rejection was found to be higher than 90% with a dextran molecular weight of 2000 KDa, implying that the nominal pore size of the membrane was less than 50 nm. High permeation flux was also observed in the filtration of an emulsified oil/water mixture as well as of a sodium alginate aqueous solution, while high rejection ratio (above 99.5%) was maintained after prolonged operation. A variation of the barrier layer thickness could dramatically affect the permeation flux and the rejection ratio of the TFNCmembranes, while different sources of cellulose

  6. Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster

    Science.gov (United States)

    Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady

    2015-04-01

    Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.

  7. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    Science.gov (United States)

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-04-19

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.

  8. Electrical properties of graphene tunnel junctions with high-κ metal-oxide barriers

    Science.gov (United States)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2017-04-01

    An insulating barrier is one of the key components in electronic devices that makes use of quantum tunneling principles. Many metal-oxides have been used as a good barrier material in a tunnel junction for their large band gap, stable chemical properties and superb properties for forming a thin and pin-hole-free insulating layer. The reduced dimensions of transistors have led to the need for alternative, high dielectric constant (high-κ) oxides to replace conventional silicon-based dielectrics to reduce the leaking current induced by electron tunneling. On the other hand, a tunnel junction with one or both electrodes made of graphene may lead to novel applications due to the massless Dirac fermions from the graphene. Here we have fabricated sandwich-type graphene tunnel junctions with high-κ metal-oxides as barriers, including Al2O3, HfO2, ZrO2, and TiO2. Tunneling properties are investigated by observing the temperature and time dependences of the tunneling spectra. Our results show the potential for applications of high-κ oxides in graphene tunnel junctions and bringing new opportunities for memory and logic electronic devices.

  9. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a

  10. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, D.

    2014-11-01

    The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.

  11. High flux diode packaging using passive microscale liquid-vapor phase change

    Energy Technology Data Exchange (ETDEWEB)

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  12. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.

    Science.gov (United States)

    Huang, Hailiang; Tata, Sandeep; Prill, Robert J

    2013-01-01

    Computational workloads for genome-wide association studies (GWAS) are growing in scale and complexity outpacing the capabilities of single-threaded software designed for personal computers. The BlueSNP R package implements GWAS statistical tests in the R programming language and executes the calculations across computer clusters configured with Apache Hadoop, a de facto standard framework for distributed data processing using the MapReduce formalism. BlueSNP makes computationally intensive analyses, such as estimating empirical p-values via data permutation, and searching for expression quantitative trait loci over thousands of genes, feasible for large genotype-phenotype datasets. http://github.com/ibm-bioinformatics/bluesnp

  13. Monitoring the quality of perishable foods: opportunities for intelligent packaging.

    Science.gov (United States)

    Heising, Jenneke K; Dekker, Matthijs; Bartels, Paul V; Van Boekel, M A J S Tiny

    2014-01-01

    This review paper discusses opportunities for intelligent packaging for monitoring directly or indirectly quality attributes of perishable packaged foods. The possible roles of intelligent packaging as a tool in supply chain management are discussed as well as the barriers to implement this kind of technology in commercial applications. Cases on pasteurized milk and fresh cod fillets illustrate the application of different intelligent packaging concepts to monitor and estimate quality attributes. Conditions influencing quality (e.g., temperature-time) can be monitored to predict the quality of perishable products when the initial quality is known and rather constant (e.g., pasteurized milk). Products with a highly variable initial quality (e.g., fresh fish) require sensors monitoring compounds correlated with quality.

  14. Overcoming barriers to high performance seismic design using lessons learned from the green building industry

    Science.gov (United States)

    Glezil, Dorothy

    NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.

  15. Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment.

    Science.gov (United States)

    Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio

    2017-01-01

    Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N2/CO2: 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Investigation of Ozone Yield of Air Fed Ozonizer by High Pressure Homogeneous Dielectric Barrier Discharge

    Science.gov (United States)

    2013-07-01

    field strength in the discharge. In order to clarify this phenomenon, further study on the gas analysis within the ozone gas by an FTIR spectrometer...31st ICPIG, July 14-19, 2013, Granada, Spain Investigation of ozone yield of air fed ozonizer by high pressure homogeneous dielectric barrier... ozonizer and found that the ozone yield is higher by the homogeneous discharge mode than by the conventional filamentary discharge mode in larger

  17. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  18. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction

    Science.gov (United States)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A.; Leorri, Eduardo

    2016-12-01

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  19. Optoelectronic packaging: A review

    Energy Technology Data Exchange (ETDEWEB)

    Carson, R.F.

    1993-09-01

    Optoelectronics and photonics hold great potential for high data-rate communication and computing. Wide using in computing applications was limited first by device technologies and now suffers due to the need for high-precision, mass-produced packaging. The use of phontons as a medium of communication and control implies a unique set of packaging constraints that was not present in traditional telecommunications applications. The state-of-the-art in optoelectronic packaging is now driven by microelectric techniques that have potential for low cost and high volume manufacturing.

  20. Innovative Design of a Rigid Package Container Applied in Ultra High Pressure Food Processing Based on TRIZ

    Directory of Open Access Journals (Sweden)

    Rong-Li Li

    2013-07-01

    Full Text Available An innovative structure of Rigid Package Container (RPC was designed based on TRIZ for improving productivity. The technical contradiction of RPC was solved by TRIZ contradiction analysis methodologies and obtained solution principles. Then mechanical analysis on sealing process of o-rings and structural optimization on its key components of RPC were completed. Ultimately, optimized structures of RPC had been achieved. Experiments on the sealing properties had stated that this structure was reasonable and reliable in sealing, easy to assembly and disassembly, compact structure and light weight. Thus, this innovative RPC could be applied in many ultra high pressure vessels in food industry.

  1. Graphene oxide and laponite composite films with high oxygen-barrier properties

    Science.gov (United States)

    Yoo, Jongtae; Lee, Sang Bong; Lee, Chang Kee; Hwang, Sung Wook; Kim, Chaerin; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Shim, Jin Kie

    2014-08-01

    The design and fabrication of oxygen barrier films is important for both fundamental and industrial applications. We prepared three different thin films composed of graphene oxide (GO) and laponite (LN), a typical low cost inorganic clay, with the GO/LN volume ratios of 1.9/0.1, 1.7/0.3 and 1.5/0.5 together with a double layer film of the GO and LN. We found that the films with GO/LN = 1.9/0.1 and the double layers exhibited high oxygen barrier and oxygen transmission rate values that reached 0.55 and 0.37 cm3 per m2 per atm per day, respectively, which were much lower than those of the films prepared from the pure GO, only LN and GO/LN = 1.7/0.3 and 1.5/0.5. This study is important for the design and fabrication of a film from GO-based all inorganic nanomaterials for applications in gas-barrier membranes.The design and fabrication of oxygen barrier films is important for both fundamental and industrial applications. We prepared three different thin films composed of graphene oxide (GO) and laponite (LN), a typical low cost inorganic clay, with the GO/LN volume ratios of 1.9/0.1, 1.7/0.3 and 1.5/0.5 together with a double layer film of the GO and LN. We found that the films with GO/LN = 1.9/0.1 and the double layers exhibited high oxygen barrier and oxygen transmission rate values that reached 0.55 and 0.37 cm3 per m2 per atm per day, respectively, which were much lower than those of the films prepared from the pure GO, only LN and GO/LN = 1.7/0.3 and 1.5/0.5. This study is important for the design and fabrication of a film from GO-based all inorganic nanomaterials for applications in gas-barrier membranes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03429e

  2. The Role of Perceived Barriers and Relational Support in the Educational and Vocational Lives of Urban High School Students

    Science.gov (United States)

    Kenny, Maureen E.; Blustein, David L.; Chaves, Anna; Grossman, Jennifer M.; Gallagher, Laura A.

    2003-01-01

    Drawing on developmental contextual theory, the authors examined the relationship of perceived barriers and support with school engagement and vocational attitudes among 9th-grade urban high school students in 2 studies. Study 1 (N=174) showed that both perceived barriers and perceived support from family kin were associated with youths'…

  3. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation.

    Science.gov (United States)

    Sun, Yujia; Nien, Chung-Yi; Chen, Kai; Liu, Hsiao-Yun; Johnston, Jeff; Zeitlinger, Julia; Rushlow, Christine

    2015-11-01

    The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner.

  4. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  5. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    Science.gov (United States)

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  6. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-02

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (>200 degrees C). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. Mechanical characterization tests that result in stress-strain curves and accelerated tests that produce cycles-to-failure result will be conducted. Also, we present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed.

  7. Reducing Barriers To The Use of High-Efficiency Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Peter Morante

    2005-12-31

    With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and

  8. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    Science.gov (United States)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  9. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  10. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Science.gov (United States)

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  11. Nanocomposite Sensors for Food Packaging

    Science.gov (United States)

    Avella, Maurizio; Errico, Maria Emanuela; Gentile, Gennaro; Volpe, Maria Grazia

    Nowadays nanotechnologies applied to the food packaging sector find always more applications due to a wide range of benefits that they can offer, such as improved barrier properties, improved mechanical performance, antimicrobial properties and so on. Recently many researches are addressed to the set up of new food packaging materials, in which polymer nanocomposites incorporate nanosensors, developing the so-called "smart" packaging. Some examples of nanocomposite sensors specifically realised for the food packaging industry are reported. The second part of this work deals with the preparation and characterisation of two new polymer-based nanocomposite systems that can be used as food packaging materials. Particularly the results concerning the following systems are illustrated: isotactic polypropylene (iPP) filled with CaCO3 nanoparticles and polycaprolactone (PCL) filled with SiO2 nanoparticles.

  12. Patient-Reported Barriers to High-Quality, End-of-Life Care: A Multiethnic, Multilingual, Mixed-Methods Study.

    Science.gov (United States)

    Periyakoil, Vyjeyanthi S; Neri, Eric; Kraemer, Helena

    2016-04-01

    The study objective was to empirically identify barriers reported by multiethnic patients and families in receiving high-quality end-of-life care (EOLC). This cross-sectional, mixed-methods study in Burmese, English, Hindi, Mandarin, Tagalog, Spanish, and Vietnamese was held in multiethnic community centers in five California cities. Data were collected in 2013-2014. A snowball sampling technique was used to accrue 387 participants-261 women, 126 men, 133 Caucasian, 204 Asian Americans, 44 African Americans, and 6 Hispanic Americans. Measured were multiethnic patient-reported barriers to high-quality EOLC. A development cohort (72 participants) of responses was analyzed qualitatively using grounded theory to identify the six key barriers to high-quality EOLC. A new validation cohort (315 participants) of responses was transcribed, translated, and back-translated for verification. The codes were validated by analyses of responses from 50 randomly drawn subjects from the validation cohort. All the 315 validation cohort transcripts were coded for presence or absence of the six barriers. In the validation cohort, 60.6% reported barriers to receiving high-quality EOLC for persons in their culture/ethnicity. Primary patient-reported barriers were (1) finance/health insurance barriers, (2) doctor behaviors, (3) communication chasm between doctors and patients, (4) family beliefs/behaviors, (5) health system barriers, and (6) cultural/religious barriers. Age (χ(2) = 9.15, DF = 1, p = 0.003); gender (χ(2) = 6.605, DF = 1, p = 0.01); and marital status (χ(2) = 16.11 DF = 3, p = 0.001) were associated with reporting barriers; and women care. Efforts must be made to rapidly improve access to culturally competent EOLC for diverse populations.

  13. Polylactide nanocomposites for packaging materials: A review

    Science.gov (United States)

    Widiastuti, Indah

    2016-02-01

    This review aims at highlighting on an attempt for improving the properties of polylactide (PLA) as packaging material by application of nanocomposite technology. PLA is attracting considerable interest because of more eco-friendliness from its origin as contrast to the petrochemical-based polymers and its biodegradability. Despite possessing good mechanical and optical properties, deterioration of the material properties in PLA materials during their service time could occur after prolonged exposure to humidity and high temperature condition. Limited gas barrier is another drawback of PLA material that should be overcome to satisfy the requirement for packaging application. To further extend the range of mechanical and thermal properties achievable, several attempts have been made in modifying the material such as blending with other polymers, use of plasticizing material and development of PLA nanocomposites. Nanocomposite is a fairly new type of composite that has emerged in which the reinforcing filler has nanometer scale dimensions (at least one dimension of the filler is less than 100 nm). In this review, the critical properties of PLA as packaging materials and its degradation mechanism are presented. This paper discusses the current effort and key research challenges in the development of nanocomposites based on biodegradable polymer matrices and nano-fillers. The PLA layered silicate nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modification, frequently exhibits remarkable improvements of mechanical strength, gas barrier and thermal stability.

  14. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy.

    Science.gov (United States)

    Mastorakos, Panagiotis; da Silva, Adriana L; Chisholm, Jane; Song, Eric; Choi, Won Kyu; Boyle, Michael P; Morales, Marcelo M; Hanes, Justin; Suk, Jung Soo

    2015-07-14

    Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The respiratory system, although readily accessible, remains a challenging target, as effective gene therapy mandates colloidal stability in physiological fluids and the ability to overcome biological barriers found in the lung. We formulated highly stable DNA nanoparticles based on state-of-the-art biodegradable polymers, poly(β-amino esters) (PBAEs), possessing a dense corona of polyethylene glycol. We found that these nanoparticles efficiently penetrated the nanoporous and highly adhesive human mucus gel layer that constitutes a primary barrier to reaching the underlying epithelium. We also discovered that these PBAE-based mucus-penetrating DNA nanoparticles (PBAE-MPPs) provided uniform and high-level transgene expression throughout the mouse lungs, superior to several gold standard gene delivery systems. PBAE-MPPs achieved robust transgene expression over at least 4 mo following a single administration, and their transfection efficiency was not attenuated by repeated administrations, underscoring their clinical relevance. Importantly, PBAE-MPPs demonstrated a favorable safety profile with no signs of toxicity following intratracheal administration.

  15. Minimized thermal conductivity in highly stable thermal barrier W/ZrO2 multilayers

    Science.gov (United States)

    Döring, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich

    2016-10-01

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO2 in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO2, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO2. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO2 multilayers as desired thermally stable, low-conductivity materials.

  16. Minimized thermal conductivity in highly stable thermal barrier W/ZrO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich [University of Goettingen, Institut fuer Materialphysik, Goettingen (Germany)

    2016-10-15

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO{sub 2} in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO{sub 2}, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO{sub 2}. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO{sub 2} multilayers as desired thermally stable, low-conductivity materials. (orig.)

  17. High Performance Microaccelerometer with Wafer-level Hermetic Packaged Sensing Element and Continuous-time BiCMOS Interface Circuit

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyoungho [School of Electrical Engineering and Computer Science, Seoul National University (Korea, Republic of); Park, Sangjun [School of Electrical Engineering and Computer Science, Seoul National University (Korea, Republic of); Paik, Seung-Joon [School of Electrical Engineering and Computer Science, Seoul National University (Korea, Republic of); Choi, Byoung-doo [School of Electrical Engineering and Computer Science, Seoul National University (Korea, Republic of); Park, Yonghwa [School of Electrical Engineering and Computer Science, Seoul National University (Korea, Republic of); Lee, Sangmin [School of Electrical Engineering and Computer Science, Seoul National University (Korea, Republic of); Kim, Sungwook [SML Electronics, Inc. (Korea, Republic of); Lee, Sang Chul [SML Electronics, Inc. (Korea, Republic of); Lee, Ahra [SML Electronics, Inc. (Korea, Republic of); Yoo, Kwangho [SML Electronics, Inc. (Korea, Republic of); Lim, Jaesang [SML Electronics, Inc. (Korea, Republic of); Cho, Dong-il [School of Electrical Engineering and Computer Science, Seoul National University (Korea, Republic of)

    2006-04-01

    A microaccelerometer with highly reliable, wafer-level packaged MEMS sensing element and fully differential, continuous time, low noise, BiCMOS interface circuit is fabricated. The MEMS sensing element is fabricated on a (111)-oriented SOI wafer by using the SBM (Sacrificial/Bulk Micromachining) process. To protect the silicon structure of the sensing element and enhance the reliability, a wafer level hermetic packaging process is performed by using a silicon-glass anodic bonding process. The interface circuit is fabricated using 0.8 {mu}m BiCMOS process. The capacitance change of the MEMS sensing element is amplified by the continuous-time, fully-differential transconductance input amplifier. A chopper-stabilization architecture is adopted to reduce low-frequency noise including 1/f noise. The fabricated microaccelerometer has the total noise equivalent acceleration of 0.89 {mu}g/{radical}Hz, the bias instability of 490 {mu}g, the input range of {+-}10 g, and the output nonlinearity of {+-}0.5 %FSO.

  18. Barriers to Incorporating Climate Change Science into High School and Community College Energy Course Offerings

    Science.gov (United States)

    Howell, C.

    2013-05-01

    In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions

  19. Rapid fabrication and packaging of AlGaN/GaN high-temperature ultraviolet photodetectors using direct wire bonding

    Science.gov (United States)

    So, Hongyun; Senesky, Debbie G.

    2016-07-01

    Cost-effective fabrication and rapid packaging of AlGaN/GaN ultraviolet (UV) photodetectors was demonstrated using direct wire bonding between aluminum wires and a GaN surface. The fabricated photodetectors showed stable dark current levels through the highly conductive 2D electron gas (2DEG), which was electrically connected to aluminum bonding wires. At room temperature, the current passing through the 2DEG rapidly increased upon exposure to UV light because of the generated electrons excited in the AlGaN/GaN layers. In addition, the devices showed consistent and reliable operation at high temperatures up to 100 °C with mechanically stable bonding wires (pull strength of 3-5.2 gram-force), supporting the use of direct wire bonding techniques to fabricate simple AlGaN/GaN sensors for UV detection within harsh environments, such as downhole and space exploration applications.

  20. High-pressure (>1-bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R J; Mildren, R P; Ward, B K; Kane, D M [Short Wavelength Interactions with Materials (SWIM), Physics Department, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia)

    2004-09-07

    We have investigated the scaling of peak vacuum ultraviolet output power from homogeneous Xe dielectric barrier discharges excited by short voltage pulses. Increasing the Xe fill pressure above 1-bar provides an increased output pulse energy, a shortened pulse duration and increases in the peak output power of two to three orders of magnitude. High peak power pulses of up to 6 W cm{sup -2} are generated with a high efficiency for pulse rates up to 50 kHz. We show that the temporal pulse characteristics are in good agreement with results from detailed computer modelling of the discharge kinetics.

  1. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data

    Directory of Open Access Journals (Sweden)

    Anderson Gordon A

    2009-03-01

    Full Text Available Abstract Background Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. Results With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to

  2. NASA, We Have a Challenge and It's Food Packaging

    Science.gov (United States)

    Perchonok, Michele

    2014-01-01

    Current Packaging: Freeze Dried Foods Packaging ? The thermoformed base is fabricated from Combitherm PAXX230 [a coextrusion of nylon/medium-density polyethylene (MDPE)/nylon/ethylene-vinyl alcohol (EVOH)/nylon/MDPE/linear low-density polyethylene (LLDPE)]. ? The lid is fabricated from Combitherm PAXX115 (a coextrusion of nylon/EVOH/nylon/LF adhesive/HV polyethylene/LLDPE) ? Natural form (Bite size) foods ? The bite-size food package is fabricated from Combitherm PAXX115, a coextrusion of nylon/EVOH/nylon/LF adhesive/HV polyethylene/LLDPE. ? Overwrap ? Packages are wrapped in a white pouch,.003-mm thick, fabricated from a laminate of polyester/polyethylene/aluminum foil/Surlyn®. This overwrap is removed before the food is prepared and heated. Requirements ? High barrier packaging - low oxygen and water vapor transmission rates ? No aluminum layer ? Mass - Flexible ? Puncture resistant ? Approved for food use ? Amenable to sterilization ? Able to be heat sealed ? Preferred (not required) ? Transparent ? Retortable, microwavable, high pressure use. Small Business Innovative Research Program - 7 years ? 8 Phase I contracts ? 4 Phase II contracts ? Two workshops to bring together food packaging experts ? Three internal research tasks ? Public Outreach - average of 3 presentations/yr. for 8 years describing NASA's challenges ? Department of Defense Collaboration - Combat Feeding Program No significant improvement in food packaging capabilities after these efforts. It was unlikely that a food packaging solution could be found within the food science community ? There was a need to go outside to other industries such as pharmaceutical or electrical ? Although a positive result was preferred, a negative result would also be useful ? Two Innovation Techniques were used as a comparison ? InnoCentive - Theoretical Challenge to identify new technologies ? Yet2.com - A matchmaker between NASA and commercial packaging manufacturers

  3. Synthesis gas regeneration electrotechnology using volume high-voltage pulsed discharges: corona and barrier ones

    Directory of Open Access Journals (Sweden)

    M.I. Boyko

    2014-09-01

    Full Text Available Factory testing of a created high-voltage complex (plant has been conducted. The complex consists of two pulse generators with the repetition rate of up to 50,000 pulses per second and load reactors with pulsed discharges - corona and barrier ones. Transistor (IGBT keys are used as energy switches. The efficient mode of coke gas methane conversion (steam reforming to syngas has been obtained with application of the complex created. A unidirectional action of the pulsed discharges, the gas mixture temperature, and a nickel catalyst has reduced the specific energy consumption for synthesis gas regeneration during the conversion. A feasible mechanism of this conversion is described.

  4. High Temperature Damping Behavior of Plasma-Sprayed Thermal Barrier and Protective Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Duffy, Kirsten P.; Ghosn, Louis J.

    2010-01-01

    A high temperature damping test apparatus has been developed using a high heat flux CO 2 laser rig in conjunction with a TIRA S540 25 kHz Shaker and Polytec OFV 5000 Vibrometer system. The test rig has been successfully used to determine the damping performance of metallic and ceramic protective coating systems at high temperature for turbine engine applications. The initial work has been primarily focused on the microstructure and processing effects on the coating temperature-dependence damping behavior. Advanced ceramic coatings, including multicomponent tetragonal and cubic phase thermal barrier coatings, along with composite bond coats, have also been investigated. The coating high temperature damping mechanisms will also be discussed.

  5. Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films.

    Science.gov (United States)

    Kochumalayil, Joby J; Zhou, Qi; Kasai, Wakako; Berglund, Lars A

    2013-04-01

    Biobased polymers such as starch and hemicelluloses from wood are of interest for packaging applications, but suffer from limitations in performance under moist conditions. Xyloglucan from industrial tamarind seed waste offers potential, but its Tg is too high for thermal processing applications. Regioselective modification is therefore performed using an approach involving periodate oxidation followed by reduction. The resulting polymer structures are characterized using MALDI-TOF-MS, size-exclusion chromatography, FTIR and carbohydrate analysis. Films are cast from water and characterized by thermogravimetry, dynamic mechanical thermal analysis, dynamic water vapor sorption, oxygen transmission and tensile tests. Property changes are interpreted from structural changes. These new polymers show much superior performance to current petroleum-based polymers in industrial use. Furthermore, this regioselective modification can be carefully controlled, and results in a new type of cellulose derivatives with preserved cellulose backbone without the need for harmful solvents.

  6. Vibration damping of superalloys and thermal barrier coatings at high-temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, Giuliano [California NanoSystems Institute, University of California, Santa Barbara, CA 93160-5050 (United States)], E-mail: g.gregori@fkf.mpg.de; Li Li [Materials Department, University of California, Santa Barbara, CA 93160-5050 (United States); Nychka, John A. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046 (United States); Clarke, David R. [Materials Department, University of California, Santa Barbara, CA 93160-5050 (United States)

    2007-09-25

    A high-temperature mechanical spectroscopy system, based on non-contact laser vibrometry, has been developed to investigate the temperature dependence of the flexural damping properties of materials and coatings up to 900 deg. C. Results for the damping coefficient and Young's modulus have been obtained for several high temperature alloys (FeCrAlY and a single crystal, Ni-based superalloy PWA 1484), ceramics (polycrystalline alumina and yttria-stabilized zirconia) and an electron-beam deposited thermal barrier coating. The results indicate that the thermally grown oxide, formed by high-temperature oxidation does not confer significant damping, whereas, coatings of the yttria-stabilized zirconia produce measurable damping over the entire temperature range with a peak centered at {approx}200 deg. C. The damping peak appears to be an intrinsic property of the YSZ material whether in the form of a bulk material or a metastable coating. Data on the temperature dependent in-plane Young's modulus of the 7 wt.% yttria-stabilized zirconia thermal barrier coating between room temperature (22 GPa) and 900 deg. C (18 GPa) is also reported for the first time.

  7. Effect of high hydrostatic pressure on the barrier properties of polyamide-6 films

    Directory of Open Access Journals (Sweden)

    Schmerder A.

    2005-01-01

    Full Text Available Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water through polyamide-6 films at temperatures between 20 and 60ºC. Permeation was lowered by increasing pressure at all temperatures. At 23°C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9 cm² s-1 of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20ºC. After release of pressure, the former permeation coefficients were recovered, which suggests that this `pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.

  8. In Situ Measurement of Wind-Induced Pulse Response of Sound Barrier Based on High-Speed Imaging Technology

    Directory of Open Access Journals (Sweden)

    Chunli Zhu

    2016-01-01

    Full Text Available The lifetime of the sound barrier is threatened by high-speed train-induced impulsive wind pressure as it passes by. The vibration response of the sound barrier during the process of train passing is difficult to be measured using conventional measurement methods because of the inconvenience of the installation of markers on the sound barrier. In this paper, the high-speed camera is used to record the whole process of the train passing by the sound barrier. Then, a displacement extraction algorithm based on the theory of Taylor expansion is proposed to obtain the vibration response curve. Compared with the result simulated by using the finite element method, the video extraction result shows the same head wave and tail wave phenomenon, demonstrating that the vibration measurement by using the high-speed imaging technology is an effective measuring way. It can achieve noncontact and remote vibration measurement and has important practical value.

  9. Lush Cosmetics packaging

    OpenAIRE

    Hudson, Frazer

    2014-01-01

    Frazer Hudson – Lush Cosmetics Packaging Commissioned by Suzie Hackney for Lush Cosmetics via illustration Agency - Debut Art - February 2014 I was approached in February 2014 via my London based Illustration agency Debut Art to create packaging illustration designs for the high street retailer and International cosmetics brand ‘Lush’. The illustrations would be used on an octagonal gift box set and be positioned amongst other bespoke gift box set designs within Lush Cosme...

  10. Inelastic deformation behavior of thermal barrier coatings exposed at a high-temperature environment

    Directory of Open Access Journals (Sweden)

    Arai M.

    2010-06-01

    Full Text Available Thermal barrier coatings (TBCs are usually deposited onto the surface of the high-temperature component such as gas turbine, in order to protect it from a hightemperature environment. Coating stress generated by such a high-temperature brings serious damages in TBCs in service. For predicting numerically it, it is necessary to develop the constitutive equation suite to plasam-sprayed TBCs. Previous studies have made clear that the freestanding ceramic coat peeled from TBC coated substrate deforms nonlinearly with a mechanical loading, however the results there have been restricted to the test done using as-sprayed sample. In this study, effect of deposition parameter and high-temperature exposure condition on stress-strain curve of the freestanding ceramic coating sample was examined. The associated deformation process was discussed with the microstructure changes observed after performing a bending test for the exposed sample.

  11. High-efficiency silicon solar-cell design and practical barriers

    Science.gov (United States)

    Mokashi, A.

    1985-01-01

    A numerical evaluation technique is used to study the impact of practical barriers, such as heavy doping effects (Auger recombination, band gap narrowing), surface recombination, shadowing losses and minority-carrier lifetime (Tau), on a high efficiency silicon solar cell performance. Considering a high Tau of 1 ms, efficiency of a silicon solar cell of the hypothetical case is estimated to be around 29%. This is comparable with (detailed balance limit) maximum efficiency of a p-n junction solar cell of 30%. Value of Tau is varied from 1 second to 20 micro. Heavy doping effects, and realizable values of surface recombination velocities and shadowing, are then considered in succession and their influence on cell efficiency is evaluated and quantified. These practical barriers cause the cell efficiency to reduce from the maximum value of 29% to the experimentally achieved value of about 19%. Improvement in open circuit voltage V sub oc is required to achieve cell efficiency greater than 20%. Increased value of Tau reduces reverse saturation current and, hence, improves V sub oc. Control of surface recombination losses becomes critical at higher V sub oc. Substantial improvement in Tau and considerable reduction in surface recombination velocities is essential to achieve cell efficiencies greater than 20%.

  12. PLASMA THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE WITH HIGH THERMAL STABILITY

    Directory of Open Access Journals (Sweden)

    O. G. Devoino

    2015-01-01

    Full Text Available The paper presents optimization of  processes for obtaining maximum content of tetragonal phase in the initial material and thermal barrier coatings (TBC based on zirconium dioxide and hafnium oxide.  Results of the investigations on phase composition of oxide HfO2 – ZrO2 – Y2O3  system have been given in the paper. The system represents  a microstructure which is similar to  zirconia dioxide and  transformed for its application at 1300 °C. The paper explains a mechanism of hafnium oxide influence on formation of the given microstructure. The research methodology has been based on complex metallography, X – ray diffraction and electron microscopic investigations of  structural elements of the composite plasma coating HfO2 – ZrO2 – Y2O system.In order to stabilize zirconium dioxide  dopant oxide should not only have an appropriate size of  metal ion, but also form a solid solution with the zirconia. This condition severely limits the number of possible stabilizers. In fact, such stabilization is possible only with the help of rare earth oxides (Y2O3, Yb2O3, CeO2, HfO2. Chemical purity of the applied materials plays a significant role for obtaining high-quality thermal barrier coatings. Hafnium oxide has been selected as powder for thermal barrier coatings instead of zirconium dioxide due to their similarities in structural modification, grating, chemical and physical properties and its high temperature structural transformations. It has been established that plasma thermal barrier HfO2 – ZrO2 – Y2O3 coatings consist of  one tetragonal phase. This phase is equivalent to a non-equilibrium tetragonal t' phase in the “zirconium dioxide stabilized with yttrium oxide” system. Affinity of  Hf+4 and Zr+4 cations leads to the formation of identical metastable phases during rapid quenching.

  13. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  14. Guard-ring termination for high-voltage SiC Schottky barrier diodes; Guard ring shutan kozo wo sonaeta kotaiatsu SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Urushidani, T.; Seki, Y. [Fuji Electric Corporate Research and Development, Ltd., Kanagawa (Japan)

    1996-03-10

    Silicon carbide (SiC) has been attracting attention as a material for power devices, and has already demonstrated its favorable characteristics in Schottky barrier diodes (SBD) with gold or platinum. However, few researchers have discussed the device terminal structures, and the authors propose a simple, efficient guard-ring terminal structure. The SBD of SiC is prepared, with Al/Ti as the Schottky metals. The Al/Ti electrode forms a Schottky barrier with the n-type drift region, and an ohmic contact with the p-type region, i.e., guard-ring region. Resistance of this structure to voltage is determined by that of the mesa section of the p-n junction, and the mesa structure is formed by selective oxidation. The SBD shows a break-down voltage of 550V, which is roughly twice as high as that of an SBD having no guard-ring structure. 7 refs., 3 figs.

  15. The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data.

    Science.gov (United States)

    Nguyen, Hoang T; Merriman, Tony R; Black, Michael A

    2014-01-01

    Recent advances in high-throughout sequencing technologies have made it possible to accurately assign copy number (CN) at CN variable loci. However, current analytic methods often perform poorly in regions in which complex CN variation is observed. Here we report the development of a read depth-based approach, CNVrd2, for investigation of CN variation using high-throughput sequencing data. This methodology was developed using data from the 1000 Genomes Project from the CCL3L1 locus, and tested using data from the DEFB103A locus. In both cases, samples were selected for which paralog ratio test data were also available for comparison. The CNVrd2 method first uses observed read-count ratios to refine segmentation results in one population. Then a linear regression model is applied to adjust the results across multiple populations, in combination with a Bayesian normal mixture model to cluster segmentation scores into groups for individual CN counts. The performance of CNVrd2 was compared to that of two other read depth-based methods (CNVnator, cn.mops) at the CCL3L1 and DEFB103A loci. The highest concordance with the paralog ratio test method was observed for CNVrd2 (77.8/90.4% for CNVrd2, 36.7/4.8% for cn.mops and 7.2/1% for CNVnator at CCL3L1 and DEF103A). CNVrd2 is available as an R package as part of the Bioconductor project: http://www.bioconductor.org/packages/release/bioc/html/CNVrd2.html.

  16. The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data

    Directory of Open Access Journals (Sweden)

    Hoang eNguyen

    2014-08-01

    Full Text Available Recent advances in high-throughout sequencing technologies have made it possible to accurately assign copy number (CN at CN variable loci. However, current analytic methods often perform poorly in regions in which complex CN variation is observed. Here we report the development of a read depth-based approach, CNVrd2, for investigation of CN variation using high-throughput sequencing data. This methodology was developed using data from the 1000 Genomes Project from the CCL3L1 locus, and tested using data from the DEFB103A locus. In both cases, samples were selected for which paralogue ratio test data were also available for comparison. The CNVrd2 method first uses observed read-count ratios to refine segmentation results in one population. Then a linear regression model is applied to adjust the results across multiple populations, in combination with a Bayesian normal mixture model to cluster segmentation scores into groups for individual CN counts. The performance of CNVrd2 was compared to that of two other read depth-based methods (CNVnator, cn.mops at the CCL3L1 and DEFB103A loci, and the highest concordance with the paralog ratio test method was observed for CNVrd2 (77.8%/90.4% for CNVrd2, 36.7%/4.8% for cn.mops and 7.2%/1% for CNVnator at CCL3L1 and DEF103A. CNVrd2 is available as an R package as part of the Bioconductor project: http://www.bioconductor.org/packages/release/bioc/html/CNVrd2.html.

  17. Overview on thermal and mechanical challenges of high power RF electronic packaging

    NARCIS (Netherlands)

    Yuan, C.A.; Kregting, R.; Driel, W. van; Gielen, A.W.J.; Xiao, A.; Zhang, G.Q.

    2011-01-01

    High Power RF electronics is one of the essential parts for wireless communication, including the personal communication, broadcasting, microwave radar, etc. Moreover, high efficient high power electronics has entered the ISM market, such as the power generator of microwave oven. Power electronics r

  18. Overview on thermal and mechanical challenges of high power RF electronic packaging

    NARCIS (Netherlands)

    Yuan, C.A.; Kregting, R.; Driel, W. van; Gielen, A.W.J.; Xiao, A.; Zhang, G.Q.

    2011-01-01

    High Power RF electronics is one of the essential parts for wireless communication, including the personal communication, broadcasting, microwave radar, etc. Moreover, high efficient high power electronics has entered the ISM market, such as the power generator of microwave oven. Power electronics

  19. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  20. Abusive behavior is barrier to high-reliability health care systems, culture of patient safety.

    Science.gov (United States)

    Cassirer, C; Anderson, D; Hanson, S; Fraser, H

    2000-11-01

    Addressing abusive behavior in the medical workplace presents an important opportunity to deliver on the national commitment to improve patient safety. Fundamentally, the issue of patient safety and the issue of abusive behavior in the workplace are both about harm. Undiagnosed and untreated, abusive behavior is a barrier to creating high reliability service delivery systems that ensure patient safety. Health care managers and clinicians need to improve their awareness, knowledge, and understanding of the issue of workplace abuse. The available research suggests there is a high prevalence of workplace abuse in medicine. Both administrators at the blunt end and clinicians at the sharp end should consider learning new approaches to defining and treating the problem of workplace abuse. Eliminating abusive behavior has positive implications for preventing and controlling medical injury and improving organizational performance.

  1. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Beleznai, Sz; Mihajlik, G; Richter, P [Department of Atomic Physics, Budapest University of Technology and Economics, 3-9.Muegyetem rkp., Budapest H-1111 (Hungary); Maros, I; Balazs, L, E-mail: beleznai@dept.phy.bme.h [GE Consumer and Industrial-Lighting, 77 Vaci ut, Budapest H-1344 (Hungary)

    2010-01-13

    The application of a high frequency ({approx}2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe{sub 2}{sup *} excimer radiation ({approx}172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W{sup -1} has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  2. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Science.gov (United States)

    Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.

    2010-01-01

    The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  3. Substrate Effects on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    Limin He; Zhenhua Xu; Jianping Li; Rende Mu; Shimei He; Guanghong Huang

    2009-01-01

    The high-temperature oxidation behaviors of the NiCrAIYSi/P-YSZ thermal barrier coatings (TBCs) pro-duced by electron beam-physical vapor deposition (EB-PVD) on directionally solidified (DS) and single crys-talline (SC) Ni-based superalloy substrates were investigated. The cross-sectional microstructure investigation, isothermal and cyclic oxidation tests were conducted for the comparison of oxidation behaviors of TBCs on different substrates. Although TBC on DS substrate has a relatively higher oxidation rate, it has a longer thermal cycling lifetime than that on SC substrate. The primary factor for TBC spallation is the mismatch of thermal expansion coefficient (TEC) of the bond coat and substrate. The morphological feature of thermally grown oxide (TGO) has a strong influence on the TBC performance. By optimizing the elemental interdiffusion between bond coat and substrate, a high quality TGO layer is formed on the DS substrate, and therefore the TBC oxidation behavior is improved.

  4. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures.

    Science.gov (United States)

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10(-5) m s(-1) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm(-2)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures.

  5. Fifteen-year trends in the prevalence of barriers to healthy eating in a high-income country.

    Science.gov (United States)

    de Mestral, Carlos; Khalatbari-Soltani, Saman; Stringhini, Silvia; Marques-Vidal, Pedro

    2017-03-01

    Background: Despite increasing levels of education and income in the Swiss population over time and greater food diversity due to globalization, adherence to dietary guidelines has remained persistently low. This may be because of barriers to healthy eating hampering adherence, but whether these barriers have evolved in prevalence over time has never been assessed, to our knowledge.Objective: We assessed 15-y trends in the prevalence of self-reported barriers to healthy eating in Switzerland overall and according to sex, age, education, and income.Design: We used data from 4 national Swiss Health Surveys conducted between 1997 and 2012 (52,238 participants aged ≥18 y, 55% women), applying multivariable-adjusted logistic regression models to assess trends in prevalence of 6 barriers to healthy eating (taste, price, daily habits, time, lack of willpower, and limited options).Results: The prevalence of 3 barriers exhibited an increasing trend until 2007, followed by a decrease in 2012 (from 44% in 1997 to 50% in 2007 and then to 44% in 2012 for taste, from 40% to 52% and then to 39% for price, and from 29% to 34% and then to 32% for time; quadratic P-trend trend trend trend Trends were similar for all barriers irrespective of sex, age, education, and income.Conclusion: Between 1997 and 2012, barriers to healthy eating remained highly prevalent (≥20%) in the Swiss population and evolved similarly irrespective of age, sex, education, and income. © 2017 American Society for Nutrition.

  6. Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

    Science.gov (United States)

    Rodríguez, Martín A.

    2014-03-01

    Metallic engineered barriers must provide a period of absolute containment to high-level radioactive waste in geological repositories. Candidate materials include copper alloys, carbon steels, stainless steels, nickel alloys, and titanium alloys. The national programs of nuclear waste management have to identify and assess the anticipated degradation modes of the selected materials in the corresponding repository environment, which evolves in time. Commonly assessed degradation modes include general corrosion, localized corrosion, stress-corrosion cracking, hydrogen-assisted cracking, and microbiologically influenced corrosion. Laboratory testing and modeling in metallurgical and environmental conditions of similar and higher aggressiveness than those expected in service conditions are used to evaluate the corrosion resistance of the materials. This review focuses on the anticipated degradation modes of the selected or reference materials as corrosion-resistant barriers in nuclear repositories. These degradation modes depend not only on the selected alloy but also on the near-field environment. The evolution of the near-field environment varies for saturated and unsaturated repositories considering backfilled and unbackfilled conditions. In saturated repositories, localized corrosion and stress-corrosion cracking may occur in the initial aerobic stage, while general corrosion and hydrogen-assisted cracking are the main degradation modes in the anaerobic stage. Unsaturated repositories would provide an oxidizing environment during the entire repository lifetime. Microbiologically influenced corrosion may be avoided or minimized by selecting an appropriate backfill material. Radiation effects are negligible provided that a thick-walled container or an inner shielding container is used.

  7. Electrical Characterization of High Energy Electron Irradiated Ni/4 H-SiC Schottky Barrier Diodes

    Science.gov (United States)

    Paradzah, A. T.; Omotoso, E.; Legodi, M. J.; Auret, F. D.; Meyer, W. E.; Diale, M.

    2016-08-01

    The effect of high energy electron irradiation on Ni/4 H-SiC Schottky barrier diodes was evaluated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements at room temperature. Electron irradiation was achieved by using a radioactive strontium source with peak emission energy of 2.3 MeV. Irradiation was performed in fluence steps of 4.9 × 1013 cm-2 until a total fluence of 5.4 × 1014 cm-2 was reached. The Schottky barrier height determined from I- V measurements was not significantly changed by irradiation while that obtained from C- V measurements increased with irradiation. The ideality factor was obtained before irradiation as 1.05 and this value did not significantly change as a result of irradiation. The series resistance increased from 47 Ω before irradiation to 74 Ω after a total electron fluence of 5.4 × 1014 cm-2. The net donor concentration decreased with increasing irradiation fluence from 4.6 × 1014 cm-3 to 3.0 × 1014 cm-3 from which the carrier removal rate was calculated to be 0.37 cm-1.

  8. High-speed singulation of electronic packages using a frequency-doubled Nd:YAG laser in a water jet and realization of a 200-W green laser

    Science.gov (United States)

    Wagner, Frank R.; Hu, Wentao; Spiegel, Akos; Vago, Nandor; Richerzhagen, Bernold

    2003-07-01

    Each electronic chip is packaged in order to connect the integrated circuit and the printed circuit board. In consequence high-speed singulation of packages is an important step in the manufacturing process of electronic devices. The widely used technique of abrasive sawing encounters problems due to the combination of different materials used in packages such as copper and mold compound. The sawing blade rapidly blunts because of the copper adhering to the saw blade and covering the diamonds. In fact, the abrasive saw, well adapted to silicon wafer sawing, has problems to adapt to package materials. It has already been shown that the water jet guided laser can be used for efficient high quality singulation of leadframe based packages. In this technique a low-pressure water jet guides the laser beam like an optical fiber, providing efficient cooling of the cutting kerf at exactly the point that was heated during the laser pulse. We present new cutting results using a frequency doubled Nd:YAG laser with 100 W average power, and the combination setup for generating a 200 W green laser beam. The timing between the two lasers can be precisely controlled.

  9. High power diode laser array development using completely indium free packaging technology with narrow spectrum

    Science.gov (United States)

    Hou, Dong; Wang, Jingwei; Gao, Lijun; Liang, Xuejie; Li, Xiaoning; Liu, Xingsheng

    2016-03-01

    The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.

  10. Reliable Direct Bond Copper Ceramic Packages for High Temperature Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop highly reliable, hermetic, Si3N4 ceramic multichip modules to integrate commercially available SiC power devices to build power...

  11. The R package FANet: sparse factor analysis model for high dimensional gene co-expression networks

    OpenAIRE

    Blum, Anne; Houee-Bigot, Magalie; Lagarrigue, Sandrine; Causeur, David

    2014-01-01

    Inference on gene regulatory networks from high-throughput expression data turns out to be one of the main current challenges in systems biology. Such interaction networks are very insightful for the deep understanding of biological relationships between genes. In particular, a functional characterization of gene modules of highly interacting genes enables the identification of biological processes underlying complex traits as diseases. Inference on this dependence structure shall...

  12. Alternative Solder Bond Packaging Approach for High-Voltage (HV) Pulsed Power Devices

    Science.gov (United States)

    2016-09-01

    speed and high - temperature operation capabilities. However, the advanced capabilities of these switches are a challenge to demonstrate due to the...with a high - temperature anneal. The ohmic contacts to the anode, gate, and the substrate of the devices were formed using annealed nickel (Ni...with isopropyl alcohol. The copper strips and copper terminals underwent an additional cleaning with hydrochloric acid to ensure all oxidation was

  13. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  14. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  15. Portobello Packaging

    National Research Council Canada - National Science Library

    Thomas Grose

    2010-01-01

    ...-based foams. Bayer earned dual degrees in mechanical engineering and product design in 2007 and, with classmate Gavin Mclntyre, started the company Ecovative Design to market his creation. EcoCradle, the company's organic packaging material, was named one of the top inventions of 2009 by Popular Science. Its insulation material, Greensulate, got a ...

  16. The radiation characteristics of the transport packages with vitrified high-level waste

    Science.gov (United States)

    Bogatov, S. A.; Mitenkova, E. F.; Novikov, N. V.

    2015-12-01

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  17. The radiation characteristics of the transport packages with vitrified high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bogatov, S. A. [JSC VNIPIpromtechnologii (Russian Federation); Mitenkova, E. F., E-mail: mit@ibrae.ac.ru; Novikov, N. V. [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)

    2015-12-15

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  18. Multichip on Aluminum Metal Plate Technology for High Power LED Packaging

    Institute of Scientific and Technical Information of China (English)

    Choong-mo NAM; Mi-hee JI

    2010-01-01

    Multichip on Aluminum Metal Plate(MOAMP) technology with simple structure and low thermal resistance is developed for effective heat removal of Light Emitting Diode(LED) p-n junction and LED lighting module to have high reliability. The thermal resistance of LED modules was numerical and experimental. Thermal resistance from the junction to aluminum metal plate, considering input power of LED module using MOAMP technology, is 3.02 K/W, 3.23 K/W for the measured and calculated, respectively. We expect that the reported MOAMP technology with low thermal resistance will be a promising solution for high power LED lighting modules.

  19. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  20. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    Institute of Scientific and Technical Information of China (English)

    QI Haicheng; GAO Wei; FAN Zhihui; LIU Yidi; REN Chunsheng

    2016-01-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length.The discharge images,optical emission spectra (OES),the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained.When airflow rate is increased,the transition of the discharge mode and the variations of discharge intensity,breakdown characteristics and the temperature of the discharge plasma are investigated.The results show that the discharge becomes more diffuse,discharge intensity is decreased accompanied by the increased breakdown voltage and time lag,and the temperature of the discharge plasma reduces when airflow of small vclocity is introduced into the discharge gap.These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.

  1. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    Science.gov (United States)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  2. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  3. Impedance Analysis of 7YSZ Thermal Barrier Coatings During High-Temperature Oxidation

    Science.gov (United States)

    Chen, Wen-Long; Liu, Min; Zhang, Ji-Fu

    2016-12-01

    ZrO2-7 wt.%Y2O3 (7YSZ) thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. High-temperature oxidation of 7YSZ TBCs was accomplished at 950 °C and characterized by impedance spectroscopy and scanning electron microscopy with energy-dispersive spectrometry. The results indicated that the thermally grown oxide (TGO) mainly contained alumina. The increase of the thickness of the TGO layer appeared to follow a parabolic law. Impedance analysis demonstrated that the resistance of the TGO increased with increasing oxidation time, also following a parabolic law, and that characterization of the TGO thickness based on fitting an equivalent circuit to its measured resistance is feasible. The YSZ grain-boundary resistance increased due to increasing cracks within the coating for oxidation time less than 50 h. However, beyond 150 h, the YSZ grain-boundary resistance slightly decreased, mainly due to sintering of the coating during the oxidation process.

  4. Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)

    2016-06-15

    A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

  5. Stability of tokamak plasmas with internal transport barriers against high n ideal magnetohydrodynamic ballooning mode

    Institute of Scientific and Technical Information of China (English)

    Shi Bing-Ren; Qu Wen-Xiao

    2006-01-01

    A ballooning mode equation for tokamak plasma, with the toroidicity and the Shafranov shift effects included, is derived for a shift circular flux tokamak configuration. Using this equation, the stability of the plasma configuration with an internal transport barrier (IT2 against the high n (the toroidal mode number) ideal magnetohydrodynamic (MHD) ballooning mode is analysed. It is shown that both the toroidicity and the Shafranov shift effects are stabilizing.In the ITB region, these effects give rise to a low shear stable channel between the first and the second stability regions.Out of the ITB region towards the plasma edge, the stabilizing effect of the Shafranov shift causes the unstable zone to be significantly narrowed.

  6. Naval Waste Package Design Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    T. Schmitt

    2006-12-13

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages.

  7. ¿Y ahora qué? Anticipated immigration status barriers and Latina/o high school students' future expectations.

    Science.gov (United States)

    McWhirter, Ellen Hawley; Ramos, Karina; Medina, Cynthia

    2013-07-01

    Latina/o high school students without documentation face a challenging situation when they graduate from high school, with pathways to work and postsecondary education stymied by their immigration status. We examined the effects of anticipated barriers associated with immigration status, age, and sex on the dependent variables of vocational outcome expectations, anticipated external and internal barriers, and postsecondary schooling plans in a sample of 475 Latina/o high school students. Findings include that students anticipating immigration status problems had lower vocational outcome expectations and anticipated more external barriers to pursuing their postsecondary plans. Latina girls and older high school students anticipating immigration status problems were more likely to plan to attend 2-year rather than 4-year colleges, and less likely to plan on postsecondary education, respectively. Implications for practice, policy, and research are discussed.

  8. High-Throughput Dietary Exposure Predictions for Chemical Migrants from Food Packaging Materials

    Science.gov (United States)

    United States Environmental Protection Agency researchers have developed a Stochastic Human Exposure and Dose Simulation High -Throughput (SHEDS-HT) model for use in prioritization of chemicals under the ExpoCast program. In this research, new methods were implemented in SHEDS-HT...

  9. Vortex Image Processing (VIP) package for high-contrast direct imaging

    Science.gov (United States)

    Gomez Gonzalez, C.; Absil, O.; Wertz, O.

    2016-05-01

    VIP is a Python instrument-agnostic toolbox featuring a flexible framework for reproducible and robust data reduction. VIP currently supports three high-contrast imaging observational techniques: angular, reference-star and multi-spectral differential imaging. The code can be downloaded from our git repository on Github: http://github.com/vortex-exoplanet/VIP

  10. High-voltage (> 1 kV) SiC Schottky barrier diodes with low on-resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Tsunenobu; Urushidani, Tatsuo; Kobayashi, Sota; Matsunami, Hiroyuki (Kyoto Univ. (Japan). Dept. of Electrical Engineering)

    1993-12-01

    Au/6H-SiC Schottky barrier diodes with high blocking voltages were successfully fabricated using layers grown by step-controlled epitaxy. A breakdown voltage over 1,100 V could be achieved, which is the highest ever reported for silicon carbide (SiC) Schottky barrier diodes. These high-voltage SiC rectifiers had specific on-resistances lower than the theoretical limits of Si rectifiers by more than one order of magnitude. The specific on-resistance increased with temperature according to T[sup 2.0] dependence. The diodes showed good characteristics at temperature as high as 400 C.

  11. Monitoring the Quality of Perishable Foods: Opportunities for Intelligent Packaging

    NARCIS (Netherlands)

    Heising, J.K.; Dekker, M.; Bartels, P.V.; Boekel, van M.A.J.S.

    2014-01-01

    This review paper discusses opportunities for intelligent packaging for monitoring directly or indirectly quality attributes of perishable packaged foods. The possible roles of intelligent packaging as a tool in supply chain management are discussed as well as the barriers to implement this kind of

  12. Advanced organics for electronic substrates and packages

    CERN Document Server

    Fletcher, Andrew E

    1992-01-01

    Advanced Organics for Electronic Substrates and Packages provides information on packaging, which is one of the most technologically intensive activities in the electronics industry. The electronics packaging community has realized that while semiconductor devices continue to be improved upon for performance, cost, and reliability, it is the interconnection or packaging of these devices that will limit the performance of the systems. Technology must develop packaging for transistor chips, with high levels of performance and integration providing cooling, power, and interconnection, and yet pre

  13. Antioxidant BHT Modelling Migration from Food Packaging of High Density Polyethylene Plastics into the Food Simulant

    Directory of Open Access Journals (Sweden)

    Chi Haitao

    2015-09-01

    Full Text Available Made of High Density Polyethylene (HDPE films containing antioxidant 2, 6-di-tert-butyl-p-cresol (BHT, film samples were manufactured by plastic extrusion equipment, 95% ethanol aqueous solution simulating liquid was used for stimulant, using High Performance Liquid Chromatography (HPLC for the long-term migration test of 4 kinds of HDPE films containing different concentrations of antioxidant BHT. The migration data were processed by using Weibull model and then the migration model was specific under experimental conditions. Migration model was setup using the migrating data by Weibull model to fitting real experimental data. Using empirical formula reported FDA model formula and the diffusion coefficient constant D, calculated by the FDA model. Two kinds of model numerical after compared according to FDA model transfer numerical literature that is far lower than the actual test migration value. According to the actual test migration value, Weibull model numerical and experimental tests that the migration software fitting values are consistent.

  14. AVERAGE GEOMETRICAL FEATURES OF THE ELECTRON WAVE PACKAGES DISTRIBUTION IN METALLIC CONDUCTORS WITH PULSED AXIAL CURRENT OF HIGH DENSITY

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2016-11-01

    Full Text Available Purpose. Calculation and experimental determination of average geometrical features of distributing of macroscopic electron wave packages (EWP in round cylindrical metallic conductors with the pulsed axial current of high density. Methodology. Theoretical bases of the electrical engineering, bases of atomic and quantum physics, electrophysics bases of technique of high voltage and high pulsed currents. Results. The results of the conducted calculation and experimental researches are resulted on close determination of average geometrical features of distribution of longitudinal and radial EWP of macroscopic sizes in the indicated conductors. These descriptions are included by the average widths of «hot» and «cold» longitudinal and radial areas of conductor, and also average steps of division into the periods of similar areas. Results of the executed calculations and high temperature experiments for average geometrical features of longitudinal EWP in the zincked steel wire of diameter of 1.6 mm and length of 320 mm with the aperiodic impulse of current of temporal form 9 ms/160 ms and by amplitude 745 A coincide within the limits of 19 %. Originality. First with the use of methods of atomic and quantum physics the features of the stochastic distributing and mean values of basic geometrical sizes are analysed macroscopic longitudinal and radial EWP in round cylindrical metallic conductors with the pulsed axial current of high density. Practical value. Drawing on the got results in practice will allow more reliably to forecast geometrical sizes and places of localization of arising up in the probed metallic conductors with pulsed axial current of high density longitudinal and radial EWP.

  15. Three-dimensional packaging of very large scale integrated optics (VLSIO) for high-complexity optical systems

    Science.gov (United States)

    West, Lawrence C.; Roberts, Charles W.; Piscani, Emil C.; Dubey, Madan; Jones, Kenneth A.; McLane, George F.

    1996-03-01

    Optics has the fundamental capability of dramatically improving computer performance via the reduction of capacitance for intrinsic high bandwidth communications and low power usage. Yet optical devices have not displaced silicon VLSI in any measure to date. The reason is clear. When placed into systems, the optical devices have not had significantly greater performance in equally complex information processing circuits and similarly low manufacturing cost. An approach demonstrated here uses the same system integration techniques that have been successful for silicon electronics, only applied to optics. Essential for creation of very large scale integrated optics (VLSIO), with over 50,000 high speed logic gates per square centimeter, is a new class of ultra high confinement (UHC) waveguides. These waveguides are created with high index difference (as high as 4.0 to 1.0) between guide and cladding. The waveguides have been demonstrated with infrared cross sections less than 5% of a square free space wavelength. These waveguides can be manufactured today only in the mid-infrared, but the concepts should scale to the near-infrared as lithography improves. Waveguide corners have been designed and demonstrated with a bend radius of less than one free space wavelength. Resonators have been designed which have over 100 times smaller volume than VCSELs, yet efficiently inter-connected laterally in high densities. A connector to the UHC waveguides has been developed and demonstrated using diffractive optical element arrays on the back side of the substrate. The coupler arrays can allow up to 10,000 Gaussian beam connections per square centimeter. This connectivity also has advantages for low cost three dimensional packaging for reduced cost and thermal dissipation. Experimental results on the above concepts and components are presented.

  16. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  17. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

  18. Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL)

    Science.gov (United States)

    2010-12-01

    efficiency. With the 20% reflecli vity FBG, the laser ex hibi ts a threshold of 0.9 A and reaches a CW peak power of 0.37 W aI 4 A. The peak effic ...twice the photon energy . The SCOWECL is expected to find applications in free space coherent optical communications and in microwave photollic...Dai , " High effic ient and narrow linewidlh fiber laser based on fiber grat ing Fabry- Perot cavity," Frolltiers of Oploeieclrollics il/ Chinll, vol

  19. High Tg and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Science.gov (United States)

    Keeratitham, Waralee; Somwangthanaroj, Anongnat

    2016-03-01

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (Tg) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that Tg obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (˜90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  20. Polymer Composites for Intelligent Food Packaging

    Science.gov (United States)

    He, Jiating; Yap, Ray Chin Chong; Wong, Siew Yee; Li, Xu

    2015-09-01

    Over the last 50 years, remarkable improvements in mechanical and barrier properties of polymer composites have been realized. Their improved properties have been widely studied and employed for food packaging to keep food fresh, clean and suitable for consumption over sufficiently long storage period. In this paper, the current progress of science and technology development of polymer composites for intelligent food packaging will be highlighted. Future directions and perspectives for exploring polymer composites for intelligent food packaging to reveal freshness and quality of food packaged will also be put forward.

  1. An Analysis of Success Factors in the Utilization of Learning Activity Packages Employed as Vehicles for Individualizing Science Instruction at Nova High School.

    Science.gov (United States)

    Campbell, Roy Franklin

    The purpose of this study was to determine whether "Learning Activity Packages" (LAPs) could be used as the basic instructional material of individualized instruction for certain types of students and not for others. A sample of 133 biology students was selected at random and assigned to one of three groups, low, medium or high, on the basis of…

  2. Working with Design: A Package for Sheet Metal

    Science.gov (United States)

    Fiebich, Paul D.

    1974-01-01

    The author describes a design approach used to study sheet metal layout in junior high and high school mechanical drafting courses. Students observe packaging in stores, study package construction, and design and produce their own packages. (EA)

  3. Stakeholder Perceptions of Barriers and Solutions to Significant Expansion of Postsecondary Enrollment Options for High School Students

    Directory of Open Access Journals (Sweden)

    Carl Wozniak

    2013-02-01

    Full Text Available Post-secondary experiences for students still in high school have been promoted as a means to increase academic rigor and create a better-trained workforce. Yet little is known regarding supports needed to significantly increase such options. This study obtained input from 411 stakeholders in one Midwestern state, including 201 district superintendents, 181 high school principals, and 23 college dual enrollment officers regarding their use of these options, their perceptions of barriers to program expansion, and their ranking of possible solutions to overcome the barriers. Findings demonstrate that all parties find postsecondary options of value, with traditional dual enrollment the most used option. Although all groups identified funding as a primary barrier, other systemic barriers were of great concern. Participants suggest that expansion of Advanced Placement and early and middle college programs, financial assistance for dually enrolled students, and increased program availability for career and technical options would be beneficial.Wozniak, Carl, (2012. Stakeholder Perceptions of Barriers and Solutions to Significant Expansion of Postsecondary Enrollment Options for High School Students. 8(2. Retrieved from www.ijepl.org .

  4. Seafood Packaging

    Science.gov (United States)

    1996-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as 'space blanket material,' which was produced during the Apollo era.

  5. New package for CMOS sensors

    Science.gov (United States)

    Diot, Jean-Luc; Loo, Kum Weng; Moscicki, Jean-Pierre; Ng, Hun Shen; Tee, Tong Yan; Teysseyre, Jerome; Yap, Daniel

    2004-02-01

    Cost is the main drawback of existing packages for C-MOS sensors (mainly CLCC family). Alternative packages are thus developed world-wide. And in particular, S.T.Microelectronics has studied a low cost alternative packages based on QFN structure, still with a cavity. Intensive work was done to optimize the over-molding operation forming the cavity onto a metallic lead-frame (metallic lead-frame is a low cost substrate allowing very good mechanical definition of the final package). Material selection (thermo-set resin and glue for glass sealing) was done through standard reliability tests for cavity packages (Moisture Sensitivity Level 3 followed by temperature cycling, humidity storage and high temperature storage). As this package concept is new (without leads protruding the molded cavity), the effect of variation of package dimensions, as well as board lay-out design, are simulated on package life time (during temperature cycling, thermal mismatch between board and package leads to thermal fatigue of solder joints). These simulations are correlated with an experimental temperature cycling test with daisy-chain packages.

  6. The high throughput investigation of polyphenolic couplers in biodegradable packaging materials

    Science.gov (United States)

    Lochhead, Robert Y.; Haynes, Camille T.; Jones, Stephen R.; Smith, Virginia

    2006-01-01

    create a coupler from the hydrogen-bonded coacervate formed between a polyphenolic compound and polyvinylpyrrolidone, and to use this to exfoliate and couple montmorillonite nanoparticles to polycaprolactone. To achieve this, solubility parameter mapping of candidate polymeric couplers, polycaprolactone and target polyphenolic compounds was undertaken. This was used as a screening process in predicting incompatibilities and eliminating unpromising materials that were soluble in the same materials as the polycaprolactone and the polyvinylpyrrolidone. High throughput generation of Hansen-Hoy solubility diagrams coupled with simple techniques like high throughput FT-IR spectroscopy and polarized light microscopy provide a powerful tool for the evaluation of compatibility between formulation components. We were able to quickly evaluate over 110 food-contact-approved phenolic compounds, select the two promising candidates and eliminate all of the rest by evaluating their propensity for compatibility and hydrogen bonding.

  7. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  8. Highly Segmented Thermal Barrier Coatings Deposited by Suspension Plasma Spray: Effects of Spray Process on Microstructure

    Science.gov (United States)

    Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio

    2016-12-01

    Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.

  9. How to design a good photoresist solvent package using solubility parameters and high-throughput research

    Science.gov (United States)

    Tate, Michael P.; Cutler, Charlotte; Sakillaris, Mike; Kaufman, Michael; Estelle, Thomas; Mohler, Carol; Tucker, Chris; Thackeray, Jim

    2014-03-01

    Understanding fundamental properties of photoresists and how interactions between photoresist components affect performance targets are crucial to the continued success of photoresists. More specifically, polymer solubility is critical to the overall performance capability of the photoresist formulation. While several theories describe polymer solvent solubility, the most common industrially applied method is Hansen's solubility parameters. Hansen's method, based on regular solution theory, describes a solute's ability to dissolve in a solvent or solvent blend using four physical properties determined experimentally through regression of solubility data in many known solvents. The four physical parameters are dispersion, polarity, hydrogen bonding, and radius of interaction. Using these parameters a relative cohesive energy difference (RED), which describes a polymer's likelihood to dissolve in a given solvent blend, may be calculated. Leveraging a high throughput workflow to prepare and analyze the thousands of samples necessary to calculate the Hansen's solubility parameters from many different methacrylate-based polymers, we compare the physical descriptors to reveal a large range of polarities and hydrogen bonding. Further, we find that Hansen's model correctly predicts the soluble/insoluble state of 3-component solvent blends where the dispersion, polar, hydrogen-bonding, and radius of interaction values were determined through regression of experimental values. These modeling capabilities have allowed for optimization of the photoresist solubility from initial blending through application providing valuable insights into the nature of photoresist.

  10. Simulation of the interaction of tsunami waves with underwater barriers

    Science.gov (United States)

    Boshenyatov, B. V.; Zhiltsov, K. N.

    2016-10-01

    This article examines the experimental and numerical simulation of the processes of distribution and interaction of tsunami-type gravitational waves with one barrier and a complex of two barriers. Experiments were conducted in a hydrodynamic channel using high-precision sensors for the measurement of the wave processes. Mathematical modelling was carried out using two-dimensional non-stationary Navier-Stokes equations for an incompressible fluid using the freely available software package OpenFOAM. It is shown that for small-amplitude waves, when their advance speed is described by the linear theory of shallow water, the interaction with the underwater barriers has important non-linear and viscous effects. Our results explain why a complex of two barriers spaced at a definite distance from each other has a significant impact on the power of the transmitted wave. The energy of the waves passing through the two barriers can be reduced to 35% of the incident wave.

  11. MMIC packaging with Waffleline

    Science.gov (United States)

    Perry, R. W.; Ellis, T. T.; Schineller, E. R.

    1990-06-01

    The design principle of Waffleline, a patented MMIC packaging technology, is discussed, and several recent applications are described and illustrated with drawings, diagrams, and photographs. Standard Waffleline is a foil-covered waffle-iron-like grid with dielectric-coated signal and power wires running in the channels and foil-removed holes for mounting prepackaged chips or chip carriers. With spacing of 50 mils between center conductors, this material is applicable at frequencies up to 40 GHz; EHF devices require Waffleline with 25-mil spacing. Applications characterized include a subassembly for a man-transportable SHF satellite-communication terminal, a transmitter driver for a high-power TWT, and a 60-GHz receiver front end (including an integrated monolithic microstrip antenna, a low-noise amplifier, a mixer, and an IF amplifier in a 0.25-inch-thick 1.6-inch-diameter package). The high package density and relatively low cost of Waffleline are emphasized.

  12. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage, friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian) control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach, and the performance is validated by simulation.

  13. Reduction of Listeria innocua contamination in vacuum-packaged dry-cured Italian pork products after high hydrostatic pressure treatment

    Directory of Open Access Journals (Sweden)

    Giuseppe Merialdi

    2015-06-01

    Full Text Available The present work aims to present the results of the application of a treatment with high hydrostatic pressure (HHP on Italian fermented and dry-cured pork products. The products used in this study were portioned cured ham, portioned bacon and salami, vacuumpackaged and produced by a single processing company. Two studies were conducted on a single batch of the three products by means of an artificial contamination with Listeria innocua as a surrogate of L. monocytogenes. In the first trial a superficial contamination was obtained by immersion for 3 min in the culture broth with a concentration of approximately 9 log cfu/mL. At the end of the inoculum step, the pieces were dred at room temperature and vacuum packaged. In the second trial 50 kg of minced pork meat were contaminated before production of salami. In both cases the inoculum contained 5 strains of L. innocua. Subsequently, in both trials, 10 samples were randomly divided into two groups of 5 pieces each: i TH group, samples treated with HHP; ii group C, control samples, not subjected to any treatment. All samples were stored at refrigeration temperature at the end of HHP treatments (if applied, and analyzed for the determination of the surface (1st trial and deep (2nd trial quantitative contamination of L. innocua. pH and aW were also determined on 3 pieces of each products belonging to group C. The difference between the medians of the log cfu/cm2 or g established between controls and treated were compared using the non-parametric test (Kruskal-Wallis test with P<0.01. In all products and in both trials the level of contamination detected in treatment groups was always significantly lower than in controls (P<0.01. In particular, in vacuum-packaged ham, bacon and salami viability logarithmic viability reductions equal to -2.29, -2.54 and -2.51 were observed, respectively. This study aimed to evaluate a not-thermal treatment on Italian cured or fermented pork products. The results of

  14. Effect of high oxygen and high carbon dioxide atmosphere packaging on the microbial spoilage and shelf-life of fresh-cut honeydew melon.

    Science.gov (United States)

    Zhang, Bao-Yu; Samapundo, Simbarashe; Pothakos, Vasileios; Sürengil, Göknur; Devlieghere, Frank

    2013-09-16

    This study evaluated the potential of modified atmospheres (MAs) combining high oxygen (O₂) and high carbon dioxide (CO₂) levels to extend the shelf-life of fresh-cut honeydew melon. Firstly, the effect of MA on the growth and volatile organic metabolite production of Candida sake, Leuconostoc mesenteroides and Leuconostoc gelidum, which had all been previously isolated from spoiled commercial fresh-cut honeydew melon, was evaluated separately on honeydew melon agar at 7 °C. Additionally, the effect of selected MAs on the microbial, physico-chemical and sensory quality of commercial fresh-cut honeydew melon cubes was evaluated at 7 °C. The results showed that MAs with high O₂ and high CO₂ levels greatly retarded the growth, CO₂ and volatile metabolite production (i.e. ethanol, 2-methyl-1-butanol, ethyl acetate, phenylacetic acid, nonanal) of C. sake on honeydew melon agar; especially MAs consisting of 50% O₂+50% CO₂ and 70% O₂+30% CO₂. In contrast, the MAs evaluated only had a minor effect on the growth and volatile metabolite production of L. mesenteroides and L. gelidum. Overall, the effect of MAs on colour, juice leakage, juiciness, and firmness of fresh-cut honeydew melon was small during storage. Sensory preference was generally for fresh-cut honeydew melon cubes packaged in MA of 50% O₂+50% CO₂. These were still acceptable on day five of storage and had appreciably lower populations of yeasts and lactic acid bacteria, lower quantities of volatile organic compounds, but slightly stronger colour oxidation compared to honeydew melon that was packaged in air. Additionally, most of the samples packed in air had blown by day five due to the large quantity of CO₂ production during storage. Therefore, 50% O₂+50% CO₂ is a potential MA solution for extending the shelf-life of fresh-cut honeydew melon.

  15. A Lightweight, High-performance I/O Management Package for Data-intensive Computing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun

    2011-06-22

    Our group has been working with ANL collaborators on the topic bridging the gap between parallel file system and local file system during the course of this project period. We visited Argonne National Lab -- Dr. Robert Ross's group for one week in the past summer 2007. We looked over our current project progress and planned the activities for the incoming years 2008-09. The PI met Dr. Robert Ross several times such as HEC FSIO workshop 08, SC08 and SC10. We explored the opportunities to develop a production system by leveraging our current prototype to (SOGP+PVFS) a new PVFS version. We delivered SOGP+PVFS codes to ANL PVFS2 group in 2008.We also talked about exploring a potential project on developing new parallel programming models and runtime systems for data-intensive scalable computing (DISC). The methodology is to evolve MPI towards DISC by incorporating some functions of Google MapReduce parallel programming model. More recently, we are together exploring how to leverage existing works to perform (1) coordination/aggregation of local I/O operations prior to movement over the WAN, (2) efficient bulk data movement over the WAN, (3) latency hiding techniques for latency-intensive operations. Since 2009, we start applying Hadoop/MapReduce to some HEC applications with LANL scientists John Bent and Salman Habib. Another on-going work is to improve checkpoint performance at I/O forwarding Layer for the Road Runner super computer with James Nuetz and Gary Gridder at LANL. Two senior undergraduates from our research group did summer internships about high-performance file and storage system projects in LANL since 2008 for consecutive three years. Both of them are now pursuing Ph.D. degree in our group and will be 4th year in the PhD program in Fall 2011 and go to LANL to advance two above-mentioned works during this winter break. Since 2009, we have been collaborating with several computer scientists (Gary Grider, John bent, Parks Fields, James Nunez, Hsing

  16. Ultra-high pressure LC for astaxanthin determination in shrimp by-products and active food packaging.

    Science.gov (United States)

    Sanches-Silva, A; Ribeiro, T; Albuquerque, T G; Paseiro, P; Sendón, R; de Quirós, A Bernaldo; López-Cervantes, J; Sánchez-Machado, D I; Soto Valdez, H; Angulo, I; Aurrekoetxea, G P; Costa, H S

    2013-06-01

    Nowadays, there is increasing interest in natural antioxidants from food by-products. Astaxanthin is a potent antioxidant and one of the major carotenoids in crustaceans and salmonids. An ultra-high pressure liquid chromatographic method was developed and validated for the determination of astaxanthin in shrimp by-products, and its migration from new packaging materials to food simulants was also studied. The method uses an UPLC® BEH guard-column (2.1 × 5 mm, 1.7 µm particle size) and an UPLC® BEH analytical column (2.1 × 50 mm, 1.7 µm particle size). Chromatographic separation was achieved using a programmed gradient mobile phase consisting of (A) acetonitrile-methanol (containing 0.05 m ammonium acetate)-dichloromethane (75:20:5, v/v/v) and (B) ultrapure water. This method was evaluated with respect to validation parameters such as linearity, precision, limit of detection, limit of quantification and recovery. Low-density polyethylene films were prepared with different amounts of the lipid fraction of fermented shrimp waste by extrusion, and migration was evaluated into food simulants (isooctane and ethanol 95%, v/v). Migration was not detected under the tested conditions.

  17. Employing low-temperature barriers to achieve strain-relaxed and high-performance GaN-based LEDs.

    Science.gov (United States)

    Lin, Zhiting; Wang, Haiyan; Wang, Wenliang; Lin, Yunhao; Yang, Meijuan; Chen, Shuqi; Li, Guoqiang

    2016-05-30

    The epitaxial structure design of low-temperature barriers has been adopted to promote strain relaxation in multiple quantum well (MQWs) and achieve high-efficient GaN-based light-emitting diodes (LEDs). With these barriers, the relaxation value of wells increases from 0 to 4.59%. The strain-relaxed mechanism of low-temperature barriers is also discussed. The LED chip with the barriers grown at the TMIn flow of 75 sccm and the growth temperature of 830 °C has an optimal strain relaxation value of 1.53% in wells, and exhibits the largest light output power of 63.83 mW at the injection current of 65 mA, which is higher than that of conventional LED (51.89 mW) by 23%. In-depth studies reveal that the optimal low-temperature barriers remarkably promote the strain relaxation in wells without forming large density of crystalline defects. This achievement of high-efficiency LEDs sheds light on the future solid-state lighting applications.

  18. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  19. Characterization of Jatropha curcas L. Protein Cast Films with respect to Packaging Relevant Properties

    Directory of Open Access Journals (Sweden)

    Gabriele Gofferje

    2015-01-01

    Full Text Available There is increasing research ongoing towards the substitution of petrochemical based plastics by more sustainable raw materials, especially in the field of bioplastics. Proteins of different types such as whey, casein, gelatine, or zein show potential beyond the food and feed industry as, for instance, the application in packaging. Protein based coatings provide different packaging relevant properties such as barrier against permanent gases, certain water vapour barrier, and mechanical resistance. The aim of this study was to explore the potential for packaging applications of proteins from Jatropha curcas L. and to compare the performance with literature data on cast films from whey protein isolate. As a by-product from oil extraction, high amounts of Jatropha meal are obtained requiring a concept for its sustainable utilization. Jatropha seed cake includes up to 40% (w/w of protein which is currently not utilized. The present study provides new data on the potential of Jatropha protein for packaging applications. It was shown that Jatropha protein cast films show suitable barrier and mechanical properties depending on the extraction and purification method as well as on the plasticiser content. Based on these findings Jatropha proteins own potential to be utilized as coating material for food packaging applications.

  20. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor.

    Science.gov (United States)

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-03-16

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.

  1. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Liying Wang

    2017-03-01

    Full Text Available In order to achieve and maintain a high quality factor (high-Q for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB. In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q. The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.

  2. Vacuum-Packaging Technology for IRFPAs

    Science.gov (United States)

    Matsumura, Takeshi; Tokuda, Takayuki; Tsutinaga, Akinobu; Kimata, Masafumi; Abe, Hideyuki; Tokashiki, Naotaka

    We developed vacuum-packaging equipment and low-cost vacuum packaging technology for IRFPAs. The equipment is versatile and can process packages with various materials and structures. Getters are activated before vacuum packaging, and we can solder caps/ceramic-packages and caps/windows in a high-vacuum condition using this equipment. We also developed a micro-vacuum gauge to measure pressure in vacuum packages. The micro-vacuum gauge uses the principle of thermal conduction of gases. We use a multi-ceramic package that consists of six packages fabricated on a ceramic sheet, and confirm that the pressure in the processed packages is sufficiently low for high-performance IRFPA.

  3. Effect of high-pressure/temperature (HP/T) treatments of in-package food on additive migration from conventional and bio-sourced materials.

    Science.gov (United States)

    Mauricio-Iglesias, M; Jansana, S; Peyron, S; Gontard, N; Guillard, V

    2010-01-01

    Migration was assessed during and after two high-pressure/temperature (HP/T) treatments intended for a pasteurization (800 MPa for 5 min, from 20 to 40 degrees C) and a sterilization treatment (800 MPa for 5 min, from 90 to 115 degrees C) and were compared with conventional pasteurization and sterilization, respectively. The specific migration of actual packaging additives used as antioxidants and ultraviolet light absorbers (Irganox 1076, Uvitex OB) was investigated in a number of food-packaging systems combining one synthetic common packaging (LLDPE) and a bio-sourced one (PLA) in contact with the four food-simulating liquids defined by European Commission regulations. After standard HP/T processing, migration kinetics was followed during the service life of the packaging material using Fourier transform infrared spectrometer (FTIR) spectroscopy. LLDPE withstood the high-pressure sterilization, whereas it melted during the conventional sterilization. No difference was observed on migration from LLDPE for both treatments. In the case of PLA, migration of Uvitex OB was very low or not detectable for all the cases studied.

  4. Packaging the MAMA module

    Science.gov (United States)

    Seals, J. Dennis

    1994-10-01

    The MAMA (Mixed Arithmetic, Multiprocessing Array) module is being developed to evaluate new packaging technologies and processing paradigms for advanced military processing systems. The architecture supports a tight mix of signal, data,and I/O processing at GFLOP throughput rates. It is fabricated using only commercial-on-the-sehlf (COTS) chips and will provide a high level of durability. Its attributes are largely the result of two new interconnection and packaging technologies. Chip-in-board packaging is used to reduce local x-y communication delays and solder joints, while significantly improving board-level packaging density. A unique 3-D interconnection technology called a cross-over cell has been developed to reduce board-to-board communication delays, drive power, glue logic, and card-edge pin-outs. These technologies enable true 3-D structures that are form, fit and connector compatible with conventional line-replacable modules. The module's design rational, packaging technology, and basic architecture will be presented in this paper.

  5. SPHINX experimenters information package

    Energy Technology Data Exchange (ETDEWEB)

    Zarick, T.A. [Sandia National Lab., Albuquerque, NM (United States). Radiation Effects Experimentation Dept.

    1996-08-01

    This information package was prepared for both new and experienced users of the SPHINX (Short Pulse High Intensity Nanosecond X-radiator) flash X-Ray facility. It was compiled to help facilitate experiment design and preparation for both the experimenter(s) and the SPHINX operational staff. The major areas covered include: Recording Systems Capabilities,Recording System Cable Plant, Physical Dimensions of SPHINX and the SPHINX Test cell, SPHINX Operating Parameters and Modes, Dose Rate Map, Experiment Safety Approval Form, and a Feedback Questionnaire. This package will be updated as the SPHINX facilities and capabilities are enhanced.

  6. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  7. Self-Efficacy, Perceptions of Barriers, Vocational Identity, and the Career Exploration Behavior of Latino/a High School Students

    Science.gov (United States)

    Gushue, George V.; Clarke, Christine P.; Pantzer, Karen M.; Scanlan, Kolone R. L.

    2006-01-01

    This study explored the potential relationship between the social cognitive variables of career decision making self-efficacy and perceptions of barriers and the outcome variables of vocational identity and career exploration behaviors in a sample of 128 urban Latino/a high school students. The results indicated that higher levels of career…

  8. Noise control of a flow around a cylinder using high-frequency dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Kopiev, V. F.; Belyaev, I. V.; Zaytsev, M. Yu.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.

    2015-03-01

    The effect of high-frequency dielectric barrier discharge plasma actuators on the noise of a flow around a circular cylinder is experimentally studied. It is shown that the plasma actuators are able to reduce the vortex noise of a cylinder within the range of velocities typical for aeroacoustic applications.

  9. Fish Movement Ecology in High Gradient Headwater Streams: Its Relevance to Fish Passage Restoration through Stream Culvert Barriers

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.

    2007-01-01

    Executive Summary Restoration of fish passage through culvert barriers has emerged as a major issue in the Pacific Northwest and nationwide. The problem has many dimensions, including the huge number of potential barriers, uncertainty about which structures are actually barriers, the benefits and risks involved with restoration, and the financial costs and timelines. This report attempts to address what we call 'thinking outside of the pipe' in terms of fish passage information needs. This means understanding the value of each potential passage restoration project in the context of other possible projects, and to view individual restoration projects within a larger landscape of habitats and population processes. In this report we provide a brief review of some essential characteristics of animal movement and examples from a focal group of fishes in Washington State: salmon, trout, and char. While several other fishes and many other species use streams where culvert passage barriers may occur, it is the salmonids that are by far the most widespread and in most cases extending furthest into the headwaters of stream networks in Washington. We begin this report by outlining some basic characteristics of animal movement and then apply that foundation to the case of salmonid fishes. Next we consider the consequences of disrupting fish movement with human-constructed barriers, such as culverts. Finally, this body of evidence is summarized and we propose a short list of what we view as high priority information needs to support more effective restoration of fish passage through culverts.

  10. Accelerated high fidelity prion amplification within and across prion species barriers.

    Directory of Open Access Journals (Sweden)

    Kristi M Green

    Full Text Available Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP, as a substrate for in vitro generation of chronic wasting disease (CWD prions by protein misfolding cyclic amplification (PMCA. Characterization of this infectivity in Tg(CerPrP mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.

  11. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  12. Effect assessment of "film coating and packaging" on the photo-stability of highly photo-labile antihypertensive products.

    Science.gov (United States)

    Mukharya, Amit; Patel, Paresh U; Chaudhary, Shivang

    2013-04-01

    Lacidipine (LCDP) is chemically a "1, 4-dihydropyridine derivative" Ca+(2) channel blocker used as an antihypertensive. Type and extent of packaging have a strong influence on the photo-stability of the 1,4-dihydropyridine derivatives. In standard, light protection of drug substance/drug product can be obtained either by use of an opaque additive in the formulation that competitively absorbs or reflects light reaching the sample and/or by blocking the access of light to the drug through external protection by packaging. External protection by covering tablets with an opaque film coating involving a light-reflecting inorganic pigment such as titanium dioxide and/or by using an opaque impermeable packaging material was an appropriate suitable option for establishing photo-stability. Thus, the main objective of the present study was to optimize the % level of film coating in LCDP core tablets, and selection of a final packaging material and its respective extent, that is, primary, secondary and/or tertiary packaging, for LCDP tablets. The main objective (% level of film coating) was optimized by directly exposing core tablets, 1% w/w, 2% w/w and 3% w/w film-coated tablets, to a light source as per Option-2 of ICH Q1B and its comparative analysis at the end of light exposure testing. The other objective (extent of drug product packaging) was established successfully by assessing whether or not an acceptable change has occurred at the end of the light exposure testing of the LCDP film-coated tablets in a direct exposure study or a primary immediate pack and/or secondary marketing pack.

  13. Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing.

    Science.gov (United States)

    Wang, Taojun; Zhao, Liang; Sun, Yanan; Ren, Fazheng; Chen, Shanbin; Zhang, Hao; Guo, Huiyuan

    2016-11-01

    Changes in the microbiota of lamb were investigated under vacuum packaging (VP) and under 20% CO2/80% N2 (LC), 60% CO2/40% N2 (MC), and 100% CO2 (HC) modified atmosphere packaging (MAP) during chilled storage. Viable counts were monitored, and the total microbial communities were assessed by high-throughput sequencing. The starting community had the highest microbial diversity, after which Lactococcus and Carnobacterium spp. outcompeted during the 28-day storage. The relative abundances of Brochothrix spp. in the LC atmosphere were much higher than those of the other groups on days 7 and 28. The bacterial inhibiting effect of the MAP environments on microbial growth was positively correlated with the CO2 concentration. The HC atmosphere inhibited microbial growth and delayed changes in the microbial community composition, extending the lamb's shelf life by approximately 7days compared with the VP atmosphere. Lamb packaged in the VP atmosphere had a more desirable colour but a higher weight loss than lamb packaged in the MAP atmospheres.

  14. Using numerical analysis to develop and evaluate the method of high temperature sous-vide to soften carrot texture in different-sized packages.

    Science.gov (United States)

    Hong, Yoon-Ki; Uhm, Joo-Tae; Yoon, Won Byong

    2014-04-01

    The high-temperature sous-vide (HTSV) method was developed to prepare carrots with a soft texture at the appropriate degree of pasteurization. The effect of heating conditions, such as temperature and time, was investigated on various package sizes. Heating temperatures of 70, 80, and 90 °C and heating times of 10 and 20 min were used to evaluate the HTSV method. A 3-dimensional conduction model and numerical simulations were used to estimate the temperature distribution and the rate of heat transfer to samples with various geometries. Four different-sized packages were prepared by stacking carrot sticks of identical size (9.6 × 9.6 × 90 mm) in a row. The sizes of the packages used were as follows: (1) 9.6 × 86.4 × 90, (2) 19.2 × 163.2 × 90, (3) 28.8 × 86.4 × 90, and (4) 38.4 × 86.4 × 90 mm. Although only a moderate change in color (L*, a*, and b*) was observed following HTSV cooking, there was a significant decrease in carrot hardness. The geometry of the package and the heating conditions significantly influenced the degree of pasteurization and the final texture of the carrots. Numerical simulations successfully described the effect of geometry on samples at different heating conditions. © 2014 Institute of Food Technologists®

  15. AcerDET-2.0: a particle level fast simulation and reconstruction package for phenomenological studies on high p_T physics at LHC

    CERN Document Server

    Mikos, Patryk

    2015-01-01

    The fortran version of the AcerDET package has been published in [1], and used in the multiple publications on the predictions for physics at LHC. The package provides, starting from list of particles in the event, the list of reconstructed jets, isolated electrons, muons, photons and reconstructed missing transverse energy. The AcerDET represents a simplified version of the package called ATLFAST, used since several years within ATLAS Collaboration. In the fast simulation implemented in AcerDET, some functionalities of ATLFAST are absent, but the most crucial detector effects are implemented and the parametrisations are largely simplified. Therefore it is not representing details neither of ATLAS nor CMS detectors. This short paper documents a new C++ implementation of the same algorithms as used in [1]. We believe that the package can be well adequate for some feasibility studies of the high p_T physics at LHC and at planned ppFCC. The further evolution of this code is planned. [1] E. Richter-Was, AcerDET: ...

  16. Fabrication of an electronic package box of SiCP/Al composites with high volume SiCP

    Institute of Scientific and Technical Information of China (English)

    CHU Ke; JIA Chengchang; YIN Fazhang; MEI Xuezhen; QU Xuanhui

    2007-01-01

    In this paper, a SiCP preform was prepared by Powder Injection Molding (PIM), and the melting aluminum was injected into the SiCP preform by the pressure infiltration method to manufacture an electronic package box of SiCP (65%)/Al composites. SiCP (65%)/Al composite prepared by pressure infiltration has full density and a homogeneous microstructure. The relative density of the composite is higher than 99%, the thermal expansion coefficient and thermal conductivity of the composite are 8.0×10-6/K and nearly 130 W/(m·K) at room temperature, respectively, which meet the requirements of electronic packaging.

  17. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    Science.gov (United States)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  18. ATLAS software packaging

    CERN Document Server

    Rybkin, G

    2012-01-01

    Software packaging is indispensable part of build and prerequisite for deployment processes. Full ATLAS software stack consists of TDAQ, HLT, and Offline software. These software groups depend on some 80 external software packages. We present tools, package PackDist, developed and used to package all this software except for TDAQ project. PackDist is based on and driven by CMT, ATLAS software configuration and build tool, and consists of shell and Python scripts. The packaging unit used is CMT project. Each CMT project is packaged as several packages - platform dependent (one per platform available), source code excluding header files, other platform independent files, documentation, and debug information packages (the last two being built optionally). Packaging can be done recursively to package all the dependencies. The whole set of packages for one software release, distribution kit, also includes configuration packages and contains some 120 packages for one platform. Also packaged are physics analysis pro...

  19. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  20. Raising awareness of new psychoactive substances: chemical analysis and in vitro toxicity screening of 'legal high' packages containing synthetic cathinones.

    Science.gov (United States)

    Araújo, Ana Margarida; Valente, Maria João; Carvalho, Márcia; Dias da Silva, Diana; Gaspar, Helena; Carvalho, Félix; de Lourdes Bastos, Maria; Guedes de Pinho, Paula

    2015-05-01

    primary cultured rat hepatocytes, pentedrone and MDPV proved to be the most potent individual agents, with EC50 values of 0.664 and 0.742 mM, respectively, followed by MDMA (EC50 = 0.754 mM). 4-MEC and methylone were the least potent substances, with EC50 values significantly higher (1.29 and 1.18 mM, respectively; p psychoactive compounds present in 'legal high' products with evident hepatotoxic effects. These data contribute to increase the awareness on the real composition of 'legal high' packages and unveil the health risks posed by NPS.

  1. Structure and Substrate for High Power White LED Package%大功率白光LED封装结构和封装基板

    Institute of Scientific and Technical Information of China (English)

    方军; 花刚; 傅仁利; 顾席光; 赵维维; 钱凤娇; 钱斐

    2013-01-01

    随着LED在照明领域的不断发展,功率和亮度不断提高,尤其是大功率白光LED的出现,热问题成为制约LED进一步发展的关键问题.介绍了大功率白光LED引脚式封装、表面贴装式(SMT)、板上芯片直装式(COB)和系统封装式(SiP)封装结构和金属、金属基复合以及陶瓷封装材料.重点阐述了金属芯印刷电路板(MCPCB)、金属基复合材料板以及陶瓷基板(如厚膜陶瓷基板、薄膜陶瓷基板、低温共烧陶瓷基板)等应用于大功率白光LED的封装基板,对各个基板的特点和散热能力进行了分析和对比.最后对大功率白光LED封装结构和封装基板的发展趋势进行了展望.%With the development of light emitting diode ( LED) in the lighting field, especially the appearance of high power white LED whose power and brightness become more and higher, thermal problems become the key factors of LED further development. The lamp LED, surface mounted technology (SMT) , chip on board (COB) and system in package (SiP) package structure, and metal, metal matrix composites and ceramics package materials used in high power white LED are introduced. At the same time, the metal core printed circuit board (MCPCB) , metal matrix composites plate and the ceramic substrate ( such as thick film ceramic substrate, thin film ceramic substrate and low temperature co-fired ceramic substrate) used in high power white LED package substrate are reviewed. And the various characteristics and thermal conductivity of the substrate are analyzed and compared. Finally, the high power white LED package development trend of the structure and the package substrate is prospected.

  2. Scaling of Fiber Laser Systems Based on Novel Components and High Power Capable Packaging and Joining Technologies

    Science.gov (United States)

    2010-09-01

    l ri Laser Splicing/ Welding r li i / l i Contact Bonding t t i Wafer Level Bonding Mineralic, Fusion. Anodic, Eutectic, Glass-frit, liquid...diode Bonding and Packaging of Optical Components Solder Bumping Thickfilm Au Metallization Laser diode Fiber Assembly element Asphere Ceramic System

  3. A systematic review of barriers to optimal outpatient specialist services for individuals with prevalent chronic diseases: what are the unique and common barriers experienced by patients in high income countries?

    Science.gov (United States)

    Fradgley, Elizabeth A; Paul, Christine L; Bryant, Jamie

    2015-06-09

    Health utilization and need assessment data suggest there is considerable variation in access to outpatient specialist care. However, it is unclear if the types of barriers experienced are specific to chronic disease groups or experienced universally. This systematic review provides a detailed summary of common and unique barriers experienced by chronic disease groups when accessing and receiving care, and a synthesized list of possible health service initiatives to improve equitable delivery of optimal care in high-income countries. Quantitative articles describing barriers to specialist outpatient services were retrieved from CINAHL, MEDLINE, Embase, and PyscINFO. To be eligible for review, studies: were published from 2002 to May 2014; included samples with cancer, diabetes mellitus, osteoporosis, arthritis, ischaemic heart disease, stroke, asthma, chronic pulmonary disorder (COPD) or depression; and, were conducted in high-income countries. Using a previously validated model of access (Penchansky and Thomas' model of fit), barriers were grouped according to five overarching domains and defined in more detail using 33 medical subject headings. Results from reviewed articles, including the scope and frequency of reported barriers, are conceptualized using thematic analysis and framed as possible health service initiatives. A total of 3181 unique records were screened for eligibility, of which 74 studies were included in final analysis. The largest proportion of studies reported acceptability barriers (75.7 %), of which demographic disparities (44.6 %) were reported across all diseases. Other frequently reported barriers included inadequate need assessment (25.7 %), information provision (32.4 %), or health communication (20 %). Unique barriers were identified for oncology, mental health, and COPD samples. Based on the scope, frequency and measurement of reported barriers, eight key themes with associated implications for health services are presented. Examples

  4. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.

    Science.gov (United States)

    Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M

    2016-09-23

    Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample.

  5. Oxidation-reduction potential and lipid oxidation in ready-to-eat blue mussels in red sauce: criteria for package design.

    Science.gov (United States)

    Bhunia, Kanishka; Ovissipour, Mahmoudreza; Rasco, Barbara; Tang, Juming; Sablani, Shyam S

    2017-01-01

    Ready-to-eat in-package pasteurized blue mussels in red sauce requires refrigerated storage or in combination with an aerobic environment to prevent the growth of anaerobes. A low barrier packaging may create an aerobic environment; however, it causes lipid oxidation in mussels. Thus, evaluation of the oxidation-reduction potential (Eh) (aerobic/anaerobic nature of food) and lipid oxidation is essential. Three packaging materials with oxygen transmission rate (OTR) of 62 (F-62), 40 (F-40) and 3 (F-3) cm(3) m(-2) day(-1) were selected for this study. Lipid oxidation was measured by color changes in thiobarbituric acid reactive substances (TBARS) at 532 nm (TBARS@532) and 450 nm (TBARS@450). Significantly higher (P packaged in higher OTR film. TBARS@450 in mussels packaged with F-62 and F-40 gradually increased during refrigerated storage (3.5 ± 0.5 °C), but remained constant after 20 days of storage for mussels packaged with F-3. The Eh of pasteurized sauce was not significantly affected (P > 0.05) by OTR and remained negative (packaged with higher OTR film. Mussels packed with high OTR film showed higher lipid oxidation, indicating that high barrier film is required for packaging of mussels. Pasteurized mussels must be kept in refrigerated storage to prevent growth of anaerobic proteolytic C. botulinum spores under temperature abuse. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

    2006-03-02

    The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings

  7. PET based nanocomposite films for microwave packaging applications

    Science.gov (United States)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  8. PET based nanocomposite films for microwave packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Galdi, M. R., E-mail: mrgaldi@unisa.it; Olivieri, R.; Liguori, L.; Albanese, D., E-mail: dalbanese@unisa.it; Di Matteo, M.; Di Maio, L., E-mail: ldimaio@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  9. Perceived barriers mediate the association between self-efficacy and fruit and vegetable consumption among students attending alternative high schools.

    Science.gov (United States)

    Bruening, Meg; Kubik, Martha Y; Kenyon, Denyelle; Davey, Cynthia; Story, Mary

    2010-10-01

    Compared to students attending regular high schools, alternative high school students are more likely to be racial/ethnic minorities, have higher levels of poverty, and higher rates of risky and poor health behaviors, including weight-related behaviors like limited fruit and vegetable intake. However, little is known about fruit/vegetable intake among alternative high school students. This study examined whether perceived barriers to healthy eating mediated the association between self-efficacy to eat healthy foods and fruit/vegetable consumption among alternative high school students. The cross-sectional study population consisted of students (N=145) attending six alternative high schools in the St Paul-Minneapolis, MN, area who were participants in an obesity prevention pilot study and completed a baseline survey during fall 2006. Mixed model linear regression, adjusting for sociodemographic characteristics, was used to test a series of regression models performed according to mediation analysis procedures. Students' mean age was 17.3 years; 52% were male, 63% were low-income, and 61% were from racial/ethnic minorities. Students reported a mean fruit/vegetable intake of 3.6 servings per day, mean self-efficacy to eat healthy score of 22.2 (range 3 to 35), and mean barriers to eating healthy score of 6.9 (range 3 to 13). Perceived barriers to healthy eating fully mediated the relationship between self-efficacy and fruit/vegetable consumption (Sobel test statistic 2.7, P=0.007). Interventions targeting the dietary practices of alternative high school students should include components to decrease perceived barriers as a way to increase self-efficacy and ultimately fruit/vegetable intake.

  10. Applications of Nanomaterials in Food Packaging.

    Science.gov (United States)

    Bumbudsanpharoke, Nattinee; Choi, Jungwook; Ko, Seonghyuk

    2015-09-01

    Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.

  11. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  12. Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging

    Institute of Scientific and Technical Information of China (English)

    LIU YanJie; LI Teng; SUN LiNing

    2009-01-01

    A macro-micro dual-drive positioning system showing good potential for high acceleration and high precision positioning required in IC packaging applications is devised in this paper. The dual-drive positioning stage uses a VCM (voice coil motor) driven macro positioning stage and a PZT piezo-electric driven micro positioning stage. The coupling characteristics of the system are analyzed to produce a control structure with a micro positioning stage that can dynamically compensate for the positioning error produced by the macro positioning stage. Models of the two positioning stages are described. The models cover both the mechanism and the actuator. For the macro positioning stage,friction characteristics are taken into account, and a controller with an LQG (linear-quadratic-Gaussian)control algorithm combining a feed-forward compensation algorithm is derived. A PID controller is used to control the micro positioning stage. Detailed designs are derived for the proposed approach,and the performance is validated by simulation.

  13. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  14. Evaluation of a barrier to inhibit lesser mealworm (Coleoptera: Tenebrionidae) and dermestidae movement in high-rise, caged-layer poultry facilities.

    Science.gov (United States)

    Kaufman, Phillip E; Reasor, Colleen; Murray, Kathleen D; Waldron, J Keith; Rutz, Donald A

    2005-10-01

    An evaluation of a mechanical barrier to prevent movement of adult and larval lesser mealworm, Alphitobius diaperinus (Panzer); larder beetle, Dermestes lardarius L.; and hide beetle, Dermestes maculatus De Geer was conducted in caged-layer poultry facilities in New York and Maine. The barrier, a plastic collar wrapped around building support posts, proved highly effective at preventing movement of adult lesser mealworms. Significantly more lesser mealworm larvae were recovered from cardboard collar beetle traps placed below both washed and unwashed barriers than from traps placed above washed and unwashed barriers. Similarly, significantly more adult Dermestes were recovered from traps placed below washed barriers than from above both washed and unwashed barriers. The level of fly specking on the barrier was found to have no significant impact on the numbers of adult lesser mealworms and adult and larval Dermestes recovered either above or below barriers. Fly specking level did significantly impact the numbers of lesser mealworm larvae recovered above the barrier. Although washed barriers provided the greatest deterrent to adult lesser mealworms, the presence of the barrier, regardless of the level of fly specking, provided a significant deterrent to beetle climbing success. Washed barriers further reduced climbing success by lesser mealworm larvae by 17%, Dermestes adults by 7-28%, and Dermestes larvae by 33-38%. The high level of climbing observed by adult lesser mealworms suggests that the impact of adult beetle movement toward birds should be considered in its importance in building damage, disease transmission, feed infestation, and bird productivity and health. Observations on cost and maintenance of the barrier are discussed.

  15. The role of midlatitude mixing barriers in creating the annual variation of total ozone in high northern latitudes

    Science.gov (United States)

    Gille, John; Karol, Svetlana; Kinnison, Douglas; Lamarque, Jean-Francois; Yudin, Valery

    2014-08-01

    Data from the HIgh Resolution Dynamics Limb Sounder (HIRDLS), the Microwave Limb Sounder (MLS), and the Whole Atmosphere Community Climate Model (WACCM) are used to investigate the annual variation of total column ozone in high northern latitudes. Downward transport of ozone-rich air by the residual mean circulation during autumn and winter bends ozone isopleths down and increases the high-latitude ozone amounts, leading to an ozone maximum at the end of the winter. During the summer months eddy mixing acts to restore pre-fall distributions of ozone. In this study the large-scale mixing in the lower stratosphere is analyzed using Nakamura's (1996) equivalent length formulation with observed and simulated ozone. The analysis of ozone mixing is performed in the tracer equivalent latitude-potential temperature coordinate system. Steep latitudinal gradients of ozone isopleths below about 500 K occur during the winter, where there are minima in the equivalent length, indicating barriers to mixing at 30°N-40°N. This transport barrier allows large ozone maxima to develop poleward of it. The barrier disappears over the summer, permitting latitudinal mixing of the high ozone air. Above 500 K mixing is more effective during the winter, so a large winter maximum does not occur. In both midlatitude and high latitude the lower stratospheric layer from 330 to 500 K doubles its ozone content from autumn to spring, compared with much smaller changes in the layer from 500 to 650 K. Our results confirm that the presence of the winter transport barrier in the lower stratosphere controls the seasonal variation of total ozone.

  16. A highly-compact packaging design for improving the thermal performance of multi-finger InGaP/GaAs collector-up HBTs

    Science.gov (United States)

    Tseng, Hsien-Cheng; Chen, Jhin-Yuan

    2011-02-01

    To satisfy the increasing demand for small power amplifiers in advanced cellular phones, we have investigated the thermal performance of multi-finger InGaP/GaAs collector-up HBTs with a heat-dissipation packaging configuration. The thermal interaction between collector fingers and the size effect on the maximum operation temperature within the transistor have been scrutinized. In addition, the thermal handling for a stable operation in the device has been optimized through the variation of finger pitches. The superior results show that the thickness of the heat-dissipation structure can be reduced by more than 35%, and the achieved thermal resistance can be effectively improved over 40%. Based on appropriate approaches from the 3-D numerical simulation for thickness-adjusting evaluation and the analytical analysis for finger-pitch optimization, a highly-compact packaging design is proposed for the miniaturization of collector-up HBTs in future mobile communication systems.

  17. Advantages of COS-1 monkey kidney epithelial cells as packaging host for small-volume production of high-quality recombinant lentiviruses.

    Science.gov (United States)

    Smith, Shannon L; Shioda, Toshi

    2009-04-01

    The HEK293T human embryonic kidney cells have been used widely as a packaging host for transfection-based production of recombinant lentiviruses. The present study describes advantages of using COS-1 African green monkey kidney cells versus HEK293T cells as a packaging host for small-volume production of high-quality recombinant lentiviruses. The particle performance index, defined as the ratio of infection-competent viral particles to the total number of particles, was three- to four-fold greater in transfection supernatants generated using COS-1 cells than that generated using HEK293T cells. Adhesion of HEK293T cells to the cell culture-treated plastic surface was weak, causing significant HEK293T cell contamination in the transfection supernatants produced by laboratory automation using the 96-well cell culture plates. In contrast, COS-1 cells adhered strongly to the plastic surface, and cell contamination was not detected in the transfection supernatants. These results suggest that COS-1 cells may be a useful alternative packaging host for use for automated generation of large numbers of high-quality lentivirus reagents, particularly because they eliminate the need for additional purification steps to remove viral particles from cell culture supernatant.

  18. Microbial control by packaging: a review.

    Science.gov (United States)

    Cutter, Catherine Nettles

    2002-03-01

    Since early man first used a variety of natural containers to store and eat foods, significant developments in food packaging materials have provided the means to suppress microbial growth as well as protect foods from external microbial contamination. Throughout this progression, packaging materials have been developed specifically to prevent the deterioration of foods resulting from exposure to air, moisture, or pH changes associated with the food or the surrounding atmosphere. Both flexible and rigid packaging materials, alone or in combination with other preservation methods, have been developed to offer the necessary barrier, inactivation, and containment properties required for successful food packaging. Examples of flexible packaging used to inactivate microorganisms associated with foods include controlled atmosphere, vacuum, modified atmosphere, active, and edible packaging. Additionally, the combination of rigid packaging materials made from metal, glass, or plastic with heat provides the most effective and widely used method for inactivating microorganisms. As with all food products, it is necessary to integrate a HACCP-based program to assure quality throughout the packaging operation. In addition to packaging improvements, other novel technologies include the development of detectors for oxygen levels, bacterial toxins, and microbial growth, or the integration of time-temperature indicators for detection of improper handling or storage.

  19. Method for assessing lead, cadmium, mercury and arsenic in high-density polyethylene packaging and study of the migration into yoghurt and simulant.

    Science.gov (United States)

    Kiyataka, Paulo Henrique M; Dantas, Sílvia T; Pallone, Juliana Azevedo Lima

    2014-01-01

    The purpose of this paper was to assess the concentration of lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) in high-density polyethylene (HDPE) packaging intended for contact with yoghurt and the migration of these elements using the food itself and 3% acetic acid as a food simulant in accordance to ANVISA, the Brazilian Health Surveillance Agency. In order to perform this study, it was necessary to develop and validate a method by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. For method validation, the parameters linearity, limits of detection (LODs) and quantification (LOQs), accuracy and precision were determined. Fifteen commercial samples of yoghurt, marketed in Campinas - São Paulo (Brazil), were used for the analysis. The packaging and yoghurt were digested in high-pressure ashing equipment (HPA) and the migration of the elements into simulant were determined directly in the solution. The validated method proved adequate and the results obtained showed that all the packaging had levels of Hg and Cd below the LOQ, corresponding to 1.0 and 1.5 μg l(-1), respectively. The highest levels of As and Pb were 0.87 and 462.3 mg kg(-1), respectively. The migration of these elements to the yoghurt after 45 days of contact at 4ºC was below the LOQ for all the samples assessed. The results of specific migration into 3% acetic acid simulant showed the concentrations of Cd, Hg and As below 5, 5 and 10 µg kg(-1), respectively, which are the maximum limits set by ANVISA. However, for three samples the packaging lid showed migration of Pb into simulant ranging from 30.6 to 40.2 μg kg(-1), exceeding the limit set by ANVISA of 10 μg kg(-1).

  20. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  1. EXAMINATION OF SHIPPING PACKAGE 9975-05050

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W.

    2014-11-06

    Shipping package 9975-05050 was examined in K-Area following its identification as a high wattage package. Elevated temperature and fiberboard moisture content are key parameters that impact the degradation rate of fiberboard within 9975 packages in a storage environment. The high wattage of this package contributes significantly to component temperatures. After examination in K-Area, the package was provided to SRNL for further examination of the fiberboard assembly. The moisture content of the fiberboard was relatively low (compared to packages examined previously), but the moisture gradient (between fiberboard ID and OD surfaces) was relatively high, as would be expected for the high heat load. The cane fiberboard appeared intact and displayed no apparent change in integrity relative to a new package.

  2. Temperature dependent electrical characteristics of Pt Schottky barriers fabricated on lightly and highly doped n-type 4H-SiC

    Science.gov (United States)

    Huang, Lingqin; Wang, Dejun

    2015-11-01

    The temperature dependent electronic characteristics of Pt Schottky barriers fabricated on lightly and relatively highly doped n-type 4H-SiC (1 × 1016 and 1 × 1018 cm-3) are comparatively investigated. It is found that the abnormal temperature dependence of barrier height and ideality factor estimated from the thermionic emission (TE) model for both lightly and highly doped samples could be successfully explained in terms of Gaussian distribution of inhomogeneous barrier heights. However, the estimated mean barrier height according to Gaussian distribution for the highly doped sample is much lower than the actual mean value from the capacitance-voltage (C-V) measurements. Interestingly, the values of barrier height from the thermionic field emission (TFE) model are found to be close to those from the C-V measurements, indicating that the TFE model is more appropriate to explain the electrical transport for the highly doped sample.

  3. Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes

    Science.gov (United States)

    Gledhill, Andrew

    Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation. These coatings insulate the underlying metal components and allow for much higher engine operating temperatures, improving the engine efficiency. These increase temperatures engender a new set of materials problems for TBCs. Operating temperatures in engines are now high enough for silicate impurities, either present in the fuel or ingested into the engines, to melt and adhere to the surface of the TBCs. The effects of four such impurities, two coal fly ashes, a petroleum coke-fly ash blend, and volcanic ash from the Eyjafjallajokull volcano were tested with conventional yttria-stabilized zirconia (YSZ) coatings, and found to penetrate through the entire thickness of the coating. This penetration reduces the strain tolerance of the coatings, and can result in premature failure. Testing on a newly built thermal gradient burner rig with simultaneous injection of ash impurities has shown a reduction of life up to 99.6% in these coatings when ash is present. Coatings of an alternative ceramic, gadolinium zirconate (Gd2Zr 2O7), were found to form a dense reaction layer with each of these impurities, preventing further penetration of the molten ash. This dense layer also reduces the strain tolerance, but these coatings were found to have a significantly higher life than the YSZ coatings. Testing with a small amount of ash baked onto the samples showed thirteen times the life of YSZ coatings. When the ash is continuously sprayed onto the hot sample, the life of the Gd2Zr2O7 coatings was nearly twice that of the YSZ. Finally, a delamination model was employed to explain the degradation of both types of coatings. This elastic model that takes into account the degree of penetration, differential cooling in thermal gradient testing, and thermal expansion mismatch with the underlying substrate, predicted the failure of

  4. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy

    Science.gov (United States)

    Sakiyama, Yusuke; Mazur, Adam; Kapinos, Larisa E.; Lim, Roderick Y. H.

    2016-08-01

    Nuclear pore complexes (NPCs) are biological nanomachines that mediate the bidirectional traffic of macromolecules between the cytoplasm and nucleus in eukaryotic cells. This process involves numerous intrinsically disordered, barrier-forming proteins known as phenylalanine-glycine nucleoporins (FG Nups) that are tethered inside each pore. The selective barrier mechanism has so far remained unresolved because the FG Nups have eluded direct structural analysis within NPCs. Here, high-speed atomic force microscopy is used to visualize the nanoscopic spatiotemporal dynamics of FG Nups inside Xenopus laevis oocyte NPCs at timescales of ∼100 ms. Our results show that the cytoplasmic orifice is circumscribed by highly flexible, dynamically fluctuating FG Nups that rapidly elongate and retract, consistent with the diffusive motion of tethered polypeptide chains. On this basis, intermingling FG Nups exhibit transient entanglements in the central channel, but do not cohere into a tightly crosslinked meshwork. Therefore, the basic functional form of the NPC barrier is comprised of highly dynamic FG Nups that manifest as a central plug or transporter when averaged in space and time.

  5. ARPREC: An arbitrary precision computation package

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Yozo, Hida; Li, Xiaoye S.; Thompson, Brandon

    2002-09-01

    This paper describes a new software package for performing arithmetic with an arbitrarily high level of numeric precision. It is based on the earlier MPFUN package, enhanced with special IEEE floating-point numerical techniques and several new functions. This package is written in C++ code for high performance and broad portability and includes both C++ and Fortran-90 translation modules, so that conventional C++ and Fortran-90 programs can utilize the package with only very minor changes. This paper includes a survey of some of the interesting applications of this package and its predecessors.

  6. A high performance ceria based interdiffusion barrier layer prepared by spin-coating

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Joost, Mario; Hjelm, Johan

    2011-01-01

    A multiple spin-coating deposition procedure of Ce0.9Gd0.1O1.95 (CGO) for application in solid oxide fuel cells (SOFCs) was developed. The thin and dense CGO layer can be employed as a barrier layer between yttria stabilised zirconia (YSZ) electrolyte and a (La, Sr)(Co, Fe)O3 based cathode....... The decomposition of the polymer precursor used in the spin-coating process was studied. The depositions were performed on anode supported half cells. By controlling the sintering temperature between each spin-coating process, dense and crack-free CGO films with a thickness of approximately 1 μm were obtained....... The successive steps of dense layer production was investigated by scanning electron microscopy. X-ray diffraction was employed to monitor the crystal structure of the CGO layer sintered at different temperatures. The described spin coated barrier layer was evaluated using an anode supported cell...

  7. Synthesized High-Frequency Thyristor for Dielectric Barrier Discharge Excimer Lamps

    OpenAIRE

    2012-01-01

    International audience; Dielectric barrier discharge (DBD) lamps, being capacitive loads, must be associated with bidirectional current sources for an appropriate control of the transferred power. Pulsed current source supplies, which are known to offer very interesting performances, require specific power switches that are able to manage bidirectional voltage and unidirectional current at much higher frequencies (several hundreds of kilohertz) than commercial thyristors. This paper proposes t...

  8. The Ettention software package

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, Tim, E-mail: Tim.Dahmen@dfki.de [German Research Center for Artificial Intelligence GmbH (DFKI), 66123 Saarbrücken (Germany); Saarland University, 66123 Saarbrücken (Germany); Marsalek, Lukas [Eyen SE, Na Nivách 1043/16, 141 00 Praha 4 (Czech Republic); Saarland University, 66123 Saarbrücken (Germany); Marniok, Nico [Saarland University, 66123 Saarbrücken (Germany); Turoňová, Beata [Saarland University, 66123 Saarbrücken (Germany); IMPRS-CS, Max-Planck Institute for Informatics, Campus E 1.4, 66123 Saarbrücken (Germany); Bogachev, Sviatoslav [Saarland University, 66123 Saarbrücken (Germany); Trampert, Patrick; Nickels, Stefan [German Research Center for Artificial Intelligence GmbH (DFKI), 66123 Saarbrücken (Germany); Slusallek, Philipp [German Research Center for Artificial Intelligence GmbH (DFKI), 66123 Saarbrücken (Germany); Saarland University, 66123 Saarbrücken (Germany)

    2016-02-15

    We present a novel software package for the problem “reconstruction from projections” in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. - Highlights: • Novel software package for “reconstruction from projections” in electron microscopy. • Support for high-resolution reconstructions on iterative reconstruction algorithms. • Support for CPU, GPU and Xeon Phi. • Integration in the IMOD software. • Platform for algorithm researchers: object oriented, modular design.

  9. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    Science.gov (United States)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  10. Simulation of crash tests for high impact levels of a new bridge safety barrier

    Science.gov (United States)

    Drozda, Jiří; Rotter, Tomáš

    2017-09-01

    The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.

  11. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.;

    2006-01-01

    as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile...

  12. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat.

    Science.gov (United States)

    McMillin, Kenneth W

    2008-09-01

    Modified atmosphere packaging (MAP) is the removal and/or replacement of the atmosphere surrounding the product before sealing in vapor-barrier materials. While technically different, many forms of MAP are also case-ready packaging, where meat is cut and packaged at a centralized location for transport to and display at a retail store. Most of the shelf life properties of meat are extended by use of MAP, but anoxic forms of MAP without carbon monoxide (CO) do not provide bloomed red meat color and MAP with oxygen (O(2)) may promote oxidation of lipids and pigments. Advances in plastic materials and equipment have propelled advances in MAP, but other technological and logistical considerations are needed for successful MAP systems for raw chilled fresh meat. Current MAP options of air-permeable overwrapped trays in master packs, low O(2) formats of shrunk film vacuum packaging (VP) or MAP with carbon dioxide (CO(2)) and nitrogen (N(2)) and their peelable barrier film derivatives, and high O(2) MAP each have advantages and disadvantages. Packaging technology innovations and ingenuity will continue to provide MAP that is consumer oriented, product enhancing, environmentally responsive, and cost effective, but continued research and development by the scientific and industry sectors will be needed.

  13. AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    S. KWON

    2013-02-01

    Full Text Available Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  14. RECENT TRENDS IN PACKAGING SYSTEMS FOR PHARMACEUTICAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2014-12-01

    Full Text Available Background:  In recent years, pharmaceutical packaging market was one of the fastest growing areas of the packaging industry. At the same time the packaging manufacturers put high demands on quality and safety. Methods: Review of innovations in packaging systems for pharmaceutical products was made including newest information of researches and achievements of recent years. Results and conclusion: Observed in recent years the development of pharmaceutical packaging market expanded due to with the huge technological advances that allow introduction of new packaging. Also, in this study presented intelligent packaging in pharmacy and innovation in child-resistance packaging.

  15. Acceptance sensory of milk Ultra High Temperature and consumer attitudes of packaging of different brands of the product

    Directory of Open Access Journals (Sweden)

    Marlice Salete Bonacina

    2016-06-01

    Full Text Available The study aimed to evaluate the sensory acceptance of different brands of whole UHT milk; identify and quantify the importance of attributes of the packaging and labeling of milk in the purchase attitude of consumers excure six different brands of whole UHT milk were collect, which were submitted to the acceptance test, using a hybrid hedonic scale of 9 cm. The data were submitted to ANOVA using the Statistical Software 6.0. The packaging and labeling of different brands of milk, were used for application of the focus group technique. From the results, we found that there was no difference (p > 0.05 between the brands of UHT milk, in relation to sensory acceptance. It was also possible to verify the influence frequency of the milk consumption of acceptance of the product, characterized by three clusters of consumers. From the focus group sessions it was found that 61.1% of participants observe the packaging and labeling milk at the time of purchase. However, 38.9% argued that they are faithful consumers excure to a determined brand. As regards the existence of quality certification seals, it was found that 72.2% of participants do not observe the existence of these certifications when buying milk. In addition, 77.8% have not changed their spending habits in relation to milk brand. It is concluded that the milk consumption frequency, influence on sensorial acceptance, and some consumers are unaware of the risk that the tamper carried out in milk can cause to their health.

  16. Package Technology of Silicon-based High-power LEDs with TSV%带有TSV的硅基大功率LED封装技术研究

    Institute of Scientific and Technical Information of China (English)

    师帅; 吕植成; 汪学方; 王飞; 袁娇娇; 方靖

    2013-01-01

    Introduced is the fabrication of silicon base with groove and TSV (through silicon via) for wafer level packaging of white LED.Based on the structure of silicon-based high-power LEDs,the heat transfer model is established and finite element software is employed to simulate and analyze the heat dissipation of this package.Simulation results show that the silicon base packaging meets the temperature requirement of LED chip p-n junction.Combined with semiconductor manufacturing process,the fabrication of the groove and TSV was carried out on the silicon substrate,realizing effective packaging of LED chips.The thermal resistance of silicon substrate measured by T3Ster is 1.068 K/W.Experimental results show that this method is effective for realizing LED chip packaging with low cost,low thermal resistance and high density.%介绍了一种带有凹槽和硅通孔(through silicon via,TSV)的硅基制备以及晶圆级白光LED的封装方法.针对硅基大功率LED的封装结构建立了热传导模型,并通过有限元软件模拟分析了这种封装形式的散热效果.模拟结果显示,硅基封装满足LED芯片p-n结的温度要求.实验结合半导体制造工艺,在硅基板上完成了凹槽和通孔的制造,实现了LED芯片的有效封装.热阻测试仪测得硅基的热阻为1.068 K/W.实验结果证明,这种方法有效实现了低热阻、低成本、高密度的LED芯片封装,是大功率LED封装发展的重要方向.

  17. Biodegradation study of some food packaging biopolymers based on PVA

    Directory of Open Access Journals (Sweden)

    Elena Elisabeta Tanase

    2016-03-01

    Full Text Available Abstract Polymers are a common choice as protective materials since they combine flexibility, variable sizes and shapes, relatively light weight, stability, resistance to breaking, barrier properties and perceived high-quality image with cost-effectiveness. Currently, mainly non-biodegradable petroleum-based synthetic polymers are used as packaging materials for foods, because of their availability, low cost and functionality. However, biopolymers can be made from renewable resources without the environmental issues of petroleum-based polymers and with the additional advantage of being available from renewable sources or as by-products or waste-products from the food and agriculture industries. The aim of this study was to test some food packaging biopolymers based on PVA. In this respect, some biopolymers for food packaging applications were subjected to biodegradation tests by covering the tested samples with soil. The samples were incubated in known temperature and humidity conditions. The experiment lasted 45 days, after that the samples were washed, weighed and the biodegradation degree was calculated. The obtained results shows that PVA is a promising material for food packaging usage, as it is made from renewable resources and it is environmentally friendly.

  18. 基于同轴结构的高速VCSEL管座设计方法%An optimized design based on coaxial packaging of the high speed VCSEL

    Institute of Scientific and Technical Information of China (English)

    柴广跃; 刘强; 徐光辉; 段子刚

    2014-01-01

    基于垂直腔面发射激光器( vertical cavity surface emitting laser, VCSEL)的同轴管壳封装等效电路模型,分析影响器件高频性能的封装寄生参量。结合量产要求,通过调节管壳的部分结构参数与介质材料的介电常数,提高器件频率响应。分析结果表明,优化设计后的器件高频性能得到显著提高。%The high speed, low cost vertical cavity surface emitting laser ( VCSEL) is widely used in many fields such as the storage area network. According to the recent news release of the Fabre Channel Industry Association, the transmission rate of the fiber channel standard has reached 16 Gbit/s. Because of its low cost and suitability for mass production, through-hole ( TO) tube has been widely used in the VCSEL whose rate is less than 10 Gbit/s. Packaging is an important step to achieve the high-frequency performance for the VCSEL. Based on the equivalent circuit model of VCSEL coaxial package, this paper analyses some package parasitic parameters that can affect the high-frequency performances of devices. And to meet with the mass production requirements in factories, the device frequency response is optimized by adjusting parts of structure parameters and the relative permittivity of filling mate-rials. The results show that the high-frequency performances of devices are improved remarkably after the optimiza-tion design.

  19. Anticounterfeit packaging technologies

    Directory of Open Access Journals (Sweden)

    Ruchir Y Shah

    2010-01-01

    Full Text Available Packaging is the coordinated system that encloses and protects the dosage form. Counterfeit drugs are the major cause of morbidity, mortality, and failure of public interest in the healthcare system. High price and well-known brands make the pharma market most vulnerable, which accounts for top priority cardiovascular, obesity, and antihyperlipidemic drugs and drugs like sildenafil. Packaging includes overt and covert technologies like barcodes, holograms, sealing tapes, and radio frequency identification devices to preserve the integrity of the pharmaceutical product. But till date all the available techniques are synthetic and although provide considerable protection against counterfeiting, have certain limitations which can be overcome by the application of natural approaches and utilization of the principles of nanotechnology.

  20. Anticounterfeit packaging technologies.

    Science.gov (United States)

    Shah, Ruchir Y; Prajapati, Prajesh N; Agrawal, Y K

    2010-10-01

    Packaging is the coordinated system that encloses and protects the dosage form. Counterfeit drugs are the major cause of morbidity, mortality, and failure of public interest in the healthcare system. High price and well-known brands make the pharma market most vulnerable, which accounts for top priority cardiovascular, obesity, and antihyperlipidemic drugs and drugs like sildenafil. Packaging includes overt and covert technologies like barcodes, holograms, sealing tapes, and radio frequency identification devices to preserve the integrity of the pharmaceutical product. But till date all the available techniques are synthetic and although provide considerable protection against counterfeiting, have certain limitations which can be overcome by the application of natural approaches and utilization of the principles of nanotechnology.

  1. Laser Welding in Electronic Packaging

    Science.gov (United States)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  2. Super Oxygen and Improved Water Vapor Barrier of Polypropylene Film with Polyelectrolyte Multilayer Nanocoatings.

    Science.gov (United States)

    Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C

    2016-06-01

    Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale.

  3. Effect of Packaging Films on the Quality of Canola Oil under Photooxidation Conditions

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2015-01-01

    Full Text Available The objective of this study was to evaluate the influence of packaging films on the quality of canola oil which contains high concentration of fat under photooxidation condition and get the oxidation kinetics based on measuring the oxidation intensities including peroxide value, hexanal, and photosensitizer (chlorophyll. The canola oil was packaged by PET/CPP; KPET/PE was used for experiments. The change of light and oxygen transmission rate (OTR of PET/CPP which was considered as the typical fatty foods packaging film under different light intensities was also tested. The results show that the peroxide value increased rapidly under light conditions and fitted the zero order kinetics; also the oxygen transmission rate had great impact on it; hexanal fitted the zero order kinetic in oil whose package of low OTR generated a lot; however package in high OTR films changed very slowly that might be dependent on the performance of hexanal through plastic films. The degradation of chlorophyll fitted the first order kinetic and decreased quickly under light but was almost independent of OTR of transparent packaging material. Light reduced the oxygen barrier properties of the films, which should be considered as the photooxidation condition (and the photooxidation condition thus should be considered.

  4. Gas Barrier and Separation Behavior of Graphene Oxide Nanobrick Wall Thin Films

    Science.gov (United States)

    Grunlan, Jaime

    2015-03-01

    In many cases, electronics packaging requires electrical conductivity and barrier to oxygen, even under humid conditions. These two properties have simultaneously been realized through the use of surfactant-free aqueous layer-by-layer (LbL) processing, in the form of a polymer composite nanocoating. By layering graphene oxide (GO) with polyethyleneimine (PEI), a ``nano brick wall'' structure has been created, imparting gas barrier properties to the film. Reducing the graphene oxide with a thermal treatment further produces high oxygen barrier in humid conditions and imparts high electrical conductivity (σ ~ 1750 S/m). These thin films (300), making them interesting for gas purification membranes. The flexible nature of the aforementioned thin films, along with their excellent combination of transport properties, make them ideal candidates for use in a broad range of electronics and other packaging applications.

  5. High-Pressure Plasma Deposition of a-C:H Films by Dielectric-Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    刘昌俊; 李阳; 杜海燕; 艾宝都

    2003-01-01

    The fabrication of a-C:H films from methane has been performed using dielectric-barrier discharges at atmospheric pressure. The effect of combined-feed gas, such as carbon dioxide,carbon monoxide or acetylene on the formation of a-C:H films has been investigated. It hasbeen demonstrated that the addition of carbon monoxide or acetylene into methane leads to aremarkable improvement in the fabrication of a-C:H films. The characterization of carbon filmobtained has been conducted using FT-IR, Raman and SEM.

  6. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    Science.gov (United States)

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-05

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments.

  7. Nanostructured bioactive polymers used in food-packaging.

    Science.gov (United States)

    Mateescu, Andreea L; Dimov, Tatiana V; Grumezescu, Alexandru M; Gestal, Monica C; Chifiriuc, Mariana C

    2015-01-01

    The development of effective packaging materials is crucial, because food microorganisms determine economic and public health issues. The current paper describes some of the most recent findings in regards of food preservation through novel packaging methods, using biodegradable polymers, efficient antimicrobial agents and nanocomposites with improved mechanical and oxidation stability, increased biodegradability and barrier effect comparatively with conventional polymeric matrices.

  8. Advances in food packaging films from milk proteins

    Science.gov (United States)

    Most commercial petroleum-based food packaging films are poor oxygen barriers, do not biodegrade, and some are suspected to even leach compounds into the food product. For instance, three-perfluorinated coatings were banned from convenience food packaging earlier this year. These shortcomings are a ...

  9. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  10. Nanotechnology: An Untapped Resource for Food Packaging

    Directory of Open Access Journals (Sweden)

    Chetan Sharma

    2017-09-01

    Full Text Available Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  11. Challenges in the Packaging of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O' Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a

  12. Challenges in the Packaging of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O' Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a

  13. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  14. FlexiChip package: an universal microarray with a dedicated analysis software for high-thoughput SNPs detection linked to anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2009-10-01

    Full Text Available Abstract Background A number of molecular tools have been developed to monitor the emergence and spread of anti-malarial drug resistance to Plasmodium falciparum. One of the major obstacles to the wider implementation of these tools is the absence of practical methods enabling high throughput analysis. Here a new Zip-code array is described, called FlexiChip, linked to a dedicated software program, which largely overcomes this problem. Methods Previously published microarray probes detecting single-nucleotide polymorphisms (SNP associated with parasite resistance to anti-malarial drugs (ResMalChip were adapted for a universal microarray FlexiChip format. To evaluate the overall sensitivity of the FlexiChip package (microarray + software, the results of FlexiChip were compared to ResMalChip microarray, using the same extension probes and with the same PCR products. In both cases, sequence results were used as gold standard to calculate sensitivity and specificity. FlexiChip results obtained with a set of field isolates were then compared to those assessed in an independent reference laboratory. Results The FlexiChip package gave results identical to the ResMalChip results in 92.7% of samples (kappa coefficient 0.8491, with a standard error 0.021 and had a sensitivity of 95.88% and a specificity of 97.68% compared to the sequencing as the reference method. Moreover the method performed well compared to the results obtained in the reference laboratories, with 99.7% of identical results (kappa coefficient 0.9923, S.E. 0.0523. Conclusion Microarrays could be employed to monitor P. falciparum drug resistance markers with greater cost effectiveness and the possibility for high throughput analysis. The FlexiChip package is a promising tool for use in poor resource settings of malaria endemic countries.

  15. Packaged bulk micromachined triglyceride biosensor

    Science.gov (United States)

    Mohanasundaram, S. V.; Mercy, S.; Harikrishna, P. V.; Rani, Kailash; Bhattacharya, Enakshi; Chadha, Anju

    2010-02-01

    Estimation of triglyceride concentration is important for the health and food industries. Use of solid state biosensors like Electrolyte Insulator Semiconductor Capacitors (EISCAP) ensures ease in operation with good accuracy and sensitivity when compared to conventional sensors. In this paper we report on packaging of miniaturized EISCAP sensors on silicon. The packaging involves glass to silicon bonding using adhesive. Since this kind of packaging is done at room temperature, it cannot damage the thin dielectric layers on the silicon wafer unlike the high temperature anodic bonding technique and can be used for sensors with immobilized enzyme without denaturing the enzyme. The packaging also involves a teflon capping arrangement which helps in easy handling of the bio-analyte solutions. The capping solves two problems. Firstly, it helps in the immobilization process where it ensures the enzyme immobilization happens only on one pit and secondly it helps with easy transport of the bio-analyte into the sensor pit for measurements.

  16. Deposition and thermal characterization of nano-structured aluminum nitride thin film on Cu-W substrate for high power light emitting diode package.

    Science.gov (United States)

    Cho, Hyun Min; Kim, Min-Sun

    2014-08-01

    In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.

  17. High-pressure dielectric barrier discharge Xenon lamps generating short pulses of high-peak-power VUV radiation (172nm) with high pulse-to-pulse reproducibility.

    Science.gov (United States)

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah

    2003-10-01

    Dielectric barrier discharges (DBDs) are used to efficiently generate radiation in the ultraviolet and vacuum-ultraviolet spectral regions (88nm-350nm) by forming rare-gas and rare-gas halide excimers in a transient plasma. Usually, DBD lamps generate the light output quasi-continuously or in bursts with a high degree of stochastic or random variability in the instantaneous UV/VUV intensity. However, regular pulses of high-peak-power UV/VUV, with high pulse-to-pulse reproducibility, are of interest for applications in biology, surface treatment and cleaning, and time-resolved fluorescence spectroscopy. Such pulses can be generated from spatially homogeneous plasmas in a Xe DBD when the discharge is driven by uni-polar voltage pulses of short duration ( 100ns)^1. In the present study, we will report Xe DBD lamp performance and VUV output pulse characteristics for gas pressures up to 2.5bar and excitation conditions tailored for high-peak-power output. The experimental results will be compared to theoretical results from a detailed 1-D computer model of the spatio-temporal evolution of the plasma kinetics and Xe species population densities. ^1R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6, (2001)

  18. Modelling of a DNA packaging motor

    Institute of Scientific and Technical Information of China (English)

    Qian Jun; Xie Ping; Xue Xiao-Guang; Wang Peng-Ye

    2009-01-01

    During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage φ29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the φ29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function.

  19. Examination of shipping package 9975-02403

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    SRNL examined shipping package 9975-02403 following storage of nuclear material in K-Area Complex (KAC). As a result of field surveillance activities in KAC, this package was identified to contain several non-conforming and other conditions. Further examination of this package in SRNL confirmed significant moisture and mold in the bottom layers of the lower fiberboard assembly, and identified additional corrosion along the seam weld and on the bottom of the drum. It was recently recommended that checking for corrosion along the bottom edge of the drum be implemented for packages that are removed from storage, as well as high wattage packages remaining in storage. The appearance of such corrosion on 9975-02403 further indicates that such corrosion may provide an indication of significant moisture concentration and related degradation within the package. This condition is more likely to develop in packages with higher internal heat loads.

  20. Functional barriers: Properties and evaluation

    NARCIS (Netherlands)

    Feigenbaum, A.; Dole, P.; Aucejo, S.; Dainelli, D.; Cruz Garcia, C. de la; Hankemeier, T.; N'Gono, Y.; Papaspyrides, C.D.; Paseiro, P.; Pastorelli, S.; Pavlidou, S.; Pennarun, P.Y.; Saillard, P.; Vidal, L.; Vitrac, O.; Voulzatis, Y.

    2005-01-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of t

  1. Systems study on engineered barriers: barrier performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  2. Application of active packaging systems in probiotic foods

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2013-09-01

    Full Text Available Background: The packaging of the product has an important role in the protection of the stability of the final product. The use of active packaging system is due to play an increasingly important role by offering numerous and innovative solutions for extending the shelf-life or improve food quality and safety. Methods: On the basis of broad review of the current state of the art in world literature, application of packaging systems in probiotics foods was discussed. Results: In this study presented research and development in packaging systems for probiotics foods, using suitable materials with combine passive with active packaging solutions. Conclusion: Active packages with incorporated oxygen barrier materials or films with selective permeability properties also have potential applications in the packaging of probiotic food products. This is a broad field of research for scientists and industry.

  3. Amine-containing film deposited in pulsed dielectric barrier discharge at a high pressure and its cell adsorption behaviours

    Institute of Scientific and Technical Information of China (English)

    Hu Wen-Juan; Xie Fen-Yan; Chen Qiang; Weng Jing

    2009-01-01

    With monomer allylamine, amine-containing functional films were prepared in alternative current pulsed dielectric barrier discharge (DBD) at a high pressure. This paper analyses in detail the film properties and structures, such as hydrophilicity, compounds and microstructures as well as amine density by the water contact angle, Fourier transform infrared spectroscopy, atomic force microscopy, and ultraviolet-visible measurement. The influence of discharge param-eters, in particular applied power, on amine density was investigated. As an application the cell adsorption behaviours on plasma polymerization films was performed in-vitro. The results show that at a high pressure pulsed DBD plasma can polymerize films with sufficient amine group on surface, through which the very efficient cell adsorption behaviours was demonstrated, and the high rate of cell proliferation was visualized.

  4. A viable circulating tumor cell isolation device with high retrieval efficiency using a reversibly deformable membrane barrier

    Science.gov (United States)

    Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum

    2017-02-01

    Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.

  5. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    Science.gov (United States)

    Zheng, Liu; Zhang, Feng; Liu, Sheng-Bei; Dong, Lin; Liu, Xing-Fang; Fan, Zhong-Chao; Liu, Bin; Yan, Guo-Guo; Wang, Lei; Zhao, Wan-Shun; Sun, Guo-Sheng; He, Zhi; Yang, Fu-Hua

    2013-09-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm2 with a total active area of 2.46 × 10-3 cm2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.

  6. TASC Graphics Software Package.

    Science.gov (United States)

    1982-12-01

    RD-I55 861 TSC GRPHICS SOFTWRE PCKRGE(U) NLYTIC SCIENCES i/I RD 𔄀-t CORP RERDING MA M R TANG DEC 82 TR-1946-6U~~cLss AFG L-TR-gi-1388 Fi9629-89-C...extensions were made to allow TGSP to use color graphics. 2.1 INTERACTIVE TGSP NCAR was designed to be a general plot package for use with many different...plotting devices. It is designed to accept high level commands and generate an intermediate set of commands called metacode and to then use device

  7. Analysis of isothiazolinone biocides in paper for food packaging by ultra-high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lin, Q-B; Wang, T-J; Song, H; Li, B

    2010-12-01

    A novel and simple method to detect isothiazolinone-type biocides (2-methyl-3-isothiazolinone (MI), 5-chloro-2-methyl-3-isothiazolinone (CMI), 1,2-benzisothiazolinone (BIT) and 2-octyl-3-isothiazolinone (OIT)) in paper used for food packaging by ultrasonic extraction coupled with UPLC-MS/MS was developed. Parameters affecting process efficiency such as extraction solvents, UPLC mobile phase, gradient elution procedure and MS/MS conditions were studied to optimise the operating conditions. Using the optimised gradient elution procedure, the retention time was less than 6 min. The limits of detection (LODs) were found to be between 0.001 and 0.010 mg kg⁻¹, which was validated using actual concentrations. After diluting the standard solution with a blank matrix, the linear calibration curve ranges were 0.002-1.000 mg kg⁻¹ for BIT and OIT, 0.005-1.000 mg kg⁻¹ for MI, and 0.020-1.000 mg kg⁻¹ for CMI, with correlation coefficients higher than 0.9985 (n = 6). A good level of precision with a mean recovery greater than 81.3% and a relative standard deviation (RSD) less than 6.2% were also obtained. A methodology has been proposed for the analysis of isothiazolinones in paper.

  8. Influence of lubricant oil residual fraction on recycled high density polyethylene properties and plastic packaging reverse logistics proposal

    Directory of Open Access Journals (Sweden)

    Harley Moraes Martins

    2015-10-01

    Full Text Available Abstract To recycle post-consumer HDPE contaminated with waste lubricating oils, companies include prior washing and drying in the process. This consumes large amounts of water and energy, generates significant effluent requiring treatment. This study assesses lubricating oil influence on HDPE properties to evaluate the feasibility of its direct mechanical recycling without washing. The current lubricating oil packaging reverse logistics in Rio de Janeiro municipality is also analyzed. HDPE bottle samples were processed with seven oil contents ranging from 1.6-29.4 (wt%. The results indicated the possibility to reprocess the polymer with oily residue not exceeding 3.2%. At higher levels, the external oil lubricating action affects the plastic matrix processing in the extruder and injection, and the recycled material has a burnt oil odor and free oil on the surface. Small residual oil amounts retain the plastic properties comparable to the washed recycled polymer and exhibited benefits associated with the oil plasticizer action. However, oil presence above 7.7% significantly changes the properties and reduces the elasticity and flexural modulus and the plastic matrix crystallinity.

  9. The Use of Films as Suitable Packaging Materials for Minimally Processed Foods

    Science.gov (United States)

    1994-08-01

    Freshly Peeled citrus products combine pectinase solution, vacuum infusion technology, and a mechanized line to produce pre- peeled orange and...PROCESSED FOODS: MODIFIED ATMOSPHERE PACKAGING, SOUS-VIDE, MICHOWAVEABLE FOODS nwvKrrvE POOD PRESERVATION, VENTED FOODS, ANTIBACTERIAL OXYGEN...Vented Foods Antibacterial Packaging Materials Oxygen Absorbers Moisture Absorbers Packaging Design and Environmental Concern/Awareness Edible Barrier

  10. Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection.

    Science.gov (United States)

    Zhu, Hongbo; Zhou, Menglian; Lee, Jiwon; Nidetz, Robert; Kurabayashi, Katsuo; Fan, Xudong

    2016-09-06

    This paper presents the design, fabrication, and characterization of a microhelium dielectric barrier discharge photoionization detector (μHDBD-PID) on chip with dimensions of only ∼15 mm × ∼10 mm × ∼0.7 mm and weight of only ∼0.25 g. It offers low power consumption (4 orders of magnitude), and maintenance-free operation. Furthermore, the μHDBD-PID can be driven with a miniaturized (∼5 cm × ∼2.5 cm × ∼2.5 cm), light (22 g), and low cost (∼$2) power supply with only 1.5 VDC input. The dependence of the μHDBD-PID performance on bias voltage, auxiliary helium flow rate, carrier gas flow rate, and temperature was also systematically investigated. Finally, the μHDBD-PID was employed to detect permanent gases and a sublist of the EPA 8260 standard reagents that include 51 analytes. The μHDBD-PID developed here can have a broad range of applications in portable and microgas chromatography systems for in situ, real-time, and sensitive gas analysis.

  11. Temperature-dependent Schottky barrier in high-performance organic solar cells

    Science.gov (United States)

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions.

  12. RECENT TRENDS IN PACKAGING SYSTEMS FOR PHARMACEUTICAL PRODUCTS

    OpenAIRE

    Renata Dobrucka

    2014-01-01

    Background:  In recent years, pharmaceutical packaging market was one of the fastest growing areas of the packaging industry. At the same time the packaging manufacturers put high demands on quality and safety. Methods: Review of innovations in packaging systems for pharmaceutical products was made including newest information of researches and achievements of recent years. Results and conclusion: Observed in recent years the development of pharmaceutical packaging market expan...

  13. Spoilage of value-added, high-oxygen modified-atmosphere packaged raw beef steaks by Leuconostoc gasicomitatum and Leuconostoc gelidum.

    Science.gov (United States)

    Vihavainen, Elina J; Björkroth, K Johanna

    2007-11-01

    Moisture-enhancing and marinating of meats are commonly used by the meat industry to add value to raw, retail products. Recently in Finland, certain value-added beef steak products have proven to be unusually susceptible to microbial spoilage leading to untoward quality deteriorations during producer-defined shelf-life. This study was conducted to evaluate the role of lactic acid bacteria (LAB) in the premature spoilage of value-added beef packaged under high-oxygen modified atmospheres. Spoilage was characterised by green discolouration and a buttery off-odour. The predominant LAB in eight packages of spoiled, marinated or moisture-enhanced beef steaks were identified by reference to a 16 and 23S rRNA gene restriction fragment length polymorphism pattern (ribotype) database. Leuconostoc gasicomitatum, Leuconostoc gelidum, Lactobacillus algidus, Lactobacillus sakei and Carnobacterium divergens were found to predominate in the LAB populations at numbers above 10(8) CFU/g. Inoculation of moisture-enhanced steaks with LAB strains and strain mixtures originating from the spoiled products demonstrated the spoilage potential of L. gasicomitatum and L. gelidum isolates. These two species produced green surface discolouration and buttery off-odours similar to these found in the spoiled, commercial products.

  14. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    Science.gov (United States)

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Reliability Assessment and Activation Energy Study of Au and Pd-Coated Cu Wires Post High Temperature Aging in Nanoscale Semiconductor Packaging.

    Science.gov (United States)

    Gan, C L; Hashim, U

    2013-06-01

    Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t50) have been discussed in this paper.

  16. PWM Converter Power Density Barriers

    Science.gov (United States)

    Kolar, Johann W.; Drofenik, Uwe; Biela, Juergen; Heldwein, Marcelo; Ertl, Hans; Friedli, Thomas; Round, Simon

    Power density of power electronic converters has roughly doubled every 10 years since 1970. Behind this trajectory is the continuous advancement of power semiconductor devices, which has increased the converter switching frequencies by a factor of 10 every decade. However, today's cooling concepts and passive components are major barriers for a continuation of this trend. To identify such technological barriers, this paper investigates the volume of the cooling system and passive components as a function of the switching frequency for power electronic converters and determines the switching frequency that minimizes the total volume. A power density limit of 28kW/dm3 at 300kHz is calculated for an isolated DC-DC converter, 44kW/dm3 at 820kHz for a three-phase unity power factor PWM rectifier, and 26kW/dm3 at 21kHz for a sparse matrix converter. For single-phase AC-DC conversion a general limit of 35kW/dm3 results from the DC link capacitor. These power density limits highlight the need to broaden the scope of power electronics research to include cooling systems, high frequency electromagnetics, interconnection and packaging technology, and multi-domain modelling and simulation to ensure further advancement along the power density trajectory.

  17. CH Packaging Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  18. Merganser Download Package

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data download package contains an Esri 10.0 MXD, file geodatabase and copy of this FGDC metadata record. The data in this package are used in support of the...

  19. Comparative Packaging Study

    Science.gov (United States)

    Perchonok, Michele; Antonini, David

    2008-01-01

    This viewgraph presentation describes a comparative packaging study for use on long duration space missions. The topics include: 1) Purpose; 2) Deliverables; 3) Food Sample Selection; 4) Experimental Design Matrix; 5) Permeation Rate Comparison; and 6) Packaging Material Information.

  20. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham.

    Science.gov (United States)

    Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-08-01

    The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation.

  1. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2008-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  2. Packaging Printing Today

    OpenAIRE

    Bolanča, Stanislav; Majnarić, Igor; Golubović, Kristijan

    2015-01-01

    Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid print...

  3. ATLAS software packaging

    Science.gov (United States)

    Rybkin, Grigory

    2012-12-01

    Software packaging is indispensable part of build and prerequisite for deployment processes. Full ATLAS software stack consists of TDAQ, HLT, and Offline software. These software groups depend on some 80 external software packages. We present tools, package PackDist, developed and used to package all this software except for TDAQ project. PackDist is based on and driven by CMT, ATLAS software configuration and build tool, and consists of shell and Python scripts. The packaging unit used is CMT project. Each CMT project is packaged as several packages—platform dependent (one per platform available), source code excluding header files, other platform independent files, documentation, and debug information packages (the last two being built optionally). Packaging can be done recursively to package all the dependencies. The whole set of packages for one software release, distribution kit, also includes configuration packages and contains some 120 packages for one platform. Also packaged are physics analysis projects (currently 6) used by particular physics groups on top of the full release. The tools provide an installation test for the full distribution kit. Packaging is done in two formats for use with the Pacman and RPM package managers. The tools are functional on the platforms supported by ATLAS—GNU/Linux and Mac OS X. The packaged software is used for software deployment on all ATLAS computing resources from the detector and trigger computing farms, collaboration laboratories computing centres, grid sites, to physicist laptops, and CERN VMFS and covers the use cases of running all applications as well as of software development.

  4. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  5. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    Science.gov (United States)

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers.

  6. Microstructural characterization of electron beam-physical vapor deposition thermal barrier coatings through high-resolution computed microtomography

    Science.gov (United States)

    Kulkarni, Anand; Herman, Herbert; Decarlo, Francesco; Subramanian, Ramesh

    2004-07-01

    Thermal barrier coatings (TBCs), deposited using the electron beam-physical vapor deposition (EB-PVD) process, comprise a unique architecture of porosity capable of bridging the technological gap between insulation/life extension and prime reliance. The TBC microstructures consist of columnar structure, nucleated via vapor condensation, along with a high degree of intercolumnar porosity, thus providing enhanced stress relief on thermomechanical loading and also accommodating misfit stresses resulting from CTE mismatch. In this article, we report the characterization of these coatings using high-resolution synchrotron-based X-ray computed microtomography (XMT) at 1.3- µm resolution. Experiments focused on quantitative characterization/visualization of imperfections in these coatings and on the relative changes in microstructural features upon isothermal annealing. The influence of time/temperature of exposure was investigated and the results were correlated with elastic modulus.

  7. Central heating: package boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.

    1977-05-01

    Performance and cost data for electrical and fossil-fired package boilers currently available from manufacturers are provided. Performance characteristics investigated include: unit efficiency, rated capacity, and average expected lifetime of units. Costs are tabulated for equipment and installation of various package boilers. The information supplied in this report will simplify the process of selecting package boilers required for industrial, commercial, and residential applications.

  8. High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers

    Science.gov (United States)

    Liu, Bin; Cai, Daoping; Liu, Yuan; Li, Han; Weng, Chao; Zeng, Guoshi; Li, Qiuhong; Wang, Taihong

    2013-02-01

    A new hydrogen sensor was fabricated by coating a Pd-decorated In2O3 film on Au electrodes. In response to 1 vol% H2 at room temperature, an ultra high sensitivity of 4.6 × 107 was achieved. But after an annealing treatment in vacuum, its sensitivity degenerated by 4 orders of magnitude. In addition, the response time and recovery time were also extended from 28 s and 32 s to 242 s and 108 s, respectively. It was found from contrast experiments that Pd decoration was essential to make the sensor work at room temperature and Schottky barriers played a vital role in enhancing the sensor's performance. The methodology demonstrated in this paper shows that a combination of novel sensing materials and Schottky contact is an effective approach to design high-performance gas sensors.A new hydrogen sensor was fabricated by coating a Pd-decorated In2O3 film on Au electrodes. In response to 1 vol% H2 at room temperature, an ultra high sensitivity of 4.6 × 107 was achieved. But after an annealing treatment in vacuum, its sensitivity degenerated by 4 orders of magnitude. In addition, the response time and recovery time were also extended from 28 s and 32 s to 242 s and 108 s, respectively. It was found from contrast experiments that Pd decoration was essential to make the sensor work at room temperature and Schottky barriers played a vital role in enhancing the sensor's performance. The methodology demonstrated in this paper shows that a combination of novel sensing materials and Schottky contact is an effective approach to design high-performance gas sensors. Electronic supplementary information (ESI) available: Hydrogen sensing test details and detailed material characterizations before and after the annealing treatment at 120 °C. See DOI: 10.1039/c3nr33872j

  9. High-temperature stability of yttria-stabilized zirconia thermal barrier coating on niobium alloy—C-103

    Indian Academy of Sciences (India)

    S S Panwar; T Umasankar Patro; K Balasubramanian; B Venkataraman

    2016-02-01

    Thermal barrier coatings (TBCs) of yttria-stabilized zirconia (YSZ) of different thicknesses with an intermediate bond coat were deposited on C-103 Nb alloy using the air plasma spraying technique. The coatings were subjected to rapid infra-red (IR) heating ($\\sim$25°C s$^{−1}$) up to $\\sim$1250°C and exposed up to 100 s at this temperature with heat flux varying from 55 to 61 Wcm$^{−2}$. The TBCs were found to be stable and intact after the heat treatment. In contrast, at the same conditions, the uncoated C-103 alloy specimen showed extensive oxidation followed by weight loss due to spallation. A maximum temperature drop of $\\sim$200°C was observed on the opposite side of the coated alloy with 600 $\\mu$m YSZ coat; as against negligible temperature drop in case of bare alloy specimen. The temperature drop was found to increase with the coating thickness of YSZ. The coatings before and after IR heating were investigated by scanning electron microscopy, X-ray diffraction, electron probe microanalysis, microhardness and residual stress measurements in order to understand the effect of thermal shock on the properties of the TBC. On account of these high-temperature properties, YSZ coating along with the bond coat is expected to find potential thermal barrier coating system on niobium alloys for supersonic vehicles.

  10. Research on ZrO2 Thermal Barrier Coatings Modified by High-Intensity Pulsed Ion Beam

    Institute of Scientific and Technical Information of China (English)

    WV Di; LIU Chen; ZHU Xiao-Peng; LEI Ming-Kai

    2008-01-01

    @@ We report a modification method for ZrO2 thermal barrier coatings (TBCs) by high-intensity pulsed ion beam (HIPIB) irradiation. Based on the temporal and spatial distribution models of the ion beam density detected by Faraday cup in the chamber and the ions accelerating voltage, the energy deposition of the beam ions in ZrO2 is calculated by Monte Carlo method. Taking this time-dependent nonlinear deposited energy as the source term of two-dimensional thermal conduction equation, we obtain the temporal and spatial ablation process of ZrO2 thermal barrier coatings during a pulse time. The top-layer TBC material in thickness of about 0.2μm is ablated by vaporization and the coating in thickness of 1 μm is melted after one shot at the ion current density of 200 A/cm2. This calculation is in reasonable agreement with those measured by HIPIB irradiation experiments.The melted top coat becoming a dense modification layer due to HIPIB irradiation seals the gaps among ZrO2crystal clusters, and hence barrels the direct tunnel of oxygen.

  11. MMIC Package for Millimeter Wave Frequency

    Science.gov (United States)

    Bharj, Sarjit Singh; Yuan, Steve

    1997-01-01

    Princeton Microwave Technology has successfully demonstrated the transfer of technology for the MMIC package. During this contract the package design was licensed from Hughes Aircraft Company for manufacture within the U.S. A major effort was directed towards characterization of the ceramic material for its dielectric constant and loss tangent properties. After selection of a ceramic tape, the high temperature co-fired ceramic package was manufactured in the U.S. by Microcircuit Packaging of America, Inc. Microwave measurements of the MMIC package were conducted by an intercontinental microwave test fixture. The package demonstrated a typical insertion loss of 0.5 dB per transition up to 32 Ghz and a return loss of better than 15 db. The performance of the package has been demonstrated from 2 to 30 Ghz by assembling three different MMIC amplifiers. Two of the MMIC amplifiers were designed for the 26 Ghz to 30 Ghz operation while the third MMIC was a distributed amplifier from 2 to 26.5 Ghz. The measured gain of the amplifier is consistent with the device data. The package costs are substantially lower than comparable packages available commercially. Typically the price difference is greater than a factor of three. The package cost is well under $5.00 for a quantity of 10,000 pieces.

  12. Challenges in the Packaging of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN, WILLIAM D.; EATON, WILLIAM P.; MALSHE, AJAY P.; MILLER, WILLIAM M.; O' NEAL, CHAD; SINGH, SUSHILA B.

    1999-09-24

    Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.

  13. The Ettention software package.

    Science.gov (United States)

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Signal processor packaging design

    Science.gov (United States)

    McCarley, Paul L.; Phipps, Mickie A.

    1993-10-01

    The Signal Processor Packaging Design (SPPD) program was a technology development effort to demonstrate that a miniaturized, high throughput programmable processor could be fabricated to meet the stringent environment imposed by high speed kinetic energy guided interceptor and missile applications. This successful program culminated with the delivery of two very small processors, each about the size of a large pin grid array package. Rockwell International's Tactical Systems Division in Anaheim, California developed one of the processors, and the other was developed by Texas Instruments' (TI) Defense Systems and Electronics Group (DSEG) of Dallas, Texas. The SPPD program was sponsored by the Guided Interceptor Technology Branch of the Air Force Wright Laboratory's Armament Directorate (WL/MNSI) at Eglin AFB, Florida and funded by SDIO's Interceptor Technology Directorate (SDIO/TNC). These prototype processors were subjected to rigorous tests of their image processing capabilities, and both successfully demonstrated the ability to process 128 X 128 infrared images at a frame rate of over 100 Hz.

  15. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails.

    Science.gov (United States)

    Lyon, W J; Reddmann, C S

    2000-12-01

    Refrigerated vacuum-packaged storage has been shown to increase significantly the shelf life of fresh fish and seafood products, but the effect, if any, on the outgrowth and toxin production of Clostridium botulinum type E on cooked crawfish is unknown. Microflora associated with live crawfish reflect the microbial populations of the harvest water and sediments in which they are living. The presence or absence of specific pathogens in either vacuum-packaged or air-permeable bags of cooked crawfish have not been thoroughly evaluated. This study evaluates the potential survival and outgrowth of biological hazards in both vacuum-packaged and air-permeable-packaged cooked crawfish held at 4 and 10 degrees C for 30 days. During shelf-life studies of vacuum-packaged and air-permeable-bagged cooked crawfish, a total of 31 bacterial species were isolated and identified from crawfish samples using both selective and nonselective media. The only pathogens isolated from both vacuum-packed and air-permeable bags of processed crawfish samples during shelf-life studies were strains of Aeromonas hydrophila and Staphylococcus aureus. C. botulinum type E and Clostridium perfringens species were not isolated from any of the uninoculated crawfish samples. Cooked crawfish were inoculated with 10(3) C. botulinum type E spores per g of crawfish tail meat to determine whether cooked crawfish tails would support the growth of C. botulinum type E strains and produce toxin at refrigerated temperatures. Spore-inoculated crawfish tails were vacuum packaged in both a high barrier film and an air-permeable bag and stored at 4 degrees C and 10 degrees C for 30 days. C. botulinum toxin E was not detected in any of the spore-inoculated packages throughout the shelf-life study until day 30. Microbiological data from this study should be useful in the development and implementation of the hazard analysis and critical control point plans for processed crawfish tails.

  16. Reference waste package environment report

    Energy Technology Data Exchange (ETDEWEB)

    Glassley, W.E.

    1986-10-01

    One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of {similar_to}230{sup 0}C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment.

  17. Active Packaging Coatings

    Directory of Open Access Journals (Sweden)

    Luis J. Bastarrachea

    2015-11-01

    Full Text Available Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.

  18. Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution.

    Science.gov (United States)

    Dragoev, Stefan Georgiev; Staykov, Alexandar Stoyanov; Vassilev, Kiril Petrov; Balev, Dessislav Kostadinov; Vlahova-Vangelova, Dessislava Borislavova

    2014-01-01

    The improvement of quality and the shelf life of veal by combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions was studied. The control samples C, air packaged only, D, air packaged sprayed by 0.02% dihydroquercetin solution, MAP, modified atmosphere packaging only, BMAP, modified atmosphere packaging sprayed by 0.02% butylated hydroxytoluene solution, and DMAP, modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution, were measured. The best results were obtained in modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution. Comparisons with control samples were expressed as reduction in acid value with 27.72%, peroxide value with 64.74%, 2-thiobarbituric acid reactive substances (TBARS) with 65.71%, and the pH with 6.18%. The acid and peroxide values, TBARS, and pH were decreased linearly in response when applying the combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions (P 0.05). According to results obtained it was concluded that 80%O2/20%CO2 modified atmosphere packaged veal stored at 0 ± 0.5°C after 0.02% dihydroquercetin solution treatment can preserve its quality and shelf life to 15 d postmortem.

  19. Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution

    Directory of Open Access Journals (Sweden)

    Stefan Georgiev Dragoev

    2014-01-01

    Full Text Available The improvement of quality and the shelf life of veal by combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions was studied. The control samples C, air packaged only, D, air packaged sprayed by 0.02% dihydroquercetin solution, MAP, modified atmosphere packaging only, BMAP, modified atmosphere packaging sprayed by 0.02% butylated hydroxytoluene solution, and DMAP, modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution, were measured. The best results were obtained in modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution. Comparisons with control samples were expressed as reduction in acid value with 27.72%, peroxide value with 64.74%, 2-thiobarbituric acid reactive substances (TBARS with 65.71%, and the pH with 6.18%. The acid and peroxide values, TBARS, and pH were decreased linearly in response when applying the combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions (P0.05. According to results obtained it was concluded that 80%O2/20%CO2 modified atmosphere packaged veal stored at 0±0.5°C after 0.02% dihydroquercetin solution treatment can preserve its quality and shelf life to 15 d postmortem.

  20. Supplementary Reading Instruction in Alternative High Schools: A Statewide Survey of Educator Reported Practices and Barriers

    Science.gov (United States)

    Wilkerson, Kimber L.; Yan, Min-Chi; Perzigian, Aaron B.; Cakiroglu, Orhan

    2016-01-01

    Recent data suggest that a majority of secondary students read below the level considered proficient on state standardized tests of reading. Alternative high schools, in particular, serve a high proportion of struggling readers. This survey study investigated reading instruction provided to struggling readers in alternative schools in one state by…

  1. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging.

    Science.gov (United States)

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-12-16

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in "H" type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than -0.01% F.S/°C in the range of -40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  2. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    Directory of Open Access Journals (Sweden)

    Zhenyu Luo

    2014-12-01

    Full Text Available This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  3. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    Science.gov (United States)

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-01-01

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385

  4. New Polymer Materials for Microelectronics Packaging

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Researchers at the CAS Institute of Chemistry (ICCAS) have made breakthrough progress in developing the manufacturing technology of advanced polymer materials for microelectronics packaging applications. The advanced integrated circuit (IC) packaging polymer materials, including photoimageable polyimide resins and liquid epoxy underfills, are a key issue for FC-BGA/CSP(flip chip-ball grill array/chip scale packaging) which is the main stream for the next generation of microelectronics devices. With the down-sizing, thinning and high I/O (input/output) of IC chips, microelectronics packaging is now facing a big technology challenge.

  5. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  6. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  7. Novel palladium germanide schottky contact for high performance schottky barrier ge MOSFETs and characterization of its leakage current mechanism.

    Science.gov (United States)

    Oh, Se-Kyung; Shin, Hong-Sik; Kang, Min-Ho; Lee, Ga-Won; Lee, Hi-Deok

    2012-07-01

    The leakage current mechanism of Palladium (Pd) germanide Schottky contact on n-type Ge-on-Si substrate is analyzed in depth. The electric field dependent analysis shows that the dominant leakage current mechanism is the Poole-Frenkel emission due to the existence of deep level traps in the depletion region of the Pd germanide/n-type Ge Schottky diode. The analysis of the dependence of leakage current on temperature also shows that the Poole-Frenkel emission and generation current are the dominant components below 100 degrees C and that the Schottky emission related to thermionic emission of majority carriers over a potential barrier is the main cause of this dominance at high temperature region.

  8. Influence of Fluorescent Glue Packaging Technology on the Color Rendering Index of High Power LED%大功率LED荧光胶封装工艺对其显色性能的影响

    Institute of Scientific and Technical Information of China (English)

    钟传鹏

    2011-01-01

    通过大量试验,探索了荧光粉分层封装和荧光粉混合封装的不同荧光胶封装工艺对大功率白光LED显色性能的影响。通过甄选荧光粉、硅胶以及配比,制备出显色指数(CRI)为95的高亮度、低衰减的大功率白光LED。%In this artical,a large number of experiments have been done to explore the influence of different fluorescent glue packaging technology of phosphor layered packaging and phosphor mixed packaging on high-power white LED color rendering.By selecting the phosphor,silicon and mixture ratio,high-power white LED with high brightness and low attenuation is prepared,and the color rendering index(CRI) reaches 95.

  9. Ultra-High-Temperature-Ceramics: potentialities and barriers to the application in hot structures

    OpenAIRE

    Bellosi, Alida

    2009-01-01

    High performance Ultra-High-Temperature Composites (based on zirconium-, hafnium-, tantalum- borides and carbides) are characterized by relevant and unique thermo-physical and thermo-mechanical properties, suitable for applications in thermo-protection systems for aerospace applications. In spite of the difficult sinterability of borides and carbides of Zr, Hf, Ta, recent results highlighted that UHTC ceramics can be successfully produced with full density, fine and uniform microstructure and...

  10. UV protective poly(lactic acid)/rosin films for sustainable packaging.

    Science.gov (United States)

    Narayanan, Meenu; Loganathan, Sravanthi; Valapa, Ravi Babu; Thomas, Sabu; Varghese, T O

    2017-06-01

    Recently, biopolymer based plastic materials are regarded as potential alternative for conventional plastics of fossil fuel origin in order to compensate depleting petroleum resources and address environmental pollution issues. Poly(lactic acid) (PLA) is one among the biopolymers which is rapidly commercialized for food packaging application. However, the demerits accompanied with PLA like brittle nature, slower crystallization rate, poor gas barrier and high ultraviolet radiation transmission properties confines its commercial application in food packaging sector. Studies on the improvement of ductility, crystallization rate and gas barrier properties are markedly reported. Much emphasis is not given in the literature on improving UV shielding properties which plays important role in preventing oxidation degradation of PLA. Therefore, the current work is focused on fabrication of eco-friendly poly(lactic acid)/rosin (RS) based biocomposite films with improved UV shielding along with ductility and oxygen barrier properties. The PLA-RS biocomposite films containing different loadings (1, 3, 5, 10 and 20wt%) of RS with an average thickness of 50μm are fabricated via solution casting technique. The PLA-RS film demonstrated noteworthy light barrier feature by shielding the passage of ∼98%, 92% and 53% in UV-B, UV-A and visible light regime, respectively. In case of UV-C region, complete blockage of UV transmission through the PLA-RS biocomposite film is noticed. In addition to this, the presence of RS in the PLA matrix brought considerable improvement in terms of ductility and oxygen barrier characteristics. This in turn indicates PLA-RS biocomposite films hold significant potential for sustainable food packaging application.

  11. Poly(hydroxyalkanoates for Food Packaging: Application and Attempts towards Implementation

    Directory of Open Access Journals (Sweden)

    M. Koller

    2014-09-01

    Full Text Available Plastics are well-established for convenient and safe packaging and distribution of food and feed goods. At present, this special sector of the plastic market displays remarkably increasing quantities of its annual production. Caused by the ongoing limitation and strongly fluctuating prices of fossil feedstocks, classically used for plastic production, there is an evident trend to switch towards so-called “bio-plastics”. Especially for bulk applications such as food packaging, a broad implementation of “bio-plastics” constitutes a future-oriented strategy to restrict the dependence of global industry on fossil feedstocks, and to diminish current problematic environmental issues arising from plastic disposal. However, food packaging demands a great deal of the utilized packaging material. This encompasses tailored mechanical properties such as low brittleness and adequate tensile strength, a sufficient barrier for oxygen, CO2, and aromatic flavors, high UV-resistance, and high water retention-capacity to block the food´s moisture content, or to prevent humidity, respectively. Due to their hydrophobic character and the broad flexibility of their mechanical features, prokaryotic poly(hydroxyalkanoates (PHAs are considered as promising materials to compete with petro-plastics on the food-packaging market. Nevertheless, short-comings in particular aspects of their material performance and economics of their biosynthesis and purification constitute stumbling blocks on the long way towards broad implementation of PHAs for food packaging. This article discusses advantages and drawbacks of PHAs as food packaging materials, and demonstrates how desired properties can be improved by the designing of novel composite materials, and also encompassing techniques by applying nanoparticles.

  12. Field-Based Video Pre-Test Counseling, Oral Testing, and Telephonic Post-Test Counseling: Implementation of an HIV Field Testing Package among High-Risk Indian Men

    Science.gov (United States)

    Snyder, Hannah; Yeldandi, Vijay V.; Kumar, G. Prem; Liao, Chuanhong; Lakshmi, Vemu; Gandham, Sabitha R.; Muppudi, Uma; Oruganti, Ganesh; Schneider, John A.

    2012-01-01

    In India, men who have sex with men (MSM) and truck drivers are high-risk groups that often do not access HIV testing due to stigma and high mobility. This study evaluated a field testing package (FTP) that identified HIV positive participants through video pre-test counseling, OraQuick oral fluid HIV testing, and telephonic post-test counseling…

  13. Infrared gas phase study on plasma-polymer interactions in high-current diffuse dielectric barrier discharge

    Science.gov (United States)

    Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.

    2017-06-01

    A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750 cm-1 to unravel the plasma-polymer interactions. The absorption features of HxNyOz, COx, and HCOOH (formic acid) were identified, and the relative densities were deduced by fitting the absorption bands of the detected molecules. Strong interactions between plasma and polymer (Polyethylene-2,6-naphthalate, or PEN) in precursor-free oxygen-containing gas mixtures were observed as evidenced by a high COx production. The presence of HCOOH in the gas effluent, formed through plasma-chemical synthesis of COx, turns out to be a sensitive indicator for etching. By adding tetraethylorthosilicate precursor in the plasma, dramatic changes in the COx production were measured, and two distinct deposition regimes were identified. At high precursor flows, a good agreement with the precursor combustion and the COx production was observed, whereas at low precursor flows an etching-deposition regime transpires, and the COx production is dominated by polymer etching.

  14. Monitoring Delamination of Thermal Barrier Coating During Interrupted High-Heat Flux Laser Testing Using Upconversion Luminescence Imaging

    Science.gov (United States)

    Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.

    2011-01-01

    Upconversion luminescence imaging of thermal barrier coatings (TBCs) has been shown to successfully monitor TBC delamination progression during interrupted furnace cycling. However, furnace cycling does not adequately model engine conditions where TBC-coated components are subjected to significant heat fluxes that produce through-thickness temperature gradients that may alter both the rate and path of delamination progression. Therefore, new measurements are presented based on luminescence imaging of TBC-coated specimens subjected to interrupted high-heat-flux laser cycling exposures that much better simulate the thermal gradients present in engine conditions. The TBCs tested were deposited by electron-beam physical vapor deposition (EB-PVD) and were composed of 7wt% yttria-stabilized zirconia (7YSZ) with an integrated delamination sensing layer composed of 7YSZ co-doped with erbium and ytterbium (7YSZ:Er,Yb). The high-heat-flux exposures that produce the desired through-thickness thermal gradients were performed using a high power CO2 laser operating at a wavelength of 10.6 microns. Upconversion luminescence images revealed the debond progression produced by the cyclic high-heat-flux exposures and these results were compared to that observed for furnace cycling.

  15. Beyond the Barriers: Marking the Place for Marijuana Use at a Canadian High School

    Science.gov (United States)

    Johnson, Joy L.; Moffat, Barbara; Bottorff, Joan; Shoveller, Jean; Fischer, Benedikt; Haines, Rebecca J.

    2008-01-01

    This ethnographic study aimed at developing a richer understanding of how youth, their schools, and the communities in which they are emplaced coincide to generate a set of local social processes that affect marijuana use. We trace the interplay between high school staff and students with regards to marijuana use in the proximity of a local high…

  16. Beyond the Barriers: Marking the Place for Marijuana Use at a Canadian High School

    Science.gov (United States)

    Johnson, Joy L.; Moffat, Barbara; Bottorff, Joan; Shoveller, Jean; Fischer, Benedikt; Haines, Rebecca J.

    2008-01-01

    This ethnographic study aimed at developing a richer understanding of how youth, their schools, and the communities in which they are emplaced coincide to generate a set of local social processes that affect marijuana use. We trace the interplay between high school staff and students with regards to marijuana use in the proximity of a local high…

  17. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise

    Directory of Open Access Journals (Sweden)

    Hee-Tae Roh

    2017-06-01

    Conclusion: Our study suggests that episodic vigorous exercise can increase oxidative stress and blood neurotrophic factor levels and induce disruption of the BBB. Moreover, high levels of neurotrophic factor in the blood after exercise in the obese group may be due to BBB disruption, and it is assumed that oxidative stress was the main cause of this BBB disruption.

  18. The role of the spray pyrolysed Al2O3 barrier layer in achieving high efficiency solar cells on flexible steel substrates

    Science.gov (United States)

    Gledhill, Sophie E.; Zykov, Anton; Rissom, Thorsten; Caballero, Raquel; Kaufmann, Christian A.; Fischer, Christian-Herbert; Lux-Steiner, Martha; Efimova, Varvara; Hoffmann, Volker; Oswald, Steffen

    2011-07-01

    Thin film chalcopyrite solar cells grown on light-weight, flexible steel substrates are poised to enter the photovoltaic market. To guarantee good solar cell performance, the diffusion of iron from the steel into the CIGSe absorber material must be hindered during layer deposition. A barrier layer is thus required to isolate the solar module from the metal substrate, both electronically and chemically. Ideally the barrier layer would be deposited by a cheap roll-to-roll process suitable to coat flexible steel substrates. Aluminium oxide deposited by spray pyrolysis matches the criteria. The coating is homogeneous over rough substrates allowing comparatively thin barrier layers to be utilized. In this article, solar cell results are presented contrasting the device performance made with a barrier layer to that without a barrier layer. Secondary Ion Mass spectrometry (SIMS) measurements show that the spray pyrolysed barrier layer diminishes iron diffusion to the chalcopyrite absorber layer. The role of sodium, imperative for the growth of high efficiency chalcopyrite solar cells, and how it interacts with Al2O3 is discussed.

  19. 压力蒸汽灭菌后无菌包的有效期探讨%Experimental study on period of validity of sterilizing packages after high pressure sterilization

    Institute of Scientific and Technical Information of China (English)

    郝桂兰; 王玉英; 杨建华

    2012-01-01

    目的 探讨棉布包装的各种灭菌包,经预真空高压蒸汽灭菌后在不同季节的有效期.方法 选取2011年1.8月,共两批次,每次用双层棉布包装的100个无菌包,经预真空高压蒸汽灭菌后,按编号分为10组,存放在有空气调节系统的10间病房治疗室无菌物品专用柜内,所有无菌包分别在保存第6、10、14、18、22天取样进行细菌培养.结果 随机抽取10间治疗室中的两间,共20个无菌包外层与内层包布间及包内物品中放置的沙条做细菌培养,两批次,80份细菌培养标本全部无菌生长,结果均为阴性.结论 无菌包在达到包装、消毒、存放基本要求的基础上,放置于有空气调节系统的病房治疗室无菌物品专用柜内,可以不考虑季节和天气的影响,将有效期延长为14d.%OBJECTIVE To explore the period of validity for various sterilizing packages in different seasons after pre-vaccum high pressure sterilization. METHODS We finished our experiments separately in Jan and Aug, 2011 for the biggest wheather change in these two months. In each experiment, packing incision of trachea packs, vein incision packages, rescue packages, urethral catheterization packages, suture packages, totally 100 packages were divided into 10 groups. After pre-vaccum high pressure sterilization, the packages were stored in sterile special cabinet of treatment rooms in 10 different wards, 10 packages in each treatment room, All the packages were sampled for bacterial culture on the 6th, 10th, 14 th , 18th and 22nd of the storage. RESULTS At 9 am on 6th, 10th, 14th, 18th, and 22th days after vaccum pressure sterilization, we randomly selected two packages from each treatment room, totally 20 packages. Under non-bacterial condition in bacterial cultural rooms, the gauzes between two layers of packing clothes and the guazes inside the package were cultured in two groups, the results showed negative, there was no bacterial growth in all the samples

  20. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0