WorldWideScience

Sample records for high anodic potentials

  1. High Biofilm Conductivity Maintained Despite Anode Potential Changes in a Geobacter-Enriched Biofilm

    Science.gov (United States)

    This study systematically assessed intracellular electron transfer (IET) and extracellular electron transfer (EET) kinetics with respect to anode potential (Eanode) in a mixed-culture biofilm anode enriched with Geobacter spp. High biofilm conductivity (0.96–1.24 mScm^-1) was mai...

  2. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    KAUST Repository

    Zhu, Xiuping

    2013-04-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different anode potentials (-0.46 V, -0.24 V, 0 V, and 0.50 V vs. Ag/AgCl), and then the properties of the biofilms were examined using polarization tests and cyclic voltammetry (CV). The maximum power density of the MFCs was 1200±100 mW/m2. Power overshoot was observed in MFCs incubated at -0.46 V, but not those acclimated atmore positive potentials, indicating that bacterial activitywas significantly influenced by the anode acclimation potential. CV results further indicated that power overshoot of MFCs incubated at the lowest anode potential was associatedwith a decreasing electroactivity of the anodic biofilm in the high potential region,which resulted from a lack of sufficient electron transfer components to shuttle electrons at rates needed for these more positive potentials. © 2012 Elsevier B.V.

  3. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping

    2014-01-21

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  4. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping; Yates, Matthew D.; Hatzell, Marta C.; Rao, Hari Ananda; Saikaly, Pascal; Logan, Bruce E.

    2014-01-01

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  5. Synthesis of highly ordered nanopores on alumina by two-step anodization process

    Energy Technology Data Exchange (ETDEWEB)

    Bwana, Nicholas N. [University of Oxford, Department of Engineering Science (United Kingdom)], E-mail: Nicholas.Bwana@eng.ox.ac.uk

    2008-02-15

    Highly ordered anodic alumina was produced, on RF sputtered aluminium on a conductive glass substrate, by two step anodizing process in 0.4 M sulphuric acid at constant cell potentials of between 5 and 25 V and at a constant current density of 20 mA cm{sup -2}. The temperature was kept constant at 15 deg. C during both anodization processes. The effects of the anodizing potential, current density, and time on the pore diameters were established. Longer anodization periods result in wider irregular pores with reduced porosity for both constant potential and constant current density anodization processes. The current density increases with increasing constant anodizing potential and generally remains constant with time after a sharp rise. Potential drop during constant current density anodization behaves in a similar manner. We confirm that sulphuric acid has a self-ordering potential of 25 V above which burning occurs.

  6. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  7. Lead dioxide electrodes for high potential anodic processes

    Directory of Open Access Journals (Sweden)

    A. B. VELICHENKO

    2001-12-01

    Full Text Available Doping of PbO2 by cations (Fe3+, Co2+ and Ni2+, by F- and by cations and F- simultaneously is discussed as a way of improving the stability and electrochemical activity in processes occurring at high potentials. Doping allows the control of the amount of structural water in an oxide. Radiotracer experiments showed that high electrodeposition current densities favour the segregation of incorporated tritium (protons at the surface. On the other hand, fluorine doping results in a marked decrease in the amount of surface oxygen species. The influence of doping with metal cations strongly depends on the nature of the metal. Iron behaves like fluorine, while nickel causes an accumulation of surface oxygen species. Doped PbO2 electrodes have quite good activities for the electrogeneration of ozone. In particular, Fe and Co doped PbO2 showed a current efficiency of 15–20 % for this process. This result is relevant to our recent studies on “cathodic oxidation”, i.e., an ozone mediated electrochemical method in which an O2 stream is used to sweep the O2/O3 gas mixture produced at a PbO2 anode into the cathodic compartment of the same electrochemical cell containing polluting species.

  8. Optimal Set Anode Potentials Vary in Bioelectrochemical Systems

    KAUST Repository

    Wagner, Rachel C.

    2010-08-15

    In bioelectrochemical systems (BESs), the anode potential can be set to a fixed voltage using a potentiostat, but there is no accepted method for defining an optimal potential. Microbes can theoretically gain more energy by reducing a terminal electron acceptor with a more positive potential, for example oxygen compared to nitrate. Therefore, more positive anode potentials should allow microbes to gain more energy per electron transferred than a lower potential, but this can only occur if the microbe has metabolic pathways capable of capturing the available energy. Our review of the literature shows that there is a general trend of improved performance using more positive potentials, but there are several notable cases where biofilm growth and current generation improved or only occurred at more negative potentials. This suggests that even with diverse microbial communities, it is primarily the potential of the terminal respiratory proteins used by certain exoelectrogenic bacteria, and to a lesser extent the anode potential, that determines the optimal growth conditions in the reactor. Our analysis suggests that additional bioelectrochemical investigations of both pure and mixed cultures, over a wide range of potentials, are needed to better understand how to set and evaluate optimal anode potentials for improving BES performance. © 2010 American Chemical Society.

  9. Nano-porous anodic aluminium oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan; Liu Xiaohua; Pan Caofeng; Zhu Jing [Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084 (China); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2007-08-29

    Self-organized nano-porous anodic aluminium oxide (AAO) membranes with small pore diameters were obtained by applying a low anodizing potential in sulfuric acid solutions. The pore diameters of the as-prepared AAO membranes were in the range of about 6-19 nm and the interpore distances were about 20-58 nm. Low potentials (6-18 V) were applied in anodizing processes to make such small pores. A linear relationship between the anodizing potential (U{sub a}) and the interpore distance (D{sub int}) was also revealed. By carefully monitoring the current density's evolution as a function of time with different U{sub a} (2-18 V) during the anodizing processes, a new formula is proposed to simulate the self-ordering anodizing process.

  10. Time resolved measurements of plasma potential across an anode double layer

    International Nuclear Information System (INIS)

    Pohoata, V.; Popa, Gh.; Schrittwieser, R.; Ionita, Codrina

    2002-01-01

    Experimental results are presented on self-sustained oscillations produced by the dynamics of an anode double layer or fireball in a DP-machine. By additional ionisation processes the fireball is formed in front of an additional small plane anode inserted in the diffusive plasma. An annular (ring) electrode surrounds the anode. The thickness of the ion sheath in front of this ring affects the anode current by controlling its effective diameter during the fireball oscillations. The ring potential controls first the oscillation frequency of the anode current, but also other characteristics of the instability. The ring potential was chosen as a pulsed one so that only single anode double layer instability can be excited. The ring signal was used for triggering the data acquisition system. The spatial distribution of the plasma potential in front of the anode is presented as a time resolved measurement one. A negative drop potential was found that controls the charge flux particle across the double layer. Also the plasma density inside the fireball relaxes during the disrupting time controlled by ambipolar diffusion and also by the negative potential drop. (authors)

  11. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  12. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  13. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  14. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    Science.gov (United States)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  15. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong; Wu, Feng-Yu; Kumar, Pushpendra; Ming, Jun

    2016-01-01

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery

  16. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization

    International Nuclear Information System (INIS)

    Li Yanbo; Zheng Maojun; Ma Li; Shen Wenzhong

    2006-01-01

    Stable high-field anodization (1500-4000 A m -2 ) for the fabrication of highly ordered porous anodic alumina films has been realized in a H 3 PO 4 -H 2 O-C 2 H 5 OH system. By maintaining the self-ordering voltage and adjusting the anodizing current density, high-quality self-ordered alumina films with a controllable inter-pore distance over a large range are achieved. The high anodizing current densities lead to high-speed film growth (4-10 μm min -1 ). The inter-pore distance is not solely dependent on the anodizing voltage, but is also influenced by the anodizing current density. This approach is simple and cost-effective, and is of great value for applications in diverse areas of nanotechnology

  17. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    Science.gov (United States)

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  18. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    Science.gov (United States)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  19. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  20. Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials

    Energy Technology Data Exchange (ETDEWEB)

    Zaraska, L; Jaskula, M [Department of Physical Chemistry and Electrochemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Sulka, G D, E-mail: sulka@chemia.uj.edu.pl

    2009-01-01

    The influence of the process duration, anodizing potential and methanol addition on the structural features of porous anodic alumina formed in a 0.3 M H{sub 3}PO{sub 4} solutions by twostep self-organized anodizing was investigated for potentials ranging from 100 to 170 V. The structural features of porous structures including pore diameter and interpore distance were evaluated from FE-SEM top-view images for samples anodized in the presence and absence of methanol. For the highest studied anodizing time and methanol volume fraction, an excellent agreement between experimental values of the interpore distance and theoretical predictions was observed. The pore arrangement regularity was analyzed for various electrolyte compositions and anodizing potentials. It was found that the regularity ratio of porous alumina increases linearly with increasing anodizing potential and time. The addition of methanol improves the quality of nanostructures and especially better uniformity of pore sizes is observed in the presence of the highest studied methanol content.

  1. Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials

    Science.gov (United States)

    Zaraska, L.; Sulka, G. D.; Jaskuła, M.

    2009-01-01

    The influence of the process duration, anodizing potential and methanol addition on the structural features of porous anodic alumina formed in a 0.3 M H3PO4 solutions by twostep self-organized anodizing was investigated for potentials ranging from 100 to 170 V. The structural features of porous structures including pore diameter and interpore distance were evaluated from FE-SEM top-view images for samples anodized in the presence and absence of methanol. For the highest studied anodizing time and methanol volume fraction, an excellent agreement between experimental values of the interpore distance and theoretical predictions was observed. The pore arrangement regularity was analyzed for various electrolyte compositions and anodizing potentials. It was found that the regularity ratio of porous alumina increases linearly with increasing anodizing potential and time. The addition of methanol improves the quality of nanostructures and especially better uniformity of pore sizes is observed in the presence of the highest studied methanol content.

  2. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Junhua; Yan, Pengfei; Luo, Langli; Qi, Xingguo; Rong, Xiaohui; Zheng, Jianming; Xiao, Biwei; Feng, Shuo; Wang, Chongmin; Hu, Yong-Sheng; Lin, Yuehe; Sprenkle, Vincent L.; Li, Xiaolin

    2017-10-01

    Despite great advances in sodium-ion battery developments, the search for high energy and stable anode materials remains a challenge. Alloy or conversion-typed anode materials are attractive candidates of high specific capacity and low voltage potential, yet their applications are hampered by the large volume expansion and hence poor electrochemical reversibility and fast capacity fade. Here, we use antimony (Sb) as an example to demonstrate the use of yolk-shell structured anodes for high energy Na-ion batteries. The Sb@C yolk-shell structure prepared by controlled reduction and selective removal of Sb2O3 from carbon coated Sb2O3 nanoparticles can accommodate the Sb swelling upon sodiation and improve the structural/electrical integrity against pulverization. It delivers a high specific capacity of ~554 mAh•g-1, good rate capability (315 mhA•g-1 at 10C rate) and long cyclability (92% capacity retention over 200 cycles). Full-cells of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2 cathodes and Sb@C-hard carbon composite anodes demonstrate a high specific energy of ~130 Wh•kg-1 (based on the total mass of cathode and anode) in the voltage range of 2.0-4.0 V, ~1.5 times energy of full-cells with similar design using hard carbon anodes.

  3. An auto-triggered anode potential lowering method on increase of after-pulses in a GM-counter

    International Nuclear Information System (INIS)

    Igarashi, Ryuji; Narita, Yuichi

    1982-01-01

    The number of after-pulses generated in an organic quenching GM-counter depends on the pulsed radiation intensity, and it can be usable for the intensity measurement. The increase of the number of after-pulse occurrence (occurring rate) per one exposure to pulsed radiation improves the efficiency in intensity measurement, and is effective to the measurement in low intensity region. The attempt to increase the number of after-pulse factors, to hold those in a GM-counter for more than the dead time and further to improve the after-pulse yield is the presently reported auto-triggered anode potential lowering method. In this report, the experimental apparatus and its procedure are described, and the experimental results about the dependence of after-pulse occurring rate are described on the anode potential lowering duration, on the lowered anode potential, on the high anode potential, and on the intensity of pulsed X-ray. The after-pulse occurring rate by this method showed the dependence on radiation intensity in the range from 4.5 x 10 -4 to 1.1 x 10 -2 mu R/burst, and the occurrence rate can be increased up to about 40 times as much as the mode to lower anode potential only during exposure in this range. (Wakatsuki, Y.)

  4. The effect of an auxiliary discharge on anode sheath potentials in a transverse discharge

    International Nuclear Information System (INIS)

    Foster, J.E.; Gallimore, A.D.

    1997-01-01

    A novel scheme that employs the use of an auxiliary discharge has been shown to reduce markedly anode sheath potentials in a transverse discharge. An 8.8 A low-pressure argon discharge in the presence of a transverse magnetic field was used as the plasma source in this study. In such discharges, the transverse flux that is collected by the anode is severely limited due to marked reductions in the transverse diffusion coefficient. Findings of this study indicate that the local electron number density and the transverse flux increase when the auxiliary discharge is operated. Changes in these parameters are reflected in the measured anode sheath voltage. Anode sheath potentials, estimated by using Langmuir probes, were shown to be reduced by over 33% when the auxiliary discharge is operated. These reductions in anode sheath potentials translated into significant reductions in anode power flux as measured using water calorimeter techniques. The reductions in anode power flux also correlate well with changes in the electron transverse flux. Finally, techniques implementing these positive effects in real plasma accelerators are discussed. copyright 1997 American Institute of Physics

  5. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    Science.gov (United States)

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.

  6. Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization

    International Nuclear Information System (INIS)

    Lee, Woo; Kim, Jae-Cheon

    2010-01-01

    A new anodization method for the preparation of nanoporous anodic aluminum oxide (AAO) with pattern-addressed pore structure was developed. The approach is based on pulse anodization of aluminum employing a series of potential waves that consist of two or more different pulses with designated periods and amplitudes, and provides unique tailoring capability of the internal pore structure of anodic alumina. Pores of the resulting AAOs exhibit a high degree of directional coherency along the pore axes without branching, and thus are suitable for fabricating novel nanowires or nanotubes, whose diameter modulation patterns are predefined by the internal pore geometry of AAO. It is found from microscopic analysis on pulse anodized AAOs that the effective electric field strength at the pore base is a key controlling parameter, governing not only the size of pores, but also the detailed geometry of the barrier oxide layer.

  7. Generation of high brightness ion beam from insulated anode PED

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu

    1988-01-01

    Generation and focusing of a high density ion beam with high brightness from a organic center part of anode of a PED was reported previously. Mass, charge and energy distribution of this beam were analyzed. Three kind of anode were tried. Many highly ionized medium mass ions (up to C 4+ , O 6+ ) accelarated to several times of voltage difference between anode and cathode were observed. In the case of all insulator anode the current carried by the medium mass ions is about half of that carried by protons. (author)

  8. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.

    Science.gov (United States)

    Ye, Bo; Luo, Haiping; Lu, Yaobin; Liu, Guangli; Zhang, Renduo; Li, Xiao

    2017-11-01

    The aim of this study was to improve performance of the microbial electrolysis desalination and chemical-production cell (MEDCC) using enlarged anode and high applied voltages. MEDCCs with anode lengths of 9 and 48cm (i.e., the 9cm-anode MEDCC and 48cm-anode MEDCC, respectively) were tested under different voltages (1.2-3.0V). Our results demonstrated for the first time that the MEDCC could maintain high performance even under the applied voltage higher than that for water dissociation (i.e., 1.8V). Under the applied voltage of 2.5V, the maximum current density in the 48cm-anode MEDCC reached 32.8±2.6A/m 2 , which is one of the highest current densities reported so far in the bioelectrochemical system (BES). The relative abundance of Geobacter was changed along the anode length. Our results show the great potential of the BES with enlarged anode and high applied voltages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Abd-Elnaiem, Alaa M.; Mebed, A.M.; El-Said, Waleed Ahmed; Abdel-Rahim, M.A.

    2014-01-01

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  10. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  11. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  12. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  13. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  14. CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes

    International Nuclear Information System (INIS)

    Wang, Qi; Zhao, Jun; Shan, Wanfei; Xia, Xinbei; Xing, Lili; Xue, Xinyu

    2014-01-01

    Highlights: • CuO/GNS nanocomposites are synthesized by a hydrothermal method. • CuO/GNSs as LIB anodes exhibit much higher cyclability and capacity than CuO nanostructures. • Such excellent performances can be attributed to the synergistic effect between CuO and GNSs. -- Abstract: CuO/graphene nanocomposites are synthesized by a hydrothermal method, and their application as anodes of lithium-ion batteries has been investigated. CuO nanorods are uniformly coating on the surface of graphene nanosheets. CuO/graphene nanocomposites exhibit high cyclability and capacity. After 50 cycles, the capacity can maintain at 692.5 mA h g −1 at 0.1 C rate (10 h per half cycle). Such a high performance can be attributed to the synergistic effect between graphene nanosheets and CuO nanorods. The present results indicate that CuO/graphene nanocomposites have potential applications in the anodes of lithium-ion battery

  15. High-performance lithium battery anodes using silicon nanowires.

    Science.gov (United States)

    Chan, Candace K; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  16. Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential

    KAUST Repository

    Nam, Joo-Youn

    2011-08-01

    Hydrogen production in a microbial electrolysis cell (MEC) can be achieved by either setting the anode potential with a potentiostat, or by adding voltage to the circuit with a power source. In batch tests the largest total gas production (46 ± 3 mL), lowest energy input (2.3 ± 0.3 kWh/m 3 of H2 generated), and best overall energy recovery (E+S = 58 ± 6%) was achieved at a set anode potential of EAn = -0.2 V (vs Ag/AgCl), compared to set potentials of -0.4 V, 0 V and 0.2 V, or an added voltage of Eap = 0.6 V. Gas production was 1.4 times higher with EAn = -0.2 V than with Eap = 0.6 V. Methane production was also reduced at set anode potentials of -0.2 V and higher than the other operating conditions. Continuous flow operation of the MECs at the optimum condition of EAn = -0.2 V initially maintained stable hydrogen gas production, with 68% H2 and 21% CH4, but after 39 days the gas composition shifted to 55% H2 and 34% CH 4. Methane production was not primarily anode-associated, as methane was reduced to low levels by placing the anode into a new MEC housing. These results suggest that MEC performance can be optimized in terms of hydrogen production rates and gas composition by setting an anode potential of -0.2 V, but that methanogen proliferation must be better controlled on non-anodic surfaces. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  17. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Science.gov (United States)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  18. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  19. Modified stainless steel for high performance and stable anode in microbial fuel cells

    International Nuclear Information System (INIS)

    Peng, Xinwen; Chen, Shuiliang; Liu, Lang; Zheng, Suqi; Li, Ming

    2016-01-01

    Graphical abstract: A high performance and stable anode was prepared for microbial fuel cells by surface modification of stainless steel mesh including steps of acid etching, binder-free carbon black (CB) coating and the low-temperature heat treatment below 400 °C. The modified anode could deliver a stable and high current density of 1.91 mA cm −2 . - Highlights: • A high-performance anode for MFC is prepared by surface modification of SSM. • The modified SSM could generate a high current density of up to 1.91 mA cm −2 . • The formation of Fe 3 O 4 layer enhanced the interaction between the CB and SSM. • The modified SSM was stable under the potential of +0.2 V (vs. Ag/AgCl). • The modified SSM was an ideal anode for upscaling applications of MFCs. - Abstract: The surface modification of the stainless steel mesh (SSM) was conducted by acid etching, binder-free carbon black (CB) coating and the low-temperature heat treatment below 400 °C to improve the microbial bioelectrocatalytic activity for use as high-performance anode in microbial fuel cells. The modified SSM, such as SSM/CB-400, could generate a high current density of up to 1.91 mA cm −2 , which was nearly three orders of magnitude higher than the untreated SSM electrode (0.0025 mA cm −2 ). Moreover, it was stable and recovered the equal current density after removal of the formed biofilms. Surface characterization results demonstrate that the performance improvement was attributed to the CB/Fe 3 O 4 composite layer formed onto the surface of the SSM, which protected the biofilms from being poisoned by the Cr component in the SSM and ensured a rapid electron transfer from biofilms to the SSM surface. The CB/Fe 3 O 4 composite layer showed excellent corrosion-resistant under the oxidizing potential of + 0.2 V (vs. Ag/AgCl). Rising the heating temperature to 500 °C, the SSM-500 and SSM/CB-500 electrodes suffered from corrosion due to the formation of α-Fe 2 O 3 crystals.

  20. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  1. Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization

    Science.gov (United States)

    Pishkar, Negin; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-06-01

    Highly ordered hexagonal closely packed titanium dioxide nanotubes (TiO2 NTs) were successfully grown by a two-step anodization process. The TiO2 NTs were synthesized by electrochemical anodization of titanium foils in an ethylene glycol based electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized (DI) water at constant potential (50 V) for 1 h at room temperature. Physical properties of the TiO2 NTs, which were prepared via one and two-step anodization, were investigated. Atomic Force Microscopy (AFM) analysis revealed that anodization and subsequently peeled off the TiO2 NTs caused to the periodic pattern on the Ti surface. In order To study the nanotubes morphology, Field Emission Scanning Electron Microscopy (FESEM) was used, which was revealed that the two-step anodization resulted highly ordered hexagonal TiO2 NTs. Crystal structures of the TiO2 NTs were mainly anatase, determined by X-ray diffraction analysis. Optical studies were performed by Diffuse Reflection Spectra (DRS) and Photoluminescence (PL) analysis showed that the band gap of TiO2 NTs prepared via two-step anodization was lower than the band gap of samples prepared by one-step anodization process.

  2. Lithiation Kinetics in High-Performance Porous Vanadium Nitride Nanosheet Anode

    International Nuclear Information System (INIS)

    Peng, Xiang; Li, Wan; Wang, Lei; Hu, Liangsheng; Jin, Weihong; Gao, Ang; Zhang, Xuming; Huo, Kaifu; Chu, Paul K.

    2016-01-01

    Vanadium nitride (VN) is promising in lithium ion battery (LIB) anode due to its high energy density, chemical stability, and corrosion resistivity. Herein, porous VN nanosheets are synthesized hydrothermally followed by an ammonia treatment. The porous nanosheets offer a large interfacial area between the electrode and electrolyte as well as short Li + diffusion path and consequently, the VN nanosheets electrode has high capacity and rate capability as an anode in LIB. The VN anode delivers a high reversible capacity of 455 mAh g −1 at a current density of 100 mA g −1 and it remains at 341 mAh g −1 when the current density is increased to 1 A g −1 . The charge transfer and Li + diffusion kinetics during the lithiation process is studied systematically. A highly stable SEI film is formed during the initial discharging-charging cycles to achieve a long cycle life and sustained capacity at a high level for 250 discharging-charging cycles without deterioration. This work demonstrates the preparation of high-performance LIB anode materials by a simple method and elucidates the lithiation kinetics.

  3. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  4. Porous carbon-free SnSb anodes for high-performance Na-ion batteries

    Science.gov (United States)

    Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min

    2018-05-01

    A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.

  5. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  6. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode.

    Science.gov (United States)

    Tao, Yifei; Liu, Qiongzhen; Chen, Jiahui; Wang, Bo; Wang, Yuedan; Liu, Ke; Li, Mufang; Jiang, Haiqing; Lu, Zhentan; Wang, Dong

    2016-07-19

    Microbial fuel cells (MFCs) encompass complex bioelectrocatalytic reactions that converting chemical energy of organic compounds to electrical energy. Improving the anode configuration is thought to be a critical step for enhancing MFCs performance. In present study, a hierarchically structured textile polypyrrole/poly(vinyl alcohol-co-polyethylene) nanofibers/poly(ethylene terephthalate) (referred to PPy/NFs/PET) is shown to be excellent anode for MFCs. This hierarchical PPy/NFs/PET anode affords an open porous and three-dimensional interconnecting conductive scaffold with larger surface roughness, facilitating microbial colonization and electron transfer from exoelectrogens to the anode. The mediator-less MFC equipped with PPy/NFs/PET anode achieves a remarkable maximum power density of 2420 mW m(-2) with Escherichia coli as the microbial catalyst at the current density of 5500 mA m(-2), which is approximately 17 times higher compared to a reference anode PPy/PET (144 mW m(-2)). Considering the low cost, low weight, facile fabrication, and good winding, this PPy/NFs/PET textile anode promises a great potential for high-performance and cost-effective MFCs in a large scale.

  7. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Hsia, Chen-Hsien

    2015-01-01

    Titanium oxynitride (TiO_xN_y) was synthesized by reactive magnetron sputtering in a mixed N_2/O_2/Ar gas at ambient temperature. TiO_xN_y thin films with various amounts of nitrogen contents were deposited by varying the N_2/O_2 ratios in the background gas. The synthesized TiO_xN_y films with different compositions (TiO_1_._8_3_7N_0_._0_6_0_, TiO_1_._8_9_0N_0_._0_6_8_, TiO_1_._8_6_5N_0_._0_7_3, and TiO_1_._8_8_2N_0_._1_6_3) all displayed anatase phase, except TiO_1_._8_8_2N_0_._1_6_3. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO_xN_y and pure TiO_2 as anodes for lithium-ion batteries. These TiO_xN_y anodes can be cycled under high rates of 125 μA/cm"2 (10 °C) because of the lower charge–transfer resistance compared with the TiO_2 anode. At 10 °C the discharge capacity of the optimal TiO_xN_y composition is 1.5 times higher than that of pure TiO_2. An unexpectedly large reversible capacity of ~ 300 μAh/cm"2 μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO_xN_y anodes. The TiO_xN_y anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm"2 μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO_xN_y) thin films as anode materials were studied. • TiO_xN_y thin films with various amounts of nitrogen contents were studied_. • High rate capability of TiO_xN_y was studied.

  8. Magnesium stannide as a high-capacity anode for magnesium-ion batteries

    Science.gov (United States)

    Nguyen, Dan-Thien; Song, Seung-Wan

    2017-11-01

    Driven by the limited global resources of lithium, magnesium metal batteries are considered as potential energy storage systems. The battery chemistry of magnesium metal anode, however, limits the selection of electrolytes, cathode materials and working temperature, making the realization of magnesium metal batteries complicated. Herein, we report the development of a new magnesium-insertion anode, magnesium stannide (Mg2Sn), and demonstrate reversible electrochemical Mg2+-extraction and insertion of Mg2Sn anode at 0.2 V versus Mg, delivering discharge capacity of 270 mAhg-1 in a half-cell with the electrolyte of PhMgCl/THF and enabling of room temperature magnesium-ion batteries with Mg2Sn anode combined with Mg-free oxide cathode and conventional-type electrolyte of Mg(TFSI)2/diglyme. The combination of Mg2Sn anode with various cathodes and electrolytes holds great promise for enabling room temperature magnesium-ion batteries.

  9. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian; Lin, Nan; Zhang, Wenli; Lin, Zheqi; Zhang, Ziqing; Wang, Yue; Shi, Jun; Bao, Jinpeng; Lin, Haibo

    2018-01-01

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  10. Highly reversible lead-carbon battery anode with lead grafting on the carbon surface

    KAUST Repository

    Yin, Jian

    2018-03-27

    A novel C/Pb composite has been successfully prepared by electroless plating to reduce the hydrogen evolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The deposited lead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Because lead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogen evolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead. Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge–discharge reversibility, which is attributed to the good connection between carbon additives and lead that has been stuck on the surface of C/Pb composite during the preparation process. The addition of C/Pb composite maintains a solid anode structure with high specific surface area and power volume, and thereby, it plays a significant role in the highly reversible lead-carbon anode.

  11. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  12. Effects Of Anodic Protection On SCC Behavior Of X80 Pipeline Steel In High-pH Carbonate-Bicarbonate Solution

    Directory of Open Access Journals (Sweden)

    Zhao W.

    2015-06-01

    Full Text Available The potentiodynamic polarization test and slow strain rate tensile tests of X80 pipeline steel were performed in 0.5M Na2CO3-1M NaHCO3 solution to study the electrochemical and stress corrosion cracking properties. The results of potentiodynamic polarization test show that there is an obvious stable passive region, about from 0v to 0.8V (SCE, indicating that anodic protection is feasible. The results of slow strain rate tensile tests show that the stress corrosion cracking sensibility is high and cathodic protection effect is restricted due to the hydrogen permeation. However, the elongation, yielding strength and tensile strength all increase with anodic protection. The higher anodic protection potential in the stable passive region is benefit to improve tensile strength and yielding strength. However, the higher elongation is obtained at 0.5V (SCE anodic protection potential.

  13. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    Science.gov (United States)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  14. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    Science.gov (United States)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  15. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuo-Feng [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Su, Shih-Hsuan, E-mail: minimono42@gmail.com [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Leu, Hoang-Jyh [Master' s Program of Green Energy Science and Technology, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Hsia, Chen-Hsien [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China)

    2015-12-01

    Titanium oxynitride (TiO{sub x}N{sub y}) was synthesized by reactive magnetron sputtering in a mixed N{sub 2}/O{sub 2}/Ar gas at ambient temperature. TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were deposited by varying the N{sub 2}/O{sub 2} ratios in the background gas. The synthesized TiO{sub x}N{sub y} films with different compositions (TiO{sub 1.837}N{sub 0.060,} TiO{sub 1.890}N{sub 0.068,} TiO{sub 1.865}N{sub 0.073}, and TiO{sub 1.882}N{sub 0.163}) all displayed anatase phase, except TiO{sub 1.882}N{sub 0.163}. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO{sub x}N{sub y} and pure TiO{sub 2} as anodes for lithium-ion batteries. These TiO{sub x}N{sub y} anodes can be cycled under high rates of 125 μA/cm{sup 2} (10 °C) because of the lower charge–transfer resistance compared with the TiO{sub 2} anode. At 10 °C the discharge capacity of the optimal TiO{sub x}N{sub y} composition is 1.5 times higher than that of pure TiO{sub 2}. An unexpectedly large reversible capacity of ~ 300 μAh/cm{sup 2} μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO{sub x}N{sub y} anodes. The TiO{sub x}N{sub y} anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm{sup 2} μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO{sub x}N{sub y}) thin films as anode materials were studied. • TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were studied{sub .} • High rate capability of TiO{sub x}N{sub y} was studied.

  16. Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances

    KAUST Repository

    Sun, Dan

    2011-10-24

    Formic acid is a highly energetic electron donor but it has previously resulted in low power densities in microbial fuel cells (MFCs). Three different set anode potentials (-0.30, -0.15, and +0.15V; vs. a standard hydrogen electrode, SHE) were used to evaluate syntrophic interactions in bacterial communities for formic acid degradation relative to a non-controlled, high resistance system (1,000Ω external resistance). No current was generated at -0.30V, suggesting a lack of direct formic acid oxidation (standard reduction potential: -0.40V). More positive potentials that allowed for acetic acid utilization all produced current, with the best performance at -0.15V. The anode community in the -0.15V reactor, based on 16S rDNA clone libraries, was 58% Geobacter sulfurreducens and 17% Acetobacterium, with lower proportions of these genera found in the other two MFCs. Acetic acid was detected in all MFCs suggesting that current generation by G. sulfurreducens was dependent on acetic acid production by Acetobacterium. When all MFCs were subsequently operated at an external resistance for maximum power production (100Ω for MFCs originally set at -0.15 and +0.15V; 150Ω for the control), they produced similar power densities and exhibited the same midpoint potential of -0.15V in first derivative cyclic voltammetry scans. All of the mixed communities converged to similar proportions of the two predominant genera (ca. 52% G. sulfurreducens and 22% Acetobacterium). These results show that syntrophic interactions can be enhanced through setting certain anode potentials, and that long-term performance produces stable and convergent communities. © 2011 Wiley Periodicals, Inc.

  17. Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances

    KAUST Repository

    Sun, Dan; Call, Douglas F.; Kiely, Patrick D.; Wang, Aijie; Logan, Bruce E.

    2011-01-01

    Formic acid is a highly energetic electron donor but it has previously resulted in low power densities in microbial fuel cells (MFCs). Three different set anode potentials (-0.30, -0.15, and +0.15V; vs. a standard hydrogen electrode, SHE) were used to evaluate syntrophic interactions in bacterial communities for formic acid degradation relative to a non-controlled, high resistance system (1,000Ω external resistance). No current was generated at -0.30V, suggesting a lack of direct formic acid oxidation (standard reduction potential: -0.40V). More positive potentials that allowed for acetic acid utilization all produced current, with the best performance at -0.15V. The anode community in the -0.15V reactor, based on 16S rDNA clone libraries, was 58% Geobacter sulfurreducens and 17% Acetobacterium, with lower proportions of these genera found in the other two MFCs. Acetic acid was detected in all MFCs suggesting that current generation by G. sulfurreducens was dependent on acetic acid production by Acetobacterium. When all MFCs were subsequently operated at an external resistance for maximum power production (100Ω for MFCs originally set at -0.15 and +0.15V; 150Ω for the control), they produced similar power densities and exhibited the same midpoint potential of -0.15V in first derivative cyclic voltammetry scans. All of the mixed communities converged to similar proportions of the two predominant genera (ca. 52% G. sulfurreducens and 22% Acetobacterium). These results show that syntrophic interactions can be enhanced through setting certain anode potentials, and that long-term performance produces stable and convergent communities. © 2011 Wiley Periodicals, Inc.

  18. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F.; Kong, Desheng; Criddle, Craig S.; Cui, Yi

    2011-01-01

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  19. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  20. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions.

    Science.gov (United States)

    Li, Y J; Wang, Y G; An, B; Xu, H; Liu, Y; Zhang, L C; Ma, H Y; Wang, W M

    2016-01-01

    A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials.

  1. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  2. Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun

    2018-03-01

    Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    Science.gov (United States)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing

  4. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-01-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  5. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.

    Science.gov (United States)

    Sun, Bing; Li, Peng; Zhang, Jinqiang; Wang, Dan; Munroe, Paul; Wang, Chengyin; Notten, Peter H L; Wang, Guoxiu

    2018-05-31

    Sodium (Na) metal is one of the most promising electrode materials for next-generation low-cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co-doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N- and S-containing functional groups on the carbon nanotubes induce the NSCNTs to be highly "sodiophilic," which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na-metal-based anode (Na/NSCNT anode) exhibits a dendrite-free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium-oxygen (Na-O 2 ) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na-O 2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next-generation high-energy-density sodium-metal batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells

    KAUST Repository

    Rao, Hari Ananda

    2016-12-09

    Anode potential has been shown to be a critical factor in the rate of acetate removal in microbial electrolysis cells (MECs), but studies with fermentable substrates and set potentials are lacking. Here, we examined the impact of three different set anode potentials (SAPs; −0.25, 0, and 0.25 V vs. standard hydrogen electrode) on the electrochemical performance, electron flux to various sinks, and anodic microbial community structure in two-chambered MECs fed with propionate. Electrical current (49–71%) and CH4 (22.9–41%) were the largest electron sinks regardless of the potentials tested. Among the three SAPs tested, 0 V showed the highest electron flux to electrical current (71 ± 5%) and the lowest flux to CH4 (22.9 ± 1.2%). In contrast, the SAP of −0.25 V had the lowest electron flux to current (49 ± 6%) and the highest flux to CH4 (41.1 ± 2%). The most dominant genera detected on the anode of all three SAPs based on 16S rRNA gene sequencing were Geobacter, Smithella and Syntrophobacter, but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers and hydrogenotrophic methanogens in suspension.

  7. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells

    KAUST Repository

    Xie, Xing; Yu, Guihua; Liu, Nian; Bao, Zhenan; Criddle, Craig S.; Cui, Yi

    2012-01-01

    A high-performance microbial fuel cell (MFC) anode was constructed from inexpensive materials. Key components were a graphene-sponge (G-S) composite and a stainless-steel (SS) current collector. Anode fabrication is simple, scalable

  8. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    Science.gov (United States)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  9. Lead dioxide electrodes for high potential anodic processes

    OpenAIRE

    A. B. VELICHENKO; ROSSANO AMADELLI

    2001-01-01

    Doping of PbO2 by cations (Fe3+, Co2+ and Ni2+), by F- and by cations and F- simultaneously is discussed as a way of improving the stability and electrochemical activity in processes occurring at high potentials. Doping allows the control of the amount of structural water in an oxide. Radiotracer experiments showed that high electrodeposition current densities favour the segregation of incorporated tritium (protons) at the surface. On the other hand, fluorine doping results in a marked decrea...

  10. The mechanism behind redox instability of anodes in high-temperature SOFCs

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chung, Charissa; Larsen, Peter Halvor

    2005-01-01

    Bulk expansion of the anode upon oxidation is considered to be responsible for the lack of redox stability in high-temperature solid oxide fuel cells (SOFCs). The bulk expansion of nickel-yttria stabilized zirconia (YSZ) anode materials was measured by dilatometry as a function of sample geometry......, ceramic component, temperature, and temperature cycling. The strength of the ceramic network and the degree of Ni redistribution appeared to be key parameters of the redox behavior. A model of the redox mechanism in nickel-YSZ anodes was developed based on the dilatometry data and macro...

  11. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Chao Yan

    2017-01-01

    Full Text Available Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge–charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.

  12. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  13. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  14. °Enhancing High Temperature Anode Performance with 2° Anchoring Phases

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Robert A. [Montana State Univ., Bozeman, MT (United States); Sofie, Stephen W. [Montana State Univ., Bozeman, MT (United States); Amendola, Roberta [Montana State Univ., Bozeman, MT (United States)

    2015-10-01

    Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant or prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.

  15. Anodal sensory nerve action potentials: From physiological understanding to potential clinical applicability.

    Science.gov (United States)

    Leote, Joao; Pereira, Pedro; Cabib, Christopher; Cipullo, Federica; Valls-Sole, Josep

    2016-06-01

    Low-intensity electrical stimuli of digital nerves may generate a double peak potential (DPp), composed of a cathodal (caAP) and an anodal (anAP) potential in orthodromic recordings. We studied the effects on caAP and anAP of stimuli of variable intensity, duration, and frequency. We also applied a conditioning stimulus to study potential differences in recovery time. The anAP was obtained in 33 of 40 healthy subjects (82.5%) and 4 of 20 patients with various types of sensory neuropathies (20%). Changes in stimulus duration and intensity had reciprocal effects on the amplitude of the anAP and the caAP. There were significant differences in recovery time between caAP and anAP after a conditioning stimulus. The caAP and anAP are 2 interdependent waveforms generated by different effects of the same stimulus over axons at the verge of depolarization. Muscle Nerve 53: 897-905, 2016. © 2015 Wiley Periodicals, Inc.

  16. Facile Fabrication of Ordered Anodized Aluminum Oxide Membranes with Controlled Pore Size by Improved Hard Anodization.

    Science.gov (United States)

    Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong

    2018-05-01

    We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.

  17. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.; Rose, D.V.; Swanekamp, S.B.

    1996-01-01

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs

  18. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, D; Cooperstein, G [Naval Research Laboratory, Washington, DC (United States); Rose, D V; Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs.

  19. The effect of zinc (Zn) content to cell potential value and efficiency aluminium sacrificial anode in 0.2 M sulphuric acid environment

    Science.gov (United States)

    Akranata, Ahmad Ridho; Sulistijono, Awali, Jatmoko

    2018-04-01

    Sacrificial anode is sacirifial component that used to protect steel from corrosion. Generally, the component are made of aluminium and zinc in water environment. Sacrificial anode change the protected metal structure become cathodic with giving current. The advantages of aluminium is corrosion resistance, non toxicity and easy forming. Zinc generally used for coating in steel to prevent steel from corrosion. This research was conducted to analyze the effect of zinc content to the value of cell potential and efficiency aluminium sacrificial anode with sand casting method in 0.2 M sulphuric acid environment. The sacrificial anode fabrication made with alloying aluminium and zinc metals with variation composition of alloy with pure Al, Al-3Zn, Al-6Zn, and Al-9Zn with open die sand casting process. The component installed with ASTM A36 steel. After the research has been done the result showed that addition of zinc content increase the cell potential, protection efficiency, and anode efficiency from steel plate. Cell potential value measurement and weight loss measurement showed that addition of zinc content increase the cell potential value into more positive that can protected the ASTM A36 steel more efficiently that showed in weight loss measurement where the protection efficiency and anodic efficiency of Al-9Zn sacrificial anode is better than protection efficiency and anodic efficiency of pure Al. The highest protection efficiency gotten by Al-9Zn alloy

  20. Anodic behavior of Al-Zn-In sacrificial anodes at different concentration of zinc and indium

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, Ahmad [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering; Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saremi, Mohsen [Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saeri, Mohammad Reza [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2012-12-15

    Al-Zn-In anodes show better performance due to the beneficial effects of Zn and In on prevention of aluminum passivity and producing a homogeneous structure for uniform corrosion of the anodes. However, there are different views about the optimum concentration of each element in the anode. In this study, the anodic behavior of Al-Zn-In alloy with different concentrations of zinc from 1 to 6wt.% and indium from 0.01 to 0.05wt.% are studied. The NACE efficiency test and polarization are used in 3wt.% NaCl solution for corrosion characterization. The results showed that zinc and indium change the anode potential to more active potentials and improve the microstructure uniformity of anodes. The latter leads to more uniform corrosion. Optimum concentrations of zinc (5wt.%) and indium (0.02wt.%) were found in this respect. (orig.)

  1. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  2. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Science.gov (United States)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  3. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    Science.gov (United States)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  4. Constant potential high-voltage generator

    International Nuclear Information System (INIS)

    Resnick, T.A.; Dupuis, W.A.; Palermo, T.

    1980-01-01

    An X-ray tube voltage generator with automatic stabilization circuitry is disclosed. The generator includes a source of pulsating direct current voltage such as from a rectified 3 phase transformer. This pulsating voltage is supplied to the cathode and anode of an X-ray tube and forms an accelerating potential for electrons within that tube. The accelerating potential is stabilized with a feedback signal which is provided by a feedback network. The network includes an error signal generator which compares an instantaneous accelerating potential with a preferred reference accelerating potential and generates an error function. This error function is transmitted to a control tube grid which in turn causes the voltage difference between X-ray tube cathode and anode to stabilize and thereby reduce the error function. In this way stabilized accelerating potentials are realized and uniform X-ray energy distributions produced. (Auth.)

  5. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries.

    Science.gov (United States)

    Han, Chunhua; Han, Kang; Wang, Xuanpeng; Wang, Chenyang; Li, Qi; Meng, Jiashen; Xu, Xiaoming; He, Qiu; Luo, Wen; Wu, Liming; Mai, Liqiang

    2018-04-19

    Antimony (Sb) represents a promising anode for K-ion batteries (KIBs) due to its high theoretical capacity and suitable working voltage. However, the large volume change that occurs in the potassiation/depotassiation process can lead to severe capacity fading. Herein, we report a high-capacity anode material by in situ confining Sb nanoparticles in a three-dimensional carbon framework (3D SbNPs@C) via a template-assisted freeze-drying treatment and subsequent carbothermic reduction. The as-prepared 3D SbNPs@C hybrid material delivers high reversible capacity and good cycling stability when used as the anode for KIBs. Furthermore, cyclic voltammetry and in situ X-ray diffraction analysis were performed to reveal the intrinsic mechanism of a K-Sb alloying reaction. Therefore, this work is of great importance to understand the electrochemical process of the Sb-based alloying reaction and will pave the way for the exploration of high performance KIB anode materials.

  6. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode

    Science.gov (United States)

    Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-10-01

    Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g-1, compared to a value of 7.3 cm2 g-1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g-1 after 50 cycles at a C-rate of C/5 (0.7 A gSi-1) and high areal loading (2 mg cm-2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi-1), the anode maintained a specific capacity of 654.3 mAh g-1 - nearly 2x higher than graphite’s theoretical value (372 mAh g-1).

  7. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode

    Science.gov (United States)

    Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-01-01

    Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g−1, compared to a value of 7.3 cm2 g−1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g−1 after 50 cycles at a C-rate of C/5 (0.7 A gSi−1) and high areal loading (2 mg cm−2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi−1), the anode maintained a specific capacity of 654.3 mAh g−1 – nearly 2x higher than graphite’s theoretical value (372 mAh g−1). PMID:27713474

  8. NaLaTi_2O_6 nanosheet as a potential anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Geng, Qiao; Cao, Liyun; Kong, Xingang; Xu, Zhanwei; Huang, Jianfeng; Li, Jiayin; Cheng, Yayi

    2016-01-01

    Highlights: • NaLaTi_2O_6 nanosheet was achieved by a simple one-step hydrothermal method. • NaLaTi_2O_6 was reported for the first time as an anode material. • NaLaTi_2O_6 shown a high discharge capacity of about 180 mAh/g at 100 mA/g. - Abstract: NaLaTi_2O_6 nanosheet was achieved by one-step hydrothermal method and was reported for the first time as an anode material for lithium ion batteries. The phase structure and morphology analysis reveals that pure pervoskite NaLaTi_2O_6 possesses nanosheet morphology with thickness of about 20 nm and length of several hundred nanometers. The electrochemical performances demonstrate that NaLaTi_2O_6 has a good lithium ion insertion/extraction ability with a discharge capacity of about 180 mAh/g, which is slightly larger than Li_4Ti_5O_1_2 theoretical capacity (175 mAh/g). Even more, after 1000 charge-discharge cycles at 100 mA/g, it still maintains a discharge capacity of 165 mAh/g, suggesting that NaLaTi_2O_6 could be explored as a potential anode material for lithium ion batteries.

  9. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g -1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g -1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  10. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.

    2013-05-28

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase. © 2013 American Physical Society.

  11. Aluminum as anode for energy storage and conversion: a review

    Science.gov (United States)

    Li, Qingfeng; Bjerrum, Niels J.

    Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

  12. Highly reversible zinc metal anode for aqueous batteries

    Science.gov (United States)

    Wang, Fei; Borodin, Oleg; Gao, Tao; Fan, Xiulin; Sun, Wei; Han, Fudong; Faraone, Antonio; Dura, Joseph A.; Xu, Kang; Wang, Chunsheng

    2018-06-01

    Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries because of its high theoretical capacity (820 mA h g-1), low potential (-0.762 V versus the standard hydrogen electrode), high abundance, low toxicity and intrinsic safety. However, aqueous Zn chemistry persistently suffers from irreversibility issues, as exemplified by its low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. In this work, we demonstrate that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address these issues. This unique electrolyte not only enables dendrite-free Zn plating/stripping at nearly 100% CE, but also retains water in the open atmosphere, which makes hermetic cell configurations optional. These merits bring unprecedented flexibility and reversibility to Zn batteries using either LiMn2O4 or O2 cathodes—the former deliver 180 W h kg-1 while retaining 80% capacity for >4,000 cycles, and the latter deliver 300 W h kg-1 (1,000 W h kg-1 based on the cathode) for >200 cycles.

  13. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    Science.gov (United States)

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  14. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  15. The aluminum anode in deep ocean environments

    International Nuclear Information System (INIS)

    Schreiber, C.F.

    1989-01-01

    Results of field and mini-plant studies are presented for A1 + 0.045% Hg + 0.1% Si + 0.45% Zn* and A1 + 0.015% In + 0.1% Si + 3% Zn** anodes in varying depths of natural seawater. Current capacity and potential information are presented. In addition to information on anode current capacity and potential, polarization curves were obtained on both aluminum alloys using potentiostatic techniques at a simulated ocean depth of 1090 ft. (332 m). These data were compared with similarly run experiments at ocean surface pressures. As a basis of comparison, zinc anodes (U.S. Mil-A-18001H) were included as a companion alloy. Information gained on zinc is sufficient to accurately represent the behavior of this alloy. Results conclude that conditions of high pressure (and low temperature) associated with the alloys under test did not alter their galvanic behavior from that noted at the ocean surface

  16. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2008-10-01

    We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.

  17. Understanding anode and cathode behaviour in high-pressure discharge lamps

    Science.gov (United States)

    Flesch, P.; Neiger, M.

    2005-09-01

    High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible

  18. High-speed growth of TiO{sub 2} nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Xiaoliang; Zheng Maojun; Shen Wenzhong [Key Laboratory of Artificial Structures and Quantum Control, Ministry of Education, Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Ma Li, E-mail: mjzheng@sjtu.edu.cn [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-10-08

    Highly ordered TiO{sub 2} nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 {mu}m min{sup -1}), which is nearly 16 times faster than traditional fabrication of TiO{sub 2} at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO{sub 2} nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO{sub 2} nanotubular arrays for practical applications.

  19. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    Science.gov (United States)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  20. Anodic polarization behavior and film breakdown potential of pure copper in the simulated geological environment containing carbonate

    International Nuclear Information System (INIS)

    Kawasaki, Manabu; Taniguchi, Naoki; Naito, Morimasa

    2009-01-01

    In order to clarify the influence of environmental factors on the corrosion behavior of copper overpacks in oxidizing environment, potentiodynamic and potentiostatic anodic polarization tests were performed in carbonate aqueous solutions at 80degC. As the results, the passivation was promoted and film breakdown was suppressed in higher carbonate concentrations, in lower chloride ion concentrations, and in higher pH conditions. The sulfate ion tended to promote the film breakdown of copper. The effects of the composition of the test solutions on the anodic polarization curve of copper in bentonite/sand mixture were quite smaller than those in simple aqueous solution. By comparison with previous data for lower temperature condition, it was clarified that passivation of copper was promoted in higher temperature condition, but breakdown potential, Eb was independent of temperature. The Eb, was expressed as a function of the ratio of aggressive ion and inhibiting ion such as [Cl - ]/[HCO 3 - ] and [SO 4 2- ]/[HCO 3 - ], and it was confirmed that the Eb was lowered with increasing the ratio. When the ratio exceeds a certain value, the Eb was no longer able to be determined since the anodic polarization curve becomes active dissolution type. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. The results of potentiostatic tests showed that pitting corrosion or non-uniform corrosion was observed at the potentials over Eb or second current peak potentials in anodic polarization curve. (author)

  1. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  2. Electrochemical characterization of anode passivation mechanisms in copper electrorefining

    Science.gov (United States)

    Moats, Michael Scott

    Anode passivation can decrease productivity and quality while increasing costs in modern copper electrorefineries. This investigation utilized electrochemical techniques to characterize the passivation behavior of anode samples from ten different operating companies. It is believed that this collection of anodes is the most diverse set ever to be assembled to study the effect of anode composition on passivation. Chronopotentiometry was the main electrochemical technique, employing a current density of 3820 A m-2. From statistical analysis of the passivation characteristics, increasing selenium, tellurium, silver, lead and nickel were shown to accelerate passivation. Arsenic was the only anode impurity that inhibited passivation. Oxygen was shown to accelerate passivation when increased from 500 to 1500 ppm, but further increases did not adversely affect passivation. Nine electrolyte variables were also examined. Increasing the copper, sulfuric acid or sulfate concentration of the electrolyte accelerated passivation. Arsenic in the electrolyte had no effect on passivation. Chloride and optimal concentrations of thiourea and glue delayed passivation. Linear sweep voltammetry, cyclic voltammetry, and impedance spectroscopy provided complementary information. Analysis of the electrochemical results led to the development of a unified passivation mechanism. Anode passivation results from the formation of inhibiting films. Careful examination of the potential details, especially those found in the oscillations just prior to passivation, demonstrated the importance of slimes, copper sulfate and copper oxide. Slimes confine dissolution to their pores and inhibit diffusion. This can lead to copper sulfate precipitation, which blocks more of the surface area. Copper oxide forms because of the resulting increase in potential at the interface between the copper sulfate and anode. Ultimate passivation occurs when the anode potential is high enough to stabilize the oxide film in

  3. Numerical simulation of the ion beam generated in the diode with anode plasma column

    International Nuclear Information System (INIS)

    Vrba, P.; Sunka, P.

    1991-02-01

    The ion beam generation in a high current diode with anode plasma slab was studied. The ions were extracted from the anode plasma by the strong electric field of a deep potential well (virtual cathode), arising after the propagation of relativistic electrons through the anode plasma slab. The movement of this potential well with the front part of the ion beam leads to collective ion acceleration up to the 10 MeV energy range. (author). 7 figs., 5 refs

  4. Highly Conductive, Mechanically Robust, and Electrochemically Inactive TiC/C Nanofiber Scaffold for High-Performance Silicon Anode Batteries

    KAUST Repository

    Yao, Yan; Huo, Kaifu; Hu, Liangbing; Liu, Nian; Cha, Judy J.; McDowell, Matthew T.; Chu, Paul K.; Cui, Yi

    2011-01-01

    Silicon has a high specific capacity of 4200 mAh/g as lithium-ion battery anodes, but its rapid capacity fading due to >300% volume expansion and pulverization presents a significant challenge for practical applications. Here we report a core-shell TiC/C/Si inactive/active nanocomposite for Si anodes demonstrating high specific capacity and excellent electrochemical cycling. The amorphous silicon layer serves as the active material to store Li+, while the inactive TiC/C nanofibers act as a conductive and mechanically robust scaffold for electron transport during the Li-Si alloying process. The core-shell TiC/C/Si nanocomposite anode shows ∼3000 mAh g-1 discharge capacity and 92% capacity retention after 100 charge/discharge cycles. The excellent cycling stability and high rate performance could be attributed to the tapering of the nanofibers and the open structure that allows facile Li ion transport and the high conductivity and mechanical stability of the TiC/C scaffold. © 2011 American Chemical Society.

  5. Highly Conductive, Mechanically Robust, and Electrochemically Inactive TiC/C Nanofiber Scaffold for High-Performance Silicon Anode Batteries

    KAUST Repository

    Yao, Yan

    2011-10-25

    Silicon has a high specific capacity of 4200 mAh/g as lithium-ion battery anodes, but its rapid capacity fading due to >300% volume expansion and pulverization presents a significant challenge for practical applications. Here we report a core-shell TiC/C/Si inactive/active nanocomposite for Si anodes demonstrating high specific capacity and excellent electrochemical cycling. The amorphous silicon layer serves as the active material to store Li+, while the inactive TiC/C nanofibers act as a conductive and mechanically robust scaffold for electron transport during the Li-Si alloying process. The core-shell TiC/C/Si nanocomposite anode shows ∼3000 mAh g-1 discharge capacity and 92% capacity retention after 100 charge/discharge cycles. The excellent cycling stability and high rate performance could be attributed to the tapering of the nanofibers and the open structure that allows facile Li ion transport and the high conductivity and mechanical stability of the TiC/C scaffold. © 2011 American Chemical Society.

  6. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  7. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  8. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  9. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  10. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells

    KAUST Repository

    Xie, Xing

    2012-01-01

    A high-performance microbial fuel cell (MFC) anode was constructed from inexpensive materials. Key components were a graphene-sponge (G-S) composite and a stainless-steel (SS) current collector. Anode fabrication is simple, scalable, and environmentally friendly, with low energy inputs. The SS current collector improved electrode conductivity and decreased voltage drop and power loss. The resulting G-S-SS composite electrode appears promising for large-scale applications. © 2012 The Royal Society of Chemistry.

  11. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    Science.gov (United States)

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  13. Zinc sacrificial anode behavior at elevated temperatures in sodium chloride and tap water environments

    International Nuclear Information System (INIS)

    Othman, Othman Mohsen

    2005-01-01

    Zinc sacrificial anode coupled to mild steel was tested in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified for this study. This was partly due to the high resistivity of the medium. The temperature factor did not help to activate the anode in water tap medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. In tap water environment the anode weight loss was negligible. The zinc anode suffered intergranular corrosion in sodium chloride environment and this was noticed starting at 40 degree centigrade. In tap water environment the zinc anode demonstrated interesting behavior beyond 60 degree centigrade, that could be attributed to the phenomenon of reversal of potential at elevated temperatures. It also showed shallow pitting spots in tap water environment without any sign of intergranular corrosion. Zinc anodes would suffer intergranular corrosion at high temperatures. (author)

  14. Experimental observations of electron-backscatter effects from high-atomic-number anodes in large-aspect-ratio, electron-beam diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cooperstein, G; Mosher, D; Stephanakis, S J; Weber, B V; Young, F C [Naval Research Laboratory, Washington, DC (United States); Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    Backscattered electrons from anodes with high-atomic-number substrates cause early-time anode-plasma formation from the surface layer leading to faster, more intense electron beam pinching, and lower diode impedance. A simple derivation of Child-Langmuir current from a thin hollow cathode shows the same dependence on the diode aspect ratio as critical current. Using this fact, it is shown that the diode voltage and current follow relativistic Child-Langmuir theory until the anode plasma is formed, and then follows critical current after the beam pinches. With thin hollow cathodes, electron beam pinching can be suppressed at low voltages (< 800 kV) even for high currents and high-atomic-number anodes. Electron beam pinching can also be suppressed at high voltages for low-atomic-number anodes as long as the electron current densities remain below the plasma turn-on threshold. (author). 8 figs., 2 refs.

  15. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.

    Science.gov (United States)

    Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki

    2015-04-01

    The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode.

  16. Time and space resolved spectroscopic investigation during anode plume formation in a high-current vacuum arc

    Science.gov (United States)

    Khakpour, A.; Methling, R.; Uhrlandt, D.; Franke, St.; Gortschakow, S.; Popov, S.; Batrakov, A.; Weltmann, K. D.

    2017-05-01

    This paper presents time and space resolved results of spectroscopic measurements during the formation of an anode plume in the late current pulse phase of a high-current vacuum arc. The formation of the anode plume is investigated systematically based on the occurrence of high-current anode spots, depending on gap distance and current for AC 100 Hz and CuCr7525 butt contacts with a diameter of 10 mm. The anode plume is observed after the extinction of anode spot type 2 in which both the anode and cathode are active. It is concluded from the spatial profiles of the atomic and ionic radiation, parallel and perpendicular to anode surface, that the inner part of the plume is dominated by Cu I radiation, whereas a halo of light emitted by Cu II covers the plume. The radiation intensity of Cu III lines is quite low across the whole anode plume. Upper level excited state densities corresponding to Cu I lines at 510.55, 515.32, 521.82, 578.21 nm are determined. The temporal evolution of the resulting excitation temperature in the centre of the plume varies from 8500 K to 6000 K at 500 µs to 100 µs before current zero, respectively. The density calculated for Cu I at position in the plume is in the range of 1-5  ×  1019 m-3.

  17. Magnesium sacrificial anode behavior at elevated temperature

    International Nuclear Information System (INIS)

    Othman, Mohsen Othman

    2006-01-01

    Magnesium sacrificial anode coupled to mild steel was tasted in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified. This was partly due to low conductivity of this medium. The temperature factor did not help to activate the anode in this medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. The weight loss was high for magnesium in sodium chloride environment particularly beyond 60 degree centigrade. In tap water environment the weight loss was negligible for the anode. It also suffered localized shallow pitting corrosion. Magnesium anode cannot be utilized where high temperature is involved particularly in high conductivity mediums. Protection of structures containing high resistivity waters is not feasible using sacrificial anode system. (author)

  18. Anodic polarization of carbon graphite electrodes in chloride fluoride melts zirconium containing

    International Nuclear Information System (INIS)

    Lyapustin, A.A.; Kanashin, Yu.P.; Nichkov, I.F.; Smyshlyaev, V.Yu.

    1985-01-01

    Polarization of carbon graphite anodes in zircorium containing chloride fluoride melts of the KCl-K 2 ZrF 6 -KF composition at molar ratios [F]:[Zr] being equal to 6, 12, 18, 24, 30 has been studied. K 2 ZrF 6 concentration constitutes 25; 18.9; 15.2; 12.7; 11.8% (by mass), correspondingly. Vitreous carbon (VC-2500), high purity graphite and graphite EhG-0 have been used as anodic materials. Anodic polarization curves have been obtained under electrotype steady-state conditions at 973, 1023, 1073 K. Influence of concentration of fluorine ions in melt on polarization of carbon graphite anodes is shown. Content growth of fluorine ions in melt leads to shift of steady-state anode potentials to their negative values regardless a graphite mark. The most con siderable potential shift on 0.5 V takes plase at molar ratio [F]:[Zr] increasing from 6 to 12. Temperature increase, as measurements showed, doesn't influence greatly on polarization curve shape

  19. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    International Nuclear Information System (INIS)

    Panizza, M.; Cerisola, G.

    2003-01-01

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO 2 and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes

  20. Understanding focused ion beam guided anodic alumina nanopore development

    International Nuclear Information System (INIS)

    Chen Bo; Lu, Kathy; Tian Zhipeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → We study the effect of FIB patterning on pore evolution during anodization. → FIB patterned concaves with 1.5 nm depth can effectively guide nanopore growth. → The edge effect of FIB guided patterns causes nanopores to bend. → Anodization window is enlarged to 50-80 V for 150 nm interpore distance hexagonal arrays. - Abstract: Focused ion beam (FIB) patterning in combination with anodization has shown great promise in creating unique pore patterns. This work is aimed to understand the effect of the FIB patterned sites in guiding anodized pore development. Highly ordered porous anodic alumina has been created with the guidance of FIB created patterns on electropolished aluminum followed by oxalic acid anodization. Shallow concaves created by the FIB with only 1.5 nm depth can effectively guide the growth of ordered nanopore patterns. With the guidance of the FIB pattern, the anodization rate is much faster and the nanopore growth direction bends at the boundary of the FIB patterned and un-patterned regions. FIB patterning also enlarges the anodization window; ordered nanopore arrays with 150 nm interpore distances can be produced under an applied potential from 50 V to 80 V. The fundamental understanding of these unique processes is discussed.

  1. Three-dimensional graphene foam supported Fe₃O₄ lithium battery anodes with long cycle life and high rate capability.

    Science.gov (United States)

    Luo, Jingshan; Liu, Jilei; Zeng, Zhiyuan; Ng, Chi Fan; Ma, Lingjie; Zhang, Hua; Lin, Jianyi; Shen, Zexiang; Fan, Hong Jin

    2013-01-01

    Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe3O4 onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe3O4 in lithium ion battery to date.

  2. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation

    International Nuclear Information System (INIS)

    Zhu, X. P.; Dong, Z. H.; Han, X. G.; Xin, J. P.; Lei, M. K.

    2007-01-01

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation

  3. Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential

    KAUST Repository

    Nam, Joo-Youn; Tokash, Justin C.; Logan, Bruce E.

    2011-01-01

    = 0.6 V. Gas production was 1.4 times higher with EAn = -0.2 V than with Eap = 0.6 V. Methane production was also reduced at set anode potentials of -0.2 V and higher than the other operating conditions. Continuous flow operation of the MECs

  4. Modelling of crater formation on anode surface by high-current vacuum arcs

    Science.gov (United States)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  5. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  6. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  7. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G

    2003-10-15

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO{sub 2} and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes.

  8. Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Hu Renzong; Zhu Min; Wang Hui; Liu Jiangwen; Liuzhang Ouyang; Zou Jin

    2012-01-01

    By applying the shape memory effect of the NiTi alloys to buffer the Sn anodes, we demonstrate a simple approach to overcome a long-standing challenge of Sn anode in the applications of Li-ion batteries – the capacity decay. By supporting the Sn anodes with NiTi shape memory alloys, the large volume change of Sn anodes due to lithiation and delithiation can be effectively accommodated, based on the stress-induced martensitic transformation and superelastic recovery of the NiTi matrix respectively, which leads to a decrease in the internal stress and closing of cracks in Sn anodes. Accordingly, stable cycleability (630 mA h g −1 after 100 cycles at 0.7C) and excellent high-rate capabilities (478 mA h g −1 at 6.7C) were attained with the NiTi/Sn/NiTi film electrode. These shape memory alloys can also combine with other high-capacity metallic anodes, such as Si, Sb, Al, and improve their cycle performance.

  9. Resistive switching in microscale anodic titanium dioxide-based memristors

    Science.gov (United States)

    Aglieri, V.; Zaffora, A.; Lullo, G.; Santamaria, M.; Di Franco, F.; Lo Cicero, U.; Mosca, M.; Macaluso, R.

    2018-01-01

    The potentiality of anodic TiO2 as an oxide material for the realization of resistive switching memory cells has been explored in this paper. Cu/anodic-TiO2/Ti memristors of different sizes, ranging from 1 × 1 μm2 to 10 × 10 μm2 have been fabricated and characterized. The oxide films were grown by anodizing Ti films, using three different process conditions. Measured IV curves have shown similar asymmetric bipolar hysteresis behaviors in all the tested devices, with a gradual switching from the high resistance state to the low resistance state and vice versa, and a ROFF/RON ratio of 80 for the thickest oxide film devices.

  10. Preparation of iron metal nano solution by anodic dissolution with high voltage

    International Nuclear Information System (INIS)

    Nguyen Duc Hung; Do Thanh Tuan

    2012-01-01

    Iron nano metal solution is prepared from anodic dissolution process with ultra- high Dc voltage. The size and shape of iron nanoparticles determined by Tem images and particle size distribution on the device LA-950 Laser Scattering Particle Distribution Analyzer V2. The concentration of nano-iron solution was determined by the analytical methods AAS atomic absorption spectrometry and Faraday's law. The difference in concentration of both methods demonstrated outside the anodic dissolution process has created the water electrolysis to form H 2 and O 2 gases and heating the solution. (author)

  11. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  12. An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection

    International Nuclear Information System (INIS)

    Dueraning, Anisah; Kanatharana, Proespichaya; Thavarungkul, Panote; Limbut, Warakorn

    2016-01-01

    This work reports on a novel polyeriochrome black T (poly(EBT) modified electrode for use as an environmentally-friendly electrode material that extends the cathodic potential window and improves the sensitivity and repeatability to detect zinc in industrial wastewater. The poly(EBT) film on the GCE surface was fabricated by electropolymerization. The surface morphology and electrochemical behavior of the modified electrode were characterized by scanning electron microscopy, fourier transform infrared spectroscopy and anodic stripping voltammetry. Under optimal conditions, the poly(EBT)/GCE exhibited a high hydrogen overvoltage (extended cathodic potential window). It provided a high sensitivity, a wide linear range (1.0 to 400.0 μg L −1 ), a low detection limit (0.9 μg L −1 ), had excellent repeatability and good recoveries (95% to 105%). This proposed modified electrode was applied to the determination of zinc in wastewater samples, and the results were consistent with those of an inductively coupled plasma atomic emission spectroscopy analysis.

  13. Crack-resistant polyimide coating for high-capacity battery anodes

    Science.gov (United States)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  14. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode

    KAUST Repository

    Mink, Justine E.

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m2 and 19 mW/m2 the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. © 2013 American Chemical Society.

  15. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  16. Development of anodic stripping voltametry for the determination of palladium in high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, T. K. [North Carolina State University, Raleigh (United States); Sharma, H. S.; Affarwal, S. K. [Bhabha Atomic Research Centre, Mumbai (India); Jain, P. C. [Meerut College, Meerut (India)

    2012-12-15

    Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, 10-8 and 10-7 M, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).

  17. Corrosion Prevention of Steel Reinforcement in 7.5% NaCl Solution using Pure Magnesium Anode

    Science.gov (United States)

    Iyer Murthy, Yogesh; Gandhi, Sumit; Kumar, Abhishek

    2018-03-01

    The current work investigates the performance of pure Magnesium on corrosion prevention of steel reinforcements by way of sacrificial anoding. Two set of six steel reinforcements were tested for half-cell potential, weight loss, anode efficiency and tensile strength for each of the sacrificial anodes in a high chloride atmosphere of 7.5% NaCl in tap water. Significant reduction in weight of anode was observed during the initial 12 days. The reduction in weight of steel reinforcements tied with anodes was found to be negligible, while that of reinforcements without anodes was significantly higher. Five distinct zones of corrosion were observed during the test. The tensile strength of steel cathodically protected by Mg alloy anodes was found less affected. It could be concluded that pure Mg anode provides an effective way of corrosion mitigation.

  18. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    Science.gov (United States)

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  19. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  20. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    Science.gov (United States)

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    Science.gov (United States)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  2. High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.

    Science.gov (United States)

    Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-28

    Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.

  3. Nanotemplated platinum fuel cell catalysts and copper-tin lithium battery anode materials for microenergy devices

    Energy Technology Data Exchange (ETDEWEB)

    Rohan, J.F., E-mail: james.rohan@tyndall.ie [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Hasan, M.; Holubowitch, N. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2011-11-01

    Highlights: > Anodic Aluminum oxide formation on Si substrate. > High density nanotemplated Pt catalyst on Si for integrated energy and electronics. > CuSn alloy deposition from a single, high efficiency methanesulfonate plating bath. > Nanotemplated CuSn Li anode electrodes with high capacity retention. - Abstract: Nanotemplated materials have significant potential for applications in energy conversion and storage devices due to their unique physical properties. Nanostructured materials provide additional electrode surface area beneficial for energy conversion or storage applications with short path lengths for electronic and ionic transport and thus the possibility of higher reaction rates. We report on the use of controlled growth of metal and alloy electrodeposited templated nanostructures for energy applications. Anodic aluminium oxide templates fabricated on Si for energy materials integration with electronic devices and their use for fuel cell and battery materials deposition is discussed. Nanostructured Pt anode catalysts for methanol fuel cells are shown. Templated CuSn alloy anodes that possess high capacity retention with cycling for lithium microbattery integration are also presented.

  4. Battery designs with high capacity anode materials and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  5. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  6. One Step Hydrothermal Synthesis of FeCO3 Cubes for High Performance Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Zhang, Congcong; Liu, Weijian; Chen, Dongyang; Huang, Jiayi; Yu, Xiaoyuan; Huang, Xueyan; Fang, Yueping

    2015-01-01

    Highlights: • FeCO 3 nanocubes with edge length of ∼300 nm were prepared. • A reversible capacity of 761 mAh g −1 was achieved at 200 mA g −1 after 130 cycles. • Cyclic voltammetry and electrochemical impedance were employed to understand the cell performances. - Abstract: Uniform FeCO 3 cubes with edge length of ∼300 nm were prepared by a facile one-step hydrothermal reaction and studied as anode material for lithium-ion batteries. Interestingly, the FeCO 3 anode has an extremely high initial specific capacity of 1796 mAh g −1 . After cycling at a current rate of 200 mA g −1 for 130 cycles, an excellent discharge capacity of 761 mAh g −1 is still maintained. Moreover, the FeCO 3 anode exhibits significant high-rate capability, e.g., ∼430 mAh g −1 is obtained at a current rate of 1200 mA g −1 . The observation of the FeCO 3 cubes represents an important development of realizing both high capacity and good cycleability in conversion type anode materials for lithium-ion battery at the same time. Such cheap, easy-to-make, and environmentally benign material is promising for practical deployment for lithium ion batteries anode.

  7. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shizhong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: shizwang@sohu.com; He, Qiong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: meilin.liu@mse.gatech.edu

    2009-06-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  8. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Wang Shizhong; He, Qiong; Liu Meilin

    2009-01-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  9. Liquid-metal-jet anode electron-impact x-ray source

    International Nuclear Information System (INIS)

    Hemberg, O.; Otendal, M.; Hertz, H.M.

    2003-01-01

    We demonstrate an anode concept, based on a liquid-metal jet, for improved brightness in compact electron-impact x-ray sources. The source is demonstrated in a proof-of-principle experiment where a 50 keV, ∼100 W electron beam is focused on a 75 μm liquid-solder jet. The generated x-ray flux and brightness is quantitatively measured in the 7-50 keV spectral region and found to agree with theory. Compared to rotating-anode sources, whose brightness is limited by intrinsic thermal properties, the liquid-jet anode could potentially be scaled to achieve a brightness >100x higher than current state-of-the-art sources. Applications such as mammography, angiography, and diffraction would benefit from such a compact high-brightness source

  10. Structural-morphological variations in pseudo-barrier films of anode aluminium oxide under irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    Comparative study of structural-morphological variations under electron beam effect in pseudo-barrier films of anode aluminium oxide, obtained in seven different solutions and proton or X-rays pre-irradiated to determine structure peculiarities of anode aluminium oxides, is presented. Such study is a matter of interest from the solid-phase transformation theory point of view and for anode aluminium films application under radiation. Stability increase of pseudo-barrier films of anode aluminium oxide to the effect of UEhMV-100 K microscope electron beam at standard modes of operation (75 kV) due to proton or X-rays irradiation is found. Difference in structural-monorphological variations obtained in different solutions of anode aluminium films under high-energy particles irradiation is determined. Strucural-phase microinhomogeneity of amorphous pseudo-barrier films of anode aluminium oxide and its influence on solid-phase transformations character under electron bean of maximal intensity are detected

  11. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  12. Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity

    KAUST Repository

    Hu, Liangbing

    2011-07-01

    Highly porous, conductive Si-CNT sponge-like structures with a large areal mass loading are demonstrated as effective Li-ion battery anode materials. Nano-pore formation and growth in the Si shell has been identified as the primary failure mode of the Si-CNT sponge anode, and the formation of such nanopores can be minimized by tuning the cutoff voltages. In conjunction with experiments, a theoretical analysis was carried out to explain the pore formation mechanism. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes

    International Nuclear Information System (INIS)

    Yang, Shu; Habazaki, Hiroki; Fujii, Takashi; Aoki, Yoshitaka; Skeldon, Peter; Thompson, George E.

    2011-01-01

    Highlights: → Anodic niobium oxide microcones with nanofiber morphology are formed simply by anodizing. → The cone size and its tip angle are controlled by anodizing condition. → The surface shows extremely high contact angle for water after coating with a fluoroalkyl layer. - Abstract: We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate-glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0 o . Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175 o and a very small contact angle hysteresis of only 2 o . The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.

  14. Impact of anode catalyst layer porosity on the performance of a direct formic acid fuel cell

    International Nuclear Information System (INIS)

    Bauskar, Akshay S.; Rice, Cynthia A.

    2012-01-01

    Highlights: ► Lithium carbonate is used as a pore-former to increase porosity of anode catalyst layer. ► Maximum power density increased by 25%. ► Onset potential for formic acid electro-oxidation reduced by 30 mV for anode catalyst layer with 17.5 wt% pore-former. ► Electrochemical impedance spectra confirm increased formic acid concentration inside the anode catalyst layer pores. - Abstract: Direct formic acid fuel cells (DFAFCs) have attracted much attention in the last few years for portable electronic devices, due to their potential of being high efficiency power sources. They have the potential to replace the state-of-the-art batteries in cell phones, PDAs, and laptop computers if their power density and durability can be improved. In the present investigation, the influence of increased anode catalyst layer porosity on DFAFC power density performance is studied. Lithium carbonate (Li 2 CO 3 ) was used as a pore-former in this study because of its facile and complete removal after catalyst layer fabrication. The anode catalyst layers presented herein contained unsupported Pt/Ru catalyst and Li 2 CO 3 (in the range of 0–50 wt%) bound with proton conducting ionomer. Higher DFAFC performance is obtained because of the increased porosity within the anode catalyst layer through enhanced reactant and product mass transport. The maximum power density of DFAFC increased by 25% when pore-former was added to the anode catalyst ink. The formic acid onset potential for the anode catalyst layer with 17.5 wt% pore-former was reduced by 30 mV. A constant phase element based equivalent-circuit model was used to investigate anode impedance spectra. Fitted values for the anode impedance spectra confirm the improvement in performance due to an increase in formic acid concentration inside the anode catalyst layer pores along with efficient transport of reactants and products.

  15. Double-sided anodic titania nanotube arrays: a lopsided growth process.

    Science.gov (United States)

    Sun, Lidong; Zhang, Sam; Sun, Xiao Wei; Wang, Xiaoyan; Cai, Yanli

    2010-12-07

    In the past decade, the pore diameter of anodic titania nanotubes was reported to be influenced by a number of factors in organic electrolyte, for example, applied potential, working distance, water content, and temperature. All these were closely related to potential drop in the organic electrolyte. In this work, the essential role of electric field originating from the potential drop was directly revealed for the first time using a simple two-electrode anodizing method. Anodic titania nanotube arrays were grown simultaneously at both sides of a titanium foil, with tube length being longer at the front side than that at the back side. This lopsided growth was attributed to the higher ionic flux induced by electric field at the front side. Accordingly, the nanotube length was further tailored to be comparable at both sides by modulating the electric field. These results are promising to be used in parallel configuration dye-sensitized solar cells, water splitting, and gas sensors, as a result of high surface area produced by the double-sided architecture.

  16. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    the results of above, the porosity and the pore size in the fiber mat are utmost important for the performance of anode in MFCs. With concept of curve or helix in fibers can lead to higher porosity in the fiber mat, a novel 3D porous architecture, nanospring, was designed for high performance anode structure in future MFC. Polymeric nanospring was prepared by bicomponent electrospinning. The reasons for the formation of polymeric nanosprings were investigated by coaxial electrospinning of bicomponent rigid i.e. Nomex {sup registered} or polysulfonamide (PSA) (rigid) and flexible polymers i.e. thermoplastic polyurethane (TPU) (flexible). The results indicated that the nanospring formation is attributed to longitudinal compressive forces which are resulted from the different shrinkages of the rigid and flexible two polymer components and a good electrical conductivity of one of the polymer solutions in coaxial electrospinning system. The modified electrospinning i.e. off-centered electrospinning and side-by-side electrospinning are much more effective than the coaxial electrospinning for generating polymer spring or helical structures, because of the higher longitudinal compressive forces which derived from the lopsided elastic forces. The aligned nanofiber mat with high percent of nanospring shows higher elongation and higher storage modulus below transition glass temperature (T{sub g}) compared to that with straight fibers. The nanospring or helical shape preserves much void-space in the mat. It would be a potential architecture for highly efficient anode in future MFCs. (orig.)

  17. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  18. Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes

    International Nuclear Information System (INIS)

    Almeida, N A; Cunha, M D; Benilov, M S

    2017-01-01

    Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found. (paper)

  19. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    Science.gov (United States)

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  20. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  1. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.

    Science.gov (United States)

    Yang, Chunpeng; Fu, Kun; Zhang, Ying; Hitz, Emily; Hu, Liangbing

    2017-09-01

    High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An Analysis of Mechanical Properties of Anodized Aluminum Film at High Stress

    Science.gov (United States)

    Zhao, Xixi; Wei, Guoying; Yu, Yundan; Guo, Yuemei; Zhang, Ao

    2015-10-01

    In this paper, a new environmental-friendly electrolyte containing sulfuric acid and tartaric acid has been used as the substitute of chromic acid for anodization. The work discussed the influence of anodizing voltages on the fatigue life of anodized Al 2024-T3 by performing fatigue tests with 0.1 stress ratio (R) at 320 MPa. Meanwhile the fatigue cycles to failure, yield strength, tensile strength and fracture surface of anodic films at different conditions were investigated. The results showed that the fatigue life of anodized and sealed specimens reduced a lot compared to aluminum alloy, which can be attributed to the crack sites initiated at the oxide layer. The fracture surface analyses also revealed that the number of crack initiation sites enlarged with the increase of anodizing voltage.

  3. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  4. Optimization of Charging Strategy by Prevention of Lithium Deposition on Anodes in high-energy Lithium-ion Batteries – Electrochemical Experiments

    International Nuclear Information System (INIS)

    Waldmann, Thomas; Kasper, Michael; Wohlfahrt-Mehrens, Margret

    2015-01-01

    The study evaluates the capacity fade of commercial 3.25 Ah 18650-type cells with NCA cathodes and graphite anodes quantitatively for different temperatures and charging strategies. For standard constant current / constant voltage (CC-CV) charging, the aging rate for cells cycled at 0.5C is increased with decreasing temperature in the range of 25 °C to 0 °C. Interestingly, no accelerated aging is observed for CC-CV charging in the temperature range of 25 °C to 60 °C at 0.5C. The observed behavior indicates lithium deposition on anodes for temperatures up to ∼25 °C and is further investigated by reconstruction of anode and cathode from the commercial 18650-type cells into full cells with an additional lithium metal reference electrode. The reconstruction method is scrutinized regarding its validity. Measurements with the reconstructed cells at 25 °C reveal the quantitative dependency of the anode potential vs. Li/Li"+ from the charge C-rate and cell voltage. This allows deriving charging strategies involving strictly positive anode potentials to avoid lithium deposition and preventing the corresponding capacity fade.

  5. Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum

    International Nuclear Information System (INIS)

    Michalska-Domańska, Marta; Norek, Małgorzata; Stępniowski, Wojciech J.; Budner, Bogusław

    2013-01-01

    Highlights: • Nanoporous alumina was fabricated by anodization in sulfuric acid solution with glycol. • The AAO manufacturing on low- and high-purity Al was compared. • The pores size was ranging between 30 and 50 nm. • No difference in the quality of the AAO fabricated on both Al types was observed. • The current vs. anodization time curves were recorded. -- Abstract: In this work the quality, arrangement, composition, and regularity of nanoporous AAO formed on the low-purity (AA1050) and high-purity aluminum during two-step anodization in a mixture of sulfuric acid solution (0.3 M), water and glycol (3:2, v/v), at various voltages (15, 20, 25, 30, 35 V) and at temperature of −1 °C, are investigated. The electrochemical conditions have allowed to obtain pores with the size ranging from 30 to 50 nm, which are much larger than those usually obtained by anodization in a pure sulfuric acid solution (<20 nm). The mechanism of the AAO growth is discussed. It was found that with the increase of applied anodizing voltage a number of incorporated sulfate ions in the aluminum oxide matrix increases, which was connected with the appearance of an unusual area in the current vs. time curves. On the surface of anodizing low- and high-purity aluminum, the formation of hillocks was observed, which was associated with the sulfate ions incorporation. The sulfate ions are replacing the oxygen atom/atoms in the AAO amorphous crystal structure and, consequently, the AAO template swells, the oxide cracks and uplifts causing the formation of hillocks. The same mechanism occurs for both low- and high-purity aluminum. Nanoporous AAO characterized by a very high regularity, not registered previously for low purity aluminum, was obtained. Furthermore, no significant difference in the regularity ratio between the AAO obtained on low- and high-purity aluminum, was observed. The electrochemical conditions applied in this study can be, thus, used for the fabrication of high quality

  6. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials

    Directory of Open Access Journals (Sweden)

    Xuejiao Sun

    2018-05-01

    Full Text Available The development of high energy lithium-ion batteries (LIBs has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g−1 after 250 cycles at a current density of 0.1 A g−1. It is interesting that a high discharge capacity of 540.1 mAh g−1 was achieved after 500 cycles at an even higher current density of 0.3 A g−1, which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  7. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.

    Science.gov (United States)

    Sun, Xuejiao; Shao, Changzhen; Zhang, Feng; Li, Yi; Wu, Qi-Hui; Yang, Yonggang

    2018-01-01

    The development of high energy lithium-ion batteries (LIBs) has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic β-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g -1 after 250 cycles at a current density of 0.1 A g -1 . It is interesting that a high discharge capacity of 540.1 mAh g -1 was achieved after 500 cycles at an even higher current density of 0.3 A g -1 , which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

  8. A mesoporous WO3−X/graphene composite as a high-performance Li-ion battery anode

    International Nuclear Information System (INIS)

    Liu, Fei; Kim, Jong Gu; Lee, Chul Wee; Im, Ji Sun

    2014-01-01

    Graphical abstract: The highly flexible and conductive graphene layer can enhance electron transfer, protect metal oxides against disintegration and aggregation and buffer the strain induced by volume expansion during cycles. The mesoporous surface layer provides an open network for Li+ diffusion. - Highlights: • Novel cocktail effects of 2D mesoporous WO 3−X /graphene for lithium ion battery. • New approach for lithium ion battery by easy and unique synthesis method. • Mechanism study with proper data for understanding a reaction on anode surface. - Abstract: A novel mesoporous WO 3−X /graphene composite was developed. This material allowed rapid electron and Li + ion diffusion when used as a Li-ion battery (LIB) anode material. Remarkably, the graphene support protected WO 3−X from changing volume during the electrochemical cycling process; this process generally induces capacity loss. The current work describes a high-performance anode material for LIB that has highly dense WO 3−X , as well as high capacity, rate capability and stability

  9. A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode

    Science.gov (United States)

    Li, Dongdong; Ye, Chao; Chen, Xinzhi; Wang, Suqing; Wang, Haihui

    2018-04-01

    The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg-1 and a power density of 9 kW kg-1 can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.

  10. Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material.

    Science.gov (United States)

    Tang, Wei; Liu, Lili; Tian, Shu; Li, Lei; Yue, Yunbo; Wu, Yuping; Zhu, Kai

    2011-09-28

    MoO(3) nanoplates were prepared as anode material for aqueous supercapacitors. They can deliver a high energy density of 45 W h kg(-1) at 450 W kg(-1) and even maintain 29 W h kg(-1) at 2 kW kg(-1) in 0.5 M Li(2)SO(4) aqueous electrolyte. These results present a new direction to explore non-carbon anode materials.

  11. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  12. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery.

    Science.gov (United States)

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2018-02-01

    A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m 3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH 4 + -N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multi-Anode Photomultplier (MAPMT) readout for High Granularity Calorimeters

    CERN Document Server

    Mkrtchyan, Tigran; The ATLAS collaboration

    2017-01-01

    Hadron calorimeter high performance in jet sub-structure measurements can be achieved for objects with $p_{T}$ greater than 1 TeV if the readout geometry is finely segmented in $\\Delta\\eta \\times \\Delta\\phi$. A feasibility study to increase the readout granularity of TileCal, the central hadron calorimeter of the ATLAS detector, is presented. We show a preliminary study exploring the possibility to increase by a factor 4 the present readout granularity of the inner layer cells of TileCal (0.1->0.025 in $\\Delta\\eta$) and to split into two layers the intermediate section of TileCal. The proposed solution is designed to cope with mechanical and readout bandwidth and power constraints. Assuming that the mechanics of the Tile modules cannot be changed, Multi-Anode PMTs with same boundary geometry of the present single-anode PMTs are considered to readout WLS bers, ideally one per pixel, carrying the signals from the individual scintillating tiles of each detector cells. The discussed challenges of the design are: ...

  14. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    Science.gov (United States)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  15. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolin; Gu, Meng; Hu, Shenyang Y.; Kennard, Rhiannon; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Sailor, Michael J.; Zhang, Jiguang; Liu, Jun

    2014-07-08

    Nanostructured silicon is a promising anode material for high performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here, we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 micron) mesoporous silicon sponge (MSS) prepared by the scalable anodization method can eliminate the pulverization of the conventional bulk silicon and limit particle volume expansion at full lithiation to ~30% instead of ~300% as observed in bulk silicon particles. The MSS can deliver a capacity of ~750 mAh/g based on the total electrode weight with >80% capacity retention over 1000 cycles. The first-cycle irreversible capacity loss of pre-lithiated MSS based anode is only <5%. The insight obtained from MSS also provides guidance for the design of other materials that may experience large volume variation during operations.

  16. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  17. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Jung, Hee Joon; Wang, Chong M.; Liu, Jun; Zhang, Jiguang

    2016-08-27

    With the ever increasing demands on Li-ion batteries with higher energy densities, alternative anode with higher reversible capacity is required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal-carbonization approach to prepare the hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating layer not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of silicon during charge/discharge processes. The HC-nSi/G composite electrode shows excellent electrochemical performances including a high specific capacity of 878.6 mAh g-1 based on the total weight of composite, good rate performance and a decent cycling stability, which is promising for practical applications.

  18. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  19. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Byoung Man; Lee, Jung-In; Kim, Hyunjung; Cho, Jaephil; Park, Soojin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-07-15

    Three-dimensional porous silicon particles can be produced via the combination of a galvanic displacement reaction and a metal-assisted chemical etching process. This simple synthetic route can be applied to make high-performance anode materials, including high specific capacity, stable cycling retention, and high rate capability, in lithium-ion batteries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries.

    Science.gov (United States)

    Ko, Minseong; Chae, Sujong; Cho, Jaephil

    2015-11-01

    Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems.

  1. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  2. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  3. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell

    Science.gov (United States)

    Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji

    2017-09-01

    Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.

  4. Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries

    Science.gov (United States)

    Zou, Mingzhong; Li, Jiaxin; Wen, WeiWei; Chen, Luzhuo; Guan, Lunhui; Lai, Heng; Huang, Zhigao

    2014-12-01

    Composites of Ag-incorporated carbon nanofibers (CNFs) confined with Fe2O3 nanoparticles (Ag-Fe2O3/CNFs) have been synthesized through an electrospinning method and evaluated as anodes for lithium batteries (LIBs). The obtained Ag-Fe2O3/CNF anodes show good LIB performance with a capacity of 630 mAh g-1 tested at 800 mA g-1 after 150 cycles with almost no capacity loss and superb rate performance. The obtained properties for Ag-Fe2O3/CNF anodes are much better than Fe2O3/CNF anodes without Ag-incorporating. In addition, the low-temperature LIB performances for Ag-Fe2O3/CNF anodes have been investigated for revealing the enhanced mechanism of Ag-incorporating. The superior electrochemical performances of the Ag-Fe2O3/CNFs are associated with a synergistic effect of the CNF matrix and the highly conducting Ag incorporating. This unique configuration not only facilitates electron conduction especially at a relative temperature, but also maintains the structural integrity of active materials. Meanwhile, the related analysis of the AC impedance spectroscopy and the corresponding hypothesis for DC impedance confirm that such configuration can effectively enhance the charge-transfer efficiency and the lithium diffusion coefficient. Therefore, CNF-supported coupled with Ag incorporating synthesis supplied a promising route to obtain Fe2O3 based anodes with high-performance LIBs especially at low temperature.

  5. Multilayer tape cast SOFC – Effect of anode sintering temperature

    DEFF Research Database (Denmark)

    Hauch, Anne; Birkl, Christoph; Brodersen, Karen

    2012-01-01

    Multilayer tape casting (MTC) is considered a promising, cost-efficient, up-scalable shaping process for production of planar anode supported solid oxide fuel cells (SOFC). Multilayer tape casting of the three layers comprising the half cell (anode support/active anode/electrolyte) can potentially...

  6. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid

    International Nuclear Information System (INIS)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C.

    2008-01-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al x CrFe 1.5 MnNi 0.5 (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 Ωcm 2 as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 Ωcm 2 ). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H 2 SO 4 solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al 0.3 CrFe 1.5 MnNi 0.5 alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe 1.5 MnNi 0.5 and Al 0.3 CrFe 1.5 MnNi 0.5 alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al x CrFe 1.5 MnNi 0.5 alloys optimized their surface structures and minimized their susceptibility to pitting corrosion

  7. Development of anode high voltage power supply system for ECRH of HL-2A tokamak

    International Nuclear Information System (INIS)

    Chen Wenguang

    2009-01-01

    The anode high voltage power supply system consist of DC high-voltage power supply (HVPS) and pulse modulator. SCR is used to vary AC input voltage of the step-up transformer by controlling the trigger phase in the HVPS, and regulate the DC output voltage linearly at the potential of low-end via BJT, Dual closed-loop control technology is applied in the controller, and its maximum output is at 30kV and 130mA. Tetrode is the core component of the modulator. The circuit design is optimized by using the simulation software. Test and HL-2A discharge experimental results show that the power supply system is designed with some characteristics of output scale widely, low ripple and modulate quickly. (authors)

  8. Electron Sources of the Diode Type with Cathode and Anode of High Temperature Superconductors

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1994-01-01

    The planar electron sources of the diode type with cathode and anode of high temperature superconductors (HTSC) are considered. Explosive emission cathode on the basis of bismuth ceramics (Bi-Ca-Sr-Cu-O) allows forming microsecond pulse (duration > 1 μs) and low energy electron beams (10-25 keV). Tube anode of HTSC in superconducting phase compresses the pulsed electron beam (K = 2-8). It leads to an increase of the beam power density. The high voltage of the generator of Arkad'ev-Marx type (U = 100-600 kV) and the generator with double L C-line are used for experiments. The pulsed method of measuring of the HTSC critical current with the help of pulsed high current electron beam is described. (author). 16 refs., 13 figs

  9. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    Science.gov (United States)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  10. Optimum Exploration for the Self-Ordering of Anodic Porous Alumina Formed via Selenic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-01-01

    Improvements of the regularity of the arrangement of anodic porous alumina formed by selenic acid anodizing were investigated under various operating conditions. The oxide burning voltage increased with the stirring rate of the selenic acid solution, and the high applied voltage without oxide burning was achieved by vigorously stirring the solution. The regularity of the porous alumina was improved as the anodizing time and surface flatness increased. Conversely, the purity of the 99.5–99.999...

  11. High performance electrodes for reduced temperature solide oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 1. Ni-SDC cermet anode

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T. [Japan Fine Ceramics Center, Nagoya (Japan); Yoshida, H.; Inagaki, T. [The Kansai Electroc Power Co. Inc., Hyogo (Japan); Miura, K. [Kanden Kakou Co. Ltd., Hyogo (Japan)

    2000-03-01

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800 C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm{sup 2}. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode. (orig.)

  12. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    Science.gov (United States)

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  13. Anode and cathode geometry and shielding gas interdependence in GTAW

    International Nuclear Information System (INIS)

    Key, J.F.

    1979-01-01

    Parametric analyses and high-speed photography of the interdependence of electrode (cathode) tip geometry, shielding gas composition, and groove (anode) geometry indicate that spot-on-plate tests show that blunt cathode shapes have penetration effects similar to addition of a high ionization potential inert gas (such as helium) to the argon shielding gas. Electrode shape and shielding gas composition effects are not synergistic. The time required to develop a given penetration is a function of anode and cathode geometry and shielding gas composition, in addition to other essential welding variables. Spot-on-plate tests are a valid analysis of radical pulsed GTAW. Bead-on-plate tests are a valid analysis of mild pulsed or constant current GTAW

  14. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  15. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    Science.gov (United States)

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes

    Directory of Open Access Journals (Sweden)

    Linqin Mu

    2018-01-01

    Full Text Available Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C14H6O4Na2 composited with carbon nanotube (C14H6O4Na2-CNT, used as an anode material for sodium-ion batteries in ether-based electrolyte. The C14H6O4Na2-CNT electrode delivers a reversible capacity of 173 mAh g−1 and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C. Furthermore, the average Na insertion voltage of 1.27 V vs. Na+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.

  17. Anatase-TiO{sub 2}/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinlong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng, Haibo; Jiang, Jianbo [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qian, Dong, E-mail: qiandong6@vip.sina.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Junhua; Peng, Sanjun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Youcai, E-mail: liuyoucai@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-08-01

    Highlights: • Anatase-TiO{sub 2}/CNTs nanocomposite was prepared by a facile and scalable hydrolysis route. • The composite exhibits super-high rate capability and excellent cycling stability for LIBs. • The nanocomposite shows great potential as a superior anode material for LIBs. - Abstract: Anatase-TiO{sub 2}/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO{sub 2} nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g{sup −1} is achieved even at a current density of 10 A g{sup −1} (60 C). After 100 cycles at 0.1 A g{sup −1}, it shows good capacity retention of 185 mA h g{sup −1} with an outstanding coulombic efficiency up to 99%. Such superior Li{sup +} storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO{sub 2} and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs.

  18. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment.

    Science.gov (United States)

    Mardanpour, Mohammad Mahdi; Nasr Esfahany, Mohsen; Behzad, Tayebeh; Sedaqatvand, Ramin

    2012-01-01

    This study reports on the fabrication of a novel annular single chamber microbial fuel cell (ASCMFC) with spiral anode. The stainless steel mesh anode with graphite coating was used as anode. Dairy wastewater, containing complex organic matter, was used as substrate. ASCMFC had been operated for 450 h and results indicated a high open circuit voltage (about 810 mV) compared with previously published results. The maximum power density of 20.2 W/m(3) obtained in this study is significantly greater than the power densities reported in previous studies. Besides, a maximum coulombic efficiency of 26.87% with 91% COD removal was achieved. Good bacterial adhesion on the spiral anode is clearly shown in SEM micrographs. High power density and a successful performance in wastewater treatment in ASCMFC suggest it as a promising alternative to conventional MFCs for power generation and wastewater treatment. ASCMFC performance as a power generator was characterized based on polarization behavior and cell potentials. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  20. Simulation of the anode structure for capacitive frisch grid CdZnTe detectors

    International Nuclear Information System (INIS)

    Min Jiahua; Shi Zhubin; Sang Wenbin; Zhao Hengyu; Teng Jianyong; Qian Yongbiao; Liu Jishan

    2009-01-01

    CdZnTe (CZT) capacitive Frisch grid detectors can achieve a higher detecting resolution. The anode structrure might have an important role in improving the weighting potential distribution of the detectors. In this paper, four anode structures of capacitive Frisch grid structures have been analyzed with FE simulation, based on a 3-dimensional weighting potential analysis. The weighting potential distributions in modified anode devices (Model B, C and D) are optimized compared with a square device (Model A). In model C and D, the abrupt weighting potential can be well modified. However, with increased radius of the circular electrode in Model C the weighting potential platform away from the anode becomes higher and higher and in Model D, the weighting potential does not vary too much. (authors)

  1. Structural and morphological changes in pseudobarrier films of anodic aluminum oxide caused by irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    We have studied the structural and morphological changes, occurring under the electron beam in pseudobarrier films of anodic aluminum oxide, prepared in seven different solutions and irradiated beforehand by protons of x-rays, with the aim of elucidating the structure of anodic aluminum oxides. An increased stability of the pseudobarrier films of anodic aluminum oxide has been observed towards the action of the electron beam of an UEMV-100K microscope at standard working regimes (75 keV) as a result of irradiation with protons or x-rays. A difference has been found to exist between structural and morphological changes of anodic aluminum oxide films, prepared in different solutions, when irradiated with high-energy particles. A structural and phase inhomogeneity of amorphous pseudobarrier films of anodic aluminum oxide has been detected and its influence on the character of solid-phase transformations under the maximum-intensity electron beam

  2. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  3. High-Performance Ga2O3 Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Tang, Xun; Huang, Xin; Huang, Yongmin; Gou, Yong; Pastore, James; Yang, Yao; Xiong, Yin; Qian, Jiangfeng; Brock, Joel D; Lu, Juntao; Xiao, Li; Abruña, Héctor D; Zhuang, Lin

    2018-02-14

    There is a great deal of interest in developing battery systems that can exhibit self-healing behavior, thus enhancing cyclability and stability. Given that gallium (Ga) is a metal that melts near room temperature, we wanted to test if it could be employed as a self-healing anode material for lithium-ion batteries (LIBs). However, Ga nanoparticles (NPs), when directly applied, tended to aggregate upon charge/discharge cycling. To address this issue, we employed carbon-coated Ga 2 O 3 NPs as an alternative. By controlling the pH of the precursor solution, highly dispersed and ultrafine Ga 2 O 3 NPs, embedded in carbon shells, could be synthesized through a hydrothermal carbonization method. The particle size of the Ga 2 O 3 NPs was 2.6 nm, with an extremely narrow size distribution, as determined by high-resolution transmission electron microscopy and Brunauer-Emmett-Teller measurements. A lithium-ion battery anode based on this material exhibited stable charging and discharging, with a capacity of 721 mAh/g after 200 cycles. The high cyclability is due to not only the protective effects of the carbon shell but also the formation of Ga 0 during the lithiation process, as indicated by operando X-ray absorption near-edge spectroscopy.

  4. Planar metal-supported SOFC with novel cermet anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2011-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni-YSZ based anodes are used in metal suppo...

  5. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    Fetterman, Abe; Raitses, Yevgeny; Keidar, Michael

    2008-01-01

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  6. Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity

    KAUST Repository

    Hu, Liangbing; Wu, Hui; Gao, Yifan; Cao, Anyuan; Li, Hongbian; McDough, James; Xie, Xing; Zhou, Min; Cui, Yi

    2011-01-01

    Highly porous, conductive Si-CNT sponge-like structures with a large areal mass loading are demonstrated as effective Li-ion battery anode materials. Nano-pore formation and growth in the Si shell has been identified as the primary failure mode

  7. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    Science.gov (United States)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  8. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Science.gov (United States)

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  9. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    Science.gov (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  10. TiO_2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage

    International Nuclear Information System (INIS)

    Wang, Xiaobing; Meng, Qiuxia; Wang, Yuanyuan; Liang, Huijun; Bai, Zhengyu; Wang, Kui; Lou, Xiangdong; Cai, Bibo; Yang, Lin

    2016-01-01

    Graphical abstract: In the application of lithium-ion batteries, the influences of microsphere sizes are more significant than the secondary nanoparticles size and crystallinity of TiO_2-HSs for their transfer resistance and cycling performance, so that the bigger sizes of TiO_2-HSs can retain high reversible capacities after 30 recycles. - Highlights: • Hierarchical hollow microspheres have size-effect in the application of lithium ion battery. • The microsphere sizes can significantly affect the cycling capacities of TiO_2. • The nanoparticles size affect the initial discharge capacity and lithium ion diffusion. • Controlled microsphere size is more significant for improving TiO_2 cycling capacities. - Abstract: Nowadays, the safety issue has greatly hindered the development of large capacity lithium-ion batteries (LIBs), especially in electric vehicles applications. TiO_2 is a kind of potential anode candidate for improving the safety of LIBs. However, it still needs to understand how to improve the performance of TiO_2 anode in the practical applications. Herein, we design a contrast experiment by using three sizes of TiO_2 hierarchical hollow microspheres (TiO_2-HSs). The research results indicated that the cycling performance of TiO_2-HSs anode can be affected by the size of microspheres, and the nanoparticles size of microspheres and crystallinity of TiO_2 can affect their initial discharge capacity and lithium ion diffusion. And, the influence of microspheres size is more significant. This may provide a new strategy for improving the lithium-ion storage property of TiO_2 anode material in the practical applications.

  11. A mesoporous WO{sub 3−X}/graphene composite as a high-performance Li-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Kim, Jong Gu [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Chul Wee [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Im, Ji Sun, E-mail: jsim@krict.re.kr [C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

    2014-10-15

    Graphical abstract: The highly flexible and conductive graphene layer can enhance electron transfer, protect metal oxides against disintegration and aggregation and buffer the strain induced by volume expansion during cycles. The mesoporous surface layer provides an open network for Li+ diffusion. - Highlights: • Novel cocktail effects of 2D mesoporous WO{sub 3−X}/graphene for lithium ion battery. • New approach for lithium ion battery by easy and unique synthesis method. • Mechanism study with proper data for understanding a reaction on anode surface. - Abstract: A novel mesoporous WO{sub 3−X}/graphene composite was developed. This material allowed rapid electron and Li{sup +} ion diffusion when used as a Li-ion battery (LIB) anode material. Remarkably, the graphene support protected WO{sub 3−X} from changing volume during the electrochemical cycling process; this process generally induces capacity loss. The current work describes a high-performance anode material for LIB that has highly dense WO{sub 3−X}, as well as high capacity, rate capability and stability.

  12. Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode

    Science.gov (United States)

    Tamirat, Andebet Gedamu; Hou, Mengyan; Liu, Yao; Bin, Duan; Sun, Yunhe; Fan, Long; Wang, Yonggang; Xia, Yongyao

    2018-04-01

    Silicon is an ideal candidate anode material for Li-ion batteries (LIBs). However, it suffers from rapid capacity fading due to large volume expansion upon lithium insertion. Herein, we design and fabricate highly stable carbon coated porous Mg2Si intermetallic anode material using facile mechano-thermal technique followed by carbon coating using thermal vapour deposition (TVD), toluene as carbon source. The electrode exhibits an excellent first reversible capacity of 726 mAh g-1 at a rate of 100 mA g-1. More importantly, the electrode demonstrates high rate capability (380 mAh g-1 at high rate of 2 A g-1) as well as high cycle stability, with capacity retentions of 65% over 500 cycles. These improvements are attributable to both Mg supporting medium and the uniform carbon coating, which can effectively increase the conductivity and electronic contact of the active material and protects large volume alterations during the electrochemical cycling process.

  13. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan; Li, Xing; Engelhard, Mark H.; Cao, Ruiguo; Zhang, Ji-Guang; Xu, Wu

    2018-01-01

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containing dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.

  14. Raman spectroscopy used for structural investigations of anodically formed ZrO2

    International Nuclear Information System (INIS)

    Koneska, Zagorka; Arsova, Irena

    2003-01-01

    The structure of the oxide formed on Zr(99% + Hf) with anodic oxidation at different potentials in 1 mol/dm 3 H 3 PO 4 and 2 mol/dm 3 KOH solutions were investigated using Raman spectroscopy. Normally the anodic oxides of Zr form only crystals. Under certain circumstances, amorphous anodic ZrO 2 can be observed. Amorphous phase is observed for the anodically formed zirconium oxides in H 3 PO 4 . The oxide formed in KOH at potential of 80 V, where sparks appears on the Zr electrode showed crystalline structure. (Original)

  15. The electrochemical properties and mechanism of formation of anodic oxide films on Mg-Al alloys

    International Nuclear Information System (INIS)

    Kim, Seong Jong; Okido, Masazumi

    2003-01-01

    The electronchemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH) 2 in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH) 2 was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the β phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in β phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in α phase, which had a lower Al content. In the anodic polarization test in 0.017 mol·dm -3 NaCl and 0.1 mol·dm -3 Na 2 SO 4 at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the α phase is a non-compacted film. The anodic film on the α phase at 30 min was a compact film as compared with that at 10 min

  16. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Directory of Open Access Journals (Sweden)

    Webster TJ

    2013-01-01

    provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.Keywords: nanotechnology, titanium, osteoblasts, anodization

  17. Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp.

    Science.gov (United States)

    Wang, Bin; Qu, Shengguan; Li, Xiaoqiang

    2018-01-01

    By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiC p /Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.

  18. Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2018-01-01

    Full Text Available By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0% were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson’s ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.

  19. Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp

    Science.gov (United States)

    2018-01-01

    By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time. PMID:29682145

  20. The Optimized Tin Dioxide-Carbon Nanocomposites as High-performance Anode for Lithium ion Battery with a long cycle life

    International Nuclear Information System (INIS)

    Wan, Yuanxin; Sha, Ye; Deng, Weijia; Zhu, Qing; Chen, Zhen; Wang, Xiaoliang; Chen, Wei; Xue, Gi; Zhou, Dongshan

    2015-01-01

    Tin dioxide (SnO 2 ) is one of the most promising anode materials for the next generation Li-ion batteries due to its high capacity. To solve the problems caused by the large volume change (over 300%) and the aggregation of the tin particles formed during cycling, nano SnO 2 /C composites are proved to be ideal anode materials for high performance Li-ion batteries. However, it is still a challenge to disperse ultrasmall (<6 nm) SnO 2 nanoparticles with uniform size in carbon matrix. Here, we report a facile hydrothermal way to get such optimized nano SnO 2 /C composite, in which well dispersed ultrasmall SnO 2 nanocrystals (3∼5 nm) are embedded in a conductive carbon matrix. With this anode, we demonstrate a high stable capacity of 928 mAh g −1 based on the total mass of the composite at a current density of 500 mA g −1 . At high current density of 2 A g −1 , this composite anode shows a capacity of 853 mAh g −1 in the first charge, in such high current density, we can even get a capacity retention of more than 91% (779 mAh g −1 ) after 1000 cycles

  1. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Lu, Mingjie; Yu, Wenhua; Shi, Jing; Liu, Wei; Chen, Shougang; Wang, Xin; Wang, Huanlei

    2017-01-01

    Highlights: •Self-doped carbon architectures with nitrogen, oxygen, and sulfur are derived from Carrageen. •The obtained carbon materials exhibit excellent electrochemical property. •The strategy provides a one-step synthesis route to design advanced anodes for batteries. -- Abstract: Nitrogen, oxygen and sulfur tridoped porous carbons have been successfully synthesized from natural biomass algae-Carrageen by using a simultaneous carbonization and activation procedure. The doped carbons with sponge-like interconnected architecture, partially ordered graphitic structure, and abundant heteroatom doping perform outstanding features for electrochemical energy storage. When tested as lithium-ion battery anodes, a high reversible capacity of 839 mAh g −1 can be obtained at the current density of 0.1 A g −1 after 100 cycles, while a high capacity of 228 mAh g −1 can be maintained at 10 A g −1 . Tested against sodium, a high specific capacity of 227 can be delivered at 0.1 A g −1 after 100 cycles, while a high capacity of 109 mAh g −1 can be achieved at 10 A g −1 . These results turn out that the doped carbons would be potential anode materials for lithium- and sodium-ion batteries, which can be achieved by a one-step and large-scale synthesis route. Our observation indicates that heteroatom doping (especially sulfur) can significantly promote ion storage and reduce irreversible ion trapping to some extent. This work gives a general route for designing carbon nanostructures with heteroatom doping for efficient energy storage.

  2. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    Science.gov (United States)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  3. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  4. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  5. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  6. Electronic properties of electrolyte/anodic alumina junction during porous anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka Street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany); InnoMat GmbH, Chemnitz (Germany); Goedel, Werner A. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2007-03-15

    The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 deg. C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.

  7. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.; Regan, John M.

    2015-01-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  8. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  9. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  10. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  11. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    OpenAIRE

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-01-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The de...

  12. Change in high field Q-slope by baking and anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Eremeev, G. [LEPP, Cornell University, Ithaca, NY 14853 (United States); Padamsee, H. [LEPP, Cornell University, Ithaca, NY 14853 (United States)

    2006-07-15

    Low temperature RF performance of two niobium cavities that underwent different chemical treatments was measured after they were heat treated at 100 deg, C for 48 h. After heat treatment cavities were anodized in ammonia hydroxide solution for sequentially increasing voltage until baking effect was gone. The thickness of niobium finally consumed is estimated to be 20 nm. The results are discussed in view of one of the current models for the baking effect on the high field Q-slope.

  13. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-01

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g −1 at 100 mA g −1 after 30th cycles. At high current density value of 1 A g −1 , B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states

  14. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  15. Modification of SnO2 Anodes by Atomic Layer Deposition for High Performance Lithium Ion Batteries

    KAUST Repository

    Yesibolati, Nulati

    2013-05-01

    Tin dioxide (SnO2) is considered one of the most promising anode materials for Lithium ion batteries (LIBs), due to its large theoretical capacity and natural abundance. However, its low electronic/ionic conductivities, large volume change during lithiation/delithiation and agglomeration prevent it from further commercial applications. In this thesis, we investigate modified SnO2 as a high energy density anode material for LIBs. Specifically two approaches are presented to improve battery performances. Firstly, SnO2 electrochemical performances were improved by surface modification using Atomic Layer Deposition (ALD). Ultrathin Al2O3 or HfO2 were coated on SnO2 electrodes. It was found that electrochemical performances had been enhanced after ALD deposition. In a second approach, we implemented a layer-by-layer (LBL) assembled graphene/carbon-coated hollow SnO2 spheres as anode material for LIBs. Our results indicated that the LBL assembled electrodes had high reversible lithium storage capacities even at high current densities. These superior electrochemical performances are attributed to the enhanced electronic conductivity and effective lithium diffusion, because of the interconnected graphene/carbon networks among nanoparticles of the hollow SnO2 spheres.

  16. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2016-12-01

    Full Text Available Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27μm. Au nanorod were obtained through electro-deposition under a pulse bias of −1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au–sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  17. High-current magnetron discharge with magnetic insulation of anode

    International Nuclear Information System (INIS)

    Bizyukov, A.A.; Sereda, K.N.; Sleptsov, V.V.

    2008-01-01

    In magnetron discharge at currents higher then critical which magnitude is in the range of 15...30 A the transition from glow discharge in transverse magnetic field to arc discharge occurs. In the present time the problem of arc blowout is solved at the expense of pulse and HF power supply applying. In this paper the alternative method of limiting current of magnetron discharge increasing at the expense of increasing of discharge gap resistance by means of additional anode layer transverse magnetic field and arc current interruption by sectioning of current collector of anode surface is carrying out

  18. The electrochemical properties and mechanism of formation of anodic oxide films on Mg-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Okido, Masazumi [Nagoya Univ., Nagoya (Japan)

    2003-07-01

    The electronchemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH){sub 2} in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH){sub 2} was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the {beta} phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in {beta} phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in {alpha} phase, which had a lower Al content. In the anodic polarization test in 0.017 mol{center_dot}dm{sup -3} NaCl and 0.1 mol{center_dot}dm{sup -3} Na{sub 2}SO{sub 4} at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the {alpha} phase is a non-compacted film. The anodic film on the {alpha} phase at 30 min was a compact film as compared with that at 10 min.

  19. In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Qian; Sha, Yujing; Zhao, Bote; Chen, Yubo; Tadé, Moses O.; Shao, Zongping

    2015-01-01

    Highlights: • Cobalt oxide nanosheets in situ electrochemical generated from commercial LiCoO_2. • TEM indicates creation of cobalt oxide nanosheets from coarse layered LiCoO_2_. • Coarse-type LiCoO_2 with high tap density shows promising anode performance. • Optimizing weight ratio of LiCoO_2 in electrode, a high capacity was achieved. - Abstract: Cobalt oxides are attractive alternative anode materials for next-generation lithium-ion batteries (LIBs). To improve the performance of conversion-type anode materials such as cobalt oxides, well dispersed and nanosized particulate morphology is typically required. In this study, we describe the in situ electrochemical generation of cobalt oxide nanosheets from commercial micrometer-sized LiCoO_2 oxide as an anode material for LIBs. The electrode material as prepared was analyzed by XRD, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammetry and by a constant current galvanostatic discharge–charge test. The material shows a high tap density and promising anode performance in terms of capacity, rate performance and cycling stability. A capacity of 560 mA h g"−"1 is still achieved at a current density of 1000 mA g"−"1 by increasing the amount of additives in the electrode to 40 wt%. This paper provides a new technique for developing a high-performance conversion-type anode for LIBs.

  20. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    Magallanes, J.F.

    1984-01-01

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.) [es

  1. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  2. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-06-20

    TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  3. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  4. Natural gas anodes for aluminium electrolysis in molten fluorides.

    Science.gov (United States)

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process.

  5. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    International Nuclear Information System (INIS)

    Jiao, Shuhong; University of Science and Technology of China, Hefei; Zheng, Jianming; Li, Qiuyan; Li, Xing

    2017-01-01

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cycle causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.

  6. Carbon paint anode for reinforced concrete bridges in coastal environments

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen D.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B. (ODOT); Laylor, H.M. (ODOT)

    2002-01-01

    Solvent-based acrylic carbon paint anodes were installed on the north approach spans of the Yaquina Bay Bridge (Newport OR) in 1985. The anodes continue to perform satisfactorily after more than 15 years service. The anodes were inexpensive to apply and field repairs are easily made. Depolarization potentials are consistently above 100 mV with long-term current densities around 2 mA/m 2. Bond strength remains adequate, averaging 0.50 MPa (73 psi). Some deterioration of the anode-concrete interface has occurred in the form of cracks and about 4% of the bond strength measurements indicated low or no bond. Carbon anode consumption appears low. The dominant long-term anode reaction appears to be chlorine evolution, which results in limited further acidification of the anode-concrete interface. Chloride profiles were depressed compared to some other coastal bridges suggesting chloride extraction by the CP system. Further evidence of outward chloride migration was a flat chloride profile between the anode and the outer rebar.

  7. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    Science.gov (United States)

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  8. Porous Carbon Spheres Doped with Fe_3C as an Anode for High-Rate Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Wu, Jiafeng; Zhou, Rihui; Zuo, Li; Li, Ping; Song, Yonghai; Wang, Li

    2015-01-01

    Highlights: • Novel porous carbon spheres doped with Fe_3C was prepared via hydrothermal reaction. • The resulted material was fabricated as an anode for high-rate lithium-ion batteries. • A stepwise increase profile was shown in the discharge/charge process. • Pseudocapacity was one of the properties owned by the as-prepared anode. - Abstract: The search of advanced anodes has been an important way to satisfy the ever-growing demands on high rate performance lithium-ion batteries (LIBs). It was observed that the capacity of Fe_3C as an anode is larger than its theoretical one, which might be attributed to the pseudocapacity on the interface between the carbide and electrolyte. In this work, a novel carbon sphere doped with Fe_3C nanoparticles was fabricated and tested as the anode in LIBs. In the first place, iron precursors were embedded in the cross-link polymer resorcinol-formaldehyde (RF) spheres via a facile hydrothermal reaction, in which RF served as the carbon source and ethanol as a dispersant agent. Consequently, the hydrothermal products were carbonized successively at 700 °C under inert atmosphere to obtain porous carbon spheres doped with Fe_3C. When the composite severed as an anode in LIBs, its discharge capacity increased to the largest during the first 250-400 cycles, then dropped down to a similar level of that after 1000 cycles at different current rates. The discharge capacity of the composite increased from ∼300 mAh g"−"1 to ∼540 mAh g"−"1 at the current of 100 mA g"−"1 during the initial hundreds cycles, and even a discharge capacity of ∼230 mAh g"−"1 at the current of 2000 mA g"−"1. Moreover, it was observed that a discharge plateau gradually appeared between 0.7∼1.1 V during the first hundreds of cycles. The electrochemical behaviors of the anode before 1000 discharge/charge cycles were compared with that after 1000 discharge/charge cycles by cyclic voltammetry and electrochemical impedance spectroscopy to find

  9. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun [Department of Material Science and Engineering, POSTECH Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O{sub 2} as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl{sub 3} plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  10. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.

    Science.gov (United States)

    Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi

    2012-11-01

    Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.

  11. Selectivity control of carbonylation of methanol to dimethyl oxalate and dimethyl carbonate over gold anode by electrochemical potential.

    Science.gov (United States)

    Funakawa, Akiyasu; Yamanaka, Ichiro; Takenaka, Sakae; Otsuka, Kiyoshi

    2004-05-05

    New and unique electrocatalysis of gold for the carbonylation of methanol to dimethyl oxalate (DMO) and dimethyl carbonate (DMC) was found. The selectivity to DMO and DMC could be controlled over gold anode by electrochemical potential, as you like. Drastic changes of gold electrocatalysis was due to changes of the oxidation state of gold, Au0 or Au3+.

  12. ORDERED POROUS ANODIC ALUMINUM OXIDE FILMS MADE BY TWO-STEP ANODIZATION

    OpenAIRE

    HANSONG XUE; HUAJI LI; YU YI; HUIFANG HU

    2007-01-01

    Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the orde...

  13. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  14. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  15. Determination of optimum shape and dimensions of anode high-voltage isolators for gaseous proportional counters

    International Nuclear Information System (INIS)

    Jelen, K.; Jagusztyn, W.

    1975-01-01

    The influence of the shape and dimensions of the high-voltage anode-to-cathods isolator on the regularity of the electrostatic field distribution along the anode of a cylindrical gaseous proportional counter is studied. For a counter of fixed dimensions, the length and diameter of the glass isolators were optimized to disrupt as little as possible the regularity of the field distribution in the active volume of the counter. Results of calculations are in agreement with experimental data. The obtained results provide a basis for obtaining a correct ratio of the active volume of the counter to its total volume. (author)

  16. Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Zhen; Feng, Li; Su, Xiaoru; Qin, Chenyang; Zhao, Kun; Hu, Fang; Zhou, Mingjiong; Xia, Yongyao

    2018-01-01

    An organometallic compound of ferrocene is first investigated as a promising anode for lithium-ion batteries. The electrochemical properties of ferrocene are conducted by galvanostatic charge and discharge. The ferrocene anode exhibits a high reversible capacity and great cycling stability, as well as superior rate capability. The electrochemical reaction of ferrocene is semi-reversible and some metallic Fe remains in the electrode even after delithiation. The metallic Fe formed in electrode and the stable solid electrolyte interphase should be responsible for its excellent electrochemical performance.

  17. Comparison of analytical possibilities of inversion voltammetry of tellurium with cathodic and anodic potential scanning taking layer-by-layer analysis of GaAs-Te films as example

    International Nuclear Information System (INIS)

    Kaplin, A.A.; Portnyagina, Eh.O.; Gridaev, V.F.

    1979-01-01

    Possibility of application in analytical purposes of the process of tellurium precipitation electrosolution from the surfaces of graphite and mercury-graphite electrodes at the cathode scanning of the potential is shown. As a result of comparison of direct and inversion scanning with cathodic and anodic scanning of the potential, variants of voltammetric method of tellurium determination in artificial solutions and, taking the developed method of layer-by-layer analysis of the GaAsTe films as an example, advantage of mercury-graphite electrode with cathodic scanning as compared to graphite electrode with cathode scanning of the potential is shown. Reproducibility of the GaAs film analysis results according to anodic and cathodic tellurium peaks is satisfactory. Maximum deviation from the results of analysis of oxidation peaks and tellurium peduction does not exceed 15 rel. %. Thus, for tellurium concentrations, exceeding 5x10 -6 g-ion/l, both anodic and cathodic scanning of the potential can be used, though error in tellurium determination according to cathodic peaks is 1.5-2.0 times higher. At tellurium amounts lower 5x10 -6 g-ion/l the determination should be carried out according to the peaks of tellurium anodic oxidation from the surface of graphite electrode or according to the peaks of tellurium cathodic reduction from the surface of mercury-graphite electrode

  18. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ya-Hui; Duan, Yu, E-mail: duanyu@jlu.edu.cn; Wang, Xiao; Yang, Dan; Yang, Yong-Qiang; Chen, Ping; Sun, Feng-Bo; Xue, Kai-Wen; Zhao, Yi

    2015-10-01

    Graphical abstract: - Highlights: • An ultra-smooth AgNW film on a flexible photopolymer substrate has been fabricated. • The AgNW film has a low sheet resistance with high transparency and flexibility. • OLEDs based on AgNW:NOA63 substrate can be bent at a radius of curvature of 2 mm. - Abstract: Materials to replace indium tin oxide (ITO) for high transmittance and electrical conductivity are urgently needed. In this paper, we adopted a silver nanowire (AgNW)-photopolymer (NOA63) film as a new platform for flexible optoelectronic devices. This design combined a transparent electrode and a flexible substrate. We utilized this application to obtain flexible organic light-emitting devices (FOLEDs). A peel-off process combined with a spin-coating process created an ultra-smooth silver nanowire anode on a photopolymer substrate. The performance of the device was achieved via the perfect morphology of the AgNW anode, the optimal 5 mg/ml concentration of AgNW solution, and the 45.7 Ω/□ sheet resistance of the AgNW film. The maximum current efficiency of the FOLED is 13 cd/A with stable mechanical flexibility even when bent to a radius of curvature of 2 mm. The outstanding performance of the FOLED with peeled off AgNW anode shows that this approach is a promising alternative to ITO for FOLEDs.

  19. Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors.

    Science.gov (United States)

    Tang, Xiao; Jia, Ruyue; Zhai, Teng; Xia, Hui

    2015-12-16

    Anode materials with relatively low capacitance remain a great challenge for asymmetric supercapacitors (ASCs) to pursue high energy density. Hematite (α-Fe2O3) has attracted intensive attention as anode material for ASCs, because of its suitable reversible redox reactions in a negative potential window (from 0 V to -1 V vs Ag/AgCl), high theoretical capacitance, rich abundance, and nontoxic features. Nevertheless, the Fe2O3 electrode cannot deliver large volumetric capacitance at a high rate, because of its poor electrical conductivity (∼10(-14) S/cm), resulting in low power density and low energy density. In this work, a hierarchical heterostructure comprising Fe3O4@Fe2O3 core-shell nanorod arrays (NRAs) is presented and investigated as the negative electrode for ASCs. Consequently, the Fe3O4@Fe2O3 electrode exhibits superior supercapacitive performance, compared to the bare Fe2O3 and Fe3O4 NRAs electrodes, demonstrating large volumetric capacitance (up to 1206 F/cm(3) with a mass loading of 1.25 mg/cm(2)), as well as good rate capability and cycling stability. The hybrid electrode design is also adopted to prepare Fe3O4@MnO2 core-shell NRAs as the positive electrode for ASCs. Significantly, the as-assembled 2 V ASC device delivered a high energy density of 0.83 mWh/cm(3) at a power density of 15.6 mW/cm(3). This work constitutes the first demonstration of Fe3O4 as the conductive supports for Fe2O3 to address the concerns about its poor electronic and ionic transport.

  20. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature

    International Nuclear Information System (INIS)

    Chung, C K; Zhou, R X; Chang, W T; Liu, T Y

    2009-01-01

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 deg. C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  1. Sample preparation technique for transmission electron microscopy anodized Al-Li-SiC metal matrix composite

    International Nuclear Information System (INIS)

    Shahid, M.; Thomson, G.E.

    1997-01-01

    Along with improved mechanical properties, metal matrix composites (MMC) have a disadvantage of enhanced corrosion susceptibility in aggressive environments. Recent studies on corrosion behaviour of an Al-alloy 8090/SiC MMC, revealed considerably high corrosion rates of the MMC in near neutral solutions containing chloride ions. Anodizing is one of the potential surface treatment for the MMC to provide protective coating against corrosion. The surface and cross section of the anodized MMC can easily be observed using scanning electron microscope. The anodizing behaviour of the MMC can be understood further if the anodized cross section in examined under transmission electron microscope (TEM). However, it is relatively difficult to prepare small (3 mm diameter) electron transparent specimens of the MMC supporting an anodic film. In the present study a technique has been developed for preparing thin electron transparent specimens of the anodized MMC. This technique employed conventional ion beam thinning process but the preparation of small discs was a problem. A MMMC consisting of Al-alloy 8090 with 20 % (by weight) SiC particulate with an average size of 5 Mu m, was anodized and observed in TEM after preparing the samples using the above mentioned techniques. (author)

  2. Effect of Anode Floating Voltage and its Applications in Characterizing Silicon Drift Detectors

    International Nuclear Information System (INIS)

    Guang-Guo, Wu; Hong-Ri, Li; Kun, Liang; Ru, Yang; De-Jun, Han; Xue-Lei, Cao; Huan-Yu, Wang; Jun-Ming, An; Xiong-Wei, Hu

    2009-01-01

    Anode Boating voltage is predicted and investigated for silicon drift detectors (SDDs) with an active area of 5 mm 2 fabricated by a double-side parallel technology. It is demonstrated that the anode Boating voltage increases with the increasing inner ring voltage, and is almost unchanged with the external ring voltage. The anode Boating voltage will not be affected by the back electrode biased voltage until it reaches the full-depleted voltage (−50 V) of the SDD. Theoretical analysis and experimental results show that the anode Boating voltage is equal to the sum of the inner ring voltage and the built-in potential between the p + inner ring and the n + anode. A fast checking method before detector encapsulation is proposed by employing the anode Boating voltage along with checking the leakage current, potential distribution and drift properties

  3. Development of 10×10 Matrix-anode MCP-PMT

    Science.gov (United States)

    Yang, Jie; Li, Yongbin; Xu, Pengxiao; Zhao, Wenjin

    2018-02-01

    10×10 matrix-anode is developed by high-temperature co-fired ceramics (HTCC) technology. Based on the new matrix-anode, a new kind of photon counting imaging detector - 10×10 matrix-anode MCP-PMT is developed, and its performance parameters are tested. HTCC technology is suitable for the MCP-PMT's air impermeability and its baking process. Its response uniformity is better than the metal-ceramic or metal-glass sealing anode, and it is also a promising method to realize a higher density matrix-anode.

  4. An experimental study of aluminium electrowinning using a nickel-based hydrogen diffusion anode

    International Nuclear Information System (INIS)

    Namboothiri, Sankar; Taylor, Mark P.; Chen, John J.J.; Hyland, Margaret M.; Cooksey, Mark A.

    2011-01-01

    Research highlights: → Measurable depolarisation of the anode potential and formation of water vapour. → Metallic aluminium was found on the spent cathode. → HF emissions can be minimised by conducting the electrolysis at 750 o C. → The nickel based anode surface corroded during electrolysis. → Its application is constrained by the material limitation of the porous anode. - Abstract: Laboratory scale electrolysis experiments were conducted to investigate the electrowinning of aluminium using hydrogen diffusion anodes. A potassium-based electrolyte (KF-AlF 3 -Al 2 O 3 ), porous nickel alloy anode and molybdenum disk cathode were used in experiments at 750 o C. Hydrogen gas was supplied to the anode/electrolyte interface through the porous anode. Experiments were conducted in potentiostatic, galvanostatic and galvanodynamic modes. There was a measurable depolarisation of the anode potential and also anode reaction of hydrogen and oxygen ions in the bath to form water vapour was confirmed by the water vapour condensate found at the electrolysis exit gas pipe. Metallic aluminium was found on the spent cathode. The experiments conducted in the galvanodynamic mode suggested that the rate limiter for hydrogen oxidation was the availability of surface hydrogen at the anode/electrolyte interface. The anode surface corroded during electrolysis and impurities were found both in the molten bath and on the cathode.

  5. Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang, Guoyong; Xu, Shengming; Lu, Shasha; Li, Linyan; Sun, Hongyu

    2014-01-01

    Graphical abstract: - Abstract: Co 3 O 4 is commonly used as a potential anode material for Li-ion batteries (LIBs). In this study, novel porous polyhedral and fusiform Co 3 O 4 powders have been synthesized successfully through the hydrothermal method with different solvents followed by thermal treatment. It is shown that both of the polyhedrons (1.0-3.0 μm in side length) and the spindles (2.0-5.0 μm in length, 0.5-2.0 μm in width) are composed of similar irregular nanoparticles (20-200 nm in diameter, 20-40 nm in thickness) bonded to each other. Evaluated by electrochemical measurements, both of them have high initial discharge capacities (1374.4 mAhg −1 and 1326.3 mAhg −1 ) and enhanced cycling stabilities at the low rate (the capacity retention ratios at 0.1 C after 70 cycles are 91.6% and 92.2%, respectively). However, the rate capability of the spindles (93.8%, 90.1% and 98.9% of the second discharge capacities after 70 cycles at 0.5 C, 1 C and 2 C, respectively) is better than the polyhedrons’ (only 76.2%, 42.1% and 59.3% under the same conditions). Remarkable, the unique morphologies and special structures may be extended to synthesize other similar transition metal oxides (NiO, Fe 3 O 4 , et al.) as high performance anodes for LIBs

  6. Porous Silicon–Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes

    International Nuclear Information System (INIS)

    Sohn, Myungbeom; Kim, Dae Sik; Park, Hyeong-Il; Kim, Jae-Hun; Kim, Hansu

    2016-01-01

    Highlights: • A porous Si–C anode is obtained by alkaline etching of a non-porous Si–C composite. • The pores in the carbon frame are created by simultaneous etching of Si and carbon. • The cycle life is greatly improved after the alkaline treatment. • The porous Si–C composite electrode shows high dimensional stability during cycling. - Abstract: Porous silicon–carbon (Si–C) composite materials have attracted a great deal of attention as high-performance anode materials for Li-ion batteries (LIBs), but their use suffers from the complex and limited synthetic routes for their preparation. Herein we demonstrate a scalable and nontoxic method to synthesize porous Si–C composite materials by means of simultaneous chemical etching of Si and carbon phases using alkaline solution. The resulting porous Si–C composite material showed greatly improved cycle performance, good rate capability, and high dimensional stability during cycling. Porous Si–C electrode showed an expansion of the height by about 22% after the first lithiation and only 16% after the first cycle. The material synthesis concept and scalable simultaneous etching approach presented here represent a means of improving the electrochemical properties of Si-based porous anode materials for use in commercial LIBs.

  7. Improvement of the current efficiency of an Al-Zn-In anode by heat-treatment

    International Nuclear Information System (INIS)

    Lin, J.C.; Shih, H.C.

    1987-01-01

    Aluminum anodes, each having one of several heat-treatments [namely as-cast (A), furnace-cooled (B), quenched (C), and quenched and aged (D-1)] were electrically coupled to structural steels to provide cathodic protection. The electro-chemical potential of each galvanic couple depended on the type of heat-treatment: anodes A, B, and C exhibited a potential of -1.10V, and anode D-1 was somewhat less negative at -0.95V. Empirical relationships between galvanic current density and area ratio (AR), based on 120h tests, have been established. Surface examination showed that anodes A, B, and C corrode uniformly, whereas anode D-1 dissolves locally. Results showed that the current efficiency of a sacrificial aluminum anode is dependent on its microstructure, which is, in turn, affected by its heat-treatment. Both anodes A and B possessed an equilibrium precipitate of In and the corresponding efficiencies did not vary with time. However, anode C, and especially anode D-1, suffered from aging, and their efficiencies varied with time. The microstructure of anode C contained thermal defects such as dislocation loops, while anode D-1 contained both dislocation loops and microsegregates. Results confirm that as-cast and furnace-cooled anodes have the best efficiencies (94-98%), while quenched and aged anodes have significantly lower efficiencies

  8. Switching on/off the chemisorption of thioctic-based self-assembled monolayers on gold by applying a moderate cathodic/anodic potential.

    Science.gov (United States)

    Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît

    2013-04-30

    An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and

  9. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries

    International Nuclear Information System (INIS)

    Shi, Shaojun; Zhang, Ming; Deng, Tingting; Wang, Ting; Yang, Gang

    2017-01-01

    Graphical abstract: The schematic illustration of the strategy for preparations and the mechanism for the stability of structure Display Omitted -- Highlights: •A facile strategy is applied to construct flexible carbonate composite anode. •Carbon nano-fiber matrix serves as fast charge channel and efficient buffer. •High specific capacity of 958 mAh g −1 at 100 mA g −1 is obtained. •After 200 cycles at 1 A g −1 , there is not obvious capacity decline. •The mechanism for stress release is further analyzed. -- Abstract: High temperature is usually necessary for carbon modification or electrospinning to obtain flexible anode with excellent conductivity and stability. However, due to the unstable instinct of carbonate, it’s hard to obtain carbonate when any of the synthesis process undergoes high temperature treatment. Thus, a facile strategy is applied to construct binder-free flexible carbonate composite anode at low temperature with high electrochemical performances. The carbon nano-fiber matrix is first synthesized through electrospinning followed by a facile solvothermal process to in-situ grow carbonate on carbon nano-fibers to form a well combinative flexible anode. The carbon nano-fiber matrix serves not only as a fast channel for charge transfer, but also as an efficient buffer to release the stress resulting from the hysteresis of lithiation for carbonate particles during repeated charge/discharge cycles. Owing to the synergistic effect of carbon nano-fiber and the carbonate, the flexible anode exhibits high specific capacity of 958 mAh g −1 . And after 200 cycles at 1 A g −1 , no obvious capacity decline. The reaction mechanism for stress release is also well analyzed to display the merit of our strategy. It is considered as one of the most promising way to get binder-free flexible carbonate anode with remarkable properties.

  10. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.

    Science.gov (United States)

    Zeppilli, Marco; Villano, Marianna; Aulenta, Federico; Lampis, Silvia; Vallini, Giovanni; Majone, Mauro

    2015-05-01

    A methane-producing microbial electrolysis cell (MEC) was continuously fed at the anode with a synthetic solution of soluble organic compounds simulating the composition of the soluble fraction of a municipal wastewater. The MEC performance was assessed at different anode potentials in terms of chemical oxygen demand (COD) removal efficiency, methane production, and energy efficiency. As a main result, about 72-80% of the removed substrate was converted into current at the anode, and about 84-86% of the current was converted into methane at the cathode. Moreover, even though both COD removed and methane production slightly decreased as the applied anode potential decreased, the energy efficiency (i.e., the energy recovered as methane with respect to the energy input into the system) increased from 54 to 63%. Denaturing gradient gel electrophoresis (DGGE) analyses revealed a high diversity in the anodic bacterial community with the presence of both fermentative (Proteiniphilum acetatigenes and Petrimonas sulphurifila) and aerobic (Rhodococcus qingshengii) microorganisms, whereas only two microorganisms (Methanobrevibacter arboriphilus and Methanosarcina mazei), both assignable to methanogens, were observed in the cathodic community.

  11. On anodic stability and decomposition mechanism of sulfolane in high-voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xing, Lidan; Tu, Wenqiang; Vatamanu, Jenel; Liu, Qifeng; Huang, Wenna; Wang, Yating; Zhou, Hebing; Zeng, Ronghua; Li, Weishan

    2014-01-01

    Graphical abstract: - Highlights: • Influence of lithium salts on the anodic stability of sulfolane has been investigated. • Oxidation decomposition mechanisms of LiPF 6 /Sulfolane electrolyte have been well understood by theoretical and experimental methods. • Decomposition products of the electrolyte can be found on the electrode surface and in the interfacial electrolyte. - Abstract: In this work, we investigated the anodic stability and decomposition mechanism of sulfolane (SL). The anodic stability of SL-based electrolyte with different lithium salts on Pt and LiNi 0.5 Mn 1.5 O 4 electrodes was found to decrease as follows: LiPF 6 /SL > LiBF 4 /SL > LiClO 4 /SL. The oxidation potential of 1M LiPF 6 /SL electrolyte on both Pt and electrodes is about 5.0V vs Li/Li + . The presence of PF 6 - and another SL solvent dramatically alters the decomposition mechanism of SL. Oxidation decomposition of SL-SL cluster is the most favorable reaction in LiPF 6 /SL electrolyte. The dimer products with S-O-R group were detected by IR spectra on the charged LiNi 0.5 Mn 1.5 O 4 electrode surface and in the electrolyte near the electrode surface, and were found to increase the interfacial reaction resistance of the LiNi 0.5 Mn 1.5 O 4 electrode

  12. Three-dimensionally interconnected Si frameworks derived from natural halloysite clay: a high-capacity anode material for lithium-ion batteries.

    Science.gov (United States)

    Wan, Hao; Xiong, Hao; Liu, Xiaohe; Chen, Gen; Zhang, Ning; Wang, Haidong; Ma, Renzhi; Qiu, Guanzhou

    2018-05-23

    On account of its high theoretical capacity, silicon (Si) has been regarded as a promising anode material for Li-ion batteries. Extracting Si content from earth-abundant and low-cost aluminosilicate minerals, rather than from artificial silica (SiO2) precursors, is a more favorable and practical method for the large-scale application of Si anodes. In this work, three-dimensionally interconnected (3D-interconnected) Si frameworks with a branch diameter of ∼15 nm are prepared by the reduction of amorphous SiO2 nanotubes derived from natural halloysite clay. Benefiting from their nanostructure, the as-prepared 3D-interconnected Si frameworks yield high reversible capacities of 2.54 A h g-1 at 0.1 A g-1 after 50 cycles, 1.87 A h g-1 at 0.5 A g-1 after 200 cycles, and 0.97 A h g-1 at 2 A g-1 after a long-term charge-discharge process of 500 cycles, remarkably outperforming the commercial Si material. Further, when the as-prepared Si frameworks and commercial LiCoO2 cathodes are paired in full cells, a high anode capacity of 0.98 A h g-1 is achieved after 100 cycles of rapid charge/discharge at 2 A g-1. This work provides a new strategy for the synthesis of high-capacity Si anodes derived from natural aluminosilicate clay.

  13. Facile synthesis of carbon/MoO 3 nanocomposites as stable battery anodes

    KAUST Repository

    Ding, Jiang; Abbas, Syed Ali; Hanmandlu, Chintam; Lin, Lin; Lai, Chao-Sung; Wang, Pen-Cheng; Li, Lain-Jong; Chu, Chih-Wei; Chang, Chien-Cheng

    2017-01-01

    Pristine MoO3 is a potential anode material for lithium-ion batteries (LIBs), due to its high specific capacity (1117 mA h g−1); it suffers, however, from poor cyclability, resulting from a low conductivity and large volume changes during lithiation

  14. Anode property of carbon coated LiFePO4 nanocrystals

    Science.gov (United States)

    Ni, Jiangfeng; Jiang, Jiaxing; Savilov, S. V.; Aldoshin, S. M.

    2016-10-01

    Nanostructured LiFePO4 is appealing cathode material for rechargeable lithium batteries. Herein, however, we report the intriguing anode properties of carbon coated LiFePO4 nanocrystals. In the potential range of 0-3.0 V, the LiFePO4 nanocrystal electrodes afford high reversible capacity of 373 mAhg-1 at a current rate of 0.05 Ag-1 and retains 239 mAhg-1 at a much higher rate of 1.25 Ag-1. In addition, it is capable of sustaining 1000 cycles at 1.25 Ag-1 without any capacity fading. Such superior properties indicate that nanostructured LiFePO4 could also be promising anode for rechargeable battery applications.

  15. Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-02-01

    Full Text Available GeP5 is a recently reported new anode material for lithium ion batteries (LIBs, it holds a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active materials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance.

  16. Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis

    Science.gov (United States)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Maryam, W.; Ahmad, M. A.; Bououdina, M.

    2015-12-01

    Highly-ordered and hexagonal-shaped nanoporous anodic aluminum oxide (AAO) of 1 μm thickness of Al pre-deposited onto Si substrate using two-step anodization was successfully fabricated. The growth mechanism of the porous AAO film was investigated by anodization current-time behavior for different anodizing voltages and by visualizing the microstructural procedure of the fabrication of AAO film by two-step anodization using cross-sectional and top view of FESEM imaging. Optimum conditions of the process variables such as annealing time of the as-deposited Al thin film and pore widening time of porous AAO film were experimentally determined to obtain AAO films with uniformly distributed and vertically aligned porous microstructure. Pores with diameter ranging from 50 nm to 110 nm and thicknesses between 250 nm and 1400 nm, were obtained by controlling two main influential anodization parameters: the anodizing voltage and time of the second-step anodization. X-ray diffraction analysis reveals amorphous-to-crystalline phase transformation after annealing at temperatures above 800 °C. AFM images show optimum ordering of the porous AAO film anodized under low voltage condition. AAO films may be exploited as templates with desired size distribution for the fabrication of CuO nanorod arrays. Such nanostructured materials exhibit unique properties and hold high potential for nanotechnology devices.

  17. Asymmetric battery having a semi-solid cathode and high energy density anode

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2017-11-28

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  18. Fabrication of porous anodic alumina films by using two-step anodization process

    International Nuclear Information System (INIS)

    Xu Zhan; Zhou Bin; Xu Xiang; Wang Xiaoli; Wu Di; Shen Jun

    2006-01-01

    This article introduces the fabrication of the porous anodic alumina films which have ordered pore arrangement by using a two-step anodization process. The films have a parallel channel structure which nanopore diameter can be 20-100 nm, and depth can reach 50 μm. The change of pore structure in the first and second anodization, moving the alumina layer, widening process was analysed. The effect of the parameters such as different electrolytes, anodization temperature and the voltage on the nanopore structure was studied. The surface and profile structure through FE-SEM (field emission scanning electron microscope), the element composition in tiny area of the anodic aluminum oxide (AAO) surface were studied. The result indicates the pore diameter of AAO which is anodized in oxalic acid solution is larger than which anodized in sulfuric acid solution. The anodization temperature and voltage can enlarge the nanopore diameter of AAO in a range. (authors)

  19. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  20. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2017-06-01

    Full Text Available TiO2 nanotubes (NTs synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  1. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  2. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    International Nuclear Information System (INIS)

    Kim, Byeol; Lee, Jin Seok

    2014-01-01

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced

  3. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeol; Lee, Jin Seok [Sookmyung Women' s Univ., Seoul (Korea, Republic of)

    2014-02-15

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced.

  4. Through-mask anodization of titania dot- and pillar-like nanostructures on bulk Ti substrates using a nanoporous anodic alumina mask

    International Nuclear Information System (INIS)

    Sjoestroem, Terje; Su Bo; Fox, Neil

    2009-01-01

    Nanosized surface topography on an implant material has the capability of stimulating the acceptance of the material in its host surrounding. Fine-tuning of nanotopography feature size has been shown to trigger differentiation of mesenchymal stem cells into bone cells in vitro. For this purpose we have created well defined nanosized titania dot- and pillar-like structures on mechanically polished Ti substrates using a through-mask anodization technique with an anodic porous alumina template. The anodization technique allowed the titania structure dimensions to be precisely tuned in the range 15-140 nm in a single electrolyte system. The fabricated surfaces serve as good model surfaces for precise studies of in vitro cell behaviour. The through-mask anodization technique was used directly on bulk Ti surfaces, thus demonstrating a potential application for patterning of actual Ti implant surfaces.

  5. Self-ordered Porous Alumina Fabricated via Phosphonic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2016-01-01

    Self-ordered periodic porous alumina with an undiscovered cell diameter was fabricated via electrochemical anodizing in a new electrolyte, phosphonic acid (H3PO3). High-purity aluminum plates were anodized in phosphonic acid solution under various operating conditions of voltage, temperature, concentration, and anodizing time. Phosphonic acid anodizing at 150-180 V caused the self-ordering behavior of porous alumina, and an ideal honeycomb nanostructure measuring 370-440 nm in cell diameter w...

  6. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    Science.gov (United States)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  7. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery

    Science.gov (United States)

    Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai

    2018-05-01

    Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.

  8. Interelectrode plasma evolution in a hot refractory anode vacuum arc: Theory and comparison with experiment

    International Nuclear Information System (INIS)

    Beilis, I.I.; Goldsmith, S.; Boxman, R.L.

    2002-01-01

    In this paper a theoretical study of a hot refractory anode vacuum arc, which was previously investigated experimentally [Phys. Plasmas 7, 3068 (2000)], is presented. The arc was sustained between a thermally isolated refractory anode and a water-cooled copper cathode. The arc started as a multicathode-spot (MCS) vacuum arc and then switched to the hot refractory anode vacuum arc (HRAVA) mode. In the MCS mode, the cathodic plasma jet deposits a film of the cathode material on the anode. Simultaneously, the temperature of the thermally isolated anode begins to rise, reaching eventually a sufficiently high temperature to re-evaporate the deposited material, which is subsequently ionized in the interelectrode gap. The transition to the HRAVA mode is completed when the density of the interelectrode plasma consists mostly of ionized re-evaporated atoms--the anode plasma. The evolution of the HRAVA mode is characterized by the propagation of a luminous plasma plume from the anode to the cathode. The time dependent model of the various physical processes taking place during the transition to the HRAVA mode is represented by a system of equations describing atom re-evaporation, atom ionization through the interaction of the cathode jet and the interelectrode plasma with the anode vapor, plasma plume propagation, plasma radial expansion, plasma energy, and heavy particle density balance. The time dependence of the anode heat flux and the effective anode voltage were obtained by solving these equations. In addition, the time dependent plasma electron temperature, plasma density, anode potential drop, arc voltage, and anode temperature distribution were calculated and compared with previous measurements. It was shown that the observed decrease of the effective anode voltage with time during the mode transition is due to decrease of the heat flux incident on the anode surface from the cathode spot jets

  9. Electroless Cu Plating on Anodized Al Substrate for High Power LED.

    Science.gov (United States)

    Rha, Sa-Kyun; Lee, Youn-Seoung

    2015-03-01

    Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.

  10. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  11. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2009-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported ...

  12. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  13. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    Science.gov (United States)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  14. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    Science.gov (United States)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  15. Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    rehman, Wasif ur; Xu, Youlong; Du, Xianfeng; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Jin, Yanling; Zhang, Baofeng; Li, Xifei

    2018-07-01

    Derived from avocado fruit, a three dimension (3D) carbon is prepared via a hydrothermal/pyrolysis process followed by embedding with MnO nanoparticles by a wet chemical method and coating with Al2O3 through an atomic layer deposition technique. The obtained material presents a hierarchical structure that MnO nanocrystals wrapped in 3D carbon and then encapsulated in a uniform Al2O3 layer with a thickness of about 5 nm. Benefiting from this hierarchical structure in which 3D carbon offers numerous electronic pathways to enhance the conductivity and Al2O3 nanolayer provide a shelter to keep away from dissolution of Mn4+ and volume changes during charge/discharge process. This material (marked as C/MnO@Al2O3) has exhibited high rate performance and excellent cyclability as an anode for lithium ion batteries. A high specific capacity of about 600 mA h g-1 is achieved at a current density of 1000 mA g-1 and the electrode can still deliver a high specific capacity of about 1165 mA h g-1 at 150 mA g-1 after 100 cycles. These results facilitate a green and high potential of anode materials towards promising devices for advance performance of lithium-ion batteries.

  16. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xia [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zheng, Hongmei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Zhao, Jiebo [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Lihua [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Cui, Jiewu; Qin, Yongqiang; Wang, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China)

    2017-08-01

    Graphical abstract: Current-time and potential-time curves of the copper foil anodization process, CV of copper substrate in anodization solution and SEM morphologies of anodization products on Cu substrates obtained at different time. - Highlights: • Copper oxides nanosheet arrays were achieved via anodization method. • The growth mechanisms of the copper anodization process were studied. • Photoelectrochemical performances of copper oxides NSAs were studied. - Abstract: We studied the growth of copper oxide nanosheet arrays on copper foil via a simple anodization method. The structures, morphologies, and elemental compositions of the specimens were characterized with an X-ray diffractometer, scanning electron microscope, high resolution transmission electron microscope, and X-ray photoelectron spectrometer. The copper oxide (Cu{sub 2}O and CuO) nanosheet arrays were comprised of 30-nm-thick nanosheets that stand vertically on the Cu substrate. The anodizing parameters, such as the current density, temperature, and polyethylene glycol concentration, were optimized to obtain the regular nanosheet arrays. The optical absorption properties of the anodized products were evaluated using a diffuse reflectance spectrometer, and broad and strong optical absorption bands arising from the UV to visible region were observed. The photoelectrochemical performance of the nanosheet arrays was measured with chronoamperometry and cyclic voltammetry on an electrochemical workstation equipped with a Xe lamp (wavelength >400 nm). A negative photocurrent was obtained due to the p-type semiconductor of the copper oxides. The copper oxide nanosheet arrays achieve the highest photocurrent of 0.4 mA/cm{sup 2} at the current density of 1.0 A/dm{sup 2}, temperature of 70 °C, and polyethylene glycol concentration of 0.5 g/L.

  17. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    International Nuclear Information System (INIS)

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-01-01

    Boron-doped diamond anodes allow to directly produce OH· radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included

  18. Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions

    OpenAIRE

    Fernández Domene, Ramón Manuel; Sánchez Tovar, Rita; SEGURA SANCHIS, ELENA; Garcia-Anton, Jose

    2016-01-01

    In the present work, a new WO3 nanostructure has been obtained by anodization in a H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disk Electrode (RDE) configuration. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FESEM), Confocal Raman Microscopy and photoelectrochemical measurements. The new nanostructure, which consists of nanoplatelets clusters growing in a tree-like manner, presents a very high surface area expose...

  19. Anodic oxidation of commercially pure titanium for purification of polluted water

    Science.gov (United States)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  20. Mixed conduction protonic/electronic ceramic for high temperature electrolysis anode

    International Nuclear Information System (INIS)

    Goupil, Gregory

    2011-01-01

    This thesis validates the concept of mixed electron/proton ceramic conductors to be used as anode materials for intermediate temperature steam electrolyzer. The materials developed are based on cobaltites of alkaline-earth metals and rare earth elements commonly used for their high electronic conductivity in the temperature range of 300-600 C. The stability of each material has been assessed during 350 h in air and moist air. After checking the chemical compatibility with the BaZr 0.9 Y 0.1 O 3 electrolyte material, eight compositions have been selected: BaCoO 3 , LaCoO 3 , Sr 0.5 La 0.5 CoO 3 , Ba 0.5 La 0.5 CoO 3 , GdBaCo 2 O 5 , NdBaCo 2 O 5 , SmBaCo 2 O 5 and PrBaCo 2 O 5 . The thermal evolution of the oxygen stoichiometry of each material was determined by coupling iodo-metric titration and TGA in dry air. TGA in moist air has allowed determining the optimum temperature range for which proton incorporation is possible and maximized. Proton incorporation profiles have been determined on two cobaltites using SIMS and nuclear microanalysis in the ERDA configuration. Deuterium diffusion coefficients have been determined confirming the proton mobility in these materials. Under moist air, NdBaCo 2 O 5 is shown to incorporate rapidly a significant number of protons that spread homogeneously within the material bulk. Anode microstructure optimization has allowed reaching at 450 C and 600 C total resistance values on symmetrical cell highly promising. (author) [fr

  1. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  2. Applications of Carbon Nanotubes for Lithium Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Hyoung-Joon Jin

    2013-03-01

    Full Text Available Carbon nanotubes (CNTs have displayed great potential as anode materials for lithium ion batteries (LIBs due to their unique structural, mechanical, and electrical properties. The measured reversible lithium ion capacities of CNT-based anodes are considerably improved compared to the conventional graphite-based anodes. Additionally, the opened structure and enriched chirality of CNTs can help to improve the capacity and electrical transport in CNT-based LIBs. Therefore, the modification of CNTs and design of CNT structure provide strategies for improving the performance of CNT-based anodes. CNTs could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this review, we discuss the mechanism of lithium ion intercalation and diffusion in CNTs, and the influence of different structures and morphologies on their performance as anode materials for LIBs.

  3. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  4. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    Science.gov (United States)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  5. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2013-04-01

    In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2V produced the highest power of 1330±60mWm-2 for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2V consistently improves power production compared to use of a more positive potential or the lack of a set potential. © 2013 Elsevier Ltd.

  6. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells.

    Science.gov (United States)

    Zhang, Fang; Xia, Xue; Luo, Yong; Sun, Dan; Call, Douglas F; Logan, Bruce E

    2013-04-01

    In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2 V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2 V produced the highest power of 1330±60 mW m(-2) for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2 V consistently improves power production compared to use of a more positive potential or the lack of a set potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A Novel Method for Fabricating Double Layers Porous Anodic Alumina in Phosphoric/Oxalic Acid Solution and Oxalic Acid Solution

    Directory of Open Access Journals (Sweden)

    Yanfang Xu

    2016-01-01

    Full Text Available A novel method for fabricating ordered double layers porous anodic alumina (DL-PAA with controllable nanopore size was presented. Highly ordered large pore layer with interpore distance of 480 nm was fabricated in phosphoric acid solution with oxalic acid addition at the potential of 195 V and the small pore layer was fabricated in oxalic acid solution at the potential from 60 to 100 V. Experimental results show that the thickness of large pore layer is linearly correlative with anodizing time, and pore diameter is linearly correlative with pore widening time. When the anodizing potential in oxalic acid solution was adjusted from 60 to 100 V, the small pore layers with continuously tunable interpore distance from 142 to 241 nm and pore density from 1.94×109 to 4.89×109 cm−2 were obtained. And the interpore distance and the pore density of small pore layers are closely correlative with the anodizing potential. The fabricated DL-PAA templates can be widely utilized for fabrication of ordered nanomaterials, such as superhydrophobic or gecko-inspired adhesive materials and metal or semiconductor nanowires.

  8. Room Temperature Anodization of Aluminum at Low Voltage

    International Nuclear Information System (INIS)

    Kamal, A.; Abdel-Karim, R.; El-Raghy, S.; EL-Sherif, R.M.; Wheed, A.

    2013-01-01

    Membranes with nanometer-scale features have many applications, such as in optics, electronics, catalysis, selective molecule separation, filtration and purification, bio sensing, and single-molecule detection. Anodization process was conducted using 15, 20, 30 and 35% by volume phosphoric acid. Results showed that Porous Anodized Aluminum (PAA) with ideal nano pore arrays can be fabricated at room temperature by one-step anodization on high purity aluminum foil at 5 V. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The electrochemical behavior of anodized aluminum was studied in 0.1 M Na 2 SO 4 solutions using electrochemical impedance spectroscopy (EIS). The highest resistance of the porous layer (R p ) was detected for the samples anodized in 20% phosphoric acid

  9. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  10. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tianyue Zheng

    2017-11-01

    Full Text Available Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.

  11. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  12. Effects of Charcoal Addition on the Properties of Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Asem Hussein

    2017-03-01

    Full Text Available Wood charcoal is an attractive alternative to petroleum coke in production of carbon anodes for the aluminum smelting process. Calcined petroleum coke is the major component in the anode recipe and its consumption results in a direct greenhouse gas (GHG footprint for the industry. Charcoal, on the other hand, is considered as a green and abundant source of sulfur-free carbon. However, its amorphous carbon structure and high contents of alkali and alkaline earth metals (e.g., Na and Ca make charcoal highly reactive to air and CO2. Acid washing and heat treatment were employed in order to reduce the reactivity of charcoal. The pre-treated charcoal was used to substitute up to 10% of coke in the anode recipe in an attempt to investigate the effect of this substitution on final anode properties. The results showed deterioration in the anode properties by increasing the charcoal content. However, by adjusting the anode recipe, this negative effect can be considerably mitigated. Increasing the pitch content was found to be helpful to improve the physical properties of the anodes containing charcoal.

  13. Electrochemical noise evaluation of anodized aluminum. Comparative study against corrosion behaviour in the atmosphere

    International Nuclear Information System (INIS)

    Betancourt, N.; Corvo, F.; Mendoza, A.; Simancas, J.; Morcillo, M.; Gonzalez, J. A.; Fragata, F.; Pena, J. J.; Sanchez de Villalaz, M.; Flores, S.; Almeida, E.; Rivero, S.; Rincon, O. T. de.

    2003-01-01

    The present work reports the evaluation of aluminum and anodized aluminum by electrochemical noise, as a part of the PATINE/CYTED project of the working group NS5. A visual examination is also made. The samples were exposed at several Ibero-American atmospheres up to 2 years of exposure. Different thickness of anodized aluminum were evaluated. The electrochemical potential noise of the 5 μm unexposed sample (pattern) showed a different behaviour to that showed by the other anodized specimens. This could be due to a slower sealed of the samples of higher thickness. The same behavior was observed on the samples exposed at the rural station. el Pardo. According to the visual examination, the samples of bare aluminum and those of anodized 5 μm thickness were the most affected by pitting corrosion in the highly polluted atmospheres. A good correlation between corrosion behaviour determined by visual examination and EN was obtained. (Author) 4 refs

  14. Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Jiafeng [School of Materials; Yuan, Tao [School of Materials; Pang, Yuepeng [School of Materials; Xu, Xinbo [School of Materials; Yang, Junhe [School of Materials; Hu, Wenbin; Zhong, Cheng; Ma, Zi-Feng [Shanghai Electrochemical Energy Devices Research Center,; Bi, Xuanxuan [Chemical; Zheng, Shiyou [School of Materials

    2017-10-06

    Red phosphorus (P) is considered to be one of the most attractive anodic materials for lithium-ion batteries (LIBs) due to its high theoretical capacity of 2596 mAh g–1. However, intrinsic characteristics such as the poor electronic conductivity and large volume expansion at lithiation impede the development of red P. Here, we design a new strategy to embed red P particles into a cross-link-structural carbon film (P–C film), in order to improve the electronic conductivity and accommodate the volume expansion. The red P/carbon film is synthesized via vapor phase polymerization (VPP) followed by the pyrolysis process, working as a flexible binder-free anode for LIBs. High cycle stability and good rate capability are achieved by the P–C film anode. With 21% P content in the film, it displays a capacity of 903 mAh g–1 after 640 cycles at a current density of 100 mA g–1 and a capacity of 460 mAh g–1 after 1000 cycles at 2.0 A g–1. Additionally, the Coulombic efficiency reaches almost 100% for each cycle. The superior properties of the P–C films together with their facile fabrication make this material attractive for further flexible and high energy density LIB applications.

  15. Facile synthesis of carbon/MoO 3 nanocomposites as stable battery anodes

    KAUST Repository

    Ding, Jiang

    2017-03-09

    Pristine MoO3 is a potential anode material for lithium-ion batteries (LIBs), due to its high specific capacity (1117 mA h g−1); it suffers, however, from poor cyclability, resulting from a low conductivity and large volume changes during lithiation/delithiation process. Here we adopt a facile two-step method in which pristine bulk MoO3 is first converted into MoO3 nanorods (MoO3 NR) through mechanical grinding, to buffer the continuous volume changes, and then coated with amorphous carbon through simple stirring and heating, to provide high electronic and ionic conductivities. Electrochemical tests reveal that the carbon-coated MoO3 nanorods (C-MoO3 NRs) exhibit outstanding specific capacity (856 mA h g−1 after 110 cycles at a current density of 0.1 C); remarkable cycle life, among the best reported for carbon-based MoO3 nanostructures (485 mA h g−1 after 300 cycles at 0.5 C and 373 mA h g−1 after 400 cycles at 0.75 C); and greatly improved capacity retention (up to 90.4% after various C-rates) compared to bulk MoO3. We confirm the versatility of the C-MoO3 NR anodes by preparing flexible batteries that display stable performance, even in bent state. This simple approach toward C-MoO3 NR anodes proceeds without rigorous chemical synthesis or extremely high temperatures, making it a scalable solution to prepare high-capacity anodes for next-generation LIBs.

  16. Lanthanum doped strontium titanate - ceria anodes: deconvolution of impedance spectra and relationship with composition and microstructure

    Science.gov (United States)

    Burnat, Dariusz; Nasdaurk, Gunnar; Holzer, Lorenz; Kopecki, Michal; Heel, Andre

    2018-05-01

    Electrochemical performance of ceramic (Ni-free) SOFC anodes based on La0.2Sr0.7TiO3-δ (LST) and Gd0.1Ce0.9O1.95-δ (CGO) is thoroughly investigated. Microstructures and compositions are systematically varied around the percolation thresholds of both phases by modification of phase volume fractions, particle size distributions and firing temperature. Differential impedance spectroscopy was performed while varying gas composition, electrical potential and operating temperature, which allows determining four distinct electrode processes. Significant anode impedances are measured at low frequencies, which in contrast to the literature cannot be linked with gas concentration impedance. The dominant low frequency process (∼1 Hz) is attributed to the chemical capacitance. Combined EIS and microstructure investigations show that the chemical capacitance correlates inversely with the available surface area of CGO, indicating CGO surface reactions as the kinetic limitation for the dominant anode process and for the associated chemical capacitance. In anodes with a fine-grained microstructure this limitation is significantly smaller, which results in an impressive power output as high as 0.34 Wcm-2. The anodes show high redox stability by not only withstanding 30 isothermal redox cycles, but even improving the performance. Hence, compared to conventional Ni-cermet anodes the new LST-CGO material represents an interesting alternative with much improved redox-stability.

  17. Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes

    KAUST Repository

    Boulfrad, Samir; Cassidy, Mark; Djurado, Elisabeth; Irvine, John Ts S; Jabbour, Ghassan E.

    2013-01-01

    then dispersed into organic based vehicles to form a screen-printable ink which was deposited and fired to form SOFC anode layers. Electrochemical tests show a considerable enhancement of the pre-coated anode performances under 50 ml/min wet H2 flow

  18. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  19. Sulfur poisoning of Ni/Gadolinium-doped ceria anodes: A long-term study outlining stable solid oxide fuel cell operation

    Science.gov (United States)

    Riegraf, Matthias; Zekri, Atef; Knipper, Martin; Costa, Rémi; Schiller, Günter; Friedrich, K. Andreas

    2018-03-01

    This work presents an analysis of the long-term behavior of nickel/gadolinium-doped ceria (CGO) anode-based solid oxide fuel cells (SOFC) under sulfur poisoning conditions. A parameter study of sulfur-induced irreversible long-term degradation of commercial, high-performance single cells was carried out at 900 °C for different H2/N2/H2S fuel gas atmospheres, current densities and Ni/CGO anodes. The poisoning periods of the cells varied from 200 to 1500 h. The possibility of stable long-term Ni/CGO anode operation under sulfur exposure is established and the critical operating regime is outlined. Depending on the operating conditions, two degradation phenomena can be observed. Small degradation of the ohmic resistance was witnessed for sulfur exposure times of approximately 1000 h. Moreover, degradation of the anode charge transfer resistance was observed to be triggered by the combination of a small anodic potential step and high sulfur coverage on Ni. The microstructural evolution of altered Ni/CGO anodes was examined post-mortem by means of SEM and FIB/SEM, and is correlated to the anode performance degradation under critical operating conditions, establishing Ni depletion, porosity increase and a tripe phase boundary density decrease in the anode functional layer. It is shown that short-term sulfur poisoning behavior can be used to assess long-term stability.

  20. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    International Nuclear Information System (INIS)

    Seo, Masahiro; Yamaya, Tadafumi

    2005-01-01

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width

  1. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Masahiro [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: seo@elechem1-mc.eng.hokudai.ac.jp; Yamaya, Tadafumi [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)

    2005-11-10

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width.

  2. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  3. Development and testing of immersed-Bz diodes with cryogenic anodes

    International Nuclear Information System (INIS)

    Bruner, Nichelle Lee; Cordova, Steve Ray; Oliver, Bryan Velten; Portillo, Salvador; Cooper, Graham; Puetz, Elizabeth A.; Johnston, Mark D.; Hahn, Kelly Denise; McLean, John; Molina, Isidro; Droemer, Darryl W.; Welch, Dale R.; Rovang, Dean Curtis; Van De Valde, David M.; Gregerson, Darryl; Maenchen, John Eric; O'Malley, John

    2005-01-01

    Sandia National Laboratories is investigating and developing high-dose, high-brightness flash radiographic sources. The immersed-B z diode employs large-bore, high-field solenoid magnets to help guide and confine an intense electron beam from a needle-like cathode 'immersed' in the axial field of the magnet. The electron beam is focused onto a high-atomic-number target/anode to generate an intense source of bremsstrahlung X-rays. Historically, these diodes have been unable to achieve high dose (> 500 rad (at) m) from a small spot (< 3 mm diameter). It is believed that this limitation is due in part to undesirable effects associated with the interaction of the electron beam with plasmas formed at either the anode or the cathode. Previous research concentrated on characterizing the behavior of diodes, which used untreated, room temperature (RT) anodes. Research is now focused on improving the diode performance by modifying the diode behavior by using cryogenic anodes that are coated in-situ with frozen gases. The objective of these cryogenically treated anodes is to control and limit the ion species of the anode plasma formed and hence the species of the counter-streaming ions that can interact with the electron beam. Recent progress in the development, testing and fielding of the cryogenically cooled immersed diodes at Sandia is described.

  4. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  5. Innovative anode materials and architectured cells for high temperature steam electrolysis operation

    International Nuclear Information System (INIS)

    Ogier, Tiphaine

    2012-01-01

    In order to improve the electrochemical performances of cells for high temperature steam electrolysis (HTSE), innovative oxygen electrode materials have been studied. The compounds Ln_2NiO_4_+_δ (Ln = La, Pr or Nd), Pr_4Ni_3O_1_0_±_δ and La_0_,_6S_r0_,_4Fe_0_,_8Co_0_,_2O_3_-_δ have been selected for their mixed electronic and ionic conductivity. First, their physical and chemical properties have been investigated. Then, the electrodes were shaped on symmetrical half cells,adding a thin ceria-based interlayer between the electrode and the yttria doped zirconia-based electrolyte. These architectured cells lead to low polarization resistances (RP≤ 0.1 Ω.cm"2 at 800 C) as well as reduced anodic over potentials. An electrochemical model has been developed in order to describe and analyze the experimental polarization curves.The electrode with the lower overpotential, i.e. Pr_2NiO_4_+δ, has been selected and characterized into complete cermet-supported cells. Under HTSE operation, at 800 C, a high current density was measured, close to i = -0.9 A.cm"-"2 for a cell voltage equals to 1.3 V, the conversion rate being about 60%. (author) [fr

  6. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  7. Structural analysis of highly-durable Si-O-C composite anode prepared by electrodeposition for lithium secondary batteries

    International Nuclear Information System (INIS)

    Nara, Hiroki; Yokoshima, Tokihiko; Otaki, Mitsutoshi; Momma, Toshiyuki; Osaka, Tetsuya

    2013-01-01

    The structure of the highly durable silicon-based anode prepared by electrodeposition was investigated for volume change and chemical structure. With repeated charge–discharge cycles, the volume change resulting from the anode film thickness decreased, and, after 100 cycles, essentially no difference was observed between the charged and discharged states. The buffering effect of the volume change was considered to be achieved by the formation of Li 2 O, Li 2 CO 3 , and lithium silicates such as Li 4 SiO 4 , whose existence were supported by STEM, EELS, and XPS analyses. From the structural analyses, the main reactions related to the capacity of the silicon-based anode were considered to be the formation of Li x Si and Li 2 Si 2 O 5 . Li x Si and Li 2 Si 2 O 5 can be delithiated into Si and SiO 2 , respectively

  8. Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Bao, Qi; Huang, Yao-Hui; Lan, Chun-Kai; Chen, Bing-Hong; Duh, Jenq-Gong

    2015-01-01

    Silicon (Si) has been perceived as a promising next-generation anode material for lithium ion batteries (LIBs) due to its superior theoretical capacity. Despite the natural abundance of this element on Earth, large-scale production of high-purity Si nanomaterials in a green and energy-efficient way is yet to become an industrial reality. Spray-drying methods have been exploited to recover Si particles from low-value sludge produced in the photovoltaic industry, providing a massive and cost-effective Si resource for fabricating anode materials. To address such drawbacks like volume expansion, low electrical and Li + conductivity and unstable solid electrolyte interphase (SEI) formation, the recycled silicon particles have been downsized into nanoscale and shielded by a highly conductive and protective graphene multilayer through high energy ball milling. Cyclic voltammetry and electrochemical impedance spectroscopy measurements have revealed that the graphene wrapping and size reduction approach have significantly improved the electrochemical performance. It delivers an excellent reversible capacity of 1,138 mA h g −1 and a long cycle life with 73% capacity retention over 150 cycles at a high current of 450 mA g −1 . The plentiful waste conversion methodology also provides considerable opportunities for developing additional rechargeable devices, ceramic, powder metallurgy and silane/siloxane products

  9. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  10. Development of hollow anode penning ion source for laboratory application

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.K., E-mail: dasbabu31@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Autonagar, Visakhapatnam (India); Shyam, A.; Das, R. [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Autonagar, Visakhapatnam (India); Rao, A.D.P. [Department of Nuclear Physics, Andhra University, Visakhapatnam (India)

    2012-03-21

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J Multiplication-Sign B force in the region helps for efficient ionization of the gas even in the high vacuum region{approx}1 Multiplication-Sign 10{sup -5} Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 {mu}A was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  11. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    Science.gov (United States)

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  12. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode.

    Science.gov (United States)

    An, Junyeong; Kim, Bongkyu; Nam, Jonghyeon; Ng, How Yong; Chang, In Seop

    2013-01-01

    Five rigid graphite plates were embedded in evenly divided sections of sediment, ranging from 2 cm (A1) to 10 cm (A5) below the top sediment layer. The maximum power and current of the MFCs increased in depth order; however, despite the increase in the internal resistance, the power and current density of the A5 MFC were 2.2 and 3.5 times higher, respectively, than those of the A1 MFC. In addition, the anode open circuit potentials (OCPs) of the sediment microbial fuel cells (SMFCs) became more negative with sediment depth. Based on these results, it could be then concluded that as the anode-embedding depth increases, that the anode environment is thermodynamically and kinetically favorable to anodophiles or electrophiles. Therefore, the anode-embedding depth should be considered an important parameter that determines the performance of SMFCs, and we posit that the anode potential could be one indicator for selecting the anode-embedding depth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  14. Thermally fabricated MoS{sub 2}-graphene hybrids as high performance anode in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.K., E-mail: sunil111954@yahoo.co.uk [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Kartick, B. [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Choudhury, S. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Stamm, M. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymer Materials, 01062, Dresden (Germany)

    2016-11-01

    MoS{sub 2}-reduced graphene oxide (MoS{sub 2}-rGO: where rGO = 0, 1, 3, 5, 7 and 10 wt%) hybrids have been fabricated using (NH{sub 4}){sub 2}MoS{sub 4} and graphite oxide as single source precursors of MoS{sub 2} and thermally exfoliated reduced graphene oxide respectively. These individual precursors were initially subjected to grinding for 30 min followed by heating at 1200 °C for 15 min and characterized. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) confirmed co-dispersion of MoS{sub 2} on thermally exfoliated graphite oxide. Electrochemical studies of these hybrids as anode materials showed that MoS{sub 2}-rGO (7 wt%) exhibited superior reversible capacity, cycling stability, enhanced rate performance (780 mAhg{sup −1}) and rate capability (880 mAhg{sup −1}) over pristine MoS{sub 2} and other hybrids. - Highlights: • MoS{sub 2}-graphene hybrids are synthesized by high temperature from individual precursors. • These hybrids have been used as anode material in LIB. • MoS{sub 2}-graphene (7 wt%) exhibited superior reversible capacity and cycling stability. • It showed high rate performance (780 mA h g{sup −1}) and rate capability (880 mA h g{sup −1}). • Enhanced performance at lower graphene makes it most attractive anode material in LIB.

  15. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  16. Pilot demonstration of cerium oxide coated anodes

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  17. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-03

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  18. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  19. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  20. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  1. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie; Lowe, Michael A.; Abruña, Héctor D.

    2011-01-01

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering

  2. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g−1 at 0.2 C), good repeatability/rate capability (even >900 mAh g−1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances. PMID:23572030

  3. Boosting the adsorption performance of BN nanosheet as an anode of Na-ion batteries: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinian, A. [Department of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of); Soleimani-amiri, S. [Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj (Iran, Islamic Republic of); Arshadi, S., E-mail: chemistry_arshadi@pnu.ac.ir [Department of Chemistry, Payame Noor University, Tehran (Iran, Islamic Republic of); Vessally, E. [Department of Chemistry, Payame Noor University, Tehran (Iran, Islamic Republic of); Edjlali, L. [Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz (Iran, Islamic Republic of)

    2017-06-28

    Despite the high advance in the Li-ion battery technology, there exist great concerns about its lifetime, safety, cost, and low-temperature performance. It is expected that the Li-ion batteries may be replaced by Na-ion batteries (NIB) because of the low cost, nontoxicity, and wide availability of sodium. Here, we investigated the potential application of BN nanosheets in anode of NIBs by means of density functional theory calculation and introduced a strategy to increase their performance. It was shown that the Na and Na{sup +} are mainly adsorbed on the center of a hexagonal ring of BN sheet with adsorption energies of −0.08 and −33.7 kcal/mol, respectively. Replacing three N atoms of the hexagonal ring with larger P atoms significantly increases the performance of the sheet as an anode of a NIB but the replacement of B by Al decreases the performance. The initial cell voltage of LIB is increased by about 0.67 V after the P-doping which causes a high storage performance with long discharge time. The results are discussed based on the energetic, structural, orbital, charge transfer and electronic properties and provide guidelines to build better high-capacity anode materials for NIBs. - Highlights: • Potential use of BN sheet as anode in Na-ion batteries (NIB) is studied by DFT. • The replacement of B by Al decreases the performance. • The cell voltage of LIB is increased by about 0.67 V after by P-doping. • The order of performance is P-BN > BN >> Al-BN.

  4. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  5. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  6. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  7. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Wang, Min-Jyle

    2010-10-07

    Nickel oxide film with open macropores prepared by anodic deposition in the presence of surfactant shows a very high capacitance of 1110 F g(-1) at a scan rate of 10 mV s(-1), and the capacitance value reduces to 950 F g(-1) at a high scan rate of 200 mV s(-1).

  8. A Stable Flexible Silicon Nanowire Array as Anode for High-Performance Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jiantao; Wang, Hui; Zhang, Bingchang; Wang, Yao; Lu, Shigang; Zhang, Xiaohong

    2015-01-01

    Highlights: • A flexible SiNW array in PDMS structure is designed and fabricated as Li-ion battery anode material. • The aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton during the process of charge and discharge. • The loose SiO 2 shells coating on the SiNWscould form the protective layer in charge/discharge. • The as-obtain flexible SiNW array/PDMS composite exhibits a much better cycling stability. - Abstract: A Silicon nanowire (SiNW) array inserted into flexible poly-dimethylsiloxane (SiNW array/PDMS) composite structure as anode with high capacity and long-term cycling stability is synthesized by a cost-effective and scalable method. In this structure, the aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton. Act as the main active component, the SiNWs are coated by loose SiO 2 shells. These loose SiO 2 shells not only provide space for the large volume changes of SiNW, but also react with the electrolyte and form the stable protective layer during the processes of the lithiation and delithiation. These two functions could improve the cycling stability and columbic efficiency of the SiNWs. The as-obtain flexible SiNW array/PDMS composite structure exhibits excellent long-term cycling stability with a specific capacity of 887.2 mA·h·g −1 and capacity retention of ∼83.4% over 350 cycles at 0.5 C rate compared with the fifteenth cycle. The design of this new structure provides a potential way for developing other functional composite materials

  9. Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries.

    Science.gov (United States)

    Jena, Naresh K; Araujo, Rafael B; Shukla, Vivekanand; Ahuja, Rajeev

    2017-05-17

    Borophene, single atomic-layer sheet of boron ( Science 2015 , 350 , 1513 ), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li + (Na + ) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li 0.445 B 2 H 2 , which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li + . Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na + , respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.

  10. Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass

  11. Facile fabrication of composited Mn_3O_4/Fe_3O_4 nanoflowers with high electrochemical performance as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Hao, Qin; Xu, Caixia

    2015-01-01

    Graphical abstract: Mn_3O_4/Fe_3O_4 nanoflowers are successfully prepared through one step dealloying of Mn_5Fe_5Al_9_0 alloy at room temperature. This hierarchical flower-like structure with consists of a packed array of uniform regular hexagon-like nanoslices. Combined with the specific hierarchical flower-like architecture and the synergistic effect exerted by Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits enhanced performance as anode material for lithium ion batteries than pure Mn_3O_4 and Fe_3O_4 anode. - Highlights: • Mn_3O_4/Fe_3O_4 nanoflowers are easily prepared by one step dealloying method. • The nanoflowers consist of packed regular nanoslices with interconnected voids. • Mn_3O_4/Fe_3O_4 nanoflowers deliver higher discharge capacity than Mn_3O_4 and Fe_3O_4. • Mn_3O_4/Fe_3O_4 nanoflowers show lower initial irreversible loss than Mn_3O_4 anode. - Abstract: Mn_3O_4/Fe_3O_4 nanoflowers with controllable components are simply fabricated through one step etching of the Mn_5Fe_5Al_9_0 ternary alloy. The as-made hierarchical flower-like structure with interconnected voids consists of a packed array of uniform regular hexagon-like nanoslices. Based on the simple dealloying strategy the target metals are directly converted to uniform nanocomposite composed of Mn_3O_4 and Fe_3O_4 species. With the unique hierarchical flower-like structure and the synergistic effects between Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits higher performance as anode material for lithium ion batteries than that of pure Mn_3O_4 and Fe_3O_4 anodes. The Mn_3O_4/Fe_3O_4 nanocomposite deliver much higher discharge capacity and lower initial irreversible loss than Mn_3O_4 anode. The Mn_3O_4/Fe_3O_4 anode material also shows an excellent cycling stability at the high rate of 1500 mA g"−"1 with outstanding rate capability. With the advantages of simple preparation and excellent electrochemical performance, Mn_3O_4/Fe_3O_4 nanoflowers manifest great application potential as

  12. Varying Radii of On-Axis Anode Hollows For kJ-Class Dense Plasma Focus

    Science.gov (United States)

    Shaw, Brian; Chapman, Steven; Falabella, Steven; Pankin, Alexei; Liu, Jason; Link, Anthony; Schmidt, Andréa

    2017-10-01

    A dense plasma focus (DPF) is a compact plasma gun that produces high energy ion beams, up to several MeV, through strong potential gradients. Motivated by particle-in-cell simulations, we have tried a series of hollow anodes on our kJ-class DPF. Each anode has varying hollow sizes, and has been studied to optimize ion beam production in Helium, reduce anode sputter, and increase neutron yields in deuterium. We diagnose the rate at which electrode material is ablated and deposited onto nearby surfaces. This is of interest in the case of solid targets, which perform poorly in the presence of sputter. We have found that the larger the hollow radius produces more energetic ion beams, higher neutron yield, and sputter less than a flat top anode. A complete comparison is presented. This work was prepared by LLNL under Contract DE-AC52-07NA27344 and supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  13. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    Science.gov (United States)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  14. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    International Nuclear Information System (INIS)

    Vasilyak, L. M.; Vasiliev, A. I.; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-01-01

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  15. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Vasiliev, A. I., E-mail: vasiliev@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu. [Joint Stock Company NPO LIT (Russian Federation); Kudryavtsev, N. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  16. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator

    Science.gov (United States)

    Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim

    2014-12-01

    The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.

  17. Effect of Copper and Silicon on Al-5%Zn Alloy as a Candidate Low Voltage Sacrificial Anode

    Science.gov (United States)

    Pratesa, Yudha; Ferdian, Deni; Togina, Inez

    2017-05-01

    One common method used for corrosion protection is a sacrificial anode. Sacrificial anodes that usually employed in the marine environment are an aluminum alloy sacrificial anode, especially Al-Zn-In. However, the electronegativity of these alloys can cause corrosion overprotection and stress cracking (SCC) on a high-strength steel. Therefore, there is a development of the sacrificial anode aluminum low voltage to reduce the risk of overprotection. The addition of alloying elements such as Cu, Si, and Ge will minimize the possibility of overprotection. This study was conducted to analyze the effect of silicon and copper addition in Al-5Zn. The experiment started from casting the sacrificial anode aluminum uses electrical resistance furnace in a graphite crucible in 800°C. The results alloy was analyzed using Optical emission spectroscopy (OES), Differential scanning calorimetry, electrochemical impedance spectroscopy, and metallography. Aluminum alloy with the addition of a copper alloy is the most suitable and efficient to serve as a low-voltage sacrificial anode aluminum. Charge transfer resistivity of copper is smaller than silicon which indicates that the charge transfer between the metal and the electrolyte is easier t to occur. Also, the current potential values in coupling with steel are also in the criteria range of low-voltage aluminum sacrificial anodes.

  18. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    International Nuclear Information System (INIS)

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  19. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes

    KAUST Repository

    Wei, Shuya

    2017-12-11

    Conspectus Stable electrochemical interphases play a critical role in regulating transport of mass and charge in all electrochemical energy storage (EES) systems. In state-of-the-art rechargeable lithium ion batteries, they are rarely formed by design but instead spontaneously emerge from electrochemical degradation of electrolyte and electrode components. High-energy secondary batteries that utilize reactive metal anodes (e.g., Li, Na, Si, Sn, Al) to store large amounts of charge by alloying and/or electrodeposition reactions introduce fundamental challenges that require rational design in order to stabilize the interphases. Chemical instability of the electrodes in contact with electrolytes, morphological instability of the metal–electrolyte interface upon plating and stripping, and hydrodynamic-instability-induced electroconvection of the electrolyte at high currents are all known to cause metal electrode–electrolyte interfaces to continuously evolve in morphology, uniformity, and composition. Additionally, metal anodes undergo large changes in volume during lithiation and delithiation, which means that even in the rare cases where spontaneously formed solid electrode–electrolyte interphases (SEIs) are in thermodynamic equilibrium with the electrode, the SEI is under dynamic strain, which inevitably leads to cracking and/or rupture during extended battery cycling. There is an urgent need for interphases that are able to overcome each of these sources of instability with minimal losses of electrolyte and electrode components. Complementary chemical synthesis strategies are likewise urgently needed to create self-limited and mechanically durable SEIs that are able to flex and shrink to accommodate volume change. These needs are acute for practically relevant cells that cannot utilize large excesses of anode and electrolyte as employed in proof-of-concept-type experiments reported in the scientific literature. This disconnect between practical needs and

  20. Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Guoliang Gao

    2017-03-01

    Full Text Available Metall oxides have been proven to be potential candidates for the anode material of lithium-ion batteries (LIBs because they offer high theoretical capacities, and are environmentally friendly and widely available. However, the low electronic conductivity and severe irreversible lithium storage have hindered a practical application. Herein, we employed ethanolamine as precursor to prepare Fe2O3/COOH-MWCNT composites through a simple hydrothermal synthesis. When these composites were used as electrode material in lithium-ion batteries, a reversible capacity of 711.2 mAh·g−1 at a current density of 500 mA·g−1 after 400 cycles was obtained. The result indicated that Fe2O3/COOH-MWCNT composite is a potential anode material for lithium-ion batteries.

  1. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    OpenAIRE

    Gerrard Eddy Jai Poinern; Derek Fawcett; Nurshahidah Ali

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical ...

  2. Realisation of an anode supported planar SOFC system

    Energy Technology Data Exchange (ETDEWEB)

    Buchkremer, H.P.; Stoever, D. [Institut fuer Werkstoffe der Energietechnik, Juelich (Germany); Diekmann, U. [Zentralabteilung Technologie, Juelich (Germany)] [and others

    1996-12-31

    Lowering the operating temperature of S0FCs to below 800{degrees}C potentially lowers production costs of a SOFC system because of a less expensive periphery and is able to guarantee sufficient life time of the stack. One way of achieving lower operating temperatures is the development of new high conductive electrolyte materials. The other way, still based on state-of-the-art material, i.e. yttria-stabilized zirconia (YSZ) electrolyte, is the development of a thin film electrolyte concept. In the Forschungszentrum Julich a program was started to produce a supported planar SOFC with an YSZ electrolyte thickness between 10 to 20 put. One of the electrodes, i.e. the anode, was used as support, in order not to increase the number of components in the SOFC. The high electronic conductivity of the anode-cermet allows the use of relatively thick layers without increasing the cell resistance. An additional advantage of the supported planar concept is the possibility to produce single cells larger than 10 x 10 cm x cm, that is with an effective electrode cross area of several hundred cm{sup 2}.

  3. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  4. Atmospheric pressure arc discharge with ablating graphite anode

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2015-01-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement. (paper)

  5. Atmospheric pressure arc discharge with ablating graphite anode

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  6. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  7. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Yang, Wei-En; Lee, Tzu-Hsin

    2014-01-01

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications

  8. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiawen Xiong

    2018-04-01

    Full Text Available Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g−1 after 150 cycles at 0.2 A g−1, and a high capacity of 531.2 mA h g−1 can be observed even after 5,000 cycles at 10.0 A g−1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g−1 can be obtained at 5.0 A g−1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

  9. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing

    2014-05-12

    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multiple-photon disambiguation on stripline-anode Micro-Channel Plates

    Energy Technology Data Exchange (ETDEWEB)

    Jocher, Glenn R., E-mail: glenn.jocher@ultralytics.com [Ultralytics LLC, Arlington, VA 22203 (United States); Wetstein, Matthew J., E-mail: mwetstein@uchicago.edu [Iowa State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, IA 50011 (United States); Adams, Bernhard, E-mail: badams@incomusa.com [Incom, Inc., 294 Southbridge Road, Charlton, MA 01507 (United States); Nishimura, Kurtis, E-mail: kurtis.nishimura@ultralytics.com [Ultralytics LLC, Arlington, VA 22203 (United States); Usman, Shawn M., E-mail: shawn.usman@nga.mil [Research Directorate, National Geospatial-Intelligence Agency, 7500 GEOINT Dr., Springfield, VA 22150 (United States); Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA 22030 (United States)

    2016-06-21

    Large-Area Picosecond Photo-Detectors (LAPPDs) show great potential for expanding the performance envelope of Micro-Channel Plates (MCPs) to areas of up to 20×20 cm and larger. Such scaling introduces new challenges, including how to meet the electronics readout burden of ever larger area MCPs. One solution is to replace the traditional grid anode used for readout with a microwave stripline anode, thus allowing the channel count to scale with MCP width rather than area. However, stripline anodes introduce new issues not commonly dealt with in grid-anodes, especially as their length increases. One of these issues is the near simultaneous arrival of multiple photons on the detector, creating possible confusion about how to reconstruct their arrival times and positions. We propose a maximum a posteriori solution to the problem and verify its performance in simulated scintillator and water-Cherenkov detectors.

  11. Incoloy 800 anodic behavior in sulfate and chloride solutions at high temperature

    International Nuclear Information System (INIS)

    Lafont, C.; Alvarez, M.G.

    1992-01-01

    The anodic behavior and pitting corrosion resistance of Incoloy 800 in concentrated aqueous chloride and sulphate solutions has been studied by means of electrochemical techniques. The effect of different environmental variables, such as temperature (in the 100 0 C to 280 0 C range) and sulphate ion concentration (0.02 M to 2 M), was evaluated. In another set of experiments, the influence of sulphate ions additions on the pitting resistance and pitting morphology of Incoloy 800 in chloride solutions at high temperature was also examined. (author)

  12. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Lin, Liangdong; Xu, Xuena; Chu, Chenxiao; Majeed, Muhammad K; Yang, Jian

    2016-11-02

    Amorphous Si (a-Si) shows potential advantages over crystalline Si (c-Si) in lithium-ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a-Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a-Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g -1 at 3 A g -1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a-Si and c-Si anodes clearly supports the advantages of a-Si in lithium-ion batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Asymmetric Membranes Containing Micron-Size Silicon for High Performance Lithium Ion Battery Anode

    International Nuclear Information System (INIS)

    Byrd, Ian; Wu, Ji

    2016-01-01

    Micron-size Si anode is notorious for having extremely poor cycle life. It is mainly caused by the large volume change (∼300%) and poor mechanical strength of the Si electrode. Satisfying methods to address this issue are seriously lacking in literature. In this study, novel single-layer, double-layer and triple-layer asymmetric membranes containing micron-size silicon have been fabricated using a simple phase inversion method to dramatically improve its cyclability. The electrochemical performance of these asymmetric membranes as lithium ion battery anodes are evaluated and compared to pure micron-size Si powders and carbonaceous asymmetric membranes. All three types of asymmetric membrane electrodes demonstrate significantly enhanced stability as compared to pure Si powders. The single-layer asymmetric membrane has the largest capacity degradation due to the loss of pulverized Si powders from the membrane surface, only 40% of whose capacity can be retained in 100 cycles. But this performance is still much better than pure micron-size silicon electrode. After being coated with nanoporous carbonaceous layers on both sides of a single-layer asymmetric membrane to make a triple-layer asymmetric membrane (sandwich structure), the capacity retention is notably increased to 88% in 100 cycles at 610 mAh g"−"1 and 0.5C. The enhanced stability is attributed to the extra nanoporous coatings that can prevent the fractured Si powders from being leached out and allow facile lithium ion diffusions. Such a novel, efficient and scalable method may provide beneficiary guidance for designing high capacity lithium ion battery anodes with large volume change issues.

  14. Multiwire proportional chamber with a supporting line on anode wires

    International Nuclear Information System (INIS)

    Viktorov, V.A.; Golovkin, S.V.

    1980-01-01

    Results are presented of experimental investigations on a supporting line (wire) used in large-sized proportional chambers to compensate for electrostatic forces. The length of anode wires (gilded tungsten of 0.02 mm in diameter) in the chamber constituted 600 mm, the pitch 2 mm, the total number of channels 192. High-voltage electrodes are made of Cu-Be wire of 0.1 mm in diameter, the pitch is 2 mm. The gap between anode and cathode plates is 6 mm. The supporting line is an enamelled nichrome wire of 0.2 mm in diameter enclosed in an additional fluoroplastic insulation. The outside diameter was equal to 0.4 mm. The supporting line was placed through the centre of the chamber at right angles and immediately adjacent to anode wires with the tension of 2000 g. A negative compensating potential was applied to it. The controllable parameter was the chamber efficiency at variable paAameters: (1) an operating voltage in the chamber; (2) Vsub(c) - a compensating potential of the supporting line, and (3) a beam axis relative coordinate. The performed investigations showed that the supporting line of this type is simple and reliable in operation (electric breakdown occurs at Vsub(c) > 3.5 kV). The noneffective zone in the supporting region can be reduced to approximately 2.4 mm which constitutes approximately 0.3% of the chamber total sensitive region

  15. SnTe-TiC-C composites as high-performance anodes for Li-ion batteries

    Science.gov (United States)

    Son, Seung Yeon; Hur, Jaehyun; Kim, Kwang Ho; Son, Hyung Bin; Lee, Seung Geol; Kim, Il Tae

    2017-10-01

    Intermetallic SnTe composites dispersed in a conductive TiC/C hybrid matrix are synthesized by high-energy ball milling (HEBM). The electrochemical performances of the composites as potential anodes for Li-ion batteries are evaluated. The structural and morphological characteristics of the SnTe-TiC-C composites with various TiC contents are investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy, which reveal that SnTe and TiC are uniformly dispersed in a carbon matrix. The electrochemical performance is significantly improved by introducing TiC to the SnTe-C composite; higher TiC contents result in better performances. Among the prepared composites, the SnTe-TiC (30%)-C and SnTe-TiC (40%)-C electrodes exhibit the best electrochemical performance, showing the reversible capacities of, respectively, 652 mAh cm-3 and 588 mAh cm-3 after 400 cycles and high rate capabilities with the capacity retentions of 75.4% for SnTe-TiC (30%)-C and 82.2% for SnTe-TiC (40%)-C at 10 A g-1. Furthermore, the Li storage reaction mechanisms of Te or Sn in the SnTe-TiC-C electrodes are confirmed by ex situ XRD.

  16. Effect of RuCl{sub 3} Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. W.; Kim, Y. S. [Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-08-15

    Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of RuCl{sub 3} concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of RuCl{sub 3}, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, RuCl{sub 3} concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between RuCl{sub 3} concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48{sup *}[RuCl{sub 3} concentration, M]{sup -0.97}.

  17. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  18. Carbonate fuel cell anodes

    Science.gov (United States)

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  19. Effect of friction on anodic polarization properties of metallic biomaterials.

    Science.gov (United States)

    Okazaki, Yoshimitsu

    2002-05-01

    The effect of friction on the anodic polarization properties of metallic biomaterials in a physiological saline solution was investigated. The current density during friction becomes higher than during the static condition. The fluctuation range of the current density caused by the destruction and formation of passive film was observed. For SUS316L stainless steel and Co-Cr-Mo casting alloy, the fluctuation range was observed in the passivity zone. Otherwise, for Ti alloys, the fluctuation range was observed in both the activity and passivity zones. The decrease of the corrosion potential for Ti alloys due to friction was much larger than that of SUS316L stainless steel and Co-Cr-Mo casting alloy. From this result, it was considered that in a the frictional environment, the stressing zone turned anodic and its periphery cathodic, and corrosion tended to progress more than in the static environment. The effect of wear on the anodic polarization curves also changed depending on the frictional load, potential zone and the pH of the solution. A rapid increase in current density due to corrosion starting from the frictional area was found in the Ti-6Al-4V and Ti-15Mo-5Zr-3Al alloys containing Al. However, for the new Ti-15Zr-4Nb-4Ta alloy, this rapid increase was not seen in the high-potential region. The effect of the lateral reciprocal speed was also negligible for the new Ti alloy. It was found that the new Ti-15Zr-4Nb-4Ta alloy exhibited excellent corrosion resistance under friction.

  20. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    Science.gov (United States)

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  1. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  2. Highly uniform Co_9S_8 nanoparticles grown on graphene nanosheets as advanced anode materials for improved Li-storage performance

    International Nuclear Information System (INIS)

    Liu, Shumin; Wang, Jinxian; Wang, Jianwei; Zhang, Feifei; Wang, Limin

    2016-01-01

    Highlights: • Co_9S_8/graphene nanocomposites were synthesized via a facile solvothermal method followed by thermal treatment in N_2 at 500 °C. • Highly uniform Co_9S_8 nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS. • Such unique Co_9S_8/GNS structure exhibits great electrochemical property, showing great potential as anode materials for LIB. - Abstract: A Co_9S_8/GNS (graphene nanosheets) nanocomposites has been synthesized via a facile solvothermal approach followed by thermal treatment in nitrogen at 500 °C using graphite oxide sheets, CoCl_2·6H_2O and thiourea as the starting materials. Highly uniform Co_9S_8 nanoparticles with a size of about 80–90 nm are evenly grafted on the surface of GNS, forming a unique Co_9S_8/GNS hybrid nanostructure. When evaluated as anode materials for lithium ion batteries, impressive electrochemical performances of the as-prepared nanocomposites are achieved compared to that of pure bulk Co_9S_8, with an high reversible capacity of 1480 mAh g"−"1. Moreover, the as-synthesized nanocomposites present excellent cycling durability and high-rate capability. The improvement in the electrochemical properties could be attributed to the well-designed structure of the Co_9S_8/GNS nanocomposite which possesses large number of accessible active sites for lithium-ion insertion, fast ion diffusion rate and good electronic conductivity.

  3. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries

    Science.gov (United States)

    Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang

    2018-06-01

    Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.

  4. Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis

    Science.gov (United States)

    Lin, Hui-Wen; Cejudo-Marín, Rocío; Jeremiasse, Adriaan W.; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2016-02-01

    Hydrochloric acid (HCl) and caustic (NaOH) are among the most widely used chemicals by the water industry. Direct anodic electrochemical HCl production by water electrolysis has not been successful as current commercially available electrodes are prone to chlorine formation. This study presents an innovative technology simultaneously generating HCl and NaOH from NaCl using a Mn0.84Mo0.16O2.23 oxygen evolution electrode during water electrolysis. The results showed that protons could be anodically generated at a high Coulombic efficiency (i.e. ≥ 95%) with chlorine formation accounting for 3 ~ 5% of the charge supplied. HCl was anodically produced at moderate strengths at a CE of 65 ± 4% together with a CE of 89 ± 1% for cathodic caustic production. The reduction in CE for HCl generation was caused by proton cross-over from the anode to the middle compartment. Overall, this study showed the potential of simultaneous HCl and NaOH generation from NaCl and represents a major step forward for the water industry towards on-site production of HCl and NaOH. In this study, artificial brine was used as a source of sodium and chloride ions. In theory, artificial brine could be replaced by saline waste streams such as Reverse Osmosis Concentrate (ROC), turning ROC into a valuable resource.

  5. The occurrence of perchlorate during drinking water electrolysis using BDD anodes

    International Nuclear Information System (INIS)

    Bergmann, M.E. Henry; Rollin, Johanna; Iourtchouk, Tatiana

    2009-01-01

    Electrochemical studies were carried out to estimate the risks of perchlorate formation in drinking water disinfected by direct electrolysis. Boron Doped Diamond (BDD) anodes were used in laboratory and commercially available cells at 20 deg. C. The current density was changed between 50 and 500 A m -2 . For comparison, other anode materials such as platinum and mixed oxide were also tested. It was found that BDD anodes have a thousandfold higher perchlorate formation potential compared with the other electrode materials that were tested. In long-term discontinuous experiments all the chloride finally reacted to form perchlorate. The same result was obtained when probable oxychlorine intermediates (OCl - , ClO 2 - , ClO 3 - ) were electrolysed in synthetic waters in the ppm range of concentrations. The tendency to form perchlorate was confirmed when the flow rate of drinking water was varied between 100 and 300 L h -1 and the temperature increased to 30 deg. C. In a continuous flow mode of operation a higher chloride concentration in the water resulted in a lower perchlorate formation. This can be explained by reaction competition of species near and on the anode surface for experiments both with synthetic and local drinking waters. It is concluded that the use of electrodes producing highly reactive species must be more carefully controlled in hygienically and environmentally oriented applications

  6. Self-assembly of novel hierarchical flowers-like Sn{sub 3}O{sub 4} decorated on 2D graphene nanosheets hybrid as high-performance anode materials for LIBs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuefang, E-mail: 1021633952@qq.com [Department of Applied Chemistry and The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China); Huang, Ying, E-mail: yingh@nwpu.edu.cn [Department of Applied Chemistry and The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Tianpeng [Shijiazhuang Mechanical Engineering College, Shi Jia Zhuang 050003 (China); Wei, Chao; Yan, Jing; Feng, Xuansheng [Department of Applied Chemistry and The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-05-31

    Highlights: • Novel hierarchical Sn{sub 3}O{sub 4} decorated on graphene nanosheets has been synthesized. • As the anode materials, the composite has not been investigated. • An insight into the common discharging behavior of the composite. • The composite displayed high capacity and good cycling stability. - Abstract: Novel hierarchical flower-like Sn{sub 3}O{sub 4} assembled by thin Sn{sub 3}O{sub 4} nanosheets{sub ,} as a kind of mixed-valence tin oxide, decorated on two-dimensional graphene nanosheets has been synthesized via a hydrothermal route and a step solution deoxidization technique. More importantly, as the anode materials for lithium ion batteries, the flower-like Sn{sub 3}O{sub 4}/graphene composite has not been investigated in detail. Noticeably, the nanosheets stemming from flower-like Sn{sub 3}O{sub 4} and graphene have been linked together to form a specials three dimensional structure, possessing high active surface area and large enough inner spaces, which is benefit to the diffusion of liquid electrolyte into the electrode materials. In addition, the special structure could provide sufficient free volume to buffer the volume expansion appeared in the process of discharging and charging. The as-prepared flowers-like Sn{sub 3}O{sub 4}/graphene displayed excellent electrochemical performance with high capacity and good cycling stability as anode materials for lithium ion batteries. The discharge capacity is 1727 mAh/g in the first cycle at the current density of 60 mA/g. The obtained reversible capacity is 631mAh/g with a coulomb efficiency of 97.04% after 50 cycles. With its better electrochemical properties, the as-prepared flowers-like Sn{sub 3}O{sub 4}/graphene has the potential to be the next generation materials as an environmentally benign, abundant, cheap anode materials for lithium ion batteries.

  7. Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency

    Science.gov (United States)

    Zhang, Lifeng; Song, Jiajia; Liu, Yi; Yuan, Xiaoyan; Guo, Shouwu

    2018-03-01

    Developing high energy storage lithium ion batteries (LIBs) using manganese oxides as anodes is an attractive challenge due to their high theoretical capacity and abundant resources. However, the manganese oxides anodes still suffer from the low initial Coulombic efficiency and poor rate performance. Herein, we demonstrate that nano-sized morphological engineering is a facile and effective strategy to improve the electrochemical performance of the manganese dioxide (MnO2) for LIBs. The tailored MnO2 nanoparticles (NPs) exhibit high reversible capacity (1095 mAh g-1 at 100 mA g-1), high initial Coulombic efficiency (94.5%) and good rate capability (464 mAh g-1 at 2000 mA g-1). The enhanced electrochemical performance of MnO2 NPs can be attributed to the presences of numerous electrochemically active sites and interspaces among the NPs.

  8. Anodic behavior of nickel alloys in media containing bicarbonate ions

    International Nuclear Information System (INIS)

    Zadorozne, N.S; Carranza, R. M.; Giordano, C.M.

    2011-01-01

    Alloy 22 has been designed to resist corrosion in oxidizing and reducing conditions. Thanks to these properties it is considered a possible candidate for the fabrication of containers of high-level radioactive waste. Since the containers provide services in natural environments characterized by multi-ionic solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is required in order to produce cracking. It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media potentials below trans-passivity. The aim of this work is to study the anodic behavior of Alloy 22 in different media containing bicarbonate and chloride ions in various concentrations and temperatures and compare the results with other alloys containing nickel, and relate them to the susceptibility to stress corrosion cracking in a future job. Polarization curves were made on alloy 22 (Ni-Cr-Mo), 600 (Ni- Cr-Fe), 800h (Ni-Fe- Cr) and 201 (Ni commercially pure) in the following environments: 1.148 mol/L NaHCO 3 , 1.148 mol/L NaHCO 3 + 1 mol/L NaCl, 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl. The tests were performed at the following temperatures: 90°C, 75°C, 60°C and 25°C. It was found that alloy 22 has a current peak in the anodic domain at potentials below trans-passivity between 200 and 300 m VECS, when the test temperature was 90°C. The potential, at which this peak occurred, increased with decreasing temperature. Also there was a variation of the peak with the composition of the solution. When bicarbonate ions were added to a solution containing chloride ions, the peak potential shifted to higher current densities, depending on the concentration of added chloride ions. It was found that diminishing the content of

  9. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  10. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    International Nuclear Information System (INIS)

    Tang, Haoqing; Zan, Lingxing; Zhu, Jiangtao; Ma, Yiheng; Zhao, Naiqin; Tang, Zhiyuan

    2016-01-01

    Lithium zinc titanate (Li_2ZnTi_3O_8) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li_2ZnTi_3O_8/La_2O_3 nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li_2ZnTi_3O_8, the Li_2ZnTi_3O_8/La_2O_3 electrode display a high specific capacity of 188.6 mAh g"−"1 and remain as high as 147.7 mAh g"−"1 after 100 cycles at 2.0 A g"−"1. Moreover, a reversible capacity of 76.3 mAh g"−"1 can be obtained after 1000 cycles at 2.0 A g"−"1 and the retention is 42.7% for Li_2ZnTi_3O_8/La_2O_3, which is much higher than un-coated Li_2ZnTi_3O_8. The superior lithium storage performances of the Li_2ZnTi_3O_8/La_2O_3 can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La_2O_3 coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La_2O_3 coated Li_2ZnTi_3O_8 particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li_2ZnTi_3O_8 has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li"+).

  11. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, Paul K.

    2015-02-01

    A novel composite of highly-crystalline ultrathin Li4Ti5O12 (LTO) nanosheets and Ag nanocrystals (denoted as LTO NSs/Ag) as an anode material for Li-ion batteries (LIBs) is prepared by hydrothermal synthesis, post calcination and electroless deposition. The characterizations of structure and morphology reveal that the LTO nanosheets have single-crystal nature with a thickness of about 10 nm and highly dispersed Ag nanocrystals have an average diameter of 5.8 nm. The designed LTO NSs/Ag composite takes advantage of both components, thereby providing large contact area between the electrolyte and electrode, low polarization of voltage difference, high electrical conductivity and lithium ion diffusion coefficient during electrochemical processes. The evaluation of its electrochemical performance demonstrates that the prepared LTO NSs/Ag composite has superior lithium storage performance. More importantly, this unique composite has an ability to deliver high reversible capacities with superlative cyclic capacity retention at different current rates, and exhibit excellent high-rate performance at a current rate as high as 30 C. Our results improve the current performance of LTO based anode material for LIBs.

  12. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries

    KAUST Repository

    Liu, Nian

    2011-08-23

    Silicon is one of the most promising anode materials for the next-generation high-energy lithium ion battery (LIB), while sulfur and some other lithium-free materials have recently shown high promise as cathode materials. To make a full battery out of them, either the cathode or the anode needs to be prelithiated. Here, we present a method for prelithiating a silicon nanowire (SiNW) anode by a facile self-discharge mechanism. Through a time dependence study, we found that 20 min of prelithiation loads ∼50% of the full capacity into the SiNWs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies show that the nanostructure of SiNWs is maintained after prelithiation. We constructed a full battery using our prelithiated SiNW anode with a sulfur cathode. Our work provides a protocol for pairing lithium-free electrodes to make the next-generation high-energy LIB. © 2011 American Chemical Society.

  13. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    Science.gov (United States)

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei

    2016-02-01

    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  14. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimization of Aluminum Anodization Conditions for the Fabrication of Nanowires by Electrodeposition

    Science.gov (United States)

    Fucsko, Viola

    2005-01-01

    Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.

  16. Corrosion behaviour of dimensionally stable anodes in chlorine electrolysis

    International Nuclear Information System (INIS)

    Evdokimov, S.V.

    2000-01-01

    Dependence of ruthenium anodic dissolution rate in active coating of oxide ruthenium-titanium anodes on time both in chloride and perchlorate solutions was studied using radiometric methods. It is shown that i chloride solutions effect of a high and long-term decrease in ruthenium dissolution rate takes place. The data confirm the previously made conclusion that adsorbed chlorine produces inhibiting effect on anodic dissolution of a precious metal. Influence of pH on steady-state rate of the anode corrosion is considered. Effect of abrupt increase in corrosion rate with pH increase from 2 to 4 with its subsequent slow decrease to the values characteristic of the process rate in solutions with pH 2 is revealed [ru

  17. High-performance Li-ion Sn anodes with enhanced electrochemical properties using highly conductive TiN nanotubes array as a 3D multifunctional support

    Science.gov (United States)

    Pu, Jun; Du, Hongxiu; Wang, Jian; Wu, Wenlu; Shen, Zihan; Liu, Jinyun; Zhang, Huigang

    2017-08-01

    High capacity electrodes are demanded to increase the energy and power density of lithium ion batteries. However, the cycling and rate properties are severely affected by the large volume changes caused by the lithium insertion and extraction. Structured electrodes with mechanically stable scaffolds are widely developed to mitigate the adverse effects of volume changes. Tin, as a promising anode material, receives great attentions because of its high theoretic capacity. There is a critical value of tin particle size above which tin anodes readily crack, leading to low cyclability. The electrode design using mechanical scaffolds must retain tin particles below the critical size and concurrently enable high volumetric capacity. It is a challenge to guarantee the critical size for high cyclability and space utilization for high volumetric capacity. This study provides a highly conductive TiN nanotubes array with submicron diameters, which enable thin tin coating without sacrificing the volumetric capacity. Such a structured electrode delivers a capacity of 795 mAh gSn-1 (Sn basis) and 1812 mAh cmel-3 (electrode basis). The long-term cycling shows only 0.04% capacity decay per cycle.

  18. Auger electron spectroscopy and Rutherford backscattering studies of copper in 2024-T3 aluminum following electrochemical anodization in phosphoric acid

    Science.gov (United States)

    Solomon, J. S.

    1981-05-01

    The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.

  19. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  20. Anodization of cast aluminium alloys produced by different casting methods

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2008-08-01

    Full Text Available In this paper the usability of two casting methods, of sand and high pressure cast for the anodization of AlSi12 and AlSi9Cu3 aluminium cast alloys was investigated. With defined anodization parameters like electrolyte composition and temperature, current type and value a anodic alumina surface layer was produced. The quality, size and properties of the anodic layer was investigated after the anodization of the chosen aluminium cast alloys. The Alumina layer was observed used light microscope, also the mechanical properties were measured as well the abrasive wear test was made with using ABR-8251 equipment. The researches included analyze of the influence of chemical composition, geometry and roughness of anodic layer obtained on aluminum casts. Conducted investigations shows the areas of later researches, especially in the direction of the possible, next optimization anodization process of aluminum casting alloys, for example in the range of raising resistance on corrosion to achieve a suitable anodic surface layer on elements for increasing applications in the aggressive environment for example as materials on working building constructions, elements in electronics and construction parts in air and automotive industry.

  1. Coaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2017-02-01

    Full Text Available A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron transport from the conductive carbon scaffold and porous MoS2 nanostructures. As a result, the MoS2@carbon composites—when serving as anodes for Li-ion batteries—exhibit a high reversible specific capacity of 820 mAh·g−1, high-rate capability (457 mAh·g−1 at 2 A·g−1, and excellent cycling stability. The use of bio-mass-derived carbon makes the MoS2@carbon composites low-cost and promising anode materials for high-performance Li-ion batteries.

  2. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jianrui; Lu Haiyan [College of Chemistry, Jilin University, Changchun 130012 (China); Du Lili [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Lin Haibo, E-mail: lhb910@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2011-05-15

    The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp{sup 3}-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.

  3. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  4. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Na, Zhaolin; Huang, Gang; Liang, Fei; Yin, Dongming; Wang, Limin

    2016-08-16

    The preparation of novel one-dimensional core-shell Fe/Fe2 O3 nanowires as anodes for high-performance lithium-ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2 O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core-shell Fe/Fe2 O3 nanowire maintains an excellent reversible capacity of over 767 mA h g(-1) at 500 mA g(-1) after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g(-1) , a stable capacity as high as 538 mA h g(-1) could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high-performance LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative relationship between nanotube length and anodizing current during constant current anodization

    International Nuclear Information System (INIS)

    Zhang, Yulian; Cheng, Weijie; Du, Fei; Zhang, Shaoyu; Ma, Weihua; Li, Dongdong; Song, Ye; Zhu, Xufei

    2015-01-01

    Highlights: • Ti anodization was performed by constant current rather than constant voltage. • The nanotube length was controlled by ionic current rather than dissolution current. • Electronic current can be estimated by the nanotube length and the anodizing current. • Dissolution reaction hardly contributes electric current across the barrier layer. - Abstract: The growth kinetics of anodic TiO 2 nanotubes (ATNTs) still remains unclear. ATNTs are generally fabricated under potentiostatic conditions rather than galvanostatic ones. The quantitative relationship between nanotube length and anodizing current (J total ) is difficult to determine, because the variable J total includes ionic current (J ion ) (also called oxide growth current J grow =J ion ) and electronic current (J e ), which cannot be separated from each other. One successful approach to achieve this objective is to use constant current anodization rather than constant voltage anodization, that is, through quantitative comparison between the nanotube length and the known J total during constant current anodization, we can estimate the relative magnitudes of J grow and J e . The nanotubes with lengths of 1.24, 2.23, 3.51 and 4.70 μm, were formed under constant currents (J total ) of 15, 20, 25 and 30 mA, respectively. The relationship between nanotube length (y) and anodizing current (x =J total =J grow +J e ) can be expressed by a fitting equation: y=0.23(x-10.13), from which J grow (J grow = x -10.13) and J e (∼10.13 mA) could be inferred under the present conditions. Meanwhile, the same conclusion could also be deduced from the oxide volume data. These results indicate that the nanotube growth is attributed to the oxide growth current rather than the dissolution current.

  6. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors.

    Science.gov (United States)

    Zhang, Fan; Tang, Yongbing; Liu, Hui; Ji, Hongyi; Jiang, Chunlei; Zhang, Jing; Zhang, Xiaolong; Lee, Chun-Sing

    2016-02-01

    Hybrid supercapacitors (HSCs) with lithium-ion battery-type anodes and electric double layer capacitor-type cathodes are attracting extensive attention and under wide investigation because of their combined merits of both high power and energy density. However, the performance of most HSCs is limited by low kinetics of the battery-type anode which cannot match the fast kinetics of the capacitor-type cathode. In this study, we have synthesized a three-dimensional (3D) porous composite with uniformly incorporated MoS2 flocculent nanostructure onto 3D graphene via a facile solution-processed method as an anode for high-performance HSCs. This composite shows significantly enhanced electrochemical performance due to the synergistic effects of the conductive graphene sheets and the interconnected porous structure, which exhibits a high rate capability of 688 mAh/g even at a high current density of 8 A/g and a stable cycling performance (997 mAh/g after 700 cycles at 2 A/g). Furthermore, by using this composite as the anode for HSCs, the HSC shows a high energy density of 156 Wh/kg at 197 W/kg, which also remains at 97 Wh/kg even at a high power density of 8314 W/kg with a stable cycling life, among the best results of the reported HSCs thus far.

  7. Anodic Protection performance of Steels ASTM A 516-60 And JIS G 3131 SPHC In Concentrated Sulfuric Acid

    International Nuclear Information System (INIS)

    Harsisto; Ginting, Immanuel; Eddy, D.C

    2001-01-01

    One of the methods to protect a carbon steel material from corrosion attack of sulfuric acid environment is with anodic protection. This research was intended to investigate the effect of anodic protection quickened with potential polarization, The material under investigation were ASTM A 516 and JIS G 3131-SPHC in highly concentrated H 2 SO 4 solution. The results showed that potential that was effective for anodic protection in ASTM A 516-60 were at 236-436 mV for 75%, 276-476 mV for 80%, 264-514 mV for 85%,285-485 mV for 90%, and 231-431 mV for 97% H 2 SO 4 so that in JlS G 3131-SPHC were at 303 -503 mV for 75%, 290-490 mV for 80%, 269- 516 mV for 85%, 264-514 mV for 90%, and 287 -487 mV for 97% H 2 SO 4

  8. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.

    Science.gov (United States)

    Chang, Jingbo; Huang, Xingkang; Zhou, Guihua; Cui, Shumao; Hallac, Peter B; Jiang, Junwei; Hurley, Patrick T; Chen, Junhong

    2014-02-01

    Multilayered Si/RGO anode nanostructures, featuring alternating Si nanoparticle (NP) and RGO layers, good mechanical stability, and high electrical conductivity, allow Si NPs to easily expand between RGO layers, thereby leading to high reversible capacity up to 2300 mAh g(-1) at 0.05 C (120 mA g(-1) ) and 87% capacity retention (up to 630 mAh g(-1) ) at 10 C after 152 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode

    KAUST Repository

    Cui, Li-Feng

    2011-01-01

    Silicon, as an alloy-type anode material, has recently attracted lots of attention because of its highest known Li+ storage capacity (4200 mAh/g). But lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Silicon nanostructures such as nanowires and nanotubes can overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon as inorganic glue replacing conventional polymer binder. This inorganic glue method can solve the loss of contact issue in conventional silicon particle anode and enables successful cycling of various sizes of silicon particles, both nano-particles and micron particles. With a limited capacity of 800 mAh/g, relatively large silicon micron-particles can be stably cycled over 200 cycles. The very cheap production of these silicon particle anodes makes our method promising and competitive in lithium ion battery industry. © 2011 The Electrochemical Society.

  10. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A = Ca, Sr, Ba)

    Science.gov (United States)

    Huan, Yu; Li, Yining; Yin, Baoyi; Ding, Dong; Wei, Tao

    2017-08-01

    In this work, the mixed oxide-ion/electron conductor (MIEC) double-perovskite compounds A2FeMoO6 (AFMO, A = Ca, Sr, Ba) are investigated as anode materials for O2--ion conducting solid-oxide fuel cells (SOFCs). Several advantages are outlined here; 1) under H2 atmosphere, the conductivities of Ba2FeMoO6 (BFMO), Sr2FeMoO6 (SFMO) and Ca2FeMoO6 (CFMO) reach as high as 243, 302 and 561 S cm-1, respectively, which can be comparable with the commercial NiO-electrolyte anode; 2) excellent structure and phase stability at high temperature and in H2 atmosphere; 3) matched thermodynamic compatibility (such as TECs) with electrolyte materials; 4) fast oxidization for fuel with O2- ions accepted by oxygen vacancies from the electrolyte. Moreover, with H2 as fuel gas, the cell power output, cell's long-term stabilities and the structural parameter are also been examined to evaluate the AFMO anode.

  11. Anodized ZnO nanostructures for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang, TsingHai [Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Bin-Jui [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wu, Ching-Chen [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China)

    2016-01-01

    Highlights: • ZnO nanostructures were synthesized by electrochemical anodic process. • The parameter of ZnO nanostructure was anodic potential. • The model of growth of ZnO nanostructure was investigated. - Abstract: Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO{sub 3}){sub 2}. Potentiostatic anodization was conducted at two potentials (−0.7 V in the passive region and −1.0 V in the active region vs. SCE) which are higher than the open circuit potential (−1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at −0.7 V vs. SCE were composed of nanowires at while those obtained at −1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm{sup 2} at 0.5 V vs. SCE under 100 mW/cm{sup 2} illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  12. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    OpenAIRE

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  13. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus 54187 (Turkey)

    2016-04-21

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry test were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.

  14. Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wenelska, K.; Ottmann, A.; Schneider, P.; Thauer, E.; Klingeler, R.; Mijowska, E.

    2016-01-01

    HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO_2 and MnO_2, respectively) were successfully synthesized and investigated regarding their potential as anode materials for lithium-ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure. The mesoporous nature of the nanocomposites is confirmed by Brunauer–Emmett–Teller analysis. For both metal oxides under study, the metal oxide functionalization of HCS yields a significant increase of electrochemical performance. The charge capacity of HCS/SnO_2 is 370 mA hg"−"1 after 45 cycles (266 mA hg"−"1 in HCS/MnO_2) which clearly exceeds the value of 188 mA hg"−"1 in pristine HCS. Remarkably, the data imply excellent long term cycling stability after 100 cycles in both cases. The results hence show that mesoporous HCS/metal oxide nanocomposites enable exploiting the potential of metal oxide anode materials in Lithium-ion batteries by providing a HCS host structure which is both conductive and stable enough to accommodate big volume change effects. - Highlights: • Strategy to synthesize hollow carbon spheres decorated by metal oxides nanoparticles. • High-performance of HCS/MOx storage as mesoporous hybrid material. • The results hence demonstrate high electrochemical activity of the HCS/MOx.

  15. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    Science.gov (United States)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  16. Excellent endurance of MWCNT anode in micro-sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.; Hussain, Muhammad Mustafa

    2012-01-01

    Microbial Fuel Cells (MFCs) are a sustainable technology for energy production using bioelectrochemical reactions from bacteria. Microfabrication of micro-sized MFCs allows rapid and precise production of devices that can be integrated into Lab-on-a-chip or other ultra low power devices. We show a multi-walled carbon nanotubes (MWCNTs) integrated anode in a biocompatible and high power and current producing device. Long term testing of the MWCNT anode also reveals a high endurance and durable anode material that can be adapted as a long-lasting power source. © 2012 IEEE.

  17. Excellent endurance of MWCNT anode in micro-sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2012-08-01

    Microbial Fuel Cells (MFCs) are a sustainable technology for energy production using bioelectrochemical reactions from bacteria. Microfabrication of micro-sized MFCs allows rapid and precise production of devices that can be integrated into Lab-on-a-chip or other ultra low power devices. We show a multi-walled carbon nanotubes (MWCNTs) integrated anode in a biocompatible and high power and current producing device. Long term testing of the MWCNT anode also reveals a high endurance and durable anode material that can be adapted as a long-lasting power source. © 2012 IEEE.

  18. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    Science.gov (United States)

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  19. Phase transformations of high-purity PbI{sub 2} nanoparticles synthesized from lead-acid accumulator anodes

    Energy Technology Data Exchange (ETDEWEB)

    Malevu, T.D., E-mail: malevutd@ufs.ac.za; Ocaya, R.O.; Tshabalala, K.G.

    2016-09-01

    High-purity hexagonal lead iodide nanoparticles have been synthesized from a depleted sealed lead acid battery anode. The synthesized product was found to consist of the rare 6R polytype form of PbI{sub 2} that is thought to have good potential in photovoltaic applications. We investigate the effects of annealing time and post-melting temperature on the structure and optical properties using 1.5418 Å CuKα radiation. Photoluminescence measurements were done under 150 W/221 nm wavelength xenon excitation. Phase transformation was observed through XRD peaks when annealing time increased from 0.5–5 h. The nanoparticle grain size and inter-planar distance appeared to be independent of annealing time. PL measurements show three broad peaks in a range of 400 nm to 700 nm that are attributed to excitonic, donor–acceptor pair and luminescence bands from the deep levels.

  20. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Vacuum arc anode plasma. I. Spectroscopic investigation

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  2. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    Science.gov (United States)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  3. Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

    International Nuclear Information System (INIS)

    Sakairi, M.; Shimoyama, Y.; Nagasawa, D.

    2008-01-01

    A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in 0.5 kmol/m 3 H 3 BO 4 /0.05 kmol/m 3 Na 2 B 4 O 7 with 0.01 kmol/m 3 NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion

  4. High temperature phase transition in SOFC anodes based on Sr2MgMoO6-δ

    International Nuclear Information System (INIS)

    Marrero-Lopez, D.; Pena-Martinez, J.; Ruiz-Morales, J.C.; Martin-Sedeno, M.C.; Nunez, P.

    2009-01-01

    The double perovskite Sr 2 MgMoO 6-δ has been recently reported as an efficient anode material for solid oxide fuel cells (SOFCs). In the present work, this material have been investigated by high temperature X-ray diffraction (XRD), differential scanning calorimetry (DSC) and impedance spectroscopy to further characterise its properties as SOFC anode. DSC and XRD measurements indicate that Sr 2 MgMoO 6-δ exhibits a reversible phase transition around 275 deg. C from triclinic (I1-bar) with an octahedral tilting distortion to cubic (Fm3-barm) without octahedral distortion. This phase transition is continuous with increasing temperature without any sudden cell volume change during the phase transformation. The main effect of the phase transformation is observed in the electrical conductivity with a change in the activation energy at low temperature. La 3+ and Fe-substituted Sr 2 MgMoO 6-δ phases were also investigated, however these materials are unstable under oxidising conditions due to phase segregations above 600 deg. C. - Graphical abstract: The double perovskite Sr 2 MgMoO 6 , recently proposed as an efficient SOFC anode for direct hydrocarbon oxidation, exhibits a reversible structural phase transition from triclinic to cubic at 275 deg. C.

  5. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  6. Cell and method for electrolysis of water and anode

    Science.gov (United States)

    Aylward, J. R. (Inventor)

    1981-01-01

    An electrolytic cell for converting water vapor to oxygen and hydrogen include an anode comprising a foraminous conductive metal substrate with a 65-85 weight percent iridium oxide coating and 15-35 weight percent of a high temperature resin binder. A matrix member contains an electrolyte to which a cathode substantially inert. The foraminous metal member is most desirably expanded tantalum mesh, and the cell desirably includes reservoir elements of porous sintered metal in contact with the anode to receive and discharge electrolyte to the matrix member as required. Upon entry of a water vapor containing airstream into contact with the outer surface of the anode and thence into contact with iridium oxide coating, the water vapor is electrolytically converted to hydrogen ions and oxygen with the hydrogen ions migrating through the matrix to the cathode and the oxygen gas produced at the anode to enrich the air stream passing by the anode.

  7. Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes

    KAUST Repository

    Boulfrad, Samir

    2013-07-01

    In this work, a highly scalable technique is proposed as an alternative to the lab-scale impregnation method. LSCM-CGO powders were pre-coated with 5 wt% of Ni from nitrates. After appropriate mixing and adequate heat treatment, coated powders were then dispersed into organic based vehicles to form a screen-printable ink which was deposited and fired to form SOFC anode layers. Electrochemical tests show a considerable enhancement of the pre-coated anode performances under 50 ml/min wet H2 flow with polarization resistance decreased from about 0.60cm2 to 0.38 cm2 at 900 C and from 6.70 cm2 to 1.37 cm2 at 700 C. This is most likely due to the pre-coating process resulting in nano-scaled Ni particles with two typical sizes; from 50 to 200 nm and from 10 to 40 nm. Converging indications suggest that the latter type of particle comes from solid state solution of Ni in LSCM phase under oxidizing conditions and exsolution as nanoparticles under reducing atmospheres. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  8. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    Science.gov (United States)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  9. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Daqian; Li, Xiang; Raymond, Dustin; Mooradain, James; Li, Baikun [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-08-15

    Multi-anode/cathode microbial fuel cells (MFCs) incorporate multiple MFCs into a single unit, which maintain high power generation at a low cost and small space occupation for the scale-up MFC systems. The power production of multi-anode/cathode MFCs was similar to the total power production of multiple single-anode/cathode MFCs. The power density of a 4-anode/cathode MFC was 1184 mW/m{sup 3}, which was 3.2 times as that of a single-anode/cathode MFC (350 mW/m{sup 3}). The effect of chemical oxygen demand (COD) was studied as the preliminary factor affecting the MFC performance. The power density of MFCs increased with COD concentrations. Multi-anode/cathode MFCs exhibited higher power generation efficiencies than single-anode/cathode MFCs at high CODs. The power output of the 4-anode/cathode MFCs kept increasing from 200 mW/m{sup 3} to 1200 mW/m{sup 3} as COD increased from 500 mg/L to 3000 mg/L, while the single-anode/cathode MFC showed no increase in the power output at CODs above 1000 mg/L. In addition, the internal resistance (R{sub in}) exhibited strong dependence on COD and electrode distance. The R{sub in} decreased at high CODs and short electrode distances. The tests indicated that the multi-anode/cathode configuration efficiently enhanced the power generation. (author)

  10. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.

    Science.gov (United States)

    Li, Xue; He, Xinyi; Shi, Chunmei; Liu, Bo; Zhang, Yiyong; Wu, Shunqing; Zhu, Zizong; Zhao, Jinbao

    2014-12-01

    Nanorod-like CuS and Cu2 S have been fabricated by a hydrothermal approach without using any surfactant and template. The electrochemical behavior of CuS and Cu2 S nanorod anodes for lithium-ion batteries reveal that they exhibit stable lithium-ion insertion/extraction reversibility and outstanding rate capability. Both of the electrodes exhibit excellent capacity retentions irrespective of the rate used, even at a high current density of 3200 mA g(-1) . More than 370 mAh g(-1) can be retained for the CuS electrode and 260 mAh g(-1) for the Cu2 S electrode at the high current rate. After 100 cycles at 100 mA g(-1) , the obtained CuS and Cu2 S electrodes show discharge capacities of 472 and 313 mAh g(-1) with retentions of 92% and 96%, respectively. Together with the simplicity of fabrication and good electrochemical properties, CuS and Cu2 S nanorods are promising anode materials for practical use the next-generation lithium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  12. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  13. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  14. Radio frequency emission from high-pressure xenon arcs: A systematic experimental analysis of the underlying near-anode plasma instability

    Energy Technology Data Exchange (ETDEWEB)

    Hechtfischer, Ulrich [Philips Lighting, GBU Automotive Lamps, Technology, Philipsstrasse 8, 52068 Aachen (Germany)

    2011-10-01

    High-pressure Xe discharge lamps at DC operation can show unwanted strong RF (radio-frequency) emission to beyond 1 GHz, correlated to a sharp periodic lamp-voltage instability in the near-anode plasma with a pulse repetition rate {epsilon} of 1-10 MHz. The physical origin of the instability is unclear. Here, its existence and pulse rate have been measured as a function of arc current I = 0.2-1.2 A and anode temperature T{sub a} = 1700-3400 K independently, in experimental lamps with pure-tungsten electrodes and a Xe operating pressure around p = 10 MPa. Surprisingly, the instability is not affected by I or current density j but exists if T{sub a} is lower than a threshold value around 2800-2900 K. The pulse rate {epsilon} is simply a rising linear function of the inverse anode temperature 1/T{sub a}, with only a small I-dependent correction. The average anode heat load is slightly lower in the unstable regime and possibly depends on {epsilon}. The results allow a consistent re-interpretation of earlier and present experimental observations and should be both a valuable help in practical lamp engineering and a tight constraint for future theories of this effect.

  15. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  16. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    Science.gov (United States)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  17. Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications

    International Nuclear Information System (INIS)

    Minella, M.; Versaci, D.; Casino, S.; Di Lupo, F.; Minero, C.; Battiato, A.; Penazzi, N.; Bodoardo, S.

    2017-01-01

    Titanium dioxide/reduced graphene oxide (TiO 2 -rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate capability but also on the simplicity and low cost of the electrode production. It was therefore chosen to use commercial TiO 2 , GO was synthesized from graphite, adsorbed onto TiO 2 and reduced to rGO following a chemical, a photocatalytic and an in situ photocatalytic procedure. The synthesized materials were in-depth characterized with a multi-technique approach and the electrochemical performances were correlated i) to an effective reduction of the GO oxidized moieties and ii) to the maintenance of the 2D geometry of the final graphenic structure observed. TiO 2 -rGO obtained with the first two procedures showed good cycle stability, high capacity and impressive rate capability particularly at 10% GO loading. The photocatalytic reduction applied in situ on preassembled electrodes showed similarly good results reaching the goal of a further simplification of the anode production.

  18. Space and Temporal Correlation between the Moving Virtual Anode and the Ionization Growth in a Transient Hollow Cathode Discharge

    International Nuclear Information System (INIS)

    Zambra, M.; Moreno, J.; Soto, L.; Silva, P.; Sylvester, G.; Alarcon, H.

    2001-01-01

    A Transient Hollow Cathode Discharge is a low-pressure high-voltage electric discharge between plane parallel electrodes with an axial hole in the cathode. There are essential ionization events which lead to final electrical breakdown, between them the enhanced ionization processes taking place inside the Hollow Cathode Region (HCR) and the virtual anode moving in the interelectrode region, which extends the anode potential to within the HCR. In previous works it was studied the virtual anode speed in the A-K gap and the temporal evolution of the ionization growth in the HCR separately. In this paper, the virtual anode speed has been studied temporal and space correlated with the ionization growth inside the HCR. The presence of the moving virtual anode and the ionization growth has been diagnosed by means of capacitive probes and observing the light emission at 656 nm (H-α) from a point behind the cathode aperture respectively. The discharge was operated in hydrogen gas, at pressure in the range 100-300 mTorr, with 5 mm cathode aperture and at 30 kV maximum voltage. (author)

  19. Anodic dissolution of UO2 in slightly alkaline sodium perchlorate solutions

    International Nuclear Information System (INIS)

    Sunder, S.; Strandlund, L.K.; Shoesmith, D.W.

    1996-04-01

    The anodic dissolution of UO 2 has been studied in aqueous sodium perchlorate solutions at pH ∼ 9.5. Under potentiostatic conditions two distinct regions of oxidation/dissolution behaviour were observed. In the potential (E) range 0.100 V A , Q C respectively) obtained by integration of the anodic current-time plots (Q A ) and cathodic potential scans to reduce accumulated oxidized surface films (Q C ), it was shown that > ∼ 90% of the anodic oxidation current went to produce these films. For E > ∼ 0.350 V, steady-state currents were obtained and measurements of Q A and Q C showed the majority of the current went to produce soluble species. The film blocking anodic dissolution appeared to be either UO 2.27 or, more probably, UO 3 .2H 2 O located primarily at grain boundaries. It is proposed that, at the higher potentials, rapid oxidation and dissolution followed by the hydrolysis of dissolved uranyl species leads to the development of acidic conditions in the grain boundaries. At these lower pH values the UO 3 .2H 2 O is soluble and therefore does not accumulate. Alternatively, if this oxide has been formed by prior oxidation at a lower potential, the formation of protons on oxidizing at E > ∼ 0.350V causes its redissolution, allowing the current to rise to a steady-state value. On the basis of Tafel slopes, an attempt was made to demonstrate that the observed behaviour was consistent with dissolution under acidic conditions. This analysis was only partially successful. (author) 34 refs. 11 figs

  20. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells

    Science.gov (United States)

    Wang, Heming; Davidson, Matthew; Zuo, Yi; Ren, Zhiyong

    One of the greatest challenges facing microbial fuel cells (MFCs) in large scale applications is the high cost of electrode material. We demonstrate here that recycled tire crumb rubber coated with graphite paint can be used instead of fine carbon materials as the MFC anode. The tire particles showed satisfactory conductivity after 2-4 layers of coating. The specific surface area of the coated rubber was over an order of magnitude greater than similar sized graphite granules. Power production in single chamber tire-anode air-cathode MFCs reached a maximum power density of 421 mW m -2, with a coulombic efficiency (CE) of 25.1%. The control graphite granule MFC achieved higher power density (528 mW m -2) but lower CE (15.6%). The light weight of tire particle could reduce clogging and maintenance cost but posts challenges in conductive connection. The use of recycled material as the MFC anodes brings a new perspective to MFC design and application and carries significant economic and environmental benefit potentials.

  1. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    International Nuclear Information System (INIS)

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-01-01

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m 2 . This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  2. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  3. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  4. Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.

    Science.gov (United States)

    Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui

    2017-11-08

    Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.

  5. Fast ion transport at solid-solid interfaces in hybrid battery anodes

    Science.gov (United States)

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2018-04-01

    Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn-Li anodes are shown to be stable at 3 mA cm-2 and 3 mAh cm-2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn-Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.

  6. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    the electrolyte to change 3PB kinetics. Compared to Ni, Co doping activates the bulk oxygen more significantly, promoting the reaction at 2PB. The active surface reaction zone is found to be enlarged by the electrolyte with high oxygen activity (SSZ vs. YSZ) when charge transfer is one of the RDS. Due to the larger exchange current for charge transfer in 3PB with SSZ electrolyte, the adsorption gradient zone is broadened, leading to enhanced surface reaction kinetics. The potential application of such finding is demonstrated on SSZ/YSZ/SSZ sandwich, showing largely improved electrode performance, opening a wide door for the utilization of electrolytes that are too expensive, fragile or instable to be used before. The bulk path way in 2PB reaction can be affected by overpotential in terms of local vacancy concentration, built-in electrical field and stability. It is proven that an uneven distribution of lattice oxygen is established under operation conditions with overpotential by both qualitative analysis and analytic solution. An electrostatic field force is present besides the concentration gradient in the anode lattice to control the motion of oxygen ions. Compared to the usual estimation based on chemical diffusion mechanism, the real deviation of ionic defects concentration under polarization from the equilibrium state near electrode/electrolyte interface is smaller with the built-in electrical field. The overpotential is demonstrated to be able to open up or shut down the bulk pathway depending on the ionic defects of electrodes. The analysis on the bulk pathway in terms of local charged species and various potentials provides new insight in anion diffusion and electrode stability.

  7. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    Science.gov (United States)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  8. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  9. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  10. Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Boye, Birame; Brillas, Enric; Marselli, Beatrice; Michaud, Pierre-Alain; Comninellis, Christos; Farnia, Giuseppe; Sandona, Giancarlo

    2006-01-01

    The electrochemical degradation of saturated solutions of herbicides 4-chloro-2-methylphenoxyacetic acid, 2-(4-chlorophenoxy)-2-methylpropionic acid and 2-(4-chloro-2-methylphenoxy)propionic acid in 1 M HClO 4 on a boron-doped diamond (BDD) thin film anode has been studied by chronoamperometry, cyclic voltammetry and bulk electrolysis. At low anodic potentials polymeric products are formed causing the fouling and deactivation of BDD. This is reactivated at high potentials when water decomposes producing hydroxyl radical as strong oxidant of organics. Electrolyses in a batch recirculation system at constant current density ≥8 mA cm -2 yielded overall decontamination of all saturated solution. The effect of current density and herbicide concentration on the degradation rate of each compound, the specific charge required for its total mineralization and instantaneous current efficiency have been investigated. Experimental results have been compared with those predicted by a theoretical model based on a fast anodic oxidation of initial herbicides, showing that at 30 mA cm -2 their degradation processes are completely controlled by mass transfer. Kinetic analysis of the change of herbicide concentration with time during electrolysis, determined by high-performance liquid chromatography, revealed that all compounds follow a pseudo first-order reaction. Aromatic intermediates and generated carboxylic acids have been identified using this technique and a general pathway for the electrochemical incineration of all herbicides on BDD is proposed

  11. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  12. Structure of anode plasma of gas discharge taking into account gas ionization burnout

    International Nuclear Information System (INIS)

    Zharinov, A.V.; Shumilin, V.P.

    2006-01-01

    One deals with a structure of an anode plasma of a gas discharge with intensive ionization ( b urnout ) of neutral atoms (neutrals). One derived analytical solutions of the quasi-neutrality equation for potential distribution, as well as, a condition of anode plasma existence in a unidimensional case at the arbitrary dependences of neutral burnout frequency and of electron concentration on the potential. One studied particular cases of the level frequency of neutral burnout, of ionization by the Maxwell electrons and of ionization by the intensive beam at collision-free motion of ions and the Boltzmann distribution of thermal electrons. Solutions for the first two cases at zero parameter of burnout, that is, at the level concentration of a gas coincide with the solutions obtained [1] by the power series expansion. It is shown that in case of ionization by the Maxwell electrons, anode plasma at the rational flow rates of a working gas may be produced under rather high temperature of electrons (if, for example, xenon serves as a working gas, so T e ≥5 eV). The stationary solutions of the quasi-neutrality at ionization by the intensive electron beam are found exclusively when the ratio between the electron beam density and the maximum density of thermal neutrons does not exceed a certain limiting value [ru

  13. Note: Anodic bonding with cooling of heat-sensitive areas

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Anodic bonding of silicon to glass always involves heating the glass and device to high temperatures so that cations become mobile in the electric field. We present a simple way of bonding thin silicon samples to borosilicate glass by means of heating from the glass side while locally cooling hea......-sensitive areas from the silicon side. Despite the high thermal conductivity of silicon, this method allows a strong anodic bond to form just millimeters away from areas essentially at room temperature....

  14. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes

    Science.gov (United States)

    Huang, Jiarui; Wang, Wei; Lin, Xirong; Gu, Cuiping; Liu, Jinyun

    2018-02-01

    A sandwich-structured NiMn2O4@reduced graphene oxide (NiMn2O4@rGO) nanocomposite consisting of ultrathin NiMn2O4 sheets uniformly anchored on both sides of a three-dimensional (3D) porous rGO is presented. The NiMn2O4@rGO nanocomposites prepared through a dipping process combining with a hydrothermal method show a good electrochemical performance including a high reversible capability of 1384 mAh g-1 at 1000 mA g-1 over 1620 cycles, and an superior rate performance. Thus, a full cell consisting of a commercial LiCoO2 cathode and the NiMn2O4@rGO anode delivers a stable capacity of about 1046 mAh g-1 (anode basis) after cycling at 50 mA g-1 for 60 times. It is demonstrated that the 3D porous composite structure accommodates the volume change during the Li+ insertion/extraction process and facilitates the rapid transport of ions and electrons. The high performance would enable the presented NiMn2O4@rGO nanocomposite a promising anode candidate for practical applications in Li-ion batteries.

  15. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    2015-08-01

    Full Text Available Improving the energy capacity of spinel Li4Ti5O12 (LTO is very important to utilize it as a high-performance Li-ion battery (LIB electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li+ insertion and extraction. The composites with higher Si contents (LTO:Si = 35:35 exhibited superior specific capacity (1004 mAh·g−1 at lower current densities (0.22 A·g−1 but the capacity deteriorated at higher current densities. On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20 were able to deliver stable capacity (100 mAh·g−1 with good cycling performance, even at a very high current density of 7 A·g−1. The improvement in specific capacity and rate performance was a direct result of the synergy between LTO and Si; the former can alleviate the stresses from volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. Therefore, it has been demonstrated that the addition of Si and concentration optimization is an easy yet an effective way to produce high performance LTO-based electrodes for lithium-ion batteries.

  16. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  17. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    Science.gov (United States)

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  18. Iron migration from the anode surface in alumina electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V. [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, 660036 (Russian Federation)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. Black-Right-Pointing-Pointer It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe{sup 2+} takes place. Black-Right-Pointing-Pointer Fe{sup 2+} interacts with cryolite melt producing FeF{sub 2}. Black-Right-Pointing-Pointer FeF{sub 2} gives oxides FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Black-Right-Pointing-Pointer The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF{sub 3} electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF{sub 2}. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The

  19. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  20. CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC

    International Nuclear Information System (INIS)

    Garcia, Amanda C.; Paganin, Valdecir A.; Ticianelli, Edson A.

    2008-01-01

    The performance of H 2 /O 2 proton exchange membrane fuel cells (PEMFCs) fed with CO-contaminated hydrogen was investigated for anodes with PdPt/C and PdPtRu/C electrocatalysts. The physicochemical properties of the catalysts were characterized by energy dispersive X-ray (EDX) analyses, X-ray diffraction (XRD) and 'in situ' X-ray absorption near edge structure (XANES). Experiments were conducted in electrochemical half and single cells by cyclic voltammetry (CV) and I-V polarization measurements, while DEMS was employed to verify the formation of CO 2 at the PEMFC anode outlet. A quite high performance was achieved for the PEMFC fed with H 2 + 100 ppm CO with the PdPt/C and PdPtRu/C anodes containing 0.4 mg metal cm -2 , with the cell presenting potential losses below 200 mV at 1 A cm -2 , with respect to the system fed with pure H 2 . For the PdPt/C catalysts no CO 2 formation was seen at the PEMFC anode outlet, indicating that the CO tolerance is improved due to the existence of more free surface sites for H 2 electrooxidation, probably due to a lower Pd-CO interaction compared to pure Pd or Pt. For PdPtRu/C the CO tolerance may also have a contribution from the bifunctional mechanism, as shown by the presence of CO 2 in the PEMFC anode outlet

  1. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    Science.gov (United States)

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  2. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    International Nuclear Information System (INIS)

    Pushkarev, A.

    2015-01-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B r external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°

  3. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  4. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    CHEN Gao-hong

    2017-07-01

    Full Text Available Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the protective anodic oxide layers are formed on alclad and unclad 2E12 aluminum alloy. The film thickness increases with anodizing time extending. The copper rich second phase particles lead to more cavity defects and even micro cracks on anodic oxide films of unclad 2E12 aluminum alloy. The anodic oxide films on alclad 2E12 aluminum alloy are thicker and have fewer cavity defects, resulting in better corrosion resistance. The films obtained after 30min and 45min anodic oxidation treatment exhibit lower corrosion current and higher impedance of the porous layer than other anodizing time.

  5. Advanced gas-emission anode design for microfluidic fuel cell eliminating bubble accumulation

    International Nuclear Information System (INIS)

    Zhang, Hao; Xuan, Jin; Wang, Huizhi; Leung, Dennis Y C; Xu, Hong; Zhang, Li

    2017-01-01

    A microfluidic fuel cell is a low cost, easily fabricated energy device and is considered a promising energy supplier for portable electronics. However, the currently developed microfluidic fuel cells that are fed with hydrocarbon fuels are confronted with a bubble problem especially when operating at high current density conditions. In this work, a gas-emission anode is presented to eliminate the gas accumulation at the anode. This gas-emission anode is verified as a valid design for discharging gaseous products, which is especially beneficial for stable operation of microfluidic fuel cells. The electrochemical performance of a counter-flow microfluidic fuel cell equipped with a gas-emission anode was measured. The results indicate that the specific design of the gas-emission anode is essential for reducing the oxygen reduction reaction parasitic effect at the anode. Fuel utilization of 76.4% was achieved at a flow rate of 0.35 µ l min −1 . Current–voltage curves of single electrodes were measured and the parasitic effect at the anode was identified as the main performance limiting factor in the presented anode design. (paper)

  6. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  7. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  8. Metal oxides and lithium alloys as anode materials for lithium-ion batteries

    CSIR Research Space (South Africa)

    Kebede, M

    2016-07-01

    Full Text Available -generation anode materials for lithium–ion batteries with high prospect of replacing graphite. Most of these anode materials have higher specific capacities between the range of 600-1000 mA h g(sup-1) compared with 340 mA h g(sup-1) of graphite. These high...

  9. Rotating anode X-ray source

    International Nuclear Information System (INIS)

    Wittry, D.B.

    1979-01-01

    A rotating anode x-ray source is described which consists of a rotary anode disc including a target ring and a chamber within the anode disc. Liquid is evaporated into the chamber from the target ring to cool the target and a method is provided of removing the latent heat of the vapor. (U.K.)

  10. Mesoporous Spinel Li4Ti5O12 Nanoparticles for High Rate Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Liu, Weijian; Shao, Dan; Luo, Guoen; Gao, Qiongzhi; Yan, Guangjie; He, Jiarong; Chen, Dongyang; Yu, Xiaoyuan; Fang, Yueping

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous Li 4 Ti 5 O 12 nanoparticles were prepared by a simple hydrothermal method. • The mesoporous Li 4 Ti 5 O 12 nanoparticles exhibited a diameter of 40 ± 5 nm and a pore-size distribution of 6 - 8 nm. • Cells with the mesoporous Li 4 Ti 5 O 12 anode showed excellent high rate electrochemical properties. - Abstract: Mesoporous spinel lithium titanate (Li 4 Ti 5 O 12 ) nanoparticles with the diameter of 40 ± 5 nm and the pore-size distribution of 6 - 8 nm were prepared by a simple hydrothermal method. As an anode material for lithium-ion batteries, these spinel Li 4 Ti 5 O 12 mesoporous nanoparticles exhibited desirable lithium storage properties with an initial discharge capacity of 176 mAh g −1 at 1 C rate and a capacity of approximately 145 mAh g −1 after 200 cycles at a high rate of 20 C. These excellent electrochemical properties at high charge/discharge rates are due to the mesoporous nano-scale structures with small size particles, uniform mesopores and larger electrode/electrolyte contact area, which shortens the diffusion path for both electrons and Li + ions, and offers more active sites for Li + insertion-extraction process

  11. Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries

    Science.gov (United States)

    Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan

    2017-09-01

    Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.

  12. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  13. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  14. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.W.; Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10⁻¹ Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  15. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Prevention of Crevice Corrosion of STS 304 Stainless Steel by a Mg-alloy Galvanic Anode

    International Nuclear Information System (INIS)

    Lim, U. J.; Yun, B. D.; Kim, J. J.

    2006-01-01

    Prevention of crevice corrosion was studied for STS 304 stainless steel using a Mg-alloy galvanic anode in solutions with various specific resistivity. The crevice corrosion and corrosion protection characteristics of the steel was investigated by the electrochemical polarization and galvanic corrosion tests. Experimental results show that the crevice corrosion of STS 304 stainless steel does not occur in solutions of high specific resistivity, but it occurs in solutions of low specific resistivity like in solutions with resistivities of 30, 60 and 115 Ω · m. With decreasing specific resistivity of the solution, the electrode potential of STS 304 stainless steel in the crevice is lowered. The potential of STS 304 stainless steel in the crevice after coupling is cathodically polarized more by decreasing specific resistivity indicating that the crevice corrosion of STS 304 stainless steel is prevented by the Mg-alloy galvanic anode

  17. Effect of Solution Temperature for Al Alloy Anodizing on Cavitation Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Jun [Kunsan National University, Kunsan (Korea, Republic of); Lee, Jung Hyung; Kim, Seong Jong [Mokpo National Maritime University, Haeyangdaehak-ro 91, Mokpo (Korea, Republic of)

    2015-06-15

    The commercialization of aluminum had been delayed than other metals because of its high oxygen affinity. Anodizing is a process in which oxide film is formed on the surface of a valve metal in an electrolyte solution by anodic oxidation reaction. Aluminum has thin oxide film on surface but the oxide film is inhomogeneous having a thickness only in the range of several nanometers. Anodizing process increases the thickness of the oxide film significantly. In this study, porous type oxide film was produced on the surface of aluminum in sulfuric acid as a function of electrolyte temperature, and the optimum condition were determined for anodizing film to exhibit excellent cavitation resistance in seawater environment. The result revealed that the oxide film formed at 10 ℃ represented the highest cavitation resistance, while the oxide film formed at 15 ℃ showed the lowest resistance to cavitation in spite of its high hardness.

  18. Organic light emitting diodes on ITO-free polymer anodes

    Energy Technology Data Exchange (ETDEWEB)

    Fehse, Karsten; Schwartz, Gregor; Walzer, Karsten; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden, D-01062 Dresden (Germany)

    2007-07-01

    The high material cost of indium, being the main component of the commonly used indium-tin-oxide anodes (ITO) in organic light emitting diodes (OLEDs), is an obstacle for the production of efficient low-cost OLEDs. Therefore, new anode materials are needed for large scale OLED production. Recently, we demonstrated that the polymer PEDOT:PSS can substitute ITO as anode. Another highly conductive polymer is polyaniline (PANI) that provides 200 S/cm with a work function of 4.8 eV. In this study, we use PANI as anode for OLEDs (without ITO layer underneath the polymer) with electrically doped hole- and electron transport layers and intrinsic materials in between. Fluorescent blue (Spiro-DPVBi) as well as phosphorescent green (Ir(ppy){sub 3}) and red emitters (Ir(MDQ){sub 2}(acac)) were used for single colour and white OLEDs. Green single and double emission OLEDs achieve device efficiencies of 34 lm/W and 40.7 lm/W, respectively. The white OLED shows a power efficiency of 8.9 lm/W at 1000 cd/m{sup 2} with CIE coordinates of (0.42/0.39).

  19. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  20. Solvent anode for plutonium purification

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

    1986-01-01

    The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700 0 C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters

  1. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  2. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  3. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Freire, L. [Universidade de Vigo, E.T.S.E.I., Campus Universitario, 36310 Vigo (Spain)], E-mail: lorenafp@uvigo.es; Novoa, X.R. [Universidade de Vigo, E.T.S.E.I., Campus Universitario, 36310 Vigo (Spain); Montemor, M.F. [ICEMS - Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Carmezim, M.J. [ICEMS - Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); EST Setubal, DEM, Instituto Politecnico de Setubal, Campus IPS, 2910 Setubal (Portugal)

    2009-04-15

    In this paper, iron oxide thin layers formed on mild steel substrates in alkaline media by the application of different anodic potentials were studied in order to characterize their morphology, composition and electrochemical behaviour, in particular under conditions of cathodic protection. The surface composition was evaluated by X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The morphology of the surface oxides was studied via Atomic Force Microscopy (AFM). The electrochemical behaviour of the surface oxides was studied using Electrochemical Impedance Spectroscopy (EIS). The results showed that the surface film is composed by Fe{sup 2+}oxides and Fe{sup 3+} oxides and/or hydroxides. The contribution of Fe{sup 2+} species vanishes when the potential of film formation increases in the passive domain. Two distinct phases were differentiated in the outer layers of the surface film, which proves that film growing is topotactic in nature.

  4. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials

    International Nuclear Information System (INIS)

    Freire, L.; Novoa, X.R.; Montemor, M.F.; Carmezim, M.J.

    2009-01-01

    In this paper, iron oxide thin layers formed on mild steel substrates in alkaline media by the application of different anodic potentials were studied in order to characterize their morphology, composition and electrochemical behaviour, in particular under conditions of cathodic protection. The surface composition was evaluated by X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The morphology of the surface oxides was studied via Atomic Force Microscopy (AFM). The electrochemical behaviour of the surface oxides was studied using Electrochemical Impedance Spectroscopy (EIS). The results showed that the surface film is composed by Fe 2+ oxides and Fe 3+ oxides and/or hydroxides. The contribution of Fe 2+ species vanishes when the potential of film formation increases in the passive domain. Two distinct phases were differentiated in the outer layers of the surface film, which proves that film growing is topotactic in nature

  5. Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery

    International Nuclear Information System (INIS)

    Hu, Renzong; Zhang, Houpo; Bu, Yunfei; Zhang, Hanyin; Zhao, Bote; Yang, Chenghao

    2017-01-01

    Here we report our findings in synthesis and characterization of porous Co 3 O 4 nanofibers coated with a surface-modification layer, reduced graphene oxide. The unique porous Co 3 O 4 @rGO architecture enables efficient stress relaxation and fast Li + ions and electron transport during discharge/charge cycling. When tested in a half cell, the Co 3 O 4 @rGO electrodes display high Coulombic efficiency, enhanced cyclic stability, and high rate capability (∼900 mAh/g at 1A/g, and ∼600 mAh/g at 5 A/g). The high capacity is contributed by a stable capacity yielded from reversible conversion reactions above 0.8 V vs. Li/Li + , and a increasing capacity induced by the electrolyte decomposition and interfacial storage between 0.8 0.01 V during discahrge. A full cell constructed from a Co 3 O 4 @rGO anode and a LiMn 2 O 4 cathode delivers good capacity retention with operation voltage of ∼2.0 V. These performances are better than those of other full cells using alloy or metal oxide anodes. Our work is a preliminary attempt for practicality of high capacity metal oxide anodes in Li-ion batteries used for the electronic devices.

  6. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  7. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  8. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  9. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.

    Science.gov (United States)

    Sun, Fei; Liu, Xiaoyan; Wu, Hao Bin; Wang, Lijie; Gao, Jihui; Li, Hexing; Lu, Yunfeng

    2018-05-02

    To circumvent the imbalances of electrochemical kinetics and capacity between Li + storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li + storage anodes and PF 6 - storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg -1 at power densities of 0.225 and 22.5 kW kg -1 , respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg -1 .

  10. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking

    International Nuclear Information System (INIS)

    Chai Liyuan; Yu Xia; Yang Zhihui; Wang Yunyan; Okido, Masazumi

    2008-01-01

    Anodization is a useful technique for forming protective films on magnesium alloys and improves its corrosion resistance. Based on the alkaline electrolyte solution with primary oxysalt developed previously, the optimum secondary oxysalt was selected by comparing the anti-corrosion property of anodic film. The structure, component and surface morphology of anodic film and cross-section were analyzed using energy dispersion spectrometer (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion process was detected by electrochemical impedance spectroscopy (EIS). The results showed that secondary oxysalt addition resulted in different anodizing processes, sparking or non-sparking. Sodium silicate was the most favorable additive of electrolyte, in which anodic film with the strongest corrosion resistance was obtained. The effects of process parameters, such as silicate concentration, applied current density and temperature, were also investigated. High temperature did not improve anti-property of anodic film, while applying high current density resulted in more porous surface of film

  11. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    Science.gov (United States)

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

  12. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    Science.gov (United States)

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  13. An Auger electron spectroscopy study on the anodization process of high-quality thin-film capacitors made of hafnium

    International Nuclear Information System (INIS)

    Noya, Atsushi; Sasaki, Katsutaka; Umezawa, Toshiji

    1989-01-01

    Formation process of the anodic oxide film of hafnium for use as a thin-film capacitor has been examined by the current-voltage characteristics of the anodization and the in-depth analysis of formed oxide using Auger electron spectroscopy. It is found that the oxide growth obeys three different rate laws such as the linear rate law at first and next the parabolic rate law during the constant current anodization, and then the reciprocal logarithmic rate law during the constant voltage anodization following after the constant current process. From the Auger electron spectroscopy analysis, it is found that the shape of the compositional depth profile of the grown oxide film varies associating with the rate law of oxidation obeyed. The variation of depth profile correlating with the rate law is discussed with respect to each elementary process such as the transport and/or the reaction of chemical species interpreted from the over-all behavior of anodization process. It is revealed that the stoichiometric film having an interface with sharp transition, which is favorable for obtaining excellent electrical properties of the capacitor, can be obtained under the condition that the phase-boundary reaction is the rate-determining step of the anodization. The constant voltage anodization process also satisfies such circumstances and therefore can be favorable method for preparing highquality thin-film capacitors. (author)

  14. Anode pattern formation in atmospheric pressure air glow discharges with water anode

    NARCIS (Netherlands)

    Verreycken, T.; Bruggeman, P.J.; Leys, C.

    2009-01-01

    Pattern formation in the anode layer at a water electrode in atmospheric pressure glow discharges in air is studied. With increasing current a sequence of different anode spot structures occurs from a constricted homogeneous spot in the case of small currents to a pattern consisting of small

  15. Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Shuankui; Zuo, Shiyong; Wu, Zhiguo; Liu, Ying; Zhuo, Renfu; Feng, Juanjuan; Yan, De; Wang, Jun; Yan, Pengxun

    2014-01-01

    A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg −1 at a current of 100mAg −1 as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li + ions diffusion and large electrode-electrolyte contact area for high Li + ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries

  16. Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery

    International Nuclear Information System (INIS)

    Xiang, Xiaoxia; Liu, Enhui; Huang, Zhengzheng; Shen, Haijie; Tian, Yingying; Xiao, Chengyi; Yang, Jingjing; Mao, Zhaohui

    2011-01-01

    Highlights: → Nitrogen-containing microporous carbon was prepared from polyaniline base by K 2 CO 3 activation, and used as anode material for lithium ion secondary battery. → K 2 CO 3 activation promotes the formation of amorphous and microporous structure. → High nitrogen content, and large surface area with micropores lead to strong intercalation between carbon and lithium ion, and thus improve the lithium storage capacity. -- Abstract: Microporous carbon with large surface area was prepared from polyaniline base using K 2 CO 3 as an activating agent. The physicochemical properties of the carbon were characterized by scanning electron microscope, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurement. The electrochemical properties of the microporous carbon as anode material in lithium ion secondary battery were evaluated. The first discharge capacity of the microporous carbon was 1108 mAh g -1 , whose first charge capacity was 624 mAh g -1 , with a coulombic efficiency of 56.3%. After 20 cycling tests, the microporous carbon retains a reversible capacity of 603 mAh g -1 at a current density of 100 mA g -1 . These results clearly demonstrated the potential role of microporous carbon as anode for high capacity lithium ion secondary battery.

  17. Sulfur Poisoning of SOFC Anodes: Effect of Overpotential on Long-Term Degradation

    DEFF Research Database (Denmark)

    Hauch, Anne; Hagen, Anke; Hjelm, Johan

    2014-01-01

    characterized during long-term galvanostatic operation in internal reforming gas mixture (CH4/H2O/H2:30/60/10), with 2 ppm H2S exposure to the anode for 500 hours at 850◦C, at different current densities. This work focus on the long-term effect of H2S exposure over a few hundreds of hours; and describes...... and correlates the observed evolution of anode performance, over hundreds of hours, with sulfur exposure at low cell overpotential (low current density) and at high overpotential (high current density) with and without H2S exposure. For tests at low overpotential with H2S exposure only a reversible loss...... in performance was observed and post-mortem SEM analysis showed an intact Ni/YSZ anode microstructure. For tests at high cell overpotential the H2S exposure caused both a reversible loss in performance and an irreversible long-term degradation. Post-mortem SEM analysis of the Ni/YSZ anode from this tests showed...

  18. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-04-01

    Full Text Available High-performance lithium ion batteries (LIBs require electrode material to have an ideal electrode construction which provides fast ion transport, short solid-state ion diffusion, large surface area, and high electric conductivity. Herein, highly porous three-dimensional (3D aerogels composed of cobalt ferrite (CoFe2O4, CFO nanoparticles (NPs and carbon nanotubes (CNTs are prepared using sustainable alginate as the precursor. The key feature of this work is that by using the characteristic egg-box structure of the alginate, metal cations such as Co2+ and Fe3+ can be easily chelated via an ion-exchange process, thus binary CFO are expected to be prepared. In the hybrid aerogels, CFO NPs interconnected by the CNTs are embedded in carbon aerogel matrix, forming the 3D network which can provide high surface area, buffer the volume expansion and offer efficient ion and electron transport pathways for achieving high performance LIBs. The as-prepared hybrid aerogels with the optimum CNT content (20 wt% delivers excellent electrochemical properties, i.e., reversible capacity of 1033 mAh g−1 at 0.1 A g−1 and a high specific capacity of 874 mAh g−1 after 160 cycles at 1 A g−1. This work provides a facile and low cost route to fabricate high performance anodes for LIBs. Keywords: Alginate, Aerogels, Cobalt ferrite, Anode, Lithium-ion battery

  19. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Chen, Wufeng; Zhu, Zhiye; Li, Sirong; Chen, Chunhua; Yan, Lifeng

    2012-03-01

    A novel method has been developed to prepare hydrogenated graphene (HG) via a direct synchronized reduction and hydrogenation of graphene oxide (GO) in an aqueous suspension under 60Co gamma ray irradiation at room temperature. GO can be reduced by the aqueous electrons (eaq-) while the hydrogenation takes place due to the hydrogen radicals formed in situ under irradiation. The maximum hydrogen content of the as-prepared highly hydrogenated graphene (HHG) is found to be 5.27 wt% with H/C = 0.76. The yield of the target product is on the gram scale. The as-prepared HHG also shows high performance as an anode material for lithium ion batteries.

  20. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries