WorldWideScience

Sample records for high amplitude fluctuations

  1. Implications of high amplitude atmospheric CO2 fluctuations on past millennium climate change

    Science.gov (United States)

    van Hoof, Thomas; Kouwenberg, Lenny; Wagner-Cremer, Friederike; Visscher, Henk

    2010-05-01

    Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO2 concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO2 trends from the USA and NW European support the presence of significant CO2 variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO2 fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO2 changes (> 34ppmv) exceeds the maximum amplitude of CO2 variability in the D47 ice core (Proceedings of the National Academy of Sciences of the USA, v. 105, no. 41, pp. 15815-15818 Wagner F., L.L.R. Kouwenberg, T.B. van Hoof and H. Visscher 2004. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quartenary Science Reviews. V. 23, pp. 1947-1954

  2. Amplitude fluctuations in the Berezinskii-Kosterlitz-Thouless phase

    CERN Document Server

    Jakubczyk, Pawel

    2016-01-01

    We analyze the interplay of thermal amplitude and phase fluctuations in a $U(1)$ symmetric two-dimensional $\\phi^4$-theory. To this end, we derive coupled renormalization group equations for both types of fluctuations. Discarding the amplitude fluctuations, the expected Berezinskii-Kosterlitz-Thouless (BKT) phase characterized by a finite phase stiffness and an algebraic decay of order parameter correlations is recovered at low temperatures. However, in contrast to the widespread expectation, amplitude fluctuations are not innocuous, since their mass vanishes due to a strong renormalization by phase fluctuations. Even at low temperatures the amplitude fluctuations lead to a logarithmic renormalization group flow of the phase stiffness, which ultimately vanishes. Hence, the BKT phase is strictly speaking replaced by a symmetric phase with a finite correlation length, which is however exponentially large at low temperatures. The vortex-driven BKT transition is then rounded to a crossover, which may be practical...

  3. Nonlinear Effects in the Amplitude of Cosmological Density Fluctuations

    CERN Document Server

    Juszkiewicz, Roman; Fry, J N; Jaffe, Andrew H

    2009-01-01

    The amplitude of cosmological density fluctuations, $\\sigma_8$, has been studied and estimated by analysing many cosmological observations. The values of the estimates vary considerably between the various probes. However, different estimators probe the value of $\\sigma_8$ in different cosmological scales and do not take into account the nonlinear evolution of the parameter at late times. We show that estimates of the amplitude of cosmological density fluctuations derived from cosmic flows are systematically higher than those inferred at early epochs because of nonlinear evolution at later times. Here we derive corrections to the value of $\\sigma_8$ and compare amplitudes after accounting for this effect.

  4. CORRELATION BETWEEN AMPLITUDE AND FREQUENCY FLUCTUATIONS OF SPONTANEOUS OTOACOUSTIC EMISSIONS

    NARCIS (Netherlands)

    VANDIJK, P; WIT, HP; TUBIS, A; TALMADGE, CL; LONG, GR

    1994-01-01

    The normalized cross-correlation function between the amplitude and frequency fluctuations of 11 spontaneous otoacoustic emissions was measured. A significant correlation was found in seven subjects. The correlation coefficient ranged from -0.37 to +0.65 across subjects. In four subjects, the amplit

  5. Amplitude of primeval fluctuations from cosmological mass density reconstructions

    Science.gov (United States)

    Seljak, Uros; Bertschinger, Edmund

    1994-01-01

    We use the POTENT reconstruction of the mass density field in the nearby universe to estimate the amplitude of the density fluctuation power spectrum for various cosmological models. We find that sigma(sub 8) Omega(sub m sup 0.6) = 1.3(sub -0.3 sup +0.4), almost independently of the power spectrum. This value agrees well with the Cosmic Background Explorer (COBE) normalization for the standard cold dark matter model, while alternative models predict an excessive amplitude compared with COBE. Flat, low Omega(sub m) models and tilted models with spectral index n less than 0.8 are particularly discordant.

  6. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  7. Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion

    Directory of Open Access Journals (Sweden)

    Kaminsky A. V.

    2010-07-01

    Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the am- plitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2 m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes (“fluctuation amplitudes” of the spectra of stochastic processes upon rotation of the Earth.

  8. High Amplitude Secondary Mass Drive

    Energy Technology Data Exchange (ETDEWEB)

    DYCK,CHRISTOPHER WILLIAM; ALLEN,JAMES J.; HUBER,ROBERT JOHN; SNIEGOWSKI,JEFFRY J.

    2000-07-06

    In this paper we describe a high amplitude electrostatic drive for surface micromachined mechanical oscillators that may be suitable for vibratory gyroscopes. It is an advanced design of a previously reported dual mass oscillator (Dyck, et. al., 1999). The structure is a 2 degree-of-freedom, parallel-plate driven motion amplifier, termed the secondary mass drive oscillator (SMD oscillator). During each cycle the device contacts the drive plates, generating large electrostatic forces. Peak-to-peak amplitudes of 54 {micro}m have been obtained by operating the structure in air with an applied voltage of 11 V. We describe the structure, present the analysis and design equations, and show recent results that have been obtained, including frequency response data, power dissipation, and out-of- plane motion.

  9. Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes

    Science.gov (United States)

    Tsurutani, Bruce T.; Ho, Christian M.; Arballo, John K.; Goldstein, Bruce E.; Balogh, Andre

    1995-01-01

    Corotating Interaction Regions (CIRs), formed by high-speed corotating streams interacting with slow speed streams, have been examined from -20 deg to -36 deg heliolatitudes. The high-speed streams emanate from a polar coronal hole that Ulysses eventually becomes fully embedded in as it travels towards the south pole. We find that the trailing portion of the CIR, from the interface surface (IF) to the reverse shock (RS), contains both large amplitude transverse fluctuations and magnitude fluctuations. Similar fluctuations have been previously noted to exist within CIRs detected in the ecliptic plane, but their existence has not been explained. The normalized magnetic field component variances within this portion of the CIR and in the trailing high-speed stream are approximately the same, indicating that the fluctuations in the CIR are compressed Alfven waves. Mirror mode structures with lower intensities are also observed in the trailing portion of the CIR, presumably generated from a local instability driven by free energy associated with compression of the high-speed solar wind plasma. The mixture of these two modes (compressed Alfven waves and mirror modes) plus other modes generated by three wave processes (wave-shock interactions) lead to a lower Alfvenicity within the trailing portion of the CfR than in the high-speed stream proper. The results presented in this paper suggest a mechanism for generation of large amplitude B(sub z) fluctuations within CIRS. Such phenomena have been noted to be responsible for the generation of moderate geomagnetic storms during the declining phase of the solar cycle.

  10. AMPLITUDE FLUCTUATIONS IN CURVATURE SENSING: COMPARISON OF TWO SCHEMES

    Directory of Open Access Journals (Sweden)

    V. V. Voitsekhovich

    2010-01-01

    Full Text Available Se investiga la influencia de las uctuaciones en amplitud sobre la calidad de la reconstrución de fases en la medición de la curvatura. Se comparan los dos es- quemas: el que emplea dos imágenes simétricas fuera de foco (esquema de Roddier y el que emplea una sola (esquema de Hickson. Se demuestra que la precisión de la reconstrucción de fases con el esquema de Hickson se ve fuertemente afectada por uctuaciones en amplitud incluso leves, mientras que el esquema de Roddier funciona bien incluso con grandes uctuaciones en amplitud.

  11. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    Science.gov (United States)

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  12. The amplitudes of interplanetary fluctuations - Stream structure, heliocentric distance, and frequency dependence

    Science.gov (United States)

    Roberts, D. A.; Goldstein, M. L.; Klein, L. W.

    1990-01-01

    A study is presented of the heliocentric distance, frequency, and stream structure dependence of the amplitudes of interplanetary fluctuations in the velocity and magnetic field from 0.3 to nearly 20 AU and for spacecraft-frame periods of 10 days to a few hours. Evidence is presented that, at a given heliocentric distance, the amplitude of the magnetic field fluctuations is proportional to the magnitude of the field, nearly independently of the solar wind speed. The radial evolution of magnetic fluctuations is shown to be nearly consistent with WKB expectations except at smaller scales in the inner heliosphere and at the largest scales in the outer heliosphere. While the large-scale velocity fluctuations are kinetic energy-dominated in the inner heliosphere due to the presence of streams, the magnetic fluctuation energy eventually comes to be slightly dominant over the kinetic energy at all scales. The theoretical implications of the results are considered.

  13. Effects of the amplitude and frequency of salinity fluctuations on antioxidant responses in juvenile tongue sole, Cynoglossus semilaevis

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, S.A.; Tian, X.; Dong, S.; Fang, Z.; Solanki, B.V.; Shanthanagouda, H.A.

    2016-11-01

    To understand the tolerance of tongue sole, Cynoglossus semilaevis, to varying salinities, the effects of the amplitude (2, 4, 6 and 8 g/L) and frequency (2, 4 and 8 days) of salinity fluctuations on the activities of antioxidant responses, including acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) from antioxidant system in liver, muscle, gills and kidney were investigated in this study. The results showed that the antioxidant responses of tongue sole were highly tissue-specific during the varying salinity fluctuations. In all tissues, ACP and AKP activity was found to be highest at moderate salinity fluctuations compared to the control, low and high salinity treatments (p<0.05). SOD and CAT activities had significant effect due to salinity fluctuations in all tissues (p<0.05), except in hepatic and renal tissues. Variations in branchial SOD activity proved that salinity fluctuations had greater impact on tongue sole at moderate and high fluctuating salinities compared to the control and low fluctuating salinities, whereas the branchial CAT activities showed contrasting trend. Further, cortisol levels were significantly affected in lower and higher salinity fluctuations. However, plasma cortisol levels remained low in moderate salinity fluctuations and control (p<0.05). Taken together, the results indicated that salinity fluctuations could effectively stimulate and enhance the antioxidant enzyme activity in the liver, kidney, gills and muscle of the juvenile tongue sole, thus effectively eliminating the excessive reactive oxygen species and minimizing the body damage in tongue sole or could be for any other euryhaline teleosts. (Author)

  14. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line...... with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very...

  15. Effects of the Amplitude and Frequency of Salinity Fluctuation on the Body Composition and Energy Budget of Juvenile Tongue Sole (Cynoglossus semilaevis)

    Institute of Scientific and Technical Information of China (English)

    Sachin Onkar KHAIRNAR; TIAN Xiangli; FANG Ziheng; DONG Shuanglin

    2015-01-01

    Effects of the amplitude (±2, ±4, ±6, and ±8) and frequency (2, 4, and 8d) of salinity fluctuation on the body composi-tion and energy budget of juvenile tongue sole (Cynoglossus semilaevis) were investigated in a 64-d experiment. Results showed that the amplitude and frequency of salinity fluctuation had significant interaction and both substantially affected the final weight and specific growth rate of juvenile tongue sole. The tongue sole exhibited better growth in treatments with moderate amplitude and fre-quency of salinity fluctuation (amplitude ±4–6; frequency 4–8d) than in other treatments and the control. In terms of energy budget, salinity fluctuation strongly affected the proportions of energy components, including those deposited for growth and lost in respira-tion, feces, and excretion. Moderately amplitude and frequency of salinity fluctuationg that favored the growth of tongue sole parti-tioned more energy for growth and less energy for metabolism than the constant and other amplitude and frequency of salinity fluc-tuation. Average energy budget for tongue sole at moderately fluctuating salinity was determined to be 100C(food)=30.92G(growth) +10.30F(feces)+6.77U(excretion)+52.01R(respiration). Energetic advantage at moderately fluctuating salinity, including increased energy intake, high assimilation efficiency, reduced metabolism expenditure, and more energy partitioned into growth, might account for the enhancement of tongue sole growth. Commercial farmers are recommended to rear juvenile tongue sole with moderate salin-ity fluctuations for better growth performance of this species.

  16. Hydrodynamic flow amplitude correlations in event-by-event fluctuating heavy-ion collisions

    CERN Document Server

    Qian, Jing

    2016-01-01

    The effects of event-by-event fluctuations in the initial geometry of the colliding nuclei are important in the analysis of final flow observables in relativistic heavy-ion collisions. We use hydrodynamic simulations to study the amplitude correlations between different orders of event-by-event fluctuating anisotropic flow harmonics. While the general trends seen in the experimental data are qualitatively reproduced by the model, deviations in detail, in particular for peripheral collisions, point to the need for more elaborate future calculations with a hybrid approach that describes the late hadronic stage of the evolution microscopically. It is demonstrated explicitly that the observed anti-correlation between $v_2$ and $v_3$ is the consequence of approximately linear hydrodynamic response to a similar anti-correlation of the corresponding initial eccentricities $\\epsilon_2$ and $\\epsilon_3$. For $n{\\,>\\,}3$, the hydrodynamic correlations between $v_{2,3}$ and $v_n$ deviate from the rescaled correlations a...

  17. Faraday polarization fluctuations and their dependence on post sunset secondary maximum and amplitude scintillations at Delhi

    Directory of Open Access Journals (Sweden)

    J. K. Gupta

    Full Text Available VHF Faraday rotation (FR and amplitude scintillation data recorded simultaneously during May 1978–December 1980 at Delhi (28.63° N, 77.22° E; Dip 42.44° N is analyzed in order to study the Faraday polarization fluctuations (FPFs and their dependence on the occurrence of post sunset secondary maximum (PSSM and amplitude scintillations. It is noted that FPFs are observed only when both PSSM and scintillations also occur simultaneously. FPFs are observed only during winter and the equinoctial months of high sunspot years. FPFs events are associated with intense scintillation activity, which is characterized by sudden onsets and abrupt endings, and are observed one to three hours after the local sunset. When FPFs and scintillation data from Delhi is compared with the corresponding data from a still lower latitude station, Hyderabad (17.35° N, 78.45° E, it is found that the occurrence of FPFs and scintillations at Delhi is conditional to their prior occurrence at Hyderabad, which indicates their production by a plasma bubble and the as-sociated irregularities generated initially over the magnetic equator. In addition, FPFs and scintillation data for October 1979, when their occurrence was maximum, is also examined in relation to daytime (11:00 LT electrojet strength (EEj values and evening hour h’F from an equatorial location, Kodaikanal (10.3° N, 77.5° E. It is interesting to note that FPFs and scintillations are most likely observed when the EEj was 100 nT or more and h’F reaches around 500 km. These results show that EEj and evening hours h’F values over the magnetic equator are important parameters for predicting FPFs and scintillation activity at locations such as Delhi, where scintillation activity is much more intense as compared to the equatorial region due to the enhanced back-ground ionization due to the occurrence of PSSM.

    Key words. Ionosphere (equatorial ionosphere; ionospheric irregularities – Radio science

  18. External Drive to Inhibitory Cells Induces Alternating Episodes of High- and Low-Amplitude Oscillations

    NARCIS (Netherlands)

    Gonzalez, Oscar J. Avella; van Aerde, Karlijn I.; van Elburg, Ronald A. J.; Poil, Simon-Shlomo; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus; van Pelt, Jaap; van Ooyen, Arjen

    2012-01-01

    Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude alternating with epi

  19. Functional MRI study of mild Alzheimer's disease using amplitude of low frequency fluctuation analysis

    Institute of Scientific and Technical Information of China (English)

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; YAN Chao-gan; HE Yong

    2012-01-01

    Background Previous studies have shown that the functional brain activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,most studies focused on the relationship between different brain areas,rather than the amplitude or strength of the regional brain activity.The purpose of this study was to explore the functional brain changes in AD patients by measuring the amplitude of the blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals.Methods Twenty mild AD patients and twenty healthy elderly subjects participated in the fMRI scan.The amplitude of low frequency fluctuation (ALFF) was calculated using REST software.Results Compared with the healthy elderly subjects,the mild AD patients showed decreased ALFF in the right posterior cingulate cortex,right ventral medial prefrontal cortex,and in the bilateral dorsal medial prefrontal cortex.No brain region with increased ALFF was found in the AD group compared with the control group.Conclusions The reduced activity in the posterior cingulate cortex and medial prefrontal cortex observed in the present study suggest that the functional abnormalities of those areas are at an early stage of AD.The ALFF analysis may provide a useful tool in fMRI study of AD.

  20. Femtosecond measurements of electric fields: from classical amplitudes to quantum fluctuations

    Science.gov (United States)

    Riek, Claudius; Seletskiy, Denis V.; Leitenstorfer, Alfred

    2017-03-01

    Ultrabroadband electro-optic sampling is presented as an extremely sensitive technique to detect electric field amplitudes in free space. The temporal resolution provided by few-femtosecond laser pulses results in a bandwidth exceeding 100 THz, potentially covering the entire infrared spectral range. A pedagogic introduction to the operational principle of the method is given along the lines of a classical coherent input field and a zincblende-type electro-optic sensor. We then show that even the bare vacuum fluctuations of the electric field in the quantum ground state may be detected. This time-domain approach to quantum physics operates directly on sub-cycle scales where no local energy conservation holds. Therefore, signals may be obtained from purely virtual photons without amplification to finite intensity.

  1. Amplitude of low frequency fluctuation abnormalities in adolescents with online gaming addiction.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available The majority of previous neuroimaging studies have demonstrated both structural and task-related functional abnormalities in adolescents with online gaming addiction (OGA. However, few functional magnetic resonance imaging (fMRI studies focused on the regional intensity of spontaneous fluctuations in blood oxygen level-dependent (BOLD during the resting state and fewer studies investigated the relationship between the abnormal resting-state properties and the impaired cognitive control ability. In the present study, we employed the amplitude of low frequency fluctuation (ALFF method to explore the local features of spontaneous brain activity in adolescents with OGA and healthy controls during resting-state. Eighteen adolescents with OGA and 18 age-, education- and gender-matched healthy volunteers participated in this study. Compared with healthy controls, adolescents with OGA showed a significant increase in ALFF values in the left medial orbitofrontal cortex (OFC, the left precuneus, the left supplementary motor area (SMA, the right parahippocampal gyrus (PHG and the bilateral middle cingulate cortex (MCC. The abnormalities of these regions were also detected in previous addiction studies. More importantly, we found that ALFF values of the left medial OFC and left precuneus were positively correlated with the duration of OGA in adolescents with OGA. The ALFF values of the left medial OFC were also correlated with the color-word Stroop test performance. Our results suggested that the abnormal spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology of OGA.

  2. Amplitude of low frequency fluctuation abnormalities in adolescents with online gaming addiction.

    Science.gov (United States)

    Yuan, Kai; Jin, Chenwang; Cheng, Ping; Yang, Xuejuan; Dong, Tao; Bi, Yanzhi; Xing, Lihong; von Deneen, Karen M; Yu, Dahua; Liu, Junyu; Liang, Jun; Cheng, Tingting; Qin, Wei; Tian, Jie

    2013-01-01

    The majority of previous neuroimaging studies have demonstrated both structural and task-related functional abnormalities in adolescents with online gaming addiction (OGA). However, few functional magnetic resonance imaging (fMRI) studies focused on the regional intensity of spontaneous fluctuations in blood oxygen level-dependent (BOLD) during the resting state and fewer studies investigated the relationship between the abnormal resting-state properties and the impaired cognitive control ability. In the present study, we employed the amplitude of low frequency fluctuation (ALFF) method to explore the local features of spontaneous brain activity in adolescents with OGA and healthy controls during resting-state. Eighteen adolescents with OGA and 18 age-, education- and gender-matched healthy volunteers participated in this study. Compared with healthy controls, adolescents with OGA showed a significant increase in ALFF values in the left medial orbitofrontal cortex (OFC), the left precuneus, the left supplementary motor area (SMA), the right parahippocampal gyrus (PHG) and the bilateral middle cingulate cortex (MCC). The abnormalities of these regions were also detected in previous addiction studies. More importantly, we found that ALFF values of the left medial OFC and left precuneus were positively correlated with the duration of OGA in adolescents with OGA. The ALFF values of the left medial OFC were also correlated with the color-word Stroop test performance. Our results suggested that the abnormal spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology of OGA.

  3. Study on mechanism of amplitude fluctuation of dual-frequency beat in microchip Nd:YAG laser

    Science.gov (United States)

    Chen, Hao; Tan, Yidong; Zhang, Shulian; Sun, Liqun

    2017-01-01

    In the laser heterodyne interferometry based on the microchip Nd:YAG dual-frequency laser, the amplitude of the beat note periodically fluctuates in time domain, which leads to the instability of the measurement. On the frequency spectrums of the two mono-frequency components of the laser and their beat note, several weak sideband signals are observed on both sides of the beat note. It is proved that the sideband frequencies are associated with the relaxation oscillation frequencies of the laser. The mechanism for the relaxation oscillations inducing the occurrence of the sideband signals is theoretically analyzed, and the quantitative relationship between the intensity ratio of the beat note to the sideband signal and the level of the amplitude fluctuation is simulated with the derived mathematical model. The results demonstrate that the periodical amplitude fluctuation of the beat note is actually induced by the relaxation oscillation. And the level of the amplitude fluctuation is lower than 10% when the intensity ratio is greater than 32 dB. These conclusions are beneficial to reduce the amplitude fluctuation of the microchip Nd:YAG dual-frequency laser and improve the stability of the heterodyne interferometry.

  4. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.

    Science.gov (United States)

    Lee, Hochan; Lee, Gayeon; Jeon, Jonggu; Cho, Minhaeng

    2012-01-12

    IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.

  5. Radial convection of finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Wiesenberger, M; Kendl, A

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in ...

  6. A robust lower limit on the amplitude of matter fluctuations in the universe from cluster abundance and weak lensing

    CERN Document Server

    Mandelbaum, R; Mandelbaum, Rachel; Seljak, Uros

    2007-01-01

    Cluster abundance measurements are among the most sensitive probes of the amplitude of matter fluctuations in the universe, which in turn can help constrain other cosmological parameters, like the dark energy equation of state or neutrino mass. However, difficulties in calibrating the relation between the cluster observable and halo mass, and the lack of completeness information, make this technique particularly susceptible to systematic errors. Here we argue that a cluster abundance analysis using statistical weak lensing on the stacked clusters leads to a robust lower limit on the amplitude of fluctuations. The method compares the average weak lensing signal measured around the whole cluster sample to a theoretical prediction, assuming that the clusters occupy the centers of all of the most massive halos above some minimum mass threshold. If the amplitude of fluctuations is below a certain limiting value, there are too few massive clusters in this model and the theoretical prediction falls below the observa...

  7. Frequency-Specific Alternations in the Amplitude of Low-Frequency Fluctuations in Chronic Tinnitus

    Directory of Open Access Journals (Sweden)

    Yu-Chen eChen

    2015-10-01

    Full Text Available Tinnitus, a phantom ringing, buzzing or hissing sensation with potentially debilitating consequences, is thought to arise from aberrant spontaneous neural activity at one or more sites within the central nervous system; however, the location and specific features of these oscillations are poorly understood with respect to specific tinnitus features. Recent resting-state functional magnetic resonance imaging (fMRI studies suggest that aberrant fluctuations in spontaneous low-frequency oscillations (LFO of the blood oxygen level-dependent (BOLD signal may be an important factor in chronic tinnitus; however, the role that frequency-specific components of LFO play in subjective tinnitus remains unclear. A total of 39 chronic tinnitus patients and 41 well-matched healthy controls participated in the resting-state fMRI scans. The LFO amplitudes were investigated using the amplitude of low-frequency fluctuation (ALFF and fractional ALFF (fALFF in two different frequency bands (slow-4: 0.027-0.073 Hz and slow-5: 0.01-0.027 Hz. We observed significant differences between tinnitus patients and normal controls in ALFF/fALFF in the two bands (slow-4 and slow-5 in several brain regions including the superior frontal gyrus (SFG, inferior frontal gyrus, middle temporal gyrus, angular gyrus, supramarginal gyrus, and middle occipital gyrus. Across the entire subject pool, significant differences in ALFF/fALFF between the two bands were found in the midbrain, basal ganglia, hippocampus and cerebellum (Slow 4>Slow 5, and in the middle frontal gyrus, supramarginal gyrus, posterior cingulate cortex, and precuneus (Slow 5>Slow 4. We also observed significant interaction between frequency bands and patient groups in the orbitofrontal gyrus. Furthermore, tinnitus distress was positively correlated with the magnitude of ALFF in right SFG and the magnitude of fALFF slow-4 band in left SFG, whereas tinnitus duration was positively correlated with the magnitude of ALFF in

  8. Frequency-specific alternations in the amplitude of low-frequency fluctuations in chronic tinnitus.

    Science.gov (United States)

    Chen, Yu-Chen; Xia, Wenqing; Luo, Bin; Muthaiah, Vijaya P K; Xiong, Zhenyu; Zhang, Jian; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Tinnitus, a phantom ringing, buzzing, or hissing sensation with potentially debilitating consequences, is thought to arise from aberrant spontaneous neural activity at one or more sites within the central nervous system; however, the location and specific features of these oscillations are poorly understood with respect to specific tinnitus features. Recent resting-state functional magnetic resonance imaging (fMRI) studies suggest that aberrant fluctuations in spontaneous low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal may be an important factor in chronic tinnitus; however, the role that frequency-specific components of LFO play in subjective tinnitus remains unclear. A total of 39 chronic tinnitus patients and 41 well-matched healthy controls participated in the resting-state fMRI scans. The LFO amplitudes were investigated using the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) in two different frequency bands (slow-4: 0.027-0.073 Hz and slow-5: 0.01-0.027 Hz). We observed significant differences between tinnitus patients and normal controls in ALFF/fALFF in the two bands (slow-4 and slow-5) in several brain regions including the superior frontal gyrus (SFG), inferior frontal gyrus, middle temporal gyrus, angular gyrus, supramarginal gyrus, and middle occipital gyrus. Across the entire subject pool, significant differences in ALFF/fALFF between the two bands were found in the midbrain, basal ganglia, hippocampus and cerebellum (Slow 4 > Slow 5), and in the middle frontal gyrus, supramarginal gyrus, posterior cingulate cortex, and precuneus (Slow 5 > Slow 4). We also observed significant interaction between frequency bands and patient groups in the orbitofrontal gyrus. Furthermore, tinnitus distress was positively correlated with the magnitude of ALFF in right SFG and the magnitude of fALFF slow-4 band in left SFG, whereas tinnitus duration was positively correlated with the magnitude of ALFF in right

  9. Amplitude of low frequency fluctuations during resting state predicts social well-being.

    Science.gov (United States)

    Kong, Feng; Xue, Song; Wang, Xu

    2016-07-01

    Social well-being represents primarily public phenomena, which is crucial for mental and physical health. However, little is known about the neural basis of this construct, especially how it is maintained during resting state. To explore the neural correlates of social well-being, this study correlated the regional fractional amplitude of low frequency fluctuations (fALFF) with social well-being of healthy individuals. The results revealed that the fALFF in the bilateral posterior superior temporal gyrus (pSTG), right anterior cingulate cortex (ACC), right thalamus and right insula positively predicted individual differences in social well-being. Furthermore, we demonstrated the different role of three pursuits of human well-being (i.e., pleasure, meaning and engagement) in these associations. Specifically, the pursuits of meaning and engagement, not pleasure mediated the effect of the fALFF in right pSTG on social well-being, whereas the pursuit of engagement mediated the effect of the fALFF in right thalamus on social well-being. Taken together, we provide the first evidence that spontaneous brain activity in multiple regions related to self-regulatory and social-cognitive processes contributes to social well-being, suggesting that the spontaneous activity of the human brain reflects the efficiency of social well-being.

  10. Frequency-dependent changes in the amplitude of low-frequency fluctuations in Internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Xiao eLin

    2015-09-01

    Full Text Available Neuroimaging studies have revealed that the task-related functional brain activities are impaired in Internet gaming disorder (IGD subjects. However, little is known about the alternations in spontaneous brain activities about them. Recent studies have proposed that the brain activities of different frequency ranges are generated by different nervous activities and have different physiological and psychological functions. Thus, in this study, we set to explore the spontaneous brain activities in IGD subjects by measuring the fractional amplitude of low-frequency fluctuation (fALFF, to investigate band-specific changes of resting-state fALFF. We subdivided the frequency range into five bands based on literatures. Comparing to healthy controls, the IGD group showed decreased fALFF values in the cerebellum posterior lobe and increased fALFF values in superior temporal gyrus. Significant interactions between frequency bands and groups were found in the cerebellum, the anterior cingulate, the lingual gyrus, the middle temporal gyrus and the middle frontal gyrus. Those brain regions are proved related to the executive function and decision-making. These results revealed the changed spontaneous brain activity of IGD, which contributed to understanding the underlying pathophysiology of IGD.

  11. The Amplitude of Mass Fluctuations and Mass Density of the Universe Constrained by Strong Gravitational Lensing

    Institute of Scientific and Technical Information of China (English)

    Da-Ming Chen

    2004-01-01

    We investigate the linear amplitude of mass fluctuations in the universe,σ8, and the present mass density parameter of the Universe, Ωm, from statistical strong gravitational lensing. We use the two population model of lens halos with fixed cooling mass scale Mc = 3 × 1013h-1M to match the observed lensing probabilities, and leave σ8 or Ωm as a free parameter to be constrained by the data.Another varying parameter, the equation of state of dark energy ω, and its typical values of -1, -2/3, -1/2 and -1/3 are investigated. We find that σ8 is degenerate with Ωm in a way similar to that suggested by present day cluster abundance as well as cosmic shear lensing measurements: σ8Ω0.6m ≈ 0.33. However, both σ8 ≤ 0.7and Ωm ≤ 0.2 can be safely ruled out, the best fit is when σ8 = 1.0, Ωm = 0.3 and σ8 = 0.98 + 0.1 and Ωm = 0.17 ± 0.05. For σ8 = 1.0, the higher value of Ωm = 0.35requires ω = -2/3 and Ωm = 0.40 requires ω= -1/2.

  12. Fast Analysis for the Focusing of a Laser Beam with Amplitude Modulation and Phase Fluctuation Through an Aperture Lens

    Institute of Scientific and Technical Information of China (English)

    张彬; 楚晓亮; 李强

    2002-01-01

    Based on the treatment that a rectangular function can be expanded into an approximate sum of complex Gaussian functions with finite numbers, the analytical expression for the focusing intensity distribution of a laser beam with amplitude modulation (AM) and phase fluctuation (PF) through an aperture lens is derived. The typical numerical examples are given and compared with those obtained from numerically integral calculation. The results show that our method can significantly improve the numerical calculation efficiency.

  13. Transition to kinetic turbulence at proton scales driven by large-amplitude kinetic Alfvén fluctuations

    Science.gov (United States)

    Valentini, F.; Vásconez, C. L.; Pezzi, O.; Servidio, S.; Malara, F.; Pucci, F.

    2017-02-01

    Space plasmas are dominated by the presence of large-amplitude waves, large-scale inhomogeneities, kinetic effects and turbulence. Beside the homogeneous turbulence, the generation of small scale fluctuations can take place also in other realistic configurations, namely, when perturbations superpose to an inhomogeneous background magnetic field. When an Alfvén wave propagates in a medium where the Alfvén speed varies in a direction transverse to the mean field, it undergoes phase-mixing, which progressively bends wavefronts, generating small scales in the transverse direction. As soon as transverse scales become of the order of the proton inertial length dp, kinetic Alfvén waves (KAWs) are naturally generated. KAWs belong to the branch of Alfvén waves and propagate almost perpendicularly to the ambient magnetic field, at scales close to dp. Many numerical, observational and theoretical works have suggested that these fluctuations may play a determinant role in the development of the solar-wind turbulent cascade. In the present paper, the generation of large amplitude KAW fluctuations in inhomogeneous background, as well as their effect on the protons, have been investigated by means of hybrid Vlasov-Maxwell direct numerical simulations. Imposing a pressure balanced magnetic shear, the kinetic dynamics of protons has been investigated by varying both the magnetic configuration and the amplitude of the initial perturbations. Of particular interest here is the transition from quasi-linear to turbulent regimes, focusing in particular on the development of important non-Maxwellian features in the proton distribution function driven by KAW fluctuations. Several indicators to quantify the deviations of the protons from thermodynamic equilibrium are presented. These numerical results might help to explain the complex dynamics of inhomogeneous and turbulent astrophysical plasmas, such as the heliospheric current sheet, the magnetospheric boundary layer, and the solar

  14. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  15. Subharmonic and fundamental high amplitude excitation of an axisymmetric jet

    Science.gov (United States)

    Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effect of simultaneous excitation at the fundamental and subharmonic frequencies on the behavior of a circular jet shear layer is studied. Attention is given to the effect of the initial phase difference, the Strouhal number pair, and amplitudes of the fundamental and subharmonic tones. High-amplitude excitation devices which can provide a wide range of forcing conditions when used in conjunction with equipment that produces complex waveforms are used.

  16. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  17. High Amplitude \\delta-Scutis in the Large Magellanic Cloud

    CERN Document Server

    Garg, A; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-01

    We present 2323 High-Amplitude \\delta-Scuti (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, we find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  18. Low-frequency fluctuation amplitude analysis of resting-state fMRI in sickle cell disease

    Science.gov (United States)

    Coloigner, Julie; Kim, Yeun; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease may result in neurological damage and strokes, leading to morbidity and mortality. Currently, there are no dependable biomarkers to predict impending strokes. In this study, we analyzed neuronal processes at resting state and more particularly how this disease affects the default mode network. The amplitude of low frequency fluctuations was used to reflect areas of spontaneous BOLD signal across brain regions. We compared the activations of sickle cell disease patients to a control group using variance analysis and t-test. Significant regional differences among the two groups were observed, especially in the default mode network areas and cortical regions near large cerebral arteries. These findings suggest that sickle cell disease causes activation modifications near vessels, and these changes could be used as a biomarker of the disease.

  19. Identifying the core components of emotional intelligence: evidence from amplitude of low-frequency fluctuations during resting state.

    Directory of Open Access Journals (Sweden)

    Weigang Pan

    Full Text Available Emotional intelligence (EI is a multi-faceted construct consisting of our ability to perceive, monitor, regulate and use emotions. Despite much attention being paid to the neural substrates of EI, little is known of the spontaneous brain activity associated with EI during resting state. We used resting-state fMRI to investigate the association between the amplitude of low-frequency fluctuations (ALFFs and EI in a large sample of young, healthy adults. We found that EI was significantly associated with ALFFs in key nodes of two networks: the social emotional processing network (the fusiform gyrus, right superior orbital frontal gyrus, left inferior frontal gyrus and left inferior parietal lobule and the cognitive control network (the bilateral pre-SMA, cerebellum and right precuneus. These findings suggest that the neural correlates of EI involve several brain regions in two crucial networks, which reflect the core components of EI: emotion perception and emotional control.

  20. Images of small-scale mantle heterogeneity obtained from coherence functions of phase and log amplitude fluctuations

    Science.gov (United States)

    Tian, Y.; Cormier, V. F.

    2015-12-01

    Traditional deterministic tomography cannot reveal the characteristics of small-scale (smaller than 100 km) heterogeneities in deep earth. Stochastic tomography, which inverts joint angular-transverse coherence functions (JATCF), can be used to image the statistics of small-scale heterogeneity. We test the resolution of this method using a pseudo-spectal method to synthesize the seismic wavefield in a reference radial symmetric Earth model perturbed by statistically described heterogeneity. JACTFs are calculated from the fluctuation of phase and log amplitude of transmitted waves in the heterogeneous model differenced from those predicted in the reference model. Example images are obtained from processing JACTFs measured from teleseismic data observed by Earthscope's USArray. Depth and lateral variations of the statistics of heterogeneity scales constrain the nature of chemical heterogeneity and mantle circulation

  1. Transition to kinetic turbulence at proton scales driven by large-amplitude Kinetic Alfv\\`en fluctuations

    CERN Document Server

    Valentini, F; Pezzi, O; Servidio, S; Malara, F; Pucci, F

    2016-01-01

    Space plasmas are dominated by the presence of large-amplitude waves, large-scale inhomogeneities, kinetic effects and turbulence. Beside the homogeneous turbulence, generation of small scale fluctuations can take place also in other realistic configurations, namely, when perturbations superpose to an inhomogeneous background magnetic field. When an Alfv\\'en wave propagates in a medium where the Alfv\\'en speed varies in a direction transverse to the mean field, it undergoes phase-mixing, which progressively bends wavefronts, generating small scales in the transverse direction. As soon as transverse scales get of the order of the proton inertial length $d_p$, kinetic Alfv\\'en waves (KAWs) are naturally generated. KAWs belong to the branch of Alfv\\'en waves and propagate nearly perpendicular to the ambient magnetic field, at scales close to $d_p$. Many numerical, observational and theoretical works have suggested that these fluctuations may play a determinant role in the development of the solar-wind turbulent ...

  2. Charge conservation effects for high order fluctuations

    CERN Document Server

    Begun, Viktor

    2016-01-01

    The exact charge conservation significantly impacts multiplicity fluctuations. The result depends strongly on the part of the system charge carried by the particles of interest. Along with the expected suppression of fluctuations for large systems, charge conservation may lead to negative skewness or kurtosis for small systems.

  3. Simulation of transients of high amplitude in pipe systems

    NARCIS (Netherlands)

    Boersma, J.M.; Looijmans, K.N.H.

    1999-01-01

    Fast high-amplitude transients ask for a non-linear modelling approach in which large density variations and heat exchange can be considered. Operation of safety-valves, relief valves, the occurrence of valve failure and the start-up or shutdown of rotating equipment in industrial pipe systems can l

  4. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Held, Magnus; Wiesenberger, M.; Madsen, Jens

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic...

  5. High frequency magnetic fluctuations correlated with the inter-ELM pedestal evolution in ASDEX Upgrade

    Science.gov (United States)

    Laggner, F. M.; Wolfrum, E.; Cavedon, M.; Mink, F.; Viezzer, E.; Dunne, M. G.; Manz, P.; Doerk, H.; Birkenmeier, G.; Fischer, R.; Fietz, S.; Maraschek, M.; Willensdorfer, M.; Aumayr, F.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2016-06-01

    In order to understand the mechanisms that determine the structure of the high confinement mode (H-mode) pedestal, the evolution of the plasma edge electron density and temperature profiles between edge localised modes (ELMs) is investigated. The onset of radial magnetic fluctuations with frequencies above 200 kHz is found to correlate with the stagnation of the electron temperature pedestal gradient. During the presence of these magnetic fluctuations the gradients of the edge electron density and temperature are clamped and stable against the ELM onset. The detected magnetic fluctuation frequency is analysed for a variety of plasma discharges with different electron pressure pedestals. It is shown that the magnetic fluctuation frequency scales with the neoclassically estimated \\text{E} × \\text{B} velocity at the plasma edge. This points to a location of the underlying instability in the gradient region. Furthermore, the magnetic signature of these fluctuations indicates a global mode structure with toroidal mode numbers of approximately 10. The fluctuations are also observed on the high field side with significant amplitude, indicating a mode structure that is symmetric on the low field side and high field side. The associated fluctuations in the current on the high field side might be attributed to either a strong peeling part or the presence of non-adiabatic electron response.

  6. Local fluctuation control of papain by changing a highly fluctuating residue

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2013-01-01

    To control the local fluctuation of the amino acid residues of papain, ARG59, a highly fluctuating residue in papain, has been changed to GLY. We investigated the binding properties of 2-10GLY (peptides with between 2 and 10 glycine residues) to the modified papain structure via molecular dynamics and docking simulations. The change of the ARG59 residue to GLY alters the binding sites for some peptides, and changed its substrate specificity. Furthermore, the modification alters the binding stability of some peptides. Thus, control of the local fluctuations of residues in proteins has the potential to alter the protein's function.

  7. Neural correlates of the happy life: the amplitude of spontaneous low frequency fluctuations predicts subjective well-being.

    Science.gov (United States)

    Kong, Feng; Hu, Siyuan; Wang, Xu; Song, Yiying; Liu, Jia

    2015-02-15

    Subjective well-being is assumed to be distributed in the hedonic hotspots of subcortical and cortical structures. However, the precise neural correlates underlying this construct, especially how it is maintained during the resting state, are still largely unknown. Here, we explored the neural basis of subjective well-being by correlating the regional fractional amplitude of low frequency fluctuations (fALFF) with the self-reported subjective well-being of healthy individuals. Behaviorally, we demonstrated that subjective well-being contained two related but distinct components: cognitive and affective well-being. Neurally, we showed that the fALFF in the bilateral posterior superior temporal gyrus (pSTG), right posterior mid-cingulate cortex (pMCC), right thalamus, left postcentral gyrus (PCG), right lingual gyrus, and left planum temporale (PT) positively predicted cognitive well-being, whereas the fALFF in the bilateral superior frontal gyrus (SFG), right orbitofrontal cortex (OFC), and left inferior temporal gyrus (ITG) negatively predicted cognitive well-being. In contrast, only the fALFF in the right amygdala reliably predicted affective well-being. Furthermore, emotional intelligence partially mediated the effects of the right pSTG and thalamus on cognitive well-being, as well as the effect of the right amygdala on affective well-being. In summary, we provide the first evidence that spontaneous brain activity in multiple regions associated with sensation, social perception, cognition, and emotion contributes to cognitive well-being, whereas the spontaneous brain activity in only one emotion-related region contributes to affective well-being, suggesting that the spontaneous activity of the human brain reflect the efficiency of subjective well-being.

  8. Frequencies and amplitudes of high-degree solar oscillations

    Science.gov (United States)

    Kaufman, James Morris

    Measurements of some of the properties of high-degree solar p- and f-mode oscillations are presented. Using high-resolution velocity images from Big Bear Solar Observatory, we have measured mode frequencies, which provide information about the composition and internal structure of the Sun, and mode velocity amplitudes (corrected for the effects of atmospheric seeing), which tell us about the oscillation excitation and damping mechanisms. We present a new and more accurate table of the Sun's acoustic vibration frequencies, nunl, as a function of radial order n and spherical harmonic degree l. These frequencies are averages over azimuthal order m and approximate the normal mode frequencies of a nonrotating spherically symmetric Sun near solar minimum. The frequencies presented here are for solar p- and f-modes with 180 less than or = l less than or = 1920, 0 less than or = n less than or = 8, and 1.7 mHz less than or = nunl less than or = 5.3 mHz. The uncertainties, sigmanl, in the frequencies areas are as low as 3.1 micro-Hz. The theoretically expected f-mode frequencies are given by omega squared = gkh approx. = gl/R, where g is the gravitational acceleration at the surface, kh is the horizontal component of the wave vector, and R is the radius of the Sun. We find that the observed frequencies are significantly less than expected for l greater than 1000, for which we have no explanation. Observations of high-degree oscillations, which have very small spatial features, suffer from the effects of atmospheric image blurring and image motion (or 'seeing'), thereby reducing the amplitudes of their spatial-frequency components. In an attempt to correct the velocity amplitudes for these effects, we simultaneously measured the atmospheric modulation transfer function (MTF) by looking at the effects of seeing on the solar limb. We are able to correct the velocity amplitudes using the MTF out to l approx. = 1200. We find that the frequency of the peak velocity power (as a

  9. Large-amplitude ULF waves at high latitudes

    Science.gov (United States)

    Guido, T.; Tulegenov, B.; Streltsov, A. V.

    2014-11-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  10. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Jessica A Turner

    2013-08-01

    Full Text Available Background. This multi-site study compares resting state fMRI amplitude of low frequency fluctuations (ALFF and fractional ALFF (fALFF between patients with schizophrenia (SZ and healthy controls (HC. Methods. Eyes-closed resting fMRI scans (5:38 minutes; n=306, 146 SZ were collected from 6 Siemens 3T scanners and one GE 3T scanner. Imaging data were pre-processed using an SPM pipeline. Power in the low frequency band (0.01 to 0.08 Hz was calculated both for the original pre-processed data as well as for the pre-processed data after regressing out the six rigid-body motion parameters, mean white matter and CSF signals. Both original and regressed ALFF and fALFF measures were modeled with site, diagnosis, age, and diagnosis × age interactions. Results. Regressing out motion and non-gray matter signals significantly decreased fALFF throughout the brain as well as ALFF in the cortical edge, but significantly increased ALFF in subcortical regions. Regression had little effect on site, age, and diagnosis effects on ALFF, other than to reduce diagnosis effects in subcortical regions. There were significant effects of site across the brain in all the analyses, largely due to vendor differences. HC showed greater ALFF in the occipital, posterior parietal, and superior temporal lobe, while SZ showed smaller clusters of greater ALFF in the frontal and temporal/insular regions as well as in the caudate, putamen, and hippocampus. HC showed greater fALFF compared with SZ in all regions, though subcortical differences were only significant for original fALFF. Conclusions. SZ show greater eyes-closed resting state low frequency power in frontal cortex, and less power in posterior lobes than do HC; fALFF, however, is lower in SZ than HC throughout the cortex. These effects are robust to multi-site variability. Regressing out physiological noise signals significantly affects both total and fractional ALFF measures, but does not affect the pattern of case

  11. Thermal effects on seeded finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Held, M; Madsen, J; Kendl, A

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that a temperature perturbation increases the maximal blob velocity and that a finite Larmor radius contributes to highly compact blob structures with finite poloidal motion. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the ion diamagnetic to the perpendicular vorticity, exceeds unity. The maximal blob velocities excellently agree with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the radial transport and verify the here presented empirical scaling law for the maximal radia...

  12. Direct Measurement of Thermal Fluctuation of High-Q Pendulum

    CERN Document Server

    Agatsuma, Kazuhiro; Yamamoto, Kazuhiro; Ohashi, Masatake; Kawamura, Seiji; Miyoki, Shinji; Miyakawa, Osamu; Telada, Souichi; Kuroda, Kazuaki

    2009-01-01

    We achieved for the first time a direct measurement of the thermal fluctuation of a pendulum in an off-resonant region using a laser interferometric gravitational wave detector. These measurements have been well identified for over one decade by an agreement with a theoretical prediction, which was derived by a fluctuation-dissipation theorem. Thermal fluctuation is dominated by the contribution of resistances in coil-magnet actuator circuits. When we tuned these resistances, the noise spectrum also changed according to a theoretical prediction. The measured thermal noise level corresponds to a high quality factor on the order of 10^5 of the pendulum.

  13. Temporal Changes in Local Functional Connectivity Density Reflect the Temporal Variability of the Amplitude of Low Frequency Fluctuations in Gray Matter.

    Directory of Open Access Journals (Sweden)

    D Tomasi

    Full Text Available Data-driven functional connectivity density (FCD mapping is being increasingly utilized to assess brain connectomics at rest in the healthy brain and its disruption in neuropsychiatric diseases with the underlying assumption that the spatiotemporal hub distribution is stationary. However, recent studies show that functional connectivity is highly dynamic. Here we study the temporal variability of the local FCD (lFCD at high spatiotemporal resolution (2-mm isotropic; 0.72s using a sliding-window approach and 'resting-state' datasets from 40 healthy subjects collected under the Human Connectome Project. Prominent functional connectivity hubs in visual and posterior parietal cortices had pronounced temporal changes in local FCD. These dynamic patterns in the strength of the lFCD hubs occurred in cortical gray matter with high sensitivity (up to 85% and specificity (> 85% and showed high reproducibility (up to 72% across sessions and high test-retest reliability (ICC(3,1 > 0.5. The temporal changes in lFCD predominantly occurred in medial occipitoparietal regions and were proportional to the strength of the connectivity hubs. The temporal variability of the lFCD was associated with the amplitude of the low frequency fluctuations (ALFF. Pure randomness did not account for the probability distribution of lFCD. Shannon entropy increased in proportion to the strength of the lFCD hubs suggesting high average flow of information per unit of time in the lFCD hubs, particularly in medial occipitoparietal regions. Thus, the higher dynamic range of the lFCD hubs is consistent with their role in the complex orchestration of interacting brain networks.

  14. Revealing proton shape fluctuations with incoherent diffraction at high energy

    Science.gov (United States)

    Mäntysaari, Heikki; Schenke, Björn

    2016-08-01

    The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J /Ψ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For ρ meson production, we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.

  15. Magnetic probe array with high sensitivity for fluctuating field.

    Science.gov (United States)

    Kanamaru, Yuki; Gota, Hiroshi; Fujimoto, Kayoko; Ikeyama, Taeko; Asai, Tomohiko; Takahashi, Tsutomu; Nogi, Yasuyuki

    2007-03-01

    A magnetic probe array is constructed to measure precisely the spatial structure of a small fluctuating field included in a strong confinement field that varies with time. To exclude the effect of the confinement field, the magnetic probes consisting of figure-eight-wound coils are prepared. The spatial structure of the fluctuating field is obtained from a Fourier analysis of the probe signal. It is found that the probe array is more sensitive to the fluctuating field with a high mode number than that with a low mode number. An experimental demonstration of the present method is attempted using a field-reversed configuration plasma, where the fluctuating field with 0.1% of the confinement field is successfully detected.

  16. Injection coupling with high amplitude transverse modes: Experimentation and simulation

    Science.gov (United States)

    Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien

    2009-06-01

    High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).

  17. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    National Research Council Canada - National Science Library

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-01

    ... (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F...

  18. Fluctuations and correlations in high temperature QCD

    CERN Document Server

    Bellwied, R; Fodor, Z; Katz, S D; Pasztor, A; Ratti, C; Szabo, K K

    2015-01-01

    We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\\dots24$ in the crossover-region and $N_t=8\\dots16$ at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above $\\sim$250 MeV) we find agreement with the three-loop Hard Thermal Loop results.

  19. Single-shot fluctuations in waveguided high-harmonic generation

    CERN Document Server

    Goh, S J; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K -J

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot dr...

  20. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; Slot, van der P.J.M.; Bastiaens, H.J.M.; Herek, J.L.; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, K-J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  1. Range fluctuations of high energy muons passing through matter

    Science.gov (United States)

    Minorikawa, Y.; Mitsui, K.

    1985-01-01

    The information about energy spectrum of sea level muons at high energies beyond magnetic spectrographs can be obtained from the underground intensity measurements if the fluctuations problems are solved. The correction factor R for the range fluctuations of high energy muons were calculated by analytical method of Zatsepin, where most probable energy loss parameter are used. It is shown that by using the R at great depth together with the slope, lambda, of the vertical depth-intensity (D-I) curve in the form of exp(-t/lambda), the spectral index, gamma, in the power law energy spectrum of muons at sea level can be obtained.

  2. The High Amplitude delta Scuti Star AD Canis Minoris

    Science.gov (United States)

    Axelsen, R. A.; Napier-Munn, T.

    2016-12-01

    The high amplitude delta Scuti star AD Canis Minoris was studied by photoelectric photometry (PEP) during one night in in February 2011 and by digital single lens reflex (DSLR) photometry during seven nights in January and February 2016. Nine light curve peaks were captured, eight of them by DSLR photometry. A review of the literature enabled us to tabulate 109 times of maximum since 1959, to which we added 9 times of maximum from our data, thus creating the largest dataset to date for this star. Assuming a linear ephemeris, the period of AD CMi was calculated to be 0.122974511 (+/- 0.000000004) d, almost identical to that quoted in earlier literature. We constructed an observed minus computed (O-C) diagram which exhibited a quasi-sinusoidal shape, and fitted a weighted model characterised by combined quadratic and trigonometric functions. The fit indicates that the shape of the O-C diagram is attributable to the effects of a slow increase in the pulsation period of AD CMi at a constant rate, and the light time effect of a binary pair, confirming the results from previous authors, and updating most of the coefficients of the equation for the fitted model. The values of all of the coefficients in the function are statistically significant. The rate of increase in the pulsation period of AD CMi was calculated from the entire dataset to be dP/dt = 6.17 (+/- 0.75) x 10-9 d yr-1 or dP/Pdt = 5.01 (+/- 0.61) x 10-8 yr-1.

  3. Revealing proton shape fluctuations with incoherent diffraction at high energy

    CERN Document Server

    Mäntysaari, Heikki

    2016-01-01

    The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent, or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of $J/\\Psi$ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For $\\rho$ meson production we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of g...

  4. Correlations and fluctuations in high energy heavy ion collision experiments

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dai-Mei; WANG Ya-Ping; WEI Li-Hua; CAI Xu

    2008-01-01

    An overview of research status of soft physics in high energy heavy-ion collision experiments and recent experimental results are presented.The experimental status on fluctuations and correlations has been reviewed and the outlook for research status of soft physics in LHC/ALICE has been introduced in this paper.

  5. Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas

    Science.gov (United States)

    Squire, J.; Schekochihin, A. A.; Quataert, E.

    2017-05-01

    This work, which extends Squire et al (Astrophys. J. Lett. 2016 830 L25), explores the effect of self-generated pressure anisotropy on linearly polarized shear-Alfvén fluctuations in low-collisionality plasmas. Such anisotropies lead to stringent limits on the amplitude of magnetic perturbations in high-β plasmas, above which a fluctuation can destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, ‘interrupting’ the wave and stopping its oscillation. These effects are explored in detail in the collisionless and weakly collisional ‘Braginskii’ regime, for both standing and traveling waves. The focus is on simplified models in one dimension, on scales much larger than the ion gyroradius. The effect has interesting implications for the physics of magnetized turbulence in the high-β conditions that are prevalent in many astrophysical plasmas.

  6. Different stimulation frequencies alter synchronous fluctuations in motor evoked potential amplitude of intrinsic hand muscles – a TMS study.

    Directory of Open Access Journals (Sweden)

    Martin Victor Sale

    2016-03-01

    Full Text Available The amplitude of motor-evoked potentials (MEPs elicited with transcranial magnetic stimulation (TMS varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic rates, and compared this with pseudo-random (aperiodic timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz and one aperiodic frequency (mean 0.2 Hz. MEPs (n = 50 were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs.

  7. Different Stimulation Frequencies Alter Synchronous Fluctuations in Motor Evoked Potential Amplitude of Intrinsic Hand Muscles-a TMS Study.

    Science.gov (United States)

    Sale, Martin V; Rogasch, Nigel C; Nordstrom, Michael A

    2016-01-01

    The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs.

  8. On multifractality of high-latitude geomagnetic fluctuations

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    Full Text Available In order to contribute to the understanding of solar wind-magnetosphere interactions the multifractal scaling properties of high-latitude geomagnetic fluctuations observed at the Thule observatory have been studied. Using the local observatory data and the present experimental knowledge only it seems hard to characterize directly the, presumably intermittent, mesoscale energy accumulation and dissipation processes taking place at the magnetotail, auroral region, etc. Instead a positive probability measure, describing the accumulated local geomagnetic signal energy content at the given time scales has been introduced and its scaling properties have been studied. There is evidence for the multifractal nature of the so defined intermittent field ε, a result obtained by using the recently introduced technique of large deviation multifractal spectra. This technique allows us to describe the geomagnetic fluctuations locally in time by means of singularity exponents α, which represent a generalization of the local degree of differentiability and characterize the power-law scaling dependence of the introduced measure on resolution. A global description of the geomagnetic fluctuations is insured by the spectrum of exponents f(α which represents a rate function quantifying the deviations of the observed singularities α from the expected value. The results show that there exists a multifractal counterpart of the previously reported spectral break and different types of f(α spectra describe the fluctuations in direct dissipation or loading-unloading regimes of the solar wind-magnetosphere interaction. On the time scale of substorms and storms the multi-fractal structure of the loading-unloading mode fluctuations seems to be analogous to the simple multiplicative P-model, while the f(α spectra in direct dissipation regime are close but not equal to the features of a uniform distribution. Larger deviations from the multiplicative

  9. Large amplitude spatial fluctuations in the boundary region of the Bose-Einstein condensate in the Gross-Pitaevskii regime

    DEFF Research Database (Denmark)

    Tuszynski, J. A.; Middleton, J.; Portet, S.

    2003-01-01

    is found which are characterised by pronounced large-amplitude oscillations close to the boundary of the condensate. The limiting case within this class is a nodeless ground state which is known from recent investigations as an extension of the Thomas-Fermi approximation. We have found the energies......The Gross-Pitaevskii regime of a Bose-Einstein condensate is investigated using a fully non-linear approach. The confining potential first adopted is that of a linear ramp. An infinite class of new analytical solutions of this linear ramp potential approximation to the Gross-Pitaevskii equation...... of the oscillatory states to lie above the ground state energy but recent experimental work, especially on spatially confined superconductors, indicates that such states may be easily occupied and made manifest at finite temperatures. We have also investigated their stability using a Poincare section analysis...

  10. Wavelet analysis on transient behaviour of tidal amplitude fluctuations observed by meteor radar in the lower thermosphere above Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Pancheva

    Full Text Available On the basis of bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria it was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region. They contribute significantly to the short-term tidal variability and are apparently responsible for the observed complicated behavior of the tidal characteristics. A Morlet wavelet transform is proposed as a technique for studying nonstationary signals. By simulated data it was revealed that the Morlet wavelet transform is especially convenient for analyzing signals with: (1 a wide range of dominant frequencies which are localized in different time intervals; (2 amplitude and frequency modulated spectral components, and (3 singular, wave-like events, observed in the neutral wind of the MLT region and connected mainly with large-scale disturbances propagated from below. By applying a Morlet wavelet transform to the hourly values of the amplitudes of diurnal and semidiurnal tides the basic oscillations with periods of planetary waves (1.5-20 days, as well as their development in time, are obtained. A cross-wavelet analysis is used to clarify the relation between the tidal and mean neutral wind variability. The results of bispectral analysis indicate which planetary waves participated in the nonlinear coupling with the atmospheric tides, while the results of cross-wavelet analysis outline their time intervals if these interactions are local.

    Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides - Radio science (nonlinear phenomena

  11. Amplitude of late Miocene sea-level fluctuations from karst development in reef-slope deposits (SE Spain)

    Science.gov (United States)

    Reolid, Jesús; Betzler, Christian; Braga, Juan Carlos

    2016-11-01

    A prograding late Miocene carbonate platform in southern Spain revealing different sea-level pinning points was analysed with the aim to increase the accuracy of reconstruction of past sea-level changes. These pinning points are distinct diagenetic zones (DZ) and the position of reef-framework deposits. DZ1 is defined by the dissolution of bioclastic components and DZ2 by calcitic cement precipitation in dissolution pores. Calcite cements are granular and radiaxial fibrous, and are of meteoric origin as deduced from cathodoluminescence, EDX spectroscopy, as well as from δ13C and δ18O isotope analyses. DZ3 has moldic porosity after aragonitic bioclasts with minor granular calcitic cements. DZ1 and DZ2 indicate karstification and the development of a coastal palaeoaquifer during a sea-level lowstand. DZ3 diagenetic features are related to the final subaerial exposure of the section during the Messinian Salinity Crisis. Facies and diagenetic data reveal a complete cycle of sea-level fall (23 ± 1 m) and rise (31 ± 1 m). A robust age model based on magneto- and cyclostratigraphy for these deposits places this cycle between 5.89 and 5.87 Ma. Therefore, for the first time, this work allows a direct comparison of an outcrop with a pelagic marine proxy record of a specific Neogene sea-level fluctuation.

  12. Research on High Frequency Amplitude Attenuation of Electric Fast Transient Generator

    Directory of Open Access Journals (Sweden)

    Huafu Zhang

    2013-01-01

    Full Text Available In order to solve the amplitude attenuation of electric fast transient (EFT generator operating in high frequency, the charging and discharging process of energy storage capacitor in EFT generator are analyzed, the main circuit voltage variation mathematical model is established, the parameters of main loop circuit and the parameters of switch driving waveform which affect burst amplitude are discussed. Through the simulation, this paper puts forward effective methods to overcome burst amplitude attenuation in high frequency. The simulation results show that when the frequency is low, the duty ratio of drive signal have little effect on energy storage capacitor voltage amplitude attenuation. when the charging resistance is less than 500 Ω, the duty ratio of drive signal is less than 0.125, the repetition frequency of burst reaches 1.2 MHz, the amplitude attenuation of energy storage capacitor voltage is less than 9%, the amplitude of burst satisfies IEC61000-4-4 standards.

  13. Spontaneous brain activity in chronic smokers revealed by fractional amplitude of low frequency fluctuation analysis: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Chu Shuilian; Xiao Dan; Wang Shuangkun; Peng Peng; Xie Teng; He Yong; Wang Chen

    2014-01-01

    Background Nicotine is primarily rsponsible for the highly addictive properties of cigarettes.Similar to other substances,nicotine dependence is related to many important brain regions,particular in mesolimbic reward circuit.This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI),in order to provide the evidence of neurobiological mechanism of smoking.Methods This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement.Sociodemographic,smoking related characteristics and fMRI images were collected and the data analyzed.Results Compared with nonsmokers,smokers showed fALFF increased significantly in the left middle occipital gyrus,left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus,right superior temporal gyrus,right extra nuclear,left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels).Compared with light smokers (pack years ≤20),heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus,right precentral gyrus,and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus,right/left frontal lobe/sub gyral,right/left cerebellum posterior lobe (cluster size >50 voxels).Compared with nonsevere nicotine dependent smokers (Fagerstr(o)m test for nicotine dependence,score ≤6),severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus,right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (duster size >25 voxels).Conclusions In smokers during rest,the activity of addiction related regions were increased and the activity of smoking feeling,memory,related regions were

  14. DESIGN NOTE: A fast high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, Jankee; Navathe, C. P.

    2006-07-01

    A high-voltage pulse generator based on a self-matched transmission line with variable pulse amplitude and duration is developed. Two avalanche transistor stacks are used as switches. The pulse width is varied by adjusting the delay in triggering two switches whereas amplitude is adjusted by adjusting load resistance. A pulse with amplitude of 800 V to 3.8 kV and width of 5 ns to 38 ns can be obtained using this circuit.

  15. Brh V128 is a Double-Mode High-Amplitude delta Scuti Star

    Science.gov (United States)

    Bernhard, K.; Pejcha, O.; Proksch, W.; Quester, W.; van Cauteren, P.; Wils, P.

    2004-08-01

    CCD-V and unfiltered photometric data show that Brh V128 = GSC 1893-89 is a new high-amplitude double-mode Delta Scuti variable with a fundamental period of 0.1534 days and a period ratio of 0.767. The amplitude of the first overtone pulsation is slightly larger than that of the fundamental mode.

  16. Amplitude differences in high-frequency fMRI signals between eyes open and eyes closed resting states.

    Science.gov (United States)

    Yuan, Bin-Ke; Wang, Jue; Zang, Yu-Feng; Liu, Dong-Qiang

    2014-01-01

    Recent studies employing rapid sampling techniques have demonstrated that the resting state fMRI (rs-fMRI) signal exhibits synchronized activities at frequencies much higher than the conventional frequency range (high-frequency fluctuations between different resting states. Here, we acquired rs-fMRI data at a high sampling rate (TR = 400 ms) from subjects with both eyes open (EO) and eyes closed (EC), and compared the amplitude of fluctuation (AF) between EO and EC for both the low- and high-frequency components. In addition to robust AF differences in the conventional low frequency band (high-frequency (primarily in 0.1-0.35 Hz) differences. The high-frequency results without covariates regression exhibited noisy patterns. For the data with nuisance covariates regression, we found a significant and reproducible reduction in high-frequency AF between EO and EC in the bilateral PSMC and the supplementary motor area (SMA), and an increase in high-frequency AF in the left middle occipital gyrus (MOG). Furthermore, we investigated the effect of sampling rate by down-sampling the data to effective TR = 2 s. Briefly, by using the rapid sampling rate, we were able to detect more regions with significant differences while identifying fewer artifactual differences in the high-frequency bands as compared to the down-sampled dataset. We concluded that (1) high-frequency fluctuations of rs-fMRI signals can be modulated by different resting states and thus may be of physiological importance; and (2) the regression of covariates and the use of fast sampling rates are superior for revealing high-frequency differences in rs-fMRI signals.

  17. Off-shell helicity amplitudes in high-energy factorization

    CERN Document Server

    van Hameren, Andreas; Kutak, Krzysztof

    2013-01-01

    In the Catani-Ciafaloni-Hautmann high-energy factorization approach a cross section is expressed as a convolution of unintegrated gluon densities and a gauge-invariant hard process, in which two incoming gluons are off-shell with momenta satisfying certain high-energy kinematics. We present two methods of evaluating the tree-level hard process with multiple final states. The first one assumes that only one of the gluons is off-shell and relies on the Slavnov-Taylor identities. Such asymmetric configuration of incoming gluons is phenomenologically important in small x probing by forward processes. The second method deals also with two off-shell gluons and is based on the analytic continuation of the off-shell gluons momenta to the complex space. The methods were implemented into Monte Carlo computer programs and used in phenomenological applications. The results of both methods are straightforwardly related to Lipatov's effective vertices in quasi-multi-regge kinematics.

  18. High extinction amplitude modulation in ultrashort pulse shaping

    CERN Document Server

    Lin, Yen-Wei

    2016-01-01

    We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.

  19. Freeform high-speed large-amplitude deformable Piezo Mirrors

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2013-01-01

    We present a new type of tunable mirror with sharply-featured freeform displacement profiles, large displacements of several 100\\mu m and high operating frequencies close to the kHz range at 15mm diameter. The actuation principle is based on a recently explored "topological" displacement mode of piezo sheets. The prototypes presented here include a rotationally symmetric axicon, a hyperbolic sech-icon and a non-symmetric pyram-icon and are scalable to smaller dimensions. The fabrication process is economic and cleanroom-free, and the optical quality is sufficient to demonstrate the diffraction patterns of the optical elements.

  20. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-07-01

    Full Text Available Xin Huang,1,* Yu-Lin Zhong,1,* Xian-Jun Zeng,2 Fuqing Zhou,2 Xin-Hua Liu,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Yi Shao,1 Xi-Jian Dai21Department of Ophthalmology, 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China*These authors contributed equally to this workObjective: The aim of this study is to use amplitude of low-frequency fluctuation (ALFF as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG and ALFFs relationship with the behavioral performances.Methods: A total of twenty one patients with PACG (eight males and 13 females, and twenty one healthy subjects (nine males and twelve females closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL. Results: Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=-0.487, P=0.033, and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=-0.504, P=0.020. Conclusion: PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.Keywords: angle-closure glaucoma, amplitude of low-frequency fluctuation, functional

  1. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  2. Effect of Perfluorane on the Amplitude-Frequency Spectrum of Fluctuations in Cerebral Blood Flow in Hemorrhagic Hypotension and During the Reperfusion Period

    Directory of Open Access Journals (Sweden)

    I. A. Ryzhkov

    2015-01-01

    Full Text Available Objective: to use laser Doppler flowmetry (LDF to investigate the effect of perfluorane on the time course of microhemocirculato ry changes in the rat pial vessels in acute blood loss and after autohemotransfusion.Material and methods. Experiments were car ried out on 31 outbred male rats weighing 300—400 g under anesthesia with intraperitoneal Nembutal 45 mg/kg. The caudal artery was catheterized to measure blood pressure (BP, to sample and reinfuse blood, and to administer infusion solutions. LDF (ЛАКК 02 device, LAZMA, Russia was used to record blood flow in the pial vessels of the left parietal region (the center coordinates were 3 mm caudal to bregma and 2 mm left of the sagittal suture. A volumefixed acute blood loss model was applied. The goal amount of blood loss was 30% of the circulating blood volume. At 10 minutes after blood sampling, the animals were administered 0.9% NaCl solution (physiologic saline (PS, n=15 or perfluorane (PF, n=16 in a dose of 3 ml/kg body weight. At 60 minutes following blood sampling, autohemotransfusion was used, after which there was a 60min reperfusion period. The investigators analyzed LDF readings and determined the following indicators: microcirculation index; the maximum amplitudes of blood flow fluctuations in the endothelial, neurogenic, and myogenic frequency ranges by a wavelet analysis. The data were statistically processed using Statistica 7.0 software.Results. Hypovolemia caused a more than 50% reduction in BP; moreover, blood flow in the pial vessels decreased by less than 20% of its baseline level (p<0.05. In the same period, there was an increase in the amplitude of flux motions mainly in the neurogenic (NA frequency. The differences in microcirculatory parameters between the PS or PF groups were in the retention of higher NA in the PS group throughout hypovolemia; at the same time the groups did not differ in the arterial blood levels of the index of perfusion (IP, рСО2, and

  3. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.

    Science.gov (United States)

    O'Grady, G; Du, P; Paskaranandavadivel, N; Angeli, T R; Lammers, W J E P; Asirvatham, S J; Windsor, J A; Farrugia, G; Pullan, A J; Cheng, L K

    2012-07-01

    Gastric slow waves propagate aborally as rings of excitation. Circumferential propagation does not normally occur, except at the pacemaker region. We hypothesized that (i) the unexplained high-velocity, high-amplitude activity associated with the pacemaker region is a consequence of circumferential propagation; (ii) rapid, high-amplitude circumferential propagation emerges during gastric dysrhythmias; (iii) the driving network conductance might switch between interstitial cells of Cajal myenteric plexus (ICC-MP) and circular interstitial cells of Cajal intramuscular (ICC-IM) during circumferential propagation; and (iv) extracellular amplitudes and velocities are correlated. An experimental-theoretical study was performed. High-resolution gastric mapping was performed in pigs during normal activation, pacing, and dysrhythmia. Activation profiles, velocities, and amplitudes were quantified. ICC pathways were theoretically evaluated in a bidomain model. Extracellular potentials were modeled as a function of membrane potentials. High-velocity, high-amplitude activation was only recorded in the pacemaker region when circumferential conduction occurred. Circumferential propagation accompanied dysrhythmia in 8/8 experiments was faster than longitudinal propagation (8.9 vs 6.9 mm s(-1) ; P = 0.004) and of higher amplitude (739 vs 528 μV; P = 0.007). Simulations predicted that ICC-MP could be the driving network during longitudinal propagation, whereas during ectopic pacemaking, ICC-IM could outpace and activate ICC-MP in the circumferential axis. Experimental and modeling data demonstrated a linear relationship between velocities and amplitudes (P propagation. Rapid circumferential propagation also emerges during a range of gastric dysrhythmias, elevating extracellular amplitudes and organizing transverse wavefronts. One possible explanation for these findings is bidirectional coupling between ICC-MP and circular ICC-IM networks. © 2012 Blackwell Publishing Ltd.

  4. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity.

    Science.gov (United States)

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao

    2016-03-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition.

  5. VizieR Online Data Catalog: VVV high amplitude NIR variable stars (Contreras Pena+, 2017)

    Science.gov (United States)

    Contreras Pena, C.; Lucas, P. W.; Minniti, D.; Kurtev, R.; Stimson, W.; Navarro Molina, C.; Borissova, J.; Kumar, M. S. N.; Thompson, M. A.; Gledhill, T.; Terzi, R.; Froebrich, D.; Caratti o Garatti, A.

    2017-08-01

    We present the single epoch ZYJHKs photometry obtained from VVV catalogues for 816 high-amplitude variables. We also present the amplitude of the Ks light curve of the objects derived from 2010-2015 photometry. For each object we also provide a provisional classification derived from the shape of the light curve. For objects found to be likely associated with SFRs we present an spectral index derived from the object's spectral energy distribution. (2 data files).

  6. Kepler observations of the high-amplitude δ Scuti star V2367 Cyg

    DEFF Research Database (Denmark)

    Balona, L. A.; Lenz, P.; Antoci, V.

    2012-01-01

    We analyse Kepler observations of the high-amplitude δ Scuti (HADS) star V2367 Cyg (KIC 9408694). The variations are dominated by a mode with frequency f1= 5.6611 d−1. Two other independent modes with f2= 7.1490 d−1 and f3= 7.7756 d−1 have amplitudes an order of magnitude smaller than f1. Nearly ...

  7. Elimination of Fuel Pressure Fluctuation and Multi-injection Fuel Mass Deviation of High Pressure Common-rail Fuel Injection System

    Institute of Scientific and Technical Information of China (English)

    LI Pimao; ZHANG Youtong; LI Tieshuan; XIE Lizhe

    2015-01-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  8. Low-Frequency Fluctuations of the Resting Brain: High Magnitude Does Not Equal High Reliability.

    Directory of Open Access Journals (Sweden)

    Dewang Mao

    Full Text Available The amplitude of low-frequency fluctuation (ALFF measures low-frequency oscillations of the blood-oxygen-level-dependent signal, characterizing local spontaneous activity during the resting state. ALFF is a commonly used measure for resting-state functional magnetic resonance imaging (rs-fMRI in numerous basic and clinical neuroscience studies. Using a test-retest rs-fMRI dataset consisting of 21 healthy subjects and three repetitive scans, we found that several key brain regions with high ALFF intensities (or magnitude had poor reliability. Such regions included the posterior cingulate cortex, the medial prefrontal cortex in the default mode network, parts of the right and left thalami, and the primary visual and motor cortices. The above finding was robust with regard to different sample sizes (number of subjects, different scanning parameters (repetition time and variations of test-retest intervals (i.e., intra-scan, intra-session, and inter-session reliability, as well as with different scanners. Moreover, the qualitative, map-wise results were validated further with a region-of-interest-based quantitative analysis using "canonical" coordinates as reported previously. Therefore, we suggest that the reliability assessments be incorporated in future ALFF studies, especially for the brain regions with a large ALFF magnitude as listed in our paper. Splitting single data into several segments and assessing within-scan "test-retest" reliability is an acceptable alternative if no "real" test-retest datasets are available. Such evaluations might become more necessary if the data are collected with clinical scanners whose performance is not as good as those that are used for scientific research purposes and are better maintained because the lower signal-to-noise ratio may further dampen ALFF reliability.

  9. Fluctuating nanomechanical systems in a high finesse optical microcavity

    CERN Document Server

    Favero, I; Hunger, D; Paulitschke, P; Reichel, J; Lorenz, H; Weig, E M; Karrai, K

    2009-01-01

    Confining a laser field between two high reflectivity mirrors of a high-finesse cavity can increase the probability of a given cavity photon to be scattered by an atom traversing the confined photon mode. This enhanced coupling between light and atoms is successfully employed in cavity quantum electrodynamics experiments and led to a very prolific research in quantum optics. The idea of extending such experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling. Here we present an experiment involving a single nanorod consisting of about 10^9 atoms precisely positioned to plunge into the confined mode of a miniature high finesse Fabry-Perot cavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. While an imprint of the vibration dynamics is directly detected in the optical transmission, back-action of the light field is also anticipated to qu...

  10. Development of high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, J.; Sharma, M. L.; Ahuja, Aakash B.; Navathe, C. P.

    2014-06-01

    A high voltage pulse generator with variable amplitude (100-3000 V) and duration (100-2000 μs) has been designed and developed. The variable duration pulse has been generated by adopting a simple and novel technique of varying the turn off delay time of a high voltage Metal Oxide Semiconductor Field Effect Transistor (MOSFET) based switch by varying external gate resistance. The pulse amplitude is made variable by adjusting biasing supply of the high voltage switch. The high voltage switch has been developed using a MOSFET based stack of 3 kV rating with switching time of 7 ns.

  11. Anisotropic magnetoresistance and thermodynamic fluctuations in high-temperature superconductors

    CERN Document Server

    Heine, G

    1999-01-01

    Measurements of the in-plane and out-of-plane resistivity and the transverse and longitudinal in-plane and out-of-plane magnetoresistance above T, are reported in the high-temperature superconductors Bi2Sr2CaCu208+' and YBa2CU307 sub b. The carrier concentration of the Bi2Sr2CaCu208+' single crystals covers a broad range of the phase diagram from the slightly under doped to the moderately over doped region. The doping concentration of the thin films ranges from strongly under doped to optimally doped. The in-plane resistivities obey a metallic-like temperature dependence with a positive magnetoresistance in the transverse and the longitudinal orientation of the magnetic field. The out-of-plane resistivities show an activated behavior above T, with a metallic region at higher temperatures and negative magnetoresistance. The data were analyzed in the framework of a model for superconducting order parameter fluctuations. The positive in-plane magnetoresistance of the highly anisotropic Bi2Sr2CaCu208+x single cry...

  12. Abnormal amplitude of low-frequency fluctuations and functional connectivity of resting-state functional magnetic resonance imaging in patients with leukoaraiosis.

    Science.gov (United States)

    Cheng, Rongchuan; Qi, Honglin; Liu, Yong; Zhao, Shifu; Li, Chuanming; Liu, Chen; Zheng, Jian

    2017-06-01

    This study aimed to investigate the cerebral function deficits in patients with leukoaraiosis (LA) and the correlation with white matter hyperintensity (WMH) using functional MRI (fMRI) technology. Twenty-eight patients with LA and 30 volunteers were enrolled in this study. All patients underwent structural MRI and resting-state functional MRI (rs-fMRI) scanning. The amplitude of low-frequency fluctuations (ALFF) of rs-fMRI signals for the two groups was compared using two-sample t tests. A one-sample t test was performed on the individual z-value maps to identify the functional connectivity of each group. The z values were compared between the two groups using a two-sample t test. Partial correlations between ALFF values and functional connectivity of the brain regions that showed group differences and Fazekas scores of the WMH were analyzed. Compared with the control group, the LA group showed a significant decrease in the ALFF in the left parahippocampal gyrus (PHG) and an increased ALFF in the left inferior semi-lunar lobule and right superior orbital frontal gyrus (SOFG). The patients with LA showed an increased functional connectivity between the right insular region and the right SOFG and between the right calcarine cortex and the left PHG. After the effects of age, gender, and years of education were corrected as covariates, the functional connectivity strength of the right insular and the right SOFG showed close correlations with the Fazekas scores. Our results enhance the understanding of the pathomechanism of LA. Leukoaraiosis is associated with widespread cerebral function deficits, which show a close correlation with WMH and can be measured by rs-fMRI.

  13. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: a resting-state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    XI Qian; ZHAO Xiao-hu; WANG Pei-jun; GUO Qi-hao; HE Yong

    2013-01-01

    Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients.However,alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood.This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls.Methods In the present study,resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients,18 mild AD patients and 20 healthy elderly subjects.And amplitude of low-frequency fluctuation (ALFF) method was used.Results Compared with healthy elderly subjects,aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex,left lateral temporal cortex,and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL).Mild AD patients showed decreased ALFF in the left TPJ,posterior IPL (plPL),and dorsolateral prefrontal cortex compared with aMCI patients.Mild AD patients also had decreased ALFF in the right posterior cingulate cortex,right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects.Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients.Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients.These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.

  14. Altered baseline brain activity in experts measured by amplitude of low frequency fluctuations (ALFF: a resting state fMRI study using expertise model of acupuncturists

    Directory of Open Access Journals (Sweden)

    Minghao eDong

    2015-03-01

    Full Text Available It is well established that expertise modulates evoked brain activity in response to specific stimuli. Recently, researchers have begun to investigate how expertise influences the resting brain. Among these studies, most focused on the connectivity features within/across regions, i.e. connectivity patterns/strength. However, little concern has been given to a more fundamental issue whether or not expertise modulates baseline brain activity. We investigated this question using amplitude of low-frequency (<0.08Hz fluctuation (ALFF as the metric of brain activity and a novel expertise model, i.e. acupuncturists, due to their robust proficiency in tactile perception and emotion regulation. After the psychophysical and behavioral expertise screening procedure, 23 acupuncturists and 23 matched non-acupuncturists (NA were enrolled. Our results explicated higher ALFF for acupuncturists in the left ventral medial prefrontal cortex (VMPFC and the contralateral hand representation of the primary somatosensory area (SI (corrected for multiple comparisons. Additionally, ALFF of VMPFC was negatively correlated with the outcomes of the emotion regulation task (corrected for multiple comparisons. We suggest that our study may reveal a novel connection between the neuroplasticity mechanism and resting state activity, which would upgrade our understanding of the central mechanism of learning. Furthermore, by showing that expertise can affect the baseline brain activity as indicated by ALFF, our findings may have profound implication for functional neuroimaging studies especially those involving expert models, in that difference in baseline brain activity may either smear the spatial pattern of activations for task data or introduce biased results into connectivity-based analysis for resting data.

  15. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Internal friction mechanism of Fe-19Mn alloy at low and high strain amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shuke, E-mail: huangshuke@163.com [Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Huang, Wenrong; Liu, Jianhui [Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Teng, Jin; Li, Ning; Wen, Yuhua [School of Manufacturing Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2013-01-10

    Fe-Mn damping alloy, which can decrease the vibrating and noise effectively, will be widely applied to household appliances, automobiles, industrial facilities, etc. In this paper, the internal friction mechanism of Fe-19Mn alloy at low strain amplitude (10{sup -5} range) and high strain amplitude (10{sup -4} range) was investigated. The internal friction was measured using multifunction internal friction equipment and reversal torsion pendulum. The microstructure was observed using scanning electron microscopy. The phase transformation temperatures were determined using differential scanning calorimetry. The results indicated that the internal friction of Fe-19Mn alloy after solution treating was related to strain amplitude. The internal friction mechanism was believed to the movements of four damping sources ({epsilon}-martensite variant boundaries, stacking fault boundaries in {epsilon}-martensite and {gamma}-austenite, {gamma}/{epsilon} interfaces), which could be explained using the interactive movements of Shockley partial dislocations and point defects. At low strain amplitude (10{sup -5} range), the bowing out movements of Shockley partial dislocations are the main moving mode of generating internal friction. At high strain amplitude (10{sup -4} range), however, the breaking away movements of Shockley partial dislocations are the high internal friction mechanism of Fe-19Mn alloy.

  17. The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster

    Science.gov (United States)

    Qin, Yu; Xie, Kan; Guo, Ning; Zhang, Zun; Zhang, Cen; Gu, Zengjie; Zhang, Yu; Jiang, Zhaorui; Ouyang, Jiting

    2017-05-01

    The influence of gas flow, current level, and different shapes of anode on the oscillation amplitude and the characteristics of the hollow cathode discharge were investigated. The average plasma potential, temporal measurements of plasma potential, ion density, the electron temperature, as well as waveforms of plasma potential for test conditions were measured. At the same time, the time-resolved images of the plasma plume were also recorded. The results show that the potential oscillations appear at high discharge current or low flow rate. The potential oscillation boundaries, the position of maximum amplitude of plasma potential, and the position where the highest ion density was observed, were found. Both of the positions are affected by different shapes of anode configurations. This high amplitude of potential oscillations is ionization-like instabilities. The xenon ions ionized in space was analyzed for the fast potential rise and spatial dissipation of the space xenon ions was the reason for the gradual potential delay.

  18. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    Science.gov (United States)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  19. High-Fidelity DNA Sensing by Protein Binding Fluctuations

    CERN Document Server

    Tlusty, Tsvi; Libchaber, Albert; 10.1103/PhysRevLett.93.258103

    2010-01-01

    One of the major functions of RecA protein in the cell is to bind single-stranded DNA exposed upon damage, thereby triggering the SOS repair response.We present fluorescence anisotropy measurements at the binding onset, showing enhanced DNA length discrimination induced by adenosine triphosphate consumption. Our model explains the observed DNA length sensing as an outcome of out-of equilibrium binding fluctuations, reminiscent of microtubule dynamic instability. The cascade architecture of the binding fluctuations is a generalization of the kinetic proofreading mechanism. Enhancement of precision by an irreversible multistage pathway is a possible design principle in the noisy biological environment.

  20. Multifield measurement of magnetic fluctuation-induced particle flux in a high-temperature toroidal plasma

    Science.gov (United States)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2016-12-01

    Magnetic fluctuation-induced particle transport is explored in the high-temperature, high-beta interior of the Madison symmetric torus (MST) reversed-field pinch by performing a multifield measurement of the correlated product of magnetic and density fluctuations associated with global resistive tearing modes. Local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of Faraday-effect polarimetry measurements. Reconstructed 2D images of density and current density perturbations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved. The convective magnetic fluctuation-induced particle flux profile is measured for both standard and high-performance plasmas in MST with tokamak-like confinement, showing large reduction in the flux during improved confinement.

  1. High performance single-error-correcting quantum codes for amplitude damping

    CERN Document Server

    Shor, Peter W; Smolin, John A; Zeng, Bei

    2009-01-01

    We construct families of high performance quantum amplitude damping codes. All of our codes are nonadditive and most modestly outperform the best possible additive codes in terms of encoded dimension. One family is built from nonlinear error-correcting codes for classical asymmetric channels, with which we systematically construct quantum amplitude damping codes with parameters better than any prior construction known for any block length n > 7 except n=2^r-1. We generalize this construction to employ classical codes over GF(3) with which we numerically obtain better performing codes up to length 14. Because the resulting codes are of the codeword stabilized (CWS) type, easy encoding and decoding circuits are available.

  2. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power e...

  3. In search of objective manometric criteria for colonic high-amplitude propagated pressure waves

    NARCIS (Netherlands)

    De Schryver, AMP; Samsom, M; Smout, AJPM

    2002-01-01

    The aims of this study were to explore all characteristics of high-amplitude propagated contractions (HAPCs) that would allow them to be distinguished from nonHAPC colonic pressure waves, and to develop computer algorithms for automated HAPC detection. Colonic manometry recordings obtained from 24 h

  4. Numerical modeling of dune progression in a high amplitude meandering channel

    Science.gov (United States)

    Laboratory experiments carried out by Abad and Garcia (2009) in a high-amplitude Kinoshita meandering channel show bed morphodynamics to comprise steady (local scour and deposition) and unsteady (migrating bedforms) components. The experiments are replicated with a numerical model. The sediment tran...

  5. An fMRI study of mesial temporal lobe epilepsy with different pathological basis using amplitude of low-frequency fluctuation analysis

    Directory of Open Access Journals (Sweden)

    Wei WEI

    2014-12-01

    Full Text Available Objective To study the distinction of abnormal brain activity in mesial temporal lobe epilepsy (mTLE with hippocampal sclerosis (HS or other pathogical basis, and to discuss their underlying pathophysiological mechanism in mTLE.  Methods Thirty mTLE patients with unilateral hippocampal sclerosis (mTLE-HS and 30 mTLE patients with occupying lesion in unilateral temporal lobe (mTLE-OL were investigated by comparing with 30 age- and sex-matched healthy subjects. MRI data were collected using a Siemens 3.0T scanner, and all of the participants were studied using amplitude of low-frequency fluctuation (ALFF analysis of resting state fMRI. A cost-function modification was used for image preprocessing, then the difference of extratemporal mALFF changes between the two groups of mTLE patients were analyzed with two-sample t test, and the correlation between mALFF and epilepsy duration of mTLE were also investigated.  Results In the resting state, mTLE-HS patients and mTLE-OL patients all showed significant changes in mALFF in extratemporal structures, but the distribution patterns of changes in brain were different. Compared with mTLE-HS, the mTLE-OL patients showed increased mALFF in bilateral inferior parietal lobes, precuneus, angular gyrus, middle and posterior cingulate gyrus and contralateral middle temporal gyrus, while mALFF reducing was observed in contralateral postcentral gyrus, bilateral middle occipital gyrus and cerebellum (P < 0.05, AlphaSim corrected, that is to say, the default mode network (DMN in mTLE-HS were inhibited more seriously than in mTLE-OL patients. Correlation analysis showed that no significant correlation was found between mALFF and epilepsy duration in mTLE-HS patients; mALFF in bilateral middle and posterior cingulate gyrus was positively correlated with epilepsy duration in mTLE-OL patients (r = 0.687, P = 0.000, while mALFF in bilateral anterior cingulate gyrus was negatively correlated with epilepsy duration (r

  6. Superconducting fluctuations and pseudogap in high-Tc cuprates

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x. These experiments allow us to determine the field Hc’(T and the temperature Tc’ above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc’ is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0 which is found to be be quite similar to Hc’ (0 and to increase with hole doping. Studies of the incidence of disorder on both Tc’ and T* allow us to to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.

  7. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability.

    Science.gov (United States)

    Rikanati, A; Oron, D; Sadot, O; Shvarts, D

    2003-02-01

    Effects of high-Mach numbers and high initial amplitudes on the evolution of the single-mode Richtmyer-Meshkov shock-wave induced hydrodynamic instability are studied using theoretical models, experiments, and numerical simulations. Two regimes in which there is a significant deviation from the linear dependence of the initial velocity on the initial perturbation amplitude are defined and characterized. In one, the observed reduction of the initial velocity is primarily due to large initial amplitudes. This effect is accurately modeled by a vorticity deposition model, quantifying both the effect of the initial perturbation amplitude and the exact shape of the interface. In the other, the reduction is dominated by the proximity of the shock wave to the interface. This effect is modeled by a modified incompressible model where the shock wave is mimicked by a moving bounding wall. These results are supplemented with high initial amplitude Mach 1.2 shock-tube experiments, enabling separation of the two effects. It is shown that in most of the previous experiments, the observed reduction is predominantly due to the effect of high initial amplitudes.

  8. Effects of strong magnetic fields on pairing fluctuations in high-temperature superconductors

    OpenAIRE

    Eschrig, Matthias; Rainer, D.; Sauls, J. A.

    1999-01-01

    We present the theory for the effects of superconducting pairing fluctuations on the nuclear spin-lattice relaxation rate 1/T1 and the NMR Knight shift for layered superconductors in high magnetic fields. These results can be used to clarify the origin of the pseudogap in high-Tc cuprates, which has been attributed to spin fluctuations as well as pairing fluctuations. We present theoretical results for s-wave and d-wave pairing fluctuations and show that recent experiments in optimally doped ...

  9. Nonlinear reflection of high-amplitude laser pulses from relativistic electron mirrors

    Science.gov (United States)

    Kulagin, V. V.; Kornienko, V. N.; Cherepenin, V. A.

    2016-04-01

    A coherent X-ray pulse of attosecond duration can be formed in the reflection of a counterpropagating laser pulse from a relativistic electron mirror. The reflection of a high-amplitude laser pulse from the relativistic electron mirror located in the field of an accelerating laser pulse is investigated by means of two-dimensional (2D) numerical simulation. It is shown that provided the amplitude of the counterpropagating laser pulse is several times greater than the amplitude of the accelerating laser pulse, the reflection process is highly nonlinear, which causes a significant change in the X-ray pulse shape and its shortening up to generation of quasi-unipolar pulses and single-cycle pulses. A physical mechanism responsible for this nonlinearity of the reflection process is explained, and the parameters of the reflected X-ray pulses are determined. It is shown that the duration of these pulses may constitute 50 - 60 as, while their amplitude may be sub-relativistic.

  10. Non-Linear High Amplitude Oscillations in Wave-shaped Resonators

    Science.gov (United States)

    Antao, Dion; Farouk, Bakhtier

    2011-11-01

    A numerical and experimental study of non-linear, high amplitude standing waves in ``wave-shaped'' resonators is reported here. These waves are shock-less and can generate peak acoustic overpressures that can exceed the ambient pressure by three/four times its nominal value. A high fidelity compressible axisymmetric computational fluid dynamic model is used to simulate the phenomena in cylindrical and arbitrarily shaped axisymmetric resonators. Working fluids (Helium, Nitrogen and R-134a) at various operating pressures are studied. The experiments are performed in a constant cross-section cylindrical resonator in atmospheric pressure nitrogen and helium to provide model validation. The high amplitude non-linear oscillations demonstrated can be used as a prime mover in a variety of applications including thermoacoustic cryocooling. The work reported is supported by the US National Science Foundation under grant CBET-0853959.

  11. Novel method of high-accuracy wavefront-phase and amplitude correction for coronagraphy

    Science.gov (United States)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-11-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10-4λ(rms) must be achieved over the critical range of spatial frequencies to produce the ~1010 contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (~10-4) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  12. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    Science.gov (United States)

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  13. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    CERN Document Server

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  14. Analysis of the Petersen Diagram of Double-Mode High-Amplitude {\\delta} Scuti Stars

    CERN Document Server

    Furgoni, Riccardo

    2016-01-01

    I created the Petersen diagram relative to all the Double Mode High Amplitude {\\delta} Scuti stars listed in the AAVSO's International Variable Star Index up to date December 29, 2015. For the first time I noticed that the ratio between the two periods P1/P0 seems in evident linear relation with the duration of the period P0, a finding never explicitly described in literature regarding this topic.

  15. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    OpenAIRE

    Etube, L. S.

    1998-01-01

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to 70OMPa. These steels are thought to exhib...

  16. High-resolution, high-reflectivity operation of lamellar multilayer amplitude gratings: identification of the single-order regime

    NARCIS (Netherlands)

    Kozhevnikov, I. V.; van der Meer, R.; Bastiaens, H. M. J.; Boller, K. J.; F. Bijkerk,

    2010-01-01

    High resolution while maintaining high peak reflectivities can be achieved for Lamellar Multilayer Amplitude Gratings (LMAG) in the soft-x-ray (SXR) region. Using the coupled waves approach (CWA), it is derived that for small lamellar widths only the zeroth diffraction order needs to be considered f

  17. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Science.gov (United States)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  18. Eliminating the effect of phase shift between injection current and amplitude modulation in DFB-LD WMS for high-precision measurement.

    Science.gov (United States)

    Wei, Wei; Chang, Jun; Liu, Yuanyuan; Chen, Xi; Liu, Zhaojun; Qin, Zengguang; Wang, Qiang

    2016-05-01

    Phase shift between the injection current and amplitude modulation due to the characteristics of diode lasers is discussed in this paper. Phase shift has no apparent regularity, but it has an obvious effect on measurement results, especially for high-precision measurement. A new method is proposed to suppress the influence of this phase shift. Water vapor is chosen as the target gas for experiment in this paper. A new detection system with the new method applied is presented and shows much better performance than the traditional wavelength modulation spectroscopy detection system. Phase shift fluctuation between the injection current and amplitude modulation is suppressed from 0.72 deg to 0.07 deg; accuracy is improved from 0.88 ppm to 0.16 ppm.

  19. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.

    Science.gov (United States)

    Frauscher, Birgit; von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-06-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not

  20. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    Science.gov (United States)

    Held, M.; Wiesenberger, M.; Madsen, J.; Kendl, A.

    2016-12-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the \\boldsymbol{E}× \\boldsymbol{B} vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the poloidal and total particle transport and present an empirical scaling law for the poloidal and total blob velocities. Distinctions to the blob behaviour in the isothermal limit with constant finite Larmor radius effects are highlighted.

  1. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.

  2. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    Science.gov (United States)

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  3. Speckle interferometric sensor to measure low-amplitude high frequency Ocular Microtremor (OMT)

    Science.gov (United States)

    Ryle, James P.; Al-Kalbani, Mohammed; Gopinathan, Unnikrishnan; Boyle, Gerard; Coakley, Davis; Sheridan, John T.

    2009-08-01

    Ocular microtremor (OMT) is a physiological high frequency (up to 150Hz) low amplitude (150-2500nm) involuntary tremor of the human eye. It is one of the three fixational ocular motions described by Adler and Fliegelman in 1934 as well as microsaccades and drift. Clinical OMT investigations to date have used eye-contacting piezoelectric probes or piezoelectric strain gauges. Before contact can be made, the eye must first be anaesthetised. In some cases, this induces eyelid spasms (blepharospasm) making it impossible to measure OMT. Using the contact probe method, the eye motion is mechanically damped. In addition to this, it is not possible to obtain exact information about the displacement. Results from clinical studies to date have given electrical signal amplitudes from the probe. Recent studies suggest a number of clinical applications for OMT, these include monitoring the depth of anaesthesia of a patient in surgery, prediction of outcome in coma, diagnosis of brainstem death. In addition to this, abnormal OMT frequency content is present in patients with neurological disorders such as Multiple sclerosis and Parkinson's disease. However for ongoing clinical investigations the contact probe method falls short of a non-contact accurate measurement solution. In this paper, we design a compact non contact phase modulating optical fiber speckle interferometer to measure eye motions. We present our calibration results using a calibrated piezoelectric vibration simulator. Digital signal processing is then performed to extract the low amplitude high frequency displacement information.

  4. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  5. High CW power, phase and amplitude modulatorrealized with fast ferrite phase-shifters

    CERN Document Server

    Valuch, D

    2004-01-01

    Superconducting cavity resonators are suffering from detuning effects caused by high internal electromagnetic fields (Lorentz force detuning). For classical resonators working with continuous wave signals, this detuning is static and compensated by the slow mechanical tuning system. However, pulsing of superconducting cavities, an operational mode only recently considered, results in dynamic detuning effects. New ways to handle this effect have to be found and worked out. A way to supply several superconducting cavities in the particle accelerator by one large transmitter while keeping the possibility of controlling the field in each individual cavity is shown. By introducing a fast phase and amplitude modulator into each cavity feeder line, the individual deviations of each cavity with respect to the average can be compensated in order to equalize their behaviour for the main control loop, which will compensate the global detuning of all cavities. Several types of phase and amplitude modulators suitable for ...

  6. Spin fluctuations and high-temperature superconductivity in cuprates

    Science.gov (United States)

    Plakida, Nikolay M.

    2016-12-01

    To describe the cuprate superconductors, models of strongly correlated electronic systems, such as the Hubbard or t - J models, are commonly employed. To study these models, projected (Hubbard) operators have to be used. Due to the unconventional commutation relations for the Hubbard operators, a specific kinematical interaction of electrons with spin and charge fluctuations emerges. The interaction is induced by the intraband hopping with a coupling parameter of the order of the kinetic energy of electrons W which is much larger than the antiferromagnetic exchange interaction J induced by the interband hopping. This review presents a consistent microscopic theory of spin excitations and superconductivity for cuprates where these interactions are taken into account within the Hubbard operator technique. The low-energy spin excitations are considered for the t-J model, while the electronic properties are studied using the two-subband extended Hubbard model where the intersite Coulomb repulsion V and electron-phonon interaction are taken into account.

  7. Effects of thrust amplitude and duration of high velocity low amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement

    Science.gov (United States)

    Cao, Dong-Yuan; Reed, William R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    OBJECTIVE Mechanical characteristics of high velocity low amplitude spinal manipulations (HVLA-SM) can be variable. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor’s local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether an HVLA-SM’s thrust amplitude or duration altered neural responsiveness of lumbar muscle spindles to either vertebral movement or position. METHODS Anesthetized cats (n=112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3mm) they received. Cats in each cohort received 8 thrust durations (0–250ms). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (MIF) during the baseline period preceding the ramps (ΔMIFresting), during ramp movements (ΔMIFmovement), and with the vertebra held in the new position (ΔMIFposition) were compared. RESULTS Thrust duration had a small but statistically significant effect on ΔMIFresting at all six thrust amplitudes compared to control (0ms thrust duration). The lowest amplitude thrust displacement (1mm) increased ΔMIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ΔMIFresting was not consistent and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ΔMIFmovement and ΔMIFposition were not significantly different from control. Conclusion Relatively low amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust was

  8. Effects of thrust amplitude and duration of high-velocity, low-amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement.

    Science.gov (United States)

    Cao, Dong-Yuan; Reed, William R; Long, Cynthia R; Kawchuk, Gregory N; Pickar, Joel G

    2013-02-01

    Mechanical characteristics of high-velocity, low-amplitude spinal manipulations (HVLA-SMs) can vary. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor's local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether variation in an HVLA-SM's thrust amplitude and duration alters the neural responsiveness of lumbar muscle spindles to either vertebral movement or position. Anesthetized cats (n = 112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3 mm) they received. Cats in each cohort received 8 thrust durations (0-250 milliseconds). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (∆MIF) during the baseline period preceding the ramps (∆MIFresting), during ramp movement (∆MIFmovement), and with the vertebra held in the new position (∆MIFposition) were compared. Thrust duration had a small but statistically significant effect on ∆MIFresting at all 6 thrust amplitudes compared with control (0-millisecond thrust duration). The lowest amplitude thrust displacement (1 mm) increased ∆MIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ∆MIFresting was not consistent, and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ∆MIFmovement and ∆MIFposition were not significantly different from control. Relatively low-amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust

  9. First Results with a Fast Phase and Amplitude Modulator for High Power RF Application

    CERN Document Server

    Frischholz, Hans; Valuch, D; Weil, C

    2004-01-01

    In a high energy and high power superconducting proton linac, it is more economical to drive several cavities with a single high power transmitter rather than to use one transmitter per cavity. However, this option has the disadvantage of not permitting individual control for each cavity, which potentially leads to instabilities. Provided that it can be built at a reasonable cost, a fast phase and amplitude modulator inserted into each cavity feeder line can provide the necessary control capability. A prototype of such a device has been built, based on two fast and compact high power RF phase-shifters, magnetically biased by external coils. The design is described, together with the results obtained at high and low power levels.

  10. Large Fluctuations in the High-Redshift Metagalactic Ionizing Background

    CERN Document Server

    D'Aloisio, Anson; Davies, Frederick B; Furlanetto, Steven R

    2016-01-01

    Recent observations have shown that the scatter in opacities among coeval segments of the Lyman-alpha forest increases rapidly at z > 5. In this paper, we assess whether the large scatter can be explained by fluctuations in the ionizing background in the post-reionization intergalactic medium. We find that matching the observed scatter at z ~ 5.5 requires a short spatially averaged mean free path of 3 shorter than direct measurements at z ~ 5.2. We argue that such rapid evolution in the mean free path is difficult to reconcile with our measurements of the global H I photoionization rate, which stay approximately constant over the interval z ~ 4.8 - 5.5. However, we also show that measurements of the mean free path at z > 5 are likely biased towards higher values by the quasar proximity effect. This bias can reconcile the short values of the mean free path that are required to explain the large scatter in opacities. We discuss the implications of this scenario for cosmological reionization. Finally, we invest...

  11. Intrinsic Fluctuations of the Proton Saturation Momentum Scale in High Multiplicity p+p Collisions

    CERN Document Server

    McLerran, Larry

    2016-01-01

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. We show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. The origin of such intrinsic fluctuations are presumably non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. We find that fluctuations as large as $\\cal O$(1) of the average values of the saturation momentum scale can lead to rare high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.

  12. Semi-blind Adaptive Beamforming for High-throughput Quadrature Amplitude Modulation Systems

    Institute of Scientific and Technical Information of China (English)

    Sheng Chen; Wang Yao; Lajos Hanzo

    2010-01-01

    A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna array's elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.

  13. Effective multifractal features of high-frequency price fluctuations time series and l-variability diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jeferson de [Laboratorio de Analise de Bacias e Petrofisica, Departamento de Geologia, Universidade Federal do Parana, Centro Politecnico - Jardim das Americas, Caixa Postal 19001, 81531-990 Curitiba-PR (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ (Brazil)], E-mail: jdesouza@ufpr.br; Duarte Queiros, Silvio M. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ (Brazil)], E-mail: sdqueiro@googlemail.com

    2009-11-30

    In this manuscript we present a comprehensive study on the multifractal properties of high-frequency price fluctuations and instantaneous volatility of the equities that compose the Dow Jones Industrial Average. The analysis consists about the quantification of the influence of dependence and non-Gaussianity on the multifractal character of financial quantities. Our results point out an equivalent importance of dependence and non-Gaussianity on the multifractality of time series. Moreover, we analyse l-diagrams of price fluctuations. In the latter case, we show that the fractal dimension of these maps is basically independent of the lag between price fluctuations that we assume.

  14. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior

    Science.gov (United States)

    da Cunha, C. R.; Mineharu, M.; Matsunaga, M.; Matsumoto, N.; Chuang, C.; Ochiai, Y.; Kim, G.-H.; Watanabe, K.; Taniguchi, T.; Ferry, D. K.; Aoki, N.

    2016-09-01

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  15. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  16. Nonequilibrium mesoscopic conductance fluctuations

    Science.gov (United States)

    Ludwig, T.; Blanter, Ya. M.; Mirlin, A. D.

    2004-12-01

    We investigate the amplitude of mesoscopic fluctuations of the differential conductance of a metallic wire at arbitrary bias voltage V . For noninteracting electrons, the variance ⟨δg2⟩ increases with V . The asymptotic large- V behavior is ⟨δg2⟩˜V/Vc (where eVc=D/L2 is the Thouless energy), in agreement with the earlier prediction by Larkin and Khmelnitskii. We find, however, that this asymptotics has a very small numerical prefactor and sets in at very large V/Vc only, which strongly complicates its experimental observation. This high-voltage behavior is preceded by a crossover regime, V/Vc≲30 , where the conductance variance increases by a factor ˜3 as compared to its value in the regime of universal conductance fluctuations (i.e., at V→0 ). We further analyze the effect of dephasing due to the electron-electron scattering on ⟨δg2⟩ at high voltages. With the Coulomb interaction taken into account, the amplitude of conductance fluctuations becomes a nonmonotonic function of V . Specifically, ⟨δg2⟩ drops as 1/V for voltages V≫gVc , where g is the dimensionless conductance. In this regime, the conductance fluctuations are dominated by quantum-coherent regions of the wire adjacent to the reservoirs.

  17. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    Science.gov (United States)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  18. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    Science.gov (United States)

    Perton, M.; Blouin, A.; Monchalin, J.-P.

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  19. Modeling of low- and high-frequency noise by slow and fast fluctuators

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  20. Fluctuations of the initial color fields in high energy heavy ion collisions

    CERN Document Server

    Epelbaum, Thomas

    2013-01-01

    In the Color Glass Condensate approach to the description of high energy heavy ion collisions, one needs to superimpose small random Gaussian distributed fluctuations to the classical background field, in order to resum the leading secular terms that result from the Weibel instability, that would otherwise lead to pathological results beyond leading order. In practical numerical simulations, one needs to know this spectrum of fluctuations at a proper time $\\tau \\ll Q_s^{-1}$ shortly after the collision, in the Fock-Schwinger gauge $\\ma{A}^\\tau=0$. In this paper, we derive these fluctuations from first principles, by solving the Yang-Mills equations linearized around the classical background, with plane wave initial conditions in the remote past. We perform the intermediate steps in light-cone gauge, and we convert the results to the Fock-Schwinger gauge at the end. We obtain simple and explicit formulas for the fluctuation modes.

  1. Modeling of Low and High Frequency Noise by Slow and Fast Fluctuators

    CERN Document Server

    Nesterov, Alexander I

    2012-01-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both $1/f$ and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modelled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) effective fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as photosynthetic complexes, semiconductors, and superconducting and spin qubits, where the effects of interaction with the environment are essential.

  2. Resonance of a Metal Drop under the Effect of Amplitude-Modulated High Frequency Magnetic Field

    Science.gov (United States)

    Guo, Jiahong; Lei, Zuosheng; Zhu, Hongda; Zhang, Lijie; Magnetic Hydrodynamics(Siamm) Team; Magnetic Mechanics; Engineering(Smse) Team

    2016-11-01

    The resonance of a sessile and a levitated drop under the effect of high frequency amplitude-modulated magnetic field (AMMF) is investigated experimentally and numerically. It is a new method to excite resonance of a metal drop, which is different from the case in the presence of a low-frequency magnetic field. The transient contour of the drop is obtained in the experiment and the simulation. The numerical results agree with the experimental results fairly well. At a given frequency and magnetic flux density of the high frequency AMMF, the edge deformations of the drop with an azimuthal wave numbers were excited. A stability diagram of the shape oscillation of the drop and its resonance frequency spectrum are obtained by analysis of the experimental and the numerical data. The results show that the resonance of the drop has a typical character of parametric resonance. The National Natural Science Foundation of China (No. 51274237 and 11372174).

  3. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  4. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS - University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  5. Squeeze Film Dampers Executing Small Amplitude Circular-Centered Orbits in High-Speed Turbomachinery

    Directory of Open Access Journals (Sweden)

    Sina Hamzehlouia

    2016-01-01

    Full Text Available This work represents a pressure distribution model for finite length squeeze film dampers (SFDs executing small amplitude circular-centered orbits (CCOs with application in high-speed turbomachinery design. The proposed pressure distribution model only accounts for unsteady (temporal inertia terms, since based on order of magnitude analysis, for small amplitude motions of the journal center, the effect of convective inertia is negligible relative to unsteady (temporal inertia. In this work, the continuity equation and the momentum transport equations for incompressible lubricants are reduced by assuming that the shapes of the fluid velocity profiles are not strongly influenced by the inertia forces, obtaining an extended form of Reynolds equation for the hydrodynamic pressure distribution that accounts for fluid inertia effects. Furthermore, a numerical procedure is represented to discretize the model equations by applying finite difference approximation (FDA and to numerically determine the pressure distribution and fluid film reaction forces in SFDs with significant accuracy. Finally, the proposed model is incorporated into a simulation model and the results are compared against existing SFD models. Based on the simulation results, the pressure distribution and fluid film reaction forces are significantly influenced by fluid inertia effects even at small and moderate Reynolds numbers.

  6. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    Science.gov (United States)

    Etube, Linus Sone

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to TOOMPa. These steels are thought to exhibit fatigue resistance properties which are different when compared with conventional fixed platform steels such as BS 4360 50D and BS 7191 355D. The difference in their behaviour was heightened by the discovery, in the late 80s and early 90s, of extensive cracking around the spud can regions of several Jack-ups operating in the North Sea. It was thought that these steels may be more susceptible to hydrogen cracking and embrittlement. There was the additional requirement to study their behaviour under realistic loading conditions typical of the North Sea environment. This thesis contains results of an investigation undertaken to assess the performance of a typical high strength weldable Jack-up steel under realistic loading and environmental conditions. Details of the methodology employed to develop a typical Jack-up Offshore Standard load History (JOSH) are presented. The factors which influence fatigue resistance of structural steels used in the construction of Jack-up structures are highlighted. The methods used to model the relevant factors for inclusion in JOSH are presented with particular emphasis on loading and structural response interaction. Results and details of experimental variable amplitude corrosion fatigue (VACF) tests conducted using JOSH are reported and discussed with respect to crack growth mechanisms in high strength weldable Jack-up steels. Different fracture mechanics models for VACF crack growth prediction are compared and an improved generalised methodology for fast

  7. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs.

    Science.gov (United States)

    Liu, Kai; Cheng, Chun; Cheng, Zhenting; Wang, Kevin; Ramesh, Ramamoorthy; Wu, Junqiao

    2012-12-12

    Various mechanisms are currently exploited to transduce a wide range of stimulating sources into mechanical motion. At the microscale, simultaneously high amplitude, high work output, and high speed in actuation are hindered by limitations of these actuation mechanisms. Here we demonstrate a set of microactuators fabricated by a simple microfabrication process, showing simultaneously high performance by these metrics, operated on the structural phase transition in vanadium dioxide responding to diverse stimuli of heat, electric current, and light. In both ambient and aqueous conditions, the actuators bend with exceedingly high displacement-to-length ratios up to 1 in the sub-100 μm length scale, work densities over 0.63 J/cm(3), and at frequencies up to 6 kHz. The functionalities of actuation can be further enriched with integrated designs of planar as well as three-dimensional geometries. Combining the superior performance, high durability, diversity in responsive stimuli, versatile working environments, and microscale manufacturability, these actuators offer potential applications in microelectromechanical systems, microfluidics, robotics, drug delivery, and artificial muscles.

  8. High efficiency processing for reduced amplitude zones detection in the HRECG signal

    Science.gov (United States)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.

    2016-04-01

    Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.

  9. High Capacity Phase/Amplitude Modulated Optical Communication Systems and Nonlinear Inter-Channel Impairments

    Science.gov (United States)

    Tavassoli, Vahid

    This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.

  10. Pulsation analysis of the high amplitude δ Scuti star CW Serpentis

    Science.gov (United States)

    Niu, Jia-Shu; Fu, Jian-Ning; Zong, Wei-Kai

    2013-10-01

    Time-series photometric observations were made for the high amplitude δ Scuti star CW Ser between 2011 and 2012 at the Xinglong Station of National Astronomical Observatories, Chinese Academy of Sciences. After performing the frequency analysis of the light curves, we confirmed the fundamental frequency of f = 5.28677 c d-1, together with seven harmonics of the fundamental frequency, which are newly detected. No additional frequencies were detected. The O — C diagram, produced with the 21 newly determined times of maximum light combined with those provided in the literature, helps to obtain a new ephemeris formula of the times of maximum light with the pulsation period of 0.189150355 ± 0.000000003 d.

  11. Noninvasive respiratory support of juvenile rabbits by high-amplitude bubble continuous positive airway pressure.

    Science.gov (United States)

    Diblasi, Robert M; Zignego, Jay C; Tang, Dennis M; Hildebrandt, Jack; Smith, Charles V; Hansen, Thomas N; Richardson, C Peter

    2010-06-01

    Bubble continuous positive airway pressure (B-CPAP) applies small-amplitude, high-frequency oscillations in airway pressure (DeltaPaw) that may improve gas exchange in infants with respiratory disease. We developed a device, high-amplitude B-CPAP (HAB-CPAP), which provides greater DeltaPaw than B-CPAP provides. We studied the effects of different operational parameters on DeltaPaw and volumes of gas delivered to a mechanical infant lung model. In vivo studies tested the hypothesis that HAB-CPAP provides noninvasive respiratory support greater than that provided by B-CPAP. Lavaged juvenile rabbits were stabilized on ventilator nasal CPAP. The animals were then supported at the same mean airway pressure, bias flow, and fraction of inspired oxygen (FiO2) required for stabilization, whereas the bubbler angle was varied in a randomized crossover design at exit angles, relative to vertical, of 0 (HAB-CPAP0; equivalent to conventional B-CPAP), 90 (HAB-CPAP90), and 135 degrees (HAB-CPAP135). Arterial blood gases and pressure-rate product (PRP) were measured after 15 min at each bubbler angle. Pao2 levels were higher (p<0.007) with HAB-CPAP135 than with conventional B-CPAP. PaCO2 levels did not differ (p=0.073) among the three bubbler configurations. PRP with HAB-CPAP135 were half of the PRP with HAB-CPAP0 or HAB-CPAP90 (p=0.001). These results indicate that HAB-CPAP135 provides greater respiratory support than conventional B-CPAP does.

  12. Measuring the Energy Release of Low Amplitude Impact of High Explosive Events

    Science.gov (United States)

    Straight, J. W.; Idar, D. J.; Smith, L.; Osborn, M. A.; Viramontes, L. E.; Chavez, P. J.

    2004-07-01

    Predicting the degree of violence of high explosive (HE) reactions for a given event is desirable for risk assessments and a goal for computational models. Historically, different types of low amplitude impact tests on HE specimens have been performed to determine the critical impact-velocity threshold for high explosive violent reactions (HEVR). Additionally, the energy release relative to a steady-state detonation is also desirable for assessing the potential outcome of an accidental event. Traditionally, blast gauge measurements have been used to measure the overpressure of the HEVR event at a defined distance. This paper summarizes the use of this active technique coupled with a passive technique to derive average energy release curves for Modified Steven tests. A classic ballistic pendulum design was employed with the traditional blast gauge method. Calibration of the ballistic pendulum involved three elements. First, two mechanical measurements were related to the actual peak swing of the pendulum. Second, the general nature of the swing versus energy release curve was estimated. Two different approaches were used to estimate the momenta as a function of HE energy release using the Gurney relationships for an unsymmetrical sandwich. Finally, both techniques were simultaneously benchmarked with PBX 9501 calibration charges. Test results demonstrate the utility of using coupled diagnostic methods for low amplitude insult testing. Each set of data was fit to derive a working curve for the determination of the average energy release for HEVR event based on mass relative to a steady-state detonation. These tests results and working curve derivations are presented.

  13. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude

    Science.gov (United States)

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of gas-switch and available capacitor recovery time.

  14. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.

    Science.gov (United States)

    Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun

    2014-04-15

    Phase-amplitude coupling (PAC)--the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm - has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques - such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Altered baseline brain activity in experts measured by amplitude of low frequency fluctuations (ALFF): a resting state fMRI study using expertise model of acupuncturists.

    Science.gov (United States)

    Dong, Minghao; Li, Jun; Shi, Xinfa; Gao, Shudan; Fu, Shijun; Liu, Zongquan; Liang, Fanrong; Gong, Qiyong; Shi, Guangming; Tian, Jie

    2015-01-01

    It is well established that expertise modulates evoked brain activity in response to specific stimuli. Recently, researchers have begun to investigate how expertise influences the resting brain. Among these studies, most focused on the connectivity features within/across regions, i.e., connectivity patterns/strength. However, little concern has been given to a more fundamental issue whether or not expertise modulates baseline brain activity. We investigated this question using amplitude of low-frequency (expertise model, i.e., acupuncturists, due to their robust proficiency in tactile perception and emotion regulation. After the psychophysical and behavioral expertise screening procedure, 23 acupuncturists and 23 matched non-acupuncturists (NA) were enrolled. Our results explicated higher ALFF for acupuncturists in the left ventral medial prefrontal cortex (VMPFC) and the contralateral hand representation of the primary somatosensory area (SI) (corrected for multiple comparisons). Additionally, ALFF of VMPFC was negatively correlated with the outcomes of the emotion regulation task (corrected for multiple comparisons). We suggest that our study may reveal a novel connection between the neuroplasticity mechanism and resting state activity, which would upgrade our understanding of the central mechanism of learning. Furthermore, by showing that expertise can affect the baseline brain activity as indicated by ALFF, our findings may have profound implication for functional neuroimaging studies especially those involving expert models, in that difference in baseline brain activity may either smear the spatial pattern of activations for task data or introduce biased results into connectivity-based analysis for resting data.

  16. Efficient Ultra-High Speed Communication with Simultaneous Phase and Amplitude Regenerative Sampling (SPARS)

    Science.gov (United States)

    Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang

    2017-08-01

    For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.

  17. A study of daily variation in cosmic ray intensity during high/low amplitude days

    Indian Academy of Sciences (India)

    Rajesh K Mishra; Rekha Agarwal Mishra

    2007-03-01

    A detailed study has been conducted on the long-term changes in the diurnal, semi-diurnal and tri-diurnal anisotropies of cosmic rays in terms of the high/low amplitude anisotropic wave train events (HAE/LAE) during the period 1981-94 using the neutron monitor data from Deep River Neutron Monitoring Station. In all, 38 HAE and 28 LAE cases have been studied. An inter-comparison of the first three harmonics during these events has been made so as to understand the basic reason for the occurrence of these types of events. It has been observed that the phase of diurnal anisotropy shifts towards earlier hours for HAEs and it shifts towards earlier hour as compared to 18-h direction for LAEs. For semi-diurnal anisotropy, phase remains statistically the same for both HAE and LAE. In the case of tri-diurnal anisotropy, phase is evenly distributed for both types of events. The interplanetary magnetic field (IMF) and solar wind plasma (SWP) parameters during these events are also investigated. It has also been observed that HAE/LAEs are weakly dependent on high-speed solar wind velocity. The two types of solar wind streams (corotating streams and flare-generated streams) produce significant deviations in cosmic ray intensity during HAE/LAE.

  18. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  19. Gaussian fluctuations in chaotic eigenstates

    CERN Document Server

    Srednicki, M A; Srednicki, Mark; Stiernelof, Frank

    1996-01-01

    We study the fluctuations that are predicted in the autocorrelation function of an energy eigenstate of a chaotic, two-dimensional billiard by the conjecture (due to Berry) that the eigenfunction is a gaussian random variable. We find an explicit formula for the root-mean-square amplitude of the expected fluctuations in the autocorrelation function. These fluctuations turn out to be O(\\hbar^{1/2}) in the small \\hbar (high energy) limit. For comparison, any corrections due to scars from isolated periodic orbits would also be O(\\hbar^{1/2}). The fluctuations take on a particularly simple form if the autocorrelation function is averaged over the direction of the separation vector. We compare our various predictions with recent numerical computations of Li and Robnik for the Robnik billiard, and find good agreement. We indicate how our results generalize to higher dimensions.

  20. Short-lived high-amplitude cooling on Svalbard during the Dark Ages

    Science.gov (United States)

    van der Bilt, Willem; D`Andrea, William; Bakke, Jostein; Balascio, Nicholas; Werner, Johannes; Hoek, Wim

    2016-04-01

    As the paradigm of a stable Holocene climate has shifted, an increasing number of high-resolution proxy timeseries reveal dynamic conditions, characterized by high-amplitude climate shifts. Some of these events occurred during historical times and allow us to study the interaction between environmental and cultural change, providing valuable lessons for the near future. These include the Dark Ages Cold Period (DACP) between 300 and 800 AD, a period marked by political upheaval and climate instability that remains poorly investigated. Here, we present two temperature reconstructions from the High Arctic Svalbard Archipelago. To this end, we applied the established alkenone-based UK37 paleothermometer on sediments from two lakes on western Spitsbergen, Lake Hajeren and Lake Hakluyt. The Arctic is presently warming twice as fast as the global average and proxy data as well as model simulations suggest that this amplified response is characteristic for regional climate. The Arctic therefore provides a uniquely sensitive environment to study relatively modest climate shifts, like the DACP, that may not be adequately captured at lower-latitude sites. Owing to undisturbed sediments, a high sampling resolution and robust chronological control, the presented reconstructions resolve the attendant sub-centennial-scale climate shifts. Our findings suggest that the DACP marks a cold spell within the cool Neoglacial period, which started some 4 ka BP on Svalbard. Close investigation reveals a distinct temperature minimum around 500 AD that is reproduced in another alkenone-based temperature reconstruction from a nearby lake. At ± 1.75 °C, cooling underlines the sensitivity of Arctic climate as well as the magnitude of the DACP.

  1. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis

    Science.gov (United States)

    Barriga-Rivera, Alejandro; Guo, Tianruo; Yang, Chih-Yu; Abed, Amr Al; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.

    2017-01-01

    Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells. PMID:28209965

  2. High amplitude theta wave bursts: a novel electroencephalographic feature of rem sleep and cataplexy.

    Science.gov (United States)

    Lo Martire, Viviana Carmen; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Zoccoli, Giovanna

    2015-01-01

    High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the published literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic complexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation.

  3. Skeletal bone morphology is resistant to the high amplitude seasonal leptin cycle in the Siberian hamster.

    Science.gov (United States)

    Rousseau, K; Atcha, Z; Denton, J; Cagampang, F R A; Ennos, A R; Freemont, A J; Loudon, A S I

    2005-09-01

    Recent studies have suggested that the adipocyte-derived hormone, leptin, plays a role in the regulation of metabolism. Here, we tested this hypothesis in the seasonally breeding Siberian hamster, as this species exhibits profound seasonal changes in adiposity and circulating leptin concentrations driven by the annual photoperiodic cycle. Male hamsters were kept in either long (LD) or short (SD) photoperiods. Following exposure to short photoperiods for 8 weeks animals exhibited a significant weight-loss and a 16-fold reduction of serum leptin concentrations. At Week 9, animals in both photoperiods were infused with leptin or PBS via osmotic mini-pump for 14 days. Chronic leptin infusion mimicked LD-like concentrations in SD-housed animals and caused a further decline in body weight and adipose tissue. In LD-housed animals, leptin infusion resulted in a significant elevation of serum concentrations above natural LD-like levels, but had no discernable effect on body weight or overall adiposity. Both bending and compression characteristics and histomorphometric measurements of trabecular bone mass were unaltered by leptin treatment or photoperiod. Our data therefore show that despite a high natural amplitude cycle of leptin, this hormone has no apparent role in the regulation of bone metabolism, and therefore do not support recent propositions that this hormone is an important component in the metabolism of bone tissue.

  4. High amplitude phase resetting in rev-erbalpha/per1 double mutant mice.

    Directory of Open Access Journals (Sweden)

    Corinne Jud

    Full Text Available Over time, organisms developed various strategies to adapt to their environment. Circadian clocks are thought to have evolved to adjust to the predictable rhythms of the light-dark cycle caused by the rotation of the Earth around its own axis. The rhythms these clocks generate persist even in the absence of environmental cues with a period of about 24 hours. To tick in time, they continuously synchronize themselves to the prevailing photoperiod by appropriate phase shifts. In this study, we disrupted two molecular components of the mammalian circadian oscillator, Rev-Erbalpha and Period1 (Per1. We found that mice lacking these genes displayed robust circadian rhythms with significantly shorter periods under constant darkness conditions. Strikingly, they showed high amplitude resetting in response to a brief light pulse at the end of their subjective night phase, which is rare in mammals. Surprisingly, Cry1, a clock component not inducible by light in mammals, became slightly inducible in these mice. Taken together, Rev-Erbalpha and Per1 may be part of a mechanism preventing drastic phase shifts in mammals.

  5. High-frequency fluctuation measurements by far-infrared laser Faraday-effect polarimetry-interferometry and forward scattering system on MST

    Energy Technology Data Exchange (ETDEWEB)

    Ding, W. X., E-mail: wding@ucla.edu; Lin, L.; Brower, D. L. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Duff, J. R. [Department of Physics, University of Wisconsin-Madison, Wisconsin 53706 (United States)

    2014-11-15

    Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1–2 cm{sup −1} for beam width w = 1.5 cm and 15 cm{sup −1} for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.

  6. High-frequency fluctuation measurements by far-infrared laser Faraday-effect polarimetry-interferometry and forward scattering system on MST.

    Science.gov (United States)

    Ding, W X; Lin, L; Duff, J R; Brower, D L

    2014-11-01

    Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.

  7. The Spectral Amplitude of Stellar Convection and Its Scaling in the High-Rayleigh-number Regime

    Science.gov (United States)

    Featherstone, Nicholas A.; Hindman, Bradley W.

    2016-02-01

    Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.

  8. Mechanism associated with the Space Shuttle main engine oxidizer valve/duct system anomalous high amplitude discrete acoustical excitation

    Science.gov (United States)

    Schutzenhofer, L. A.; Jones, J. H.; Jewell, R. E.; Ryan, R. S.

    1980-01-01

    Anomalous high frequency pressure fluctuations in the Space Shuttle main engine have been experienced during hot firings. Through diagnostic analysis of hot firing engine data, it was determined that this excitation originated at the main oxidizer valve. The intensity of these fluctuations was such that the main oxidizer valve was partially consumed in fire, experienced fretting, and had seal damage. Delineated in this paper are the associated dynamical phenomena and the methodologies leading toward understanding the excitation mechanism. The results presented demonstrate that the source of the anomalous frequencies was suppressed by a simple fix and all main oxidizer valve damage was terminated.

  9. Eccentricity fluctuations make flow measurable in high multiplicity p-p collisions

    CERN Document Server

    Casalderrey-Solana, Jorge

    2010-01-01

    Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and could be applied so far to heavy ion collisions only. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity ($dN_{\\rm ch}/dy \\geq 50$) p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of elliptic flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.

  10. Quantifying the high-velocity, low-amplitude spinal manipulative thrust: a systematic review.

    Science.gov (United States)

    Downie, Aron S; Vemulpad, Subramanyam; Bull, Peter W

    2010-09-01

    The purpose of this study was to systematically review studies that quantify the high-velocity, low-amplitude (HVLA) spinal thrust, to qualitatively compare the apparatus used and the force-time profiles generated, and to critically appraise studies involving the quantification of thrust as an augmented feedback tool in psychomotor learning. A search of the literature was conducted to identify the sources that reported quantification of the HVLA spinal thrust. MEDLINE-OVID (1966-present), MANTIS-OVID (1950-present), and CINAHL-EBSCO host (1981-present) were searched. Eligibility criteria included that thrust subjects were human, animal, or manikin and that the thrust type was a hand-delivered HVLA spinal thrust. Data recorded were single force, force-time, or displacement-time histories. Publications were in English language and after 1980. The relatively small number of studies, combined with the diversity of method and data interpretation, did not enable meta-analysis. Twenty-seven studies met eligibility criteria: 17 studies measured thrust as a primary outcome (13 human, 2 cadaver, and 2 porcine). Ten studies demonstrated changes in psychomotor learning related to quantified thrust data on human, manikin, or other device. Quantifiable parameters of the HVLA spinal thrust exist and have been described. There remain a number of variables in recording that prevent a standardized kinematic description of HVLA spinal manipulative therapy. Despite differences in data between studies, a relationship between preload, peak force, and thrust duration was evident. Psychomotor learning outcomes were enhanced by the application of thrust data as an augmented feedback tool. Copyright © 2010 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  11. Amplitude-integrated electroencephalographic activity is suppressed in preterm infants with high scores on illness severity

    NARCIS (Netherlands)

    ter Horst, Hendrik J.; Jongbloed-Pereboom, Marjolein; van Eykern, Leo A.; Bos, Arend F.

    2011-01-01

    Background: The neonatal acute physiology score. SNAP-II, reflects the severity of illness in newborns. In term newborns, amplitude integrated EEG (aEEG), is depressed following asphyxia. In preterm infants aEEG is discontinuous, and therefore more difficult to assess compared to term infants. Aims:

  12. Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature

    CERN Document Server

    Cheng, M; Jung, C; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Petreczky, P; Schmidt, C; Söldner, W

    2008-01-01

    We analyze baryon number, strangeness and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4-action) at two values of the lattice cut-off with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however show deviations from a resonance gas in the vicinity of the transition temperature.

  13. A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations

    Science.gov (United States)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2014-12-01

    The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations.

  14. A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers

    DEFF Research Database (Denmark)

    Wienberg, M; Glenthøj, Birte Yding; Jensen, K S

    2009-01-01

    processing. The present study was designed to replicate and further extent the results of our initial study on the effects of a low dose of escitalopram (10 mg) on MMN, PN and P300 amplitude. In a randomised, double-blind, cross-over experiment, 20 healthy male volunteers received either a single, orally...... administered dose of 15 mg escitalopram (a highly selective serotonin reuptake inhibitor (SSRI)) or placebo, after which their PN, MMN and P300 amplitude were assessed. Similar to our initial study with 10 mg escitalopram, 15 mg escitalopram significantly increased MMN, while it did not affect P300 amplitude....... In contrast to our initial study, however, the currently higher dose of escitalopram did not increase PN. Results support the view that a broad range of increased serotonergic activity enhances MMN, while the relationship between serotonin and PN seems more complex. The current study does not support...

  15. High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection.

    Science.gov (United States)

    Lin, Gong-Ru; Kang, Jung-Jui; Lee, Chao-Kuei

    2010-04-26

    The 40-GHz rational harmonic mode-locking (RHML) and pulse-amplitude equalization of a semiconductor optical amplifier based fiber-ring laser (SOAFL) is demonstrated by the injection of a reshaped 10-GHz gain-switching FPLD pulse. A nonlinearly biased Mach-Zehnder modulator (MZM) is employed to detune the shape of the double-peak pulse before injecting the SOA, such that a pulse-amplitude equalized 4th-order RHML-SOAFL can be achieved by reshaping the SOA gain within one modulation period. An optical injection mode-locking model is constructed to simulate the compensation of uneven amplitudes between adjacent RHML pulse peaks before and after pulse-amplitude equalization. The indirect gain compensation technique greatly suppresses the clock amplitude jitter from 45% to 3.5% when achieving 4th-order RHML, and the amplitude fluctuation of sub-rational harmonic modulating envelope is attenuated by 45 dB. After pulse-amplitude equalization, the pulsewidth of the optical-injection RHML-SOAFL is 8 ps, which still obeys the trend predicted by the inverse square root of repetition rate. The phase noise contributed by the residual ASE noise of the RHML-SOAFL is significantly decreased from -84 to -90 dBc/Hz after initiating the pulse-amplitude equalization, corresponding to the timing jitter reduction from 0.5 to 0.28 ps.

  16. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    Science.gov (United States)

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  17. Neutral pion number fluctuations at high multiplicity in pp-interactions at 50 GeV

    Directory of Open Access Journals (Sweden)

    Popov V. V.

    2012-12-01

    Full Text Available The results of E-190 experiment (project Thermalization with 50 GeV proton beam irradiation of SVD-2 setup are presented. MC simulation has shown the linear dependence of number of photons detected in electromagnetic calorimeter and the average number of neutral pions. Multiplicity distribution of neutral pion, N0, for total number of particles in the event, Ntot = Nch + N0, are obtained with corrections on the setup acceptance, triggering and efficiency of the event reconstruction. The scaled variance of neutral pion fluctuations, ω = D/ , versus total multiplicity is measured. The fluctuations increase at Ntot > 18. According to quantum statistics models this behavior can indicate a pion condensate formation in the high pion multiplicity system. This effect has been observed for the first time.

  18. The role of high-frequency envelope fluctuations for speech masking release

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    measured data from normal-hearing listeners (Festen and Plomp, 1990; Christiansen et al., 2013). The results support the hypothesis that high-frequency envelope fluctuations (>30 Hz) are essential for speech intelligibility in conditions with speech interferers. While the sEPSM reflects effects...... of energetic and modulation masking in speech intelligibility, the remaining unexplored effect in some conditions may be attributed to, and defined as, "informational masking".......The speech-based envelope power spectrum model (sEPSM; Jørgensen and Dau, 2011; Jørgensen et al., 2013) was shown to successfully predict speech intelligibility in conditions with stationary and fluctuating interferers, reverberation, and spectral subtraction. The key element in the model...

  19. Cluster observations of magnetic field fluctuations in the high-altitude cusp

    Directory of Open Access Journals (Sweden)

    K. Nykyri

    2004-07-01

    Full Text Available High-resolution (22 vector/s magnetic field data from Cluster FGM instrument are presented for the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence for much of the crossing. Large-scale fluctuations show some correlation between spacecraft but the higher frequency fluctuations show no correlation, indicating that the length scales of these waves are smaller than the spacecraft separation (500km. In many intervals, there are clear peaks in the wave power around the ion cyclotron frequency (~1Hz, and there is some evidence for waves at the first harmonic of this frequency. Both left- and right-hand polarised waves are found, with angles of propagation with respect to the ambient magnetic field that range from parallel to perpendicular. The regions of enhanced magnetic field fluctuations appear to be associated with plasma flows possibly originating from a lobe reconnection site. The most coherent, long lasting wave trains with frequencies close to local ion cyclotron frequency occur at a boundary between a sheared flow and a stagnant plasma.

  20. An unusual very low-mass high-amplitude pre-main sequence periodic variable

    CERN Document Server

    Rodriguez-Ledesma, Maria V; Ibrahimov, Mansur; Messina, Sergio; Parihar, Padmakar; Hessman, Frederic; de Oliveira, Catarina Alves; Herbst, William

    2012-01-01

    We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 ha...

  1. Electroconvulsive therapy changes the regional resting state function measured by regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) in elderly major depressive disorder patients: An exploratory study.

    Science.gov (United States)

    Kong, Xiao-Ming; Xu, Shu-Xian; Sun, Yan; Wang, Ke-Yong; Wang, Chen; Zhang, Ji; Xia, Jin-Xiang; Zhang, Li; Tan, Bo-Jian; Xie, Xin-Hui

    2017-06-30

    Electroconvulsive therapy (ECT) is the most effective and rapid treatment for severe major depressive disorder (MDD) in elderly patients. The mechanism of ECT is unclear, and studies on ECT in elderly MDD patients by resting-state functional magnetic resonance imaging are rare. Thirteen elderly MDD patients were scanned before and after ECT using a 3.0T MRI scanner. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) were processed to compare resting-state function before and after treatment. Depression and anxiety symptoms of all patients abated after ECT. Decreased ReHo values in the bilateral superior frontal gyrus (SFG) were observed after ECT, and the values of right SFG significantly correlated with an altered Hamilton depression rating scale score. Increased ALFF values in the left middle frontal gyrus, right middle frontal gyrus, orbital part, and decreased ALFF values in the left midcingulate area, left precentral gyrus, right SFG/middle frontal gyrus after ECT were also observed. These results support the hypothesis that ECT may affect the regional resting state brain function in geriatric MDD patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Fluctuations in the High-Redshift Lyman-Werner and Lyman-alpha Radiation Backgrounds

    CERN Document Server

    Holzbauer, Lauren N

    2011-01-01

    We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos. By using a variation of the halo model, we efficiently generate power spectra for any choice of radiation background. We find that the LW power spectrum typically traces the matter power spectrum at large scales but turns over at the scale corresponding to the effective `horizon' of LW photons (~100 comoving Mpc), unless the sources are extremely rare. The series of horizons that characterize the Lyman-alpha flux profile shape the fluctuations of that background in a similar fashion, though those imprints are washed out once one considers fluctuations in the brightness temperature of the 21-cm signal. The Lyman-alpha background strongly affects the redshi...

  3. High Performance of Space Vector Modulation Direct Torque Control SVM-DTC Based on Amplitude Voltage and Stator Flux Angle

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2013-04-01

    Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.

  4. Evaluation of a Hopkinson bar fly-away technique for high amplitude shock accelerometer calibration

    Energy Technology Data Exchange (ETDEWEB)

    Togami, T.C.; Bateman, V.I.; Brown, F.A.

    1997-11-01

    A split Hopkinson bar technique has been developed to evaluate the performance of accelerometers that measure large amplitude pulses. An evaluation of this technique has been conducted in the Mechanical Shock Laboratory at Sandia National Laboratories (SNL) to determine its use in the practical calibration of accelerometers. This evaluation consisted of three tasks. First, the quartz crystal was evaluated in a split Hopkinson bar configuration to evaluate the quartz gage`s sensitivity and frequency response at force levels of 18,000, 35,000 and 53,000 N at ambient temperature, {minus}48 C and +74 C. Secondly, the fly away technique was evaluated at shock amplitudes of 50,000, 100,000, 150,000 and 200,000 G (1 G = 9.81 m/s{sup 2}) at ambient temperature, {minus}48 C and +74 C. Lastly, the technique was performed using a NIST calibrated reference accelerometer. Comparisons of accelerations calculated from the quartz gage data and the measured acceleration data have shown very good agreement. Based on this evaluation, the authors expect this split Hopkinson fly away technique to be certified by the SNL Primary Standards Laboratory.

  5. Short duration high amplitude flares detected on the M dwarf star KIC 5474065

    CERN Document Server

    Ramsay, Gavin; Hakala, Pasi; Garcia-Alvarez, David; Brooks, Adam; Barclay, Thomas; Still, Martin

    2013-01-01

    Using data obtained during the RATS-Kepler project we identified one short duration flare in a 1 hour sequence of ground based photometry of the dwarf star KIC 5474065. Observations made using GTC show it is a star with a M4 V spectral type. Kepler observations made using 1 min sampling show that KIC 5474065 exhibits large amplitude (deltaF/F>0.4) optical flares which have a duration as short as 10 mins. We compare the energy distribution of flares from KIC 5474065 with that of KIC 9726699, which has also been observed using 1 min sampling, and ground based observations of other M dwarf stars in the literature. We discuss the possible implications of these short duration, relatively low energy flares would have on the atmosphere of exo-planets orbiting in the habitable zone of these flare stars.

  6. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee

    2014-01-01

    packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...... on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...

  7. Using domain walls to perform non-local measurements with high spin signal amplitudes

    Science.gov (United States)

    Savero Torres, W.; Pham, V.-T.; Zahnd, G.; Laczkowski, P.; Nguyen, V.-D.; Beigné, C.; Notin, L.; Jamet, M.; Marty, A.; Vila, L.; Attané, J.-P.

    2016-07-01

    Standard non-local measurements require lateral spin-valves with two different ferromagnetic electrodes, to create and to detect the spin accumulation. Here we show that non-local measurements can also be performed in a cross-shaped nanostructure, made of a single ferromagnetic wire connected to an orthogonal non-magnetic wire. A magnetic domain wall located underneath the ferromagnetic/non-magnetic interface is used to control the magnetizations of the injection and detection zones. As these zones can be very close, our results display spin signals possessing amplitudes larger than those obtained in conventional non-local measurements. We also show that this method can be used as a domain wall detection technique.

  8. The Spectral Amplitude of Stellar Convection and its Scaling in the High-Rayleigh-Number Regime

    CERN Document Server

    Featherstone, Nicholas A

    2015-01-01

    Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely-hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique testbed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation due to this apparent overestimation. We present a series of 3-dimensional (3-D) stellar convection simulations designed to examine how the amplitude and spectral distribution of ...

  9. The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study.

    Science.gov (United States)

    Rajaei Jafarabadi, M; Rouhi, G; Kaka, G; Sadraie, S H; Arum, J

    2016-12-01

    This study aimed at investigating the effects of photobiomodulation (PBM) and low-amplitude high-frequency (LAHF) whole body mechanical vibration on bone fracture healing process when metallic plates are implanted in rats' femurs. Forty male rats weighing between 250 and 350 g, 12 weeks old, were employed in this study. A transverse critical size defect (CSD) was made in their right femurs that were fixed by stainless steel plates. After the surgery, the rats were divided equally into four groups: low-level laser therapy group (GaAlAs laser, 830 nm, 40 mW, 4 J/cm(2), 0.35 cm beam diameter, LLLT), whole body vibration group (60 Hz, 0.1 mm amplitude, 1.5 g, WBV), a combination of laser and vibration group (LV), and the control group (C). Each group was divided into two subgroups based on sacrifice dates. The rats were sacrificed at intervals of 3 and 6 weeks after the surgery to extract their right femurs for radiography and biomechanical and histological analyses, and the results were analyzed using standard statistical methods. Radiographic analyses showed greater callus formation in the LLLT and WBV groups than in control group at both 3 (P low-amplitude high-frequency WBV both had a positive impact on bone healing process, for critical size defects in the presence of a stainless steel implant. But their combination, i.e., low-level laser therapy and low-amplitude high-frequency whole body vibration (LV), interestingly did not accelerate the fractured bone healing process.

  10. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  11. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  12. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    Energy Technology Data Exchange (ETDEWEB)

    Finnemore, Douglas K. [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La2-xSrxCuO4-δ, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H $\\parallel$ c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below Tc, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the Tc0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La2-xSrxCuO4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to Tc. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξc becomes comparable to the spacing between adjacent CuO2 layers s at sufficiently high magnetic field near Hc2.

  13. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    Energy Technology Data Exchange (ETDEWEB)

    Douglas K. Finnemore

    2001-06-25

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {xi}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic field near H{sub c2}.

  14. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    Energy Technology Data Exchange (ETDEWEB)

    Yung Moo Huh

    2001-05-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H{parallel}c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T{sub c}. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance {zeta}{sub c} becomes comparable to the spacing between adjacent CuO{sub 2} layers s at sufficiently high magnetic fields near H{sub c2}.

  15. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-11-16

    We have detected 90 objects with periods and lightcurve structure similar to those of field {delta} Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d{sup -1}) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  16. Stability analysis of amplitude death in delay-coupled high-dimensional map networks and their design procedure

    Science.gov (United States)

    Watanabe, Tomohiko; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2017-01-01

    The present paper studies amplitude death in high-dimensional maps coupled by time-delay connections. A linear stability analysis provides several sufficient conditions for an amplitude death state to be unstable, i.e., an odd number property and its extended properties. Furthermore, necessary conditions for stability are provided. These conditions, which reduce trial-and-error tasks for design, and the convex direction, which is a popular concept in the field of robust control, allow us to propose a design procedure for system parameters, such as coupling strength, connection delay, and input-output matrices, for a given network topology. These analytical results are confirmed numerically using delayed logistic maps, generalized Henon maps, and piecewise linear maps.

  17. Acoustic minor losses in high amplitude resonators with single-sided junctions

    Science.gov (United States)

    Doller, Andrew J.

    Steady flow engineering handbooks like Idelchik20 do not exist for investigators interested in acoustic (oscillating) fluid flows in complex resonators. Measurements of acoustic minor loss coefficients are presented in this dissertation for a limited number of resonator configurations having single-sided junctions. While these results may be useful, the greater purpose of this work is to provide a set of controlled measurements that can be used to benchmark computational models of acoustic flows used for more complicated resonator structures. The experiments are designed around a driver operating at 150 Hz enabling acoustic pressures in excess of 10k Pa in liquid cooled, temperature controlled resonators with 90°, 45° and 25° junctions. These junctions join a common 109 cm long 4.7 cm diameter section to a section of 8.4 mm diameter tube making two sets of resonators: one set with a small diameter length approximately a quarter-wavelength (45 cm), the other approximately a half-wavelength (112 cm). The long resonators have a velocity node at the junction; the short resonators have a velocity anti-node generating the greatest minor losses. Input power is measured by an accelerometer and a pressure transducer at the driver. A pressure sensor at the rigid termination measures radiation pressure from the driver and static junction pressure, as well as the acoustic pressure used to calculate linear thermal and viscous resonator wall losses. At the largest amplitudes, the 90° junction was found to dissipate as much as 0.3 Watt, 1/3 the power of linear losses alone. For each junction, the power dissipation depends on acoustic pressure differently: pressure cubed for the 90°, pressure to the 3.76 for the 45° and pressure to the 4.48 for the 25°. Common among all resonators, blowing acoustic half-cycle minor losses (KB) are excited at lower amplitudes than the suction half-cycle (KS) minor losses. Data collected for the 90° junction shows KB reaches an asymptotic

  18. How to detect fluctuating stripes in the high-temperature superconductors

    Science.gov (United States)

    Kivelson, S. A.; Bindloss, I. P.; Fradkin, E.; Oganesyan, V.; Tranquada, J. M.; Kapitulnik, A.; Howald, C.

    2003-10-01

    This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.

  19. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    Science.gov (United States)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of

  20. High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    Science.gov (United States)

    Cardani, L.; Casali, N.; Colantoni, I.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-01-01

    Developing wide-area cryogenic light detectors with baseline resolution better than 20 eV is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. The potential of this technique was proved by the CALDER project that reached a baseline resolution of 154 ± 7 eV RMS by sampling a 2 × 2 cm2 Silicon substrate with 4 Aluminum KIDs. In this paper, we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82 ± 4 eV by sampling the same substrate with a single Aluminum KID.

  1. Resolving longitudinal amplitude and phase information of two continuous data streams for high-speed and real-time processing

    Directory of Open Access Journals (Sweden)

    A. Guntoro

    2009-05-01

    Full Text Available Although there is an increase of performance in DSPs, due to its nature of execution a DSP could not perform high-speed data processing on a continuous data stream. In this paper we discuss the hardware implementation of the amplitude and phase detector and the validation block on a FPGA. Contrary to the software implementation which can only process data stream as high as 1.5 MHz, the hardware approach is 225 times faster and introduces much less latency.

  2. Surrogate data modeling the relationship between high frequency amplitudes and Higuchi fractal dimension of EEG signals in anesthetized rats.

    Science.gov (United States)

    Spasic, Sladjana; Kalauzi, Aleksandar; Kesic, Srdjan; Obradovic, Milica; Saponjic, Jasna

    2011-11-21

    We used spectral analysis and Higuchi fractal dimension (FD) to correlate the EEG spectral characteristics of the sensorimotor cortex, hippocampus, and pons with their corresponding EEG signal complexities in anesthetized rats. We have explored the quantitative relationship between the mean FDs and EEG wide range high frequency (8-50 Hz) activity during ketamine/xylazine versus nembutal anesthesia at surgical plane. Using FD we detected distinct inter-structure complexity pattern and uncovered for the first time that the polygraphically and behaviorally defined anesthetized state at surgical plane as equal during experiment in two anesthetic regimens, is not the same with respect to the degree of neuronal activity (degree of generalized neuronal inhibition achieved) at different brain levels. Using the correlation of certain brain structure EEG spectral characteristics with their corresponding FDs, and the surrogate data modeling, we determined what particular frequency band contributes to EEG complexities in ketamine/xylazine versus nembutal anesthesia. In this study we have shown that the quantitative relationship between higher frequency EEG amplitude and EEG complexity is the best-modeled by surrogate data as a 3rd order polynomial. On the base of our EEG amplitude/EEG complexity relationship model, and the evidenced spectral differences in ketamine versus nembutal anesthesia we have proved that higher amplitudes of sigma, beta, and gamma frequency in ketamine anesthesia yields to higher FDs.

  3. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    Science.gov (United States)

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang

    2016-04-01

    An analysis method is proposed to study the forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions, built on the earlier work of Bzdak and Teaney [Phys. Rev. C 87, 024906 (2013), 10.1103/PhysRevC.87.024906]. The method allows the decomposition of the centrality dependence of average multiplicity from the dynamical event-by-event (EbyE) fluctuation of multiplicity in pseudorapidity. Application of the method to AMPT (A Multi-Phase Transport model) and HIJING (Heavy Ion Jet INteraction Generator) models shows that the long-range component of the FB correlation is captured by a few longitudinal harmonics, with the first component driven by the asymmetry in the number of participating nucleons in the two colliding nuclei. The higher-order longitudinal harmonics are found to be strongly damped in AMPT compared to HIJING, due to weaker short-range correlations as well as the final-state effects present in the AMPT model. Two-particle pseudorapidity correlation reveals interesting charge-dependent short-range structures that are absent in HIJING model. The proposed method opens an avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. Future analysis directions and prospects of using the pseudorapidity correlation function to understand the centrality bias in p +p , p +A, and A+A collisions are discussed.

  4. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  5. Small-scale fluctuations in barium drifts at high latitudes and associated Joule heating effects

    Science.gov (United States)

    Hurd, L. D.; Larsen, M. F.

    2016-01-01

    Most previous estimates of Joule heating rates, especially the contribution of small-scale structure in the high-latitude ionosphere, have been based on incoherent scatter or coherent scatter radar measurements. An alternative estimate can be found from the plasma drifts obtained from ionized barium clouds released from sounding rockets. We have used barium drift data from three experiments to estimate Joule heating rates in the high-latitude E region for different magnetic activity levels. In particular, we are interested in the contribution of small-scale plasma drift fluctuations, corresponding to equivalent electric field fluctuations, to the local Joule heating rate on scales smaller than those typically resolved by radar or other measurements. Since Joule heating is a Lagrangian quantity, the inherently Lagrangian estimates provided by the chemical tracer measurements are a full description of the effects of electric field variance and neutral winds on the heating, differing from the Eulerian estimates of the type provided by ground-based measurements. Results suggest that the small-scale contributions to the heating can be more than a factor of 2 greater than the mean field contribution regardless of geomagnetic conditions, and at times the small-scale contribution is even larger. The high-resolution barium drift measurements, moreover, show that the fine structure in the electric field can be more variable than previous studies have reported for similar conditions. The neutral winds also affect the heating, altering the height-integrated Joule heating rates by as much as 12%, for the cases studied here, and modifying the height distribution of the heating profile as well.

  6. Distinguishing Thermal Fluctuations from Instrumental Error for High Pressure Charged Gas

    CERN Document Server

    Bedroya, Alek

    2016-01-01

    Thermodynamic parameters such as temperature and pressure could be defined from the statistical behavior of the system. Therefore, always there exists a natural thermal fluctuations in these parameters which leads to fluctuations in experimental data. Analyzing these data fluctuations are very useful in studying systems in their critical points such as the phase transition points. But unfortunately it is hard to distinguish these fluctuations from the fluctuations due to the instrumental errors. In this article we have offered a method by which an experimenter can separate these fluctuations from each other. Additionally we have introduced a new computational idea which reduces the simulation time considerably. We have used the Euler algorithm which generally does not hold the internal energy conserved. However we have used this fact as a positive chance which allows us to travel in the phase space and reach different energies in much less time. This would be an acceptable only if system does spend enough tim...

  7. High Energy Asymptotics of the Scattering Amplitude for the Schrödinger Equation

    Indian Academy of Sciences (India)

    D Yafaev

    2002-02-01

    We find an explicit function approximating at high energies the kernel of the scattering matrix with arbitrary accuracy. Moreover, the same function gives all diagonal singularities of the kernel of the scattering matrix in the angular variables.

  8. Study of High and Low Amplitude Wave Trains of Cosmic Ray Diurnal Variation during Solar Cycle 23

    Indian Academy of Sciences (India)

    Ambika Singh; Anil Kumar Tiwari; S. P. Agrawal

    2010-06-01

    A detailed study has been conducted on the long-term changes in the diurnal variation of cosmic rays in terms of high and low amplitude wave trains event (HAEs/LAEs) during the period 1996–2008 (solar cycle 23), using the neutron monitor data from Kiel neutron monitoring station. As such, 17 HAE and 48 LAE cases have been detected and analyzed. These HAEs appear quite dominantly during the declining phase as well as near the maximum of the solar activity cycle 23. In contrast, the low amplitude events (LAEs) are inversely correlated with solar activity cycle. In fact, LAEs appear quite dominantly during the minimum phase of the solar activity. When we compare our results for diurnal phase with that observed on an annual average basis, we notice no significant diurnal phase shift for HAEs as well as for LAEs. Moreover, we find that the high-speed solar wind streams (HSSWS) do not play any significant role in causing these variations. These results are discussed on the basis of that observed in earlier cycles.

  9. High amplitude vortex-induced pulsations in a gas transport system

    NARCIS (Netherlands)

    Kriesels, P.C.; Peters, M.C.A.M.; Hirschberg, A.; Wijnands, A.P.J.; Iafrati, A.; Riccardi, G.; Piva, R.; Bruggeman, J.C.

    1995-01-01

    High Reynolds number, low Mach number gas flows in pipe systems with closed side branches exhibit spectacular low frequency self-sustained pulsations driven by periodic vortex shedding at specific values of the Strouhal number. A detailed study is presented of the behaviour of the flow in a system w

  10. Novel correction method for X-ray beam energy fluctuation of high energy DR system with a linear detector

    Institute of Scientific and Technical Information of China (English)

    YANG Min; CHEN Hao; MENG Fan-Yong; WEI Dong-Bo

    2011-01-01

    A high energy digital radiography (DR) testing system has generated diverse scientific and technological interest in the field of industrial non-destructive testing.However,due to the limitations of manufacturing technology for accelerators,an energy fluctuation of the X-ray beam exists and leads to bright and dark streak artifacts in the DR image.Here we report the utilization of a new software-based method to correct the fluctuation artifacts.The correction method is performed using a high pass filtering operation to extract the high frequency information that reflects the X-ray beam energy fluctuation,and then subtracting it from the original image.Our experimental results show that this method is able to rule out the artifacts effectively and is readily implemented on a practical scanning system.

  11. Localization length fluctuation in randomly layered media

    Science.gov (United States)

    Yuan, Haiming; Huang, Feng; Jiang, Xiangqian; Sun, Xiudong

    2016-10-01

    Localization properties of the two-component randomly layered media (RLM) are studied in detail both analytically and numerically. The localization length is found fluctuating around the analytical result obtained under the high-frequency limit. The fluctuation amplitude approaches zero with the increasing of disorder, which is characterized by the distribution width of random thickness. It is also found that the localization length over the mean thickness periodically varies with the distribution center of random thickness. For the multi-component RLM structure, the arrangement of material must be considered.

  12. One-point fluctuation analysis of the high-energy neutrino sky

    CERN Document Server

    Feyereisen, Michael R; Ando, Shin'ichiro

    2016-01-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even with low statistics and in the absence of point source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple modeling of the high-energy neutrino background by assuming two main extra-galactic components: star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and Fermi, we predict the spectral and anisotropic probability distributions for their expected neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse background due to poor angular resolution, and determine an upper limit on the number of shower events that can reasonably be associated to blazars. We also find that upper limits on the contribution of blazars to the m...

  13. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.

    Science.gov (United States)

    Saltzman, Erica J; Schweizer, Kenneth S

    2008-05-01

    Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.

  14. Fluctuations in radiation backgrounds at high redshift and the first stars

    Science.gov (United States)

    Holzbauer, Lauren Nicole

    The first stars to light up our universe are as yet unseen, but there have been many attempts to elucidate their properties. The characteristics of these stars (`Population/Pop III' stars) that we do know lie mostly within theory; they formed out of metal-free hydrogen and helium gas contained in dark matter minihalos at redshifts z 20-30. The extent to which Pop III star formation reached into later times is unknown. Current and near future instruments are incapable of resolving individual Pop III stars. Consequently, astronomers must devise creative means with which to indirectly predict and measure and their properties. In this thesis, we will investigate a few of those means. We use a new method to model fluctuations of the Lyman-Werner (LW) and Lyman-alpha radiation backgrounds at high redshift. At these early epochs the backgrounds are symptoms of a universe newly lit with its first stars. LW photons (11.5-13.6 eV) are of particular interest because they dissociate molecular hydrogen, the primary coolant in the first minihalos that is necessary for star formation. By using a variation of the `halo model', which describes the spatial distribution and clustering of halos, we can efficiently generate power spectra for these backgrounds. Spatial fluctuations in the LW and (indirectly) the Lyman-alpha BG can tell us about the transition from primordial star formation to a more metal-enriched mode that marks the beginning of the second generation of stars in our Universe. The Near Infrared Background (NIRB) has for some time been considered a potential tool with which to indirectly observe the first stars. Ultraviolet (UV) emission from these stars is redshifted into the NIR band, making the NIRB amenable for hunting Pop III stellar signatures. There have been several measurements of the NIRB and subsequent theoretical studies attempting to explain them in recent years. Though controversial, residual levels of the mean NIRB intensity and anisotropies have been

  15. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  16. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  17. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    Energy Technology Data Exchange (ETDEWEB)

    Werner, S.A. (Missouri Univ., Columbia, MO (United States). Dept. of Physics); Fawcett, E. (Toronto Univ., ON (Canada). Dept. of Physics); Elmiger, M.W.; Shirane, G. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  18. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    Energy Technology Data Exchange (ETDEWEB)

    Werner, S.A. [Missouri Univ., Columbia, MO (United States). Dept. of Physics; Fawcett, E. [Toronto Univ., ON (Canada). Dept. of Physics; Elmiger, M.W.; Shirane, G. [Brookhaven National Lab., Upton, NY (United States)

    1992-11-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  19. High-amplitude THz and GHz strain waves, generated by ultrafast screening of piezoelectric fields in InGaN/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; van Capel, P.J.S.; Turchinovich, Dmitry

    2010-01-01

    Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening.......Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening....

  20. Fractional amplitude of low-frequency fluctuation in patients with VCI based on functional MRI%血管性认知功能障碍分数低频振幅的 fMRI 研究

    Institute of Scientific and Technical Information of China (English)

    陈雪; 丁伟娜; 孙雅文; 周滟; 庄治国; 徐群; 唐辉; 许建荣

    2015-01-01

    Objective To investigate the baseline brain activity in patients with vascular cognitive impairment (VCI)by fractional amplitude of low-frequency fluctuation (fALFF)based on resting-state functional MRI (fMRI).Methods The whole brain fALFF values of 49 patients with no cognition impairment(NCI),vascular cognitive impairment with no dementia(VCIND)and vascular de-mentia(VD)were collected and compared.The correlations between the whole brain fALFF values of VCI patients with scores of MoCA were assessed.Results Compared with NCI group,the fALFF values decreased in the left orbitofrontal cortex but increased in bilateral middle frontal gyrus of VCIND group.fALFF values in the left putamen,left middle frontal gyrus,left inferior parietal lobule and right middle frontal gyrus/precentral gyrus of VD group were lower than those of VCIND group.The VD patients showed lower fALFF values in left orbitofrontal cortex,leftputamen,left transverse temporal gyrus and right thalamus than those of NCI patients.In addition,the fALFF values in the left putamen and thalamus of VCI patients had significantly positive correlation with scores of MoCA.Conclusion fALFF values of the VCI patients had significantly changed.And the decreased fALFF values in left putamen and thalamus may associate with cognitive disfunction.%目的:利用基于分数低频振幅算法(fALFF)的功能磁共振技术探讨血管性认知障碍(VCI)患者静息态脑功能改变。方法收集无认知损害(NCI)、血管性认知障碍无痴呆(VCIND)和血管性痴呆(VD)患者共49例,比较各组间全脑 fALFF 的差异,并与 MoCA 做相关分析。结果静息态下,VCIND 组较 NCI 组左侧眶额回 fALFF 减低,而双侧额中回增高;VD 组较 VCIND 组左侧壳核、额中回及顶下小叶、右侧额中回/中央前回 fALFF 减低;VD 组较 NCI 组左侧眶额回、壳核及颞横回、右侧丘脑 fALFF 减低。VCI 组左侧壳核及丘脑的 fALFF 值与 MoCA 评

  1. Bending Dynamics of Fluctuating Biopolymers Probed by Automated High-Resolution Filament Tracking

    Science.gov (United States)

    Brangwynne, Clifford P.; Koenderink, Gijsje H.; Barry, Ed; Dogic, Zvonimir; MacKintosh, Frederick C.; Weitz, David A.

    2007-01-01

    Microscope images of fluctuating biopolymers contain a wealth of information about their underlying mechanics and dynamics. However, successful extraction of this information requires precise localization of filament position and shape from thousands of noisy images. Here, we present careful measurements of the bending dynamics of filamentous (F-)actin and microtubules at thermal equilibrium with high spatial and temporal resolution using a new, simple but robust, automated image analysis algorithm with subpixel accuracy. We find that slender actin filaments have a persistence length of ∼17 μm, and display a q−4-dependent relaxation spectrum, as expected from viscous drag. Microtubules have a persistence length of several millimeters; interestingly, there is a small correlation between total microtubule length and rigidity, with shorter filaments appearing softer. However, we show that this correlation can arise, in principle, from intrinsic measurement noise that must be carefully considered. The dynamic behavior of the bending of microtubules also appears more complex than that of F-actin, reflecting their higher-order structure. These results emphasize both the power and limitations of light microscopy techniques for studying the mechanics and dynamics of biopolymers. PMID:17416612

  2. Dominance of statistical fluctuation in the factorial-moment study of chaos in low multiplicity events of high energy collisions

    Institute of Scientific and Technical Information of China (English)

    刘连寿; 傅菁华; 吴元芳

    2000-01-01

    Using Monte Carlo simulation it is shown that in low multiplicity events the single-event factorial moments are saturated by the statistical fluctuations. The diversification of the event-space moments Cp, q of single-event moments with the diminishing of phase space scale, called "erraticity", observed in experiment can readily be reproduced by a flat probability distribution with only statistical fluctuations and therefore it has nothing to do with chaos as suggested. The possibility of studying chaos in high multiplicity events using erraticity analysis is discussed.

  3. Thermal fluctuations in the high-temperature superconductor CaLaBaCu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Landinez Tellez, D.A. [Universidad Nacional de Colombia, Bogota (Colombia). Dept. de Fisica; Roa-Rojas, J. [Escuela Colombiana de Ingenieria, Bogota (Colombia); Albino Aguiar, J. [Dept. de Fisica, Univ. Federal de Pernambuco, Recife, PE (Brazil); Calero, J.M. [Escuela de Fisica, Univ. Industrial de Santander, Bucaramanga (Colombia)

    2000-07-01

    Magnetization measurements on a polycrystal of CaLaBaCu{sub 3}O{sub 7-{delta}} in high magnetic fields (20 to 50 kOe) are reported. The sample has a zero-field transition temperature T{sub c0} = 77 K and a transition width of 2.0 K. The results show large fluctuation effects, which can be explained by Ginzburg-Landau fluctuation theory for a two-dimensional system. The magnetization displays good scaling behavior as a function of [T - T{sub c}(H)]/(TH){sup 1/2}. The experimental data were fitted by using a theoretical model based in the lowest Landau levels approximation, showing good agreement. We also analyze fluctuation effects in conductivity measurements at zero magnetic field. (orig.)

  4. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation

    Science.gov (United States)

    Baac, Hyoung Won; Ok, Jong G.; Lee, Taehwa; Jay Guo, L.

    2015-08-01

    We demonstrate nano-structural characteristics of carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite films that can be used as highly efficient and robust ultrasound transmitters for diagnostic and therapeutic applications. An inherent architecture of the nano-composite provides unique thermal, optical, and mechanical properties that are accommodated not just for efficient energy conversion but also for extraordinary robustness against pulsed laser ablation. First, we explain a thermoacoustic transfer mechanism within the nano-composite. CNT morphologies are examined to determine a suitable arrangement for heat transfer to the surrounding PDMS. Next, we introduce an approach to enhance optical extinction of the composite films, which uses shadowed deposition of a thin Au layer through an as-grown CNT network. Finally, the transmitter robustness is quantified in terms of laser-induced damage threshold. This reveals that the CNT-PDMS films can withstand an order-of-magnitude higher optical fluence (and extinction) than a Cr film used as a reference. Such robustness is crucial to increase the maximum-available optical energy for optoacoustic excitation and pressure generation. All of these structure-originated characteristics manifest the CNT-PDMS composite films as excellent optoacoustic transmitters for high-amplitude and high-frequency ultrasound generation.

  5. Multi-fluid approach to high-frequency waves in plasmas: I. Small-amplitude regime in fully ionized medium

    CERN Document Server

    Martínez-Gómez, David; Terradas, Jaume

    2016-01-01

    Ideal MHD provides an accurate description of low-frequency Alfv\\'en waves in fully ionized plasmas. However, higher frequency waves in many plasmas of the solar atmosphere cannot be correctly described by ideal MHD and a more accurate model is required. Here, we study the properties of small-amplitude incompressible perturbations in both the low and the high frequency ranges in plasmas composed of several ionized species. We use a multi-fluid approach and take into account the effects of collisions between ions and the inclusion of Hall's term in the induction equation. Through the analysis of the corresponding dispersion relations and numerical simulations we check that at high frequencies ions of different species are not as strongly coupled as in the low frequency limit. Hence, they cannot be treated as a single fluid. In addition, elastic collisions between the distinct ionized species are not negligible for high frequency waves since an appreciable damping is obtained. Furthermore, Coulomb collisions be...

  6. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation.

    Science.gov (United States)

    Baac, Hyoung Won; Ok, Jong G; Lee, Taehwa; Guo, L Jay

    2015-09-14

    We demonstrate nano-structural characteristics of carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite films that can be used as highly efficient and robust ultrasound transmitters for diagnostic and therapeutic applications. An inherent architecture of the nano-composite provides unique thermal, optical, and mechanical properties that are accommodated not just for efficient energy conversion but also for extraordinary robustness against pulsed laser ablation. First, we explain a thermoacoustic transfer mechanism within the nano-composite. CNT morphologies are examined to determine a suitable arrangement for heat transfer to the surrounding PDMS. Next, we introduce an approach to enhance optical extinction of the composite films, which uses shadowed deposition of a thin Au layer through an as-grown CNT network. Finally, the transmitter robustness is quantified in terms of laser-induced damage threshold. This reveals that the CNT-PDMS films can withstand an order-of-magnitude higher optical fluence (and extinction) than a Cr film used as a reference. Such robustness is crucial to increase the maximum-available optical energy for optoacoustic excitation and pressure generation. All of these structure-originated characteristics manifest the CNT-PDMS composite films as excellent optoacoustic transmitters for high-amplitude and high-frequency ultrasound generation.

  7. Control of mean and fluctuating forces on a circular cylinder at high Reynolds numbers

    Institute of Scientific and Technical Information of China (English)

    Chuanping Shao; Jianming Wang

    2007-01-01

    A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 x 104 to 1.0 x 105. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.

  8. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    Science.gov (United States)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  9. Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes

    Science.gov (United States)

    Palmieri, Benoit; Safran, Samuel A.

    2013-09-01

    A recently proposed ternary mixture model is used to predict fluctuation domain lifetimes in the one phase region. The membrane is made of saturated, unsaturated, and hybrid lipids that have one saturated and one unsaturated hydrocarbon chain. The hybrid lipid is a natural linactant which can reduce the packing incompatibility between saturated and unsaturated lipids. The fluctuation lifetimes are predicted as a function of the hybrid lipid fraction and the fluctuation domain size. These lifetimes can be increased by up to three orders of magnitude compared to the case of no hybrids. With hybrid, small length scale fluctuations have sizable amplitudes even close to the critical temperature and, hence, benefit from enhanced critical slowing down. The increase in lifetime is particularly important for nanometer scale fluctuation domains where the hybrid orientation and the other lipids composition are highly coupled.

  10. Phase fluctuations of GPS signals and irregularities in the high latitude ionosphere during geomagnetic storm

    Science.gov (United States)

    Shagimuratov, I.; Chernouss, S.; Cherniak, Iu.; Efishov, I.; Filatov, M.; Tepenitsyna, N.

    2016-05-01

    In this report we analysed latitudinal occurrence of TEC fluctuations over Europe during October 2, 2013 geomagnetic storm. The data of GPS stations spaced in latitudinal range 68°-54° N over longitude of 20°E were involved in this investigation. The magnetograms of the IMAGE network and geomagnetic pulsations at Lovozero (68°02'N 35°00'W) and Sodankyla (67°22'N 26°38'W) observatories were used as indicator of auroral activity. During October 2, 2013 the strong geomagnetic field variations took place near 05 UT at auroral IMAGE network. We found good similarities between time development of substorm and fluctuations of GPS signals. The bay-like geomagnetic variations were followed by intensive phase fluctuations at auroral and subauroral stations. The strong short-term phase fluctuations were also found at mid-latitude Kaliningrad station near 05 UT that correspond to the maximal intense geomagnetic bay variations. This date confirms the equatorward expansion of the auroral oval. It brings in evidence also the storm time behavior of the irregularities oval obtained from multi-site GPS observations.

  11. Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris

    Institute of Scientific and Technical Information of China (English)

    Pongsak Khokhuntod; Jian-Ning Fu; Chayan Boonyarak; Kanokwan Marak; Li Chen; Shi-Yang Jiang

    2007-01-01

    Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006.High-quality photometric data provided in the literature were used to analyze the pulsation of the star,with the derived multiple frequencies fitted to our new data.Besides the dominant frequency and its harmonics,one low frequency(2.27402 cd-1)is discovered,which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light.Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature.we analyzed the long-term variability of AD CMi with the O-C technique.The results provide the updated value of period of 0.122974478 days.and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system.of which some parameters are hereby deduced.

  12. Teaching and Assessment of High-Velocity, Low-Amplitude Techniques for the Spine in Predoctoral Medical Education.

    Science.gov (United States)

    Channell, Millicent King

    2016-09-01

    Although national didactic criteria have been set for predoctoral education and assessment in osteopathic manipulative treatment, there is no criterion standard for teaching methods and assessments of osteopathic manipulative treatment competence in colleges of osteopathic medicine. This issue is more pressing with the creation of the single graduate medical education accreditation system by the American Osteopathic Association and Accreditation Council for Graduate Medical Education, which introduced the creation of "osteopathic recognition" for residencies that want to incorporate osteopathic principles and practice into their programs. Residencies with osteopathic recognition may include both osteopathic and allopathic graduates. Increased standardization at the predoctoral level, however, is recommended as osteopathic principles and practice training applications are expanded. The objectives of this article are to review the standards for teaching osteopathic medical students high-velocity, low-amplitude (HVLA) techniques for the spine; to review and discuss the methods used to assess medical students' proficiency in using HVLA; and to propose baseline standards for teaching and assessing HVLA techniques among medical students.

  13. Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris

    Science.gov (United States)

    Khokhuntod, Pongsak; Fu, Jian-Ning; Boonyarak, Chayan; Marak, Kanokwan; Chen, Li; Jiang, Shi-Yang

    2007-06-01

    Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006. High-quality photometric data provided in the literature were used to analyze the pulsation of the star, with the derived multiple frequencies fitted to our new data. Besides the dominant frequency and its harmonics, one low frequency (2.27402 c d-1) is discovered, which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light. Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature, we analyzed the long-term variability of AD CMi with the O-C technique. The results provide the updated value of period of 0.122974478 days, and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system, of which some parameters are hereby deduced.

  14. The Kep-Cont Mission: Continuing the observation of high-amplitude variable stars in the Kepler field of view

    CERN Document Server

    Molnár, L; Kolenberg, K; Borkovits, T; Antoci, V; Vida, K; Ngeow, C C; Guzik, J A; Plachy, E; Castanheira, B

    2013-01-01

    As a response to the Kepler white paper call, we propose to keep Kepler pointing to its current field of view and continue observing thousands of large amplitude variables (Cepheid, RR Lyrae and delta Scuti stars among others) with high cadence in the Kep-Cont Mission. The degraded pointing stability will still allow observation of these stars with reasonable (better than millimag) precision. The Kep-Cont mission will allow studying the nonradial modes in Blazhko-modulated and first overtone RR Lyrae stars and will give a better view on the period jitter of the only Kepler Cepheid in the field. With continued continuous observation of the Kepler RR Lyrae sample we may get closer to the origin of the century-old Blazhko problem. Longer time-span may also uncover new dynamical effects like apsidal motion in eclipsing binaries. A continued mission will have the advantage of providing unprecedented, many-years-long homogeneous and continuous photometric data of the same targets. We investigate the pragmatic detai...

  15. Patient-centered outcomes of high-velocity, low-amplitude spinal manipulation for low back pain: a systematic review.

    Science.gov (United States)

    Goertz, C M; Pohlman, K A; Vining, R D; Brantingham, J W; Long, C R

    2012-10-01

    Low back pain (LBP) is a well-recognized public health problem with no clear gold standard medical approach to treatment. Thus, those with LBP frequently turn to treatments such as spinal manipulation (SM). Many clinical trials have been conducted to evaluate the efficacy or effectiveness of SM for LBP. The primary objective of this paper was to describe the current literature on patient-centered outcomes following a specific type of commonly used SM, high-velocity low-amplitude (HVLA), in patients with LBP. A systematic search strategy was used to capture all LBP clinical trials of HVLA using our predefined patient-centered outcomes: visual analogue scale, numerical pain rating scale, Roland-Morris Disability Questionnaire, and the Oswestry Low Back Pain Disability Index. Of the 1294 articles identified by our search, 38 met our eligibility criteria. Like previous SM for LBP systematic reviews, this review shows a small but consistent treatment effect at least as large as that seen in other conservative methods of care. The heterogeneity and inconsistency in reporting within the studies reviewed makes it difficult to draw definitive conclusions. Future SM studies for LBP would benefit if some of these issues were addressed by the scientific community before further research in this area is conducted.

  16. Asteroseismology of KIC\\,11754974: a high-amplitude SX\\,Phe pulsator in a 343-day binary system

    CERN Document Server

    Murphy, S J; Kurtz, D W; Suarez, J C; Handler, G; Balona, L A; Smalley, B; Uytterhoeven, K; Szabo, R; Thygesen, A O; Elkin, V; Breger, M; Grigahcene, A; Guzik, J A; Nemec, J M; Southworth, J

    2013-01-01

    The candidate SX Phe star KIC 11754974 shows a remarkably high number of combination frequencies in the Fourier amplitude spectrum: 123 of the 166 frequencies in our multi-frequency fit are linear combinations of independent modes. Predictable patterns in frequency spacings are seen in the Fourier transform of the light curve. We present an analysis of 180 d of short-cadence Kepler photometry and of new spectroscopic data for this evolved, late A-type star. We infer from the 1150-d, long-cadence light curve, and in two different ways, that our target is the primary of a 343-d, non-eclipsing binary system. According to both methods, the mass function is similar, f(M)=0.0207 +/- 0.0003 Msun. The observed pulsations are modelled extensively, using separate, state-of-the-art, time-dependent convection (TDC) and rotating models. The models match the observed temperature and low metallicity, finding a mass of 1.50-1.56 Msun. The models suggest the whole star is metal-poor, and that the low metallicity is not just a...

  17. A novel high amplitude piezoceramic actuator for applications in magnetic resonance elastography: a compliant mechanical amplifier approach

    Science.gov (United States)

    Arani, Arvin; Eskandari, Amiraslan; Ouyang, Puren; Chopra, Rajiv

    2017-08-01

    Piezoceramic actuators are capable of precise positioning with high force, but suffer from limited displacement range, which has hindered their application in the field of magnetic resonance elastography (MRE). The objective of this study was to investigate the feasibility of using a mechanical amplifier in combination with a piezoceramic actuator for the application of endorectal prostate MRE. A five-bar symmetric structure was designed in ANSYS® and manufactured out of brass. Laser vibrometer measurements were used to characterize the amplitude of the CMA actuator while attached to masses in the 0-325 g range and over operating frequencies of 90-500 Hz. The response of the CMA was investigated while mechanically coupled to a balloon type endorectal coil. The resonant frequency of the prototype CMA actuator was predicted within 10% error using ANSYS simulations. The amplification ratio of the CMA actuator was measured to be 10 with the laser vibrometer and 7.6 ± 1.7 (max: 9.2, min: 6.5) using MRE, at a vibration frequency of 200 Hz. Laser vibrometer data also showed that the CMA actuator’s performance did not change whether it was connected to an empty or inflated endorectal. The feasibility of performing endorectal prostate MRE with a CMA actuator was successfully demonstrated in a human volunteer.

  18. A photometric monitoring of bright high-amplitude delta Scuti stars. II. Period updates for seven stars

    CERN Document Server

    Derekas, A; Székely, P; Alfaro, E J; Csák, B; Mészáros, S; Rodríguez, E; Rolland, A; Sarneczky, K; Szabó, G M; Szatmary, K; Varadi, M; Kiss, C; Meszaros, Sz.; Szabo, Gy.M.; Kiss, Cs.

    2003-01-01

    We present new photometric data for seven high-amplitude delta Scuti stars. The observations were acquired between 1996 and 2002, mostly in the Johnson photometric system. For one star (GW UMa), our observations are the first since the discovery of its pulsational nature from the Hipparcos data.The primary goal of this project was to update our knowledge on the period variations of the target stars. For this, we have collected all available photometric observations from the literature and constructed decades-long O-C diagrams of the stars. This traditional method is useful because of the single-periodic nature of the light variations. Text-book examples of slow period evolution (XX Cyg, DY Her, DY Peg) and cyclic period changes due to light-time effect (LITE) in a binary system (SZ Lyn) are updated with the new observations. For YZ Boo, we find a period decrease instead of increase. The previously suggested LITE-solution of BE Lyn (Kiss & Szatmary 1995) is not supported with the new O-C diagram. Instead o...

  19. Effects of atmospheric pressure fluctuations on hill-side coal fires and surface anomalies

    Institute of Scientific and Technical Information of China (English)

    Song Zeyang; Zhu Hongqing; Xu Jiyuan; Qin Xiaofeng

    2015-01-01

    This paper presents numerical studies on the effects of atmospheric pressure fluctuations on hill-side coal fires and their surface anomalies. Based on the single-particle reaction–diffusion model, a formula to estimate oxygen consumption rate at high temperature controlled by oxygen transport is proposed. Daily fluctuant atmospheric pressure was imposed on boundaries, including the abandoned gallery and cracks. Simulated results show that the effects of atmospheric pressure fluctuations on coal fires and surface anomalies depend on two factors: the fluctuant amplitude and the pressure difference between inlet(s) and outlet(s) of the air ventilation system. If the pressure difference is close to the fluctuant amplitude, atmospheric pressure fluctuations greatly enhance gas flow motion and tempera-tures of the combustion zone and outtake(s). If the pressure difference is much larger than the fluctuant amplitude, atmospheric pressure fluctuations exert no impact on underground coal fires and surface anomalies.

  20. Protostring scattering amplitudes

    Science.gov (United States)

    Thorn, Charles B.

    2016-11-01

    We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.

  1. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations in a Young, Extremely Red L-type Brown Dwarf

    Science.gov (United States)

    Lew, Ben W. P.; Apai, Daniel; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J.; Karalidi, Theodora; Yang, Hao; Marley, Mark S.; Cowan, Nicolas B.; Bedin, Luigi R.; Metchev, Stanimir A.; Radigan, Jacqueline; Lowrance, Patrick J.

    2016-10-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs, but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here, we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-K s = 2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy, we find a best-fit rotational period (13.20 ± 0.14 hr) with a larger amplitude at 1.1 μm than at 1.7 μm. This is the third-largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as a haze particle, we successfully explain the wavelength-dependent amplitude with submicron-sized haze particle sizes of around 0.4 μm. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed; the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition.

  2. Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in Rosa hybrida.

    Science.gov (United States)

    Grémiaux, Alexandre; Girard, Sébastien; Guérin, Vincent; Lothier, Jérémy; Baluška, František; Davies, Eric; Bonnet, Pierre; Vian, Alain

    2016-01-15

    It is now accepted that plants perceive high-frequency electromagnetic field (HF-EMF). We wondered if the HF-EMF signal is integrated further in planta as a chain of reactions leading to a modification of plant growth. We exposed whole small ligneous plants (rose bush) whose growth could be studied for several weeks. We performed exposures at two different development stages (rooted cuttings bearing an axillary bud and 5-leaf stage plants), using two high frequency (900MHz) field amplitudes (5 and 200Vm(-1)). We achieved a tight control on the experimental conditions using a state-of-the-art stimulation device (Mode Stirred Reverberation Chamber) and specialized culture-chambers. After the exposure, we followed the shoot growth for over a one-month period. We observed no growth modification whatsoever exposure was performed on the 5-leaf stage plants. When the exposure was performed on the rooted cuttings, no growth modification was observed on Axis I (produced from the elongation of the axillary bud). Likewise, no significant modification was noted on Axis II produced at the base of Axis I, that came from pre-formed secondary axillary buds. In contrast, Axis II produced at the top of Axis I, that came from post-formed secondary buds consistently displayed a delayed and significant reduced growth (45%). The measurements of plant energy uptake from HF-EMF in this exposure condition (SAR of 7.2 10(-4)Wkg(-1)) indicated that this biological response is likely not due to thermal effect. These results suggest that exposure to electromagnetic field only affected development of post-formed organs.

  3. A high speed data acquisition system for the analysis of velocity, density, and total temperature fluctuations at transonic speeds

    Science.gov (United States)

    Clukey, Steven J.; Jones, Gregory S.; Stainback, P. Calvin

    1988-01-01

    The use of a high-speed Dynamic Data Acquisition System (DDAS) to measure simultaneously velocity, density, and total temperature fluctuations is described. The DDAS is used to automate the acquisition of hot-wire calibration data. The data acquisition, data handling, and data reporting techiques used by DDAS are described. Sample data are used to compare results obtained with the DDAS with those obtained from the FM tape and post-test digitization method.

  4. Fluctuation analysis of high frequency electric power load in the Czech Republic

    CERN Document Server

    Kracík, Jiří

    2016-01-01

    We analyze the electric power load in the Czech Republic (CR) which exhibits a seasonality as well as other oscillations typical for European countries. Moreover, we detect 1/f noise property of electrical power load with extra additional peaks that allows to separate it into a deterministic and stochastic part. We then focus on the analysis of the stochastic part using improved Multi-fractal Detrended Fluctuation Analysis method (MFDFA) to investigate power load datasets with a minute resolution. Extracting the noise part of the signal by using Fourier transform allows us to apply this method to obtain the fluctuation function and to estimate the generalized Hurst exponent together with the correlated Hurst exponent, its improvement for the non-Gaussian datasets. The results exhibit a strong presence of persistent behaviour and the dataset is characterized by a non-Gaussian skewed distribution. There are also indications for the presence of the probability distribution that has heavier tail than the Gaussian...

  5. A high-density ERP study reveals latency, amplitude, and topographical differences in multiple sclerosis patients versus controls.

    LENUS (Irish Health Repository)

    Whelan, R

    2012-02-01

    OBJECTIVE: To quantify latency, amplitude and topographical differences in event-related potential (ERP) components between multiple sclerosis (MS) patients and controls and to compare ERP findings with results from the paced auditory serial addition test (PASAT). METHODS: Fifty-four subjects (17 relapsing remitting (RRMS) patients, 16 secondary progressive (SPMS) patients, and 21 controls) completed visual and auditory oddball tasks while data were recorded from 134 EEG channels. Latency and amplitude differences, calculated using composite mean amplitude measures, were tested using an ANOVA. Topographical differences were tested using statistical parametric mapping (SPM). RESULTS: In the visual modality, P2, P3 amplitudes and N2 latency were significantly different across groups. In the auditory modality, P2, N2, and P3 latencies and N1 amplitude were significantly different across groups. There were no significant differences between RRMS and SPMS patients on any ERP component. There were topographical differences between MS patients and controls for both early and late components for the visual modality, but only in the early components for the auditory modality. PASAT score correlated significantly with auditory P3 latency for MS patients. CONCLUSIONS: There were significant ERP differences between MS patients and controls. SIGNIFICANCE: The present study indicated that both early sensory and later cognitive ERP components are impaired in MS patients relative to controls.

  6. Temperature fluctuation phenomena in a normally stagnant pipe connected downward to a high velocity and high temperature main pipe

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akira, E-mail: a-naka@inss.co.jp [Institute of Nuclear Technology, Institute of Nuclear Safety System, Inc., 64 Sata Mihama-cho, Fukui 919-1205 (Japan); Miyoshi, Koji [Institute of Nuclear Technology, Institute of Nuclear Safety System, Inc., 64 Sata Mihama-cho, Fukui 919-1205 (Japan); Oumaya, Toru [Mechanical Engineering Group, Nuclear Power Division, Kansai Electric Power Co. Inc., 8 Yokota, 13 Goichi, Mihama-cho, Fukui 919-1141 (Japan); Takenaka, Nobuyuki; Hosokawa, Shigeo; Hamatani, Daisuke; Hase, Masatsugu; Onojima, Daisuke; Yamamoto, Yasuhiro; Saito, Atsushi [Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai-cho, Higashinada-ku, Kobe 657-8501 (Japan)

    2014-04-01

    Highlights: • Flow patterns in a branch pipe with a closed end were observed by visualization. • The penetration length was investigated using experiments and numerical simulations. • The temperature fluctuation mechanism related to spiral flow was discussed. - Abstract: Numerous pipes branch off from the main pipes in power plant facilities. Main pipe flow initiates a cavity flow in a downward branch pipe with a closed end and a thermally stratified layer may form in the branch pipe if there is significant temperature difference in the main and branch pipe fluids. Fluctuation of a thermally stratified layer may initiate thermal fatigue crack in the branch pipe. In the present study, flow structures and temperature fluctuations in a branch pipe are investigated by experiments and numerical simulations to understand detailed behavior of the layer in a straight pipe and in a bent pipe. The penetration length of the main flow is measured for various main pipe flow velocities. The flow patterns in a straight pipe are divided into three regions by visualization with a tracer method, i.e., cavity flow in region 1, disturbed flow in the transition region, and spiral flow in region 2. The fluid temperature fluctuation in a straight pipe after the increase of main pipe flow velocity is attenuated in several hundred seconds since the thermal stratified layer goes down under the area into which the spiral vortex reaches. The fluid temperature in a bent pipe fluctuates when the spiral vortex reaches its lowest point after a long time period. Periodical velocity fluctuations during several tens second period are observed in the spiral flow. The mechanism of temperature fluctuation near the thermal stratified layer is considered with respect to the interference by the spiral flow and the fixed thermal stratified layer at the bent section by the cold water provided from the horizontal section.

  7. Neural responses to the mechanical parameters of a high velocity, low amplitude spinal manipulation: effect of preload parameters

    Science.gov (United States)

    Reed, William. R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2014-01-01

    Objective The purpose of this study was to determine how the preload that precedes a high velocity low amplitude spinal manipulation (HVLA-SM) affects muscle spindle input from lumbar paraspinal muscles both during and after the HVLA-SM. Methods Primary afferent activity from muscle spindles in lumbar paraspinal muscles were recorded from the L6 dorsal root in anesthetized cats. HVLA-SM of the L6 vertebra was preceded either by no preload or by systematic changes in the preload magnitude, duration, and the presence or absence of a downward incisural point (DIP). Immediate effects of preload on muscle spindle responses to the HVLA-SM were determined by comparing mean instantaneous discharge frequencies (MIF) during the HVLA-SM’s thrust phase with baseline. Longer lasting effects of preload on spindle responses to the HVLA-SM were determined by comparing MIF during slow ramp and hold movement of the L6 vertebra before and following the HVLA-SM. Results The smaller compared to the larger preload magnitude and the longer compared to the shorter preload duration significantly increased (P=0.02 and P=0.04) respectively) muscle spindle responses during the HVLA-SM thrust. The absence of preload had the greatest effect on the change in MIF. Interactions between preload magnitude, duration and DIP often produced statistically significant but arguably physiologically modest changes in the passive signaling properties of the muscle spindle following the manipulation. Conclusion Because preload parameters in this animal model were shown to affect neural responses to an HVLA-SM, preload characteristics should be taken into consideration when judging this intervention’s therapeutic benefit in both clinical efficacy studies and in clinical practice. PMID:24387888

  8. Thermodynamic constraints on the amplitude of quantum oscillations

    Science.gov (United States)

    Shekhter, Arkady; Modic, K. A.; McDonald, R. D.; Ramshaw, B. J.

    2017-03-01

    Magneto-quantum oscillation experiments in high-temperature superconductors show a strong thermally induced suppression of the oscillation amplitude approaching the critical dopings [B. J. Ramshaw et al., Science 348, 317 (2014), 10.1126/science.aaa4990; H. Shishido et al., Phys. Rev. Lett. 104, 057008 (2010), 10.1103/PhysRevLett.104.057008; P. Walmsley et al., Phys. Rev. Lett. 110, 257002 (2013), 10.1103/PhysRevLett.110.257002]—in support of a quantum-critical origin of their phase diagrams. We suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering. We show that the traditional theoretical approaches beyond Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.

  9. Critical parameters and universal amplitude ratios of two-dimensional spin-S Ising models using high- and low-temperature expansions

    CERN Document Server

    Butera, P

    2003-01-01

    For the study of Ising models of general spin S on the square lattice, we have combined our recently extended high-temperature expansions with the low-temperature expansions derived some time ago by Enting, Guttmann and Jensen. We have computed for the first time various critical parameters and improved the estimates of others. Moreover the properties of hyperscaling and of universality (spin S independence) of exponents and of various dimensionless amplitude combinations have been verified accurately. Assuming the validity of the lattice-lattice scaling, from our estimates of critical amplitudes for the square lattice we have also obtained estimates of the corresponding amplitudes for the spin S Ising model on the triangular, honeycomb, and kagome` lattices.

  10. Large-amplitude Fourier transformed high-harmonic alternating current cyclic voltammetry: kinetic discrimination of interfering Faradaic processes at glassy carbon and at boron-doped diamond electrodes.

    Science.gov (United States)

    Zhang, Jie; Guo, Si-Xuan; Bond, Alan M; Marken, Frank

    2004-07-01

    Significant advantages of Fourier transformed large-amplitude ac higher (second to eighth) harmonics relative to responses obtained with conventional small-amplitude ac or dc cyclic voltammetric methods have been demonstrated with respect to (i) the suppression of capacitive background currents, (ii) the separation of the reversible reduction of [Ru(NH(3))(6)](3+) from the overlapping irreversible oxygen reduction process under conditions where aerobic oxygen remains present in the electrochemical cell, and (iii) the kinetic resolution of the reversible [Ru(NH(3))(6)](3+/2+) process in mixtures of [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) at appropriately treated boron-doped diamond electrodes, even when highly unfavorable [Fe(CN)(6)](3-) to [Ru(NH(3))(6)](3+) concentration ratios are employed. Theoretical support for the basis of kinetic discrimination in large-amplitude higher harmonic ac cyclic voltammetry is provided.

  11. Amplitude dependent closest tune approach

    CERN Document Server

    Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department

    2016-01-01

    Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

  12. Features in Quasi-particle Excitations and Tunnelling Spectra due to Coupling to Spin Fluctuations in High-Tc Cuprates

    Institute of Scientific and Technical Information of China (English)

    赵力; 李建新; 龚昌德; 赵柏儒

    2002-01-01

    In a self-consistent mean-field treatment of the two-dimensional t - t' - J model, we theoretically examine thecoupling of in-plane quasi-particles to the antiferromagnetic spin fluctuations in high-Tc superconductors, whichrenormalizes the fermionic self-energy. We reproduce the characteristic peak,lip-hump structure observed notonly in angle-resolved photoemission spectroscopy, but also in superconductor-insulator-normal metal junctionsand scanning tunnelling microscopy experiments. We consider the evolution of this structure with doping. Itis shown that this kind of coupling can account for many anomalous properties of high-Tc superconductors insuperconducting states.

  13. Magnetic properties of high-T(sub c) superconductors: Rigid levitation, flux pinning, thermal depinning, and fluctuation

    Science.gov (United States)

    Brandt, E. H.

    1990-01-01

    The levitation of high-T(sub c) superconductors is quite conspicuous: Above magnets of low symmetry a disk of these ceramics floats motionless, without vibration or rotation; it has a continuous range of stable positions and orientations as if it were stuck in sand. Some specimens may even be suspended above or below the same magnet. This fascinating stability, inherent to no other type of levitation, is caused by the pinning of magnetic flux lines by inhomogeneities inside these extreme type-2 superconductors. The talk deals with pinning of magnetic flux in these materials, with flux flow, flux creep, thermally activated depinning, and the thermal fluctuation of the vortex positions in the flux line lattice (often called flux lattice melting). Also discussed are the fluctuations of the (nearly periodic) magnetic field inside these superconductors which are caused by random pinning sites and by the finite temperature. These fluctuations broaden the van-Hove singularities observed in the density of the magnetic field by nuclear magnetic resonance and by muon spin rotation.

  14. Fluctuation analysis of high frequency electric power load in the Czech Republic

    Science.gov (United States)

    Kracík, Jiří; Lavička, Hynek

    2016-11-01

    We analyze the electric power load in the Czech Republic (CR) which exhibits a seasonality as well as other oscillations typical for European countries. Moreover, we detect the 1/f noise property of electrical power load with extra additional peaks that allows to separate it into a deterministic and stochastic part. We then focus on the analysis of the stochastic part using improved Multi-fractal Detrended Fluctuation Analysis method (MFDFA) to investigate power load datasets with a minute resolution. Extracting the noise part of the signal by using Fourier transform allows us to apply this method to obtain the fluctuation function and to estimate the generalized Hurst exponent together with the correlated Hurst exponent, its improvement for the non-Gaussian datasets. The results exhibit a strong presence of persistent behavior or strong anti-persistent behavior for the differences and the dataset is characterized by a non-Gaussian skewed distribution. There are also indications for the presence of the probability distribution that has heavier tail than the Gaussian distribution.

  15. Pion Fluctuation in High Energy Collisions - A Chaos-based Quantitative Estimation with Visibility Graph Technique

    CERN Document Server

    Bhaduri, Susmita

    2016-01-01

    We propose a new approach for studying pion fluctuation for deeper understanding of the dynamical process involved, from a perspective of fBm-based complex network analysis method called Visibility graph Analysis. This chaos-based, rigorous, non-linear technique is applied to study the erratic behavior of multipion production in \\textbf{$\\pi^{-}$-Ag/Br} interactions at $350$ GeV. This method can offer reliable results with finite data points. The \\textbf{Power of Scale-freeness of Visibility Graph} denoted by-\\textit{PSVG} is a measure of fractality, which can be used as a quantitative parameter for the assessment of the state of a chaotic system. The event-wise fluctuation of the multipion production process can be described by this parameter-\\textit{PSVG}. From the analysis of the \\textit{PSVG} parameter, we can quantitatively confirm that fractal behavior of the particle production process depends on the target excitation and also the fractality decreases with the increase of target excitation.

  16. The role of high-frequency envelope fluctuations for speech masking release

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model [sEPSM; Jørgensen and Dau (2011), Jørgensen et al. (2013)] was shown to successfully predict speech intelligibility in conditions with stationary and fluctuating interferers, reverberation, and spectral subtraction. The key element in the model was t...... effects of energetic and modulation masking in speech intelligibility, the remaining unexplored effect in some conditions may be attributed to, and defined as, “information masking.”......The speech-based envelope power spectrum model [sEPSM; Jørgensen and Dau (2011), Jørgensen et al. (2013)] was shown to successfully predict speech intelligibility in conditions with stationary and fluctuating interferers, reverberation, and spectral subtraction. The key element in the model...... was the multi-resolution estimation of the signal-to-noise ratio in the envelope domain (SNRenv) at the output of a modulation filterbank. The simulations suggested that mainly modulation filters centered in the range from 1 to 8 Hz contribute to speech intelligibility in the case of stationary maskers whereas...

  17. Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest

    Directory of Open Access Journals (Sweden)

    Roland Norbert Boubela

    2013-05-01

    Full Text Available Analysis of resting-state networks using fMRI usually ignores high-frequencyfluctuations in the BOLD signal – be it because of low TR prohibiting the analysis offluctuations with frequencies higher than 0.25 Hz (for a typical TR of 2 s, or becauseof the application of a bandpass filter (commonly restricting the signal to frequencieslower than 0.1 Hz. While the standard model of convolving neuronal activity with ahemodynamic response function suggests that the signal of interest in fMRI is characterized by slow fluctuation, it is in fact unclear whether the high-frequency dynamics of the signal consists of noise only. In this study, 10 subjects were scanned at 3 T during 6 minutes of rest using a multiband EPI sequence with a TR of 354 ms to critically sample fluctuations of up to 1.4 Hz. Preprocessed data were high-pass filtered to include only frequencies above 0.25 Hz, and voxelwise whole-brain temporal ICA (tICA was used to identify consistent high-frequency signals. The resulting components include physiological background signal sources, most notably pulsation and heartbeat components, that can be specifically identified and localized with the method presented here. Perhaps more surprisingly, common resting-state networks like the default-mode network also emerge as separate tICA components. This means that high frequency oscillations sampled with a rather T1-weighted contrast still contain specific information on these resting-state networks to consistently identify them, not consistent with the commonly held view that these networks operate on low-frequency fluctuations alone. Consequently, the use of bandpass filters in resting-state data analysis should be reconsidered, since this step eliminates potentially relevant information. Instead, more specific methods for the elimination of physiological background signals, for example by regression of physiological noise components, might prove to be viable alternatives.

  18. A new delirium phenotype with rapid high amplitude onset and nearly as rapid reversal: Central Coast Australia Delirium Intervention Study

    Directory of Open Access Journals (Sweden)

    Regal PJ

    2015-02-01

    , and 45%/80% for the Delirium Index. General medicine and geriatric medicine groups had similar outcomes.Conclusion: This delirium phenotype selects for a rapid high amplitude critical decline in attention, executive function, IADL, and apathy that recovers almost as rapidly.Keywords: delirium, inattention, executive function, dementia

  19. Probing the High-Redshift Universe Using Fluctuations in the Cosmic Microwave and Infrared Backgrounds

    Science.gov (United States)

    Smidt, Joseph Michael

    Background (CIB) continues to be one of the best probes of physics at the early stages of the universe. If the CMB were a purely Gaussian field, all statistical information would be contained in the power spectrum or two-point correlation function. However, non-Gaussianities ensure that new physics may be extracted from higher n-point correlation functions including the bispectrum and trispectrum of the CMB. In this thesis discuss new estimators we have formulated to probe primordial non-Gaussianity in the bispectrum and trispectrum of CMB data and the constraints we have made using WMAP data while discussing implications for inflationary models. I discuss how these same methods may be used to probe CMB Lensing. Finally, I discuss how upcoming measurements of near and far-infrared CIB fluctuations may be used to constrain the redshift of reionization and clustering of various populations of galaxies. Some preliminary results involving CANDELS, Spitzer SDWFS, CIBER and Herschel datasets is presented.

  20. Fluctuations of Conserved Quantities in High Energy Nuclear Collisions at RHIC

    CERN Document Server

    Luo, Xiaofeng

    2015-01-01

    Fluctuations of conserved quantities in heavy-ion collisions are used to probe the phase transition and the QCD critical point for the strongly interacting hot and dense nuclear matter. The STAR experiment has carried out moment analysis of net-proton (proxy for net-baryon (B)), net-kaon (proxy for net-strangeness (S)), and net-charge (Q). These measurements are important for understanding the quantum chromodynamics phase diagram. We present the analysis techniques used in the moment analysis by the STAR experiment and discuss the moments of net-proton and net-charge distributions from the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider.

  1. Fluctuations of Conserved Quantities in High Energy Nuclear Collisions at RHIC

    Science.gov (United States)

    Luo, Xiaofeng

    2015-04-01

    Fluctuations of conserved quantities in heavy-ion collisions are used to probe the phase transition and the QCD critical point for the strongly interacting hot and dense nuclear matter. The STAR experiment has carried out moment analysis of net-proton (proxy for net- baryon (B)), net-kaon (proxy for net-strangeness (S)), and net-charge (Q). These measurements are important for understanding the quantum chromodynamics phase diagram. We present the analysis techniques used in the moment analysis by the STAR experiment and discuss the moments of net-proton and net-charge distributions from the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider.

  2. Slow-roll corrections to inflaton fluctuations on a brane

    CERN Document Server

    Koyama, K; Wands, D; Koyama, Kazuya; Mizuno, Shuntaro; Wands, David

    2005-01-01

    Quantum fluctuations of an inflaton field, slow-rolling during inflation are coupled to metric fluctuations. In conventional four dimensional cosmology one can calculate the effect of scalar metric perturbations as slow-roll corrections to the evolution of a massless free field in de Sitter spacetime. This gives the well-known first-order corrections to the field perturbations after horizon-exit. If inflaton fluctuations on a four dimensional brane embedded in a five dimensional bulk spacetime are studied to first-order in slow-roll then we recover the usual conserved curvature perturbation on super-horizon scales. But on small scales, at high energies, we find that the coupling to the bulk metric perturbations cannot be neglected, leading to a modified amplitude of vacuum oscillations on small scales. This is a large effect which casts doubt on the reliability of the usual calculation of inflaton fluctuations on the brane neglecting their gravitational coupling.

  3. The competition of different measures to increase flexibility in energy systems with a high share of fluctuating renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Christoph; Teufel, Felix [EnBW Energie Baden-Wuerttemberg AG, Karlsruhe (Germany). Research and Innovation Dept.

    2013-04-01

    The continuous expansion of electricity generation from intermittent renewable energy sources (RES) is changing the present generation structure that has been designed to follow fluctuating demand considerably. In order to utilise a high share of supply-dependent RES, the future energy system needs to become more flexible than it is today. This paper describes the different flexibility options that can be implemented with regard to their major restrictions as well as their suitability to balance a certain deficit or surplus of RES generation. Furthermore, it outlines the importance of competition between these different balancing measures to meet the required level of flexibility at lowest cost. (orig.)

  4. Stochastic isocurvature baryon fluctuations, baryon diffusion, and primordial nucleosynthesis

    CERN Document Server

    Kurki-Suonio, H; Mathews, G J; Kurki-Suonio, Hannu; Jedamzik, Karsten; Mathews, Grant J

    1996-01-01

    We examine effects on primordial nucleosynthesis from a truly random spatial distribution in the baryon-to-photon ratio (\\eta). We generate stochastic fluctuation spectra characterized by different spectral indices and root-mean-square fluctuation amplitudes. For the first time we explicitly calculate the effects of baryon diffusion on the nucleosynthesis yields of such stochastic fluctuations. We also consider the collapse instability of large-mass-scale inhomogeneities. Our results are generally applicable to any primordial mechanism producing fluctuations in \\eta which can be characterized by a spectral index. In particular, these results apply to primordial isocurvature baryon fluctuation (PIB) models. The amplitudes of scale-invariant baryon fluctuations are found to be severely constrained by primordial nucleosynthesis. However, when the \\eta distribution is characterized by decreasing fluctuation amplitudes with increasing length scale, surprisingly large fluctuation amplitudes on the baryon diffusion ...

  5. Finite-amplitude shear-Alfv\\'en waves do not propagate in weakly magnetized collisionless plasmas

    CERN Document Server

    Squire, J; Schekochihin, A A

    2016-01-01

    It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfv\\'en fluctuations above a critical amplitude $\\delta B_{\\perp}/B_{0} \\sim \\beta^{\\,-1/2}$, where $\\beta$ is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfv\\'en-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-$\\beta$ conditions prevalent in many astrophysical plasmas, as well as for the solar wind at $\\sim 1 \\mathrm{AU}$ where $\\beta \\gtrsim 1$.

  6. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations In a Young, Extremely Red L-type Brown Dwarf

    CERN Document Server

    Lew, Ben W P; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J; Karalidi, Theodora; Yang, Hao; Marley, Mark S; Cowan, N B; Bedin,; R., L; Metchev, Stanimir A; Radigan, Jacqueline; Lowrance, Patrick J

    2016-01-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-Ks=2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy we find a best-fit rotational period (13.20$\\pm$0.14 hours) with a larger amplitude at 1.1 micron than at 1.7 micron. This is the third largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentativ...

  7. A high speed compact microwave interferometer for density fluctuation measurements in Sino-UNIted Spherical Tokamak

    Science.gov (United States)

    Zhong, H.; Tan, Y.; Liu, Y. Q.; Xie, H. Q.; Gao, Z.

    2016-11-01

    A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector, without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer's capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.

  8. Hidden focal EEG seizures during prolonged suppressions and high-amplitude bursts in early infantile epileptic encephalopathy.

    Science.gov (United States)

    Al-Futaisi, Amna; Banwell, Brenda; Ochi, Ayako; Hew, Justine; Chu, Bill; Oishi, Makoto; Otsubo, Hiroshi

    2005-05-01

    We report on a 27-month-old female with atypical early infantile epileptic encephalopathy (EIEE), who developed tonic spasms, partial seizures and myoclonic jerks along with episodic bradycardia at 5 days. We recorded digital electroencephalography (EEG) using either an 11-channel neonatal montage or 19 channel scalp electrodes, at 200 Hz sampling rate, and a single reference for a minimum of 30 min. At 18 days EEG showed suppression-burst (SB) patterns during wakefulness and sleep. Tonic spasms concomitant with bursts recorded as brief, low-amplitude fast waves. EEG at 8 months showed increased amplitude of bursts to 1 mV and extension of suppression periods to 65 s. By increasing recording sensitivity, we detected focal epileptiform discharges of slow rhythmic sharp and slow waves building to 30 microV during suppression periods. Status epilepticus occurred at 16 months. EEG at 27 months returned to the previous SB pattern with rare partial seizures. This report is the first to demonstrate clinically silent focal EEG seizures during prolonged suppression periods in atypical EIEE by off-line digital EEG. Digital EEG sensitivity can reveal covert electrical activity during suppression periods in epileptic neonates and infants.

  9. Probing of high-frequency coherent fluctuations by using a two-channel microwave reflectometer with antenna switching

    Science.gov (United States)

    Ikezoe, R.; Ichimura, M.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2016-10-01

    A two-channel microwave reflectometer with capability of fast switching of microwave antennas in array was developed and applied to a hot linear plasma produced in GAMMA 10 to study the behavior of Alfvén waves in a collisionless bounded plasma. High-frequency fluctuations associated with Alfvén-ion-cyclotron (AIC) waves were successfully measured at multi points using this system. It is found that coherent phase fluctuations are obtainable at wide radial and axial region for the AIC waves. In addition, measured phase-difference profile clearly shows standing wave structures. Signature of movement of these nodes is also obtained. These results demonstrate applicability of the developed two-channel reflectometer for assessment of spatial structure of high-frequency waves and also verifies globally expanded coherent structure of the AIC waves in GAMMA 10. Two-point correlation analysis in conjunction with multi-point measurements using antenna switching turns out to be a powerful tool for investigating spatial structure of waves in a hot plasma where traditional solid probes are inadequate. This work was in part supported by Grant-in-Aid for Young Scientists (B) (15K17797) and Scientific Research (C) (25400531), and by Bidirectional Collaborative Research Program of NIFS (NIFS15KUGM101).

  10. Spin fluctuations and structural modifications in frustrated multiferroics RMnO3 (R=Y, Lu) at high pressure

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Lee, S.; Park, J.-G.; Savenko, B. N.

    2010-06-01

    The crystal and magnetic structures of hexagonal manganites YMnO3 and LuMnO3 have been studied by powder neutron diffraction up to 6 GPa in the temperature range of 10-300 K. At ambient pressure, a triangular antiferromagnetic (AFM) state of a Γ1 irreducible representation is stable below T N=70 K in YMnO3. Upon application of high pressure, a spin-reorientation was observed and the triangular AFM structure evolves from Γ1 to Γ1+Γ2 representation symmetry. In LuMnO3, the triangular AFM state of a Γ2 symmetry with T N ≈ 95 K remains stable in the investigated pressure range. The ordered Mn magnetic moment is suppressed at high pressure and low temperature, with much more pronounced effects for YMnO3, indicating enhanced spin fluctuations due to stronger magnetic frustration of the triangular lattice under higher pressure. The relationship between the evolution of spin fluctuations and in-plane Mn-O bonds under pressure is analyzed.

  11. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  12. A review of crustacean sensitivity to high amplitude underwater noise: Data needs for effective risk assessment in relation to UK commercial species.

    Science.gov (United States)

    Edmonds, Nathan J; Firmin, Christopher J; Goldsmith, Denise; Faulkner, Rebecca C; Wood, Daniel T

    2016-07-15

    High amplitude anthropogenic noise is associated with adverse impacts among a variety of organisms but detailed species-specific knowledge is lacking in relation to effects upon crustaceans. Brown crab (Cancer pagurus), European lobster (Homarus gammarus) and Norway lobster (Nephrops norvegicus) together represent the most valuable commercial fishery in the UK (Defra, 2014). Critical evaluation of literature reveals physiological sensitivity to underwater noise among N. norvegicus and closely related crustacean species, including juvenile stages. Current evidence supports physiological sensitivity to local, particle motion effects of sound production in particular. Derivation of correlative relationships between the introduction of high amplitude impulsive noise and crustacean distribution/abundance is hindered by the coarse resolution of available data at the present time. Future priorities for research are identified and argument for enhanced monitoring under current legislative frameworks outlined. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Hypoxic cyclicity in sediments of Soledad Basin, Baja Mexico: A record of high-frequency climate fluctuations?

    Science.gov (United States)

    Westman, A. E.; Brooks, G. R.; Lea, C.

    2007-05-01

    The sedimentary record in Soledad Basin, 45 km west of Baja, Mexico, shows high-frequency oscillations in hypoxia, which can be linked to fluctuations in climate. Soledad Basin, a semi-enclosed basin with a sill depth of 290m, has been shown to exhibit variable levels of hypoxia throughout the geologic past. Located at the intersection of the California Current and California Undercurrent, Soledad Basin is highly responsive to changes in current strength and upwelling, the combination of which creates fluctuations in hypoxia. During climatic cool periods, the California Current is weakened decreasing upwelling and biologic productivity along the Baja Borderland. This causes increased hypoxia in Soledad Basin. The California Undercurrent is also weakened during these cooler periods and brings less nutrients and oxygen to the basin further increasing hypoxia. Since Soledad Basin sediments are undisturbed and have accumulated rapidly, this is a prime location to study high frequency variations in hypoxia in the sedimentary record. The objective of this study was to examine how and to what extent hypoxic events have been recorded in the sedimentary record of Soledad Basin, and gain insight into what controls these events. Surface sediment samples and a single 1.1m gravity core were collected aboard the S.S.V. Robert C. Seamans on a SEA Semester cruise in October 2005. The core was taken at a depth of 490 m near the deepest point of the basin. The core contained laminated sediments consisting of >95% mud. Using 210Pb analysis, a sedimentation rate of 15 cm over the past 100 years was determined, which is consistent with previous research. Trace metal analyses were performed at the cm-scale on selected intervals between 0.34-0.44m and 0.78-0.92m. These intervals correspond to dark organic-rich (>15% organic content) laminations alternating with lighter layers containing less organic material (<15% organic content). All sediments were found to be enriched in Molybdenum

  14. Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    2016-12-01

    Full Text Available This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM. A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i initial compaction stage; (ii crushing stage; and (iii crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV, of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.

  15. 利用低频振幅算法在正常人静息态下的脑性别差异磁共振研究%THE STUDY OF AMPLITUDE OF LOW FREQUENCY FLUCTUATION IN HEALTHY MEN AND WOMEN AT RESTING STATE

    Institute of Scientific and Technical Information of China (English)

    乔鹏飞; 牛广明; 韩晓东

    2012-01-01

    Objective:To study the amplitude of low frequency fluctuation ( ALFF) at the resting state fMRI in healthy men and women, and discussed its underlying neuro - pathophysiological mechanism. Methods:The resting state fMRI data of 19 men and 19 women who performed ALFF were analysis. The amplitude of the blood oxygenation level dependent ( BOLD) activation of the resting state brain was investigated. The brain structures having ALFF increase and decrease were demonstrated. Results:The ALFF increased and decreased symmetrically in the brain regions. The increased involvement of men located in bilateral precentral gyms, bilateral middle frontal gyrus and bilateral superior temporal gyrus. The increased involvement of women covered the limbic system such as parahippocam-pal gyrus, posterior cingulate gyrus; the spinal cord cerebellum,etc. Conclusion:There are sex differences of nervous activity at resting state.%目的:采用静息态功能磁共振成像(resting- state functional MRI,rfMRI)技术,探讨正常人静息态下脑低频振幅(amplitude of low frequency fluctuation,ALFF)的性别差异.方法:对19例男性健康者与19例年龄、受教育程度相匹配的女性健康者进行磁共振静息态扫描,使用ALFF算法对比分析MRI数据,观察男女性血氧水平依赖(blood oxygenation level dependent,BOLD)信号振荡幅度不同的区域.结果:较女性健康组,男性健康组双侧中央前回、双侧额中回、双侧颞上回区域的ALFF值更高;较男性健康组,女性健康组左丘脑、左角回、右海马旁回、后扣带回、脊髓小脑区域的ALFF值更高.结论:静息态下正常人的脑神经活动存在性别差异.

  16. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  17. Global glacial fluctuations in response to climatic change in the past 40 a

    Institute of Scientific and Technical Information of China (English)

    丁永建

    1996-01-01

    Analyses on glacier fluctuations for the past 40 a show that glacial fluctuations were obviously regional over the world. Amplitudes of glacier fluctuations were smaller in northern Europe and high Asia (H Asia) regions than in northern America and the Alps regions. Retreating glaciers were dominant in northern European and high Asia regions, while remarkable glacial advance emerged in different periods in northern America and the Alps regions. Sensitivity of glaciers in the varying scales to climatic change was different. Time lag for reactions to climatic change between larger glaciers (length >5 km) and smaller glaciers (length≤ 5km) has been found. In the globe, glacial fluctuations well correspond to climatic change. Fluctuation lags behind climatic change were about 8 a for larger glaciers and about 2 a for smaller glaciers.

  18. Global geomagnetic responses to the IMF Bz fluctuations during the September/October 2003 high-speed stream intervals

    Science.gov (United States)

    Echer, Ezequiel; Korth, Axel; José Alves Bolzan, Mauricio; Friedel, Reinhard Hans Walter

    2017-07-01

    In this paper, we follow the coupling from the solar wind to the Earth's magnetotail, geosynchronous orbit, auroral zone and to the ground, during periods of Alfvénic fluctuations in high-speed solar wind streams (HSSs) and their corotating interaction regions (CIRs). We employ cross-wavelet analysis of magnetic field, particle flux and auroral electrojet (AE) index data for the HSSs of September and October 2003. Our results show a remarkably consistent periodic response among all of these regions and across multiple substorm indicators, indicating a possible driven substorm response of the global magnetosphere to the solar wind interplanetary structures. Across the seven intervals studied we find a range of periodic responses from 1.8 to 3.1 h, which is consistent with the 2.75 h peak of the Borovsky et al. (1993) statistical study of inter-substorm periods.

  19. Spatiotemporal collapse in a nonlinear waveguide with a randomly fluctuating refractive index.

    Science.gov (United States)

    Gaididei, Y B; Christiansen, P L

    1998-07-15

    Analytical results, based on the virial theorem and the Furutsu-Novikov theorem, of the spatiotemporal evolution of a pulse in a nonlinear waveguide with a randomly fluctuating refractive index are presented. For initial conditions in which total collapse occurs in a homogeneous waveguide, random fluctuations postpone the collapse. Sufficiently large-amplitude and short-wavelength fluctuations can cause an initially localized pulse to spread instead of contracting. We show that the disorder can be applied to induce a high degree of controllability of the spatiotemporal extent of the pulses in the nonlinear waveguide.

  20. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  1. Effects of Fluctuating Environments on the Selection of High Yielding Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J. R.; Tillett, D. M.

    1987-02-27

    Microalgae have the potential of producing biomass with a high content of lipids at high productivities using seawater or saline ground water resources. Microalgal lipids are similar to vegetable oils and suitable for processing to liquid fuels. Engineering cost analysis studies have concluded that, at a favorable site, microalgae cultivation for fuel production could be economically viable. The major uncertainties involve the microalgae themselves: biomass and lipid productivity and culture stability.

  2. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations

    Science.gov (United States)

    Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław

    2015-11-01

    The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.

  3. Voltage Fluctuation in a Supercapacitor During a High-g Impact

    Science.gov (United States)

    Dai, Keren; Wang, Xiaofeng; Yin, Yajiang; Hao, Chenglong; You, Zheng

    2016-12-01

    Supercapacitors (SCs) are a type of energy storage device with high power density and long lifecycles. They have widespread applications, such as powering electric vehicles and micro scale devices. Working stability is one of the most important properties of SCs, and it is of significant importance to investigate the operational characteristics of SCs working under extreme conditions, particularly during high-g acceleration. In this paper, the failure mechanism of SCs upon high-g impact is thoroughly studied. Through an analysis of the intrinsic reaction mechanism during the high-g impact, a multi-faceted physics model is established. Additionally, a multi-field coupled kinetics simulation of the SC failure during a high-g impact is presented. Experimental tests are conducted that confirm the validity of the proposed model. The key factors of failure, such as discharge currents and discharging levels, are analyzed and discussed. Finally, a possible design is proposed to avoid the failure of SCs upon high-g impact.

  4. On the origin of shape fluctuations of the cell nucleus.

    Science.gov (United States)

    Chu, Fang-Yi; Haley, Shannon C; Zidovska, Alexandra

    2017-09-26

    The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.

  5. Effect of gravity level fluctuations for rotating fluids in high and low rotating speeds

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with sinusoidal-function vibration of the gravity environment at high and low cylinder speeds.

  6. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  7. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    DEFF Research Database (Denmark)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode;

    2015-01-01

    experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...

  8. Passionflower Extract Induces High-amplitude Rhythms without Phase Shifts in the Expression of Several Circadian Clock Genes in Vitro and in Vivo.

    Science.gov (United States)

    Toda, Kazuya; Hitoe, Shoketsu; Takeda, Shogo; Shimizu, Norihito; Shimoda, Hiroshi

    2017-06-01

    Circadian rhythms play key roles in the regulation of physiological and behavioral systems including wake-sleep cycles. We evaluated the effects of passionflower (aerial parts of Passiflora incarnata Linnaeus) extract (PFE) on circadian rhythms using NIH3T3 cells and mice. PFE (100 μg/mL) induced high-amplitude rhythms in the expression of period circadian protein (Per) 2, cryptochrome (Cry) 1, superoxide dismutase (SOD) 1, and glutathione peroxidase (GPx) in vitro from 12 h after a treatment with serum-rich medium. Isovitexin 2"-O-glucoside, isoschaftoside, and homoorientin, which were purified from PFE, also significantly enhanced Per2 mRNA expression at 20 h. An oral treatment with PFE (100 mg/kg/day) at zeitgeber time (ZT) 0 h for 15 days improved sleep latencies and sleeping times in the pentobarbital-induced sleep test in mice, similar to muscimol (0.2 mg/kg, i.p.). PFE induced high-amplitude rhythms without obvious phase shifts in serum corticosterone levels and the expression of Per1, Per2, and Cry1 in the liver as well as NIH3T3 cells. However, in the cerebrum, PFE enhanced the circadian expression of brain-muscle ARNT-like protein (Bmal) 1, circadian locomotor output cycles kaput (Clock), and Per1. Regarding this difference, we suggest the involvement of several neurotransmitters that influence the circadian rhythm. Indeed, PFE significantly increased dopamine levels at ZT 18 h, and then affected the mRNA expression of the synthetic and metabolic enzymes such as monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), and glutamic acid decarboxylase (GAD). The results obtained show that PFE positively modulates circadian rhythms by inducing high-amplitude rhythms in the expression of several circadian clock genes.

  9. A correlativity study of amplitude of low frequency fluctuation change of resting-state brain activity and aphasia quotient in aphasia patients after stroke%卒中后失语患者脑功能成像与失语商的相关性

    Institute of Scientific and Technical Information of China (English)

    李春星; 李华; 卓兵芝; 高磊

    2013-01-01

    目的 通过研究失语症患者静息态脑活动的低频振幅变化及其与失语商的相关性,以探讨失语症的发生及恢复机制.方法 采用低频振幅(amplitude of low frequency fluctuation,ALFF)算法的血氧水平依赖功能磁共振成像(blood oxygenation level dependent functional MRI,BOLD-fMRI)技术,运用西门子3.0T磁共振仪对12例卒中后失语患者和20例正常对照者进行扫描获得静息态数据,采用DPARSF软件对静息态数据进行预处理,然后运用低频振幅算法对数据进行分析,REST软件行两样本t检验,并对失语组ALFF减低的脑区与失语商做相关分析.结果 失语组ALFF减低脑区有左侧颞中回、左侧前额叶内侧回和右侧小脑.3个脑区失语商呈正相关,相关系数分别为rRoi1=0.48,rRoi2口=0.36,r Roi3=0.28.失语组ALFF高于正常对照组的脑区有左侧枕叶、中央前回、岛叶及右侧楔前叶.结论 失语组ALFF明显减低且与失语商呈正相关的脑区,可能是失语发生机制之一;失语组ALFF明显增高的脑区,可能参与语言功能的恢复.%Objective To study a correlativity of amplitude of low frequency fluctuation change of restingstate brain activity and aphasia quotient in aphasia patients after stroke and investigate recovery and mechanism of the aphasia.Methods Adopting amplitude of low-frequency fluctuation (ALFF) in blood oxygenation level dependent functional MRI(BOLD-fMRI) and Siemens version 3.0T MR Scanner was used to obtain 12 aphasia patients and 20 normal volunteers of fMRI data.The fMRI data were processed with the software of DPARSF and analyzed by ALFF,and group analysis was performed with two sample t-test by REST software to obtain increased and decreased ALFF map.Brain regions,in which,ALFF of aphasia group was lower than that of normal control group,were done correlation analysis with aphasia quotient.Results As compared with those in normal subjects,the regions showing decreased ALFF in aphasia

  10. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor La-214

    CERN Document Server

    Yung Moo Hu

    2001-01-01

    charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance zeta sub c becomes comparable to the spacing between adjacent CuO sub 2 layers s at sufficiently high magnetic fields near H sub c sub 2. Thermodynamics has been studied systematically for the high temperature cuprate superconductor La sub 2 sub - sub x Sr sub x CuO sub 4 sub - subdelta, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T sub c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied ove...

  11. Consequences of high-$x$ proton size fluctuations in small collision systems at RHIC

    CERN Document Server

    McGlinchey, D; Perepelitsa, D V

    2016-01-01

    Recent measurements of jet production rates at large transverse momentum ($p_T$) in the collisions of small projectiles with large nuclei at RHIC and the LHC indicate that they have an unexpected relationship with estimates of the collision centrality. One compelling interpretation of the data is that it captures an $x_p$-dependent decrease in the average interaction strength of the nucleon in the projectile undergoing a hard scattering. A weakly interacting or "shrinking" nucleon in the projectile strikes fewer nucleons in the nucleus, resulting in a particular pattern of centrality-dependent modifications to high-$p_T$ processes. We describe a simple one-parameter geometric implementation of this picture within a modified Monte Carlo Glauber model tuned to $d$$+$Au jet data, and explore two of its major consequences. First, the model predicts a particular projectile-species dependence to the centrality dependence at high-$x_p$, opposite to that expected from an energy loss effect. Second, we find that some ...

  12. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  13. The role of Cu-O bond length fluctuations in the high temperature superconductivity mechanism

    Science.gov (United States)

    Deutscher, Guy

    2012-06-01

    We review three different kinds of experiments that emphasize the non-BCS, inhomogeneous aspects of superconductivity in the high Tc cuprates. The first is the existence of two different energy scales in the superconducting state, initially identified by a comparison between tunneling and Andreev-Saint-James spectroscopies [Deutscher, Nature (London) 397, 410 (1999)]. The second are EXAFS measurements of the Cu-O bond length distribution, which have shown that below a temperature T* > Tc, it becomes broader than expected from the Debye-Waller broadening and presents a split [Bianconi et al., Phys. Rev. Lett. 76, 3412 (1996)]. The third one is the effect of frozen lattice disorder on critical current and vortex pinning, which profoundly affects the pairing landscape [Gutierrez et al., Nature Mater. 6, 367 (2007)]. We then discuss how these results fit with models in which the electron-lattice interaction plays a leading role.

  14. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P. [ITB, Faculty of Earth Sciences and Tecnology (Indonesia); BMKG (Indonesia)

    2012-06-20

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  15. Stability of focal adhesion enhanced by its inner force fluctuation

    Science.gov (United States)

    Mao, Zhi-Xiu; Chen, Xiao-Feng; Chen, Bin

    2015-08-01

    Cells actively sense and respond to mechanical signals from the extracellular matrix through focal adhesions. By representing a single focal adhesion as a cluster of slip bonds, it has been demonstrated that the cluster often became unstable under fluctuated forces. However, an unusual case was also reported, where the stability of the cluster might be substantially enhanced by a fluctuated force with a relatively low fluctuation frequency and high fluctuation amplitude. Such an observation cannot be explained by the conventional fracture theory of fatigue. Here, we intensively investigate this intriguing observation by carrying out systematic parametric studies. Our intensive simulation results indicate that stability enhancement of this kind is in fact quite robust, which can be affected by the stochastic features of a single bond and the profile of the fluctuated forces such as the average value of bond force. We then suggest that the fluctuation of traction force within a focal adhesion might enhance its stability in a certain way. Project supported by the National Natural Science Foundation of China (Grant No.*11372279).

  16. Environmental factors associated with phytoplankton succession in a Mediterranean reservoir with a highly fluctuating water level.

    Science.gov (United States)

    Fadel, Ali; Atoui, Ali; Lemaire, Bruno J; Vinçon-Leite, Brigitte; Slim, Kamal

    2015-10-01

    Eutrophication and harmful algal blooms have become a worldwide environmental problem. Understanding the mechanisms and processes that control algal blooms is of great concern. The phytoplankton community of Karaoun Reservoir, the largest water body in Lebanon, is poorly studied, as in many freshwater bodies around the Mediterranean Sea. Sampling campaigns were conducted semi-monthly between May 2012 and August 2013 to assess the dynamics of its phytoplankton community in response to changes in physical-chemical and hydrological conditions. Karaoun Reservoir is a monomictic waterbody and strongly stratifies between May and August. Changes in its phytoplankton community were found to be a result of the interplay between water temperature, stratification, irradiance, nutrient availability and water level. Thermal stratification established in spring reduced the growth of diatoms and resulted in their replacement by green algae species when nutrient availability was high and water temperatures lower than 22 °C. At water temperature higher than 25 °C and low nutrient concentrations in summer, blooms of the cyanobacterium Microcystis aeruginosa occurred. Despite different growth conditions in other lakes and reservoir, cyanobacterium Aphanizomenon ovalisporum dominated at temperatures lower than 23 °C in weakly stratified conditions in early autumn and dinoflagellate Ceratium hirundinella dominated in mixed conditions, at low light intensity and a water temperature of 19 °C in late autumn. We believe that the information presented in this paper will increase the knowledge about phytoplankton dynamics in the Mediterranean region and contribute to a safer usage of reservoir waters.

  17. Amplitude Equalization of 40 Gb/s RZ-DPSK Signals using Saturation of Four-Wave Mixing in a Highly Nonlinear Fiber

    DEFF Research Database (Denmark)

    Geng, Yan; Peucheret, Christophe; Jeppesen, Palle

    2006-01-01

    We report the first experimental demonstration of amplitude equalization of 40 Gb/s RZ-DPSK signals using saturation of FWM in a HNLF. We show effective power penalty reduction after wavelength conversion of an amplitude distorted signal......We report the first experimental demonstration of amplitude equalization of 40 Gb/s RZ-DPSK signals using saturation of FWM in a HNLF. We show effective power penalty reduction after wavelength conversion of an amplitude distorted signal...

  18. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology.

    Science.gov (United States)

    Marshall, David J; McQuaid, Christopher D

    2011-01-22

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.

  19. Human activity under high pressure: A case study on fluctuation scaling of air traffic controller's communication behaviors

    Science.gov (United States)

    Wang, Yanjun; Zhang, Qiqian; Zhu, Chenping; Hu, Minghua; Duong, Vu

    2016-01-01

    Recent human dynamics research has unmasked astonishing statistical characteristics such as scaling behaviors in human daily activities. However, less is known about the general mechanism that governs the task-specific activities. In particular, whether scaling law exists in human activities under high pressure remains an open question. In air traffic management system, safety is the most important factor to be concerned by air traffic controllers who always work under high pressure, which provides a unique platform to study human activity. Here we extend fluctuation scaling method to study air traffic controller's communication activity by investigating two empirical communication datasets. Taken the number of controlled flights as the size-like parameter, we show that the relationships between the average communication activity and its standard deviation in both datasets can be well described by Taylor's power law, with scaling exponent α ≈ 0.77 ± 0.01 for the real operational data and α ≈ 0.54 ± 0.01 for the real-time training data. The difference between the exponents suggests that human dynamics under pressure is more likely dominated by the exogenous force. Our findings may lead to further understanding of human behavior.

  20. Galaxy clusters and the amplitude of primordial fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, C.S.; White, S.D.M.; Efstathiou, G.; Davis, M. (Durham Univ. (England) Steward Observatory, Tucson, AZ (USA) Oxford Univ. (England) California Univ., Berkeley (USA))

    1990-03-01

    The distributions of velocity dispersion, gas temperature, and mass-to-light ratio for Abell clusters are calculated here in the standard cold dark matter (CDM) cosmogony in order to test the validity of the hierarchical clustering model for the formation of cosmic structure and to fix the value of the biasing parameter b which quantifies the segregation between galaxies and mass. To compare model predictions with optical data, catalogs of galaxies are constructed from N-body simulations and subjected to projection effects similar to those in Abell's cluster catalog. It is found that a significant fraction of rich clusters identified in projection do not correspond to rich three-dimensional clusters, but result instead from superpositions of foreground groups on poorer clusters. A similar fraction of true rich clusters are missed in the projected catalogs. Combining the simulations with recent hydrodynamical models, it is found that CDM models with b of 2-2.5 provide an acceptable match to present data. 52 refs.

  1. Multiplicity fluctuation and phase transition in high-energy collision — A chaos-based study with complex network perspective

    Science.gov (United States)

    Bhaduri, Susmita; Ghosh, Dipak

    2016-12-01

    Multiplicity fluctuation provides enough information concerning the dynamics of particle production process and even signature of phase transition from hadronic to QGP phase expected in ultrarelativistic nuclear collision. Numerous analyses reported on the fluctuation pattern of pions have been studied from theoretical and phenomenological approaches. Also the fractal properties have been explored to characterize quantitative degree of fluctuation. The present work reports a study of pion fluctuation from a radically different perspective, using science of complexity. For this we have taken two different interactions — one hadron-nucleus and other nucleus-nucleus, namely π--AgBr (350 GeV) and 32S-AgBr (200 AGeV). We have analyzed both data in the light of complex network analysis, viz. visibility graph method. The data reveal that power of the scale-freeness in visibility graph (PSVG), a quantitative parameter related to Hurst exponent, may provide information on the degree of fluctuation. Further, in a recent work, it was shown that phase transition can also be studied using the same methodology. Based on the result of the present study we further propose to use this methodology, where critical phenomena are to be assessed — even in case of pion fluctuation, for obtaining the QGP like phase transition.

  2. Frequency and amplitude characteristics of a high-repetition-rate hybrid TEA-CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Lachambre, J.L.; Lavigne, P.; Verreault, M.; Otis, G.

    1978-02-01

    The envelope and frequency characteristics of the output pulse of a high-repetition-rate hybrid TEA-CO/sub 2/ laser are presented. Both the intrapulse and interpulse laser frequency stability are experimentally determined at repetition rates up to 300 Hz. The recovery of the CW laser signal following the generation of the TEA laser pulse is analyzed theoretically and experimentally. Short term reproducibilities of + or - 2 MHz are observed at a pulse repetition rate of 300 Hz with initial chirp rates of about 1.5 MHz/microsec. Improvements and limits on power and repetition rate are discussed.

  3. The Effect of Quantum Fluctuations in the High-Energy Cold Nuclear Equation of State and in Compact Star Observables

    CERN Document Server

    Pósfay, Péter; Jakovác, Antal

    2016-01-01

    We present a novel technique to obtain exact equation of state (EoS) by the Functional Renormalization Group (FRG) method, using the expansion of the effective potential in a base of harmonic functions at finite chemical potential. Within this theoretical framework we determined the equation of state and the phase diagram of a simple model of massless fermions coupled to scalars through Yukawa-coupling at the zero-temperature limit. We compared our results to the 1-loop and the mean field approximation of the same model and other high-density nuclear matter equation of states. We found a $10-20\\%$ difference between these approximations. As an application, we used our exact, FRG-based equation of states to test the effect of the quantum fluctuations in superdense nuclear matter of a compact astrophysical object for the first time. We calculated the mass-radius relation for a compact star using the Tolmann-Oppenheimer-Volkov equation and observed a $\\sim 5\\%$ effect in compact star observables due to quantum f...

  4. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  5. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    Science.gov (United States)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  6. High-amplitude supergiant V5112 Sgr: enrichment of the envelope with heavy s-process metals

    CERN Document Server

    Klochkova., V G

    2013-01-01

    High-resolution (R=60000) echelle spectroscopy of the post-AGB supergiant V5112 Sgr performed in 1996-2012 with the 6-m telescope BTA has revealed peculiarities of the star optical spectrum and has allowed the variability of the velocity field in the stellar atmosphere and envelope to be studied in detail. An asymmetry and splitting of strong absorption lines with a low lower-level excitation potential have been detected for the first time. The effect is maximal in BaII lines whose profile is split into three components. The profile shape and positions of the split lines change with time. The blue components of the split absorption lines are shown to be formed in a structured circumstellar envelope, suggesting an efficient dredge-up of the heavy metals produced during the preceding evolution of this star into the envelope. The envelope expansion velocities have been estimated to be 20 and 30 km/s. The mean radial velocity from diffuse bands in the spectrum of V5112 Sgr coincides with that from the short-wavel...

  7. Thoracic compression myelopathy due to the progression of dystrophic scoliosis, the presence of a paraspinal tumor, and high and excessive amplitude movement of the shoulder.

    Science.gov (United States)

    Kurosawa, Takashi; Yurube, Takashi; Kakutani, Kenichiro; Maeno, Koichiro; Uno, Koki; Kurosaka, Masahiro; Nishida, Kotaro

    2017-01-01

    The authors present a case of 45-year-old man with neurofibromatosis type 1 (NF-1) and thoracic scoliosis, previously undergoing fusion surgery, who developed myelopathy. This patient further complained of lightning pain when he extended and horizontally abducted the convex-side shoulder. Radiological examination revealed the progression of dystrophic scoliosis with opened spinal canals and the presence of a neurofibroma behind the spinal cord at the apical levels. Delayed development of spinal instability can occur due to dystrophy even postoperatively in patients with NF-1. After tumor resection, he had rapid recovery from myelopathy and no recurrence of radiating pain despite shoulder movement. These findings provide a speculation that high, intense amplitude movement of the shoulder toward the spinal canal causes the impingement on the neurofibroma, resulting in indirect compression of the exposed spinal cord. This is the first report describing thoracic compression myelopathy associated with paraspinal displacement of the scapula.

  8. Nuclear Jacobi and Poincaré transitions at high spins and temperatures: Account of dynamic effects and large-amplitude motion

    Science.gov (United States)

    Mazurek, K.; Dudek, J.; Maj, A.; Rouvel, D.

    2015-03-01

    We present a theoretical analysis of the competition between the so-called nuclear Jacobi and Poincaré shape transitions as a function of spin at high temperatures. The latter condition implies the method of choice, a realistic version of the nuclear liquid drop model, here the Lublin-Strasbourg drop model. We address specifically the fact that the Jacobi and Poincaré shape transitions are accompanied by the flattening of the total nuclear energy landscape as a function of the relevant deformation parameters, which enforces large-amplitude oscillation modes that need to be taken into account. For that purpose we introduce an approximate form of the collective Schrödinger equation whose solutions are used to calculate the most probable deformations associated with the nuclear Jacobi and Poincaré transitions. We discuss selected aspects of the new description focusing on the critical-spin values for both types of these transitions.

  9. Search for high-amplitude Delta Scuti and RR Lyrae stars in Sloan Digital Sky Survey Stripe 82 using principal component analysis

    CERN Document Server

    Süveges, M; Váradi, M; Mowlavi, N; Becker, A C; Ivezić, Ž; Beck, M; Nienartowicz, K; Rimoldini, L; Dubath, P; Bartholdi, P; Eyer, L

    2012-01-01

    We propose a robust principal component analysis (PCA) framework for the exploitation of multi-band photometric measurements in large surveys. Period search results are improved using the time series of the first principal component due to its optimized signal-to-noise ratio.The presence of correlated excess variations in the multivariate time series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude Delta Scuti variables. We found also 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., 2010, extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample comprises also 25 multiperiodic or Blazhko RR Lyrae stars.

  10. Nuclear Jacobi and Poincar\\'e Transitions at High Spins and Temperatures: Account~of~Dynamic~Effects~and~Large-Amplitude Motion

    CERN Document Server

    Mazurek, K; Maj, A; Rouvel, D

    2013-01-01

    We present a theoretical analysis of the competition between so-called nuclear Jacobi and Poincar\\'e shape transitions in function of spin - at high temperatures. The latter condition implies the method of choice - a realistic version of the nuclear Liquid Drop Model (LDM), here: the Lublin-Strasbourg Drop (LSD) model. We address specifically the fact that the Jacobi and Poincar\\'e shape transitions are accompanied by the flattening of total nuclear energy landscape as function of the relevant deformation parameters what enforces large amplitude oscillation modes that need to be taken into account. For that purpose we introduce an approximate form of the collective Schr\\"odinger equation whose solutions are used to calculate the most probable deformations associated with both types of transitions and discuss the physical consequences in terms of the associated critical-spin values and transitions themselves.

  11. Effects of redox fluctuations on microbial community ecology post-wildfire in a high elevation mixed-conifer catchment in northern New Mexico.

    Science.gov (United States)

    Fairbanks, D.; Green, K.; Murphy, M. A.; Shepard, C.; Chorover, J.; Rich, V. I.; Gallery, R. E.

    2015-12-01

    Wildfires are increasing in size and severity across the western United States with impacts on regional biogeochemical cycling. The resiliency of resident soil microbial communities determines rates of nutrient transformations as well as forest structure and recovery. Redox conditions in soil determine metabolic activities of microorganisms, which first consume oxygen and a succession of alternative terminal electron acceptors to support growth and metabolism using a variety of carbon sources. Controls on redox zonation are largely unknown in dominantly oxic soils, and microbial community adaptation and response to fluctuations in redox potential in a sub-alpine forested post-disturbance catchment has not been studied. Previous work has shown that fluctuating or rising water tables result in redox-dynamic sites, which can be 'hot spots' of biogeochemical activity depending on landscape position. Fire-induced tree mortality results in altered hydrologic flow paths and decreased evapotranspiration, leading to potential for intensified hot spot activity. We are testing such coupling of microbial activity with fluctuations in redox status using field measurements and laboratory incubation experiments. The 2013 Thompson Ridge Fire in the Jemez River Basin (NM) Critical Zone Observatory provides a highly-contextualized opportunity to examine how disturbance regime affects changes in soil microbial community dynamics and fluctuations in reduction-oxidation potential (as quantified by continuous CZO measurements of O2, CO2 and Eh as a function of soil depth and landscape location). We hypothesize that areas of depositional convergence in the catchment, which have been shown to exhibit more reducing conditions, will host microbial communities that are better adapted to fluctuating redox conditions and exhibit a greater diversity in functional capabilities. In these mixed conifer forests we find shifts in redox potential status in relation to depth and topography where more

  12. Study of event-by-event fluctuations in the charged particle ratio in high energy heavy-ion collisions

    CERN Document Server

    Zhou Dai Mei; Liu Zhi Yi; Lu Zhong Dao; Sá Ben-Hao

    2002-01-01

    Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo event generator, the behavior of the charged particle ratio event-by-event fluctuations in subsystem depending on energy, centrality, resonance decay and rapidity interval was investigated for Pb+Pb collisions at SPS and ALICE energies, and for Au+Au collisions at RHIC energies. The model results of charged particle ratio event-by-event fluctuations as a function of the rapidity interval in Pb+Pb collisions at SPS energies were comparable with the preliminary NA49 data. It turned out that the charged particle ratio fluctuation has no strong energy, centrality, resonance decay and rapidity interval dependences. (13 refs).

  13. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana; Jensen, Soren A.; Kuciauskas, Darius; Glynn, Stephen; Barnes, Teresa; Metzger, Wyatt; Burst, James; Jiang, Chun-Sheng; Dippo, Patricia; Harvey, Steve; Teeter, Glenn; Perkins, Craig; Egaas, Brian; Zakutayev, Andriy; Alsmeier, J.-H.; Lussky, T.; Korte, L.; Wilks, R. G.; Bar, M.; Yan, Y.; Lany, Stephan; Zawadzki, Pawel; Park, Ji-Sang; Wei, Suhuai

    2016-06-16

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  14. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana; Jensen, Soren A.; Kuciauskas, Darius; Glynn, Stephen; Barnes, Teresa; Metzger, Wyatt; Burst, James; Jiang, Chun-Sheng; Dippo, Patricia; Harvey, Steve; Teeter, Glenn; Perkins, Craig; Egaas, Brian; Zakutayev, Andriy; Alsmeier, J.-H.; Lussky, T.; Korte, L.; Wilks, R. G.; Bar, M.; Yan, Y.; Lany, Stephan; Zawadzki, Pawel; Park, Ji-Sang; Wei, Suhuai

    2016-11-21

    Band-edge effects - including grading, electrostatic fluctuations, bandgap fluctuations, and band tails - affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In, Ga)Se2 devices, recent increases in diffusion length imply changes to the optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties, is examined.

  15. Turbulent magnetic fluctuations in laboratory reconnection

    Science.gov (United States)

    Von Stechow, Adrian; Grulke, Olaf; Klinger, Thomas

    2016-07-01

    The role of fluctuations and turbulence is an important question in astrophysics. While direct observations in space are rare and difficult dedicated laboratory experiments provide a versatile environment for the investigation of magnetic reconnection due to their good diagnostic access and wide range of accessible plasma parameters. As such, they also provide an ideal chance for the validation of space plasma reconnection theories and numerical simulation results. In particular, we studied magnetic fluctuations within reconnecting current sheets for various reconnection parameters such as the reconnection rate, guide field, as well as plasma density and temperature. These fluctuations have been previously interpreted as signatures of current sheet plasma instabilities in space and laboratory systems. Especially in low collisionality plasmas these may provide a source of anomalous resistivity and thereby contribute a significant fraction of the reconnection rate. We present fluctuation measurements from two complementary reconnection experiments and compare them to numerical simulation results. VINETA.II (Greifswald, Germany) is a cylindrical, high guide field reconnection experiment with an open field line geometry. The reconnecting current sheet has a three-dimensional structure that is predominantly set by the magnetic pitch angle which results from the superposition of the guide field and the in-plane reconnecting field. Within this current sheet, high frequency magnetic fluctuations are observed that correlate well with the local current density and show a power law spectrum with a spectral break at the lower hybrid frequency. Their correlation lengths are found to be extremely short, but propagation is nonetheless observed with high phase velocities that match the Whistler dispersion. To date, the experiment has been run with an external driving field at frequencies higher than the ion cyclotron frequency f_{ci}, which implies that the EMHD framework applies

  16. Real topological string amplitudes

    Science.gov (United States)

    Narain, K. S.; Piazzalunga, N.; Tanzini, A.

    2017-03-01

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.

  17. Large-scale fluctuations of PSBL magnetic flux tubes induced by the field-aligned motion of highly accelerated ions

    Directory of Open Access Journals (Sweden)

    E. E. Grigorenko

    2010-06-01

    Full Text Available We present a comprehensive analysis of magnetic field and plasma data measured in the course of 170 crossings of the lobeward edge of Plasma Sheet Boundary Layer (PSBL in the Earth's magnetotail by Cluster spacecraft. We found that large-scale fluctuations of the magnetic flux tubes have been registered during intervals of propagation of high velocity field-aligned ions. The observed kink-like oscillations propagate earthward along the main magnetic field with phase velocities of the order of local Alfvén velocity and have typical wavelengths ~5–20 RE, and frequencies of the order of 0.004–0.02 Hz. The oscillations of PSBL magnetic flux tubes are manifested also in a sudden increase of drift velocity of cold lobe ions streaming tailward. Since in the majority of PSBL crossings in our data set, the densities of currents corresponding to electron-ion relative drift have been low, the investigation of Kelvin-Helmholtz (K-H instability in a bounded flow sandwiched between the plasma sheet and the lobe has been performed to analyze its relevance to generation of the observed ultra-low frequency oscillations with wavelengths much larger than the flow width. The calculations have shown that, when plasma conditions are favorable for the excitation of K-H instability at least at one of the flow boundaries, kink-like ultra-low frequency waves, resembling the experimentally observed ones, could become unstable and efficiently develop in the system.

  18. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...

  19. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  20. Association among parental substance use disorder, p300 amplitude, and neurobehavioral disinhibition in preteen boys at high risk for substance use disorder.

    Science.gov (United States)

    Habeych, Miguel E; Sclabassi, Robert J; Charles, Prophete J; Kirisci, Levent; Tarter, Ralph E

    2005-06-01

    The P300 amplitude of the event-related potential as a mediator of the association between parental substance use disorder (SUD) and child's neurobehavioral disinhibition was assessed. The P300 amplitude was recorded using an oddball task in sons of fathers having either lifetime SUD (n = 105) or no psychiatric disorder (n = 160). Neurobehavioral disinhibition was assessed using measures of affect regulation, behavior control, and executive cognitive function. Parental SUD and child's P300 amplitude accounted for, respectively, 16.6% and 16.8% of neurobehavioral disinhibition variance. Controlling for parental and child psychopathology, an association between parental SUD and child's P300 amplitude was not observed. It was concluded that the P300 amplitude does not mediate the association between parental SUD and child's neurobehavioral disinhibition.

  1. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  2. Terrestrial Gravity Fluctuations

    Science.gov (United States)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  3. Terrestrial Gravity Fluctuations.

    Science.gov (United States)

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  4. Terrestrial Gravity Fluctuations

    Directory of Open Access Journals (Sweden)

    Jan Harms

    2015-12-01

    Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our

  5. Spin fluctuation theory of itinerant electron magnetism

    CERN Document Server

    Takahashi, Yoshinori

    2013-01-01

    This volume shows how collective magnetic excitations determine most of  the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.

  6. High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya ice cap

    Science.gov (United States)

    Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.

    2015-12-01

    The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that

  7. Protostring Scattering Amplitudes

    CERN Document Server

    Thorn, Charles B

    2016-01-01

    We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...

  8. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  9. Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells.

    Science.gov (United States)

    Ceccarelli, Gabriele; Benedetti, Laura; Galli, Daniela; Prè, Deborah; Silvani, Giulia; Crosetto, Nicola; Magenes, Giovanni; Cusella De Angelis, Maria Gabriella

    2014-05-01

    Whole body vibration (WBV) is a very widespread mechanical stimulus used in physical therapy, rehabilitation and fitness centres. It has been demonstrated that vibration induces improvements in muscular strength and performance and increases bone density. We investigated the effects of low-amplitude, high frequency vibration (HFV) at the cellular and tissue levels in muscle. We developed a system to produce vibrations adapted to test several parameters in vitro and in vivo. For in vivo experiments, we used newborn CD1 wild-type mice, for in vitro experiments, we isolated satellite cells from 6-day-old CD1 mice, while for proliferation studies, we used murine cell lines. Animals and cells were treated with high frequency vibration at 30 Hz. We analyzed the effects of mechanical stimulation on muscle hypertrophy/atrophy pathways, fusion enhancement of myoblast cells and modifications in the proliferation rate of cells. Results demonstrated that mechanical vibration strongly down-regulates atrophy genes both in vivo and in vitro. The in vitro experiments indicated that mechanical stimulation promotes fusion of satellite cells treated directly in culture compared to controls. Finally, proliferation experiments indicated that stimulated cells had a decreased growth rate compared to controls. We concluded that vibration treatment at 30 Hz is effective in suppressing the atrophy pathway both in vivo and in vitro and enhances fusion of satellite muscle cells.

  10. Large Amplitude Variations of an L/T Transition Brown Dwarf: Multi-Wavelength Observations of Patchy, High-Contrast Cloud Features

    CERN Document Server

    Radigan, Jacqueline; Lafrenière, David; Artigau, Etienne; Marley, Mark; Saumon, Didier

    2012-01-01

    We present multiple-epoch photometric monitoring in the $J$, $H$, and $K_s$ bands of the T1.5 dwarf 2MASS J21392676+0220226 (2M2139), revealing persistent, periodic ($P=7.72\\pm$0.05 hr) variability with a peak-to-peak amplitude as high as 26% in the $J$-band. The light curve shape varies on a timescale of days, suggesting that evolving atmospheric cloud features are responsible. Using interpolations between model atmospheres with differing cloud thicknesses to represent a heterogeneous surface, we find that the multi-wavelength variations and the near-infrared spectrum of 2M2139 can be reproduced by either (1)cool, thick cloud features sitting above a thinner cloud layer, or (2)warm regions of low condensate opacity in an otherwise cloudy atmosphere, possibly indicating the presence of holes or breaks in the cloud layer. We find that temperature contrasts between thick and thin cloud patches must be greater than 175 K and as high as 425 K. We also consider whether the observed variability could arise from an ...

  11. A course in amplitudes

    Science.gov (United States)

    Taylor, Tomasz R.

    2017-05-01

    This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.

  12. Excitation of high-radial-order Laguerre–Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    Science.gov (United States)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre–Gaussian (LG p or LG{}p,0) modes with radial order p = 1–4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  13. Thomson scattering analysis of large scale fluctuations in the ASDEX Upgrade edge

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B; Horton, L D; Murmann, H; Neuhauser, J; Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2007-06-15

    Large scale fluctuations in between edge localized modes (ELMs) are the main source for the scatter in plasma edge H mode profiles of electron density and temperature, as measured by high precision, high resolution Thomson scattering. These large scale fluctuations are also observed with electron cyclotron emission. They are quantitatively analysed by 2D poloidal snapshots of electron density and temperature, based on a 5 x 10 matrix of scattering volumes provided by the Thomson scattering system. Fluctuations with a quasi-periodic structure are found in a 2D snapshot with a frequency of about 61%. When interpreted as field-aligned helical structures toroidal quasi-mode numbers of 6-48 are found. The amplitudes of the fluctuations decrease with increasing quasi-mode number and edge profile gradient lengths. The amplitudes of the large scale structures in the steep gradient region are anti-correlated with the divertor D{sub {alpha}}-intensity. The particle loss during an ELM is at least to a significant fraction due to the electron density 'blobs' observed in the scrape-off layer. The large scale fluctuations also perturb the measurement of 1D radial profiles. In the middle of the steep gradient region the perturbations are symmetric, but asymmetric both further inside (more minima) and further outside (more maxima)

  14. Terrestrial Gravity Fluctuations

    CERN Document Server

    Harms, Jan

    2015-01-01

    The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  15. High-pressure synchrotron Mössbauer and X-ray diffraction studies: Exploring the structure-related valence fluctuation in EuNi2P2

    Science.gov (United States)

    Li, Chunyu; Yu, Zhenhai; Bi, Wenli; Zhao, Jiyong; Hu, Michael Y.; Zhao, Jinggeng; Wu, Wei; Luo, Jianlin; Yan, Hao; Alp, Esen E.; Liu, Haozhe

    2016-11-01

    The high-pressure effect on valence fluctuation of the ThCr2Si2-type intermetallic compound EuNi2P2 has been investigated using in situ synchrotron Mössbauer spectroscopy (SMS). The isomer shift of 151Eu in EuNi2P2 increases monotonically with increasing pressure up to 50 GPa, suggesting a valence transition of the Eu from mixed toward trivalent. The synchrotron angle-dispersive X-ray diffraction (AD-XRD) experiment shows that EuNi2P2 remains in the tetragonal structure up to 32.5 GPa at room temperature. We propose that the evolutions of bonding distance with pressure have an obvious effect on the valence fluctuation.

  16. Real gas effects on receptivity to kinetic fluctuations

    Science.gov (United States)

    Tumin, Anatoli; Edwards, Luke

    2016-11-01

    Receptivity of high-speed boundary layers is considered within the framework of fluctuating hydrodynamics where stochastic forcing is introduced through fluctuating shear stress and heat flux stemming from kinetic fluctuations (thermal noise). The forcing generates unstable modes whose amplification downstream and may lead to transition. An example of high-enthalpy (16 . 53 MJ / kg) boundary layer at relatively low wall temperatures (Tw = 1000 K - 3000 K), free stream temperature (Te = 834 K), and low pressure (0 . 0433 atm) is considered. Dissociation at the chosen flow parameters is still insignificant. The stability and receptivity analyses are carried out using a solver for calorically perfect gas with effective Prandtl number and specific heats ratio. The receptivity phenomenon is unchanged by the inclusion of real gas effects in the mean flow profiles. This is attributed to the fact that the mechanism for receptivity to kinetic fluctuations is localized near the upper edge of the boundary layer. Amplitudes of the generated wave packets are larger downstream in the case including real gas effects. It was found that spectra in both cases include supersonic second Mack unstable modes despite the temperature ratio Tw /Te > 1 . Supported by AFOSR.

  17. Effects of magnetohydrodynamics matter density fluctuations on the solar neutrino resonant spin-flavor precession

    CERN Document Server

    Reggiani, N; Colonia, J H; De Holanda, P C

    1998-01-01

    Taking into account the stringent limits from helioseismology observations on possible matter density fluctuations described by magnetohydrodynamics theory, we find the corresponding time variations of solar neutrino survival probability due to the resonant spin-flavor precession phenomenon with amplitude of order O(10%). We discuss the physics potential of high statistics real time experiments, like as Superkamiokande, to observe the effects of such magnetohydrodynamics fluctuations on their data. We conclude that these observations could be thought as a test of the resonant spin-flavor precession solution to the solar neutrino anomaly.

  18. Effect of Sampling Rates on the Quantification of Forces, Durations, and Rates of Loading of Simulated Side Posture High-Velocity, Low-Amplitude Lumbar Spine Manipulation☆

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-01-01

    Objective Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Methods Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. Results The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. Conclusions The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. PMID:23790603

  19. Effect of sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture high-velocity, low-amplitude lumbar spine manipulation.

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-06-01

    Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  20. Transcription fluctuation effects on biochemical oscillations.

    Directory of Open Access Journals (Sweden)

    Ryota Nishino

    Full Text Available Some biochemical systems show oscillation. They often consist of feedback loops with repressive transcription regulation. Such biochemical systems have distinctive characteristics in comparison with ordinary chemical systems: i numbers of molecules involved are small, ii there are typically only a couple of genes in a cell with a finite regulation time. Due to the fluctuations caused by these features, the system behavior can be quite different from the one by deterministic rate equations, because the rate equations ignore molecular fluctuations and thus are exact only in the infinite molecular number limit. The molecular fluctuations on a free-running circadian system have been studied by Gonze et al. (2002 by introducing a scale parameter [Formula: see text] for the system size. They consider, however, only the first effect, assuming that the gene process is fast enough for the second effect to be ignored, but this has not been examined systematically yet. Here we study fluctuation effects due to the finite gene regulation time by introducing a new scale parameter [Formula: see text], which we take as the unbinding time of a nuclear protein from the gene. We focus on the case where the fluctuations due to small molecular numbers are negligible. In simulations on the same system studied by Gonze et al., we find the system is unexpectedly sensitive to the fluctuation in the transcription regulation; the period of oscillation fluctuates about 30 min even when the regulation time scale [Formula: see text] is around 30 s, that is even smaller than 1/1000 of its circadian period. We also demonstrate that the distribution width for the oscillation period and amplitude scales with [Formula: see text], and the correlation time scales with [Formula: see text] in the small [Formula: see text] regime. The relative fluctuations for the period are about half of that for the amplitude, namely, the periodicity is more stable than the amplitude.

  1. Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes

    CERN Document Server

    Mamedov, F

    2002-01-01

    We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that $WZ\\gamma$ production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.

  2. Periods and Superstring Amplitudes

    CERN Document Server

    Stieberger, S

    2016-01-01

    Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...

  3. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  4. Quantitative Seismic Amplitude Analysis

    OpenAIRE

    Dey, A. K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...

  5. Power fluctuations in micro-grids introduced by photovoltaics: Analysis and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Woyte, A.; Belmans, R. [Katholieke Universiteit Leuven (Belgium). ESAT-ELECTA; Bodach, M. [Technische Univ. Chemnitz (Germany). Fakultaet fuer Elektrotechnik und Informationstechnik; Nijs, J. [Katholieke Universiteit Leuven (Belgium). ESAT-ELECTA]|[Photovoltech SA, Leuven (Belgium)

    2003-07-01

    Solar radiation is characterized by short fluctuations introduced by passing clouds. In stand-alone power systems, minigrids and grids where the power exchange with a back-up system needs to be minimized, the consequences of these fluctuations of solar irradiance are undesirable. For buffering cloud-induced power-flow fluctuations introduced by PV, the application of supercapacitors is studied. An assessment of the need for additional short-term storage must focus on the statistical properties of amplitude and persistence of cloud-induced fluctuations. As a tool for the assessment of these parameters, the localized spectral analysis based on a stationary wavelet decomposition is applied. Results show that supercapacitors are well suited to buffer fluctuations from PV systems as they are introduced mainly by moving clouds. For a given 1-kWp PV array, already a small number of commercially available supercapacitors can buffer fluctuations of up to one hour persistence even at a high variability of solar irradiance. In order to buffer only short fluctuations even much less supercapacitors would be sufficient. (orig.)

  6. Fluctuations of hi-hat timing and dynamics in a virtuoso drum track of a popular music recording.

    Directory of Open Access Journals (Sweden)

    Esa Räsänen

    Full Text Available Long-range correlated temporal fluctuations in the beats of musical rhythms are an inevitable consequence of human action. According to recent studies, such fluctuations also lead to a favored listening experience. The scaling laws of amplitude variations in rhythms, however, are widely unknown. Here we use highly sensitive onset detection and time series analysis to study the amplitude and temporal fluctuations of Jeff Porcaro's one-handed hi-hat pattern in "I Keep Forgettin'"-one of the most renowned 16th note patterns in modern drumming. We show that fluctuations of hi-hat amplitudes and interbeat intervals (times between hits have clear long-range correlations and short-range anticorrelations separated by a characteristic time scale. In addition, we detect subtle features in Porcaro's drumming such as small drifts in the 16th note pulse and non-trivial periodic two-bar patterns in both hi-hat amplitudes and intervals. Through this investigation we introduce a step towards statistical studies of the 20th and 21st century music recordings in the framework of complex systems. Our analysis has direct applications to the development of drum machines and to drumming pedagogy.

  7. Study on Fluctuation of Grain Yield in China’s Major Grain Producing Areas

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    By using the statistical data of grain yield in China’s major grain producing areas from 1949 to 2008,and fluctuation theory,the historical process and main cause of fluctuation of grain yield in China’s major grain producing areas are analyzed.The results of research show that the grain yield in China’s major grain producing areas grows in unstable fluctuation,with high-frequency fluctuation cycle and regular length;the amplitude of fluctuation,on the whole,is moderate,with not strong stability;the fluctuation of grain yield has correspondence,reflecting the N-shape developmental trend of grain production at present;the fluctuation of grain yield has gradient characteristics;in the process of comparison of grain yield,the average growth rate annually of grain yield in China’s major grain producing areas is higher than that of the national average,but the relative fluctuation coefficient is also higher than that of the national average.From five aspects,namely natural disaster,agricultural policy,production input,grain price and grain circulation,the cause of fluctuation of grain yield in China’s major grain producing areas is analyzed,and measures of preventing and arresting super-long fluctuation of grain yield are put forward.Firstly,stick to strict farmland protection system,and strive to promote farmland quality;secondly,strengthen infrastructure construction of grain production and beef up the ability of preventing natural disaster;thirdly,quicken the pace of agricultural technology and establish robust technology supporting system;fourthly,lay stress on innovation of agricultural organization system and provide implementation path and vehicle for application of agricultural technology measures;fifthly,perfect disaster precaution system and grain market system,and strengthen the ability of preventing risk of grain production.

  8. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-07-21

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  9. Validation of the cat as a model for the human lumbar spine during simulated high-velocity, low-amplitude spinal manipulation.

    Science.gov (United States)

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2010-07-01

    High-velocity, low-amplitude spinal manipulation (HVLA-SM) is an efficacious treatment for low back pain, although the physiological mechanisms underlying its effects remain elusive. The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and it has been theorized that the neurophysiological benefits of HVLA-SM are partially induced by stimulation of FJC neurons. Biomechanical aspects of this theory have been investigated in humans while neurophysiological aspects have been investigated using cat models. The purpose of this study was to determine the relationship between human and cat lumbar spines during HVLA-SM. Cat lumbar spine specimens were mechanically tested, using a displacement-controlled apparatus, during simulated HVLA-SM applied at L5, L6, and L7 that produced preload forces of approximately 25% bodyweight for 0.5 s and peak forces that rose to 50-100% bodyweight within approximately 125 ms, similar to that delivered clinically. Joint kinematics and FJC strain were measured optically. Human FJC strain and kinematics data were taken from a prior study. Regression models were established for FJC strain magnitudes as functions of factors species, manipulation site, and interactions thereof. During simulated HVLA-SM, joint kinematics in cat spines were greater in magnitude compared with humans. Similar to human spines, site-specific HVLA-SM produced regional cat FJC strains at distant motion segments. Joint motions and FJC strain magnitudes for cat spines were larger than those for human spine specimens. Regression relationships demonstrated that species, HVLA-SM site, and interactions thereof were significantly and moderately well correlated for HVLA-SM that generated tensile strain in the FJC. The relationships established in the current study can be used in future neurophysiological studies conducted in cats to extrapolate how human FJC afferents might respond to HVLA-SM. The data from the current study warrant further

  10. Fluctuations of the unruh temperature

    CERN Document Server

    Demers, J G

    1994-01-01

    Using the influence functional formalism, the problem of an accelerating detector in the presence of a scalar field in its ground state is considered in Minkowski space. As is known since the work of Unruh, to a quantum mechanical detector following a definite, classical acceleration, the field appears to be thermally excited. We relax the requirement of perfect classicality for the trajectory and substitute it with one of {\\it derived} classicality through the criteria of decoherence. The ensuing fluctuations in temperature are then related with the time and the amplitude of excitation in the detector's internal degree of freedom.

  11. Tourette综合征抽动症状严重程度与静息态功能磁共振脑低频振幅相关性的研究%Relationship between tic symptom severity and amplitude of low frequency fluctuation of resting-state functional magnetic resonance imaging of Tourette syndrome

    Institute of Scientific and Technical Information of China (English)

    崔永华; 郑毅; 金真; 贺永; 陈旭; 于丽萍

    2013-01-01

    Objective To examine the relationship between tic symptom severity and amplitude of low frequency fluctuation (ALFF) brain functioning of the first-episode Tourette syndrome through restingstate functional magnetic resonance imaging (fMRI).Method Sixteen subjects were all recruited from the outpatient department of pediatrics,Beijing Anding Hospital,Capital Medical University and were all firstepisode Tourette syndrome patients [male:13,female:3 ; age:6-16 years ; mean age:(11.00 ± 2.92)years] ; mean education time:(5.06 ± 2.86) years; course:14-104 months ; mean (48.44 ± 25.00)months ; scores of YGTSS at baseline:tic severity score:37.88 ± 5.39 ; global damage score:25.63 ±12.63.All the subjects experienced resting-state fMRI scans and ALFF were calculated in three frequency ranges:0.01-0.1 Hz,0.01-0.027 Hz and 0.027-0.073 Hz.First-episode Tourette syndrome patients and 16 gender,age,and education-matched normal controls experienced resting-state fMRI scans.Correlation analysis was performed in between the amplitude of low frequency fluctuation (ALFF) and the severity of tic symptom.P < 0.05 and k value ≥ 10 were considered to be of significance.Result In tic symptom patients,tic severity (total tic scores of YGTSS) was positively correlated with the ALFF values in the orbital part of left superior frontal gyrus (0.01-0.1 Hz:r =0.83,0.027-0.073 Hz:r =0.91,P <0.05,respectively),right middle frontal gyrus (0.01-0.027 Hz:r =0.85,0.027-0.073 Hz:r =0.57,P < 0.05,respectively) and orbital part of left middle frontal gyrus (0.01-0.027 Hz:r =0.64,P <0.05).Tic severity was negatively correlated with the ALFF values in the right calcarine fissure and surrounding cortex (0.01-0.1 Hz:r =-0.65,0.01-0.027 Hz:r =-0.69,P <0.05,respectively) and the left calcarine fissure and surrounding cortex (0.027-0.073 Hz:r =-0.81,P < 0.05).Conclusion Tic symptom severity of the first-episode Tourette syndrome is associated with abnormal brain activity patterns of specific

  12. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer; Oscillations dans l`amplitude de diffusion hadronique a haute energie et petites moments de transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, Pierre; Basarab Nicolescu [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Selyugin, O.V. [Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1999-10-01

    We show that the high precision dN/dt UA4/2 data at {radical} = 541 GeV are compatible with the presence of Auberson-Kinoshita-Martin (AKM) type of oscillations at very small momentum transfer. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 {center_dot}10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (authors) 1 ref., 2 figs.

  13. The impact of storativity on mixing in fluctuating groundwater flow

    Science.gov (United States)

    Pool, M.; Post, V.; Simmons, C. T.

    2013-12-01

    Mixing and dispersion in groundwater systems are dominated by spatial heterogeneity and temporal flow fluctuations. It has been found that fluctuations parallel to the main flow directions only mildly impact on solute dispersion and have little influence on mixing if the medium is homogeneous (de Dreuzy et al., 2007; Kinzelbach and Ackerer, 1986; Goode and Konikow, 1990). However, most these findings were obtained under the pseudo steady state assumption, that is zero storativity, which implies an instantaneous flow response to hydraulic perturbation. With non-zero storativity, fluctuations in the flow boundary conditions propagate through the aquifer with a finite speed, which leads to a more complex time-dependent flow field. This is particularly important for tidally dominated coastal aquifers where accurate quantification of mixing is essential for achieving ground-water sustainability. The strategic objective of this study is to identify the interplay between temporal fluctuations, storativity and mixing. We perform two and three-dimensional simulations of transient flow and solute transport under velocity-dependent local scale dispersion. Mixing is characterized by the spatial moments of concentration. The enhanced solute mixing is quantified by an apparent dispersion coefficient. We systematically analyze the dependence of this dispersion coefficient on fluctuation amplitude, period, as well as storativity. Most importantly, we find that solute dispersion increases consistently with storativity. This may have important implications for the understanding of mixing and reaction processes in unconfined groundwater systems. References: -de Dreuzy, J-R. ; Carrera, J. ; Dentz, M. ; Le Borgne, T. (2012) Asymptotic dispersion for two-dimensional highly heterogeneous permeability fields under temporally fluctuating flow, Water Resour. Res., 48, W01532 -Kinzelbach, W., and P. Ackerer (1986), Mode'isation de la propagation d'un contaminant dans un champ d

  14. On parton number fluctuations at various stages of the rapidity evolution

    CERN Document Server

    Mueller, A H

    2014-01-01

    Starting with the interpretation of parton evolution with rapidity as a branching-diffusion process, we describe the different kinds of fluctuations of the density of partons which affect the properties of QCD scattering amplitudes at moderately high energies. We then derive some of these properties as direct consequences of the stochastic picture. We get new results on the expression of the saturation scale of a large nucleus, and a modified geometric scaling valid at intermediate rapidities for dipole-dipole scattering.

  15. Suspended sediment fluctuations in the Tagus estuary on semi-diurnal and fortnightly time scales

    Science.gov (United States)

    Vale, Carlos; Sundby, Bjørn

    1987-11-01

    Nine multi-ship synoptic surveys of the distribution of suspended sediment, each survey including the distribution at both low and high tide, were carried out over a 12-month period in the mesotidal Tagus estuary in Portugal. Additional measurements of the semi-diurnal fluctuations of suspended sediment concentration and current strength were made at fixed stations during a neap and a spring tide. During the study period, the river discharge of water and suspended sediment remained below the mean annual discharge and did not show a pronounced seasonal fluctuation. A turbidity maximum, defined as an area with suspended sediment concentrations greater than 50 mg l -1, was absent during neap tides (1·3-m amplitude), but appeared and grew in both extent and turbidity as the tidal amplitude increased. The turbidity maximum was fully developed during spring tides (> 3-m amplitude) with concentrations greater than 50 mg l -1 throughout the entire estuary. Maximum concentrations, reaching as much as 1000 mg l -1 during spring tides, were always found in the inner shallow bay region of the estuary. In contrast to the salinity distribution, which fluctuated between partly stratified during neap tides and well mixed during spring tides, the vertical distribution of suspended matter in the turbidity maximum zone was always stratified with the highest concentrations near the bottom. The semi-diurnal fluctuation of the suspended sediment concentration was negligible during neap tides, but attained magnitudes during spring tides that were comparable to the fortnightly fluctuation. The fluctuation in suspended matter concentration is interpreted as a fortnightly erosion-sedimentation cycle, caused by a cyclic variation in the strength of the bottom currents. Superimposed on this fortnightly cycle is a semi-diurnal cycle. The amount of material involved in these cycles is equivalent to one year's input of suspended sediment by the Tagus river during normal discharge conditions.

  16. Amplitude image processing by diffractive optics.

    Science.gov (United States)

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  17. Origin of density fluctuations in extended inflation

    Science.gov (United States)

    Kolb, Edward W.; Salopek, David S.; Turner, Michael S.

    1990-01-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies.

  18. Energy system analysis of CAES technologies in the Danish energy system with high penetration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    countries. However, plans to expand wind power locally and in the neighbouring countries could restrain the export option and create transmission congestion challenges. This results in a need to increase the flexibility of the local electricity system. Compressed Air Energy Storage (CAES) has been proposed......Wind power supplies 20% of the annual electricity demand in Denmark, while 50% is produced by combined heat and power (CHP). The installed wind turbine capacity in Western Denmark exceeds the local demand at certain points in time. So far, excess production has been exported to neighbouring...... as a potential solution for levelling fluctuating wind power production and maintaining system balance. Compared to other electricity storage technologies, CAES provides a large storage capacity using readily available technologies. Results from this paper, however, show that in order to have a significant...

  19. Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities

    CERN Document Server

    Baryshevsky, V G

    2005-01-01

    In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

  20. High- Tc superconductivity due to coexisting wide and narrow bands: A fluctuation exchange study of the Hubbard ladder as a test case

    Science.gov (United States)

    Kuroki, Kazuhiko; Higashida, Takafumi; Arita, Ryotaro

    2005-12-01

    We propose that when the Fermi level lies within a wide band and also lies close to but not within a coexisting narrow band, high- Tc superconductivity may take place due to the large number of interband pair scattering channels and the small renormalization of the quasiparticles. We show using the fluctuation exchange method that this mechanism works for the Hubbard model on a ladder lattice with diagonal hoppings. From this viewpoint, we give a possible explanation for the low Tc for the actual hole-doped ladder compound, and further predict a higher Tc for the case of electron doping.

  1. Active membrane fluctuations with proton pumps

    Science.gov (United States)

    Szmelter, Adam; Chen, Kejia; Granick, Steve

    2014-03-01

    We investigate nonequilibrium membrane fluctuations in giant unilamellar vesicles (GUVs) by reconstituting the light-activated proton pump, bacteriorhodopsin (BR). Once activated, BR is known to form oligomers in model membranes, with an unknown effect on fluctuation amplitude. By using the UV-crosslinkable lipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine, we localize BR and prevent light-induced oligomerization. This system allows us to selectively switch on and off active fluctuations and to turn off diffusion (oligomerization) using green and UV light, respectively. We compare active membrane fluctuations with trapped and freely diffusing BR using an interferometric technique with sub nanometer and microsecond resolution. Remarkable dependence is found on whether BR is localized or freely diffusing.

  2. Study of Tumor with Frontal Lobe by the Fractional Amplitude of Low Frequency Fluctuation of Resting-state Functional Magnetic Resonance Imaging%额叶肿瘤静息态功能磁共振比率低频振幅的研究

    Institute of Scientific and Technical Information of China (English)

    赵翠花; 陶玲; 俞宙; 武江芬; 孙金洋; 周晖

    2015-01-01

    采用静息态下功能磁共振成像(fMRI)比率低频振幅(fALFF)测量技术,从能量的角度对额叶肿瘤患者与正常对照组进行比较分析,探讨额叶肿瘤患者认知功能失调的病理机制。本研究分别对14例额叶肿瘤患者和14例性别、年龄及受教育程度均相匹配的健康对照组进行静息态fMRI扫描,用fALFF算法进行比较分析。结果显示额叶肿瘤组同正常对照组相比,额叶肿瘤组fALFF值升高的脑区主要集中在右侧眶额回、右侧颞叶、右侧辅助运动区、左侧海马旁回、左侧后扣带回、左侧内侧和旁扣带及旁中央小叶,fALFF值降低的脑区主要集中在双侧背外侧额上回、双侧内侧额上回和小脑。研究结果显示在静息态下额叶肿瘤患者的额叶功能活动降低,这与额叶肿瘤部分组织的失活有关,而其余的默认网络区域、辅助运动区和旁中央小叶的活动增强,可能与额叶肿瘤脑认知功能失调及代偿作用有关。%To investigate pathological mechanism of dysfunction of cognitive control in tumor in frontal lobe,using a resting-state functional magnetic resonance imaging (fMRI)index,fractional amplitude of low frequency fluctuation (fALFF).14 patients with tumor in frontal lobe and 14 gender,age and education-matched healthy controls were experienced resting-state fMRI scans.fALFF approach was used to analyze fMRI data in resting state.Compared with healthy control group,the group with frontal lobe tumor showed the increased value of fALFF in the right orbitofrontal,right temporal lobe,right supplementary motor area,left parahippocampal gyrus, left posterior cingulate gyrus,the left medial cingulate and paracentral lobule,in the bilateral dorsolateral frontal gyrus,bilateral medial frontal gyrus and Cerebelum.The results show the decreased functional activity in the frontal area of the resting state in the patient′s tumor in frontal lobe ,which is part of the

  3. Mechanism of brain dysfunction on children with nocturnal enuresis by the technique of fractional amplitude of low frequency fluctuation of functional magnetic resonance imaging%功能磁共振比率低频振幅技术在夜间遗尿症儿童脑功能失调的机制研究

    Institute of Scientific and Technical Information of China (English)

    江凯华; 董选; 丁丽; 沈惠娟; 赵方乔; 易阳; 郑爱斌; 李红新; 丁立

    2016-01-01

    目的 采用静息态功能磁共振(rs-fMRI)比率低频振幅技术研究夜间遗尿症(nocturnal enuresis,NE)遗尿表现、注意和记忆障碍脑功能失调的病理机制.方法 NE与正常儿童各18名分别进行rs-fMRI扫描,采用比率低频振幅(fALFF)技术分析,组间通过双样本t检验比较fALFF值的差异.结果 两组fALFF值比较有明显差异的脑区分别位于小脑(MNI坐标值:-12,-57,-33)、左侧前额叶(-21,42,-9)、右侧颞叶(45,-12,-12)、枕叶(-18,-90,39),均为NE组低于正常组(P<0.05).NE儿童小脑fALFF值降低使控制排尿的定时功能失调,左侧前额叶活动减弱使其注意执行控制受到抑制,而右侧颞叶和枕叶的fALFF值较正常组低可能与记忆力相关.结论 NE患儿遗尿症状与小脑受损有关,小脑和左侧前额叶功能异常使其注意力下降,而NE记忆力障碍可能与右侧颞叶、枕叶损伤有一定联系.%Objective To research the pathological mechanism of the performance of enuresis and the brain dysfunction of attention and memory deficit of nocturnal enuresis (NE) by fractional amplitude of low frequency fluctuation (fALFF) of resting-state functional magnetic resonance imaging (rs-fMRI).Methods The approach of fALFF was used to analyze on 18 NE children and normal children,both of whom had been examined by rs-fMRI scans.Then the differences of fALFF were compared by two sample t-test.Results The brain regions which had obvious differences of fALFF between two groups were cerebellum(MNI:-12,-57,-33),left frontal lobe(-21,42,-9),right temporal lobe(45,-12,-12) and occipital lobe(-18,-90,39).And the group of NE was lower than normal children on all the four regions.The decrease of the value of fALFF on cerebellum made the dysfunction of timing of controlling urinary.And the weaken of the activity of left frontal lobe made the inhibition of attentional perform.The decrease of the value of fALFF on right temporal lobe and occipital lobe was probably

  4. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.

  5. Fluctuating stripes at the onset of the pseudogap in the high-T(c) superconductor Bi(2)Sr(2)CaCu(2)O(8+x).

    Science.gov (United States)

    Parker, Colin V; Aynajian, Pegor; da Silva Neto, Eduardo H; Pushp, Aakash; Ono, Shimpei; Wen, Jinsheng; Xu, Zhijun; Gu, Genda; Yazdani, Ali

    2010-12-02

    Doped Mott insulators have a strong propensity to form patterns of holes and spins often referred to as stripes. In copper oxides, doping also gives rise to the pseudogap state, which can be transformed into a high-temperature superconducting state with sufficient doping or by reducing the temperature. A long-standing issue has been the interplay between the pseudogap, which is generic to all hole-doped copper oxide superconductors, and stripes, whose static form occurs in only one family of copper oxides over a narrow range of the phase diagram. Here we report observations of the spatial reorganization of electronic states with the onset of the pseudogap state in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+x), using spectroscopic mapping with a scanning tunnelling microscope. We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes. As expected, the stripe patterns are strongest when the hole concentration in the CuO(2) planes is close to 1/8 (per copper atom). Although they demonstrate that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the phase diagram, our experiments indicate that the stripes are a consequence of pseudogap behaviour rather than its cause.

  6. 原发性闭角型青光眼不同频段低频振幅的静息态功能磁共振研究%Frequency-dependent alterations in the amplitude of low-frequency fluctuations in primary angle-closure glaucoma:a resting-state fMRI study

    Institute of Scientific and Technical Information of China (English)

    江菲; 曾献军; 聂晓; 蔡凤琴; 周福庆; 戴西件

    2016-01-01

    Objective To investigate the altered amplitude of low-frequency fluctuation (ALFF)of the brain using resting-state functional magnetic resonance imaging (rs-fMRI)within different band of fluctuation(slow-4:0.027-0.073 Hz,slow-5:0.01 -0.027 Hz) in patients with primary angle-closure glaucoma (PACG).Methods Forty PACG patients and thirty-six age-,gender-rmatched healthy controls (HC)were included in the rs-fMRI scans.The data preprocessing was performed using Data Processing Assistant For Resting-state (DPARSF).A two-way repeated-measures ANOVA were performed using SPM8 to analyze the effects of group (PACG,HC) and frequency band (slow-4,slow-5 ).Then,two-sample t tests were performed to observe the ALFF between PACG and HC in slow-4 and slow-5 and the correlations between ALFF values and the ophthalmologic measurements were analyzed.Results Regional differences in ALFF at two bands showed that right caudate nucleus,the left inferior orbitofrontal gyrus had increased ALFF in slow-5band compared to slow-4 (P<0.05,FDR corrected).Compared to HC,the precuneus,cuneus,bilateral lingual gyrus,bilateral middle occipital gyrus,bilateral calcarine,bilateral postcentral gyrus,right precentral,right middle temporal gyrus,right middle frontal gyrus,bilateral superior parietal lobule,right paracentral lobule,left inferior parietal lobule showed decreased ALFF,meanwhile,left superior and inferior temporal gyrus,left cerebellum posterior lobe,bilateral parahippocampa gyrus,left inferior frontal gyrus,right limbic lobe,right insula,posterior cingulated showed increased ALFF (P <0.05,FDR corrected).Furthermore,PACG exhibited abnormal brain function in both slow-4 and slow-5 bands. Conclusion PACG patients have abnormal neurons activity within and beyond the visual pathway,slow-5 band and slow-4 band can detect brain abnormalities from a different perspective,it provides new insights into the understanding of the pathological changes of PACG.%目的:应用静息态功能磁共振(rs

  7. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging (JT-SOFI)

    CERN Document Server

    Zeng, Zhiping; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition....

  8. Millennial-scale climatic fluctuation in the fluvial record during MIS3: Very high-resolution seismic images from NE Hungary

    Science.gov (United States)

    Cserkész-Nagy, Ágnes; Sztanó, Orsolya

    2016-12-01

    Alluvial architectures of a meandering river existing in MIS3 were observed on very high-resolution (VHR) single-channel waterborne seismic profiles, 20-30 m below the Tisza River in the Pannonian Basin (Hungary). The study investigated the spatial and temporal variations of two, more than 2 km-long continuous series of inclined reflections interpreted as laterally accreted point bar complexes. The phases of natural meander migration were reconstructed in 3D based on the changes in the geometry and dip of the inclined reflections. A channel-forming discharge curve extending over approximately 2.5 ky was calculated by using paleo-width and depth data derived from the lateral accretion surfaces. Systematic analysis of the geometrical variations coupled with the discharge curve evaluation on each point bar complexes indicates millennial-scale discharge fluctuations 40-50 ky ago, to that the river responded principally by incision and infilling. The primary periodicity, comparable to the sub-Milankovitch cycles, is superimposed by shorter periods: ca. 500-year cycles reflect the phases of unidirectional meander development, while the smallest ones reflect the recurrence interval (150-200 years) of the highest floods. River-bed incisions happened step-by-step related to extreme floods, when the meander development also changed. The smaller-scale and more rapid fluctuations within a development unit were represented in variations of the channel width. Although the poor geochronology of the sandy fluvial deposits cannot allow any direct correlation to the climatostratigraphic events, the millennial-scale climate variations of MIS3 were pronouncedly characteristic in the discharge fluctuations.

  9. 低频振幅算法功能磁共振成像对双侧海马硬化颞叶癫痫的研究%Application of amplitude of low-frequency fluctuation to the temporal lobe epilepsy with bilateral hippocampal sclerosis:an fMRI study

    Institute of Scientific and Technical Information of China (English)

    张志强; 臧玉峰; 刘一军; 卢光明; 钟元; 谭启富; 朱建国; 姜黎; 陈志立; 王中秋; 史继新

    2008-01-01

    目的 采用静息功能磁共振成像低频振幅(ALFF)技术,探讨颞叶癫痫脑活动的神经机制.方法 采用功能磁共振成像技术,观察伴有双侧海马硬化(HS)的内侧颞叶癫痫(mTLE)患者脑血氧水平依赖信号活动的改变.对南京军区南京总医院20例伴有HS的mTLE患者及20名正常志愿者进行静息态数据采集,并计算出各受试者ALFF值;采用两样本t检验,以P<0.01水平观察TLE患者相对正常人,ALFF增高及降低的区域.结果 相比正常人,TLE患者BOLD信号ALFF改变的区域呈双侧对称分布.ALFF升高区域以边缘叶为中心进行分布:包括双侧海马旁回、杏仁核、脑干网状结构区、下丘脑、部分扣带回等边缘系统;双侧感觉运动区、枕叶、颞下回及眶额回等新皮层区;以及中脑腹侧及小脑内侧等皮层下结构,以右中央前回(15,-12,51)为最大ALFF增高区(T=6.02).ALFF幅度降低的区域包括:扣带回前部、内侧前额叶及楔前叶等经典缺省模式区域,双背外侧前额叶及颞上回,双豆状核头部、中脑背侧结构及小脑后叶等结构,以小脑(3,-78,-21)为最大ALFF降低区(T=-4.42).结论 ALFF功能磁共振成像技术可以对癫痫引起的脑活动改变情况进行观察.ALFF增高的脑区反映了大脑对癫痫活动的产生、传播等易化作用,边缘叶在TLE中起着重要作用;ALFF降低区域反映了大脑对癫痫活动的抑制,尤其是缺省模式功能的受抑制.%Objective To study the changes of amplitude of low-frequency fluctuation (ALFF) of the resting-fMRI in the mesial temporal lobe epilepsy (mTLE) with bilateral hippocampal sclerosis ( HS) , and discussed its underlying neuro-pathophysiological mechanism. Methods The resting-fMRI data of 20 TLE patients with HS and 20 normal volunteers were performed ALFF analysis. The amplitude of the blood oxygenation level-dependent activation of the resting-state brain was investigated. The brain structures showing

  10. Fluctuations of excitability in the monosynaptic reflex pathway to lumbar motoneurons in the cat.

    Science.gov (United States)

    Gossard, J P; Floeter, M K; Kawai, Y; Burke, R E; Chang, T; Schiff, S J

    1994-09-01

    1. It is well known that the amplitude of successive monosynaptic reflexes (MSR), elicited by afferent stimuli of constant strength, fluctuate from trial to trial. Previous evidence suggests that such excitability fluctuations within the motor pool can be introduced either pre- and/or postsynaptically. Using unanesthetized decerebrate or decerebrate/spinal cats, we attempted to evaluate the relative importance of pre- and postsynaptic mechanisms to MSR variability and the potential contribution of changes in the identities of responding motoneurons to such variability. 2. Comparisons between the MSR amplitude, measured in a severed ventral root, and the probability of firing of up to three individual motoneurons in fine filaments teased from the same root, confirmed that both correlated and uncorrelated fluctuations of motoneuron excitability are involved in MSR variability. Linear regression analysis from concurrent intracellular recordings from homonymous motoneurons showed that the MSR fluctuations were correlated with the variations in membrane potential baseline, as well as with the fluctuations in the monosynaptic excitatory postsynaptic potential peak amplitude. In all 11 cases tested, the former correlation was stronger than the latter. 3. Stimulation of the caudal cutaneous sural nerve (CCS) was used to alter the postsynaptic potential background on which triceps surae (GS) MSRs were generated. The interval chosen between CCS conditioning and the GS stimulation excluded the involvement of presynaptic inhibition. When conditioned by preceding CCS stimulation, GS population MSRs generally (8/9 cases tested) increased in amplitude without much change in their overall variance. However, the individual motoneurons that contributed to the population responses did show changes in both relative excitability and in the uncorrelated component of their response variance. About half of the concurrently recorded motoneurons (6/13) showed a decrease in relative

  11. An objective fluctuation score for Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Malcolm K Horne

    Full Text Available Establishing the presence and severity of fluctuations is important in managing Parkinson's Disease yet there is no reliable, objective means of doing this. In this study we have evaluated a Fluctuation Score derived from variations in dyskinesia and bradykinesia scores produced by an accelerometry based system.The Fluctuation Score was produced by summing the interquartile range of bradykinesia scores and dyskinesia scores produced every 2 minutes between 0900-1800 for at least 6 days by the accelerometry based system and expressing it as an algorithm.This Score could distinguish between fluctuating and non-fluctuating patients with high sensitivity and selectivity and was significant lower following activation of deep brain stimulators. The scores following deep brain stimulation lay in a band just above the score separating fluctuators from non-fluctuators, suggesting a range representing adequate motor control. When compared with control subjects the score of newly diagnosed patients show a loss of fluctuation with onset of PD. The score was calculated in subjects whose duration of disease was known and this showed that newly diagnosed patients soon develop higher scores which either fall under or within the range representing adequate motor control or instead go on to develop more severe fluctuations.The Fluctuation Score described here promises to be a useful tool for identifying patients whose fluctuations are progressing and may require therapeutic changes. It also shows promise as a useful research tool. Further studies are required to more accurately identify therapeutic targets and ranges.

  12. Water rotational jump driven large amplitude molecular motions of nitrate ions in aqueous potassium nitrate solution

    CERN Document Server

    Banerjee, Puja; Bagchi, Biman

    2016-01-01

    Molecular dynamics simulations of aqueous potassium nitrate solution reveal a highly complex rotational dynamics of nitrate ions where, superimposed on the expected continuous Brownian motion, are large amplitude angular jumps that are coupled to and at least partly driven by similar large amplitude jump motions in water molecules which are associated with change in the hydrogen bonded water molecule. These jumps contribute significantly to rotational and translational motions of these ions. We explore the detailed mechanism of these correlated (or, coupled) jumps and introduce a new time correlation function to decompose the coupled orientational- jump dynamics of solvent and solute in the aqueous electrolytic solution. Time correlation function provides for the unequivocal determination of the time constant involved in orientational dynamics originating from making and breaking of hydrogen bonds. We discover two distinct mechanisms-both are coupled to density fluctuation but are of different types.

  13. PULSE AMPLITUDE DISTRIBUTION RECORDER

    Science.gov (United States)

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  14. Hydrodynamic influences of tidal fluctuations and beach slopes on benzene transport in unconfined, sandy costal aquifers

    Science.gov (United States)

    Ni, C.-F.; Wei, Y.-M.

    2012-04-01

    Oil spills in oceans have led to severe environment and ecosystem problems due to high toxicity substances, large spatial extents, and long temporal durations. The BTEX compounds are key indexes generally used for identifications of such contamination events and also for quantifications of residual substances after remediations. Benzene is one of the BTEX compounds, which is recognized to be high toxicity and may threat near-shore ecosystem and human safety. Therefore, the understanding of benzene transport in costal aquifers is critical for predictions of contaminated zones and managements and organizations of remediation plans. In this study a numerical investigation was conducted to quantify the influence of tidal fluctuations and beach slopes on benzene transport in an unconfined coastal aquifer. More specifically, three different tidal amplitudes and three beach slopes were considered in the two-dimensional HYDROGEOCHEM model to characterize the spatial and temporal behavior of the benzene transport. Simulation results show that tidal fluctuations will lead to shallow seawater circulations near the ground surface where the high tides can reach periodically. Such local circulation flows will trap benzene plume and the plume may migrate to the deeper aquifer, depending on the amplitudes of tides and the surface slopes of the coastal lines. The sine curve tides with 0.5 m amplitudes will create circulation plume sizes of about 50m in length and 20m in depth, while the circulation plume sizes for tides with 1.0 m amplitudes will significantly increase to approximately 150 m in length and 60 m in depth. Additionally, double the beach slopes and keep the same tidal amplitude will lead to 40 m plume movement toward the land. The amplitude of tidal fluctuation is the key factor to decide when and where a benzene plume reaches a largest depth. In general, the plume with tidal amplitude of 0.5 m requires 50 days to reach 90% of the largest depth. However, the plume with

  15. Experimental investigation on unsteady pressure fluctuation of rotor tip region in high pressure stage of a vaneless counter-rotating turbine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An experimental investigation has been performed to study the unsteady pressure fluctuation of rotor tip region in high pressure stage of a vaneless counter-rotating turbine.The experiment is carried out on a blow-down short duration turbine facility.The investigation indicates that the blow-down short duration turbine facility is capable of substituting continuous turbine facilities in most turbine testing.Through this experimental investigation,a distinct blade-to-blade variation is observed.The results indicate that the combined effects of vane wake,tip leakage flow,complicated wave systems and rotor wake induce the remarkable blade-to-blade variations.The results also show that the unsteady effect is intensified along the flow direction.

  16. Experimental investigation on unsteady pressure fluctuation of rotor tip region in high pressure stage of a vaneless counter-rotating turbine

    Institute of Scientific and Technical Information of China (English)

    ZHAO QingJun; LIU XiYang; WANG HuiShe; ZHAO XiaoLu; XU JianZhong

    2009-01-01

    An experimental investigation has been performed to study the unsteady pressure fluctuation of rotor tip region in high pressure stage of a vaneless counter-rotating turbine. The experiment is carried out on a blow-down short duration turbine facility. The investigation indicates that the blow-down short duration turbine facility is capable of substituting continuous turbine facilities in most turbine testing. Through this experimental investigation, a distinct blade-to-blade variation is observed. The results indicate that the combined effects of vane wake, tip leakage flow, complicated wave systems and rotor wake induce the remarkable blade-to-blade variations. The results also show that the unsteady effect is intensified along the flow direction.

  17. A cost-effective strategy for the bio-prospecting of mixed microalgae with high carbohydrate content: diversity fluctuations in different growth media.

    Science.gov (United States)

    Cea-Barcia, Glenda; Buitrón, Germán; Moreno, Gloria; Kumar, Gopalakrishnan

    2014-07-01

    In recent years, widespread efforts have been directed towards decreasing the costs associated with microalgae culture systems for the production of biofuels. In this study, a simple and inexpensive strategy to bio-prospect and cultivate mixed indigenous chlorophytes with a high carbohydrate content for biomethane and biohydrogen production was developed. Mixed microalgae were collected from four different water-bodies in Queretaro, Mexico, and were grown in Bold's basal mineral medium and secondary effluent from a wastewater treatment plant using inexpensive photo-bioreactors. The results showed large fluctuations in microalgal genera diversity based on different culture media and nitrogen sources. In secondary effluent, Golenkinia sp. and Scenedesmus sp. proliferated. The carbohydrate content, for secondary effluent, varied between 12% and 57%, and the highest volumetric and areal productivity were 61 mg L(-1)d(-1) and 4.6 g m(-2)d(-1), respectively. These results indicate that mixed microalgae are a good feedstock for biomethane and biohydrogen production.

  18. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.

    Science.gov (United States)

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg

    2015-09-15

    The acid production from the oxidation of hydrogen sulfide (H2S) in sewer air results in serious corrosion of exposed concrete surfaces in sewers. Large fluctuations of gaseous H2S concentrations occur in sewers due to the diurnal profiles of sewage flow and retention times and the necessity of intermittent pumping of sewage from pressure pipes into gravity pipes. How the high concentrations of H2S due to these events may affect H2S uptake and subsequent corrosion by concrete sewers is largely unknown. This study determined the effect of short- and long-term increases in H2S levels on the sulfide uptake rate (SUR) of concrete surfaces with an active corrosion layer. The results showed that during the high load situation the SUR increased significantly but then decreased (compared to the baseline SUR) by about 7-14% and 41-50% immediately after short- and long-term H2S high-load periods, respectively. For both exposure conditions, the SUR gradually (over several hours) recovered to approximately 90% of the baseline SUR. Further tests suggest multiple factors may contribute to the observed decrease of SUR directly after the high H2S load. This includes the temporary storage of elemental sulfur in the corrosion layer and inhibition of sulfide oxidizing bacteria (SOB) due to high H2S level and temporary acid surge. Additionally, the delay of the corrosion layer to fully recover the SUR after the high H2S load suggests that there is a longer-term inhibitive effect of the high H2S levels on the activity of the SOB in the corrosion layer. Due to the observed activity reductions, concrete exposed to occasional short-term high H2S load periods had an overall lower H2S uptake compared to concrete exposed to constant H2S levels at the same average concentration. To accurately predict H2S uptake by sewer concrete and hence the likely maximum corrosion rates, a correction factor should be adopted for the H2S fluctuations when average H2S levels are used in the prediction

  19. CHY formula and MHV amplitudes

    CERN Document Server

    Du, Yi-jian; Wu, Yong-shi

    2016-01-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.

  20. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  1. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Directory of Open Access Journals (Sweden)

    Andy M Reynolds

    Full Text Available Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic. In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction.

  2. Fractional amplitude of low-frequency fluctuations in childhood and adolescence-onset schizophrenia: a resting state fMRI study%首发儿童青少年精神分裂症静息态功能磁共振比率低频振幅的特点

    Institute of Scientific and Technical Information of China (English)

    吕丹; 邵荣荣; 梁颖慧; 夏艳红; 郭素芹

    2016-01-01

    目的 探讨首发儿童青少年精神分裂症患者(病例组)静息态全脑功能活动特点.方法 分别对63例自2013年10月至2015年10月在新乡医学院第二附属医院住院及门诊就诊的首发儿童青少年精神分裂症患者与39名性别、年龄、受教育程度均与之匹配的健康儿童青少年(健康对照组)进行静息态功能磁共振(fMRI)扫描,采用比率低频振幅(fALFF)算法作为指标进行比较分析.结果 排除头动后,病例组50例,健康对照组30名.同健康对照组比较,病例组fALFF降低的脑区有左侧的颞上回与顶叶(MNI坐标分别为:x=-42、-57,y=-3、-21,z=-12、9;体素分别为:22、32;t=-4.792 3、-5.269 7;Alphasim矫正,矫正后P<0.05);fALFF增高的脑区有左侧的额中回与额前回,右侧的额上回、中央后回、尾状核(MNI坐标分别为:x=-42、-21、12、27、15,y=54、39、48、-18、15,z=0、21、33、30、9;体素分别为:12、21、17、28、18;t=4.784 8、4.907、4.861 5、5.4441、4.270 4;Alphasim矫正,矫正后P<0.05).用年龄作协变量进行分析后发现,同健康组比较,病例组fALFF显著性改变的脑区除了左侧丘脑fALFF降低外(MNI坐标为:x=-6、y=-12、z=24;体素为:9;t=-4.268 4;Alphasim矫正,矫正后P<0.05),上述结果基本一致.结论 首发儿童青少年精神分裂症患者与健康对照组比较有多个脑区功能活动异常.%Objective To explore the whole brain activity features of childhood and adolescenceonset schizophrenia using resting state fMRI.Methods A total of 63 childhood and adolescence-onset schizophrenia patients (patients group),admitted to the second affiliated hospital of Xinxiang Medical University from October 2013 to October 2015 and fulfilled our inclusion criteria,and 39 healthy controls with age,sex and education matched (control group) were enrolled,then a resting-state fMRI scan was conducted for each participant.Fractional amplitude of low-frequency fluctuations (fALFF) approach

  3. Symmetries in fluctuations far from equilibrium.

    Science.gov (United States)

    Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L

    2011-05-10

    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.

  4. Graviton amplitudes from collinear limits of gauge amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2015-05-11

    We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity.

  5. On the Period-Amplitude and Amplitude-Period Relationships

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  6. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 蒋林; 赵慧

    2016-01-01

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  7. Fluctuation relations for spintronics.

    Science.gov (United States)

    López, Rosa; Lim, Jong Soo; Sánchez, David

    2012-06-15

    Fluctuation relations are derived in systems where the spin degree of freedom and magnetic interactions play a crucial role. The form of the nonequilibrium fluctuation theorems relies on the assumption of a local balance condition. We demonstrate that in some cases the presence of magnetic interactions violates this condition. Nevertheless, fluctuation relations can be obtained from the microreversibility principle sustained only at equilibrium as a symmetry of the cumulant generating function for spin currents. We illustrate the spintronic fluctuation relations for a quantum dot coupled to partially polarized helical edge states.

  8. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging.

    Science.gov (United States)

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-02-10

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods.

  9. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging

    Science.gov (United States)

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods. PMID:25665878

  10. Distribution of Pressure Fluctuations in a Prototype Pump Turbine at Pump Mode

    OpenAIRE

    Sun, Yuekun; Zuo, Zhigang; Liu, Shuhong; Liu, Jintao; Wu, Yulin

    2014-01-01

    Pressure fluctuations are very important characteristics in pump turbine’s operation. Many researches have focused on the characteristics (amplitude and frequencies) of pressure fluctuations at specific locations, but little researches mentioned the distribution of pressure fluctuations in a pump turbine. In this paper, 3D numerical simulations using SST k-ω turbulence model were carried out to predict the pressure fluctuations distribution in a prototype pump turbine at pump mode. Three oper...

  11. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t + ...

  12. Closed string amplitudes as single-valued open string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2014-04-15

    We show that the single trace heterotic N-point tree-level gauge amplitude A{sub N}{sup HET} can be obtained from the corresponding type I amplitude A{sub N}{sup I} by the single-valued (sv) projection: A{sub N}{sup HET}=sv(A{sub N}{sup I}). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α{sup ′}-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai–Lewellen–Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang–Mills and supergravity theories.

  13. TOFPET2: a high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications

    Science.gov (United States)

    Di Francesco, A.; Bugalho, R.; Oliveira, L.; Pacher, L.; Rivetti, A.; Rolo, M.; Silva, J. C.; Silva, R.; Varela, J.

    2016-03-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with 320 pF capacitance the circuit has 24 (30) dB SNR, 75(39) ps r.m.s. resolution, and 4(8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  14. Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies

    Science.gov (United States)

    Trebitsch, Maxime; Blaizot, Jérémy; Rosdahl, Joakim; Devriendt, Julien; Slyz, Adrianne

    2017-09-01

    Low-mass galaxies are thought to provide the bulk of the ionizing radiation necessary to reionize the Universe. The amount of photons escaping the galaxies is poorly constrained theoretically, and difficult to measure observationally. Yet it is an essential parameter of reionization models. We study in detail how ionizing radiation can leak from high-redshift galaxies. For this purpose, we use a series of high-resolution radiation hydrodynamics simulations, zooming on three dwarf galaxies in a cosmological context. We find that the energy and momentum input from the supernova explosions has a pivotal role in regulating the escape fraction by disrupting dense star-forming clumps, and clearing sightlines in the halo. In the absence of supernovae, photons are absorbed very locally, within the birth clouds of massive stars. We follow the time evolution of the escape fraction and find that it can vary by more than six orders of magnitude. This explains the large scatter in the value of the escape fraction found by previous studies. This fast variability also impacts the observability of the sources of reionization: a survey even as deep as M1500 = -14 would miss about half of the underlying population of Lyman-continuum emitters.

  15. Amplitude of low-frequency fluctuation in major depressive patients with hypomanic symptoms: a fMRI study in resting-state%伴轻躁狂症状的抑郁症患者脑功能磁共振低频振幅研究

    Institute of Scientific and Technical Information of China (English)

    杨海晨; 李琳玲; 彭红军; 刘铁榜; 秋云海; 荣晗; 冀二妮; 毕建强; 张建

    2015-01-01

    Objective To investigate the characteristics of hypomanic symptoms (HS) to the brain neural activity in the resting-state of the patients with major depressive disorder (MDD).Methods Twenty-three patients from 54 patients with MDD were defined as MDD with HS because their HCL-32 scores were higher than or equal to 12.The rest 31 patients were defined as MDD patients without HS because of the lower scores.After checking the match of the factors such as gender and age et al,there were 19 MDD patients with HS,19 patients without HS and 19 healthy controls in the final analysis.We analyzed the impact of HS to the regional brain function of the patients with MDD by amplitude of low-frequency fluctuation (ALFF).Results The patients with MDD had abnormal resting-state brain activity in a diffuse brain areas compared to healthy controls by the ALFF analysis.Compared to the patients without HS,the ALFF of the depressed MDD patients with HS were significantly higher in the bilateral orbitofrontal cortex (OFC;left OFC:MNI(x,y,z):-34,56,-10;t=5.26;right OFC:MNI(x,y,z):20,66,-2;t=493) and superior frontal cortex (SFC;left SFC:MNI(x,y,z):-4,66,8;t=4.12;right SFC:MNI(x,y,z):14,56,18,t=3.97,all P< 0.05);while lower in bilateral thalamus and left fusiform gyrus (P<0.05).Correlation analysis of ALFF at each voxel in the whole brain against the HCL-32 in the patients with MDD revealed significantly positive correlation in OFC (r=0.363,0.426,0.405,all P<0.05),negative correlation in left thalamus and left fusiform gyrus (r=-0.352,P<0.05;r=-0.468,P<0.01).Conclusions The study suggested that there were differences between the two subgroups patients with MDD defined by the HCL-32.Compared to the MDD without HS patients,MDD with HS patients showed increase ALFF in bilateral frontal cortex (especially the OFC),and decrease ALFF in left thalamus and left fusiform gyrus.These features may be regarded as the biomarker of the MDD patients who were positive to HCL-32 screening

  16. Amplitude Modulations of Acoustic Communication Signals

    Science.gov (United States)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  17. PRESSURE FLUCTUATIONS IN GAS-SOLIDS FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    Hsiaotao Bi; Aihua Chen

    2003-01-01

    Pressure fluctuation data measured in a series of fluidized beds with diameters of 0.05, 0.1, 0.29, 0.60 and 1.56 m showed that the maximum amplitude or standard deviation increased with increasing the superficial gas velocity and static bed height for relatively shallow beds and became insensitive to the increase in static bed height in relatively deep beds. The amplitude appeared to be less dependent on the measurement location in the dense bed. Predictions based on bubble passage, bubble eruption at the upper bed surface and bed oscillation all failed to explain all observed trends and underestimated the amplitude of pressure fluctuations, suggesting that the global pressure fluctuations in gas-solids bubbling fluidized beds are the superposition of local pressure variations, bed oscillations and pressure waves generated from the bubble formation in the distributor region, bubble coalescence during their rise and bubble eruption at the upper bed surface.

  18. Low- but Not High-Frequency LFP Correlates with Spontaneous BOLD Fluctuations in Rat Whisker Barrel Cortex.

    Science.gov (United States)

    Lu, Hanbing; Wang, Leiming; Rea, William W; Brynildsen, Julia K; Jaime, Saul; Zuo, Yantao; Stein, Elliot A; Yang, Yihong

    2016-02-01

    Resting-state magnetic resonance imaging (rsMRI) is thought to reflect ongoing spontaneous brain activity. However, the precise neurophysiological basis of rsMRI signal remains elusive. Converging evidence supports the notion that local field potential (LFP) signal in the high-frequency range correlates with fMRI response evoked by a task (e.g., visual stimulation). It remains uncertain whether this relationship extends to rsMRI. In this study, we systematically modulated LFP signal in the whisker barrel cortex (WBC) by unilateral deflection of rat whiskers. Results show that functional connectivity between bilateral WBC was significantly modulated at the 2 Hz, but not at the 4 or 6 Hz, stimulus condition. Electrophysiologically, only in the low-frequency range (whisker stimulation, thus distinguishing these 2 experimental conditions, and paralleling the findings in rsMRI. LFP power synchrony in other frequency ranges was modulated in a way that was neither unique to the specific stimulus conditions nor parallel to the fMRI results. Our results support the hypothesis that emphasizes the role of low-frequency LFP signal underlying rsMRI. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Development of a high-speed H-alpha camera system for the observation of rapid fluctuations in solar flares

    Science.gov (United States)

    Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.; Chen, P. C.

    1988-01-01

    A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production.

  20. Surface Wave Amplitude Anomalies in the Western United States

    Science.gov (United States)

    Eddy, C.; Ekstrom, G.

    2011-12-01

    We determine maps of local surface wave amplitude factors across the Western United States for Rayleigh and Love waves at discrete periods between 25 and 125s. Measurements of raw amplitude anomalies are made from data recorded at 1161 USArray stations for minor arc arrivals of earthquakes with Mw>5.5 occurring between 2006 and 2010. We take the difference between high-quality amplitude anomaly measurements for events recorded on station pairs less than 2 degrees apart. The mean of these differences for each station pair is taken as the datum. Surface wave amplitudes are controlled by four separate mechanisms: focusing due to elastic structure, attenuation due to anelastic structure, source effects, and receiver effects. By taking the mean of the differences of amplitude anomalies for neighboring stations, we reduce the effects of focusing, attenuation, and the seismic source, thus isolating amplitude anomalies due to near-receiver amplitude effects. We determine local amplitude factors for each USArray station by standard linear inversion of the differential data set. The individual station amplitude factors explain the majority of the variance of the data. For example, derived station amplitude factors for 50s Rayleigh waves explain 92% of the variance of the data. We explore correlations between derived station amplitude factors and local amplitude factors predicted by crust and upper mantle models. Maps of local amplitude factors show spatial correlation with topography and geologic structures in the Western United States, particularly for maps derived from Rayleigh wave amplitude anomalies. A NW-SE trending high in amplitude factors in Eastern California is evident in the 50s map, corresponding to the location of the Sierra Nevada Mountains. High amplitude factors are observed in Colorado and New Mexico in the 50s-125s maps in the location of the highest peaks of the Rocky Mountains. High amplitude factors are also seen in Southern Idaho and Eastern Wyoming in

  1. Effects of spatial fluctuations in the extragalactic background light on hard gamma-ray spectra

    Science.gov (United States)

    Kudoda, A. M.; Faltenbacher, A.

    2017-05-01

    This study investigates the impact of the fluctuations in the extragalactic background light (EBL) on the attenuation of the hard γ-ray spectra of distant blazars. EBL fluctuations occur on the scales up to 100 Mpc and are caused by the clustering of galaxies. The EBL photons interact with high-energy γ-rays via the electron-positron pair production mechanism: γ + γ΄ → e+ + e-. The attenuation of γ-rays depends on their energy and the density of the intervening EBL photon field. Using a simple model for the evolution of the mean EBL photon density, we implement an analytical description of the EBL fluctuations. We find that the amplitudes of the EBL energy density can vary by ±1 per cent as a function of environment. The EBL fluctuations lead to mild alterations of the optical depth or equivalently the transmissivity for γ-rays from distant blazars. Our model predicts maximum changes of ±10 per cent in the γ-ray transmissivity. However, this translates into marginal differences in the power-law slopes of currently observed γ-ray spectra. The slopes of deabsorbed γ-ray spectra differ by not more than ±1 per cent if EBL fluctuations are included.

  2. Polarization-mediated Debye-screening of surface potential fluctuations in dual-channel AlN/GaN high electron mobility transistors

    Science.gov (United States)

    Deen, David A.; Miller, Ross A.; Osinsky, Andrei V.; Downey, Brian P.; Storm, David F.; Meyer, David J.; Scott Katzer, D.; Nepal, Neeraj

    2016-12-01

    A dual-channel AlN/GaN/AlN/GaN high electron mobility transistor (HEMT) architecture is proposed, simulated, and demonstrated that suppresses gate lag due to surface-originated trapped charge. Dual two-dimensional electron gas (2DEG) channels are utilized such that the top 2DEG serves as an equipotential that screens potential fluctuations resulting from surface trapped charge. The bottom channel serves as the transistor's modulated channel. Two device modeling approaches have been performed as a means to guide the device design and to elucidate the relationship between the design and performance metrics. The modeling efforts include a self-consistent Poisson-Schrodinger solution for electrostatic simulation as well as hydrodynamic three-dimensional device modeling for three-dimensional electrostatics, steady-state, and transient simulations. Experimental results validated the HEMT design whereby homo-epitaxial growth on free-standing GaN substrates and fabrication of the same-wafer dual-channel and recessed-gate AlN/GaN HEMTs have been demonstrated. Notable pulsed-gate performance has been achieved by the fabricated HEMTs through a gate lag ratio of 0.86 with minimal drain current collapse while maintaining high levels of dc and rf performance.

  3. Biogas in a future energy supply structure with a high proportion of fluctuating renewable energies; Biogas in einer zukuenftigen Energieversorgungsstruktur mit hohen Anteilen fluktuierender Erneuerbarer Energien

    Energy Technology Data Exchange (ETDEWEB)

    Holzhammer, Uwe Abraham

    2015-07-01

    The power supply must integrate in the future an increasing share of renewable energies for the supply of electricity customers to meet the climate protection requirements. The proportion of weather-dependent renewable energy plays a leading role of renewable power supply in the future. These highly volatile provided electricity volumes do not match in base-load power generated amounts, as it has come in the past biogas park and still mostly delivers. It seems necessary that the non-fluctuating production units ''make room'' the wind and PV electricity volumes in the energy system and provide the electricity in phases when the fluctuating renewable energy electricity volumes are not available. In this study, it is determined how the biogas park with its high number of production systems should behave from total cost perspective in the energy system in 2030. It primarily concerns the question whether the base-load electricity production of biogas parks should be changed and made more flexible from the perspective of the overall costs and if so, to what extent. [German] Die Stromversorgung muss in Zukunft einen stetig steigenden Anteil an Erneuerbarer Energien zur Versorgung der Stromkunden integrieren, um die den Klimaschutzanforderungen zu genuegen. Der Anteil an wetterabhaengigen Erneuerbaren Energien nimmt dabei zukuenftig die tragende Rolle der Erneuerbaren Stromversorgung ein. Diese sehr volatil bereitgestellten Strommengen passen nicht zu in Grundlast erzeugten Strommengen, wie sie in der Vergangenheit der BiogasPark geliefert hat und immer noch groesstenteils liefert. Es scheint erforderlich, dass die nicht fluktuierenden Erzeugungseinheiten den Wind-und PV-Strommengen im Energiesystem ''Platz machen'' und den Strom in Phasen bereitstellen, wenn die fluktuierende Erneuerbaren Energie-Strommengen nicht zur Verfuegung stehen. Im Rahmen dieser Arbeit wird ermittelt, wie sich der BiogasPark mit seiner hohen Zahl an

  4. Some features of the small-scale solar wind fluctuations

    Science.gov (United States)

    Zastenker, G.; Eiges, P.; Avanov, L.; Astafyeva, N.; Zurbuchen, Th.; Bochsler, P.

    1995-06-01

    We have investigated small-scale variations of the solar wind ion flux measured with Faraday cups onboard the Prognoz-8 satellite. These measurements have a high time resolution of 1.24 seconds for intervals with a duration of several hours and as high as 0.02 seconds for some periods of about 1 hour duration. The main goal of this work is the determination of the quantitative features of fast ion flux fluctuations using mainly spectral analysis but also other methods. We also identify their association with interplanetary plasma parameters. Particularly, it is shown that the slope of the power spectra in the frequency range from 1E-4 to 6E-2 Hz is close to the classical Kolmogorov (-5/3) law. We also discuss some intervals with a very high level of the relative amplitude of flux fluctuations (10-20 percent) which were observed near the Earth's bow shock in the foreshock region. The use of the wavelet method for the long time series allows us to study the temporal evolution of power spectra.

  5. Thermal SZ fluctuations in the ICM: probing turbulence and thermodynamics in Coma cluster with Planck

    Science.gov (United States)

    Khatri, Rishi; Gaspari, Massimo

    2016-11-01

    We report the detection of thermal Sunyaev-Zeldovich (SZ) effect fluctuations in the intracluster medium (ICM) of Coma cluster observed with Planck. The SZ data links the maximum observable X-ray scale to the large Mpc scale, extending our knowledge of the power spectrum of ICM fluctuations. Deprojecting the 2D SZ perturbations into 3D pressure fluctuations, we find an amplitude spectrum which peaks at δP/P = 33 ± 12 and 74 ± 19 per cent in the 15 and 40 arcmin radius region, respectively. We perform tests to ensure fluctuations are intrinsic to the cluster and not due to noise contamination. By using high-resolution hydrodynamical models, we improve the ICM turbulence constraints in Coma, finding 3D Mach number Ma3d = 0.8 ± 0.3 (15 arcmin region), increasing to supersonic values at larger radii (40 arcmin) and an injection scale Linj ≈ 500 kpc. Such properties are consistent with driving due to mergers, in particular tied to internal galaxy groups. The large pressure fluctuations show that Coma is in adiabatic mode (mediated by sound waves), rather than isobaric mode (mediated by buoyancy waves). As predicted by turbulence models, the distribution of SZ fluctuations is lognormal with mild non-Gaussianities (heavy tails). The substantial non-thermal pressure support implies hydrostatic mass bias bM = -15 to -45 per cent from the core to the outskirt region, respectively. While total SZ power probes the thermal energy content, the SZ fluctuations constrain the non-thermal deviations important for precision cosmology. The proposed, novel approach can be exploited by multifrequency observations using ground-based interferometers and future space cosmic microwave background missions.

  6. Positive Amplitudes In The Amplituhedron

    CERN Document Server

    Arkani-Hamed, Nima; Trnka, Jaroslav

    2014-01-01

    The all-loop integrand for scattering amplitudes in planar N = 4 SYM is determined by an "amplitude form" with logarithmic singularities on the boundary of the amplituhedron. In this note we provide strong evidence for a new striking property of the superamplitude, which we conjecture to be true to all loop orders: the amplitude form is positive when evaluated inside the amplituhedron. The statement is sensibly formulated thanks to the natural "bosonization" of the superamplitude associated with the amplituhedron geometry. However this positivity is not manifest in any of the current approaches to scattering amplitudes, and in particular not in the cellulations of the amplituhedron related to on-shell diagrams and the positive grassmannian. The surprising positivity of the form suggests the existence of a "dual amplituhedron" formulation where this feature would be made obvious. We also suggest that the positivity is associated with an extended picture of amplituhedron geometry, with the amplituhedron sitting...

  7. Model selection for amplitude analysis

    CERN Document Server

    Guegan, Baptiste; Stevens, Justin; Williams, Mike

    2015-01-01

    Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a data-driven method for limiting model complexity through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. A method is also proposed for obtaining the significance of a resonance in a multivariate amplitude analysis.

  8. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  9. Continuous information flow fluctuations

    Science.gov (United States)

    Rosinberg, Martin Luc; Horowitz, Jordan M.

    2016-10-01

    Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.

  10. Quantum Fractal Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Benenti, Giuliano; Casati, Giulio; Guarneri, Italo; Terraneo, Marcello

    2001-07-02

    We numerically analyze quantum survival probability fluctuations in an open, classically chaotic system. In a quasiclassical regime and in the presence of classical mixed phase space, such fluctuations are believed to exhibit a fractal pattern, on the grounds of semiclassical arguments. In contrast, we work in a classical regime of complete chaoticity and in a deep quantum regime of strong localization. We provide evidence that fluctuations are still fractal, due to the slow, purely quantum algebraic decay in time produced by dynamical localization. Such findings considerably enlarge the scope of the existing theory.

  11. Spatial fluctuation theorem

    Science.gov (United States)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  12. Independent fluctuations of malate and citrate in the CAM species Clusia hilariana Schltdl. under low light and high light in relation to photoprotection.

    Science.gov (United States)

    Miszalski, Zbigniew; Kornas, Andrzej; Rozpądek, Piotr; Fischer-Schliebs, Elke; Lüttge, Ulrich

    2013-03-15

    Clusia hilariana Schltdl. is described in literature as an obligate Crassulacean acid metabolism (CAM) species. In the present study we assessed the effect of irradiance with low light (LL, 200μmolm(-2)s(-1)) and high light (HL, 650-740μmolm(-2)s(-1)), on the interdependency of citrate and malate diurnal fluctuations. In plants grown at HL CAM-type oscillations of concentration of citrate and malate were obvious. However, at LL daily courses of both acids do not seem to indicate efficient utilization of these compounds as CO2 and NADPH sources. One week after transferring plants from LL to HL decarboxylation of malate was accelerated. Thus, in the CAM plant C. hilariana two independent rhythms of accumulation and decarboxylation of malate and citrate take place, which appear to be related to photosynthesis and respiration, respectively. Non photochemical quenching (NPQ) of photosystem II, especially well expressed during the evening hours was enhanced. Exposure to HL for 7 d activated oxidative stress protection mechanisms such as the interconversion of violaxanthin (V), antheraxanthin (A) and zeaxanthin (Z) (epoxydation/de-epoxydation) measured as epoxydation state (EPS). This was accompanied by a slight increase in the total amount of these pigments. However, all these changes were not observed in plants exposed to HL for only 2 d. Besides violaxanthin cycle components also lutein, which shows a small, but not significant increase, may be involved in dissipating excess light energy in C. hilariana.

  13. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    Science.gov (United States)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  14. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

    Science.gov (United States)

    Zhang, Dan; Guo, Xiantao; Wang, Fang; Dong, Shuanglin

    2016-10-01

    To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance ( P < 0.05). However, salinity fluctuation of 10 only resulted in a significant variation in MIH and CHH gene expression when compared to the control ( P < 0.05). According to our findings, L. vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

  15. Quasispecies evolution on a fitness landscape with a fluctuating peak

    Science.gov (United States)

    Nilsson, Martin; Snoad, Nigel

    2002-03-01

    A quasispecies evolving on a fitness landscape with a single peak of fluctuating height is studied. In the approximation that back mutations can be ignored, the rate equations can be solved analytically. It is shown that the error threshold on this class of dynamic landscapes is defined by the time average of the selection pressure. In the case of a periodically fluctuating fitness peak, we also study the phase shift and response amplitude of the previously documented low-pass filter effect. The special case of a small harmonic fluctuation is treated analytically.

  16. Fluctuations of fragment observables

    CERN Document Server

    Gulminelli, F

    2006-01-01

    This contribution presents a review of our present theoretical as well as experimental knowledge of different fluctuation observables relevant to nuclear multifragmentation. The possible connection between the presence of a fluctuation peak and the occurrence of a phase transition or a critical phenomenon is critically analyzed. Many different phenomena can lead both to the creation and to the suppression of a fluctuation peak. In particular, the role of constraints due to conservation laws and to data sorting is shown to be essential. From the experimental point of view, a comparison of the available fragmentation data reveals that there is a good agreement between different data sets of basic fluctuation observables, if the fragmenting source is of comparable size. This compatibility suggests that the fragmentation process is largely independent of the reaction mechanism (central versus peripheral collisions, symmetric versus asymmetric systems, light ions versus heavy ion induced reactions). Configurationa...

  17. Particle Distribution Modification by Low Amplitude Modes

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2009-08-28

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  18. Fluctuations in lipid bilayers: Are they understood?

    CERN Document Server

    Schmid, Friederike

    2013-01-01

    We review recent computer simulation studies of undulating lipid bilayers. Theoretical interpretations of such fluctuating membranes are most commonly based on generalized Helfrich-type elastic models, with additional contributions of local "protrusions" and/or density fluctuations. Such models provide an excellent basis for describing the fluctuations of tensionless bilayers in the fluid phase at a quantitative level. However, this description is found to fail for membranes in the gel phase and for membranes subject to high tensions. The fluctuations of tilted gel membranes show a signature of the modulated ripple structure, which is a nearby phase observed in the pretransition regime between the fluid and tilted gel state. This complicates a quantitative analysis on mesoscopic length scales. In the case of fluid membranes under tension, the large-wavelength fluctuation modes are found to be significantly softer than predicted by theory. In the latter context, we also address the general problem of the relat...

  19. Fluctuations in tension during contraction of single muscle fibers.

    Science.gov (United States)

    Borejdo, J; Morales, M F

    1977-12-01

    We have searched for fluctuations in the steady-state tension developed by stimulated single muscle fibers. Such tension "noise" is expected to be present as a result of the statistical fluctuations in the number and/or state of myosin cross-bridges interacting with thin filament sites at any time. A sensitive electro-optical tension transducer capable of resolving the expected fluctuations in magnitude and frequency was constructed to search for the fluctuations. The noise was analyzed by computing the power spectra and amplitude of stochastic fluctuations in the photomultiplier counting rate, which was made proportional to muscle force. The optical system and electronic instrumentation together with the minicomputer software are described. Tensions were measured in single skinned glycerinated rabbit psoas muscle fibers in rigor and during contraction and relaxation. The results indicate the presence of fluctuations in contracting muscles and a complete absence of tension noise in eith rigor or relaxation. Also, a numerical method was developed to simulate the power spectra and amplitude of fluctuations, given the rate constants for association and dissociation of the cross-bridges and actin. The simulated power spectra and the frequency distributions observed experimentally are similar.

  20. 稳定的保幅高阶广义屏地震偏移成像方法研究%The method of preserved-amplitude seismic migration imaging with stable generalized high order screen

    Institute of Scientific and Technical Information of China (English)

    刘定进; 杨瑞娟; 罗申玥; 王鹏燕; 郑小鹏; 宋林

    2012-01-01

    Wave equation preserved-amplitude seismic migration imaging has a special function that can give true amplitudes as well as the correct locations based on advanced wave theories. The author first starts from the unstable phase shift expression of preserved-amplitude one way wave equation. Based on perturbation theory which is often used in reversed question solution, the author uses the progressive expansion of single square root operator to drive a high-order generalized screen form of preserved-amplitude prestack depth migration equation. To solve the unstable problem in lateral variable speed media caused by computation items of the scattering wavefield, the author proposes a strategy which can effectively improve the stability by math approximation. Then this strategy is applied to the wavefield recursion extrapolation, so a kind of stable preserved-amplitude prestack depth migration operators of high-order generalized screen are obtained. Theoretical model testing and real data processing indicate that this method can not only make scattering energy be focused and migrated to the correct position to improve imaging accuracy but also output the amplitude information which reflects the correct subsurface reflection coefficients. So this method has clearer AVO response and can enhance analytic precision for AVO data.%以先进的波动理论为基础的波动方程保幅地震偏移成像是在给出正确位置的同时也给出真实振幅的一种特殊完善.作者从保幅单程波动方程的非稳态相移公式出发,基于反问题求解中常用的摄动理论,利用单平方根算子的渐进展开,从而推导出保幅叠前深度偏移方程的高阶广义屏形式;针对散射波场计算项对于横向变速介质的不稳定性,通过数学近似提出一个有效提高稳定性的策略,应用到波场递归外推过程中,从而得到一种稳定的保幅高阶广义屏叠前深度偏移算子.理论模型试算和实际资料处理表明,该

  1. Measuring shape fluctuations in biological membranes

    Science.gov (United States)

    Monzel, C.; Sengupta, K.

    2016-06-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes.

  2. Cyclical Fluctuations in Workplace Accidents

    OpenAIRE

    Boone, J.; J. C. VAN OURS

    2002-01-01

    This Paper presents a theory and an empirical investigation on cyclical fluctuations in workplace accidents. The theory is based on the idea that reporting an accident dents the reputation of a worker and raises the probability that he is fired. Therefore a country with a high or an increasing unemployment rate has a low (reported) workplace accident rate. The empirical investigation concerns workplace accidents in OECD countries. The analysis confirms that workplace accident rates are invers...

  3. Computing Maximally Supersymmetric Scattering Amplitudes

    Science.gov (United States)

    Stankowicz, James Michael, Jr.

    This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at

  4. Scattering Amplitudes in Gauge Theories

    CERN Document Server

    Schubert, Ulrich

    2014-01-01

    This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...

  5. Factorization of Chiral String Amplitudes

    CERN Document Server

    Huang, Yu-tin; Yuan, Ellis Ye

    2016-01-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  6. Factorization of chiral string amplitudes

    Science.gov (United States)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  7. Shape of Pion Distribution Amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly

    2009-11-01

    A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.

  8. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  9. The amplitude and phase precision of 40 Hz auditory steady-state response depend on the level of arousal

    DEFF Research Database (Denmark)

    Griskova, Inga; Mørup, Morten; Parnas, Josef

    2007-01-01

    The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected by the le......The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected...... it pertinent to know the effects of fluctuations in arousal on passive response to gamma-range stimulation. In nine healthy volunteers trains of 40 Hz click stimuli were applied during two conditions: in the "high arousal" condition subjects were sitting upright silently reading a book of interest; in the "low...

  10. Detection of a 1258 Hz high-amplitude kilohertz quasi-periodic oscillation in the ultra-compact X-ray binary 1A 1246-588

    CERN Document Server

    Jonker, P G; Méndez, M; Van der Klis, M

    2007-01-01

    We have observed the ultra-compact low-mass X-ray binary (LMXB) 1A 1246-588 with the Rossi X-ray Timing Explorer (RXTE). In this manuscript we report the discovery of a kilohertz quasi-periodic oscillation (QPO) in 1A 1246-588. The kilohertz QPO was only detected when the source was in a soft high-flux state reminiscent of the lower banana branch in atoll sources. Only one kilohertz QPO peak is detected at a relatively high frequency of 1258+-2 Hz and at a single trial significance of more than 7 sigma. Kilohertz QPOs with a higher frequency have only been found on two occasions in 4U 0614+09. Furthermore, the frequency is higher than that found for the lower kilohertz QPO in any source, strongly suggesting that the QPO is the upper of the kilohertz QPO pair often found in LMXBs. The full-width at half maximum is 25+-4 Hz, making the coherence the highest found for an upper kilohertz QPO. From a distance estimate of ~6 kpc from a radius expansion burst we derive that 1A 1246-588 is at a persistent flux of ~0....

  11. Micro-phytoplankton community structure in the coastal upwelling zone off Concepción (central Chile): Annual and inter-annual fluctuations in a highly dynamic environment

    Science.gov (United States)

    Anabalón, V.; Morales, C. E.; González, H. E.; Menschel, E.; Schneider, W.; Hormazabal, S.; Valencia, L.; Escribano, R.

    2016-12-01

    An intensification of upwelling-favorable winds in recent decades has been detected in some of the main eastern boundary current systems, especially at higher latitudes, but the response of coastal phytoplankton communities in the Humboldt Current System (HCS) remains unknown. At higher latitudes in the HCS (35-40°S), strong seasonality in wind-driven upwelling during spring-summer coincides with an annual increase in coastal chlorophyll-a and primary production, and a dominance of micro-phytoplankton. In order to understand the effects of potential upwelling intensification on the micro-phytoplankton community in this region, annual and inter-annual variability in its structure (total and taxa-specific abundance and biomass) and its association with oceanographic fluctuations were analyzed using in situ time series data (2002-2009) from a shelf station off Concepcion (36.5°S). At the annual scale, total mean abundance and biomass, attributed to a few dominant diatom taxa, were at least one order of magnitude greater during spring-summer than autumn-winter, in association with changes in upwelling and surface salinity and temperature, whereas macro-nutrient concentrations remained relatively high all the year. At the inter-annual scale, total abundance and biomass decreased during the upwelling season of the 2006-2009 period compared with the 2002-2006 period, notably due to lower abundances of Skeletonema and Leptocylindrus, but the relative dominance of a few taxa was maintained. The 2006-2009 period was characterized by higher upwelling intensity, colder and higher salinity waters, and changes in nutrient concentrations and ratios compared with the first period. The inter-annual changes in the micro-phytoplankton community were mostly associated with changes in surface salinity and temperature (changes in upwelling intensity) but also with changes in Si/N and N/P, which relate to other land-derived processes.

  12. Attention decreases phase-amplitude coupling, enhancing stimulus discriminability in cortical area MT

    Directory of Open Access Journals (Sweden)

    Moein eEsghaei

    2015-12-01

    Full Text Available Local field potentials (LFPs in cortex reflect synchronous fluctuations in the activity of local populations of neurons. The power of high frequency (>30 Hz oscillations in LFPs is locked to the phase of low frequency (<30 Hz oscillations, an effect known as phase-amplitude coupling (PAC. While PAC has been observed in a variety of cortical regions and animal models, its functional role particularly in primate visual cortex is largely unknown. Here we document PAC for LFPs recorded from extra-striate area MT of macaque monkeys, an area specialized for the processing of visual motion. We further show that directing spatial attention into the receptive field of MT neurons decreases the coupling between the low frequency phase and high frequency power of LFPs. This attentional suppression of PAC increases neuronal discriminability for attended visual stimuli. Therefore we hypothesize that visual cortex uses PAC to regulate inter-neuronal correlations and thereby enhances the coding of relevant stimuli.

  13. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer

    CERN Document Server

    Hechenblaikner, Gerald

    2013-01-01

    High precision metrology systems based on heterodyne interferometry can measure position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both, the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. Whilst these results are applicable to any heterodyne in...

  14. Method of differential-phase/absolute-amplitude QAM

    Science.gov (United States)

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  15. Participant number fluctuations for higher moments of a multiplicity distribution

    CERN Document Server

    Begun, Viktor

    2016-01-01

    The independent participant model is generalized for skewness and kurtosis. The obtained relations allow to calculate the fluctuations of an arbitrarily high order. From the comparison with the SPS and the LHC data it is found that the participants are not protons. The contribution of the participant fluctuations increases with the order of fluctuations. The method to quantify the value of participant number fluctuations experimentally is proposed.

  16. Synchronous imaging of coherent plasma fluctuations

    Science.gov (United States)

    Haskey, S. R.; Thapar, N.; Blackwell, B. D.; Howard, J.

    2014-03-01

    A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.

  17. Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification

    CERN Document Server

    Kish, Laszlo B; King, Maria D; Kwan, Chiman; Jensen, James O; Schmera, Gabor; Smulko, Janusz; Gingl, Zoltan; Granqvist, Claes G

    2009-01-01

    We survey and show our earlier results about three different ways of fluctuation-enhanced sensing of bio agent, the phage-based method for bacterium detection published earlier; sensing and evaluating the bacterial odors; and spectral and amplitude distribution analysis of noise in light scattering to identify spores based on their diffusion coefficient.

  18. Load fluctuations drive actin network growth

    CERN Document Server

    Shaevitz, Joshua W

    2007-01-01

    The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors, which trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin--propelled microspheres using three--dimensional laser tracking, we find that beads adhered to the growing network move via an object--fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuati...

  19. Quantitative laryngeal electromyography: turns and amplitude analysis.

    Science.gov (United States)

    Statham, Melissa McCarty; Rosen, Clark A; Nandedkar, Sanjeev D; Munin, Michael C

    2010-10-01

    Laryngeal electromyography (LEMG) is primarily a qualitative examination, with no standardized approach to interpretation. The objectives of our study were to establish quantitative norms for motor unit recruitment in controls and to compare with interference pattern analysis in patients with unilateral vocal fold paralysis (VFP). Retrospective case-control study We performed LEMG of the thyroarytenoid-lateral cricoarytenoid muscle complex (TA-LCA) in 21 controls and 16 patients with unilateral VFP. Our standardized protocol used a concentric needle electrode with subjects performing variable force TA-LCA contraction. To quantify the interference pattern density, we measured turns and mean amplitude per turn for ≥10 epochs (each 500 milliseconds). Logarithmic regression analysis between amplitude and turns was used to calculate slope and intercept. Standard deviation was calculated to further define the confidence interval, enabling generation of a linear-scale graphical "cloud" of activity containing ≥90% of data points for controls and patients. Median age of controls and patients was similar (50.7 vs. 48.5 years). In controls, TA-LCA amplitude with variable contraction ranged from 145-1112 μV, and regression analysis comparing mean amplitude per turn to root-mean-square amplitude demonstrated high correlation (R = 0.82). In controls performing variable contraction, median turns per second was significantly higher compared to patients (450 vs. 290, P = .002). We first present interference pattern analysis in the TA-LCA in healthy adults and patients with unilateral VFP. Our findings indicate that motor unit recruitment can be quantitatively measured within the TA-LCA. Additionally, patients with unilateral VFP had significantly reduced turns when compared with controls.

  20. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Institute for Materials Science, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Gudnason, Sven Bjarke; Kedem, Yaron [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Krikun, Alexander [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Institute of Theoretical and Experimental Physics,B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Thorlacius, Lárus [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); University of Iceland, Science Institute,Dunhaga 3, IS-107 Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics,Stockholm University, AlbaNova University Centre, 10691 Stockholm (Sweden); Zarembo, Konstantin [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Institute of Theoretical and Experimental Physics,B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Department of Physics and Astronomy, Uppsala University,SE-751 08 Uppsala (Sweden)

    2015-01-07

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS spacetime. The fluctuation spectrum is governed by the lowest-lying hydrodynamic modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at high temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordström black hole in global AdS.

  1. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits.

  2. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical–Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J.

    2015-01-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13–30 Hz) and gamma (30–90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30–90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  3. Employing Helicity Amplitudes for Resummation

    CERN Document Server

    Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in $4$- and $d$-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard m...

  4. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are dire

  5. Extracting amplitudes from photoproduction data

    Science.gov (United States)

    Workman, R. L.

    2011-09-01

    We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).

  6. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  7. Ward identities for amplitudes with reggeized gluons

    Energy Technology Data Exchange (ETDEWEB)

    Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-05-15

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  8. Fluctuations of wavefunctions about their classical average

    Energy Technology Data Exchange (ETDEWEB)

    Benet, L [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Flores, J [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Hernandez-Saldana, H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Izrailev, F M [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Leyvraz, F [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Seligman, T H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico)

    2003-02-07

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.

  9. Fluctuations of wavefunctions about their classical average

    CERN Document Server

    Bénet, L; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.

  10. Strain accumulation model of soils under low-amplitude high-cycle loading%低幅值高循环荷载作用下土体的应变累积模型

    Institute of Scientific and Technical Information of China (English)

    贾鹏飞; 孔令伟; 杨爱武

    2013-01-01

    高速铁路路基上的轨道以及附近区域的结构物承受低幅值、高循环振动荷载的反复作用.在此低幅值、高循环荷载作用下土体会产生不可恢复的应变累积,导致轨道及附近区域结构物发生附加沉降.当前,描述土体的循环变形特征的理论分为两类:一类是基于经典塑性理论的应力-应变滞回模型(例如边界面模型),另一类是基于循环三轴试验经验规律的应变累积模型(例如Bochum累积模型).为了能够预测土体在低幅值、高循环荷载作用下的应变累积行为,在前人对土体在低幅值、高循环荷载作用下大量试验研究的基础上,在经典弹塑性理论的框架下,提出一个土体在低幅值、高循环荷载作用下的应变累积模型.该模型通过用对数律来描述塑性体应变的累积规律,并以此作为应变累积的大小度量,然后通过修正Cam-clay模型的流动准则来描述应变累积的发展方向.最后,通过多组试验结果的模拟,表明所提出的应变累积模型能够较好地预测土体在低幅值、高循环荷载作用下的应变累积行为,具有广泛的应用前景.%High-speed railway track and nearby structures are subjected to low-amplitude and high-cycle loading. Additional settlements of track and structures may be caused by irreversible strain accumulation of soils under the low-amplitude and high-cycle loading. At present, the theories described the deformation characteristics of soils have two kinds, stress-strain hysteretic model based on classical plastic theory, e.g. bounding surface model, and strain accumulation model based on empirical law obtained from the cyclic triaxial tests, e.g. Bochum accumulation model. Based on the existing test studies and classical elastoplastic theory, a strain accumulation model is proposed to predict strain accumulation behavior of soils subjected to low-amplitude and high-cycle loading. The model describes the accumulation law of

  11. Shock induced ignition and DDT in the presence of mechanically driven fluctuations

    Science.gov (United States)

    Wang, Wentian; McDonald, James G.; Radulescu, Matei I.

    2015-11-01

    The present study addresses the problem of shock induced ignition and transition to detonation in the presence of mechanical and thermal fluctuations. These departures from a homogeneous medium are of significant importance in practical situations, where such fluctuations may promote hot-spot ignition and favor the flame transition to detonation. The problem is studied in 1D, where a piston-induced shock ignites the gas. The fluctuations in the shock-compressed medium are controlled by allowing the piston's speed to oscillate around a mean, with controllable frequency and amplitude. A Lagrangian numerical formulation is used, which allows to treat exactly the transient boundary condition at the piston head. The hydrodynamic solver is coupled with the reactive dynamics of the gas using Cantera. The code was verified by comparison with steady state ZND solutions and previous shock induced ignition results in homogeneous media. Results obtained for different fuels illustrate the strong relation of the DDT amplification length to mechanical fluctuations in systems with a high effective activation energy and fast rate of energy deposition, consistent with experiments performed on fast flame acceleration in the presence of strong mechanical perturbations. Financial support from NSERC and Shell, with A. Pekalski and M. Levin as technical monitors, are greatly acknowledged.

  12. Thermal SZ fluctuations in the ICM: probing turbulence and thermodynamics in Coma cluster with ${\\it Planck}$

    CERN Document Server

    Khatri, R

    2016-01-01

    The thermal Sunyaev-Zeldovich (SZ) ${\\it fluctuations}$ can open up a new powerful window into the astrophysics of the hot diffuse medium in cosmological structures. We report the detection of SZ fluctuations in the intracluster medium (ICM) of Coma cluster observed with ${\\it Planck}$. The SZ data links the maximum observable X-ray scale to the large Mpc scale, extending our knowledge of the power spectrum of ICM fluctuations. Deprojecting the 2-d SZ perturbations into 3-d pressure fluctuations, we find an amplitude spectrum which peaks at $\\delta P/P = 33\\pm 12\\%$ and $74\\pm19\\%$ in the $15'$ and $40'$ radius region, respectively. By using high-resolution hydrodynamical models, we improve the ICM turbulence constraints in Coma, finding 3-d Mach number ${\\rm Ma_{3d}}= 0.8\\pm0.3$ (15' region) and injection scale $L_{\\rm inj}\\approx 500$ kpc. Such properties are consistent with driving due to mergers tied to internal galaxy groups. For larger radii (40'), the injection scale is unaltered and the Mach number do...

  13. Steady-state EB cap size fluctuations are determined by stochastic microtubule growth and maturation.

    Science.gov (United States)

    Rickman, Jamie; Duellberg, Christian; Cade, Nicholas I; Griffin, Lewis D; Surrey, Thomas

    2017-03-28

    Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steady-state growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth.

  14. A fluidized granular medium as an instance of the Fluctuation theorem

    Science.gov (United States)

    Menon, Narayanan; Feitosa, Klebert

    2003-03-01

    Recent theoretical work by Gallavotti and Cohen has led to a theorem on the spectrum of fluctuations in the entropy production rate of a driven nonequilibrium steady state. This fluctuation theorem has been difficult to experimentally illustrate in a macroscopic system because the fluctuations are typically too small to apply strong tests of the results of the theorem. We apply the theorem's result to a particulate system where fluctuations are quite large. The experimental quantities we study are the fluctuations in the flux of power and momentum into a small volume of a 2D vibration-fluidized granular medium. We find that the ratio of the probabilities of a positive and a negative fluctuation of a given amplitude is approximately exponential in that amplitude. We acknowledge support from NSF DMR-9874833.

  15. Event-by-Event Fluctuations

    OpenAIRE

    2003-01-01

    In this review, we systematically examine the principles and the practices of fluctuations such as the momentum and the charge fluctuations as applied to the heavy ion collisions. Main emphases are: (i) Fluctuations as signals of phase transition (ii) Relationship between correlation functions and fluctuations (iii) Qualitative difference between fluctuations in small systems and large systems. Whenever available, theoretical results are compared with data from RHIC and SPS.

  16. DIS and the effects of fluctuations: a momentum space analysis

    CERN Document Server

    Basso, E; de Oliveira, E G; Amaral, J T de Santana

    2008-01-01

    Among the dipole models of deep inelastic scattering at small values of the Bjorken variable $x$, one has been recently proposed which relates the virtual photon-proton cross section to the dipole-proton forward scattering amplitude in momentum space. The latter is parametrized by an expression which interpolates between its behavior at saturation and the travelling wave, ultraviolet, amplitudes predicted by perturbative QCD from the Balitsky-Kovchegov equation. Inspired by recent developments in coordinate space, we use this model to parametrize the proton structure function and confront it to HERA data on $ep$ deep inelastic scattering. Both event-by-event and the physical amplitudes are considered, the latter used to investigate the effect of gluon number fluctuations, beyond the mean-field approximation. We conclude that fluctuations are not present in DIS at HERA energies.

  17. A Nonlinear Dynamic Characterization of The Universal Scrape-off Layer Plasma Fluctuations

    CERN Document Server

    Mekkaoui, A

    2012-01-01

    A stochastic differential equation of plasma density dynamic is derived, consistent with the experimentally measured pdf and the theoretical quadratic nonlinearity. The plasma density evolves on the turbulence correlation time scale and is driven by a stochastic white noise proportional to the turbulence fluctuations amplitude, while the linear growth is quadratically damped by the fluctuation level $n_e(t)/\\bar{n}_e$.

  18. Fluctuation theorem applied to the Nosé-Hoover thermostated Lorentz gas

    Science.gov (United States)

    Gilbert, Thomas

    2006-03-01

    We present numerical evidence supporting the validity of the Gallavotti-Cohen fluctuation theorem applied to the driven Lorentz gas with Nosé-Hoover thermostating. It is moreover argued that the asymptotic form of the fluctuation formula is independent of the amplitude of the driving force in the limit where it is small.

  19. Channeling efficiency dependence on bending radius and thermal vibration amplitude of the model for the channeling of high-energy particles in straight and bent crystals implemented in Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, Enrico [INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara (Italy); Asai, Makoto; Dotti, Andrea [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Guidi, Vincenzo [INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara (Italy); Verderi, Marc [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France)

    2015-07-15

    Monte Carlo simulations of the interaction of particles with matter are usually done with downloadable toolkits such as Geant4. A model suitable for the implementation into Geant4 for the interaction of high-energy particles in straight and bent crystals was developed and implemented. The model relies on the continuum potential approximation. The variation of the Geant4 model for the description of the orientational effect as a function of the physical parameters for the calculation of the interplanar potential is presented. The simulations are capable of reproducing the variation of the efficiency of channeling as a function of the thermal vibration amplitude and the bending radius of a bent Si strip. The study can be useful for the simulation of the channeling effect in experiments at GeV/c energies.

  20. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  1. Pressure fluctuations in gas fluidized beds

    OpenAIRE

    Leckner Bo.; Palchonok Genadij I.; Johnsson Filip

    2002-01-01

    The pressure fluctuations in a fluidized bed are a result of the actions of the bubbles. However, the bubbles may be influenced by the air supply system and by the pressure drop of the air distributor. These interactions are treated for low as well as for high velocity beds by means of a simple model of the principal frequency of the pressure fluctuations. The model includes the interaction with the air supply system and describes qualitatively two important bubbling regimes: the single bubbl...

  2. Speech Coding in the Brain: Representation of Vowel Formants by Midbrain Neurons Tuned to Sound Fluctuations(1,2,3).

    Science.gov (United States)

    Carney, Laurel H; Li, Tianhao; McDonough, Joyce M

    2015-01-01

    Current models for neural coding of vowels are typically based on linear descriptions of the auditory periphery, and fail at high sound levels and in background noise. These models rely on either auditory nerve discharge rates or phase locking to temporal fine structure. However, both discharge rates and phase locking saturate at moderate to high sound levels, and phase locking is degraded in the CNS at middle to high frequencies. The fact that speech intelligibility is robust over a wide range of sound levels is problematic for codes that deteriorate as the sound level increases. Additionally, a successful neural code must function for speech in background noise at levels that are tolerated by listeners. The model presented here resolves these problems, and incorporates several key response properties of the nonlinear auditory periphery, including saturation, synchrony capture, and phase locking to both fine structure and envelope temporal features. The model also includes the properties of the auditory midbrain, where discharge rates are tuned to amplitude fluctuation rates. The nonlinear peripheral response features create contrasts in the amplitudes of low-frequency neural rate fluctuations across the population. These patterns of fluctuations result in a response profile in the midbrain that encodes vowel formants over a wide range of levels and in background noise. The hypothesized code is supported by electrophysiological recordings from the inferior colliculus of awake rabbits. This model provides information for understanding the structure of cross-linguistic vowel spaces, and suggests strategies for automatic formant detection and speech enhancement for listeners with hearing loss.

  3. Fluctuating Asymmetry and Intelligence

    Science.gov (United States)

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  4. Diagnostics for fluctuation measurements

    NARCIS (Netherlands)

    Donne, A. J. H.

    2000-01-01

    Transport of particles and heat in magnetic confinement devices is largely attributed to the presence of microscopic instabilities. To better understand the physical mechanisms underlying plasma transport processes it is necessary to diagnose the fluctuations in the various quantities along with the

  5. Cavity as a source of conformational fluctuation and high-energy state: High-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme

    CERN Document Server

    Maeno, Akihiro; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A A; Kitahara, Ryo

    2014-01-01

    Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the 1H/13C HSQC spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of more than 20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closel...

  6. New structures in scattering amplitudes: a review

    CERN Document Server

    Benincasa, Paolo

    2013-01-01

    We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories. This review is partially based on lectures given at: Dipartimento di Fisica and INFN, Universit\\`a di Bologna; Departamento de F{\\i}sica de Part{\\i}culas, Universidade de Santiago de Compostela; and as part of the program Strings@ar Lectures on Advanced Topics of High Energy Physics held at the IAFE

  7. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...

  8. Integrable spin chains and scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)

    2011-04-15

    In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  9. Gauge and Gravity Amplitude Relations

    CERN Document Server

    Carrasco, John Joseph M

    2015-01-01

    In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.

  10. Infrared singularities in QCD amplitudes

    CERN Document Server

    Gardi, Einan

    2009-01-01

    We review recent progress in determining the infrared singularity structure of on-shell scattering amplitudes in massless gauge theories. We present a simple ansatz where soft singularities of any scattering amplitude of massless partons, to any loop order, are written as a sum over colour dipoles, governed by the cusp anomalous dimension. We explain how this formula was obtained, as the simplest solution to a newly-derived set of equations constraining the singularity structure to all orders. We emphasize the physical ideas underlying this derivation: the factorization of soft and collinear modes, the special properties of soft gluon interactions, and the notion of the cusp anomaly. Finally, we briefly discuss potential multi-loop contributions going beyond the sum-over-dipoles formula, which cannot be excluded at present.

  11. Timing and amplitude jitter in a gain-switched multimode semiconductor laser

    Science.gov (United States)

    Wada, Kenji; Kitagawa, Naoaki; Matsukura, Satoru; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2016-04-01

    The differences in timing jitter between a gain-switched single-mode semiconductor laser and a gain-switched multimode semiconductor laser are examined using rate equations that include Langevin noise. The timing jitter in a gain-switched multimode semiconductor laser is found to be effectively suppressed by a decrease in the coherence time of the amplified spontaneous emission (ASE) based on a broad bandwidth of multimode oscillation. Instead, fluctuations in the ASE cause amplitude jitter in the pulse components of the respective modes. A pulse train of gain-switched pulses from a multimode semiconductor laser with timing jitter is equivalently simulated by assuming a high spontaneous emission factor and a short coherence time of the ASE in the single-mode semiconductor laser rate equations.

  12. Pulse amplitude modulated chlorophyll fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  13. Development of Pasteuria penetrans in Meloidogyne javanica females as affected by constantly high vs fluctuating temperature in an in-vivo system

    Institute of Scientific and Technical Information of China (English)

    DARBAN D.A.; GOWEN S.R.; PEMBROKE B.; MAHAR A.N.

    2005-01-01

    Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogynejavanica second-stage juveniles attached with endospores ofP. penetrans and were grown in growth room at 26-29 ℃ and in glasshouse at 20-32 ℃. The tomato plants were sampled from the growth room after 600 degree-days based on 17 ℃/d, accumulating each day above a base temperature of 10 ℃ and from the glasshouse after 36 calendar days. Temperature affected the development ofP. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.

  14. Groundwater response to serial stream stage fluctuations in shallow unconfined alluvial aquifers along a regulated stream (West Virginia, USA)

    Science.gov (United States)

    Maharjan, Madan; Donovan, Joseph J.

    2016-12-01

    Groundwater response to stream stage fluctuations was studied in two unconfined alluvial aquifers using a year-long time series of stream stages from two pools along a regulated stream in West Virginia, USA. The purpose was to analyze spatial and temporal variations in groundwater/surface-water interaction and to estimate induced infiltration rate and cumulative bank storage during an annual cycle of stream stage fluctuation. A convolution-integral method was used to simulate aquifer head at different distances from the stream caused by stream stage fluctuations and to estimate fluxes across the stream-aquifer boundary. Aquifer diffusivities were estimated by wiggle-matching time and amplitude of modeled response to multiple observed storm events. The peak lag time between observed stream and aquifer stage peaks ranged between 14 and 95 hour. Transient modeled diffusivity ranged from 1,000 to 7,500 m2/day and deviated from the measured and calculated single-peak stage-ratio diffusivity by 14-82 %. Stream stage fluctuation displayed more primary control over groundwater levels than recharge, especially during high-flow periods. Dam operations locally altered groundwater flow paths and velocity. The aquifer is more prone to surface-water control in the upper reaches of the pools where stream stage fluctuations are more pronounced than in the lower reaches. This method could be a useful tool for quick assessment of induced infiltration rate and bank storage related to contamination investigations or well-field management.

  15. All-Multiplicity Amplitudes with Massive Scalars

    CERN Document Server

    Forde, D; Forde, Darren; Kosower, David A.

    2005-01-01

    We compute two infinite series of tree-level amplitudes with a massive scalar pair and an arbitrary number of gluons. We provide results for amplitudes where all gluons have identical helicity, and amplitudes with one gluon of opposite helicity. These amplitudes are useful for unitarity-based one-loop calculations in nonsupersymmetric gauge theories generally, and QCD in particular.

  16. Beneficial Effect of Post-Deposition Treatment in High-Efficiency Cu(In,Ga)Se2 Solar Cells through Reduced Potential Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Soren A.; Glynn, Stephen; Kanevce, Ana; Dippo, Pat; Li, Jian V.; Levi, Dean H.; Kuciauskas, Darius

    2016-08-14

    World-record power conversion efficiencies for Cu(In,Ga)Se2 (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ~40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in the electronic potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ~10 um, which is ~4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.

  17. Crisis in Amplitude Control Hides in Multistability

    Science.gov (United States)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-12-01

    A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.

  18. Runaway electrons as a diagnostic of plasma internal magnetic fluctuations

    Institute of Scientific and Technical Information of China (English)

    Zheng Yong-Zhen; Ding Xuan-Tong; Li Wen-Zhong

    2006-01-01

    The transport of runaway electrons in a high-temperature plasma is relatively easy to measure in a steady state experiment and a perturbation experiment, which provides runaway electron diffusion coefficient Dr. This diffusion coefficient is determined by internal magnetic fluctuations, so it can be interpreted in terms of a magnetic fluctuation level. The internal magnetic fluctuation level (br/BT) is estimated to be about (2-4)×-4 in the HL-1M plasma. The results presented here demonstrate the effectiveness of using runaway electron transport techniques to determine internal magnetic fluctuations. A profile of magnetic fluctuation level in the HL-1M plasma can be estimated from Dr.

  19. Calculation of multi-loop superstring amplitudes

    Science.gov (United States)

    Danilov, G. S.

    2016-12-01

    The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.

  20. Acceleration of Small Dust Grains due to Charge Fluctuations

    CERN Document Server

    Hoang, Thiem

    2011-01-01

    We consider the acceleration of very small dust grains including Polycyclic Aromatic Hydrocarbons (PAHs) arising from the electrostatic interactions of dust grains that have charge fluctuates in time due to charging events. We simulate the charge fluctuations of very small grains due to their sticking collisions with electrons and ions in plasma and the emission of photoelectrons by UV photons using Monte Carlo method. We identify the acceleration induced by the charge fluctuations as the dominant acceleration mechanism of very small grains in the diffuse interstellar medium (ISM). We show that this acceleration mechanism is more efficient for environments with low ionization, where the charge fluctuations are slow but have a large amplitude. We also discuss the implications of the present mechanism for grain coagulation and shattering in the diffuse ISM, molecular clouds and protoplanetary disks.

  1. Phase state dependent current fluctuations in pure lipid membranes

    CERN Document Server

    Wunderlich, B; Idzko, A-L; Keyser, U F; Wixforth, A; Myles, V M; Heimburg, T; Schneider, M F

    2009-01-01

    Current fluctuations in pure lipid membranes have been shown to occur under the influence of transmembrane electric fields (electroporation) as well as a result from structural rearrangements of the lipid bilayer during phase transition (soft perforation). We demonstrate that the ion permeability during lipid phase transition exhibits the same qualitative temperature dependence as the macroscopic heat capacity of a D15PC/DOPC vesicle suspension. Microscopic current fluctuations show distinct characteristics for each individual phase state. While current fluctuations in the fluid phase show spike-like behaviour of short time scales (~ 2ms) with a narrow amplitude distribution, the current fluctuations during lipid phase transition appear in distinct steps with time scales in the order of ~ 20ms. 1 We propose a theoretical explanation for the origin of time scales and permeability based on a linear relationship between lipid membrane susceptibilities and relaxation times in the vicinity of the phase transition.

  2. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Science.gov (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  3. Amplitude death of coupled hair bundles with stochastic channel noise

    CERN Document Server

    Kim, Kyung-Joong

    2014-01-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles(stereocilia) can be spontaneously oscillating or quiescent. Recently, the amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, {\\bf 10}, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between non-identical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as inter-bundle coupling str...

  4. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  5. Fluctuations in quantum devices

    Directory of Open Access Journals (Sweden)

    H.Haken

    2004-01-01

    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  6. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  7. Fluctuations in diffusion processes in microgravity.

    Science.gov (United States)

    Mazzoni, Stefano; Cerbino, Roberto; Vailati, Alberto; Giglio, Marzio

    2006-09-01

    It has been shown recently that diffusion processes exhibit giant nonequilibrium fluctuations (NEFs). That is, the diffusing fronts display corrugations whose length scale ranges from the molecular to the macroscopic one. The amplitude of the NEF diverges following a power law behavior proportional to q(-4) (where q is the wave vector). However, fluctuations of wave number smaller than a critical "rolloff" wave vector are quenched by the presence of gravity. It is therefore expected that in microgravity conditions, the amplitude of the NEF should be boosted by the absence of the buoyancy-driven restoring force. This may affect any diffusion process performed in microgravity, such as the crystallization of a protein solution induced by the diffusion of a salt buffer. The aim of GRADFLEX (GRAdient-Driven FLuctuation EXperiment), a joint project of ESA and NASA, is to investigate the presence of NEFs arising in a diffusion process under microgravity conditions. The project consists of two experiments. One is carried out by UNIMI (University of Milan) and INFM (Istituto Nazionale per la Fisica della Materia) and is focused on NEF in a concentration diffusion process. The other experiment is performed by UCSB (University of California at Santa Barbara) concerning temperature NEF in a simple fluid. In the UNIMI part of the GRADFLEX experimental setup, NEFs are induced in a binary mixture by means of the Soret effect. The diagnostic method is an all-optical quantitative shadowgraph technique. The power spectrum of the induced NEFs is obtained by the processing of the shadowgraph images. A detailed description of the experimental apparatus as well as the ground-based experimental results is presented here for the UNIMI-INFM experiment. The GRADFLEX payload is scheduled to fly on the FOTON M3 capsule in April 2007.

  8. Numerical simulation of pressure fluctuation in Kaplan turbine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As it is almost impossible to carry out the prototype hydro-turbine experiment be- fore the power plant is built up, rational prediction of pressure fluctuations in the prototype turbine is very important at the design stage. From this viewpoint, we at first treated the unsteady turbulent flow computation based on the modified RNG k-ε turbulence model through the whole flow passage to simulate the pressure fluctuation in a model turbine. Since fair agreement was recognized between the numerical results and the experimental data, this numerical method was applied to simulate the pressure fluctuations in the prototype turbine. From the comparison of them with the model turbine results, it is seen that their qualitative trend of pres- sure fluctuations are similar, but an appreciable difference is observed between the amplitudes of pressure fluctuation of the prototype turbine and that of the model turbine. Though the present findings may be explained by the effect of Reynolds number, further studies are expected for quantitative interpretation. We paid atten- tion to the interaction between the fluid and turbine structure. Adopting a weak fluid-solid coupling method, we studied the pressure fluctuation in the prototype turbine to clarify how the elastic behavior of runner blades influenced the charac- teristics of pressure fluctuation.

  9. Low-frequency (0.7-7.4 mHz geomagnetic field fluctuations at high latitude: frequency dependence of the polarization pattern

    Directory of Open Access Journals (Sweden)

    L. Cafarella

    2001-06-01

    Full Text Available A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 mHz covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0°S geomagnetic latitude throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  10. Low-frequency (0.7-7.4 mHz) geomagnetic field fluctuations at high latitude. Frequency dependence of the polarization pattern

    Energy Technology Data Exchange (ETDEWEB)

    Lepidi, S.; Cafarella, L. [Istituto Nazionale di Geofisica e Vulcanologia, L' Aquila (Italy); Francia, P. [L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica

    2001-06-01

    A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 m Hz) covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0{sup 0}S geomagnetic latitude) throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  11. Current fluctuations in a two dimensional model of heat conduction

    Science.gov (United States)

    Pérez-Espigares, Carlos; Garrido, Pedro L.; Hurtado, Pablo I.

    2011-03-01

    In this work we study numerically and analytically current fluctuations in the two-dimensional Kipnis-Marchioro-Presutti (KMP) model of heat conduction. For that purpose, we use a recently introduced algorithm which allows the direct evaluation of large deviations functions. We compare our results with predictions based on the Hydrodynamic Fluctuation Theory (HFT) of Bertini and coworkers, finding very good agreement in a wide interval of current fluctuations. We also verify the existence of a well-defined temperature profile associated to a given current fluctuation which depends exclusively on the magnitude of the current vector, not on its orientation. This confirms the recently introduced Isometric Fluctuation Relation (IFR), which results from the time-reversibility of the dynamics, and includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by timereversibility on the statistics of nonequilibrium fluctuations.

  12. Correlations and scaling properties of nonequilibrium fluctuations in liquid mixtures

    Science.gov (United States)

    Brogioli, Doriano; Croccolo, Fabrizio; Vailati, Alberto

    2016-08-01

    Diffusion in liquids is accompanied by nonequilibrium concentration fluctuations spanning all the length scales comprised between the microscopic scale a and the macroscopic size of the system, L . Up to now, theoretical and experimental investigations of nonequilibrium fluctuations have focused mostly on determining their mean-square amplitude as a function of the wave vector. In this work, we investigate the local properties of nonequilibrium fluctuations arising during a stationary diffusion process occurring in a binary liquid mixture in the presence of a uniform concentration gradient, ∇ c0 . We characterize the fluctuations by evaluating statistical features of the system, including the mean-square amplitude of fluctuations and the corrugation of the isoconcentration surfaces; we show that they depend on a single mesoscopic length scale l =√{a L } representing the geometric average between the microscopic and macroscopic length scales. We find that the amplitude of the fluctuations is very small in practical cases and vanishes when the macroscopic length scale increases. The isoconcentration surfaces, or fronts of diffusion, have a self-affine structure with corrugation exponent H =1 /2 . Ideally, the local fractal dimension of the fronts of diffusion would be Dl=d -H , where d is the dimensionality of the space, while the global fractal dimension would be Dg=d -1 . The transition between the local and global regimes occurs at a crossover length scale of the order of the microscopic length scale a . Therefore, notwithstanding the fact that the fronts of diffusion are corrugated, they appear flat at all the length scales probed by experiments, and they do not exhibit a fractal structure.

  13. Amplitude recruitment of cochlear potential

    Institute of Scientific and Technical Information of China (English)

    LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang

    2001-01-01

    Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.

  14. A Model for Lightcone Fluctuations due to Stress Tensor Fluctuations

    CERN Document Server

    Bessa, C H G; Ford, L H; Ribeiro, C C H

    2016-01-01

    We study a model for quantum lightcone fluctuations in which vacuum fluctuations of the electric field and of the squared electric field in a nonlinear dielectric material produce variations in the flight times of probe pulses. When this material has a non-zero third order polarizability, the flight time variations arise from squared electric field fluctuations, and are analogous to effects expected when the stress tensor of a quantized field drives passive spacetime geometry fluctuations. We also discuss the dependence of the squared electric field fluctuations upon the geometry of the material, which in turn determines a sampling function for averaging the squared electric field along the path of the pulse. This allows us to estimate the probability of especially large fluctuations, which is a measure of the probability distribution for quantum stress tensor fluctuations.

  15. Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation

    Science.gov (United States)

    Ortiz de Zárate, José M.; Sengers, Jan V.

    2013-02-01

    We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.

  16. Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains

    Science.gov (United States)

    Mendl, Christian B.; Spohn, Herbert

    2016-10-01

    The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t^{1/3} and have a Tracy-Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.

  17. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    Science.gov (United States)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  18. Fluctuation dynamics in reconnecting current sheets

    Science.gov (United States)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  19. A Study on Gas Pressure Fluctuation Characteristics inside the Snubber and Pipe of Hydrogen

    Directory of Open Access Journals (Sweden)

    M. Sq. Rahman

    2009-01-01

    Full Text Available Hydrogen fuel cell is a developing technology that allows great amount of electrical power to be obtained using a source of hydrogen gas. It is a proven environment-friendly potential future fuel. During compression of hydrogen gas in reciprocating compressor, pressure fluctuation is built up. The pressure fluctuation and its reduction by the snubber are studied in this experiment. For different motor frequencies, the input and output pressure amplitude varies from 0.228 kPa–2.081 kPa and 0.095 kPa–0.898 kPa. The pressure magnitudes are 101.451–105.172 kPa and 101.388–102.565 kPa for input and output of the snubber, respectively. The acryl snubber reduces0.796 kPa (57.31% pressure amplitude on average with restoring its high pressure. Detail information about the pressure including the critical pressure zone inside the tube like snubber part and the whole system can be obtained by CFD.

  20. On a theory of temporal fluctuations in the electrostatic potential structures associated with auroral arcs

    Science.gov (United States)

    Silevitch, M. B.

    1981-01-01

    A possible mechanism is presented for the generation of large-amplitude temporal fluctuations in the structure of the electron energization region associated with auroral arcs. The mechanism is based on the observation that the auroral arc system resembles a laboratory circuit consisting of the series connection of battery, resistance and a forward biased diode containing collisionless plasma in which large-amplitude relaxation oscillations are sometimes observed to be superimposed on the steady-state current. It is shown that in both the laboratory and auroral systems, in which a localized auroral arc dynamo, the ionosphere and the electron energization region are involved, the oscillations are controlled by the times for ions and electrons to traverse the acceleration region, which also characterize the low- and high-frequency structure of the fluctuating waveform. It is demonstrated that a plausible one-dimensional double-layer model of the auroral arc acceleration region exhibits the dynamic negative resistance necessary for the generation of oscillations by the present mechanism. Finally, consideration is given to two kinds of auroral phenomena which might be associated with the mechanism: the 10-Hz quasi-periodic flickering aurora and 10-Hz modulations in the intensity of electrostatic hydrogen cyclotron waves.